
Towards NEXP versus BPP?

Ryan Williams

Stanford University

Abstract. We outline two plausible approaches to improving the mis-
erable state of affairs regarding lower bounds against probabilistic poly-
nomial time (namely, the class BPP).

1 Introduction

In recent years, researchers have been gradually developing methods for po-
tentially proving non-uniform circuit lower bounds against “large” complexity
classes, such as nondeterministic exponential time (NEXP). These methods grew
out of thinking about how to generically derandomize probabilistic algorithms:
given an algorithm A which makes random decisions and solves a problem with
high probability, can we construct a deterministic algorithm B with similar run-
ning time and equivalent behavior to A? Many non-trivial and surprising connec-
tions have been discovered between this basic problem and that of proving cir-
cuit lower bounds (e.g., [NW94,BFNW93,IW97,ACR99,STV01,IKW02,KI04]).
Most of these papers show how circuit lower bounds can imply interesting de-
randomizations. Impagliazzo, Kabanets, and Wigderson proved (among many
other results) an implication in the opposite direction: some derandomizations
can in fact imply circuit lower bounds for NEXP:

Theorem 1 ([IKW02]). Suppose every problem in promiseBPP can be solved
(even nondeterministically) in 2n

ε

time, for every ε > 0. Then NEXP 6⊂ P/poly.

That is, subexponential-time deterministic simulations of probabilistic poly-
nomial time imply that NEXP cannot be simulated with non-uniform polynomial-
size circuits. To be more precise, Theorem 1 boils down to the following claim. In
the Circuit Approximation Probability Problem (a.k.a. CAPP), a Boolean circuit
C is given, and one is asked to approximate the quantity Prx[C(x) = 1] within
an additive factor of 1/10. IKW show that if CAPP can always be solved in

2n
o(1)

time on circuits of size n, then NEXP 6⊂ P/poly.

On a circuit with n inputs, the fastest known algorithm for CAPP is simply
exhaustive search, takingΩ(2n) time. It seems that an improvement from 2n time
to 2n

ε

time would be major, and far from something one might hope to establish
in the near future. Fortunately, the hypothesis of Theorem 1 can be significantly
weakened. It has been shown that essentially any nontrivial improvement over
exhaustive search for CAPP would already yield the desired lower bounds:

Theorem 2 ([Wil10]). Suppose for every k, CAPP on circuits of size nk and
n inputs can be solved (even nondeterministically) in O(2n/nk) time. Then
NEXP 6⊂ P/poly.

Similarly, the paper [Wil10] also shows how slightly faster circuit satisfiability
algorithms would also entail NEXP 6⊂ P/poly. It is possible that Theorem 2 gives
a reasonable approach to proving NEXP 6⊂ P/poly – to prove the lower bound, it
suffices to show that NEXP ⊂ P/poly (a strong assumption that is algorithmic in
nature) yields a nontrivial algorithm for approximating the acceptance probabil-
ities of circuits. This approach was met with skepticism until it was shown how
a variant of Theorem 2 can be applied (along with other ideas) to uncondition-
ally prove that NEXP does not have polynomial-size ACC circuits [Wil11]. The
approach has also been recently extended to prove ACC circuit lower bounds for
NEXP ∩ i.o.-coNEXP as well [Wil13].

This is all fine and good, and we are optimistic that circuit lower bounds will
continue to be developed by studying the connections between circuit-analysis
algorithms and circuit limitations. However, while NEXP 6⊂ P/poly is one of the
many longstanding open questions in computational complexity theory, it is not
the most embarrassing one. Strictly more embarrassingly open questions arise
when we begin to discuss the status of lower bounds against probabilistic polyno-
mial time itself. The above results show that circuit lower bounds already follow
from tiny improvements on deterministic exhaustive search for problems that
are trivial with randomness. However, it is still consistent with current knowl-
edge that randomness is omnipotent! Complexity theory has not yet proved that
EXPNP 6= BPP (exponential time with an NP oracle is different from probabilis-
tic polynomial time with two-sided error), nor have we established EXP 6= ZPP
(exponential time is different from zero-error probabilistic polynomial time), yet
we believe that P = BPP [IW97].1

Troubled by this, we have recently been thinking about how the above theo-
rems and techniques developed for proving circuit lower bounds could potentially
apply to lower bounds against BPP and ZPP.2 This paper suggests two plausible
hypotheses, one of which is significantly weaker than solving the CAPP problem
in general. We prove that establishing the truth of either of these hypotheses
would yield NEXP 6= BPP.

In the remainder of the paper, we assume a basic working knowledge of com-
plexity theory, at the level of Arora and Barak’s textbook [AB09]. For example,
we expect the reader to understand complexity classes like P/poly, ZPP, BPP,
EXP, and NEXP, and possess a high-level familiarity with concepts such as prob-
abilistically checkable proofs and pseudorandomness.

1 A separation problem like EXPNP 6= BPP is strictly more embarrassing than circuit
lower bounds, because circuit lower bounds would already imply them, i.e., EXPNP 6⊂
P/poly implies EXPNP 6= BPP.

2 It is immediate from the ACC lower bounds work that NEXP 6= BPACC, where BPACC
denotes probabilistic uniform ACC with two-sided error. Moreover, REXP 6= BPACC
also holds, because REXP ⊆ BPP would imply NP = RP and hence NEXP = REXP.
We are after bigger fish than these.

2 Derandomizing CAPP over simple distributions of
circuits

In this section, we will show that in order to separate NEXP and BPP, it suffices
to give deterministic heuristics for the CAPP problem which only barely improve
on exhaustive search, and only succeed with very low probability on polynomial-
time samplable distributions of circuits.

Given a Boolean circuit C on n inputs, let tt(C) be its truth table, the 2n-bit
string whose ith bit equals the value of the circuit on the ith n-bit string. First we
show that NEXP = BPP implies the existence of efficient probabilistic algorithms
that can print small circuits encoding witnesses to NEXP computations. This
basically follows from work of Impagliazzo, Kabanets, and Wigderson [IKW02].

Lemma 1. Suppose NEXP = BPP. Then there is a k such that, for every ` and
for every NEXP verifier V accepting a language L, there is a BPP algorithm AV

such that, for all x ∈ L, AV (x, r) outputs (with probability at least 1 − 1/2|x|
`

over all r) a circuit Cx of size at most |x|k such that V (x, tt(Cx)) accepts.3

Proof. First observe that NEXP = BPP implies NEXP ⊆ P/poly. By Impagli-
azzo, Kabanets, and Wigderson, NEXP ⊆ P/poly implies that NEXP has succinct
witness circuits: for every L ∈ NEXP, for every verifier algorithm V for L, and
every x ∈ L, there is a poly(|x|)-size circuit Cx such that V (x, tt(Cx)) accepts.
We want to show that these Cx can be constructed in BPP, under the assump-
tions.

For every NEXP verifier V that accepts a language L ∈ NEXP, there is a
k and an exponential-time algorithm A(x, i) which given a string x and index
i, enumerates all possible circuits D of size |x|k + k, checking if V (x, tt(D))
accepts. If this ever happens, A(x, i) then outputs the ith bit of the encoding of
D (otherwise, let A(x, i) output 0).

Under EXP = BPP, there must exist a BPP algorithm A′ equivalent to A:
given (x, i), A′ outputs (with high probability) the ith bit of such a circuit
D. By probability amplification (repeating A′ for poly(|x|) times, for each i =
1, . . . , |x|k+k, and taking the majority answer for each i), there is a probabilistic
polynomial-time algorithm A′′ which given x ∈ L prints a circuit D encoding a

witness for x, with 1/2|x|
`

probability of error. Let AV = A′′. �

Our next ingredient is the PCPs of Proximity of Ben-Sasson et al., which
imply succinct PCPs for NEXP.

Theorem 3 ([BGH+05]). Let T : Z+ → Z+ be a non-decreasing function.
Then for every s > 0 and every language L ∈ NTIME[T (n)] there exists a PCP
verifier V (x, y) with soundness s, perfect completeness, randomness complexity
r = log2 T (|x|) + O(log log T (|x|)), query complexity q = poly(log T (|x|)), and
verification time t = poly(|x|, log T). More precisely:

3 An algorithm V is a verifier for L ∈ NEXP if there is a k such that for every string

x, we have x ∈ L if and only if there is a y of length 2|x|k such that V (x, y) accepts

within O(2|x|k) steps.

– V has random access to x and y, uses at most r random bits in any execution,
makes q queries to the candidate proof y. and runs in at most t steps.

– If x ∈ L then there is a string y of length T (|x|) logO(1) T (|x|) such that
Pr[V (x, y) accepts] = 1.

– If x /∈ L then for all y, Pr[V (x, y) accepts] ≤ s.

A standard perspective to take in viewing PCP results is to think of the
polynomial-time verifier V as encoding an exponentially long constraint satis-
faction problem, where each setting of the random bits in the verifier yields a
new constraint. For our purposes, we will want T (n) to be 2n, and s to be an
arbitrarily small constant (e.g., 1/10). Then Theorem 3 gives a PCP verifier with
n + O(log n) bits of randomness, poly(n) verification time, and poly(n) query
complexity. By converting this polynomial-time verifier to a polynomial-size cir-
cuit that takes randomness as input, we can produce a reduction from every
L ∈ NTIME[2n] to the so-called Succinct-CSP problem, with the properties:

– Every instance x of L is reduced to a poly(n)-size circuit Cx.
– The truth table of Cx, tt(Cx), encodes a constraint satisfaction problem with

2nnO(1) constraints and variables.
– Each constraint in tt(Cx) contains poly(n) variables and can be evaluated

in poly(n) time.
– If x ∈ L then the CSP tt(Cx) is satisfiable.
– If x /∈ L then for every variable assignment to the CSP, at most an s-fraction

of the constraints are satisfied.

A polynomial-time samplable distribution D = {D1,D2, . . .} on strings has
the property that there is an nk-time algorithm A(1n, r) such that for all n, the

probability of drawing a string x ∈ {0, 1}≤nk

from Dn is exactly

Pr
r∈{0,1}nk

[A(1n, r) = x].

That is, the polynomial time algorithm A perfectly models the distribution D.
(Note that our ensemble of distributions {Dn} is a bit different from standard
practice: Dn does not contain only strings of length n but strings of length up
to nk for some fixed k.) A canonical example of a polynomial-time samplable
distribution is the uniform distribution on strings. Polynomial-time samplable
distributions are central to the study of average-case complexity theory.

We consider deterministic errorless heuristics for the CAPP problem, which
may print SAT, UNSAT, or FAIL. We pose very weak requirements on the
heuristic: if the satisfiable fraction of assignments to the circuit is at least 9/10,
the heuristic must output SAT or FAIL; when the circuit is unsatisfiable, the
algorithm always outputs UNSAT or FAIL.

Finally, we can state the main result of this section:

Theorem 4. Suppose for every k, and every polynomial-time samplable distri-
bution D, the CAPP problem on circuits of size nk and n inputs can be solved in
O(2n/nk) time by a deterministic heuristic H (possibly dependent on D) such
that PrE∈Dn [H(E) 6= FAIL] > 1/2n. Then NEXP 6= BPP.

That is, to separate NEXP from BPP, it suffices to design for every polynomial-
time samplable distribution of circuits a heuristic for the CAPP problem which
barely improves over exhaustive search, and only succeeds on a negligible mea-
sure of circuits from the given distribution. This is a significantly weaker require-
ment than designing a worst-case CAPP solver: here we get to see the efficient
distribution of circuits that the adversary will construct, and we are allowed to
fail on the vast majority of circuits output by the adversary.

It is useful to put Theorem 4 in perspective with another result on average-
case complexity. Buhrman, Fortnow, and Pavan [BFP05] have shown that if
every problem in NP can be solved in polynomial time for every polynomial-
time samplable distribution, then P = BPP. That is, if all NP problems can be
efficiently solved in this way, we can separate EXP from BPP. Theorem 4 shows
that a significantly weaker assumption suffices to separate NEXP from BPP.

Proof of Theorem 4. Let L ⊆ {1n | n ≥ 0} be chosen so that L ∈ NTIME[2n] \
NTIME[2n/n]. (Such languages exist, due to the nondeterministic time hierarchy
of Žák [Ž8́3].) By Theorem 3, there is a polynomial-time reduction from L to
Succinct-CSP, which outputs a circuit C1n on n+O(log n) inputs. If NEXP =
BPP then Lemma 1 says that for all NEXP languages L and verifiers V for L,
there is a probabilistic polynomial-time algorithm A that prints valid witness
circuits for V , with probability of error at most 1/3n on inputs of size n. Let
V be the verifier which, on input 1n, tries to check that its certificate is a
satisfying assignment for tt(C1n). Then A is then a probabilistic polynomial-
time algorithm that (with high probability) on input 1n prints a circuit D1n

such that tt(D1n) is a satisfying assignment for tt(C1n), for 1n ∈ L. We can
think of A as a deterministic algorithm A′ which takes 1n as one input, and a
poly(|x|)-bit random string r as a secondary input, where the overall output of
A′ is determined by the randomness r.

We design a polynomial-time samplable distribution D of circuits, as follows.
Given 1n, our polynomial-time algorithm B first runs the reduction of Theorem 3
to produce a circuit C1n such that 1n ∈ L if and only if C1n ∈ Succinct-CSP.
Then B picks a random seed r and runs A′(1n, r) which (with probability at
least 1 − 1/3n) prints a circuit D1n encoding a satisfying assignment for the
Succinct-CSP instance C1n . Using multiple copies of the two circuits C1n and
D1n , one can construct a polynomially larger circuit E with n+O(log n) inputs
and the following properties:

– If D1n encodes a satisfying assignment to tt(Cn) then E is unsatisfiable.
– If D1n does not encode a satisfying assignment to tt(Cn) then E is satisfiable

on at least 9/10 of its possible inputs.

(For a proof of this construction, see [Wil10].) Algorithm B then outputs E.

Suppose there is a heuristic H for the CAPP problem which runs in deter-
ministic O(2n/nk) time for all desired k, outputs SAT or FAIL when the fraction
of assignments to the circuit which are satisfying is at least 9/10, UNSAT or
FAIL when the fraction is 0, and on circuits randomly drawn from D, H outputs

FAIL with probability at most 1− 1/2n. We wish to give a nondeterministic al-
gorithm N which recognizes the language L in nondeterministic time O(2n/n),
contradicting the choice of L.

On an input 1n, N nondeterministically guesses a random seed r for the
algorithm A′, and runs B(1n) with this choice of seed r for A′. B outputs a
circuit E, which is then fed to H. If H prints UNSAT then N accepts, otherwise
N rejects.

Note that N can be made to run in time O(2n/n): although the circuit E has
n+O(log n) inputs, we can choose k to be larger than the constant c in the big-O
term, so that the heuristic H runs in time O(2n+c logn/(n+c log n)k) ≤ O(2n/n).

We now argue that N is correct. If 1n ∈ L, then on at least (1 − 1/3n) of
the seeds r, A′(1n, r) outputs a circuit D1n encoding a satisfying assignment for
tt(C1n). When such an r is guessed, the circuit E drawn from Dn is unsatis-
fiable; hence in this case, at least a (1 − 1/3n) measure of the circuits in Dn

are unsatisfiable. The satisfiability algorithm H outputs FAIL on less than 1/2n

of the circuits drawn from Dn. Hence there is a random seed r? such that the
circuit E? output by Dn is unsatisfiable, and E? is declared UNSAT by H. Note
N accepts provided that such an r? is guessed by N .

If 1n /∈ L then for all seeds r, the circuit D printed by A′(1n, r) cannot encode
a satisfying assignment for tt(C1n), so the resulting circuit E is always satisfied
by at least 9/10 of its possible input assignments. The heuristic H on circuit E
will always print SAT or FAIL in this case, and N rejects in either of the two
outcomes. � �

So, NEXP 6= BPP would follow from CAPP heuristics that barely beat ex-
haustive search and output FAIL on all but a small fraction of inputs. Should we
expect the existence of such heuristics to be easier to establish than worst-case
CAPP algorithms? The answer is not clear. However it does seem plausible that
one may be able to show NEXP = BPP itself implies heuristic algorithms for
CAPP, which would be enough to prove the desired separation result.

3 Pseudorandomness for deterministic observers

Our second direction for randomized time lower bounds is a simple reflection on
Goldreich and Wigderson’s work regarding pseudorandomness with efficient de-
terministic observers [GW00]. Informally, when one defines pseudorandomness,
we have a pseudorandom generator (a function that maps short strings to long
strings) along with a class of observers (efficient algorithms), and the generator
is said to be pseudorandom to that class if every observer exhibits extremely
similar behavior on the uniform distribution and the distributions of outputs of
the generator.

An alternative way to define pseudorandomness is via unpredictability : a
generator is unpredictable if no observer, given i bits of a random output from
the generator, can predict the (i + 1)st bit with probability significantly better
than 1/2, for all i. A central theorem in the theory of pseudorandomness is that

the unpredictability criterion and the pseudorandomness criterion are essentially
equivalent, when the class of observers is the set of probabilistic polynomial-time
algorithms. That is, a generator which is unpredictable is also pseudorandom,
and vice-versa.

What if the class of observers consists of deterministic polynomial-time algo-
rithms? Then the connections between pseudorandomness and unpredictability
are actually open problems. For every polynomial p(n), Goldreich and Wigder-
son give an explicit distribution computable in time poly(p(n)) which is unpre-
dictable for all deterministic p(n)-time observers, by applying pairwise indepen-
dent distributions in a clever way. They pose as an open problem whether their
distribution is pseudorandom for all deterministic p(n)-time observers. We show
that exhibiting an exponential-time computable distribution that is pseudoran-
dom to linear-time observers implies EXP 6= BPP. In fact, it suffices to construct
an exponential-time generator G that is given the code of a particular linear-time
observer A, and G only has to fool A.

Theorem 5. Suppose for every deterministic linear-time algorithm A, and all
ε > 0, there is a δ > 0 and algorithm G that runs in O(2m) time on inputs of
length m, produces outputs of length m1/ε, and∣∣∣∣ Pr

x∈{0,1}n
[A(x) = 1]− Pr

y∈{0,1}nε
[A(G(y)) = 1]

∣∣∣∣ < 1/2− δ.

Then EXP 6= BPP.

Proof. Assume EXP = BPP. Choose a language L ⊆ {1n | n ≥ 0} such that L ∈
TIME[2n] \ TIME[2n/2] (which can be easily derived by direct diagonalization).
By assumption, and by amplification, there is a deterministic nk-time algorithm
B(·, ·) such that

– If 1n ∈ L, then Pr
x∈{0,1}nk [B(1n, x) = 1] > 1− 1/2n.

– If 1n /∈ L, then Pr
x∈{0,1}nk [B(1n, x) = 1] < 1/2n.

Define the algorithm A(x) = B(1|x|
1/k

, x), which runs in linear time. Let ε =
1/(2k), and suppose there were a function G satisfying the hypotheses of the

theorem for algorithm A and ε. Then we could simulate L in TIME[2O(n1/2)] (a

contradiction), as follows: given 1n, compute the O(2n
1/2

)-size set of strings S =

{G(y) | y ∈ {0, 1}n1/2} ⊆ {0, 1}nk

in O(22n
1/2

) time, then output the majority

value of A(x) over all x ∈ S, in 2n
1/2

poly(n) time. This O(22n
1/2

) time algorithm
decides L, because if 1n ∈ L then Pr

y∈{0,1}n1/2 [A(G(y)) = 1] > 1/2 + δ/2, and

if 1n /∈ L then Pr
y∈{0,1}n1/2 [A(G(y)) = 1] < 1/2− δ/2. �

The above simple result shows that the ability to (slightly) fool deterministic
linear-time algorithms with exponential-time generators is already enough to
separate EXP and BPP. The basic idea can be easily extended in several different

ways. For one, we could make the generator G very powerful, and still derive a
breakthrough lower bound: if G were also allowed to have free oracle access to
the SAT problem (asking exponentially long NP queries about the behavior of
A) in the above hypothesis, we could separate EXPNP from BPP. For another:

Theorem 6. Suppose for every deterministic linear-time algorithm A, and all
ε > 0, there is an algorithm G that runs in O(2m) time on inputs of length
m, produces outputs of length m1/ε, and for every n, if Prx∈{0,1}n [A(x) = 1] >

1− 1/n then there is a y ∈ {0, 1}nε

such that A(G(y)) = 1. Then EXP 6= ZPP.

That is, we only require that, when A accepts the vast majority of n-bit
strings, the algorithm G prints at least one n-bit string (out of 2n

ε

) that is
accepted by A. The proof is analogous.

4 Conclusion

In this short paper, we outlined two potential directions for attacking the ba-
sic separation problems between exponential time and probabilistic polynomial
time. In general we believe that proving separations like NEXP 6= BPP are not im-
possible tasks, but a couple of new ideas will probably be needed to yield the sep-
aration. The reader should keep in mind that such separation results will require
non-relativizing techniques (there are oracles relative to which NEXP = BPP
and NEXP 6= BPP), so no simple black-box arguments are expected to yield new
lower bounds against BPP. However, in this day and age, non-relativizing tools
are not so hard to come by.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[ACR99] Alexander E. Andreev, Andrea E. F. Clementi, and José D. P. Rolim.
Worst-case hardness suffices for derandomization: A new method for
hardness-randomness tradeoffs. TCS, 221(1-2):3–18, 1999.

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has
subexponential time simulations unless EXPTIME has publishable proofs.
Computational Complexity, 3(4):307–318, 1993.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and
Salil P. Vadhan. Short PCPs verifiable in polylogarithmic time. In IEEE
Conference on Computational Complexity, pages 120–134, 2005.

[BFP05] Harry Buhrman, Lance Fortnow and Aduri Pavan. Some results on deran-
domization. Theory Comput. Syst. 38:(2):211–227, 2005.

[GW00] Oded Goldreich and Avi Wigderson. On pseudorandomness with respect to
deterministic observers. In ICALP Satellite Workshops 2000, pages 77–84,
2000.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of
an easy witness: Exponential time vs. probabilistic polynomial time. JCSS,
65(4):672–694, 2002.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma. In Proceedings of the 29th Annual
ACM Symposium on the Theory of Computing, pages 220–229, 1997.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial
identity tests means proving circuit lower bounds. Computational Complex-
ity, 13(1-2):1–46, 2004.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. JCSS,
49(2):149–167, 1994.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators
without the XOR lemma. JCSS, 62(2):236–266, 2001.

[Wil10] Ryan Williams. Improving exhaustive search implies superpolynomial lower
bounds. In ACM Symposium on Theory of Computing, pages 231–240, 2010.

[Wil11] Ryan Williams. Non-uniform ACC circuit lower bounds. In IEEE Confer-
ence on Computational Complexity, pages 115–125, 2011.

[Wil13] Ryan Williams. Natural proofs versus derandomization. In ACM Sympo-
sium on Theory of Computing, page to appear, 2013.

[Ž8́3] Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer
Science, 26(3):327–333, October 1983.

