
Finding orthogonal vectors in discrete structures

Ryan Williams∗ Huacheng Yu†

Abstract

Hopcroft’s problem in d dimensions asks: given n points
and n hyperplanes in Rd, does any point lie on any
hyperplane? Equivalently, if we are given two sets of
n vectors each in Rd+1, is there a pair of vectors (one
from each set) that are orthogonal? This problem has a
long history and a multitude of applications. It is widely
believed that for large d, the problem is subject to the
curse of dimensionality : all known algorithms need at
least f(d) · n2−1/O(d) time for fast-growing functions
f , and at the present time there is little hope that a
n2−ε · poly(d) time algorithm will be found.

We consider Hopcroft’s problem over finite fields
and integers modulo composites, leading to both sur-
prising algorithms and hardness reductions. The al-
gorithms arise from studying the communication prob-
lem of determining whether two lists of vectors (one
list held by Alice, one by Bob) contain an orthogonal
pair of vectors over a discrete structure (one from each
list). We show the randomized communication com-
plexity of the problem is closely related to the sizes
of matching vector families, which have been stud-
ied in the design of locally decodable codes. Letting
HOPCROFTR denote Hopcroft’s problem over a ring
R, we give randomized algorithms and almost match-
ing lower bounds (modulo a breakthrough in SAT al-
gorithms) for HOPCROFTR, when R is the ring of
integers modulo m or a finite field.

Building on the ideas developed here, we give a
very simple and efficient output-sensitive algorithm for
matrix multiplication that works over any field.

1 Introduction

A well-known problem popularized by John Hopcroft
asks: given two sets S1, S2 ⊆ Rd of size n, are there
u ∈ S1 and v ∈ S2 such that 〈u, v〉 = 0? (Hopcroft

∗Computer Science Department, Stanford University. Email:

rrw@cs.stanford.edu. Supported in part by a David Morgen-
thaler II Faculty Fellowship and NSF CCF-1212372. Any opin-

ions, findings and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily re-
flect the views of the National Science Foundation.
†Computer Science Department, Stanford University. Email:

yuhch123@stanford.edu. Supported by an Enlight Foundation
Engineering Fellowship.

originally posed it as: given n points in the plane and
n lines, can we detect whether some point is on some
line? This is equivalent to the above problem, with
d = 3.) Geometrically speaking, the problem asks if
there is an incidence among a set of n points in Rd and a
set of n hyperplanes in Rd which pass through the origin.
Computing the `2-nearest neighbor between S1 and S2

can often be reduced to Hopcroft’s problem.1 In data
structures, Hopcroft’s problem captures the difficulty
of the infamous subset query and partial match query
problems, restricted to 0-1 vectors: given two sets S1, S2

of subsets over a universe of d elements, is there a set
S ∈ S1 and T ∈ S2 such that S ⊂ T?2 The problem also
has statistical applications; namely, in finding a pair of
random variables with maximum correlation.3

The problem is not only foundational and pervasive,
but it is also one where the trivial O(n2 · d) time
algorithm is not far from the fastest known, for large
d. The d = 3 case has been known for 20 years to be
solvable in n4/32O(log? n) time, and the general case is
in Õ(n2−2/d) time [Cha93, Mat93]. (Note this big-O
hides exponential dependencies on d.) Erickson [Eri95]
showed that several related problems are “Hopcroft-
hard” in the sense that faster algorithms for them
would improve the d = 3 case for Hopcroft; in other
work [Eri96], he proved an Ω(n4/3) lower bound in a
specialized model of computation.

When |S1| = |S2| = n and d = Θ(log n), there is no
known algorithm running in n2−ε time, even for 0-1 vec-
tors in O(log n) dimensions. In fact, if such an algorithm

1After normalizing all vectors to unit length, computing the

closest pair is equivalent to finding the pair with maximum inner

product, which can be efficiently reduced to Hopcroft’s problem
when the alphabet size of the vectors is small (see footnote 3).

2Taking the complements of all sets in S2, this is equivalent to

asking if there are S ∈ S1 and T ∈ S2 such that S∩T = ∅, which
is equivalent to finding a pair of 0-1 vectors uS and vT such that
〈uS , vT 〉 = 0. Note that subset queries can be simulated with

partial match queries as well.
3For instance, the problem of finding vectors u ∈ S1 ⊆ {0, 1}d

and v ∈ S2 ⊆ {0, 1}d with minimum inner product can be reduced

to Hopcroft’s problem in O(d2) dimensions: for each possible
inner product value K = 0, 1, . . . , d, map each d-vector u and
v to O(d2)-vectors u′ and v′ such that 〈u′, v′〉 = (〈u, v〉 − K)2.

Finding the smallest K such that an orthogonal u′ and v′ exist
amounts to finding the u, v with minimum inner product.

did exist, then k-CNF-SAT would be solvable in about
2(1−ε/2)n time, refuting the Strong Exponential Time
Hypothesis (SETH) [IP01, IPZ01] (see Lemma A.1 in
the appendix). Last year, G. Valiant [Val12] presented
a new algorithm for the random planted case: suppose
we have n uniform random vectors from {0, 1}d, along
with a “planted” pair of vectors with statistically signif-
icant inner product. Valiant shows that the planted pair
can be discovered in less than n1.7 ·poly(d) time, giving
several applications to learning theory. Unfortunately,
Valiant’s algorithm does not seem to be extendable to
refuting SETH, even for the case of random k-SAT.

In this paper we study the variant of Hopcroft’s
problem where R is replaced with a discrete structure,
such as a finite field, or a ring of integers modulo a
composite. There are several motivations for studying
these variants. First, the general study of incidences in
finite geometry has increased in recent years in TCS,
due to its strong relationships with coding theory and
randomness extractors which are still far from being
well understood [DGY11, Dvi12, BDL13]. Secondly, as
indicated above, Hopcroft’s problem on Boolean vectors
is quite powerful: as the 0-1 d-dimensional case can be
perfectly modeled in Zd+1, an efficient algorithm for
this special case would already yield a breakthrough
in SAT algorithms. Understanding the limits and
possibilities over different structures should lead to a
better understanding of the overall problem. (Our line
of reasoning has also led to new thoughts about matrix
multiplication, as shown below.)

1.1 Our Results The aforementioned hardness re-
sults show that Hopcroft’s problem retains much of its
difficulty when studied over fields of high characteristic
(greater than d). Our main results show that the prob-
lem is surprisingly easy in fields of low characteristic,
and surprisingly difficult for some constant-size rings
such as Z6.

The positive results are best presented in the con-
text of a communication game between two players.
Letting R be a ring, the two-party Hopcroft prob-
lem over R is defined as follows. Alice holds a set
U ⊆ Rd and Bob holds a set V ⊆ Rd such that
|U | = |V | = n. Their goal is to determine if there are
u ∈ U and v ∈ V such that

∑
i ui · vi = 0 over R, with

minimum communication between the two parties.
As we think of n as being much larger than |R|

and d, we are interested in the case where communica-
tion complexity is a function of d and |R| only. Hence
we define the (randomized) communication com-
plexity of the two-party Hopcroft problem as follows:
given R and d, it is the maximum (over all n) commu-
nication required by any (randomized public-coin) pro-

tocol computing two-party Hopcroft with U, V ⊆ Rd
such that |U | = |V | = n. (A priori, note this quantity
could be infinite if the communication complexity was
an increasing function of n.) Therefore, all our com-
munication bounds will in fact be of the form O(fR(d))
or Ω(fR(d)) for some function fR, and of course this
means we assume fR(d) ≤ n · d.

We use HOPCROFTR to denote the typical com-
putation version of the problem, where an algorithm is
given both U and V at once, and the goal is to (effi-
ciently) determine the existence of an orthogonal pair
of vectors from U and V over R.

1. Orthogonal Vectors and Matching Vec-
tors. First we show that the communication complex-
ity of the two-party Hopcroft problem is closely tied to
the sizes of Matching Vector (MV) families, which have
been recently studied for their relationship to locally
decodable codes [DGY11, Efr12, BDL13].

Definition 1.1. Let U = (u1, u2, . . . , uk), V =
(v1, v2, . . . , vk) be sequences of vectors over Rd. (U, V)
is called a matching vector (MV) family of size k if for
all i, j = 1, . . . , k, 〈ui, vj〉 = 0 over R if and only if
i = j. Define MV(R, d) to be the maximum size of a
matching vector family over Rd.4

Theorem 1.1. The two-party Hopcroft problem over R
requires at least Ω (MV(R, d)) communication in the
randomized setting, while there is a deterministic pro-
tocol for two-party Hopcroft over R with (simultaneous)
communication complexity O (d ·MV(R, d)).

Note, by our definition of the communication com-
plexity of two-party Hopcroft, we assume that n� d; in
particular, n ≥ MV(R, d). Therefore, communication
upper and lower bounds for our problem yield upper and
lower bounds on MV families. We consider the problem
of closing the above gap to be an interesting open prob-
lem. Moreover, executing the protocol in Theorem 1.1
requires solving an NP-hard problem in general, so it
cannot be directly converted into an efficient algorithm
– to do that, we use other ideas.

2. Orthogonal vectors over Zpk . Over the
ring Zpk , we determine the randomized communication
complexity of the two-party problem, and give an
interesting algorithm for HOPCROFTZ

pk
.

Theorem 1.2. For every fixed prime power m = pk,
the randomized communication complexity of the two-
party Hopcroft problem in Zm is Θ

(
dm−1

)
.

4In the literature, there is also a more general definition of S-
matching vector family, which specifies an S ⊆ R such that for

ui ∈ U , vj ∈ V , 〈ui, vj〉 /∈ S if and only if i = j. Here we set
S = R\{0} as the default.

The upper bound uses a connection between or-
thogonal vectors and polynomial evaluation problems,
some modular polynomial tricks [BBR94], and the ideas
behind Freivalds’ matrix multiplication checker [Fre77].
The lower bound follows from Theorem 1.1 applied to
existing lower bounds on MV families. Directly inter-
preting Theorem 1.2 algorithmically, we obtain:

Theorem 1.3. For every prime power m = pk, there is
a randomized algorithm for HOPCROFTZm running
in O(n · dm−1) time.5

For instances where n ≥ dm−2 and m ≤ d,
Theorem 1.3 would be preferred over the trivial O(n2 ·d)
or O(n ·md) time algorithms.

It is natural to wonder if the large exponent of
m can be reduced. We can show that a considerable
reduction in the exponent would yield a breakthrough in
SAT algorithms, contradicting the following conjecture,
known as the Strong Exponential Time Hypothesis
(SETH):

Conjecture 1.1. (SETH [IP01, IPZ01]) For every
constant δ < 1 there is a clause width k such that k-
SAT cannot be solved in 2δn time.

Although SETH looks rather strong, all known SAT al-
gorithms are consistent with it, and a string of recent pa-
pers [CIP09, DW10, PW10, LMS11, CNP+11, CDL+12,
PP12, HKN12, Cyg12, CKN13, RW13, FHV13] have
shown that the SETH stands in the way of improv-
ing many algorithms for many diverse problems: if the
best known algorithm can be improved, then SETH is
false. We show that a reduction of the exponent in The-
orem 1.3 from m−1 to o(m/ logm) would refute SETH:

Theorem 1.4. Suppose there is an ε > 0 and a func-
tion f : N→ N such that f(m)/(m/ logm)→ 0 and for
infinitely many m, HOPCROFTZm can be solved in
time n2−ε · df(m). Then SETH is false.

3. Orthogonal vectors over Fpk . Over finite
fields, we find that the communication complexity of
two-party Hopcroft can be low:

Theorem 1.5. For every fixed prime p and constant k,
the randomized communication complexity of the two-
party Hopcroft problem over Fpk is Θ(d(p−1)k).

For fields of small characteristic, the exponent is
only logarithmic in the size of the field. The protocol
achieving the upper bound exploits the fact that multi-
plication by an element in Fpk is a linear transformation

5In all statements we make about randomized algorithms, the
qualifier “with probability at least 99%” is implied.

on vectors in (Fp)k. We use this fact to efficiently reduce
the problem over Fpk to the problem over Fp, which can
then be solved using the techniques of Theorem 1.3. We
also obtain an algorithm with a matching exponent:

Theorem 1.6. For every prime p and k ∈ N, there is
a randomized algorithm for HOPCROFTF

pk
running

in O(n · d(p−1)k) time.

In the case of the field Fpk , the complexity of
exhaustive search takes either O(n2·d) or O(n·pkd) time,
so Theorem 1.6 is a significant speedup when p < d and
d(p−1)k−1 < n; that is, when the field characteristic is
smaller than the dimension, and the dimension is much
smaller than the number of vectors.

Similar to Theorem 1.4, improving the exponent
much further would refute Strong ETH:

Theorem 1.7. Suppose there is an ε > 0 and a func-
tion f : N → N such that f(x)/(x/ log x) → 0 and for
infinitely many F = Fpk , HOPCROFTF is solvable in

time n2−ε · df((p−1)k). Then SETH is false.

4. Orthogonal vectors over Z6. Given the
above results, it is natural to wonder if they extend to
Zm where m is not a prime power (the smallest case is
m = 6). Here, the picture is startlingly different:

Theorem 1.8. Every randomized protocol for the two-

party Hopcroft problem over Z6 requires dΩ(log d
log log d) bits

of communication.

That is, unlike the previous two cases, we cannot
hope to find a communication protocol with complexity
polynomial in d. The proof is immediate from Theo-
rem 1.1 and existing MV family constructions.

Using the polynomials of Beigel, Barrington and
Rudich [BBR94], we prove that efficient algorithms for
Hopcroft’s problem over Z6 could be used to derive
algorithms for the case of Z which break the usual “curse
of dimensionality” hypotheses:

Theorem 1.9. If HOPCROFTZ6
is solvable in

n2−ε · dod
(

log d

(log log d)2

)
time for some ε < 1, then

HOPCROFTZ over vectors in {0, 1}d can be solved
in time n2−δ2o(d) for some δ < 1.

An algorithm for HOPCROFTZ with such a run-
ning time would have several new applications to pat-
tern matching and subset problems, as well as a refuta-
tion of SETH:

Corollary 1.1. If HOPCROFTZ6 is solvable in

n2−ε ·dod
(

log d

(log log d)2

)
time for some ε < 1, then SETH is

false.

5. Output-sensitive and communication-
efficient matrix multiplication. Building on the
ideas developed to solve the above problems, we give
a very simple output-sensitive communication protocol
for matrix multiplication over any field F. Suppose
Alice holds a matrix A ∈ Fn×d, Bob holds a matrix
B ∈ Fd×n, and they wish to compute A ·B.

Theorem 1.10. Let F be an arbitrary finite field, let
A ∈ Fn×d, and let B ∈ Fd×n. After O(nd log(|F|n))
preprocessing time (and no communication), Alice and
Bob can compute every nonzero entry of A ·B whp, with
only O(d(log n)(log(|F|n))) communication and time
delay per nonzero.

That is, for “skinny” matrices, the communication
and time cost of computing the nonzero entries of the
problem can be surprisingly low. As a corollary, we
obtain a new Õ((m+n)·d) time combinatorial algorithm
for n × d × n matrix multiplication with m nonzeroes
in the output; after Õ(nd) preprocessing, the algorithm
outputs nonzero entries with Õ(d) delay per nonzero.

Algorithms with similar running times were known
for Boolean matrix multiplication over the (OR, AND)
semiring [Lin11] and over the reals [Ind05, Pag12] us-
ing compressed sensing techniques, but not for other
fields. (Our algorithm can also be extended to Z, Q,
and C; the running time obviously becomes dependent
on the bit-complexities of the entries.) Pagh’s ma-
trix multiplication [Pag12] is closest in spirit to ours:
his algorithm achieves similar time and communication
bounds, but is algorithmically more complicated, using
multiple hash functions and FFTs. Low-space stream-
ing models for matrix multiplication (which also yield
communication-efficient protocols) have been studied in
the past, but with a focus on approximate solutions; for
example, [DKM06, Sar06, CW09].

Another consequence is that the above algorithms
for Hopcroft’s problem can be extended to algorithms
that can efficiently list all orthogonal pairs of vectors,
for example:

Corollary 1.2. There is an algorithm for listing all
incidences over a given set of n points and n hyperplanes
in (Fpk)d that runs in Õ((n+m) · dk(p−1)) time, where
m is the total number of incidences.

Problems of incidence detecting and counting have
long been studied in computational and discrete geom-
etry (cf. the survey of Dvir [Dvi12] and the book of
Matousek [Mat02]).

2 Orthogonal Vectors and Matching Vectors

In what follows, let R be a commutative ring.

Reminder of Theorem 1.1 The two-party Hopcroft
problem over R requires at least Ω (MV(R, d)) com-
munication in the randomized setting, while there
is a deterministic protocol for two-party Hopcroft
over R with (simultaneous) communication complexity
O (d ·MV(R, d)).

Proof. Recall in the communication problem DIS-
JOINTNESS, two parties each hold sets S1, S2 ⊆ [`],
and they want to determine if S1∩S2 = ∅. To prove the
communication lower bound, we give a reduction from
DISJOINTNESS to the two-party Hopcroft problem.
Fix R and d, and suppose there is a MV family over R
with vectors of dimension d, where U = (u1, u2, . . . , ut),
V = (v1, v2, . . . , vt).

Let Alice and Bob have sets S1, S2 ⊆ [t], respec-
tively. Alice and Bob can determine disjointness of S1

and S2 by individually computing the sets of vectors
A = {ui | i ∈ S1} and B = {vj | j ∈ S2}, then
solving the two-party Hopcroft problem in Rd. By the
definition of MV family, there are vectors u ∈ A and
v ∈ B such that 〈u, v〉 = 0 over R if and only if there is
some i ∈ S1 ∩ S2. However, it is known that every ran-
domized protocol for DISJOINTNESS over [`] requires
Ω(`) communication [KS92, Raz92]. Therefore the two-
party Hopcroft problem over Rd requires Ω(MV(R, d))
communication.

Next, we describe a deterministic protocol for the
two-party Hopcroft problem over commutative rings.
Alice computes the following procedure with her set of
vectors A = {a1, . . . , an}:

Set A′ = ∅. Set A′′ = A.
For all i = 1, . . . , n,

Remove ai from A′′.
If there exists a vi ∈ Rd such that 〈ai, vi〉 =

0 and for all aj ∈ A′ ∪A′′ we have 〈aj , vi〉 6= 0,
then add ai to A′.

Send A′ to Bob.

Bob then checks by himself whether there are u ∈ A′
and v ∈ B such that 〈u, v〉 = 0 over R, returning the
result.

Now we prove the protocol is correct. First, if A,B
do not contain an orthogonal pair of vectors, then A′, B
does not either, as A′ ⊆ A. The interesting case is
when A,B do contain an orthogonal pair. A vector ai
is not added to A′ in the ith stage of the for-loop, only
when for every v ∈ Rd orthogonal to ai, there is another
aj ∈ A′∪A′′ (either aj was added earlier, or j > i) that
is also orthogonal to v. Therefore at the end of stage i
in the for-loop, (A′ ∪ A′′, B) has an orthogonal pair if
and only if ((A′∪A′′)∪{ai}, B) has an orthogonal pair.
By induction, (A,B) has an orthogonal pair if and only
if (A′∪A′′, B) has such a pair, at the end of every stage

in the for-loop. It follows that the protocol correctly
computes the function.

The communication cost of the protocol is exactly
d · |A′|. We claim that there is a set of vectors B′ such
that (A′, B′) is a MV family over R. By construction,
for every ai ∈ A′, there is a vector vi such that 〈ai, vi〉 =
0 but vi is not orthogonal to any other vectors in A′∪A′′
at that point. It follows that vi cannot be orthogonal to
any vector in the final set A′. Letting B′ = (v1, v2, . . .),
we have that (A′, B′) is a MV family over R. Therefore
|A′| ≤ MV(R, d), and the communication cost is at
most O (d ·MV(R, d)). �

We remark that, although Alice’s deterministic
protocol above can be executed in polynomial time when
R = F2, it is probably not possible to execute the
protocol efficiently in general, even for R = F3:

Proposition 2.1. Given {v0, v1, . . . , vn} ⊆ Fd3, it is
NP-hard to find an x ∈ Fd3 that satisfies 〈v0, x〉 = 0,
〈v1, x〉 6= 0, . . . , 〈vn, x〉 6= 0 over F3.

Proof. (Sketch) We reduce from the 3-coloring
problem. Consider a graph G with d nodes and n
edges for which we wish to check 3-colorability. For
each edge ei = {uj , uk}, we set vi ∈ Fd3 to be the
vector with vij = 1, vik = −1, and 0 in all other
entries. Finally, set v0 to be the all-zero vector. Every
x ∈ Fd3 corresponds to a 3-coloring of the d nodes in
G. The vector vi corresponds to the constraint that
the endpoints of ei cannot have the same color. It is
not hard to show that there is a vector x satisfying
〈v0, x〉 = 0, 〈v1, x〉 6= 0, . . . , 〈vn, x〉 6= 0 over F3 if and
only if G is 3-colorable. �

3 Hopcroft’s problem over Zpk
As a simple warm-up, we start by showing that find-
ing non-orthogonal vectors is easy. Many of our results
consist in finding novel ways to reduce Hopcroft’s prob-
lem in one structure to finding non-orthogonal pairs in
another structure.

Proposition 3.1. (Folklore) For any m, given two
sets of vectors U, V ⊆ Zdm, there is a randomized
algorithm which runs in time Õ((|U | + |V |)d) and
determines whether there is a pair u ∈ U , v ∈ V such
that 〈u, v〉 6= 0 over Zm, with high probability.

Proof. Let MU be a |U | × d matrix such that the
i-th row is the i-th vector ui ∈ U , MV be a d × |V |
matrix such that the j-th column is the j-th vector
vj ∈ V . Note that (MUMV)i,j = 〈ui, vj〉, so the goal
is to test whether MUMV is the all-zero matrix. By
the analysis of Freivalds’ algorithm [Fre77], for random

vectors u0 ∈ (Z?m)|U |, if MUMV is not the all-zero
matrix, then uT0 MUMV will not be the all-zero vector
with probability at least 1 − 1/|Z?m|. (Of course, if
MUMV is the all-zero matrix, then uT0 MUMV is always
0.) Thus this problem can be solved in linear time,
since computing uT0 MUMV requires only linear time.
Repeated trials increase the probability of success. �

The above immediately leads to a fast communica-
tion protocol:

Corollary 3.1. For any m, if Alice and Bob hold sets
U, V ⊆ Zdm respectively, there is a randomized protocol
which costs O(d logm) communication and determines
whether there are u ∈ U , v ∈ V such that 〈u, v〉 6= 0
over Zm, with high probability.

Proof. Alice and Bob construct MU and MV as in
Proposition 3.1, Alice generates a random u0, computes
uT0 MU , and sends it to Bob who can compute the result
by himself. �

The following very useful lemma reduces the prob-
lem of finding solutions to polynomials to finding or-
thogonal (or non-orthogonal) vector pairs.

Lemma 3.1. Let R be a commutative ring and Q be
a polynomial in d1 + d2 variables with m monomials.
Given S1 ⊆ Rd1 and S2 ⊆ Rd2 , there is a reduction
from the problem of finding u ∈ S1, v ∈ S2 such that
Q(u1, . . . , ud1 , v1, . . . , vd2) is nonzero (respectively, is
zero) to the problem of finding a non-orthogonal (resp.,
orthogonal) pair of vectors in Rm with sets S′1, S

′
2 of

size equal to that of S1 and S2. The reduction takes
Õ(n ·m · (d1 + d2)) additions and multiplications in R,
where n = |S1|+ |S2|.

Proof. Since the polynomial Q has m monomials,
without loss of generality, we may assume that

Q(x1, . . . , xd1 , y1, . . . , yd2) =

m∑
i=1

ci

d1∏
j=1

x
αij
j

d2∏
j=1

y
βij
j .

For every u ∈ Rd1 , define f : Rd1 → Rm to be
f(u)i = ci

∏d1
j=1 u

αij
j . Similarly for v ∈ Rd2 , define

g : Rd2 → Rm to be g(v)i =
∏d2
j=1 v

βij
j . Observe that

Q(u, v) = 〈f(u), g(v)〉.
For all u ∈ S1, v ∈ S2, our reduction puts f(u)

in S′1 and g(v) in S′2, in Õ(n ·m · (d1 + d2)) additions
and multiplications. We have converted the problem of
finding u, v such that Q(u, v) 6= 0 (resp. = 0) to finding
a non-orthogonal (resp. orthogonal) pair of vectors from
S′1 and S′2. �

Next, we show how to map arbitrary vectors in Zdm
into binary vectors, while preserving the inner product
modulo m.

Lemma 3.2. For all positive integers m, d, there are
functions f, g : Zdm → {0, 1}m2d, such that for all
x, y ∈ Zdm, 〈x, y〉 ≡ 〈f(x), g(y)〉 mod m. Moreover, they
can be both computed in O(m2d) time.

Proof. We first show that the theorem holds for d = 1.
For x, y ∈ Z, we construct vectors f(x) and g(y) of
length m2 which have m “blocks” and each block has
m components. For f(x), the first x blocks are filled
with all ones, and put zeroes in the remaining blocks.
For g(y), each block has the same form: we put ones in
the first y entries of the block, and zeroes in the other
entries. It is not hard to verify 〈f(x), g(y)〉 = x · y, and
both f and g can be computed efficiently.

For general d, we just map each entry of the vector
to a 0-1 vector of length m2, and concatenate these d
vectors. �

Reminder of Theorem 1.2 For every fixed prime
power m = pk, the randomized communication com-
plexity of the two-party Hopcroft problem in Zm is
Θ
(
dm−1

)
.

Proof. For the upper bound, by Lemma 3.2, we
can assume the inputs are 0-1 vectors without loss of
generality. (In general, this increases the complexity
from dm−1 to (dm2)m−1 ≤ O(dm−1).) Consider the
following polynomial over d Boolean variables:

P (x1, . . . , xd) =

pk−1∑
i=0

(−1)i

 ∑
S⊆[d],|S|=i

∏
j∈S

xj

 .

Beigel, Barrington, and Rudich [BBR94] proved that P
has the following property:

P (x1, . . . , xd) ≡

{
1 mod p, if

∑d
i=1 xi ≡ 0 mod pk

0 mod p, if
∑d
i=1 xi 6≡ 0 mod pk

Define the polynomial Q(u1, u2, . . . , ud, v1, . . . , vd) =
P (u1 · v1, u2 · v2, . . . , ud · vd). It is easy to verify
that, for u, v ∈ {0, 1}d, Q(u, v) 6= 0 over Zp if
and only if 〈u, v〉 = 0 over Zpk . Note that the
number of monomials in Q is the same as P , which
is
(

d
≤m−1

)
= O(dm−1).6 By Lemma 3.1, we can reduce

the problem of finding a pair u, v such that Q(u, v) 6= 0
to finding a non-orthogonal pair of vectors over Zm
in O(dm−1) dimensions. The reduction itself costs no
communication at all. Applying Corollary 3.1, we get
an protocol using O(dm−1) communication.

Now we turn to the lower bound. Dvir, Gopalan,
and Yekhanin [DGY11] proved that

MV(Zm, d) ≥
(

d

m− 1

)
,

6We use the notation
(n
≤k

)
=
∑k

i=1

(n
i

)
.

by letting uij = 1 if j ∈ Si, uij = 0 otherwise, and
vij = 1 − uij , where {Si} are (m − 1)-sized subsets of
[d]. Hence the communication lower bound follows from
by applying Theorem 1.1. �

Reminder of Theorem 1.3 For every prime
power m = pk, there is a randomized algorithm for
HOPCROFTZm running in O(n · dm−1) time.

Proof. As in the proof of Theorem 1.2, by Lemma 3.2,
we can first assume the inputs are 0-1 vectors. Then
we use the same polynomials P and Q, and apply
Lemma 3.1 to reduce the problem to finding a non-
orthogonal pair in O(dm−1) dimensions. The reduction
is also time-efficient, running in time O(n · dm−1).
Applying Proposition 3.1, the theorem holds. �

Let R be a commutative ring, and P be a polyno-
mial over k 0-1 variables x1, x2, . . . , xk, such that

P (x1, . . . , xk) = 0 iff x1 = · · · = xk = 0 over R.

Let degR(ORk) be the minimum possible degree of such
a polynomial that can be efficiently constructed (e.g.,
in time that is linear in the number of monomials). We
have the following theorem.

Theorem 3.1. Suppose there is an infinite sequence
{Rm} of rings and ε > 0 such that for all sufficiently
large m and all constant c, there is an algorithm solving
HOPCROFTRm on n vectors in d dimensions in time
n2−ε2d0/c, for d0 satisfying d ≥

(
d0

≤degRm (ORd0)

)
. Then

SETH is false.

Proof. We give a reduction from HOPCROFTZ on
0-1 inputs and apply Lemma A.1 (in the appendix).
Consider an instance of HOPCROFTZ on 0-1 vectors
in d0 dimensions. We have sets of vectors U, V and
want to determine if there are u ∈ U, v ∈ V such that
〈u, v〉 = 0. For every m, by the definition of degRm ,
we can efficiently construct a polynomial P of degree
degRm on d0 0-1 variables computing the OR function
overRm. Note the number of monomials in P is at most(

d0
≤degRm (ORd0)

)
≤ d. Let Q(u1, . . . , ud0 , v1, . . . , vd0) =

P (u1v1, . . . , ud0vd0). By Lemma 3.1, we can reduce
the problem to an instance of HOPCROFTRm in d
dimensions.

To apply Lemma A.1, let c be an arbitrary constant
and let d0 = c log n. We first find m large enough
so that HOPCROFTRm can be solved within time
O(n2−ε · 2 ε

2c ·d0), then perform the above reduction and
apply the fast algorithm for Hopcroft’s problem on Rm.
We obtain an algorithm for HOPCROFTZ on vectors
in {0, 1}c logn with running time O(n2−ε · 2

ε
2c ·d0) =

O(n2−ε/2). As this holds for every c, Lemma A.1 applies
and SETH is false. �

Reminder of Theorem 1.4 Suppose there is an ε > 0
and a function f : N→ N such that f(m)/(m/ logm)→
0 and for infinitely many m, HOPCROFTZm can be
solved in time n2−ε · df(m). Then SETH is false.

Proof. This is a corollary of Theorem 3.1. Let
Rm = Zm; note that degZm(ORd0) ≤ dd0/(m − 1)e.7
Applying a similar argument as in Theorem 3.1, we only
need d ≤

(
d0

dd0/(m−1)e
)

= O(2H(1/(m−1))d0), where H(·)
is the binary entropy function. Observe that

do(
m

logm) ≤ 2o(H(1/(m−1))d0· m
logm) ≤ 2o(d0)

where we applied the inequality H(1/(m − 1))m ≤
2 logm for integer m ≥ 2. If we have an algorithm

for HOPCROFTZm that runs in time n2−ε · do(
m

logm),
it satisfies the condition of Theorem 3.1, and SETH is
false. �

4 Hopcroft’s problem over finite fields

Reminder of Theorem 1.5 For every fixed prime
p and constant k, the randomized communication com-
plexity of the two-party Hopcroft problem over Fpk is

Θ(d(p−1)k).

Proof. Let F = Fpk . First we give the protocol
achieving the upper bound. Fix an element α ∈ F
and consider the mapping Tα : F → F defined as
Tα(β) = αβ. Recall F is a vector space over Fp of
dimension k, and Tα is a linear transformation in this
vector space. Fixing a basis in F, Tα corresponds to a
matrix Mα of dimension k× k, and each element β ∈ F
corresponds a vector Xβ of dimension 1× k.

This motivates the following reduction. For vec-
tor u ∈ U , u = (u1, u2, . . . , ud), we convert it to
u′ = (Mu1

,Mu2
, . . . ,Mud), which can be seen as a

matrix of dimension k × dk. Similarly for vector
v ∈ V , v = (v1, v2, . . . , vd), we convert it to v′ =
(Xv1 , Xv2 , . . . , Xvd), which can be seen as a matrix of di-
mension 1×dk. The goal becomes to determine whether
there is a pair u′ and v′ such that u′ · v′T is the all-zero
k × 1 vector. Letting the k rows of u′ be u′1, u

′
2, . . . , u

′
k,

consider the polynomial:

Q(u′1,1, u
′
1,2, . . . , u

′
k,1, . . . , u

′
k,dk, v

′
1, . . . , v

′
dk)

=

k∏
i=1

(
1− 〈u′i, v′〉

p−1
)

=

k∏
i=1

1−

 dk∑
j=1

u′i,jv
′
j

p−1

7The idea is to simply partition the d0 variables into at most
m−1 groups of q = dd0/(m−1)e variables each, then compute the
OR function exactly on each group with a polynomial of degree

q, summing the result [Bar92].

It is not hard to verify that u′ · v′T is the all-zero vector
if and only if the above polynomial expression evaluates
to a nonzero value over Fp. The number of monomials

in Q is at most
(
(dk)p−1 + 1

)k
= O(d(p−1)k).8 Now

by Lemma 3.1, the problem of finding vectors on which
Q is nonzero can be reduced to finding non-orthogonal
pair in Fp of O(d(p−1)k) dimensions. By Corollary 3.1,
we get a protocol using O(d(p−1)k) communication bits
for this problem.

To obtain the lower bound, recall that by Theo-
rem 1.1 it is sufficient to construct a MV family over Fpk
with dimension d of size Ω

(
d(p−1)k

)
. Recall the finite

field Fpk is isomorphic to polynomials over Fp modulo
an irreducible polynomial of degree k. In the follow-
ing, we use polynomials in x of degree at most k − 1 to
represent elements of Fpk .

For any S ⊆ [d] with (p − 1)k elements, define
uS ∈ {0, 1}d to be the complement of the indicator
vector of S: uS [i] = 0 if and only if i ∈ S. Define
vS ∈ Fd as follows: start with the indicator vector v of
S, then put 1 in the first (p − 1) nonzero entries of v,
the polynomial x in the next (p−1) nonzero entries, the
polynomial x2 in the next (p−1) nonzero entries, and so
on, up to xk−1 if necessary. (For example, for p = 3, the
vector [0, 1, 0, 1, 1, 0, 1, 1] becomes [0, 1, 0, 1, x, 0, x, x2].)

Observe that 〈uS , vS〉 = 0 over Fpk , because the
non-zero entries are disjoint in the two vectors. For
arbitrary S 6= S′ ⊆ [d], we have 〈uS′ , vS〉 =

∑
i∈T vS [i]

for some non-empty subset T of S. By construction,
every non-empty subset of components of vS sums to
a nonzero value over Fpk . Therefore the sequence of

vectors {uS} and {vS} is a MV family of size
(

d
(p−1)k

)
≥

Ω(dk(p−1)), and the proof is complete. �

Remark 4.1. For d ≥ (p − 1)k, the lower bound on
MV

(
Fpk , d

)
is
(

d
(p−1)k

)
= Ω((d

(p−1)k)(p−1)k), and the

upper bound is O(
(
dk+(p−1)k

(p−1)k

)
) = O((e·(k+1)d

(p−1)k)k(p−1)).

That is, for non-constant p and k, the upper and lower
bounds on communication are off by a (e(k + 1))k(p−1)

factor.

Reminder of Theorem 1.6 For every prime p
and k ∈ N, there is a randomized algorithm for
HOPCROFTF

pk
running in O(n · d(p−1)k) time.

Proof. Similar to the proof of Theorem 1.5, we use the
same reduction and polynomial and apply Lemma 3.1
to reduce it to finding a non-orthogonal pair. By
Proposition 3.1, we have an algorithm for this problem
which runs in O(n · d(p−1)k) time. �

8By combining some of the terms with identical v-values, the
number of terms can be bounded from above by

(dk+(p−1)k
(p−1)k

)
.

Reminder of Theorem 1.7 Suppose there is an ε > 0
and a function f : N→ N such that f(x)/(x/ log x)→ 0
and for infinitely many F = Fpk , HOPCROFTF is

solvable in time n2−ε · df((p−1)k). Then SETH is false.

Proof. In order to apply Theorem 3.1, we only need
to construct low degree polynomials computing the OR
function in finite fields.

We first use a folklore construction of a low-degree
polynomial computing the OR function over F. Recall
Fpk is isomorphic to polynomials over Fp, modulo an
irreducible polynomial of degree k. We use polynomials
in x of degree at most k − 1 to represent elements of
Fpk . To construct a polynomial for OR on d0 variables
y1, . . . , yd0 , we divide the variables into (p−1)k groups,
with at most dd0/(p−1)ke variables per group. For each
group i, we construct a polynomial Pi of degree at most
dd0/(p−1)ke which equals to 0 if all variables in group i
are 0, and equals to 1 otherwise. Define the polynomial
P with degree dd0/(p− 1)ke (in y), as:

P (y1, . . . , yd0) =

k−1∑
i=0

 (i+1)(p−1)∑
j=i(p−1)+1

Pj

xi.

Then P (y1, . . . , yd0) = 0 if and only if all yi equal
0. Same as the proof for Theorem 1.4, we can apply
Theorem 3.1, and SETH is false. �

5 Hopcroft’s problem over Z6

Reminder of Theorem 1.8 Every randomized proto-
col for the two-party Hopcroft problem over Z6 requires

dΩ(log d
log log d) bits of communication.

Proof. [Gro00, DGY11] proved that MV(6, d) ≥

2
Ω
(

log2 d
log log d

)
, so the result follows from Theorem 1.1. �

We remark that an communication-efficient proto-
col for two-party Hopcroft problem over Z6 will actually
give an upper bound for MV(Z6, d), which still has a
large gap between lower and upper bounds.

Reminder of Theorem 1.9 If HOPCROFTZ6
is

solvable in n2−ε·dod
(

log d

(log log d)2

)
time for some ε < 1, then

HOPCROFTZ over vectors in {0, 1}d can be solved in
time n2−δ2o(d) for some δ < 1.

Reminder of Corollary 1.1 If HOPCROFTZ6

is solvable in n2−ε · dod
(

log d

(log log d)2

)
time for some ε < 1,

then SETH is false.

Proof. [of Theorem 1.9 and Corollary 1.1] As before,
it suffices to give a low degree polynomial computing
the OR function over Z6. Beigel, Barrington, and
Rudich [BBR94] constructed a multilinear polynomial
P of degree O(

√
d0) on d0 binary variables, computing

the OR function modulo 6. In this case, the number of
monomials d ≤

(d0√
d0

)
= 2O(

√
d0 log d0).

Therefore if we could solve HOPCROFTZ6
in time

n2−ε ·do
(

log d

(log log d)2

)
= n2−ε ·2o(d0), then by Theorem 3.1,

SETH is false. �

6 Output sensitive and communication efficient
matrix multiplication

Our final contribution is a surprisingly simple algorithm
for matrix multiplication which has low communication
complexity and is output-sensitive, building on some of
our ideas for detecting orthogonal pairs.

Reminder of Theorem 1.10 Let F be an arbitrary
finite field, let A ∈ Fn×d, and let B ∈ Fd×n. After
O(nd log(|F|n)) preprocessing time (and no communi-
cation), Alice and Bob can compute every nonzero entry
of A · B whp, with only O(d(log n)(log(|F|n))) commu-
nication and time delay per nonzero.

Proof. Without loss of generality, assume |F| ≥ n5,
otherwise we can take a sufficiently large extension
field of F in the following algorithm (recall that an
irreducible polynomial of degree k can be generated with
randomness in Õ(k) time, so such extension fields can
be efficiently obtained).

We wish to find all pairs (i, j) ∈ [n]2 such that
the inner product of i-th row of A (call it ai) and j-
th column of B (call it bj) is nonzero. Let i1, i2, j1, j2 ∈
[n], with i1 < i2, j1 < j2. Alice and Bob can
test whether the submatrix of A · B with indices in
[i1, i2] × [j1, j2] contains a nonzero entry, by having
Alice choose u = (ui1 , . . . , ui2) ∈ Fi2−i1+1 uniformly
at random, Bob choose random v = (vj1 , . . . , vj2) ∈
Fj2−j1+1, having Alice compute a =

∑i2
k=i1

uk · ak, Bob

compute b =
∑j2
k=j1

vk · bk, and test if 〈a, b〉 = 0 with
O(d(log |F| + log n)) communication. If the submatrix
of A ·B with indices in [i1, i2]× [j1, j2] is all-zero, then
〈a, b〉 = 0; if there is a nonzero, then 〈a, b〉 6= 0 with
probability at least 1− 1/ |F|.

Therefore, in Õ((|i2− i1 +1|+ |j2−j1 +1|) ·d) time,
we can detect a nonzero in a submatrix of |i2 − i1 + 1| ·
|j2 − j1 + 1| entries. We can amortize the work over all
possible intervals, as follows. First, observe that by the
union bound, the guarantee that the submatrix of A ·B
with indices in [i1, i2] × [j1, j2] is all-zero if and only if
〈a, b〉 = 0 holds, with probability at least 1 − n4/ |F| ≥
1 − 1/n, for all intervals [i1, i2], [j1, j2]. Alice and Bob
generate u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Fn at
random, and compute all prefix sums

Si =

i∑
k=1

uk · ak, Tj =

j∑
k=1

vk · bk,

for i, j = 0, . . . , n (we set S0 = T0 = 0). This can
be done in O(nd log |F|) time. (Note these could be
efficiently computed in parallel [Ble93].) Now for any
desired intervals [i1, i2], [j1, j2], Alice and Bob can detect
a nonzero in the [i1, i2]× [j1, j2] submatrix of AB using
O(d(log |F| + log n)) communication and time: Alice
sends a = Si2 − Si1−1, Bob sends b = Tj2 − Tj1−1, and
they compute 〈a, b〉.

Given the ability to query nonzeroes in arbitrary
intervals, we use binary search to recursively find all
nonzero entries in A ·B. At each stage of the recursion,
Alice and Bob are considering some interval [i1, i2] ×
[j1, j2]; initially, i1 = j1 = 1 and i2 = j2 = n. Letting
im = b(i2 − i1 + 1)/2c and jm = b(j2 − j1 + 1)/2c,
they use four queries to detect nonzeroes among the
four intervals

[i1, im]× [j1, jm], [i1, im]× [jm + 1, j2]

[im + 1, i2]× [j1, jm], [im + 1, i2]× [jm + 1, j2],

recursing on those intervals containing nonzeroes. For
each nonzero entry (i, j), at most log n queries are
needed to isolate the entry; then Alice and Bob can
simply send ai and bj in extra O(d log |F|) communica-
tion and time. �

Observe the above algorithm makes sense over Z, Q,
and C as well, with comparable running time (in terms
of the number of arithmetic operations).

Reminder of Corollary 1.2 There is an algorithm
for listing all incidences over a given set of n points and
n hyperplanes in (Fpk)d that runs in Õ((n+m) ·dk(p−1))
time, where m is the total number of incidences.

Proof. Using the construction in the proof of Theo-
rem 1.5, the problem of listing all incidences in (Fpk)d

can be reduced to listing all pairs ui ∈ U, vj ∈ V

such that 〈ui, vj〉 6= 0 for some U, V ⊆ (Fp)d
(p−1)k

with

|U | = |V | = n. The reduction takes Õ(n · dk(p−1)) time.
Let A be the n × dk(p−1) matrix with ith row equal to
ui ∈ U , and B be the dk(p−1) × n matrix with jth col-
umn equal to vj ∈ V . The algorithm of Theorem 1.10
finds all nonzeroes in A · B, corresponding to all pairs
ui, vj that 〈ui, vj〉 6= 0, in time Õ((n+m)dk(p−1)). �

7 Conclusion

In this paper, we have shown how Hopcroft’s prob-
lem, a fundamental problem in computational geome-
try, reveals interesting layers of tractability and diffi-
culty when we vary the algebraic structures involved.
Along the way, we have given a simple combinatorial
and output-sensitive method for matrix multiplication.
There are still gaps in the overall picture which are

worth further investigation. We conclude with a few
open questions:

• What is the exact relationship between the two-
party Hopcroft communication problem over R and
the sizes of matching vector families over R? Cur-
rently, we know they are related to within a factor
of d, but perhaps tighter bounds can be proved.
The only case we know how to completely settle is
where R = F2: we can prove that the deterministic
communication complexity of two-party Hopcroft
is at least d2/4− o(d), and by bounds on MV fam-
ilies, it is O(d2).

• Can we find algorithms for Hopcroft’s problem that
break the mold of the communication problem? All
of our algorithms stem from studying the two-
party communication problem, then efficiently im-
plementing the underlying protocols. It seems ob-
vious that algorithms which can examine both sets
of vectors multiple times before making decisions
would be only more powerful. Of course, we know
that significantly faster algorithms that go beyond
the communication bounds would break the Strong
Exponential Time Hypothesis.

• Is the Strong Exponential Time Hypothesis actually
true? We find it hard to believe that Hopcroft’s
problem over (say) F31100 would be significantly
easier than the same problem over Z6, but that
must be true if SETH holds. Just as studying Zm
for non-prime-power m was the key to developing
subexponential locally decodable codes, studying
Hopcroft’s problem over Zm may lead to faster SAT
algorithms.

References

[Bar92] David A. Mix Barrington. Some problems involv-
ing Razborov-Smolensky polynomials. In Proceedings
of the London Mathematical Society Symposium on
Boolean Function Complexity, pages 109–128. Cam-
bridge University Press, 1992.

[BBR94] David A. Mix Barrington, Richard Beigel, and
Steven Rudich. Representing Boolean functions as
polynomials modulo composite numbers. Comput.
Complexity, 4:367–382, 1994.

[BDL13] Abhishek Bhowmick, Zeev Dvir, and Shachar
Lovett. New lower bounds for matching vector codes.
In STOC, pages 823–832, 2013.

[Ble93] Guy E. Blelloch. Prefix sums and their applications.
In J. Reif, editor, Synthesis of Parallel Algorithms.
Morgan Kaufmann, 1993.

[CDL+12] Marek Cygan, Holger Dell, Daniel Lokshtanov,
Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus
Wahlström. On problems as hard as CNF-SAT. In
IEEE Conference on Computational Complexity, pages
74–84, 2012.

[Cha93] Bernard Chazelle. Cutting hyperplanes for divide-
and-conquer. Discrete & Computational Geometry,
9:145–158, 1993.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamo-
han Paturi. The complexity of satisfiability of small
depth circuits. In Parameterized and Exact Computa-
tion, pages 75–85. Springer, 2009.

[CKN13] Marek Cygan, Stefan Kratsch, and Jesper Ned-
erlof. Fast Hamiltonicity checking via bases of perfect
matchings. In STOC, pages 301–310, 2013.

[CNP+11] Marek Cygan, Jesper Nederlof, Marcin
Pilipczuk, J.M.M. van Rooij, and J.O. Wojtaszczyk.
Solving connectivity problems parameterized by
treewidth in single exponential time. In FOCS, pages
150–159, 2011.

[CW09] Kenneth L. Clarkson and David P. Woodruff. Nu-
merical linear algebra in the streaming model. In
STOC, pages 205–214, 2009.

[Cyg12] Marek Cygan. Deterministic parameterized con-
nected vertex cover. In Algorithm Theory–SWAT 2012,
pages 95–106. Springer, 2012.

[DGY11] Zeev Dvir, Parikshit Gopalan, and Sergey
Yekhanin. Matching vector codes. SIAM J. Comput.,
40(4):1154–1178, 2011.

[DKM06] Petros Drineas, Ravi Kannan, and Michael W.
Mahoney. Fast Monte Carlo algorithms for matrices
I: Approximating matrix multiplication. SIAM J.
Comput., 36:132–157, 2006.

[Dvi12] Zeev Dvir. Incidence theorems and their applica-
tions. Foundations and Trends in Theoretical Com-
puter Science, 6(4):257–393, 2012.

[DW10] Evgeny Dantsin and Alexander Wolpert. On mod-
erately exponential time for SAT. In Proc. 13th In-
ternational Conference on Theory and Applications of
Satisfiability Testing, pages 313–325, 2010.

[Efr12] Klim Efremenko. 3-query locally decodable codes of
subexponential length. SIAM J. Comput., 41(6):1694–
1703, 2012.

[Eri95] Jeff Erickson. On the relative complexities of some
geometric problems. In Proceedings of the 7th Cana-
dian Conference on Computational Geometry, pages
85–90, 1995.

[Eri96] Jeff Erickson. New lower bounds for Hopcroft’s
problem. Discrete & Computational Geometry,
16(4):389–418, 1996.

[FHV13] Henning Fernau, Pinar Heggernes, and Yngve Vil-
langer. A multivariate analysis of some DFA problems.
In Proceedings of LATA, pages 275–286, 2013.

[Fre77] Rusins Freivalds. Probabilistic machines can use less
running time. In IFIP Congress, pages 839–842, 1977.

[Gro00] Vince Grolmusz. Superpolynomial size set-systems
with restricted intersections mod 6 and explicit Ramsey

graphs. Combinatorica, 20(1):71–86, 2000.
[HKN12] Sepp Hartung, Christian Komusiewicz, and André

Nichterlein. Parameterized algorithmics and computa-
tional experiments for finding 2-clubs. In Parameter-
ized and Exact Computation, pages 231–241. Springer,
2012.

[Ind05] Piotr Indyk. Output-sensitive algorithm for matrix
multiplication. unpublished manuscript, 2005.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the
complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367–
375, 2001.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Fran-
cis Zane. Which problems have strongly exponential
complexity? J. Comput. Syst. Sci., 63(4):512–530,
2001.

[KS92] Bala Kalyanasundaram and Georg Schintger. The
probabilistic communication complexity of set inter-
section. SIAM Journal on Discrete Mathematics,
5(4):545–557, 1992.

[Lin11] Andrzej Lingas. A fast output-sensitive algo-
rithm for boolean matrix multiplication. Algorithmica,
61(1):36–50, 2011.

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket
Saurabh. Known algorithms on graphs on bounded
treewidth are probably optimal. In SODA, pages 777–
789, 2011.

[Mat93] Jiŕı Matousek. Range searching with efficient
hiearchical cutting. Discrete & Computational Geom-
etry, 10:157–182, 1993.

[Mat02] Jiri Matousek. Lectures on Discrete Geometry.
Springer Graduate Texts in Mathematics, 2002.

[Pag12] Rasmus Pagh. Compressed matrix multiplication.
In ITCS, pages 442–451, 2012.

[PP12] Marcin Pilipczuk and Micha l Pilipczuk. Finding a
maximum induced degenerate subgraph faster than 2n.
In Parameterized and Exact Computation, pages 3–12.
Springer, 2012.

[PW10] Mihai Patrascu and Ryan Williams. On the possi-
bility of faster SAT algorithms. In SODA, pages 1065–
1075, 2010.

[Raz92] Alexander A. Razborov. On the distributional
complexity of disjointness. TCS, 106(2):385–390, 1992.

[RW13] Liam Roditty and Virginia Vassilevska Williams.
Fast approximation algorithms for the diameter and
radius of sparse graphs. In STOC, pages 515–524,
2013.

[Sar06] Tamás Sarlós. Improved approximation algorithms
for large matrices via random projections. In FOCS,
pages 143–152, 2006.

[Val12] Gregory Valiant. Finding correlations in sub-
quadratic time, with applications to learning parities
and juntas. In FOCS, pages 11–20, 2012.

[Wil05] Ryan Williams. A new algorithm for optimal 2-
constraint satisfaction and its implications. Theor.
Comput. Sci., 348(2-3):357–365, 2005.

A Appendix: Hopcroft’s problem and the
Strong Exponential Time Hypothesis

A variant of the following lemma appeared in [Wil05].

Lemma A.1. ([Wil05]) Suppose there is a δ > 0 and
an algorithm A such that for all c ≥ 1, A solves
Hopcroft’s problem on n vectors in {0, 1}c logn over the
integers, in O(n2−δ) time. Then the Strong Exponential
Time Hypothesis is false.

Proof. Recall that, to refute the Strong Exponential
Time Hypothesis, we need to show that there is a δ′ > 0
such that for every k, k-SAT is in (2− δ′)n time.

Suppose we have a δ > 0 and an algorithm for
Hopcroft’s problem as hypothesized. Given a k-CNF
formula F on n variables, we first apply the Sparsifica-
tion Lemma [IPZ01] to F , which for any desired ε > 0
generates t ≤ 2εn different k-CNF formulas F1, . . . , Ft
such that F is satisfiable if and only if some Fi is satis-
fiable, and the number of clauses of each Fi is at most
f(k, ε)n for a fixed function f . This reduction runs in
O(2εn) time.

Setting ε < δ/2 and c = 2f(k, ε), we can embed the
problem of satisfying a given Fi into Hopcroft’s problem,
as follows. We split the set of n variables into two sets of
at most dn/2e variables each, and enumerate all partial
assignments to the two sets, creating two lists L1 and
L2 of O(2n/2) size. For each partial assignment a from
one of the lists, we associate a Boolean vector va with
cn components, where the jth component of va is 1 if
and only if the jth clause of Fi is not satisfied by a.
Observe that there is a satisfying assignment to Fi if
and only if there is a vector va ∈ L1 and wa′ ∈ L2 such
that 〈va, wa′〉 = 0 (over the integers).

Applying the hypothesized algorithm for Hopcroft’s
problem on all F1, . . . , Ft, our satisfiability algorithm
runs in O(2εn · (2n/2)2−δ) ≤ O(2(ε+1−δ/2)n) time. Since
ε < δ/2, this completes the proof. �

	Introduction
	Our Results

	Orthogonal Vectors and Matching Vectors
	Hopcroft's problem over Zpk
	Hopcroft's problem over finite fields
	Hopcroft's problem over Z6
	Output sensitive and communication efficient matrix multiplication
	Conclusion
	Appendix: Hopcroft's problem and the Strong Exponential Time Hypothesis

