
Beating Brute Force for Systems of Polynomial Equations
over Finite Fields∗

Daniel Lokshtanov† Ramamohan Paturi‡ Suguru Tamaki§ Ryan Williams¶

Huacheng Yu¶

Abstract

We consider the problem of solving systems of multivariate polynomial equations of degree k over a
finite field. For every integer k ≥ 2 and finite field Fq where q = pd for a prime p, we give, to the best
of our knowledge, the first algorithms that achieve an exponential speedup over the brute force O(qn)
time algorithm in the worst case. We present two algorithms, a randomized algorithm with running time
qn+o(n) · q−n/O(k) time if q ≤ 24ekd , and qn+o(n) · (logq

dek)
−dn otherwise, and a deterministic algorithm for

counting solutions with running time qn+o(n) · q−n/O(kq6/7d). For the important special case of quadratic
equations in F2, our randomized algorithm has running time O(20.8765n).

For systems over F2 we also consider the case where the input polynomials do not have bounded
degree, but instead can be efficiently represented as a ΣΠΣ circuit, i.e., a sum of products of sums of vari-
ables. For this case we present a deterministic algorithm running in time 2n−δn for δ = 1/O(log(s/n))
for instances with s product gates in total and n variables.

Our algorithms adapt several techniques recently developed via the polynomial method from circuit
complexity. The algorithm for systems of ΣΠΣ polynomials also introduces a new degree reduction
method that takes an instance of the problem and outputs a subexponential-sized set of instances, in
such a way that feasibility is preserved and every polynomial among the output instances has degree
O(log(s/n)).

Keywords: exponential time algorithms, circuit satisfiability, counting, polynomial method, derandom-
ization

∗This work was done in part while the authors were visiting the Simons Institute for the Theory of Computing, Berkeley, CA.
†University of Bergen daniello@ii.uib.no. Supported by the Beating Hardness by Pre-processing grant

of the Bergen Research Foundation
‡University of California, San Diego paturi@cs.ucsd.edu. This research is supported by NSF grant CCF-1213151 from the

Division of Computing and Communication Foundations. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.
§Kyoto University tamak@kuis.kyoto-u.ac.jp. Supported in part by MEXT KAKENHI (24106003); JSPS KAKENHI

(25240002, 26330011); the John Mung Advanced Program of Kyoto University. Part of the work performed while the author was
at Department of Computer Science and Engineering, University of California, San Diego.
¶Stanford University. rrw@cs.stanford.edu, yuhch123@gmail.com. Supported by an Alfred P. Sloan Fellowship and NSF

grants CCF-1212372 and CCF-1552651 (CAREER). Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the NSF.

1 Introduction

We consider the problem of solving systems of multivariate polynomial equations over a finite field of order
q = pd . For brevity, we call the problem SysPolyEqs(q). An instance P of the problem has the form
{p1, p2, . . . , pm}, where each pi ∈ Fq[x1,x2, . . . ,xn] and is represented as a sum of monomials where the
exponent of each variable is at most q− 1 (due to the identity xq = x). Our task is to decide whether P is
feasible, i.e., whether there exists an x ∈ Fn

q such that p1(x) = p2(x) = · · · pm(x) = 0 holds. We call such an
x a satisfying assignment to P.

We define the degree of an instance as max1≤i≤m deg(pi), where deg(pi) is the maximum degree of the
monomials of pi and the degree of a monomial is defined as the sum of the exponents of the variables in
it. For instances of degree one, the problem is solvable in polynomial time by Gaussian elimination. An
easy reduction from the circuit satisfiability problem shows that SysPolyEqs(2) is NP-complete for degree-2
instances. In addition, Håstad [18] showed that, given a degree-k instance, it is NP-hard to find an assignment
to a feasible SysPolyEqs(2) instance that satisfies a (21−k− 21−2k + ε)-fraction of equations for any k ≥ 2
and ε > 0. Thus the problem is extremely hard to approximate.

In terms of exact solvability, there are few positive results known. Although several algorithms for
SysPolyEqs(2) are known in the crypto community based on plausible average-case assumptions (see the
section on related work), to the best of our knowledge no algorithm running in qδn time (for some fixed
δ < 1) has been reported for the general case of SysPolyEqs(q), for any prime power q and any degree
larger than 1.

Our Results. We present algorithms for the problem that beat brute force search decisively for bounded
degree instances in all finite fields.

Theorem 1.1 (Solving Low-Degree Systems of Polynomial Equations). Let p be a prime, and q = pd

for d ≥ 1. There is a randomized algorithm that, given an instance of SysPolyEqs(q) with m polynomial
equations of degree at most k in n variables, decides the satisfiability of the system correctly with high
probability. The running time of the algorithm is bounded by

• O?(20.8765n) time1 when q = k = 2,

• O?(q(1− 1
5k)n ·n3k) when p = 2 (but q > 2 or k > 2),

• O?(q(1−(1/200k))n ·n3qk) when p > 2 and log p < 4ek,

• O?

(
qn ·
(

logq
ekd

)−dn
)

when p > 2 and log p≥ 4ek

The running time bounds of Theorem 1.1 can be interpreted in the following way. When the base of
the field size is “small” relative to the degree, that is, p < 24ek, the algorithm outperforms brute force by
a multiplicative factor of qn/O(k). This corresponds to not having to guess on a 1/O(k) fraction of the
variables, and is qualitatively the same kind of “savings” as that of the fastest known algorithms for k-
SAT [32]. It would be quite surprising to see an algorithm for SysPolyEqs(q) beating brute force by a factor
more than qn/O(k). When the base p of the field size becomes “very large” compared to the degree bound,
i.e., log p ≥ 4ek, the algorithm no longer achieves the multiplicative factor qn/O(k) improvement over brute

force, instead the improvement is a factor
(

logq
ekd

)dn
, which is still substantial and for example much larger

than qO(n/kq).
The algorithm of Theorem 1.1 is randomized, a natural goal is to obtain a deterministic algorithm with

the same running time. We are currently unable to achieve this goal, but we do obtain a deterministic
1The O? notation omits polynomial factors.

1

algorithm that decisively beats brute force and also solves the problem of counting the number of satisfying
assignments.

Theorem 1.2 (Counting Solutions to Low-Degree Systems of Polynomial Equations 〈?〉2). Let q = pd for
a prime p and integer d ≥ 1. There is a deterministic algorithm that, given an instance of SysPolyEqs(q)

with m polynomial equations of degree at most k in n variables, runs in time q
n
(

1− 1
300kq6/7d

)
+o(n)

·mO(qk) and
counts the number of satisfying assignments for the system.

We then proceed to consider the case of polynomial equations in Fq where the input polynomials do
not have bounded degree, but instead can be encoded efficiently as a ΣΠΣ circuit; i.e., a linear form of
products of linear forms on the variables. Specifically, we require that an encoding of each pi as a ΣΠΣ

circuit is provided as input. We call this variant of the problem GenSysPolyEqs(q). For q = 2 we obtain an
algorithm that achieves exponential speedup over 2n as long as the total number of product gates in the input
polynomials is linear in the number n of variables. Again we obtain one deterministic and one randomized
algorithm, with the deterministic algorithm counting the number of satisfying assignments. However, in this
case the difference between the running times of the deterministic and the randomized algorithms is only in
the constant factor in the savings.

Theorem 1.3 (Solving Systems of ΣΠΣ Polynomials). There is a randomized algorithm that, given an in-

stance of GenSysPolyEqs(2) of size u with s products and n variables, runs in time poly(u)·2
(

1− 1
10log(s/n)+O(1)

)
n,

and decides the satisfiability of the system correctly with high probability.

Theorem 1.4 (Counting Solutions to Systems of ΣΠΣ Polynomials). There is a deterministic algorithm
that, given an instance of GenSysPolyEqs(2) of size u with s products and n variables, runs in time poly(u) ·

2
(

1− 1
1100log(s/n)+O(1)

)
n and counts the number of satisfying assignments for the system.

Note that if the degree of each ΣΠΣ polynomial is at most k, then one can in principle use the algorithms
of Theorems 1.1 and 1.2 to solve GenSysPolyEqs(2). However, in general the degree of each ΣΠΣ circuit
in our instances can be larger than n, and our algorithm for GenSysPolyEqs(2) can still run in time that is
super-polynomially faster than 2n.

Related Work, Solving systems of multivariate polynomial equations is a fundamental problem in math-
ematics, science and engineering; see for example [11, 36]. The problem of detecting rational points in Fq

(finding a non-zero point that makes a polynomial zero) is widely studied ([8, 19, 25, 26]).

Systems of Degree-Two. For fields of characteristic two and the polynomials of degree two, the problem
arises in breaking certain cryptosystems based on the presumed hardness of quadratic polynomial equa-
tions [4, 16]. This underscores the importance of beating exhaustive search in the degree-2 case. For the
purposes of this paragraph, we call the problem Deg2-SysPolyEqs(q). Woods [41] gave an interesting non-
deterministic proof system for Deg2-SysPolyEqs(q), showing how one can prove that a system of quadratic
equations is infeasible with an O?(qn/2)-length proof verifiable in O?(qn/2) time. Under several algebraic
assumptions, Yang and Chen [42] estimate an O(20.875n) time bound for Deg2-SysPolyEqs(2). Miura et
al. [30] show how to solve Deg2-SysPolyEqs(2) in polynomial time when the system is sufficiently under-
determined (in particular, the number of variables n≥Ω(m2), where m is the number of equations). Bardet
et al. [5] gave algorithms for Deg2-SysPolyEqs(2) running in deterministic 20.841n time and Las Vegas 20.792n

time for the case m = n under certain algebraic assumptions on the instances. In general, considerable re-
search in modern cryptanalysis is centered around solving multivariate systems of low-degree polynomial
equations (see the books [17, 3]).

2Proofs of statements labeled with 〈?〉 can be found in the appendix.

2

Efficient Algorithms For Special Cases. Lu [28] gave a deterministic algorithm for finding a solution to a
single polynomial equation that runs in time poly(s) for polynomials with s monomials. Building on a ran-
domized algorithm of Huang and Wong [19], Kayal [22] gave a deterministic algorithm for SysPolyEqs(q)
that has running time dnO(n) ·poly(m, logq), where n is the number of variables, d is the degree, and m is the
number of equations. This algorithm is only non-trivial when q is extremely large relative to the degree, in
particular dnO(n) � qn.

Conditional Lower Bounds Based on SysPolyEqs(2). In some papers, the conjecture that SysPolyEqs(2)
in degree-2 cannot be solved in 2n(1−ε) time for any ε > 0 was used to justify the optimality of certain
algorithms. Björklund et al. [10] showed that the conjecture implies that their algorithm for listing triangles
in sparse graphs is optimal. Vassilevska and Williams [37] prove that the conjecture implies that finding a
zero-edge-sum triangle over F2 requires n3−o(1) time; this problem is closely related to the 3XOR problem
of Jafargholi and Viola [21]. Clearly, Theorem 1.1 refutes the above conjecture, and opens up the possibility
for faster algorithms for the above problems.

Relationship to SAT. SysPolyEqs(2) and GenSysPolyEqs(2) may be seen as generalizations of the satisfi-
ability problem for CNF formulas: The former is equivalent to SAT of unbounded-fan-in AND-PARITY-
AND circuits, and the latter is SAT of unbounded-fan-in AND-PARITY-AND-PARITY circuits. Small-
depth unbounded-fan-in circuits with AND, OR and PARITY gates (i.e., AC0[⊕]) are widely studied in
Boolean circuit complexity; see, e.g., [24, 15, 14]. To the best of our knowledge, faster-than-2n SAT al-
gorithms were not known even for depth-3 unbounded-fan-in circuits with a linear number of AND and
PARITY gates.

Williams [39] gave an algorithm for the ACC0-SAT problem, which includes SysPolyEqs(2) as a special
case; however, the algorithm of Williams only runs in poly(n,m) · 2n−nε

time, where ε is a small positive
constant. Chapter 4.3 of Matthews’ PhD thesis [29] cites Lokshtanov and Paturi (two authors of the present
paper) with an unpublished algebraic algorithm for k-SAT. Our algorithms for systems of degree-k equations
can be seen as a considerable extensions of their method. Williams and Lokshtanov-Paturi were based on
the polynomial method in Boolean circuit complexity [6] (see the survey [40] for more).

Techniques Given a set of degree-k polynomials S = {p1, . . . , pm} ⊆ Fq[x1, . . . ,xn], we can define a single
polynomial capturing all of them, namely PS(x) := 1−∏

m
i=1(1− pi(x)q−1). For all a∈Fn

q, note that PS(a)= 0
holds if p1(a) = · · ·= pm(a) = 0, and PS(a) = 1 otherwise. For some appropriately chosen n′ < n, we may
define a polynomial R∈ Fq[x1, . . . ,xn−n′] as R(x1, . . . ,xn−n′) := ∏a∈Fn′

q
PS(x1, . . . ,xn−n′ ,a). Observe that there

is an a ∈ Fn
q such that PS(a) = 0 if and only if there is a b ∈ Fn−n′

q such that R(b) = 0. Therefore, evaluating
R on all points a∈ Fn−n′

q will determine if the original system is feasible or not. Evaluation of R(a) would be
relatively easy if it were merely a sum of products, but it is more complex: a product of sums of products of
sums of monomials. However, since R(y) is a product of qn′ functions, it takes time qn′ ·poly(n) to evaluate
R(y) at a single point y. Hence the straightforward way of evaluating R on qn−n′ points would lead to a
qn ·poly(n) running time.

Despite the complexity of R, we can in fact evaluate on qn−n′ points in qn−n′ · poly(n,m) time by deftly
applying the probabilistic polynomial constructions of Razborov and Smolensky together with an algorithm
for efficient sums-of-monomials evaluation. These are among the couple of ideas required to prove Theo-
rem 1.1; attaining a deterministic algorithm requires substantially more work. We borrow some tools from
recent work of Chan and Williams [13], who give a more efficient deterministic algorithm for counting SAT
assignments. Generalizing the ideas of their #SAT algorithm to fit the SysPolyEqs(q) setting requires some
care, in particular, the restriction to prime fields. To make a deterministic algorithm that works for all fields
we give a reduction that transforms a system of m polynomial equations of degree k with n variables over
Fpd for d ≥ 2 into an equivalent system of md polynomial equations of degree k with nk variables over Fp.

3

This reduction turns out to be also useful to obtain an additional speedup for the randomized algorithm in
the case that q = pd .

Our algorithms for solving systems of ΣΠΣ polynomials (Theorems 1.3 and 1.4) consist of two steps.
First, given an instance, we run a degree reduction algorithm that produces a set of instances of degree at
most O(log(s/n)) such that the original instance is satisfiable if and only if at least one of them is satisfiable.
Then, we apply the algorithms of Theorems 1.1 or 1.2 to each instance. Our degree reduction algorithm can
be seen as a generalization of Schuler’s width reduction algorithm for CNF-SAT [34].

The degree reduction algorithm implies that an AND-PARITY-AND-PARITY circuit can be represented
as a “small-size” algebraic decision tree whose internal nodes and leaves correspond to indicator functions
of affine subspaces and low-degree polynomials respectively. Such representation might be useful in prov-
ing average-case lower bounds for AND-PARITY-AND-PARITY circuits, as Impagliazzo, Matthews and
Paturi [20] used Schuler’s width reduction algorithm to obtain correlation bounds for AC0 circuits (i.e.,
bounded-depth unbounded-fan-in circuits with AND and OR gates) for approximating the PARITY func-
tion.

2 Preliminaries
We use random access machines as our computation model. For a positive integer n, [n] denotes the set
{1,2, . . . ,n}. For rational numbers a < b, (a,b) denotes the open interval between a and b. For a finite
set S, |S| denotes the cardinality of S. We use the following notation: Z denotes the set of integers, Z≥0
denotes the set of non-negative integers, Zm denotes the quotient ring of integers modulo m, identified with
{0,1, . . . ,m−1} and Fq denotes the finite field of order q. We use 0 and 1 to denote the additive identity and
the multiplicative identity of Fq.

Let x1,x2, . . . ,xn be formal variables. A monomial is a product of powers of variables and a constant. For
γ ∈ Zn

≥0, we define xγ := ∏i∈[n] x
γi
i . We can represent a polynomial P(x) as a sum of monomials of the form

∑γ aγxγ where aγ is the coefficient of xγ . In this paper, we consider polynomials over Fq and over Z.
When dealing with polynomials over Fq, we will only be concerned with them for the purpose of eventu-

ally evaluating them over Fq. The identity xq
i = xi then implies that every monomial can be represented as

xγ for γ ∈ Zn
q, without changing what the monomial evaluates to when the variables takes values from Fq.

The degree of a monomial xγ is ∑i γ i. Thus, the degree of a monomial is the sum of the exponents of
the variables in the monomial. We define M(n,k,q) to be the number of different monomials of degree at
most k on n variables in Fq, and M(n,k) to be the number of different monomials of degree at most k on n
variables over any (fixed, possibly infinite) field. The degree of a polynomial P is the maximum degree of a
monomial of P. We use the following facts in Section 3.

Lemma 2.1. The number of monomials of degree at most k can be upper bounded as follows: M(n,k,q)≤
M(n,k)≤

(n+k
n

)
≤ (1+ n

k)
k(1+ k

n)
n ≤ en(1+ k

n)
n.

Lemma 2.2 (Fast Evaluation in Finite Fields 〈?〉). There is an algorithm that, given an Fq polynomial P in
n variables represented as a sum of monomials, runs in poly(n) ·qn time and prints a qn-dimensional vector
V such that for all x ∈ Fn

q, V [x] = P(x) holds.

Lemma 2.3 (Fast Evaluation of Integer Polynomials 〈?〉). Let n-variate integer polynomial P have at most
pn/7 monomials such that the maximum absolute value of P(x) over all x ∈ {0,1, . . . , p−1}n is at most M.
Then we can evaluate P(x) over all points in {0,1, ..., p−1}n in poly(logM) · pn+o(n) time.

3 Randomized Algorithms for Systems of Polynomial Equations
In this section we give a proof of Theorem 1.1. A degree k instance of SysPolyEqs(q) is {p1, p2, . . . , pm},
where each pi is an Fq polynomial in formal variables x1,x2, . . . ,xn and represented as pi(x)= ai+∑

si
j=1 bi, jxγi, j

4

for ai,bi, j ∈Fq, si≥ 0 and γi, j ∈Zn
q with ∑l(γi, j)l ≤ k. Before proceeding with our algorithm for SysPolyEqs(q),

we describe the approximation of polynomials by low-degree probabilistic polynomials due to Razborov and
Smolensky [33, 35]. We begin with the following lemma whose proof is elementary:

Lemma 3.1. Let Fq be a finite field and v = (v1,v2, . . . ,vn) ∈ Fn
q \{(0,0, . . . ,0)}. Select r = (r1,r2, . . . ,rn)

from Fn
q uniformly at random. Then, ∑i∈[n] rivi is distributed uniformly at random over Fq.

Let P : Fn
q→ F be the function such that P(x) = 1 if x = (0,0, . . . ,0) and P(x) = 0 otherwise, i.e., P(x) =

∏i∈[n](1− xq−1
i). For s1,s2, . . . ,sl ∈ Fn

q, define a polynomial P̃{si}l
i=1
(x) := ∏

l
i=1

{
1−
(
∑ j∈[n](si) j · x j

)q−1
}
.

Razborov and Smolensky showed that if we select random elements s1,s2, . . . ,sl ∈ Fn
q uniformly and inde-

pendently, then P̃{si}l
i=1
(x) approximates P(x) with high probability.

Lemma 3.2 ([33, 35]). Select random s1,s2, . . . ,sl ∈ Fn
q uniformly and independently. Then, for all x ∈ Fn

q,
P̃{si}l

i=1
(x) ∈ {0,1}. Furthermore, (i) If x = (0,0, . . . ,0), then P̃{si}l

i=1
(x) = 1 and (ii) if x 6= (0,0, . . . ,0), then

Pr{si}l
i=1
[P̃{si}l

i=1
(x) = 0] = 1−q−l .

We are now ready to give a randomized algorithm for SysPolyEqs(q) beating brute force. We remark
that the constants in the exponent of Lemma 3.3 are not optimized (with the exception for the case that
q = k = 2), but chosen so as to simplify presentation.

Lemma 3.3. There is a randomized algorithm that, given an instance of SysPolyEqs(q) with m polyno-
mial equations of degree at most k in n variables, decides the satisfiability of the system correctly with
high probability. The running time of the algorithm is bounded by (i) O?(20.8765n) when q = k = 2, (ii)
O?(2(1− 1

5k)n ·n3k) when q = 2 and k > 2, (iii) O?(q(1−(1/(200k)))n ·n3qk) when 3≤ q and logq < 4ek, and (iv)

O?

(
qn ·
(

logq
ek

)−n
)

when logq≥ 4ek.

Proof. Let P : Fn
q→ Fq be the function such that P(x) = 1 if p1(x) = p2(x) = · · ·= pm(x) = 0 and P(x) = 0

otherwise. We select an integer n′ = bδ ·nc where the exact value of δ will be set at the end of the proof to
be strictly between 0 and 1 depending on k and q. For formal variables y = (y1,y2, . . . ,yn−n′) and constants
a = (a1,a2, . . . ,an′) ∈ Fn′

q , we define Q(y,a) := P(y1,y2, . . . ,yn−n′ ,a1,a2, . . . ,an′). Let R : Fn−n′
q → Fq be the

function such that R(y) = 0 if Q(y,a) = 0 for every a ∈ Fn′
q and R(y) = 1 otherwise. P(x) is identically 0 if

and only if R(y) is identically 0.
We would like to check whether there exists an assignment to the variables such that R(y) = 1. For this

purpose, we represent R(y) as a sum of monomials and apply the fast evaluation algorithm for polynomials
(Lemma 2.2). Note that if we write R(y) as a polynomial in the straightforward manner, e.g., R(y) =
1−∏a∈Fn′

q
(1−Q(y,a)), and represent it as a sum of monomials, it might take time more than qn time. This

is because R(y) has degree qn′ as a polynomial in formal variables {Q(y,a)}a∈Fn′
q

. To reduce the degree of

R(y), we use Lemmas 3.2 and 3.1. We start by setting l = n′+ 2, for each a ∈ Fn′
q selecting uniformly at

random l random vectors sa,1,sa,1, . . . ,sa,l from Fm
q , and defining

Q̃{sa,i}l
i=1
(y,a) :=

l

∏
i=1

1−

(
∑

j∈[m]

(sa,i) j · p j(y,a)

)q−1
 .

Next, select uniformly at random a qn′-dimensional vector s over Fq and define

R̃s,{sa,i}(y) := ∑
a∈Fn′

q

sa · Q̃{sa,i}l
i=1
(y,a).

5

By Lemma 3.2, for all y ∈ Fn−n′
q and a ∈ Fn′

q , we have that Q(y,a) = 1 implies Q̃{sa,i}l
i=1
(y,a) = 1, while

Q(y,a) = 0 yields Pr{sa,i}l
i=1
[Q̃{sa,i}l

i=1
(y,a) = 0] = 1− q−l . By Lemma 3.1, for all y ∈ Fn−n′

q and {sa,i}, we

have that, (i) for all a ∈ Fn′
q , if Q̃{sa,i}l

i=1
(y,a) = 0 then R̃s,{sa,i}(y) = 0, and “conversely”, (ii) if there exists an

a ∈ Fn′
q such that Q̃{sa,i}l

i=1
(y,a) = 1, then Prs[R̃s,{sa,i}(y) 6= 0] = 1− 1

q . Thus, for all y ∈ Fn−n′
q , we have

R(y) 6= 0 ⇒ Pr
s,{sa,i}

[R̃s,{sa,i}(y) 6= 0]≥ 1− 1
q
≥ 1

2
,

R(y) = 0 ⇒ Pr
s,{sa,i}

[R̃s,{sa,i}(y) 6= 0]≤ qn′ ·q−l ≤ 1
4
,

where we use the union bound for the second implication.
The algorithm repeats the following procedure t = 100n logq times: It draws the random vectors {sa,i} and

s, and computes a representation of R̃s,{sa,i} as a sum of monomials. The procedure then evaluates R̃s,{sa,i}(y)
for all y ∈ Fn−n′

q using the algorithm of Lemma 2.2. For each y ∈ Fn−n′
q , the algorithm keeps a counter that

keeps track of the number of times the above procedure resulted in R̃s,{sa,i}(y) 6= 0. The algorithm returns
that the input instance is satisfiable if there exists a y for which the counter is at least 40 percent of the
number of runs, that is, at least 0.4t.

For the success probability analysis, suppose that the input instance is satisfiable. Then there exists a y
such that R(y) 6= 0. Thus, in each of the runs of the procedure R̃s,{sa,i}(y) 6= 0 with probability at least 1/2.
Since each of the runs of the procedure are independent, the probability that the counter for y will be at most
0.4t is at most t ·

(t
.4t

)
2−t ≤ t ·

(1.961
2

)t ≤ 100n logq
q2n .

Suppose now that the input instance is not satisfiable. Then R(y) = 0 for all choices of y and hence, in
each run of the procedure the probability that R̃s,{sa,i}(y) 6= 0 is at most 1

4 . For any fixed y, the probability

that the counter of y reaches above 0.4t is therefore at most t ·
(t
.4t

)(1
4

).4t (3
4

).6t ≤ t ·
(1.961

2.06

)t ≤ 100n logq
q2n . The

union bound taken over all qn−n′ ≤ qn choices of y yields that the probability of false positives is upper
bounded by 100n logq

qn . Hence the algorithm outputs the correct answer with high probability.
We now proceed with the running time analysis. The running time is upper bounded by t times the time

taken to execute the main procedure once, we now upper bound this. By Lemma 2.2 it takes O?(qn−n′) time
to evaluate R̃s,{sa,i} for all y once a representation of R̃s,{sa,i} as a sum of monomials is given.

To upper bound the time taken to compute the representation of R̃s,{sa,i} as a sum of monomials it is suffi-
cient to observe that R̃s,{sa,i} is a polynomial in n−n′ variables of total degree at most k(q−1)l. We compute
the representation of R̃s,{sa,i} using the definitions directly, applying the naive algorithm for polynomial mul-
tiplication. However, we make sure that whenever we are multiplying two polynomials, at least one of them
has degree at most kq. Note that this is achievable, because the only multiplications in the definition of
R̃s,{sa,i} occur in the definition of Q̃{sa,i}l

i=1
(y,a), which is a product of polynomials of degree at most kq.

Thus, the total number of operations (polynomial additions or multiplications) needed to compute R̃s,{sa,i}
is at most O?(qn′), and each such operation takes time O?(M(n− n′,k(q− 1)(n′+ 2),q) · nqk). Using the
observation that M(n,r+1,q)≤ n ·M(n,r,q) for every n and r we conclude that the total time taken by the
algorithm is upper bounded by

O?(qn−n′+qn′ ·M(n−n′,k(q−1)n′,q) ·n3qk) = O?(q(1−δ)n +qδn ·M((1−δ)n,k(q−1)δn,q) ·n3qk).

We now discuss the choice of δ for different possible values of q and k. By always picking δ such that
M((1−δ)n,k(q−1)δn,q) =O?(q(1−2δ)n), we ensure that the running time is upper bounded by O?(q(1−δ)n ·
n3qk). We divide the analysis into three cases, first the case that q = 2, then when q≥ 3 but q is still “small
enough” compared to d, and finally when q is “large” compared to d.

6

For q = 2 and k = 2, we set δ = 0.1235 to satisfy M((1− δ)n,k(q−1)δn,q) ≤
(n−δn′

δn

)
≤ O?(2(1−2δ)n).

This implies that a degree-2 instance of SysPolyEqs(2) can be solved in time O?(20.8765n).

For q = 2 we have that M(n,k,2)≤
(n

k

)
, thus M((1−δ)n,k(q−1)δn,q)≤

(n−δn
kδn

)
. Setting δ = 1/(5k) we

obtain M((1−δ)n,k(q−1)δn,q)≤O?
(

2(1− 2
10)n
)
≤O?

(
2(1−2δ)n

)
. Thus, for q = 2 we obtain an algorithm

with running time O?(2(1− 1
5k)n ·n3k).

When q≥ 3 and logq < 4ek, we set δ = 1/(200k), then M((1−δ)n,k(q−1)δn,q)≤O∗
(
en
(q

3 +
q

200

)n),
using logq < 4ek we obtain O∗

(
en
(q

3 +
q

200

)n) ≤ O∗
(

qn ·2−
logq·0.12n

4ek

)
≤ O∗

(
q(1−2δ)n

)
. Hence, in this case

we obtain an upper bound of O?(q(1−(1/200k))n ·n3qk) on the running time.

When logq ≥ 4ek, we set δ = log logq(1/ek)

4logq , which yields M((1− δ)n,k(q− 1)δn,q) ≤ O∗ ((2ekqδ)n).

Inserting the definition of δ we obtain M((1−δ)n,k(q−1)δn,q)≤O∗
((

q · log logq(1/ek)

2·logq(1/ek)

)n)
. Now, q1/ek≥ 16

implies that
(

2·logq(1/ek)

log logq(1/ek)

) 2·logq(1/ek)

log logq(1/ek) ≥ q1/ek. Thus we have

O∗
((

q · log logq(1/ek)

2 · logq(1/ek)

)n)
≤ O∗

((
q

1− 1
ek ·

log logq(1/ek)

2·logq(1/ek)

)n)
≤ O∗

(
q(1−2δ)n

)
.

Hence, in this case we get an upper bound of O?

(
qn ·
(

logq
ek

)−n
)

on the running time.

Next we show that any system of m polynomial equations of degree k with n variables over Fpd for d ≥ 2
can be reduced in polynomial time to an equivalent system of md polynomial equations of degree k with
nk variables over Fp. This allows us to substantially improve over the running time of the algorithm of
Lemma 3.3 for the case when q is large compared to d, and q is a prime power pd , d ≥ 2.

Let p be prime. In the following, we will assume we possess an irreducible polynomial P(X) of degree
k in Fp[X]. A standard way of efficiently constructing such P(X) is to choose degree-k polynomials P at
random, then test them for irreducibility. The irreducibility of P can then be checked by running Kedlaya-
Umans’ deterministic irreducibility test in k1+o(1) log2+o(1) p time ([23], Section 8.2); a standard algebraic
fact is that a random polynomial over Fp of degree k is irreducible with probability at least 1/k. We are now
ready to give the aforementioned reduction.

Lemma 3.4. There is a polynomial-time algorithm that given as input a system S of m degree-k n-variate
polynomial equations over Fpd , together with an irreducible polynomial P(X) of degree d in Fp[X], outputs
an equivalent system Sp of dm degree-k dn-variate equations over Fp. That is, S has a solution over Fpd if
and only if Sp has a solution over Fp.

Proof. For every 0 ≤ ` ≤ (d− 1)k, compute degree-(d− 1) polynomials P̀ ∈ Fp[X] such that X ` ≡ P̀ (X)
(mod P(X)). These P̀ can be determined by simple polynomial division, in poly(d · k) time. Let xi be the
i’th variable in the system S; we intend to set xi to a value in Fpd . Fpd is isomorphic to Fp[X]/P, that is,
the elements of Fpd can be thought of as equivalence classes of polynomials in Fp[X] modulo P(X). It is
a basic fact that every element r of Fp[X]/P can be written as r = ∑

d−1
l=0 riX ` for ri ∈ Fp in a unique way.

Thus, for each i≤ n and 0≤ `≤ d−1 we can define xi,` ∈ Fp such that xi ≡ ∑
d−1
l=0 xi,`X `. That is, we think

of the value of xi as a d-dimensional vector with entries from Fp, where xi,` is the `’th component of this
vector. Consider now the product xix j, we have that xix j ≡ ∑

d−1
l1,l2=0 xi,`1xi,`2P̀ 1+`2 . Since all P̀ ’s are fixed

polynomials in Fp[X], the coefficients of every X ` are quadratic forms over the variables {xi,`}0≤`<d and
{x j,`}0≤`<d .

7

In general, a product of k variables can be viewed as a degree-d polynomial of X , whose coefficients
are degree-k forms of {xi,`}0≤i<n,0≤`<d . Therefore, a single degree-k polynomial equation over the vari-
ables {xi}0≤i<n over Fpd can be viewed as a system of d degree-k polynomial equations over the variables
{xi,`}0≤i<n,0≤`<d over Fp. Doing this for every equation in the input system increases the number of vari-
ables and the number of equations by a factor of d, but reduces the underlying field from Fpd to Fp.

We may now directly combine the algorithm of Lemma 3.3 with the reduction of Lemma 3.4 to obtain
improved savings for SysPolyEqs(q) when q is large compared to k and not prime. In particular, applying
Lemma 3.4 and then solving the output instance using Lemma 3.3 yields a proof of Theorem 1.1.

4 A Degree Reduction Algorithm
In this section we prove Theorems 1.3 and 1.4. Specifically, we present algorithms for a generalization of
SysPolyEqs(2), where each pi is a polynomial of the form

pi(x) = ai +
si

∑
j=1

ti, j

∏
k=1

(
bi, j,k + ∑

l∈Ui, j,k

xl

)
(1)

for ai,bi, j,k ∈ {0,1}, si, ti, j ≥ 1 and /0 6= Ui, j,k ⊆ {1,2, . . . ,n}. Let s := ∑i si and u := ∑i, j,k |Ui, j,k| denote
the number of products and the size respectively. When the polynomials in the input system are given in
the form 1, we refer to the problem as GenSysPolyEqs(2). Our algorithm works by reducing systems of
polynomial equations over F2 where each polynomial is in the form 1 to systems of polynomial equations
over F2 where the degree of the polynomials of the output system depends on the number of products in the
input system. This reduction together with Theorems 1.1 and 1.2 will complete the proofs of Theorems 1.3
and 1.4, respectively.

Note that because we are working in F2, xd
` = x` for all d ≥ 1, and that therefore the degree of a monomial

is equal to the number of variables in it. The degree of a polynomial pi is at most max ti, j, however it is
possible that it is actually less. In this section we will abuse terminology and for each i refer to the degree
of the polynomial pi as deg(pi) := max ti, j.

Tools from Linear Algebra. We need the following standard notions and properties of linear independence
of F2. Let V be a set of vectors {v1,v2, . . . ,vt} ⊆ {0,1}n. We say V is linearly dependent if there exists a
non-zero vector (a1,a2, . . . ,at) ∈ {0,1}t such that ∑

t
i=1 aivi = (0,0, . . . ,0) holds. Otherwise, V is linearly

independent. If V is linearly independent and V ∪{v} is linearly dependent for all v ∈ {0,1}n \V , then V
is maximally linearly independent. The rank of V , denoted by rank(V), is the maximum cardinality of a
linearly independent subset of V . For any maximally linearly independent subset V ′ of V , the cardinality of
V ′ is equal to rank(V).

Let V be a subset of {0,1}n and V ′ be a linearly independent subset of {0,1}n. The rank of V relative to
V ′ is the maximum cardinality of a subset V ′′ of V such that V ′∪V ′′ is linearly independent. Note that any
vector in V can be written as a linear combination of vectors in V ′∪V ′′. In what follows, it is convenient to
identify the vector v ∈ {0,1}n with the set Sv = {i ∈ [n] | vi = 1} and the linear form L = ∑

n
i=1 vixi. Thus, we

use terms such as linearly independent and rank for a set of subsets of [n] or a set of linear forms in a natural
way. For linear forms L1,L2, . . . ,Lt and a1,a2, . . . ,at ∈ {0,1}, we identify the system of linear equations
{Li = ai}t

i=1 with the affine subspace {x ∈ {0,1}n | L1 = a1,L2 = a2, . . . ,Lt = at}. The following lemma
gives a way to reduce the degree of polynomials all of whose products of sums of variables have “low rank.”

Lemma 4.1 (Degree reduction relative to a system of linear equations 〈?〉). Let U1,U2, . . . ,Ut be subsets
of [n] and L1,L2, . . . ,Lt ′ be linear forms such that {Li}t ′

i=1 is linearly independent and the rank of {Ui}t
i=1

relative to {Li}t ′
i=1 is d. Then, for all a1,a2, . . . ,at ′ ,b1,b2, . . . ,bt ∈ {0,1}, there exists a polynomial p of

degree at most d such that p(x) = ∏
t
k=1
(
bk +∑l∈Uk

xl
)

holds for all x ∈ {Li = ai}t ′
i=1.

8

Simplification of systems of polynomial equations. Before describing our main algorithm, we introduce a
procedure that simplifies instances of GenSysPolyEqs(2). Let P = {p1, p2, . . . , pm} be an instance of Gen-
SysPolyEqs(2). Let deg(P) = maxdeg(pi). We partition P into P1 and P2 such that P1 = {p∈ P|deg(p)≤ 1}
and P2 = {p ∈ P|deg(p) ≥ 2}. Note that we can check whether P1 is satisfiable or not in polynomial time
via Gaussian elimination. In what follows, we assume pi(x) = ai +∑ j∈Ui x j if deg(pi)≤ 1 and

pi(x) = ai +
si

∑
j=1

ti, j

∏
k=1

(
bi, j,k + ∑

l∈Ui, j,k

xl

)
if deg(pi)≥ 2. Given a positive integer d, we define the procedure Simplify(P,d) as follows:

1. Simplify P1: Assume P1 = {p1, p2, . . . , pm′}. First, check whether a system of linear equations p1 =
p2 = · · · = pm′ = 0 is satisfiable. If the system is not satisfiable, return unsatisfiable, and continue
otherwise. Select a maximally linearly independent subset V of {Ui}m′

i=1. Redefine P1 := {pi}Ui∈V .
2. Simplify P2 with P1: Assume P1 = {p1, p2, . . . , pm′} and P2 = {pm′+1, pm′+2, . . . , pm}. For m′+ 1 ≤

i≤ m, 1≤ j ≤ si and 1≤ k ≤ ti, j, if Ui, j,k can be written as a linear combination of vectors in {Ui}m′
i=1

as Ui, j,k = ∑
m′
i=1 ciUi for some c1,c2, . . . ,cm′ ∈ {0,1}, replace ∑l∈Ui, j,k

xl by ∑
m′
i=1 ciai. If deg(pi)≤ 1 for

some i, m′+1≤ i≤ m after the substitution, remove pi from P2, add it to P1 and go back to Step 1.
3. Degree Reduction: Again, assume P1 = {p1, p2, . . . , pm′} and P2 = {pm′+1, pm′+2, . . . , pm}. For m′+

1 ≤ i ≤ m and 1 ≤ j ≤ si, if the rank of {Ui, j,k}
ti, j
k=1 with respect to {Ui}m′

i=1 is at most d, rewrite

∏
ti, j
k=1

(
bi, j,k +∑l∈Ui, j,k

xl

)
as a polynomial of degree at most d by Lemma 4.1. If deg(pi)≤ 1 for some

i, m′+1≤ i≤ m after the above rewriting, remove pi from P2, add it to P1 and go back to Step 1.

Let P′ be the simplified instance obtained by applying Simplify to P. The following is true: (P1) The
number of satisfying assignments for P is equal to that for P′. (P2) Partition the resulting instance P′ into
P′1 and P′2 and assume P′1 = {p1, p2, . . . , pm′} and P′2 = {pm′+1, pm′+2, . . . , pm}. Then, (i) {Ui}m′

i=1 is linearly
independent, and (ii) for m′+1≤ i≤m and 1≤ j≤ si, we have either ti, j ≤ d or the rank of {Ui, j,k}

ti, j
k=1 with

respect to {Ui}m′
i=1 is at least d +1.

The algorithm and its analysis. We now describe the algorithm Degree-Reduction(P,d), which we will
use to prove Theorems 1.3 and 1.4. We first finish the proof of Theorem 1.3 and then describe the necessary
adjustments to prove Theorem 1.4.

1. Run Simplify(P,d).

2. If deg(P) ≤ d, assume P1 = {p1, p2, . . . , pm′} and select an arbitrary subset V of {0,1}n such that
{Ui}m′

i=1 ∪V is maximally linearly independent, i.e., has rank n. Rewrite each variable xi as a linear
combination of vectors in {Ui}m′

i=1∪V . We regard each vector in V as a formal variable and each vector

Ui as the constant ai. Apply Theorem 1.1 to the resulting instance in
(

n− rank({Ui}m′
i=1)
)

variables.

3. If deg(P) > d, assume P1 = {p1, p2, . . . , pm′} and select arbitrary i, j′,m′+ 1 ≤ i ≤ m,1 ≤ j′ ≤ si,
such that pi(x) = ai +∑

si
j=1 ∏

ti, j
k=1

(
bi, j,k +∑l∈Ui, j,k

xl

)
and ti, j′ > d. Select an arbitrary subset V of

{Ui, j′,k}
ti, j′
k=1 of size d such that V ∪{Ui}m′

i=1 is linearly independent. Define

qi(x) := ∏
Ui, j,k∈V

(
bi, j,k + ∑

l∈Ui, j,k

xl

)
and ri(x) = ai + ∑

1≤ j≤si, j 6= j′

ti, j

∏
k=1

(
bi, j,k + ∑

l∈Ui, j,k

xl

)
.

9

Define instances PL := {P \ {pi}} ∪ {qi,ri}, and PR := P ∪ {bi, j,k + ∑l∈Ui, j,k
xl}Ui, j,k∈V . Then, run

Degree-Reduction(PL,d) and Degree-Reduction(PR,d) recursively.

The correctness of Degree-Reduction is guaranteed since P is satisfiable if and only if at least one of PL

and PR is satisfiable. This is because in Step 3, instances PL and PR correspond to conditions qi(x) = 0 and
qi(x) = 1 respectively. Note that we can choose V in Step 3 due to Property (P2)-(ii) of Simplify. In what
follows, we give the running time analysis of Degree-Reduction(P,d). The overall structure is the same as
the analysis of Schuler’s width reduction algorithm for SAT of CNF formulas in [12].

We regard the execution of Degree-Reduction as a rooted binary tree T . The root of T is labeled with an
input instance P. For each node labeled with Q, its left (right, resp.) child is labeled with QL (QR, resp.) as
defined in Step 3 of Degree-Reduction. If deg(Q) ≤ d holds, then the node labeled with Q is a leaf. Let
us consider a path p from the root to a leaf v labeled with Q. We denote by L and R the number of left and
right children p selects to reach v. We see that (1) L ≤ s since the number of products with degree more
than d is at most s, (2) R ≤ n/d since a right branch increases the rank of P1 (as a set of linear forms) by d
and the rank of P1 cannot be larger than n, and (3) Q is defined over at most n− dR variables in the sense
of Step 2 of Degree-Reduction. Furthermore, the number of leaves that are reachable by exactly R times
of right branches is at most

(s+R
R

)
. Let T (n,m,d) denote the running time of the algorithm of Theorem 1.1

on instances of SysPolyEqs with m polynomial equations of degree at most d in n variables. We can upper
bound the running time of Degree-Reduction as follows:

O?

(n
d

∑
R=0

(
s+R

R

)
·T (n−dR,m,d)

)
≤ O?

(n
d

∑
R=0

(
s+R

R

)
·2(1− 1

5d)(n−dR)

)

≤ O?

(
s+ n

d

∑
R=0

(
s+ n

d
R

)
·2(1− 1

5d)(n−dR)

)
= O?

(
2(1− 1

5d)n · (1+2−d(1− 1
5d))s+ n

d

)
≤ O?

(
2(1− 1

5d)n · exp
{

2−d(1− 1
5d)
(

s+
n
d

)})
≤ O?

(
poly(u) ·2(1− 1

5d)n ·24s/2d−1/5
)
,

where we assume s≥ n/d. We set d := 2log(s/n)+c for sufficiently large c > 0, then
(
1− 1

5d

)
n+ 4s

2d−1/5 ≤(
1− 1

10log(s/n)+5c +
1

(s/n)2c−3

)
n. This completes the proof of Theorem 1.3.

We see that (1) Simplify does not change the number of satisfying assignments by Property P-1, and (2)
each branching of Degree-Reduction only partitions the solution space. This implies that if we replace
Theorem 1.1 by Theorem 1.2 in Step 2 of Degree-Reduction and add the number of satisfying assignments
of PL and that of PR in Step 3, we obtain Theorem 1.4.

5 Concluding Remarks
We have shown how multivariate systems of polynomial equations can be solved faster than exhaustive
search in very generic settings. There are two natural extensions that we have not yet been able to crack:

Is there an algorithm for SysPolyEqs(q) with a better runtime exponent? Our savings over exhaus-
tive search for SysPolyEq(pd) in the exponent is n/O(k) for degree-k polynomials when p ≤ 24ek, and
n ·O(log logq−log4ek

logq) otherwise. Can one achieve savings n/O(k) even for large p compared to k? Can such
savings be achieved by a deterministic algorithm? We remark that removing the factor of 1/k from the
savings entirely would refute the Strong Exponential Time Hypothesis (k-SAT can easily be embedded into
degree-k instances of SysPolyEqs(2)).

Is there an algorithm for SAT of large-depth arithmetic circuits over Fp? Arbitrary arithmetic circuits?
Our algorithm for GenSysPolyEqs(2) already solves the SAT problem for ΠΣΠΣ circuits which is a con-
siderable generalization of CNF-SAT. By results of Agrawal and Vinay [1] who reduce arbitrary small low-

10

degree circuits to subexponential-size ΣΠΣΠ circuits, we can already conclude a non-trivial SAT algorithm
for any F2-arithmetic circuit of degree less than n2−ε (by a randomized reduction).

Acknowledgments. The fourth author thanks Timothy Chan for helpful discussions on an earlier phase of
this work.

References

[1] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings of the 49th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 67–75, 2008.

[2] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple construction of almost k-wise independent
random variables. Random Struct. Algorithms, 3(3):289–304, 1992.

[3] G. Bard. Algebraic cryptanalysis. Springer Science & Business Media, 2009.

[4] G. V. Bard, N. Courtois, and C. Jefferson. Efficient methods for conversion and solution of sparse
systems of low-degree multivariate polynomials over GF(2) via SAT-solvers. IACR Cryptology ePrint
Archive, 2007:24, 2007.

[5] M. Bardet, J. Faugère, B. Salvy, and P. Spaenlehauer. On the complexity of solving quadratic Boolean
systems. J. Complexity, 29(1):53–75, 2013.

[6] R. Beigel. The polynomial method in circuit complexity. In Proceedings of the 8th Annual Structure
in Complexity Theory Conference, pages 82–95, 1993.

[7] R. Beigel and J. Tarui. On ACC. Computational Complexity, 4:350–366, 1994.

[8] A. Bhowmick and S. Lovett. Bias vs structure of polynomials in large fields, and applications in
effective algebraic geometry and coding theory. Electronic Colloquium on Computational Complexity
(ECCC), TR15-22, 2015.

[9] A. Björklund, T. Husfeldt, and M. Koivisto. Set partitioning via inclusion-exclusion. SIAM J. Comput.,
39(2):546–563, 2009.

[10] A. Björklund, R. Pagh, V. V. Williams, and U. Zwick. Listing triangles. In Proceedings of the 41st
International Colloquium on Automata, Languages, and Programming (ICALP), Part I, pages 223–
234, 2014.

[11] M. Bronstein, A. M. Cohen, H. Cohen, D. Eisenbud, B. Sturmfels, A. Dickenstein, and I. Z. Emiris.
Solving Polynomial Equations: Foundations, Algorithms, and Applications. Springer, 2005.

[12] C. Calabro, R. Impagliazzo, and R. Paturi. A duality between clause width and clause density for SAT.
In Proceedings of the 21st Annual IEEE Conference on Computational Complexity (CCC), pages 252–
260, 2006.

[13] T. M. Chan and R. Williams. Deterministic APSP, orthogonal vectors, and more: Quickly derandom-
izing Razborov-Smolensky. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1246–1255, 2016.

[14] M. Cheraghchi, E. Grigorescu, B. Juba, K. Wimmer, and N. Xie. AC0◦MOD2 lower bounds for the
Boolean inner product. In Proceedings of the 43rd International Colloquium on Automata, Languages
and Programming (ICALP), 2016, to appear.

11

[15] G. Cohen and I. Shinkar. The complexity of DNF of parities. In Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, pages 47–58, 2016.

[16] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving overdefined systems
of multivariate polynomial equations. In Proceedings of the 19th International Conference on the
Theory and Application of Cryptographic Techniques (EUROCRYPT), pages 392–407, 2000.

[17] J. Ding, J. E. Gower, and D. Schmidt. Multivariate Public Key Cryptosystems, volume 25 of Advances
in Information Security. Springer, 2006.

[18] J. Håstad. Satisfying degree-d equations over GF[2]n. Theory of Computing, 9:845–862, 2013.

[19] M. A. Huang and Y. Wong. Solving systems of polynomial congruences modulo a large prime (ex-
tended abstract). In Proceedings of 37th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 115–124, 1996.

[20] R. Impagliazzo, W. Matthews, and R. Paturi. A satisfiability algorithm for AC0. In Proceedings of the
23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 961–972, 2012.

[21] Z. Jafargholi and E. Viola. 3SUM, 3XOR, triangles. Algorithmica, 74(1):326–343, 2016.

[22] N. Kayal. Derandomizing some number-theoretic and algebraic algorithms. PhD thesis, Indian Insti-
tute of Technology Kanpur, 2006.

[23] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition. SIAM J.
Comput., 40(6):1767–1802, 2011.

[24] S. Kopparty and S. Srinivasan. Certifying polynomials for AC0[⊕] circuits, with applications. In
Proceedings of the 32nd IARCS Annual Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS), pages 36–47, 2012.

[25] S. Kopparty and S. Yekhanin. Detecting rational points on hypersurfaces over finite fields. In Pro-
ceedings of the 23rd Annual IEEE Conference on Computational Complexity (CCC), pages 311–320,
2008.

[26] A. G. B. Lauder and D. Wan. Counting points on varieties over finite fields of small characteristic. In
J. P. Buhler and P. Stevenhagen, editors, Algorithmic Number Theory: Lattices, Number Fields, Curves
and Cryptography, pages 579–612. Cambridge University Press, 2008.

[27] F. Le Gall. Faster algorithms for rectangular matrix multiplication. In Proceedings of the 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 514–523, 2012.

[28] C. Lu. Hitting set generators for sparse polynomials over any finite fields. In Proceedings of the 27th
Conference on Computational Complexity (CCC), pages 280–286, 2012.

[29] W. G. Matthews. A satisfiability algorithm for constant depth Boolean circuits with unbounded fan-in
gates. PhD thesis, UC San Diego, 2011.

[30] H. Miura, Y. Hashimoto, and T. Takagi. Extended algorithm for solving underdefined multivariate
quadratic equations. In Proceedings of the 5th International Workshop on Post-Quantum Cryptography
(PQCrypto), pages 118–135, 2013.

[31] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM J.
Comput., 22(4):838–856, 1993.

12

[32] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time algorithm for k-SAT. J.
ACM, 52(3):337–364, 2005.

[33] A. Razborov. Lower bounds on the size of bounded-depth networks over a complete basis with logical
addition. Mathematical Notes of the Academy of Sci. of the USSR, 41(4):333–338, 1987.

[34] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal form. J.
Algorithms, 54(1):40–44, 2005.

[35] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC), pages 77–82, 1987.

[36] B. Sturmfels. Solving Systems of Polynomial Equations. American Mathematical Society, 2002.

[37] V. Vassilevska Williams and R. Williams. Finding, minimizing, and counting weighted subgraphs.
SIAM J. Comput., 42(3):831–854, 2013.

[38] R. Williams. A casual tour around a circuit complexity bound. SIGACT News, 42(3):54–76, 2011.

[39] R. Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2, 2014.

[40] R. Williams. The polynomial method in circuit complexity applied to algorithm design (invited talk).
In Proceedings of the 34th International Conference on Foundation of Software Technology and The-
oretical Computer Science (FSTTCS), pages 47–60, 2014.

[41] A. R. Woods. Unsatisfiable systems of equations, over a finite field. In Proceedings of the 39th Annual
Symposium on Foundations of Computer Science (FOCS), pages 202–211, 1998.

[42] B. Yang and J. Chen. Theoretical analysis of XL over small fields. In Proceedings of the 9th Aus-
tralasian Conference on Information Security and Privacy (ACISP), pages 277–288, 2004.

13

Appendix

A Fast Polynomial Evaluation

Lemma 2.2 (restated). There is an algorithm that, given an Fq polynomial P in n variables, represented as
a sum of monomials, runs in poly(n) ·qn time and prints a qn-dimensional vector V such that for all x ∈ Fn

q,
V [x] = P(x) holds.

Proof. This is a generalization of the algorithm from Section 6.2 in [38]. Note that we can write P as
P(x) = ∑

q−1
i=0 Pi(x2, . . . ,xn)xi

1 for some Pi : Fn−1
q → Fq. This gives us a way to decompose the problem into q

subproblems. The running time T (n) of the algorithm satisfies T (n) = qT (n−1)+poly(n)qn and we have
T (n) = poly(n) ·qn.

Lemma 2.3 (restated). Let n-variate integer polynomial P have at most pn/7 monomials such that the
maximum absolute value of P(x) over all x ∈ {0,1, . . . , p− 1}n is at most M. Then we can evaluate P(x)
over all points in {0,1, ..., p−1}n, in poly(logM) · pn+o(n) time.

Lemma 2.3 does not follow from the usual techniques, such as dynamic programming [9] or divide and
conquer [38], because P could have arbitrary degree. Below we give a proof sketch.

Proof. Let t ≤ pn/7 be the number of monomials. Let a1 . . . ,apn/2 ∈ {0, ..., p−1}n/2 be a list of all assign-
ments to n/2 variables. Let m1 = c1xγ1 , . . . ,mt = ctxγt be a list of monomials in P. Prepare matrices A and B
of pn/2 by pn/7 and pn/7 by pn/2 dimensions, respectively, with the following definitions: A[i, j] = m j(ai,~1)
and B[j,k] = m j(~1,ak)/c j, where~1 denotes the all-ones assignment on n/2 variables.

Observe that A[i, j]B[j,k] =m j(ai,ak). It follows that (AB)[i,k] =∑ j m j(ai,ak) =P(ai,ak). Thus, a matrix
multiplication of A and B yields the value of P on all points.

LeGall [27] gives a matrix multiplication algorithm which can multiply N by N0.3 and N0.3 by N matrices
in N2+o(1) arithmetic operations, over any finite field. We can therefore multiply A and B over any field Fq

in O(pn+o(n)) arithmetic operations. Select q to be a prime greater than 2M +1. Our matrix multiplication
now takes poly(logM)pn+o(n) time.

Now for all (i, j) ∈ [pn/2]2, consider (AB)[i, j], and cast it as an integer r ∈ {0,1, . . . ,q− 1}. If r ∈
{0,1, . . . ,M} then output r as the value of P(ai,a j). Otherwise, r must be in {q−M, . . . ,q−1}; output r−q
as the value of P(ai,a j).

B Deterministic Algorithms for Systems of Polynomial Equations

We now show how to obtain a deterministic algorithm for SysPolyEqs(q) for that beats the naive O?(qn) time
algorithm, in particular we prove Theorem 1.2. We will first give such an algorithm for SysPolyEqs(p) for
prime p. We start with a “deterministic version” of the probabilistic polynomial constructions of Razborov
and Smolensky following the lead of Chan and Williams [13]. We need a construction of small-biased
spaces.

Definition B.1 (Naor and Naor [31]). A set S ⊆ Fn
p of n-dimensional vectors is ε-biased if for all non-zero

v ∈ Fn
p and all a ∈ Fp,

Pr
r∈S

[
∑

i∈[n]
rivi = a

]
∈ (1/p− ε,1/p+ ε).

14

Theorem B.2 (Alon, Goldreich, Håstad and Peralta [2]). For every positive integer n and ε ∈ (0,1/q), there
is an ε-biased set Sn,ε ⊆ Fn

p of cardinality O(n3(log3
2 p)/ε3), constructible in time poly(n(log2 p)/ε).

We also need constructions of modulus-amplifying polynomials:

Lemma B.3 (Beigel and Tarui [7]). For every positive integer `, the degree (2`−1) integer polynomial

F̀ (y) = 1− (1− y)`
`−1

∑
j=0

(
`+ j−1

j

)
y j

has the property for all p ∈ Z:
• if y = 0 mod p, then F̀ (y) = 0 mod p`,
• if y = 1 mod p, then F̀ (y) = 1 mod p`.

In addition, for 0≤ i≤ 2`−1, the coefficient of yi in F̀ has magnitude at most 2O(`).

Now we are ready to “derandomize” the probabilistic polynomial constructions of Razborov and Smolen-
skyas follows. For a non-empty set S ⊆ Fn

p and a positive integer `, define a polynomial p̂S,`(x) : Fn
p → Z

as

p̂S,`(x) := ∑
r∈S

F̀

(∑
i∈[n]

rixi

)p−1
 ,

where we regard Fp as the set of integers {0,1, . . . , p−1} ⊂ Z. Then, we have:

Lemma B.4. Let S⊆ Fn
p be an ε-biased set and ` be a positive integer such that p` > |S|. Then:

• If x = (0,0, . . . ,0), then p̂S,`(x) = 0.
• If x 6= (0,0, . . . ,0), then (p̂S,`(x) mod p`) ∈ ((1−1/p− ε)|S|,(1−1/p+ ε)|S|).

Proof. The first item is by the fact that F̀ (0) = 0. The second item is by the fact that for any a 6= 0 mod p,
ap−1 = 1 mod p holds and the definition of ε-biased set.

We are now prepared to give the deterministic algorithm for fields of prime order:

Lemma B.5. Let p be a prime. There is a deterministic algorithm that, given an instance of SysPolyEqs(p)

with m polynomial equations of degree at most k in n variables, runs in time p
n
(

1− 1
300kp6/7

)
+o(n)

·mO(pk) and
counts the number of satisfying assignments for the system.

Proof. Let {p1, p2, . . . , pm} be an instance of SysPolyEqs(p). We select an integer n′ = bδ · nc, where the
exact value of δ will be set at the end of the proof, strictly between 0 and 1, depending on k and q. Define
a function Q : Fn−n′

p ×Fn′
p → Fp as Q(y,a) = 1 if p1(y,a) = p2(y,a) = · · · = pm(y,a) = 0 and Q(y,a) = 0

otherwise. Also we define a function K : Fn−n′
p → Z as K(y) := |{a ∈ Fn′

p | Q(y,a) = 0}|. Note that K(y)
represents the number of unsatisfying assignments when the first n−n′ variables are fixed to y. If we have the
value of K(y) for all y ∈ Fn−n′

p , we can compute the number of satisfying assignments to the input instance,
i.e., pn−∑y∈Fn−n′

p
K(y), in time poly(n) · pn−n′ .

In what follows, we show how to construct an integer polynomial in the same n− n′ variables as K(y),
such that for every y ∈ Fn−n′

p , K(y) can be efficiently determined from the value of the polynomial evaluated
on y. For a nonempty set S⊆ Fm

p and a positive integer `, define the integer polynomials

Q̂S,`(y,a) := ∑
r∈S

F̀

(∑
i∈[m]

ri · pi(y,a)

)p−1
 , R̂S,`(y) := ∑

a∈Fn′
p

Q̂S,`(y,a).

15

Here we regard Fp as the set of integers {0,1, . . . , p− 1} and each pi as an integer polynomial whose
coefficients are from {0,1, . . . , p−1} in a natural way.

Let ε := 1/(4 · pn′), and construct an ε-biased set S⊆ Fm
p using Theorem B.2. We have that |S| is at most

m3 p3n′+O(1), and that S is constructed in O?(pO(n′)) time. Now, let ` be the smallest integer greater than
|S|pn′ , note that `≤ 4n′+ logm+O(1). By Lemma B.4, for all y ∈ Fn−n′

p and a ∈ Fn′
p , we have that

Q(y,a) = 1 ⇒ Q̂S,`(y,a) = 0,

Q(y,a) = 0 ⇒ (Q̂S,`(y,a) mod p`) ∈ ((1−1/p− ε)|S|,(1−1/p+ ε)|S|).

Then, for all y ∈ Fn−n′
p , we have

(R̂S,`(y) mod p`) ∈ ((1−1/p− ε)|S|K(y),(1−1/p+ ε)|S|K(y)).

Let M := (1−1/p)|S| and recall that ε := 1/(4 · pn′). For all y ∈ Fn−n′
p , we have that

(R̂S,`(y) mod p`)/M ∈ (K(y)−1/2,K(y)+1/2).

The algorithm computes a representation of (R̂S,`(y)) as a sum of monomials from the representations of
{p1, p2, . . . , pm} by directly applying the definitions of R̂S,`(y) and Q̂S,`(y,a). The degree of (R̂S,`(y)) is at
most 4k(p−1)n′+O(kp logm). We will set n′ = δn in such a way that

M((1−δ)n,4k(p−1)δn)≤ O?(p(n−n′)/7),

and that therefore the number of monomials in (R̂S,`(y)) is p(n−n′)/7 ·mO(pq). Hence we can obtain the value
of K(y) for all y ∈ Fn

p in time pn−n′+o(n) ·mO(pq) by applying Lemma 2.3 to R̂S,`(y).
We now proceed to the running time analysis, for this we need to specify more precisely how the rep-

resentation of (R̂S,`(y)) as a sum of monomials is computed. In particular, all polynomial additions and
multiplications are performed using the naive addition and multiplication algorithms, however, we make
sure that whenever we are multiplying two polynomials, at least one of them has degree at most kq. Note
that this is achievable, because all multiplications occur in the definition of Q̂S,`(y,a). Here a polynomial of
degree at most k is taken to the p−1’th power, resulting in a polynomial of degree at most pq. Then F̀ is
applied to this polynomial. Note that F̀ (t) can be computed using the definition of Lemma B.3 in such a
way that in any multiplication, at least one of the two factors is either t or 1− t. Thus, each multiplication
takes time at most

O?(M(n,4k(p−1)n′+O(kp logm))) ·M(n, pq)≤M(n,4k(p−1)n′) · (mn)O(pq).

Each Q̂S,`(y,a) is computed with O?(|S|)≤O?(p3n′) polynomial additions and multiplications, and (R̂S,`(y))
is the sum of Q̂S,`(y,a) over all pn′ choices of a. Hence, the total number of operations needed to construct
(R̂S,`(y)) is upper bounded by O?(p4n′). Evaluating (R̂S,`(y)) using Lemma 2.3 takes time pn−n′+o(n) ·mO(pq),
while constructing |S|, which is done once, takes time O?(pO(n′)). Hence the total running time is upper
bounded by

pn−n′+o(n)+ pO(n′)+ p4n′ ·M(n−n′,4k(p−1)n′) · (nm)O(qk)

≤ p(1−δ)n+o(n)+ pc·δn + p4δn ·M((1−δ)n,4k(p−1)δn) · (nm)O(pk).

Here c is the constant in the big-Oh notation in the pO(n′) term, c is independent of p and k.
We now discuss the choice of δ for different values of p and k. We will always pick δ to be at less than

1/(c+ 1) and less than 1/5, thus the first term in the running time will always be larger than the second.

16

Further, we have already constrained the choice of δ such that M((1− δ)n,4k(p− 1)δn) ≤ p(n−n′)/7. For
such a δ , the running time is upper bounded by

p(1−δ)n+o(n)+ p4δn · p(1−δ)/7 · (nm)O(pk) ≤ p(1−δ)n+o(n).

We first consider the case that p≥ (2e)7. We set δ = 1/(10ekp6/7), then we have that

M((1−δ)n,4k(p−1)δn)≤M(1−δ)n,5kpδn(1−δ))≤ O?

((
n+5kpδn

n

)1−δ
)

≤ (e+5ekpδ)(1−δ)n ≤ p(1−δ)n/7 = p(n−n′)/7.

Suppose now that p < (2e)7, we set δ = 1
kp6/7·300 . We have that

M((1−δ)n,4k(p−1)δn)≤ O?

((
n+5kpδn

n

)1−δ
)
≤ O?

(n+n p1/7

60
n

)1−δ

≤ O?

(1+

p1/7

60

)
·
(

1+
60

p1/7

) p1/7
60

(1−δ)n
≤ O?

((
p1/7

)(1−δ)n
)
.

The last transition was verified by explicitely comparing the two sides for every integer p between 2 and
(2e)7. This completes the proof.

Lemma B.5 only works for prime fields, however, by combining Lemma B.5 with the reduction of
Lemma 3.4, we obtain an algorithm that works for all fields. More concretely, we are now in position
to prove Theorem 1.2.

Theorem 1.2 (restated). Let q = pd for a prime p and integer d ≥ 1. There is a deterministic algorithm
that, given an instance of SysPolyEqs(q) with m polynomial equations of degree at most k in n variables,

runs in time q
n
(

1− 1
300kq6/7d

)
+o(n)

·mO(qk) and counts the number of satisfying assignments for the system.

Proof. Given as input a system of m degree d polynomial equations over n variables in Fq, find in time
pO(d) = qO(1) an irreducible polynomial P(X) in Fp[X] of degree d. This can be done by going over all
of the at most pd choices for the coefficients of P(X), and then testing irreducibility by dividing P(X) by
each polynomial in Fp[X] of degree at most d/2. Then transform the input system using Lemma 3.4 to an
equivalent system of km degree d polynomial equations over kn variables in Fp, and use Lemma B.5 to solve
this system.

C Proofs Omitted from Section 4

Lemma 4.1 (restated) Let U1,U2, . . . ,Ut be subsets of [n] and L1,L2, . . . ,Lt ′ be linear forms such that {Li}t ′
i=1

is linearly independent and the rank of {Ui}t
i=1 relative to {Li}t ′

i=1 is d. Then, for all a1,a2, . . . ,at ′ ,b1,b2, . . . ,bt ∈
{0,1}, there exists a polynomial p of degree at most d such that p(x) = ∏

t
k=1
(
bk +∑l∈Uk

xl
)

holds for all
x ∈ {Li = ai}t ′

i=1.

17

Proof. Let V be a linearly independent subset {S1,S2, . . . ,Sd} of {Ui}t
i=1 such that the rank of V relative

to {Li}t ′
i=1 is d. By the definition of the rank of a set relative to a set, each Ui can be written as a linear

combination of vectors in V ∪{Li}t ′
i=1. This implies that we can write ∏

t
k=1
(
bk +∑l∈Uk

xl
)

as a function of
S1,S2, . . . ,Sd ,L1,L2, . . . ,Lt ′ . By setting L1 = a1,L2 = a2, . . . ,Lt ′ = at ′ and using the fact that every function
in d variables can be written as a degree-d polynomial, we complete the proof.

18

	Introduction
	Preliminaries
	Randomized Algorithms for Systems of Polynomial Equations
	A Degree Reduction Algorithm
	Concluding Remarks
	Fast Polynomial Evaluation
	Deterministic Algorithms for Systems of Polynomial Equations
	Proofs Omitted from Section 4

