
On Problems as Hard as CNF-SAT∗

Marek Cygan† Holger Dell‡ Daniel Lokshtanov§ Dániel Marx¶

Jesper Nederlof‖ Yoshio Okamoto∗∗ Ramamohan Paturi††

Saket Saurabh‡‡ Magnus Wahlström§§

June 7, 2012

Abstract

The field of exact exponential time algorithms for NP-hard problems has thrived over the
last decade. While exhaustive search remains asymptotically the fastest known algorithm for
some basic problems, difficult and non-trivial exponential time algorithms have been found
for a myriad of problems, including Graph Coloring, Hamiltonian Path, Dominating
Set and 3-CNF-Sat. In some instances, improving these algorithms further seems to be out
of reach. The CNF-Sat problem is the canonical example of a problem for which the trivial
exhaustive search algorithm runs in time O(2n), where n is the number of variables in the input
formula. While there exist non-trivial algorithms for CNF-Sat that run in time o(2n), no
algorithm was able to improve the growth rate 2 to a smaller constant, and hence it is natural to
conjecture that 2 is the optimal growth rate. The strong exponential time hypothesis (SETH)
by Impagliazzo and Paturi [JCSS 2001] goes a little bit further and asserts that, for every
ε < 1, there is a (large) integer k such that that k-CNF-Sat cannot be computed in time 2εn.

In this paper, we show that, for every ε < 1, the problems Hitting Set, Set Splitting,
and NAE-Sat cannot be computed in time O(2εn) unless SETH fails. Here n is the number of
elements or variables in the input. For these problems, we actually get an equivalence to SETH
in a certain sense. We conjecture that SETH implies a similar statement for Set Cover,
and prove that, under this assumption, the fastest known algorithms for Steiner Tree,
Connected Vertex Cover, Set Partitioning, and the pseudo-polynomial time algo-
rithm for Subset Sum cannot be significantly improved. Finally, we justify our assumption
about the hardness of Set Cover by showing that the parity of the number of solutions to
Set Cover cannot be computed in time O(2εn) for any ε < 1 unless SETH fails.

∗An extended abstract of this paper appears in the proceedings of CCC 2012.
†IDSIA, University of Lugano, Switzerland. marek@idsia.ch. Partially supported by National Science Centre

grant no. N206 567140, Foundation for Polish Science and ONR Young Investigator award when at the University
at Maryland.
‡University of Wisconsin–Madison, USA. holger@cs.wisc.edu. Research partially supported by the Alexan-

der von Humboldt Foundation and NSF grant 1017597.
§University of California, USA. dlokshtanov@ucsd.edu.
¶Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI), Budapest,

Hungary. dmarx@cs.bme.hu. Research supported by ERC Starting Grant PARAMTIGHT (280152).
‖Utrecht University, The Netherlands. j.nederlof@uu.nl. Supported by NWO project ”Space and Time

Efficient Structural Improvements of Dynamic Programming Algorithms”.
∗∗Japan Advanced Institute of Science and Technology, Japan. okamotoy@uec.ac.jp. Partially supported by

Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science.
††University of California, USA. paturi@cs.ucsd.edu. This research is supported by NSF grant CCF-0947262

from the Division of Computing and Communication Foundations. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views of
the National Science Foundation.
‡‡Institute of Mathematical Sciences, India. saket@imsc.res.in.
§§Max-Planck-Institut für Informatik, Germany. wahl@mpi-inf.mpg.de.

ar
X

iv
:1

11
2.

22
75

v2
 [

cs
.D

S]
 6

 J
un

 2
01

2

1 Introduction

Every problem in NP can be solved in time 2poly(m) by brute force, that is, by enumerating
all candidates for an NP-witness, which is guaranteed to have length polynomial in the input
size m. While we do not believe that polynomial time algorithms for NP-complete problems
exist, many NP-complete problems have exponential time algorithms that are dramatically
faster than the näıve brute force algorithm. For some classical problems, such as Subset Sum
or Hamiltonian Cycle, such algorithms were known [HK62; Bel62] even before the concept
of NP-completeness was discovered. Over the last decade, a subfield of algorithms devoted to
developing faster exponential time algorithms for NP-hard problems has emerged. A myriad of
problems have been shown to be solvable much faster than by näıve brute force, and a variety
of algorithm design techniques for exponential time algorithms has been developed.

What the field of exponential time algorithms sorely lacks is a complexity-theoretic frame-
work for showing running time lower bounds. Some problems, such as Independent Set and
Dominating Set have seen a chain of improvements [FGK09; RND09; Rob86; KLR09], each
new improvement being smaller than the previous. For these problems, the running time of the
discovered algorithms seems to converge towards O(Cn) for some unknown constant C, where n
denotes the number of vertices of the input graphs. For other problems, such as Graph Col-
oring or Steiner Tree, non-trivial algorithms have been found, but improving the growth
rate C of the running time any further seems to be out of reach [BHK09; Ned09]. The purpose
of this paper is to develop tools that allow us to explain why we are stuck for these problems.
Ideally, for any problem whose best known algorithm runs in time O(Cn), we want to prove
that the existence of O(cn)-time algorithms for any constant c < C would have implausible
complexity-theoretic consequences.

Previous Work. Impagliazzo and Paturi’s Exponential Time Hypothesis (ETH) addresses the
question whether NP-hard problems can have algorithms that run in “subexponential time”
[IP01]. More precisely, the hypothesis asserts that 3-CNF-Sat cannot be computed in time 2o(n),
where n is the number of variables in the input formula. ETH is considered to be a plausi-
ble complexity-theoretic assumption, and subexponential time algorithms have been ruled out
under ETH for many decision problems [IPZ01], parameterized problems [CCF+05; LMS11],
approximation problems [Mar07], and counting problems [DHM+12]. However, ETH does not
seem to be sufficient for pinning down what exactly the best possible growth rate is. For this
reason, we base our results on a stronger hypothesis.

The fastest known algorithms for CNF-Sat have running times of the form 2n−o(n)poly(m)
[Sch05; Wil11], which does not improve upon the growth rate 2 of the näıve brute force algorithm
that runs in time 2npoly(m). Hence a natural candidate for a stronger hypothesis is that CNF-
Sat cannot be computed in time 2εnpoly(m) for any ε < 1. However, we do not know whether
our lower bounds on the growth rate of specific problems can be based on this hypothesis.
The main technical obstacle is that we have no analogue of the sparsification lemma, which
applies to k-CNF formulas and makes ETH a robust hypothesis [IPZ01]. In fact, very recent
results indicate that such a sparsification may be impossible for general CNF formulas [SS11].
For this reason, we consider the Strong Exponential Time Hypothesis (SETH) of Impagliazzo
and Paturi [IP01; IPZ01; CIP09]. This hypothesis asserts that, for every ε < 1, there is a
(large) integer k such that k-CNF-Sat cannot be computed by any bounded-error randomized
algorithm in time O(2εn). In particular, SETH implies the hypothesis for CNF-Sat above, but
we do not know whether they are equivalent. Since SETH is a statement about k-CNF formulas
for constant k = k(ε), we can apply the sparsification lemma for every fixed k, which allows us
to use SETH as a starting point in our reductions.

1

Our results. Our first theorem is that SETH is equivalent to lower bounds on the time com-
plexity of a number of standard NP-complete problems.

Theorem 1.1. Each of the following statements is equivalent to SETH:

(i) ∀ε < 1.∃k. k-CNF-Sat, the satisfiability problem for n-variable k-CNF formulas, cannot
be computed in time O(2εn).

(ii) ∀ε < 1.∃k. k-Hitting Set, the hitting set problem for set systems over [n] with sets of
size at most k, cannot be computed in time O(2εn).

(iii) ∀ε < 1.∃k. k-Set Splitting, the set splitting problem for set systems over [n] with sets
of size at most k, cannot be computed in time O(2εn).

(iv) ∀ε < 1.∃k. k-NAE-Sat, the not-all-equal assignment problem for n-variable k-CNF for-
mulas, cannot be computed in time O(2εn).

(v) ∀ε < 1.∃c. c-VSP-Circuit-SAT, the satisfiability problem for n-variable series-parallel
circuits of size at most cn, cannot be computed in time O(2εn).

For all of the above problems, the näıve brute force algorithm runs in time O(2n). While
there may not be a consensus that SETH is a “plausible” complexity-theoretic assumption, our
theorem does indicate that finding an algorithm for CNF-Sat whose growth rate is smaller
than 2 is as difficult as finding such an algorithm for any of the above problems. Since our
results are established via suitable reductions, this can be seen as a completeness result under
these reductions. Moreover, we actually prove that the optimal growth rates for all of the
problems above are equal as k tends to infinity. This gives an additional motivation to study
the Strong Exponential Time Hypothesis.

An immediate consequence of Theorem 1.1 is that, if SETH holds, then CNF-Sat, Hitting
Set, Set Splitting, NAE-Sat, and the satisfiability problem of series-parallel circuits do not
have bounded-error randomized algorithms that run in time 2εnpoly(m) for any ε < 1. All of
these problems are search problems, where the objective is to find a particular object in a search
space of size 2n. Of course, we would also like to show tight connections between SETH and the
optimal growth rates of problems that do have non-trivial exact algorithms. Our prototypical
such problem is Set Cover: Given a set system with n elements and m sets, we want to select
a given number t of sets that cover all elements. Exhaustively trying all possible ways to cover
the elements takes time at most 2mpoly(m). However, m could be much larger than n, and it
is natural to ask for the best running time that one can achieve in terms of n. It turns out that
a simple dynamic programming algorithm [FKW04] can solve Set Cover in time 2npoly(m).
The natural question is whether the growth rate of this simple algorithm can be improved. While
we are not able to resolve this question, we connect the existence of an improved algorithm for
Set Cover to the existence of faster algorithms for several problems. Specifically, we show the
following theorem.

Theorem 1.2. Assume that, for all ε < 1, there is a k such that Set Cover with sets of size
at most k cannot be computed in time 2εnpoly(m). Then, for all ε < 1, we have:

(i) Steiner Tree cannot be computed in time 2εtpoly(n),

(ii) Connected Vertex Cover cannot be computed in time 2εtpoly(n),

(iii) Set Partitioning cannot be computed in time 2εnpoly(m), and

(iv) Subset Sum cannot be computed in time tεpoly(n).

2

All problems mentioned in this theorem have non-trivial algorithms whose running times are
as above with ε = 1 [BHK+07; Ned09; CNP+11; FKW04; CLR+09]. Under the assumption in
the theorem, we therefore obtain tight lower bounds on the growth rate of exact algorithms for
Steiner Tree, Connected Vertex Cover, Set Partitioning, and Subset Sum. The
best currently known algorithms for these problems share two interesting common features.
First, they are all dynamic programming algorithms. Thus, Theorem 1.2 hints at Set Cover
being a “canonical” dynamic programming problem. Second, the algorithms can all be modified
to compute the number of solutions modulo two in the same running time. In fact, the currently
fastest algorithm [CNP+11] for Connected Vertex Cover works by reducing the problem
to computing the number of solutions modulo two.

While Theorem 1.1 is an equivalence, Theorem 1.2 is not. One might ask whether it is
possible to find reductions back to Set Cover and to strengthen Theorem 1.2 in this manner.
We believe that this would be quite difficult: A suitable reduction from, say, Steiner Tree to
Set Cover that proves the converse of Theorem 1.2 would probably also work for ε = 1. This
would give an alternative proof that Steiner Tree can be computed in time 2tpoly(m). Hence,
finding such a reduction is likely to be a challenge since the fastest known algorithms [BHK+07;
Ned09] for Steiner Tree are quite non-trivial — it took more than 30 years before the clas-
sical 3tpoly(n)-time Dreyfus–Wagner algorithm for Steiner Tree was improved to 2tpoly(n).
Similar comments apply to Connected Vertex Cover since its 2tpoly(n) time algorithm is
quite complex [CNP+11].

The hardness assumption for Set Cover in Theorem 1.2 needs some justification. Ide-
ally we would like to replace this assumption with SETH, that is, we would like to prove that
SETH implies the hardness assumption for Set Cover in Theorem 1.2. We do not know a
suitable reduction, but we are able to provide a different kind of evidence for hardness: We
show that a 2εnpoly(m)-time algorithm to compute the number of set covers modulo two would
violate ⊕-SETH, which is a hypothesis that implies SETH. Formally, ⊕-SETH asserts that,
for all ε < 1, there exists a (large) integer k such that k-⊕CNF-Sat cannot be computed in
time O(2εn). Here, k-⊕CNF-Sat is the problem of computing the number of satisfying assign-
ments of a given k-CNF formula modulo two. It follows from known results [CIK+03; Tra08]
(see also Section 3.1) that, if SETH holds, then so does ⊕-SETH. As a partial justification for
the hardness assumption for Set Cover in Theorem 1.2, we provide the following theorem.

Theorem 1.3. Each of the following statements is equivalent to ⊕-SETH:

(i) ∀ε < 1.∃k. k-⊕CNF-Sat, the parity satisfiability problem for n-variable k-CNF formu-
las, cannot be computed in time O(2εn).

(ii) ∀ε < 1.∃k. k-⊕Hitting Set, the parity hitting set problem for set systems over [n] with
sets of size at most k, cannot be computed in time O(2εn).

(iii) ∀ε < 1.∃k. k-⊕Set Cover, the parity set cover problem for set systems over [n] with
sets of size at most k, cannot be computed in time O(2εn).

In the statement of Theorem 1.3, the⊕Hitting Set and⊕Set Cover problems are defined
as follows: the input is a set system and the objective is to compute the parity of the number
of hitting sets (resp. set covers) in the system. An immediate consequence of Theorem 1.3 that
we find interesting is that ⊕-SETH rules out the existence of 2εnpoly(m)-time algorithms to
compute the number of set covers of a set system, for any ε < 1.

Theorem 1.3 together with the fact that the algorithms for all problems mentioned in Theo-
rem 1.2 can be modified to count solutions modulo two leads to the following questions: Can we
show running time lower bounds for the counting versions of these problems? We show that this

3

CNF-Sat

Hitting Set

Set Splitting

Set Cover

⊕CNF-Sat

⊕Hitting Set ⊕Set Cover ⊕Set Cover/(n+ t)

Set Cover/(n+ t)

⊕Connected Vertex Cover/t

Connected Vertex Cover/t
Set Partition Subset Sum

⊕Steiner Tree/t

Steiner Tree/t
?

SP-Sat
NAE-Sat

⊕CNF-Sat/m

Figure 1: Overview of all reductions we give. An arrow Π → Π′ depicts a reduction from the
problem Π′ to the problem Π. In other words, improving the best-known algorithm for Π implies
that the best-known algorithm for Π′ can be improved as well. The thin arrowhead indicates
the isolation lemma result known from previous work [CIK+03; Tra08]. The left group contains
problems, for which the best-known algorithm is näıve brute force, and is discussed in Section 3.
The right group contains problems, for which the best-known algorithms are based on dynamic
programming flavoured techniques, and is discussed in Section 4. The red and dashed arrow
indicates the open problem whether SETH implies the assumption of Theorem 1.2.

is indeed possible. In particular we show that, assuming ⊕-SETH, there is no 2εtpoly(n)-time
algorithm that computes the parity of the number of Steiner trees that have size at most t, and
no 2εtpoly(n)-time algorithm that computes the parity of the number of connected vertex covers
that have size at most t. Thus, unless ⊕-SETH fails, any improved algorithm for Set Cover,
Steiner Tree, or Connected Vertex Cover cannot be used to compute the parity of the
number of solutions.

We find it intriguing that SETH and ⊕-SETH can be used to show tight running time lower
bounds, sometimes for problems for which the best algorithm has been improved several times,
such as for Steiner Tree or Connected Vertex Cover. We feel that such sharp bounds
are unlikely to just be a coincidence, leading us to conjecture that the relationship between the
considered problems is even closer than what we show. Specifically, we conjecture that SETH
implies the hardness assumption for Set Cover in Theorem 1.2. This conjecture provides an
interesting open problem.

Our results are obtained by a collection of reductions. Section 3 contains the reductions
that constitute the proof of Theorem 1.1, and some of the reductions needed for Theorem 1.3.
Section 4 contains the proof of Theorem 1.2, the remaining reductions for Theorem 1.3, and the
hardness results for counting Steiner trees and connected vertex covers. A schematic represen-
tation of our reductions can be found in Figure 1.

2 Preliminaries and Notation

In this paper, ∆ denotes the symmetric difference and ∪̇ denotes the disjoint union. For a set U
and a positive integer i ≤ |U |, we denote the family of all subsets of U of size i by

(
U
i

)
. In this

paper, ≡ will always denote congruence modulo 2, that is, i ≡ j holds for integers i, j if and
only if i and j have the same parity. Every assignment α : {v1, . . . , vn} → {0, 1} to n Boolean
variables v1, . . . , vn is identified with the set A := {vi | α(vi) = 1} ⊆ {v1, . . . , vn}.

Since we consider a significant number of problems in the paper, each of which has a few
variants, we use the following notation for clarity. We write k-Π for problems whose input
consists of set systems of sets of size at most k, or CNF formulas with clauses of width at

4

most k. We write (k, c)-Sparse-Π if, in addition, the set systems or formulas are required to
have density at most c. That is, the number of sets or clauses is at most cn, where n is the
number of elements or variables.

For each problem Π that we consider, we fix the canonical NP-verifier that is implicit in
the way we define the problem. Then every yes-instance of Π has associated with it a set of
NP-witnesses or “solutions”. We write ⊕Π for the problem of deciding whether, for a given
instance, the parity of the number of solutions odd. If solutions of Π are sets (e.g., of vertices),
we write ⊕tΠ for the problem of deciding whether, for a given instance, the parity of the number
of solution sets that have size exactly t is odd.

Running times in this paper have the form cn · poly(m), where c is a nonnegative constant,
m is the total size of the input, and n is a somewhat smaller parameter of the input, typically the
number of variables, vertices, or elements. The constant c is the growth rate of the running time,
and it may be different for different choices for the parameter. To make this parameterization
explicit, we use the notation Π/n. For every such parameterized problem, we now define the
number σ = σ(Π/n).

Definition 2.1. For a parameterized problem Π/n, let σ(Π/n) be the infimum over all ε > 0
such that there exists a randomized 2εnpoly(m)-time algorithm for Π whose error probability is
at most 1/3.

The optimal growth rate of Π with respect to n is C := 2σ(Π/n). If the infimum in the
definition above is a minimum, then Π has an algorithm that runs in time Cnpoly(m) and no
algorithm for Π can have a running time cnpoly(m) for any c < C. On the other hand, if the
minimum does not exist, then no algorithm for Π can run in time Cnpoly(m), but Π has a
cnpoly(m)-time algorithm for every c > C. We formally define SETH as the assertion that
limk→∞ σ(k-CNF-Sat/n) = 1.

We remark that it is consistent with current knowledge that SETH fails and yet CNF-Sat
does not have 2εnpoly(m)-algorithms for any ε < 1: If SETH fails, then k-CNF-Sat has, say,
kk1.99n-time algorithms for every k, which does not seem to translate to a 2εnpoly(m)-time
algorithm for CNF-Sat for any ε < 1.

3 On Improving Branching Algorithms

In this section we show that significantly faster algorithms for search problems such as Hitting
Set and Set Splitting imply significantly faster algorithms for CNF-Sat. More precisely,
we prove that the growth rates of these problems are equal, or equivalently, σ(CNF-Sat/n) =
σ(Hitting Set/n) = σ(Set Splitting/n). We also give a reduction from ⊕CNF-Sat to
⊕Hitting Set, thus establishing a connection between the parity versions of these two prob-
lems.

Given an n-variable CNF formula with m clauses, the problems CNF-Sat and ⊕CNF-Sat
problems are to determine whether there exists a satisfying assignment and whether the number
of satisfying assignments is odd, respectively. With the same input, the NAE-Sat problem is
to determine whether there exists an assignment such that every clause contains both a literal
set to true and a literal set to false.

Given an integer t and a set system F ⊆ 2U with |F| = m and |U | = n, the problems
Hitting Set and ⊕Hitting Set are to determine whether there exists a hitting set of size
at most t and whether the number of hitting sets is odd, respectively. A hitting set is a subset
H ⊆ U such that H ∩ S 6= ∅ for every S ∈ F . With the same input, the Set Splitting
problem asks whether there is a subset X ⊆ U such that, for every S ∈ F , we have S * X and
S * (U \X).

5

3.1 Previous results for CNF-SAT

In the following few subsections, we show reductions from CNF-Sat/n to Hitting Set/n and
Set Splitting/n. These reductions work even when the given instance of CNF-Sat/n is
dense, that is, when there is no bound on the number of clauses that is linear in the number
of variables. However, our starting point in Section 4 is the Sparse-Hitting Set/n problem,
where the number of sets in the set system is linear in n. For this reason we formulate our
results for the sparse versions of Hitting Set/n and Set Splitting/n, and we develop a
sparse version of SETH first.

The sparsification lemma by Impagliazzo et al. [IPZ01] is that every k-CNF formula ϕ can
be written as the disjunction of 2εn formulas in k-CNF, each of which has at most c(k, ε) · n
clauses. Moreover, this disjunction of sparse formulas can be computed from ϕ and ε in time
2εn · poly(m). Hence, the growth rate of k-CNF-Sat for formulas of density at most c(k, ε) is
ε-close to the growth rate of general k-CNF-Sat. More precisely, for every k and every ε > 0, we
have σ

(
(k,c)-Sparse-CNF-Sat/n

)
≤ σ

(
k-CNF-Sat/n

)
≤ σ

(
(k,c)-Sparse-CNF-Sat/n

)
+ ε,

where the first inequality is trivial and the second inequality follows from the sparsification
lemma. The density c = c(k, ε) is the sparsification constant, and the best known bound is
c(k, ε) = (k/ε)3k [CIP06]. By setting ε = ε(k) = ω(1), this immediately yields the following
theorem.

Theorem 3.1 ([IPZ01; CIP06]). For every function c = c(k) ≥ (ω(k))3k, we have

lim
k→∞

σ
(
k-CNF-Sat/n

)
= lim

k→∞
σ
(
(k,c)-Sparse-CNF-Sat/n

)
.

Hence, SETH is equivalent to the right-hand side being equal to 1. In [DHM+12] it was
observed that the sparsification lemma can be made parsimonious, which gives the following
equality for the same functions c = c(k):

lim
k→∞

σ
(
k-⊕CNF-Sat/n

)
= lim

k→∞
σ
(
(k,c)-⊕Sparse-CNF-Sat/n

)
.

We define ⊕-SETH as the assertion that these limits are equal to 1. The isolation lemmas
for k-CNF formulas [CIK+03; Tra08] immediately yield that SETH implies ⊕-SETH. More
precisely, we have the following theorem.

Theorem 3.2 ([CIK+03; Tra08]). limk→∞ σ(k-CNF-Sat/n) ≤ limk→∞ σ(k-⊕CNF-Sat/n) .

3.2 From CNF-SAT to Hitting Set

The following construction will be useful in this subsection and in Subsection 3.4. Given a CNF
formula ϕ = C1 ∧ . . . ∧ Cm over n variables v1, . . . , vn and an odd integer p ≥ 3 that divides n,
we construct the set system Fϕ,p ⊆ 2U as follows.

1. Let p′ be the odd integer p′ = p+ 2dlog2 pe, and let U = {u1, . . . , un′} with n′ = p′ · n/p.

2. Partition the variables of ϕ into blocks Vi of size p, i.e., Vi := {vpi+1, . . . , vp(i+1)}.

3. Partition U into blocks Ui of size p′, i.e., Ui = {up′i+1, . . . , up′(i+1)}.

4. Choose an arbitrary injective function ψi : 2Vi →
(

Ui
dp′/2e

)
. This exists since

∣∣∣∣(Ui
dp′/2e

)∣∣∣∣ =

(
p′

dp′/2e

)
≥ 2p

′

p′
≥ 2pp2

p+ 2dlog2 pe
≥ 2p =

∣∣2Vi∣∣ .
6

We think of ψi as a mapping that, given an assignment to the variables of Vi, associates
with it a subset of Ui of size dp′/2e.

5. If X ∈
(

Ui
dp′/2e

)
for some i, then add the set X to Fϕ,p.

6. If X ∈
(

Ui
bp′/2c

)
for some i such that ψ−1

i ({Ui \X}) = ∅, then add the set X to Fϕ,p.

7. For every clause C of ϕ, do the following:

◦ Let I = {1 ≤ j ≤ n
p | C contains a variable of block Vj};

◦ For every i ∈ I, we let Ai be the set{
A ∈

(
Ui
bp′/2c

) ∣∣∣∣ some assignment in ψ−1
i ({Ui \A}) sets all variables in C ∩ Vi to false

}
;

◦ For every tuple (Ai)i∈I with Ai ∈ Ai, add the set
⋃
i∈I Ai to Fϕ,p.

Lemma 3.3. For every n-variable CNF formula ϕ and every odd integer p ≥ 3 that divides n,
the number of satisfying assignments of ϕ is equal to the number of hitting sets of size dp′2 enp of

the set system Fϕ,p, where p′ = p+ 2dlog2 pe.

Proof. For convenience denote g = n
p . Define ψ : 2V → 2U as ψ(A) =

⋃g
i=1 ψi(A ∩ Vi). Note

that ψ is injective, since for every i, ψi is injective. Hence to prove the lemma, it is sufficient
to prove that (1) A is a satisfying assignment if and only if ψ(A) is a hitting set of size dp′2 eg,

and (2) if there is no assignment A ⊆ V such that ψ(A) = H, than no set H ⊆ U of size dp′2 eg
is a hitting set of Fϕ,p.

For the forward direction of (1), note that the sets added in Step 5 are hit by the pigeon-hole

principle since |ψi(A ∩ Vi)| = dp′2 e and p′ is odd. For the sets added in Step 6, consider the
following. The set X of size bp′/2c is added because for some i, ψ−1

i ({Ui \ X}) = ∅. Thus
ψi(A ∩ Vi) automatically hits X. For the sets added in Step 7, consider a clause C of ϕ and
the associated index set I as in Step 7. Since A is a satisfying assignment of ϕ, there exists
i ∈ I such that A sets at least one variable in C ∩ Vi to true. Hence, Ui \ ψi(A ∩ Vi) 6∈ Ai. On
the other hand, Ui \ ψi(A ∩ Vi) is the only member of Fϕ,p that cannot be hit by ψ(A ∩ Vi).
Therefore, all sets added in Step 7 are hit by ψ(A). It is easy to check that ψ(A) has size dp′2 eg
since there are g blocks.

For the reverse direction of (1), let A be an assignment such that ψ(A) is a hitting set of size

dp′2 eg. We show that A is a satisfying assignment of ϕ. Suppose for the sake of contradiction
that a clause C is not satisfied by A, and let I be as defined in Step 7 for this C. Since ψ(A) is

a hitting set, |ψ(A)∩Ui| ≥ p′

2 for every i because it hits all sets added in Step 5. More precisely,

|ψ(A)∩Ui| = dp
′

2 e because |ψ(A)| = dp′2 eg and there are g disjoint blocks U1, . . . , Ug. Therefore,

|Ui \ ψ(A)| = bp′2 c, and so Ui ∩ ψ(A) = Ui \ (Ui \ ψ(A)) is a member of Ai for every i. This
means that in Step 7 the set

⋃
i∈I Ai with Ai = Ui \ ψ(A) was added, but this set is not hit by

ψ(A). So it contradicts that ψ(A) is a hitting set.

For (2), let H ⊆ U be a set of size dp′2 eg and assume that there is no assignment A ⊆ V such
that ψ(A) = H. We show that H is not a hitting set of Fϕ,p. For the sake of contradiction,
suppose that H is a hitting set. Then, as in the proof of the reverse direction of (1), we

obtain |H ∩ Ui| = dp′2 e for every i. Since it hits all sets added in Step 6, we also know that
ψ−1
i ({H ∩Ui}) 6= ∅ for every i. However, this contradicts the non-existence of A ⊆ V such that
ψ(A) = H.

7

Theorem 3.4. For every function c = c(k), there exists a function c′ = c′(k′) such that

lim
k→∞

σ((k,c)-Sparse-CNF-Sat/n) ≤ lim
k′→∞

σ((k′,c′)-Sparse-Hitting Set/n) .

Proof. To prove the theorem we show that for any positive integers k, c and for any positive
odd integer p ≥ 3, there exist positive integers k′ and c′ such that

σ((k,c)-Sparse-CNF-Sat/n) ≤ σ((k′,c′)-Sparse-Hitting Set/n) +O

(
log p

p

)
.

Create the set system Fϕ,p as described above. For a constant p, this can clearly be done in
polynomial time. We set k′ = p′k and c′ = 2p′ + 2kp

′
c (remind that p′ = p + 2dlog2 pe). It is

easy to see that the maximum size of a set of Fϕ,p is at most k′. Let m′ be the number of sets in
Fϕ,p. Observe that there are at most 2p

′
n/p sets added in Step 5 and Step 6. Moreover, since

each clause contains variables from at most k blocks, there are at most 2kp
′
m sets added in Step

7. Therefore m′/n′ ≤ m′/n ≤ 2p
′
+ 2kp

′
c = c′ and we can determine the minimum hitting set of

Fϕ,p in O(2σ((k′,c′)-Sparse-Hitting Set/n)n′nO(1)) time, where n′ is the size of the universe of Fϕ,p.
By Lemma 3.3, ϕ is satisfiable if and only if the size of a minimum hitting set is dp′2 enp . Since

n′ = n
p (p+ 2dlog pe) = n(1 +O(log p

p)), the theorem follows.

3.3 From Hitting Set via Set Splitting to CNF-SAT

Theorem 3.5.

lim
k→∞

σ(k-Hitting Set/n) ≤ lim
k→∞

σ(k-Set Splitting/n) .

Proof. Observe that to prove the theorem it is enough to show that for every positive integers
k, p we have

σ(k-Hitting Set/n) ≤ σ(k′-Set Splitting/n) +
log2(p+ 1)

p
,

where k′ = max(k + 1, p + 1). Let (F , t) be an instance of k-Hitting Set. We can assume
that the universe U of F has n elements and that p divides n. Let U = U1 ∪̇ . . . ∪̇ Un/p be a
partition in which each part has exactly |Ui| = p elements of the universe U . Let t1, . . . , tn/p

be nonnegative integers such that
∑n/p

i=1 ti = t. The ti’s are our current guess for how many
elements of a t-element hitting set will intersect with the Ui’s. The number of ways to write t
as the ordered sum of n/p nonnegative integers t1, . . . , tn/p with 0 ≤ ti ≤ p can be bounded by

(p + 1)n/p = 2n/p·log2(p+1). For each choice of the ti’s, we construct an instance F ′ of k′-Set
Splitting as follows.

1. Let R (red) and B (blue) be two special elements and add the set {R,B} to F ′.

2. For all i with ti < p and for all X ∈
(
Ui
ti+1

)
, add X ∪ {R} to F ′.

3. For every Y ∈ F , add Y ∪ {B} to F ′.

Clearly F ′ can be computed in polynomial time and its universe has n+ 2 elements. The sets
added in step 2 have size at most p + 1 and the sets added in step 3 have size at most k + 1.
Given an algorithm for Set Splitting, we compute F ′ for every choice of the ti’s and we decide
Hitting Set in time O(2(ε+σ(k′-Set Splitting))·nmO(1)). It remains to show that F has a hitting
set of size at most t if and only if F ′ has a set splitting for some choice of t1, . . . , tn/p.

8

For the completeness of the reduction, let H be a hitting set of size t and set ti = |Ui ∩H|
for all i. We now observe that H ∪ {R} and its complement (U −H)∪ {B} form a set splitting
of F ′. The set {R,B} added in step 1 is split. The sets X ∪ {R} added in step 2 are split since
at least one of the ti + 1 elements of X ⊆ Ui is not contained in H. Finally, the sets Y ∪ {B}
added in step 3 are split since each Y ∈ F has a non-empty intersection with H.

For the soundness of the reduction, let (S, S) be a set splitting of F ′ for some choice of
t1, . . . , tn/p. Without loss of generality, assume that R ∈ S. By the set added in step 1, this

means that B ∈ S. The sets added in step 2 guarantee that Ui ∩S contains at most ti elements
for all i. Finally, the sets added in step 3 make sure that each set Y ∈ F has a non-empty
intersection with S. Thus, S \ {R} is a hitting set of F and has size at most

∑
i ti = t.

Observation 3.6. For any positive integer k we have

σ(k-Set Splitting/n) ≤ σ(k-NAE-Sat/n) ≤ σ(k-CNF-Sat/n) .

Proof. For the first reduction, let F be an instance of k-Set Splitting. We construct an
equivalent k-CNF formula ϕ as follows. For each element in the universe of F , we add a
variable, and for each set X ∈ F we add a clause in which each variable occurs positively.
A characteristic function of a set splitting U = U1 ∪̇ U2 is one that assigns 1 to the elements
in U1 and 0 to the elements of U2. Observe that the characteristic functions of set splittings
of F stand in one-to-one correspondence to variable assignments that satisfy the NAE-Sat
constraints of ϕ. Thus, any algorithm for k-NAE-Sat works for k-Set Splitting, too.

For the second reduction, let ϕ be a k-NAE-Sat-formula. The standard reduction to k-
CNF-Sat creates two copies of every clause of ϕ and flips the sign of all literals in the second
copies. Then any NAE-Sat-assignment of ϕ satisfies both copies of the clauses of ϕ′. On the
other hand, any satisfying assignment of ϕ′ sets a literal to true and a literal to false in each
clause of ϕ. Thus any algorithm for k-CNF-Sat works for k-NAE-Sat, too.

3.4 From Parity CNF-SAT to Parity Hitting Set

Given a CNF formula ϕ over n variables and clauses of size at most k and an odd integer p > 2
that divides n, we first create the set system Fϕ,p ⊆ 2U as described in Section 3.2. Given the
set system Fϕ,p ⊆ 2U , create the set system F ′ϕ,p as follows:

8. For every block Ui:

◦ add a special element ei to the universe,

◦ for every X ∈
(

Ui
bp′/2c

)
, add the set X ∪ {ei} to the set family.

Lemma 3.7. The number of hitting sets of the instance Fϕ,p of size dp′/2enp is odd if and only

if the number of hitting sets of the instance F ′ϕ,p is odd.

Proof. Let g = n
p . We first prove that the number of hitting sets of Fϕ,p of size dp′/2eg is equal to

the number of hitting sets H ′ of F ′ϕ,p such that |H ′∩Ui| = dp
′

2 e for every 1 ≤ i ≤ g. Suppose that
H is a hitting set of Fϕ,p of size dp′/2eg, then it is easy to see that H ∪ {e1, . . . , eg} is a hitting

set of F ′ϕ,p since all the sets added in Step 8 are hit by some ei, and indeed |H ′ ∩Ui| = dp
′

2 e for
every 1 ≤ i ≤ g since otherwise the set Ui \H ′ added in Step 5 is not hit by H ′. For the reverse

direction, suppose H ′ is a hitting set of F ′ϕ,p such that |H ′ ∩ Ui| = dp′2 e for every 1 ≤ i ≤ g.
Then {e1, . . . , eg} ⊆ H ′ since all the sets added in Step 8 are hit by H ′. And hence we have a
bijection between the two families of hitting sets.

9

For every hitting set H ′ of F ′ϕ,p and block Ui, we know that |H ′ ∩ Ui| ≥ dp′/2e. So it
remains to show that the number of hitting sets H ′ of F ′ϕ,p such that there is an 1 ≤ i ≤ g with

|H ′∩Ui| > dp
′

2 e is even. Given such a hitting set H ′, let γ(H ′) = H ′∆{ei} where i is the smallest

integer such that |H ′ ∩ Ui| > dp
′

2 e. Obviously γ is its own inverse and |γ(H ′) ∩ Ui| > dp
′

2 e so
now it remains to show that γ(H ′) is also a hitting set of F ′ϕ,p. To see this, notice that all sets

X ∪{ei} added in Step 8 where X ∈
(

Ui
bp′/2c

)
are hit since |γ(H ′)∩Ui| > dp

′

2 e and that those are
the only sets containing ei.

Theorem 3.8. For every function c = c(k), there exists a function c′ = c′(k′) such that

lim
k→∞

σ((k,c)-⊕Sparse-CNF-Sat/n) ≤ lim
k′→∞

σ((k′,c′)-⊕Sparse-Hitting Set/n) .

Proof. To prove the theorem we show that for any positive integers k, c, p, there exist positive
integers k′, c′, such that we have

σ((k,c)-⊕Sparse-CNF-Sat/n) ≤ σ((k′,c′)-⊕Sparse-Hitting Set/n) +O

(
log p

p

)
.

Create the set system F ′ϕ,p as described above. For a constant p, this can clearly be

done in polynomial time. Recall that there are at most (2p
′

+ 2kp′c)n sets in Fϕ,p, each
of size at most p′k. Since in Step 8 we add at most 2p

′
n/p sets, each of size at most p′,

we infer that F ′ϕ,p is an instance of (k′,c′)-⊕Sparse-Hitting Set/n, where k′ = p′k and

c′ = 2p
′+1 + 2kp′c. Therefore we can determine the number of hitting sets modulo 2 of F ′ϕ,p in

O(2σ((k′,c′)-⊕Sparse-Hitting Set/n)n′mO(1)) time, where n′ is the size of the universe of F ′ϕ,p. Since

n′ = dnp e(p+ 2dlog pe) = n(1 +O(log p
p)), the theorem follows.

Note that conversely, an improved algorithm for ⊕CNF-Sat gives an improved algorithm
for ⊕Hitting Set: given a set family F ⊆ U the required reduction simply associates a variable
with the elements of U and creates a CNF-formula with for every S ∈ F a clause which is a
disjunction of the variables associated with the elements of S. The correspondence between
hitting sets and satisfying assignments is then immediate. Also, using a construction dual to
this, a similar relation between ⊕CNF-Sat/m and Set Cover can be shown.

3.5 Satisfiability for Series-Parallel Circuits

In this subsection, we show that the satisfiability of cn-size series-parallel circuits can be decided
in time time 2δn for δ < 1 independent of c if and only if SETH is not true. Here the size
of a circuit is the number of wires. Our proof is based on a result of Valiant regarding paths
in sparse graphs [Val77]. Calabro [Cal08] discusses various notions of series-parallel graphs and
provides a more complete proof of Valiant’s lower bound on the size of series-parallel graphs
(which he calls Valiant series-parallel graphs) that have “many” long paths. We remark that
the class of Valiant series-parallel graphs is not the same as the notion of series-parallel graphs
used most commonly in graph theory (see [Cal08]).

In this section a multidag G = (V,E) is a directed acyclic multigraph. Let input(G) denote
the set of vertices v ∈ V such that the indegree of v in G is zero. Similarly, let output(G) denote
the set of vertices v ∈ V such that the outdegree of v in G is zero. A labeling of G is a function
l : V → N such that ∀(u, v) ∈ E, l(u) < l(v). A labeling l is normal if for all v ∈ input(G),
l(v) = 0 and there exists an integer d ∈ N such that for all v ∈ output(G) \ input(G), l(v) = d.
A multidag G is Valiant series-parallel (VSP) if it has a normal labeling l such that there exist
no (u, v), (u′, v′) ∈ E such that l(u) < l(u′) < l(v) < l(v′).

10

We say that a boolean circuit C is a VSP circuit if the underlying multidag of C is a VSP
graph and the indegree of every node is at most two (namely, the fan-in of each gate is at
most two). Using the depth-reduction result by Valiant [Val77] and following the arguments by
Calabro [Cal08] and Viola [Vio09], we may show the following.

Theorem 3.9. Let C be a VSP circuit of size cn with n input variables. There is an algorithm
A which on input C and a parameter d ≥ 1 outputs an equivalent depth-3 unbounded fan-in
OR-AND-OR circuit C ′ with the following properties.

1. Fan-in of the top OR gate in C ′ is bounded by 2n/d.

2. Fan-in of the bottom OR gates is bounded by 22µcd where µ is an absolute constant.

3. A runs in time O(2n/dnO(1)) if c and d are constant.

In other words, for all d ≥ 1, Theorem 3.9 reduces the satisfiability of a cn-size VSP circuit
to that of the satisfiability of a disjunction of 2n/d k-CNFs where k ≤ 22µcd in time O(2n/dnO(1)).
This implies that

σ(c-VSP-Circuit-SAT/n) ≤ σ(22µcd-CNF-Sat/n) +
1

d
.

Hence, we obtain the following theorem.

Theorem 3.10.

lim
c→∞

σ(c-VSP-Circuit-SAT/n) ≤ lim
k→∞

σ(k-CNF-Sat/n).

For the reverse direction, observe that a CNF formula with cn clauses, all of size at most k,
can be written as a 4ck-size VSP circuit. This observation implies that

σ((k,c)-Sparse-CNF-Sat/n) ≤ σ(4ck-VSP-Circuit-SAT/n).

Together with the sparsification lemma, Theorem 3.1, we obtain the following theorem.

Theorem 3.11. limk→∞ σ(k-CNF-Sat/n) ≤ limc→∞ σ(c-VSP-Circuit-SAT/n) .

4 On Improving Dynamic Programming Based Algorithms

In this section we give some reductions that show that several dynamic programming based
algorithms cannot be improved unless (the parity version of) CNF-Sat can be, using the
hardness of ⊕Hitting Set/n showed in the previous section. More specifically, we show that
⊕Hitting Set/n and ⊕Set Cover/n are equivalent using a simple but novel property of
bipartite graphs in Subsection 4.1, and in Subsection 4.2 we show that the current algorithms
for ⊕tSteiner Tree/t and ⊕tConnected Vertex Cover/k are at least as hard to improve
as the algorithm for ⊕Set Cover/n. Motivated we make the hypothesis that the current
algorithm for Set Cover can not be improved and show similar implications to the Steiner
Tree/t and Connected Vertex Cover/k, Set Partitioning and Subset Sum problems.

Given an integer t and a set system F ⊆ 2U where |F| = m and |U | = n, the Set Cover
and ⊕Set Cover problems ask to determine whether there is a hitting set of size at most t and
whether the number of hitting sets if odd, respectively. Here a set cover refer to a subset CF
such that ∪S∈CC = U . Given a graph G = (V,E), with |V | = n a subset T ⊆ V , and an integer
t the Steiner Tree and ⊕tSteiner Tree problems ask to determine whether is a hitting set

11

of size at most t and whether the number of hitting sets is odd, respectively. Here, a Steiner tree
is a subset T ⊆ X ⊆ V such that X induces a connected graph in G. Given a graph G = (V,E)
with |V | = n and an integer t, the Connected Vertex Cover and ⊕tConnected Vertex
Cover problems ask to determine whether there is a connected vertex cover of size at most
t and whether the number of connected vertex covers is odd, respectively. Here, a connected
vertex cover is a subset X ⊆ V such that X ∩ e 6= ∅ for every e ∈ E and X induces a connected
graph. We will also use the extended notation as explained in Section 2 denoting several variants
of these problems (see also the appendix).

4.1 The flip: Parity Hitting Set equals Parity Set Cover

Lemma 4.1. Let G = (A ∪B,E) be a bipartite graph, then the number of independent sets of
G modulo 2 is equal to

|{X ⊆ A : N(X) = B}|.

Proof. Grouping on their intersection with A, the number of independent sets of G is equal to∑
X⊆A

2|B\N(X)| ≡
∑
X⊆A

|B\N(X)|=0

20 = |{X ⊆ A : N(X) = B}|

and the lemma follows.

It is worth mentioning that this lemma was inspired by a non-modular variant from [NR10,
Lemma 2] (see also [vRo11, Proposition 9.1]).

Theorem 4.2. σ(⊕Hitting Set/n) = σ(⊕Set Cover/n) .

Proof. Given a set system F ⊆ 2U , let G = (F , U,E) be the bipartite graph where (S, e) ∈ E if
and only if e ∈ S. Note that the number of hitting sets of F is equal to |{X ⊆ U : N(X) = F}|.
Then by Lemma 4.1, the number of hitting sets is equal to the number of independent sets of G
modulo 2. And similarly, since the lemma is symmetric with respect to the two color classes of
the bipartite graph, the number of set covers of F is also equal to the number of independent
sets of G modulo 2. Thus the problems are equivalent.

Observe that in the proof of Theorem 4.2 the same set system is used as an instance of
⊕Hitting Set/n and ⊕Set Cover/n. Hence the above directly gives the following corollary,
which we will need in the next subsection.

Corollary 4.3. For every function c = c(k), there exists a function c′ = c′(k′) such that

lim
k→∞

σ((k,c)-⊕Sparse-Hitting Set/n) ≤ lim
k→∞

σ((k,c)-⊕Sparse-Set Cover/n) .

4.2 From Set Cover to Steiner Tree and Connected Vertex Cover

In this subsection we will give reductions from Set Cover/n to Steiner Tree/t and Con-
nected Vertex Cover/k. We transfer the reductions to the parity versions ⊕Set Cover/n,
⊕tSteiner Tree/t, and ⊕tConnected Vertex Cover/k. For the reduction, we first need
an intermediate result, showing that Set Cover/(n+t), that is, Set Cover parameterized by
the sum of the size of the universe and solution size, is as hard as Set Cover/n (and similarly
for ⊕Set Cover/n and ⊕Set Cover/(n + t)). Once we have this intermediate result, the
reductions to the ⊕tSteiner Tree/t and ⊕tConnected Vertex Cover/k problems follow
more easily.

12

Theorem 4.4. limk→∞ σ(k-Set Cover/n) ≤ limk→∞ σ(k-Set Cover/(n+ t)) .

Proof. As a proof we present a reduction which for fixed α > 0 transforms an instance (F , U, t)
of k-Set Cover into an instance of k′-Set Cover, for some positive integer k′, where the size
t′ of the solution in the resulting p′-Set Cover instances is at most α|U |, without changing
the universe size.

Without loss of generality, we assume that t ≤ |U |. Consider any α > 0. Let q be the
smallest positive integer such that 1

q ≤ α. We may assume that t is divisible by q, since
otherwise we may add at most q additional elements to the universe U and singleton sets to
the family F . We form a family F ′ of all unions of exactly q sets from F , that is for each
of
(|F|
q

)
choices of q sets S1, . . . , Sq ∈ F we add to F ′ the set

⋃q
i=1 Si. Note that since q is a

constant we can create F ′ in polynomial time. We set t′ = t/q ≤ |U |/q ≤ α|U |. It is easy to see
that (F , U, t) is a YES-instance of k-Set Cover if and only if (F ′, U, t′) is a YES-instance of
qk-Set Cover.

Observe that in the proof above, because of the grouping of q sets, one solution for the
initial instance may correspond to several solutions in the resulting instance. For this reason
the counting variant of the above reduction is much more technically involved.

Theorem 4.5. For every function c = c(k), we have

lim
k→∞

σ((k,c)-⊕Sparse-Set Cover/n) ≤ lim
k′→∞

σ(k′-⊕tSet Cover/(n+ t))

The involved proof is postponed to the end of this section, but first let us look at its
consequences.

Theorem 4.6.

lim
k→∞

σ(k-Set Cover/(n+ t)) ≤ σ(Steiner Tree/t) , and

lim
k→∞

σ(k-⊕tSet Cover/(n+ t)) ≤ σ(⊕tSteiner Tree/t) .

Proof. Given an instance of Set Cover consisting of a set system (F , U) and integer i, let G′

be the graph obtained from the incidence graph of (F , U) by adding a vertex s universal to F
with a pendant vertex u, and define the terminal set to be U ∪ {u}. It is easy to see that the
number of Steiner trees with |U |+ i+ 1 edges is equal to the number of set covers of (F , U) of
size i. Hence the theorem follows.

Theorem 4.7.

lim
k→∞

σ(k-Set Cover/(n+ t)) ≤ σ(Connected Vertex Cover/t), and

lim
k→∞

σ(k-⊕tSet Cover/(n+ t)) ≤ σ(⊕tConnected Vertex Cover/t).

Proof. Given an instance (F , U, t) of Set Cover, we create an instance of Connected Ver-
tex Cover with G being obtained from the incidence graph of (F , U) by adding a vertex s
adjacent to all vertices corresponding to sets and adding pendant vertices for every element of
U ∪ {s}. Moreover let t′ = t+ |U |+ 1 in the Connected Vertex Cover instance.

It is easy to see that for every i, there exists a set cover of (F , U) of size i ≤ t if and
only if there exists a connected vertex cover of G of size at most i + |U | + 1 ≤ t′ since we can
take without loss of optimality all vertices having a pendant vertex, and then connecting these

13

vertices is equivalent to covering all elements of U with sets in F . Hence, by using an algo-
rithm for Connected Vertex Cover, we obtain an O(2σ(Connected Vertex Cover/t)t′nO(1)) =
O(2σ(Connected Vertex Cover/t)(|U |+t)nO(1)) time algorithm for p-⊕tSet Cover.

For the parity case, let us study the number of connected vertex covers of size j of G for
every j. Similarly to the previous case, note that for any connected vertex cover C, C ∩F must
be a set cover of (F , U) by the connectivity requirement. Hence we group all connected vertex
covers in G depending on which set cover in (F , U) their intersection with F is. Let cj be the
number of connected vertex covers of G of size j and si be the number of set covers of size i in
(F , U), then:

cj =

j−|U |−1∑
i=1

si

(|U |+ 1

j − i− |U | − 1

)
.

Now the number si modulo 2 can be determined in polynomial time once (c1, . . . , ci+|U |+1)
modulo 2 are computed by recovering s1 up to si in increasing order, since for i = j − |U | − 1

we have
(|U |+1
j−i−|U |−1

)
= 1.

Thus, if in time O(2σ(Connected Vertex Cover/t)t′nO(1)) we can compute the number of con-
nected vertex covers of size n modulo 2, we can compute the parity of all (c1, . . . , ci+|U |+1) and

hence the parity of si in O(2σ(Connected Vertex Cover/t)(|U |+t)nO(1)).

4.3 From Set Cover to Set Partitioning and Subset Sum

Theorem 4.8.

lim
p→∞

σ(p-Set Cover/n) ≤ lim
p→∞

σ(p-Set Partitioning/n).

Proof. Let (F , t) be an instance of p-Set Cover. Create an instance (F ′, t) of p-Set Parti-
tioning by for every S ∈ F adding all subsets of S to F ′. Clearly (F ′, t) has a set partitioning
of size at most t if and only if (F , t) has a set cover of size at most t. Since the size of the sets
in F is bounded by p, the reduction runs in polynomial time.

Theorem 4.9.

lim
k→∞

σ(k-Set Partitioning/n) ≤ σ(Subset Sum/m).

Proof. Let F ⊆ 2U be an instance of k-Set Partitioning. We iterate over all potential sizes
1 ≤ t0 ≤ n of the solution for the Set Partitioning problem.

We create an instance of Subset Sum as follows. Let the target integer t for Subset
Sum have a bit expansion consisting of three fields. First, as the most significant bits, a
field coding the value of t0, to check the cardinality of the solution C ⊆ F ; second, a field of
length log2 t0 + log2 n containing the value n, to check the total size of all sets in C; finally, a
field of length log2 t0 + n containing n ones. The paddings of length log2 t0 serve to isolate the
fields from each other. For every Si ∈ F , we create an integer ai with the same field division
as t, where the first field encodes 1, the second field encodes |Si|, and the third field contains a
one in position j if and only if uj ∈ Si. We argue that the resulting Subset Sum instance is a
YES-instance if and only if F contains a partitioning of U using exactly t0 sets.

Clearly, if C ⊆ F partitions U and |C| = t0, then the integers ai corresponding to Si ∈ C
sum to t. The first field sums to t0 by cardinality of C, the second sums to n, and in the third
field the non-zero digits are simply partitioned between the ai.

14

So let A be a collection of integers ai that sum to t. By the first field, we have |A| ≤ t0;
thus the padding of length log t0 is enough to isolate the fields, and we have |A| = t0. By the
same argument on the second field, the sum over all ai ∈ A of the number of non-zero bits in
the third field is exactly n. Now, the only way that the third field can actually contain n true
bits is if the true bits in the third field are partitioned among the ai. Thus, C = {Si | ai ∈ A}
is a set partitioning of U of cardinality exactly t0.

By looping over all 1 ≤ t0 ≤ t for the Set Partitioning instance, this solves the problem.
Note that the length of the bit string t is n+O(log n), which disappears into the asymptotics.

4.4 Proof of Theorem 4.5

As a proof we present a reduction which for fixed α > 0 transforms an instance (F ′, U ′) of (k,c)-
⊕Sparse-Set Cover into polynomially many instances of the k′-⊕tSet Cover problem, for
some positive integer k′, where the size t of the solution in the resulting k′-⊕tSet Cover
instances is at most α|U ′|.

In order to find the parity of the number of all set covers of the instance (F ′, U ′) we find the
parity of the number of set covers of a particular size. That is we iterate over all possible sizes
j = 1, . . . , |F ′| of a set cover. Let us assume that we want to find the parity of the number of
set covers of size j and for each positive integer j′ < j we know the parity of the number of set

covers of (F ′, U ′) of size j′. Let q be the smallest power of two satisfying |F
′|
q + 2 ≤ α|U ′|. We

assume that α|U ′| ≥ 3 since otherwise the instance is small and we can solve it by brute force
(recall that α is a given constant). Observe that q is upper bounded by a constant independent
of |U ′| since |F ′| ≤ c|U ′|.

We create a temporary set system (F0, U0) to ensure that the size of the set covers we are
looking for is divisible by q. Let r = j mod q. We make (F0, U0) by taking the set system
(F ′, U ′) and adding q − r new elements to the universe U0 and also q − r singleton sets of the
new elements to the family F0. Now we are looking for the parity of the number of set covers
of size j0 = j + (q − r) in (F0, U0). Observe that for each j′ < j0 we know the parity of the
number of set covers of size j′ in (F0, U0) since it is equal to the parity of set covers of (F ′, U ′)
of size j′ − (q − r) < j which we already know.

To obtain a k′-⊕tSet Cover instance we set U∗ = U0 and we form a family F∗ of all unions
of exactly q sets from F0, that is for each of

(|F0|
q

)
choices of q sets S1, . . . , Sq ∈ F0 we add to

F∗ the set
⋃q
i=1 Si (note that F∗ might be a multiset). Finally we set t∗ = j0/q which is an

integer since j + (q− r) is divisible by q. Observe that t∗ ≤ j
q + 1 ≤ α|U ′| − 1, by the definition

of q, but (F∗, U∗, t∗) might not be a proper instance of kq-⊕tSet Cover, since F∗ could be
a multiset. Note that each subset of U∗ appears in F∗ at most (2kq)q = 2kq

2
times, since F0

has no duplicates and each set in F∗ is a union of exactly q sets from F0. To overcome this
technical obstacle we make a new instance (F , U, t), where as U we take U∗ with z = 1 + kq2

elements added, U = U∗ ∪ {e1, . . . , ez}. We use elements {e1, . . . , ez−1} to make sets from F∗
different in F by taking a different subset of {e1, . . . , ez−1} for duplicates. Additionally we add
one set {e1, . . . , ez} to the family F and set t = t∗ + 1. In this way we obtain (F , U, t), that
is a proper (kq + z)-⊕tSet Cover instance and t = t∗ + 1 ≤ α|U ′|. Observe that in the final
instance we have |U | ≤ n+ q+ z and |F| ≤ (cn+ q)q + 1, which is a polynomial since k, c, q and
z are constants.

To summarize the reduction, we have taken an instance of (k,c)-⊕Sparse-Set Cover and
iterated over the size of solution. Next we made the size divisible by q by adding additional
elements to the universe and created a multiset family F∗ from which we made a set family by
differentiating identical sets with additional elements of the universe. Our goal was to decide
whether the k-⊕tSet Cover instance (F ′, U ′) (for k′ = kq + z) has odd number of set covers,

15

which means that we want to control the correspondence between the parity of the number
of solutions in each part of the construction. Observe that the only step of the construction
which has nontrivial correspondence between the number of solutions of the former and the
latter instance is the grouping step where we transform an instance (F0, U0, j0) into a multiset
instance (F∗, U∗, t∗).

Hence we assume that we know the parity of the number of set covers of size t∗ = j0/q in
(F∗, U∗) as well as the parity of the number of set covers of size j′ for each j′ < j0 in (F0, U0).
Our objective is to compute the parity of the number of set covers of size j0 in (F0, U0) in
polynomial time and for this reason we introduce a few definitions and lemmas. Recall that
each set in F∗ corresponds to a union of exactly q sets in F0 and let Γ: F∗ → 2F0 be a function
that for each set in F∗ assigns a family of exactly q sets from F0 that it was made of. Moreover
let S∗ ⊆ 2F

∗
be the family of set covers of size t∗ in (F∗, U∗) and let S0 ⊆ 2F0 be the set of set

covers of size at most j0 in (F0, U0). We construct a mapping Φ: S∗ → S0 which maps each set
cover A ∈ S∗ to a set cover A0 ∈ S0 such that A0 is exactly the set of sets from F0 used in the
t∗ unions of q sets from F0, that is Φ(A) =

⋃
X∈A Γ(X). In the following lemma we prove that

for a set cover A0 ∈ S0 the size of Φ−1(A0) depends solely on the size of A0.

Lemma 4.10. Let A0, B0 ∈ S0 such that |A0| = |B0|. Then |Φ−1(A0)| = |Φ−1(B0)|.

Proof. Let A0 = {X1, . . . , Xa} be a set from S0, where each Xi ∈ F0. Observe that for any
A ∈ S∗ we have Φ(A) = A0 if and only if

⋃a
i=1 Γ(Xi) = A. Consequently |Φ−1(A0)| is equal to

the number of set covers of size t∗ in the set system (
(
A0

q

)
, A0) and hence |Φ−1(A0)| depends

only on the size of A0.

Now we prove that for each set cover A0 ∈ S0 of size j0 an odd number of set covers from
S∗ is mapped by Φ to A0.

Lemma 4.11. For any nonnegative integers a, b such that b ≤ a the binomial coefficient
(
a
b

)
is

odd if and only if ones(b) ⊆ ones(a), where ones(x) is the set of indices containing ones in the
binary representation of x.

Proof. For a nonnegative integer x by f(x) let us denote the greatest integer i such that x! is
divisible by 2i, that is

f(x) =
∑
i≥1

⌊ x
2i
⌋

= (
∑
i≥1

x

2i
)− 1

2
· |{i ≥ 1 :

⌊ x

2i−1

⌋
is odd}|

= (
∑
i≥1

x

2i
)− |ones(x)|

2

Since
(
a
b

)
= a!

b!(a−b)! we infer that
(
a
b

)
is odd if and only if f(a) = f(b) + f(a − b), which

by the above formula is equivalent to |ones(a)| = |ones(b)| + |ones(a − b)|. However for any
nonnegative integers x, y we have ones(x+ y) ≤ ones(x) + ones(y) and moreover ones(x+ y) =
ones(x) + ones(y) if and only if there are no carry-operations when adding x to y, which is
equivalent to ones(x) ∩ ones(y) = ∅.

Therefore by setting x = b and y = a − b we infer that
(
a
b

)
is odd if and only if ones(b) ∩

ones(a− b) = ∅ which is equivalent to ones(b) ⊆ ones(a) and the lemma follows.

Lemma 4.12. Let A0 ∈ S0 such that |A0| = j0 then |Φ−1(A0)| is odd.

16

Proof. Since |Φ−1(A0)| is equal to the number of set covers of size t∗ in the set system (
(
A0

q

)
, A0)

and |A0| = j0 = t∗q we infer that |Φ−1(A0)| is equal to the number of unordered partitions of
A0 into sets of size q. Hence |Φ−1(A0)| = ∏t∗−1

i=0

(
j0−1−iq
q−1

)
. Since j0 is divisible by q and q is a

power of two using Lemma 4.11 we have |Φ−1(A0)| ≡ 1 (mod 2).

For j = 1, . . . , j0 by sj let us denote the parity of the number of set covers of (F0, U0) of size
j modulo 2. Recall that we know the value of sj for each j < j0 and we want to compute sj0
knowing also |S∗| mod 2. By Lemma 4.10 we can define dj for j = 1, . . . , j0, that is the value
of |Φ−1(A0)| mod 2 for a set A0 ∈ S0 of size j. By Lemma 4.12 we know that dj0 equals one.
Thus we have the following congruence modulo 2.

|S∗| =
∑
A0∈S0

|Φ−1(A0)| ≡
j0∑
j=1

sjdj = sj0 +

j0−1∑
j=1

sjdj .

Hence knowing |S∗| mod 2 and all values sj for j < j0 in order to compute sj0 it is enough to
compute all the values dj , what we can do in polynomial time thanks to the following lemma.

Lemma 4.13. For each j = 1, . . . , j0 we can calculate the value of dj in polynomial time.

Proof. Again we use that fact that for a set A0 ∈ S0 we have that |Φ−1(A0)| is equal to the
number set covers of size t∗ in the set system (

(
A0

q

)
, A0). Using the inclusion-exclusion principle

modulo two we obtain the following formula when |A0| = j.

|Φ−1(A0)| ≡
∑
X⊆A0

∣∣∣∣{H ⊆ (Xq
)∣∣∣|H| = t∗

}∣∣∣∣ =

j∑
i=0

(
j

i

)((i
q

)
t∗

)
,

Where the second equality follows by grouping all summands X ⊆ A0 with |X| = i for every
0 ≤ i ≤ |A0|.

Consequently by solving a polynomial of n number of instances of the k′-⊕tSet Cover
problem with universe size bounded by n+q+z and set family size bounded by (cn+q)q+1 we
verify whether the initial set system F ′ ⊆ 2U

′
has an odd number of set covers, which finishes

the proof of Theorem 4.5.

5 Summary and Open Problems

We have shown that the exponential time complexity of a number of basic problems is strongly
interconnected. Specifically, our results imply that the optimal growth rates of a a number
of problems are in fact asymptotically equal. Assuming SETH, our results imply tight lower
bounds on the growth rates for a number of search problems whose growth rates are achieved
by näıve brute force algorithms. For problems solvable by dynamic programming, we gave tight
lower bounds assuming that the optimal growth rate of Set Cover is achieved by its known
dynamic programming algorithm. Finally, we connected the two types of results by showing
that SETH implies tight lower bounds on the optimal growth rates of corresponding parity
variants. We conclude our work with some open problems.

1. Is it possible to rule out an algorithm for Set Cover with running time 2εnmO(1), ε < 1,
assuming SETH?

2. Is it possible to rule out an algorithm for Graph Coloring with running time 2εn,
ε < 1, assuming SETH? What about a lower bound for Graph Coloring under the
assumption that there does not exist a δ < 1 such that Set Cover with sets of size at
most k has a O(2δnmO(1)) time algorithm for every k?

17

3. Is it possible to rule out an algorithm that counts the number of proper c-colorings of an
input graph in time 2εn, ε < 1 assuming ⊕-SETH?

4. Assuming SETH, is it possible to rule out an algorithm with running time 2εnnO(1), ε < 1
for the satisfiability of circuits with at most cn gates of unbounded fan in, for a concrete
constant c?

5. Assuming SETH, is it possible to rule out an algorithm with running time O(cn) for
3-CNF-Sat for a concrete constant c?

18

References

[Bel62] Richard Bellman, “Dynamic programming treatment of the travelling salesman
problem,” Journal of the ACM, vol. 9, no. 1, pp. 61–63, 1962. doi: 10.1145/

321105.321111.

[BHK+07] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto, “Fourier
meets Möbius: Fast subset convolution,” in Proceedings of the 39th ACM Sym-
posium on Theory of Computing, STOC 2007, 2007, pp. 67–74. doi: 10.1145/
1250790.1250801.

[BHK09] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto, “Set partitioning via
inclusion-exclusion,” SIAM Journal on Computing, vol. 39, no. 2, pp. 546–563,
2009. doi: 10.1137/070683933.

[Cal08] Chris Calabro, “A lower bound on the size of series-parallel graphs dense in long
paths,” Electronic Colloquium on Computational Complexity (ECCC), Tech re-
port TR08-110, 2008. [Online]. Available: http://eccc.hpi- web.de/eccc-

reports/2008/TR08-110/.

[CCF+05] Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad
A. Kanj, and Ge Xia, “Tight lower bounds for certain parameterized NP-hard
problems,” Information and Computing, vol. 201, no. 2, pp. 216–231, 2005. doi:
10.1016/j.ic.2005.05.001.

[CIK+03] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan Paturi,
“The complexity of unique k-SAT: An isolation lemma for k-CNFs,” in Proceedings
of the 18th Annual IEEE Conference on Computational Complexity, CCC 2003,
2003, p. 135. doi: 10.1109/CCC.2003.1214416.

[CIP06] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi, “A duality between
clause width and clause density for SAT,” in Proceedings of the 21th Annual IEEE
Conference on Computational Complexity, CCC 2006, 2006, pp. 252–260. doi:
10.1109/CCC.2006.6.

[CIP09] ——, “The complexity of satisfiability of small depth circuits,” in Proceedings of the
4th International Workshop on Parameterized and Exact Computation, IWPEC
2009, 2009, pp. 75–85. doi: 10.1007/978-3-642-11269-0_6.

[CLR+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
Introduction to algorithms, Third. MIT Press, 2009, isbn: 978-0-262-03384-8.

[CNP+11] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M.
M. van Rooij, and Jakub Onufry Wojtaszczyk, “Solving connectivity problems
parameterized by treewidth in single exponential time,” in Proceedings of the 51st
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2011, 2011,
pp. 150–159. doi: 10.1109/FOCS.2011.23.

[DHM+12] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlén,
“Exponential time complexity of the permanent and the Tutte polynomial,” ACM
Transactions on Algorithms, 2012+, To appear.

[FGK09] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch, “A measure & conquer
approach for the analysis of exact algorithms,” Journal of the ACM, vol. 56, no.
5, 2009. doi: 10.1145/1552285.1552286.

19

http://dx.doi.org/10.1145/321105.321111
http://dx.doi.org/10.1145/321105.321111
http://dx.doi.org/10.1145/1250790.1250801
http://dx.doi.org/10.1145/1250790.1250801
http://dx.doi.org/10.1137/070683933
http://eccc.hpi-web.de/eccc-reports/2008/TR08-110/
http://eccc.hpi-web.de/eccc-reports/2008/TR08-110/
http://dx.doi.org/10.1016/j.ic.2005.05.001
http://dx.doi.org/10.1109/CCC.2003.1214416
http://dx.doi.org/10.1109/CCC.2006.6
http://dx.doi.org/10.1007/978-3-642-11269-0_6
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1145/1552285.1552286

[FKW04] Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger, “Exact (exponential)
algorithms for the dominating set problem,” in Proceedings of the 30th Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science, WG 2004,
2004, pp. 245–256. doi: 10.1007/978-3-540-30559-0_21.

[HK62] Michael Held and Richard M. Karp, “A dynamic programming approach to se-
quencing problems,” Journal of the Society for Industrial and Applied Mathemat-
ics, vol. 10, no. 1, pp. 196–210, 1962. doi: 10.1145/800029.808532.

[IP01] Russell Impagliazzo and Ramamohan Paturi, “On the complexity of k-SAT,” Jour-
nal of Computer and System Sciences, vol. 62, no. 2, pp. 367–375, 2001. doi:
10.1006/jcss.2000.1727.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane, “Which problems have
strongly exponential complexity?,” Journal of Computer and System Sciences, vol.
63, no. 4, pp. 512–530, 2001. doi: 10.1006/jcss.2001.1774.

[KLR09] Joachim Kneis, Alexander Langer, and Peter Rossmanith, “A fine-grained analysis
of a simple independent set algorithm,” in Proceedings of the IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS2009, 2009, pp. 287–298. doi: 10.4230/LIPIcs.FSTTCS.2009.2326.

[LMS11] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh, “Slightly superexponential
parameterized problems,” in Proceedings of the 22nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2011, 2011, pp. 760–776. [Online]. Available:
http://www.siam.org/proceedings/soda/2011/SODA11_059_lokshtanovd.

pdf.

[Mar07] Dániel Marx, “On the optimality of planar and geometric approximation schemes,”
in Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2007, 2007, pp. 338–348. doi: 10.1109/FOCS.2007.50.

[Ned09] Jesper Nederlof, “Fast polynomial-space algorithms using Möbius inversion: Im-
proving on Steiner tree and related problems,” in Proceedings of the 36th Inter-
nationcal Colloquium on Automata, Languages and Programming, ICALP 2009,
2009, pp. 713–725. doi: 10.1007/978-3-642-02927-1_59.

[NR10] Jesper Nederlof and Johan M. M. van Rooij, “Inclusion/exclusion branching for
partial dominating set and set splitting,” in Proceedings of the 5th International
Symposium on Parameterized and Exact Computation, IPEC 2010, 2010, pp. 204–
215. doi: 10.1007/978-3-642-17493-3_20.

[RND09] Johan M. M. van Rooij, Jesper Nederlof, and Thomas C. van Dijk, “Inclusion/ex-
clusion meets measure and conquer,” in Proceedings of the 17th Annual European
Symposium on Algorithms, ESA 2009, 2009, pp. 554–565. doi: 10.1007/978-3-
642-04128-0_50.

[Rob86] J. M. Robson, “Algorithms for maximum independent sets,” Journal of Algorithms,
vol. 7, no. 3, pp. 425–440, 1986. doi: 10.1016/0196-6774(86)90032-5.

[Sch05] Rainer Schuler, “An algorithm for the satisfiability problem of formulas in con-
junctive normal form,” Journal of Algorithms, vol. 54, no. 1, pp. 40–44, 2005. doi:
10.1016/j.jalgor.2004.04.012.

[SS11] Rahul Santhanam and Srikanth Srinivasan, “On the limits of sparsification,” Elec-
tronic Colloquium on Computational Complexity (ECCC), Tech report TR11-131,
2011. [Online]. Available: http://eccc.hpi-web.de/eccc-reports/2011/TR11-
131/.

20

http://dx.doi.org/10.1007/978-3-540-30559-0_21
http://dx.doi.org/10.1145/800029.808532
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2326
http://www.siam.org/proceedings/soda/2011/SODA11_059_lokshtanovd.pdf
http://www.siam.org/proceedings/soda/2011/SODA11_059_lokshtanovd.pdf
http://dx.doi.org/10.1109/FOCS.2007.50
http://dx.doi.org/10.1007/978-3-642-02927-1_59
http://dx.doi.org/10.1007/978-3-642-17493-3_20
http://dx.doi.org/10.1007/978-3-642-04128-0_50
http://dx.doi.org/10.1007/978-3-642-04128-0_50
http://dx.doi.org/10.1016/0196-6774(86)90032-5
http://dx.doi.org/10.1016/j.jalgor.2004.04.012
http://eccc.hpi-web.de/eccc-reports/2011/TR11-131/
http://eccc.hpi-web.de/eccc-reports/2011/TR11-131/

[Tra08] Patrick Traxler, “The time complexity of constraint satisfaction,” in Proceedings
of the 3rd International Workshop on Parameterized and Exact Computation, IW-
PEC 2008, 2008, pp. 190–201. doi: 10.1007/978-3-540-79723-4_18.

[Val77] Leslie G. Valiant, “Graph-theoretic arguments in low-level complexity,” in Pro-
ceedings of the 6th Symposium on Mathematical Foundations of Computer Science,
MFCS 1977, 1977, pp. 162–176. doi: 10.1007/3-540-08353-7_135.

[Vio09] Emanuele Viola, “On the power of small-depth computation,” Foundations and
Trends in Theoretical Computer Science, vol. 5, no. 1, pp. 1–72, 2009. doi: 10.
1561/0400000033.

[vRo11] Johan M. M. van Rooij, “Exact exponential-time algorithms for domination prob-
lems in graphs,” PhD thesis, Utrecht University, Jun. 2011.

[Wil11] Ryan Williams, “Non-uniform ACC circuit lower bounds,” in Proceedings of the
26th Annual IEEE Conference on Computational Complexity, CCC 2011, 2011,
pp. 115–125. doi: 10.1109/CCC.2011.36.

21

http://dx.doi.org/10.1007/978-3-540-79723-4_18
http://dx.doi.org/10.1007/3-540-08353-7_135
http://dx.doi.org/10.1561/0400000033
http://dx.doi.org/10.1561/0400000033
http://dx.doi.org/10.1109/CCC.2011.36

A Problem definitions

⊕Bipartite Independent Set

Input A bipartite graph (A ∪B,E) where |A| = n, |B| = m.

Question Is the number of independent sets odd?

k-CNF-Sat

Input A CNF formula consisting of m clauses of size at most k and on n variables.

Question Is there a satisfying assignment?

⊕CNF-Sat

Input A CNF formula consisting of m clauses of size at most k and on n variables.

Question Is the number of satisfying assignments odd?

Connected Vertex Cover

Input An integer t and a graph G = (V,E).

Question Is there a subset X ⊆ V such that |X| ≤ t, X ∩ e 6= ∅ for every e ∈ E and G[X] is
connected?

⊕tConnected Vertex Cover

Input An integer t and a graph G = (V,E).

Question Is the number of subsets X ⊆ V such that |X| = t, X ∩ e 6= ∅ for every e ∈ E and
G[X] is connected, odd?

Hitting Set

Input An integer t and a set system F ⊆ 2U where |F| = m, |U | = n.

Question Is there a subset H ⊆ U with |H| ≤ t such that H ∩ S 6= ∅ for every S ∈ F?

⊕Hitting Set

Input A set system F ⊆ 2U where |F| = m, |U | = n.

Question Is the number of H ⊆ U such that H ∩ S 6= ∅ for every S ∈ F odd?

k-NAE-Sat

Input A CNF formula consisting of m clauses of size at most k and on n variables.

Question Is there an assignment so that each clause contains literal set to true and a literal
set to false?

k-Set Cover

Input An integer t and a set system F ⊆ 2U where |F| = m, |U | = n and for every S ∈ F ,
|S| ≤ k.

Question Is there a subset C ⊆ F with |C| ≤ t such that
⋃
S∈C S = U?

22

k-⊕tSet Cover

Input An integer t and a set system F ⊆ 2U where |F| = m, |U | = n, for every S ∈ F , |S| ≤ k.

Question Is the number of C ⊆ F with |C| = t such that
⋃
S∈C S = U odd?

k-Set Partitioning

Input An integer t and a set system F ⊆ 2U where |F| = m, |U | = n, for every S ∈ F , |S| ≤ k.

Question Is there a subset C ⊆ F with |C| = t such that
⋃
S∈C S = U and for every S, S′ ∈ F

with S 6= S′, S ∩ S′ = ∅?

(k,c)-Sparse-CNF-Sat

Input A CNF formula consisting of m clauses of size at most k and on n variables, where
m ≤ cn.

Question Is there a satisfying assignment?

(k,c)-⊕Sparse-CNF-Sat

Input A CNF formula consisting of m clauses of size at most k and on n variables, where
m ≤ cn.

Question Is the number of satisfying assignments odd?

(k,c)-Sparse-Hitting Set

Input An integer t and a set system F ⊆ 2U where |F| = m ≤ cn, |U | = n and for every
S ∈ F , |S| ≤ k.

Question Is there a subset H ⊆ U with |H| ≤ t such that H ∩ S 6= ∅ for every S ∈ F?

(k,c)-⊕Sparse-Hitting Set

Input A set system F ⊆ 2U where |F| = m ≤ cn, |U | = n and for every S ∈ F , |S| ≤ k.

Question Is the number of subsets H ⊆ U such that H ∩ S 6= ∅ for every S ∈ F , odd?

(k,c)-Sparse-Set Cover

Input An integer t and a set system F ⊆ 2U where |F| = m, |U | = n, for every S ∈ F , |S| ≤ k
and m ≤ cn.

Question Is there a subset C ⊆ F , such that |C| ≤ t and
⋃
S∈C S = U?

(k,c)-⊕Sparse-Set Cover

Input A set system F ⊆ 2U where |F| = m, |U | = n, for every S ∈ F , |S| ≤ k and m ≤ cn.

Question Is the number of C ⊆ F with
⋃
S∈C S = U odd?

k-Set Splitting

Input A set system F ⊆ 2U where |F| = m, |U | = n, for every S ∈ F , |S| ≤ k.

Question Is there a subset X ⊆ U such that, for every S ∈ F , neither S ⊆ X nor S ⊆ (U−X)?

Steiner Tree

23

Input An integer t and a graph G = (V,E) with terminals T ⊆ V .

Question Is there a subset T ⊆ X ⊆ V with |X| ≤ t and G[X] connected?

⊕tSteiner Tree

Input An integer t and a graph G = (V,E) with terminals T ⊆ V .

Question Is the number of subsets T ⊆ X ⊆ V with |X| = t and G[X] connected, odd?

Subset Sum

Input Integers a1, . . . , an ∈ Z+ and a target integer t on m bits.

Question Is there a subset X ⊆ {1, . . . , n} with
∑

i∈X ai = t?

c-VSP-Circuit-SAT

Input A cn-size Valiant series-parallel circuit over n variables.

Question Is there a satisfying assignment?

24

	1 Introduction
	2 Preliminaries and Notation
	3 On Improving Branching Algorithms
	3.1 Previous results for CNF-SAT
	3.2 From CNF-SAT to Hitting Set
	3.3 From Hitting Set via Set Splitting to CNF-SAT
	3.4 From Parity CNF-SAT to Parity Hitting Set
	3.5 Satisfiability for Series-Parallel Circuits

	4 On Improving Dynamic Programming Based Algorithms
	4.1 The flip: Parity Hitting Set equals Parity Set Cover
	4.2 From Set Cover to Steiner Tree and Connected Vertex Cover
	4.3 From Set Cover to Set Partitioning and Subset Sum
	4.4 Proof of Theorem ??

	5 Summary and Open Problems
	A Problem definitions

