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Abstract

This supplement provides a brief introduction to the field offixed-parameter tractability
and parameterized complexity. Some basic notions are explained and some related results are
presented, with a focus on problems arising in the field of computational social choice.

1 Fixed-Parameter Tractability and Parameterized Complexity

The study of fixed-parameter tractability and parameterized complexity has emerged as a new field
within computational complexity theory in the late 1980s and the early 1990s. Since the early
pioneering work of Downey, Fellows, and other researchers this area has established plenty of
results, notions, and methods, and it provides a useful framework for dealing in practice with
problems considered intractable by classical complexity theory. This supplement gives only a
rough sketch of some basic notions and techniques within parameterized complexity theory; for
a deeper and more comprehensive treatise, the textbooks by Downey and Fellows [DF99], Flum
and Grohe [FG06], and Niedermeier [Nie06] and the survey by Buss and Islam [BI08] are highly
recommendable.

Let P and NP, respectively, denote the classical (worst-case) complexity classesdeterministic
polynomial timeandnondeterministic polynomial time. Given any two decision problems,A andB,
we sayA polynomial-time many-one reduces to B(denotedA

�p
m B) if there is a polynomial-time

computable functionf such that, for each inputx, x � A if and only if f �x� � B. A setB is said to
be NP-hard if for each NP setA, A

�p
m B. If B � NP is NP-hard thenB is said to be NP-complete.

�
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Traditionally, NP-hardness is used to formally capture thenotion of intractability of problems
in classical complexity theory (see, e.g., [Pap94, Rot05] for an introduction to computational
complexity and, more specifically, Garey and Johnson [GJ79]for the theory of NP-completeness).

Let us consider three examples of standard NP-complete problems: INDEPENDENT SET,
DOMINATING SET, and SATISFIABILITY . The INDEPENDENT SET problem asks, given an
undirected, simple graphG � �V�E� and a positive integerk, does there exist an independent set
of size at leastk in G, i.e., does there exist a subsetI

�
V such that�I � � k and no two vertices inI

are adjacent? The problem DOMINATING SET asks, given an undirected, simple graphG � �V�E�
and a positive integerk, does there exist a dominating set of size at mostk in G, i.e., does there exist
a subsetD

�
V such that�D � � k and every vertex inV either belongs toD or is adjacent to some

vertex inD? Independent sets and dominating sets can be illustrated asthe result of a database
query. Consider a database that lists the top 100 math books and the corresponding authors, and
consider a graphG whose vertices are these authors, where any two authors are connected by an
edge if and only if they have coauthored some of these books. Every subset of the authors such
that no two of them have jointly written a book so far is an independent set ofG. On the other
hand, every subsetD of the authors such that each author not inD has written at least one joint
book with one of the authors inD is a dominating set. Graph-theoretic notions such as independent
sets and dominating sets arise in many application areas. For example, dominating set is a central
notion in computer networks or communication networks (see, e.g., Riege and Rothe [RR06] for
more details). Finally, the SATISFIABILITY problem (SAT, for short) from propositional logic asks,
given a boolean formulaϕ , is ϕ satisfiable, i.e., does there exist an assignment of truth values toϕ ’s
variables that makesϕ true? As a simple example we consider the formulasϕ1 � �x1� x2�� �x1� x2�
andϕ2 � x1 � x1. Apparently, ϕ1 is satisfiable by setting, say,x1 to true andx2 to false, whereasϕ2

is not satisfiable at all, i.e., there is no assignment of truth values that makesϕ2 true.
INDEPENDENT SET, DOMINATING SET, and SAT are well known to be NP-complete [GJ79],

and thus they cannot be solved in polynomial time (unless P� NP). Although NP-completeness
is often taken as evidence that the problem considered is intractable, in practical applications
we are usually interested in solving it for certain small parameters. Parameterized complexity
theory measures a problem’s complexity based on different parts of the input, whereas traditional
complexity theory defines complexity measures only in termsof input size. In this sense,
parameterized complexity might be seen as some kind of “higher-dimensional” complexity theory.
In particular, fixed-parameter tractability takes advantage of the fact that problem instances
constitute more than simply strings of certain sizes, but rather have a structure and contain
parameters that represent diverse aspects of the problem athand. For fixed-parameter tractability
to be a reasonable concept, it is crucial that the chosen parameter is expected to be small. In this
context, “parameter” stands for an intrinsic value rather than for a value used for getting control
over an algorithm’s behavior as is common in other disciplines, such as programming. For example,
let us look at the complexity of database queries. Evaluating even basic conjunctive queries is NP-
complete when measuring the complexity based on the size of the database plus the size of the query.
However, since query sizes tend to be significantly smaller than the size of the entire database, the
query size is a natural parametrization for the database query evaluation problem. Note that this
parameter cannot be controlled explicitly, as it is determined by the query itself.

Formally, a parameterized problem (over some alphabetΣ) is a pair �Π �κ �, whereκ : Σ� � 	
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is a polynomial-time computable parametrization andΠ � Σ� is a set of strings overΣ. However,
if the parameterk � κ �x� is clear from context, we will denote the parameterized problem �Π �κ �
simply byΠ. For example, a natural parametrization for SAT is defined by

κ �ϕ � �
�

number of variables ofϕ if ϕ encodes a boolean formula with at least one variable
1 otherwise,

and though the resulting parameterized version of SAT is�SAT�κ �, we will simply denote this
problem by SAT when the parameterk � κ �ϕ � is clear.

In parameterized complexity theory, a problem parameterized by some valuek is said to be
fixed-parameter tractable(or to belong to the class FPT) if for each fixed value ofk there is an
algorithm that solves this problem for instances of sizen in time f �k� � nO�1�, where f is some
computable function. In other words, the seemingly unavoidable combinatorial explosion in NP-
hard problems is then confined to the parameter. For example,the parameterized version of SAT
defined above is fixed-parameter tractable via the obvious brute-force algorithm that decides the
satisfiability of a given boolean formula withk variables, encoded as a string of sizem, in time
O�2k �m�. Accordingly, by means of parameterizing the SAT problem, it can be solved efficiently,
assuming that the chosen parameterk (the number of variables of the given boolean formula) can
be expected to be small.

Let �Π �κ � and �Π� �κ � � be two given parameterized problems. Aparameterized reductionfrom
�Π �κ � to �Π� �κ � � is a mapping that transforms any problem instance�x�k� in time f �k� � �x�O�1�
(where f is a computable function) into a problem instance�x� �k� � such that (a)�x�k� is a yes-
instance of�Π �κ � if and only if �x� �k� � is a yes-instance of�Π� �κ � �, and (b)k� � κ � �x� � depends only
onk � κ �x� but not on�x�. For notational convencience, whenever we speak of a reduction between
two parameterized problems we mean a parameterized reduction, and whenever we we speak of a
reduction between two classical decision problems we mean a

�p
m-reduction.

The theory of fixed-parameter intractability deals with those problems for which no FPT
algorithms have been discovered yet, and thus might be hard to solve even if the chosen parameter
is a fixed small constant. The W-hierarchy has been introduced to classify these problems according
to their fixed-parameter hardness. There are two main approaches that can be taken to define the
W-hierarchy and its classes. The original definition, proposed by Downey and Fellows [DF99],
characterizes fixed-parameter intractable problems in terms of weighted satisfiability problems
on classes of circuits. More recently, Flum et al. [CF03, CFG03] defined the classes W�t �
by using nondeterministic algorithms running on restricted random-access machines. However,
both definitions are technically very complex and beyond thescope of this supplement. For
a more detailed definition of the entire W-hierarchy and of W�2� in particular, we refer to
[DF99, FG06, Nie06] and the survey by Buss and Islam [BI08]. Note that if a problemΠ belongs
to P then the parameterized problem�Π �κ � is in FPT for every parametrizationκ . Note also that

FPT
�

W �1� � W �2� � W �3� � � � � �
Natural parametrizations for INDEPENDENT SET and DOMINATING SET are the positive

integersk that are given as the second component of the instance in the problem definitions
as bounds on the size of, respectively, an independent set and a dominating set. It is
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widely believed that neither of the corresponding parameterized versions of INDEPENDENT SET

and DOMINATING SET is fixed-parameter tractable (see, e.g., [DF99, FG06]). Define the
(parameterized) problem INDEPENDENT DOMINATING SET (with parameterk) as follows: Given
an undirected, simple graphG � �V�E� and a positive integerk, does there exist an independent
dominating set of sizek? Downey and Fellows [DF99] proved that both DOMINATING SET and
INDEPENDENT DOMINATING SET are complete for the parameterized complexity class W�2�,1
which is widely viewed as strong evidence that these problems are not fixed-parameter tractable.
The INDEPENDENTSET problem with the above-mentioned parametrization is in W�1�.

Regarding the evaluation of database queries, denoting theinput size (i.e., the size of the
database) byn and the parameter (i.e., the size of the query) byk, the conjunctive query evaluation
problem can be solved in timeO�nk�, which is still prohibitive even for small values ofk (unless only
extremely short queries, such as queries of size two or three, were allowed).2 The conjunctive query
evaluation problem is suspected to be not fixed-parameter tractable, as it is proven to be complete
for W �1� (see Flum and Grohe [FG06]). Nonetheless, the fixed-parameter intractability of the query
evaluation problem is a strong result, since it shows that the evaluation of database queries is hard
even for quite small queries.

2 FPT Results for Kemeny Elections

2.1 Kemeny Elections

Voting systems have been intensely studied within computational social choice, an interesting field
currently emerging at the interface of computer science andsocial choice theory. While voting was
previously investigated in such areas as political science, economics, operations research, and social
choice theory, a wide range of applications in computer science has been found recently. To give
just a few examples, voting can play a central role in planning [ER93], similarity search [FKS03],
in the design of recommender systems [GMHS99] or ranking algorithms [DKNS01], and in other
fields that require methods for preference aggregation and collective decision-making to be applied
in, e.g., multiagent systems within distributed artificialintelligence.

For example, Dwork et al. [DKNS01] designed a ranking algorithm with the purpose of
lessening the spam in meta-search web-page rankings. In this scenario, web pages are viewed
as candidates (or alternatives) and search engines are viewed as voters. Each voter provides a linear
ranking of the candidates (with respect to some search query). Voting systems can then be used to
aggregate the voters’ individual rankings to obtain a “consensus ranking” of a meta-search engine
that is as “close” as possible to the given individual rankings. The voting system used by Dwork
et al. [DKNS01] for this purpose is Kemeny’s voting system [Kem59, KS60], for this is the unique
voting system that is “neutral, consistent, and Condorcet”(see [DKNS01, HSV05]). However, even
determining the winners of a given Kemeny election is a difficult computational task (as will be

1Completeness and hardness of a problem for a parameterized complexity class such as W�2� is defined with respect
to parameterized reductions.

2“Prohibitive” here refers to a practical point of view. Of course, technically speaking,O�nk� is polynomial time
wheneverk is a fixed constant.
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explained in more detail below), which is why Dwork et al. [DKNS01] designed a heuristic called
“local Kemenization” on which their ranking algorithm is based.

An election E� �C�V � is given by a setC of candidates and a setV of voters. A vote is typically
input as a preference list over the candidates inC, i.e., as a linear ordering (or a permutation)
of the candidates.3 Although Kemeny in his original paper [Kem59] also allowed ties to occur in
individual preference rankings, there is no consensus in the literature about this question. For clarity
and notational convenience, we will use the term “permutation” to indicate that ties are not allowed,
and we will use the term “preference ranking” when ties are allowed.

An election system(equivalently, avoting system) E is a rule that tells us how to determine the
winners of an election. Formally, an election system is a mapping from electionsE � �C�V � to
subsets ofC. In this section, we introduce Kemeny’s election system. Later on in Section 3, we are
concerned with the election systems by Condorcet, Dodgson,Young, and Copeland as well as the
plurality-rule election system.

Kemeny’s system, with ties in individual preference rankings explicitly allowed [Kem59,
KS60], works as follows. LetE � �C�V � be a given election. To define “closeness” between any
two preference rankingsr ands onC, the following distance measure is used:

dist�r�s� � ∑�
c�d�

Dr�s�c�d� �

where the sum is taken over all unordered pairs�c�d� of candidates inC and

Dr�s�c�d� �

����
���

0 if r andsagree onc andd
1 if one ofr andsprefersc to d or d to c and

the other one is indifferent with respect toc andd
2 if r andsstrictly disagree onc andd.

TheKemeny scoreof a given preference rankingr onC is defined asKScoreE �r � � ∑v	V dist�r�v�.
For each candidatec � C, defineKemenyScoreE �c� � minr KScoreE �r �, where the minimum is
taken over all preference rankingsr on C such that no candidate is ranked higher thanc in r. A
preference rankings on C such thatKScoreE �s� is minimum is said to be aKemeny consensus of
E, and aKemeny winner of Eis every candidate that is ranked on top of a Kemeny consensusof E.
Let KemenyScoreE denote the Kemeny score of a Kemeny consensus ofE. Note that a Kemeny
consensus ofE � �C�V � is not necessarily an element ofV.

The decision problem KEMENY SCORE is defined as follows: Given an electionE � �C�V � and
a positive integerk, is it true thatKemenyScoreE

�
k? The decision problem KEMENY WINNER is

defined as follows: Given an electionE � �C�V � and a distinguished candidatec � C, does there
exist a Kemeny consensus ofE in which no candidate is ranked higher thanc (i.e., is it true that
KemenyScoreE �c� �

KemenyScoreE �d� for eachd � C)?

Example 2.1 Consider the election E� �C�V � with three candidates and four voters that is given
by candidate set C� �b�c�d� and voter set V� �v1 �v2 �v3 �v4�, where the preference rankings of

3By “linear ordering” we here mean a tie-free (i.e., strict) linear ordering.
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the voters are
v1 : b � c � d
v2 : c � b � d
v3 : b � c � d
v4 : b � c � d

Note that in this case the rankings of v1 and v4 are identical, so V can also be seen as a multiset of
votes.

To compute the Kemeny consensus of E and to determine E’s Kemeny winners, we have to find
the minimum KScoreE �r �, where the minimum is taken over the13 possible preference rankings r
on C (with ties allowed). Table 1 shows how to obtain the valueKScoreE �r � for each such r.

rankingr dist�r�v1� � dist�r�v2� � dist�r�v3� � dist�r�v4� � KScoreE �r �
b � c � d 2 � 2 � 3 � 2 � 9
b � c � d 0 � 2 � 1 � 0 � 3
b � c � d 2 � 4 � 1 � 2 � 9
b � c � d 1 � 3 � 1 � 1 � 6
b � d � c 4 � 4 � 3 � 4 � 15
b � d � c 3 � 5 � 2 � 3 � 13
c � b � d 2 � 0 � 3 � 2 � 7
c � b � d 1 � 1 � 2 � 1 � 5
c � d � b 4 � 2 � 5 � 4 � 15
c � d � b 3 � 1 � 4 � 3 � 11
d � b � c 4 � 4 � 5 � 4 � 17
d � b � c 5 � 5 � 4 � 5 � 19
d � c � b 4 � 3 � 6 � 4 � 17

Table 1: DeterminingKScoreE �r � for each preference rankingr onC

For example, the first row of Table 1 is obtained as follows:

KScoreE �b � c � d� � ∑
vi 	V

dist�b � c � d�vi �

� ∑
vi 	V

�Db�c�d�vi �b�c� � Db�c�d�vi �b�d� � Db�c�d�vi �c�d��

� �0� 1� 1� � �1� 0� 1� � �1� 1� 1� � �0� 1� 1�
� 2� 2� 3� 2 � 9�

Obviously, KScoreE �b � c � d� � 3 is the minimum value, so b� c � d is the Kemeny consensus,
and since both b and c are the most preferred candidates in this Kemeny consensus, they both are
Kemeny winners of E. In general, a Kemeny consensus need not be unique and need not be an
element of V (which both happens to be the case in this example).

Bartholdi, Tovey, and Trick [BTT89b] proved that KEMENY SCORE is NP-complete and
that KEMENY WINNER is NP-hard. Hemaspaandra, Spakowski, and Vogel [HSV05] precisely
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pinpointed the complexity of the latter problem by showing it complete for the complexity class
PNP�� , the class of sets solvable via a polynomial-time algorithmwith parallel access to an NP oracle.
Note that these complexity results hold regardless of whether or not ties are allowed in individual
preference rankings (see [HSV05]).

2.2 Fixed-Parameter Tractability for Computing Kemeny Scores

Betzler et al. [BFG�08] studied the problem of computing Kemeny scores from the point of view of
parameterized complexity. In contrast with the above-mentioned NP-hardness results, they showed
that computing a Kemeny score is fixed-parameter tractable.Again, their results refer to both cases,
with and without ties allowed in individual preference rankings.

For simplicity, we focus on the case in which ties are not allowed. So, instead of preference
rankings, we now consider permutations of the candidate setC. Then, for any two permutationsρ
andσ on C, the distance measure is defined asdist�ρ �σ � � ∑�

c�d� KTρ �σ �c�d�, where the sum is
again taken over all unordered pairs�c�d� of candidates inC and the so-calledKendall-Tau distance
(a.k.a. the number of inversions between two permutations)is defined asKTρ �σ �c�d� � 0 if ρ and
σ rank c andd in the same order, andKTρ �σ �c�d� � 1 otherwise. All other notions are defined
analogously with the notions defined in Section 2.1.

Throughout this paper, for all electionsE � �C�V �, m� �C � denotes the number of candidates
andn � �V � denotes the number of voters. To highlight the meaning of “parameter” in the context
of parameterized complexity as opposed to its traditional meaning in other disciplines such as
mathematical programming, we consider two parametrizations below: the numberm of candidates
and the maximum Kendall-Tau distanceδ (to be defined below) between any two votes in the
given election. While the numbermof candidates in a given election is immediately clear from the
problem instance,δ is “intrinsic” to the election. However, recall that it is enough that a function
κ : Σ� � 	 is polynomial-time computable for it to be a parametrization in our sense. Indeed,
note that the Kendall-Tau distance can be computed in timeO�mlogm� by a divide-and-conquer
algorithm.

2.2.1 First Parametrization: Number of Candidates

Betzler et al. [BFG�08] proved the following result, which says that when the number of candidates
is a fixed constant, Kemeny scores can be computed in polynomial time. Note that in most (though
not all) scenarios involving elections, assuming that the number of candidates is bounded by a small
constant is a reasonable assumption;4 it thus makes sense to consider the parameterized complexity
of computing Kemeny scores with the number of candidates as the parameter.

Theorem 2.2 ([BFG�08]) KEMENY SCOREcan be solved in time O�2m �m2 �n�.
Let us sketch the proof of Theorem 2.2. Given an electionE � �C�V � and a positive integerk

as input, the algorithm works as follows. For each subsetB
�

C, the Kemeny score of the election

4An exception is the scenario given in Section 2.1, where web pages are viewed as candidates and search engines are
viewed as voters. Clearly, in this scenario it is more reasonable to assume that the number of candidates is huge, whereas
the number of voters is small.
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EB � �B�VB�, whereVB denotes the restriction of the voter setV to the candidates inB, is to be
computed recursively. The recurrence used for a given subset B is to consider every subsetB� �c�
of B with one candidate deleted. For eachB

�
C and for eachc � B, let πB� �c� be a Kemeny

consensus of election�B� �c� �VB��c� �. Let πB be the permutation obtained fromπB� �c� by putting
c in top position. ComputeK � minB

�
CKScoreEB �πB�, where the minimum is taken over all subsets

B of C. Output “yes” ifK
�

k, and output “no” otherwise.
For the proof of correctness of this algorithm, we refer to [BFG�08].

2.2.2 Second Parametrization: Maximum Kendall-Tau Distance

Now choose the parameterδ � maxu�v	V dist�u�v�, the maximum Kendall-Tau distance between any
two votes in a given electionE � �C�V �. Betzler et al. [BFG�08] designed a dynamic programming
fixed-parameter algorithm for this parametrization. Whenδ is a fixed constant, their algorithm runs
in polynomial time, in the technical sense of the definition of polynomial time. On the other hand, it
should be noted that already for the rather small value ofδ � 4, which is far from being unrealistic
in many settings, the running time of their algorithm amounts to 49 816 166 400�a �m �n, where the
constanta is due to theO notation and 49 816 166 400� �3 �4� 1�! �4 � log4. And forδ � 5, we
even have�3 �5� 1�! �5 � log5 � 242 808 976 650 240.

Theorem 2.3 ([BFG�08]) KEMENY SCORE can be solved in time O��3δ � 1�! � δ � logδ � m � n�,
whereδ is the maximum Kendall-Tau distance between any two votes inthe given election.

Their algorithm uses the following notation. LetE � �C�V � be a given election, and letπ be
any given permutation of the candidate setC. For eachc � C, theposition of c inπ is the number
of candidates ranked higher thanc in π. For example, the top candidate inπ has position 0 and
the bottom candidate inπ has positionm� 1. A block of size s with start position p, denoted by
blocks�p�, is the set of candidates whose position inπ is betweenp and p� s� 1 for at least one
π � V. Let block�p� � blockδ �1�p�.

Let us roughly sketch the proof idea for Theorem 2.3. Given anelectionE � �C�V � and a
positive integerk as input, the fixed-parameter algorithm is based on decomposing blocks of size
δ � 1 for computing the Kemeny score of the given election. Consider block�p�. Every candidate
c �� block�p� has a position that is either less thanp for each voter inV or greater thanp� δ � 1
for each voter inV. Moreover, there exists a Kemeny consensus ofE in which c’s position is in a
certain range that depends onδ . Thus, the algorithm proceeds by iterating from left to right over the
given permutations inV, where it stores the Kemeny scores for all “partial orders” of the candidates
in some block of sizeδ � 1. Candidates that occur left of this block may be ignored.

In some more detail, the algorithm considers in each iteration some block of sizeδ � 1. Initially,
it considers all possible orders of the candidates in block�0� and it stores in a table the Kemeny
scores of all such orders with respect to the subelection�block�0� �Vblock�0� �, whereVblock�0� denotes
the restriction of the voter setV to the candidates in block�0�. In theith iteration,i � 1, the algorithm
considers block�i � and computes the Kemeny scores of all orders of the candidates in block�i � by
looking up the table entries for block�i � 1�. The size of the table isO��3δ � 1�! �m�. Finally, the
Kemeny score ofE is the minimum of the entries for block�m� δ � 1�.

For the formal description of the algorithm and the proof of correctness, we refer to [BFG�08].
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3 A Short Survey of Further FPT and Parameterized Complexity
Results in Computational Social Choice

In this section we survey some further FPT and parameterizedcomplexity results for problems
arising in computational social choice. As early as in 1989,Bartholdi, Tovey, and Trick [BTT89b]
studied NP-hard election problems for a bounded number of candidates or a bounded number
of voters, and they obtained efficient fixed-parameter algorithm results for such cases. Within
computational social choice, this approach of designing efficient fixed-parameter algorithms for
hard problems was pursued in many papers, for example with respect to hard winner problems (see
Section 2.2 and [BFG�08, BGN08, RSV03]), with respect to hard problems related toprocedural
control [FHHR07, FHHR08, BU08], and with respect to hard problems related to bribery [FHH06]
and lobbying [CFRS07]. In the remainder of this section, we are concerned with some of these
results.

3.1 FPT Results and Parameterized Complexity for Determining Dodgson and
Young Winners

As mentioned in Section 2.1, one of the useful properties of Kemeny’s election system is that it
respects the notion of a Condorcet winner [Con85]. A Condorcet winner is a candidate that defeats
every other candidate in head-to-head comparison by a strict majority of votes. It is well known that
Condorcet winners do not always exist, but are unique when they exist. An election systemE is said
to have the Condorcet property if whenever a Condorcet winner exists, he or she is also a winner
of E . Besides the Kemeny system, there are many other election systems that have the Condorcet
property (see, e.g., Fishburn [Fis77]), including the systems proposed by Dodgson [Dod76] (who
may be better known under his pen name, Lewis Carroll, the author of “Alice in Wonderland” and
other beautiful children’s books) and Young [You77].

Dodgson’s system works as follows. Every candidatec in a given election is assigned a score:
the smallest number of sequential swaps of adjacent candidates in the voters’ preferences that are
needed to makec a Condorcet winner, where swaps are counted separately for each vote and
within each vote. Every candidate with a minimum Dodgson score wins. Clearly, a candidate
with Dodgson score zero already is the Condorcet winner, as no swap has to be performed. Note
that, unlike Condorcet winners, Dodgson winners always exist but are not necessarily unique.

The decision problem DODGSONSCORE is defined as follows: Given an electionE � �C�V �, a
designated candidatec � C, and a positive integerk, is it true thatc’s Dodgson score is at mostk?
The decision problem DODGSONWINNER is defined as follows: Given an electionE � �C�V � and
a distinguished candidatec � C, is c a Dodgson winner ofE?

Bartholdi, Tovey, and Trick [BTT89b] proved that DODGSONSCORE is NP-complete and that
DODGSON WINNER is NP-hard. Hemaspaandra, Hemaspaandra, and Rothe [HHR97]optimally
strengthened the latter result by raising the NP-hardness lower bound of this problem to match its
obvious upper bound: DODGSON WINNER is complete for the complexity class PNP�� (the class
capturing “parallel access to NP,” as mentioned in Section 2.1).

Betzler, Guo, and Niedermeier [BGN08] investigated the systems by Dodgson and Young from
a parameterized complexity perspective. In particular, they studied the complexity of DODGSON
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SCORE parameterized by the numberk of swaps needed. Their result says that if this numberk is
a fixed constant then Dodgson scores can be computed in polynomial time. Note that a small value
of k for a given candidate means that this candidate is already “close” to being a Condorcet winner.

Note that individual votes in Dodgson elections are usuallyassumed to be (strictly) linear orders,
i.e., they are permutations of the candidates. Hemaspaandra, Hemaspaandra, and Rothe [HHR97]
noted that one may allow ties in individual votes and they suggested two natural models of how many
swaps are needed in order to alterate the corresponding preference rankings. In the first model, we
pay only one swap for changing, say,a� b � c into c � a� b. In the second model, the same change
costs two swaps. Betzler, Guo, and Niedermeier [BGN08] defined the corresponding problems
of computing Dodgson scores with ties allowed in these two models, denoted by DODGSON TIE

SCORE 1 and DODGSON TIE SCORE 2. Theorem 3.1 lists their results for Dodgson elections.
Interestingly, the two models for how to handle ties yield different parameterized complexities.

Theorem 3.1 ([BGN08]) The problems mentioned below are parameterized by the number k of
swaps needed to make the given candidate a Condorcet winner.

1. DODGSONSCOREcan be solved in time O�2k �n �k� n �m�.
2. DODGSONTIE SCORE2 can be solved in time O�4k �n �k� n �m�.
3. DODGSONTIE SCORE1 is W �2�-complete.

Young’s election system [You77] works as follows: As in Dodgon’s system the goal is to make a
candidate the Condorcet winner via the smallest possible alteration of the given election. However,
in Young elections this goal is to be achieved by deleting a minimum number of voters. Formally,
for an electionE � �C�V �, the Young score of a candidatec � C is defined to be the maximum
number of voters remaining in a subsetV � of V such thatc is the Condorcet winner in�C�V � �. Every
candidate with a maximum Young score is a Young winner. Clearly, a candidate with Young score
�V � already is the Condorcet winner, as no voter has to be deleted.

Define the decision problem YOUNG SCORE as follows: Given an electionE � �C�V �, a
designated candidatec � C, and a positive integerk, is it true thatc’s Young score is at leastk?
The dual probleem, DUAL YOUNG SCORE, focuses on the number of deleted voters: Given an
election E � �C�V �, a designated candidatec � C, and a positive integerk, can c be made a
Condorcet winner by deleting at mostk voters fromV? Finally, the decision problem YOUNG

WINNER is defined as follows: Given an electionE � �C�V � and a distinguished candidatec � C,
is c a Young winner ofE? Rothe, Spakowski, and Vogel [RSV03] proved that, just as KEMENY

WINNER and DODGSON WINNER, YOUNG WINNER is PNP�� -complete. They also proved, with a
linear program that modifies an integer linear program of Bartholdi et al. [BTT89b], that the winners
in Fishburn’s homogeneous5 variant of Dodgson’s system (see Fishburn [Fis77] for the definition)
can be determined in polynomial time.

Betzler, Guo, and Niedermeier [BGN08] proved that both YOUNG SCORE and DUAL YOUNG

SCORE are W�2�-complete, where the parameterk is the bound on the solution sizes given in the

5An election systemE is said to behomogeneousif for each election�C�V � and for all positive integersq, we have
E �C�V � � E �C�qV�, whereqV denotesV replicatedq times andE �C�V � denotes the set of winners of election�C�V �
according to systemE .
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instances of these problems. Containment of both problems in W�2� is shown via a reduction to
the W�2�-complete problem OPTIMAL LOBBYING (which will be defined in Section 3.3). W�2�-
hardness of YOUNG SCORE is shown via a slight modification of a reduction from the W�2�-hard
problem SET PACKING presented in [RSV03]. W�2�-hardness of DUAL YOUNG SCORE is shown
via a reduction from a W�2�-hard variant of the dominating set problem, which is calledk

�
2-RED

BLUE DOMINATING SET in [BGN08].

Theorem 3.2 ([BGN08]) The problems mentioned below are parameterized by the size kof their
solution sets.

1. YOUNG SCORE is W �2�-complete.

2. DUAL YOUNG SCORE is W �2�-complete.

3.2 FPT Results for Procedural Control in Copeland Elections

Copeland [Cop51] proposed an election system that is based on pairwise comparisons of candidates
(see Merlin and Saari [SM96, MS97] for a comprehensive treatise of Copeland elections). The
winner of such a head-to-head contest receives one point, the loser receives no point, and both
candidates may receive tie-related points. Since the literature is a bit ambiguous on how ties in such
head-to-head contests are to be rewarded, Faliszewski et al. [FHHR07] introduced a parameterized
variant of Copeland elections in which ties imply that both candidates receiveα points, where
the parameterα is a rational number with 0

� α �
1. They denote this system by Copelandα .

Every candidate with the most points from head-to-head contests (including tie-related points)
is a Copelandα winner. The most common variant of “Copeland elections” in the literature is
Copeland0�5. It is interesting to note that the system here denoted by Copeland1 was proposed
by the philosopher and religious missionary Ramon Llull already in the thirteenth century (see the
literature pointers in [FHHR07, FHHR08]).

Since a Condorcet winner defeats every other candidate in head-to-head comparison, Copelandα

possesses the Condorcet property for each rationalα , 0
� α �

1, just like the systems proposed by
Kemeny, Dodgson, and Young. However, unlike these three systems, the winner problem and the
related scoring problem for Copelandα can be solved in polynomial time, and so is immediately
fixed-parameter tractable in every parametrization.

Faliszewski et al. [FHHR07, FHHR08] studied Copelandα with respect to procedural control
and bribery. These are settings in which an external agent (called the chair for control and the
briber for bribery scenarios) seeks to influence the outcomeof a given election either via modifying
its structure (namely by such actions as adding/deleting/partitioning voters or candidates), or via
bribing certain voters in order to change their votes. We here focus on procedural control of
elections. There are 22 different control scenarios that have been studied to date; we will not
define them here formally but rather point the reader to the papers by Bartholdi, Tovey, and
Trick [BTT89a, BTT92], who introduced the notion of constructive control (where the chair seeks
to make a favorite candidate win), and by Hemaspaandra, Hemaspaandra, and Rothe [HHR07], who
were the first to study destructive control (where the chair seeks to preclude the victory of a despised
candidate), see also [FHHR07, FHHR08].
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Among systems with a polynomial-time winner problem, Copeland0�5 (and indeed Copelandα

for each rationalα , 0 � α � 1) is the first natural election system proven to be fully resistant
to constructive control [FHHR07, FHHR08] (see also [ENR08b] for a second such system), where
“resistance” means that the corresponding control problemis NP-hard. To list just the numbers (with
respect to the 22 different control scenarios considered) of such NP-hardness results for varyingα ,
Faliszewski et al. [FHHR07, FHHR08] establish 14 resistances for Copelandα whenα � �0�1�, and
15 resistances for Copelandα when 0� α � 1.

In addition, Faliszewski et al. [FHHR07, FHHR08] studied the parameterized complexity of
these 22 control problems with respect to Copelandα for each rationalα , 0

� α �
1. They consider

two parameterizations, namely bounding the number of candidates and bounding the number of
voters. For each of the above-mentioned NP-hardness results, the corresponding control problem
is fixed-parameter tractable when the number of candidates is bounded. Also, for each of the
above-mentioned NP-hardness results for voter control problems, fixed-parameter tractability holds
when the number of voters is bounded. However, when the number of voters is bounded, the
corresponding candidate-control cases remain open. The proofs of these FPT results are based
on Lenstra’s [Len83] algorithm for bounded-variable-cardinality integer programming.

Finally, we mention that Betzler and Uhlmann [BU08] have shown a number of parameterized
intractability results (namely W�2�-completeness, W�2�-hardness, and W�1�-hardness) for control by
adding candidates and control by deleting candidates within Copelandα . In particular, they partially
solved the above-mentioned open question raised by Faliszewski et al. [FHHR07, FHHR08]:
Constructive and destructive control by adding candidatesand by deleting candidates remains NP-
hard for Copelandα , whereα � �0�1�, even for a fixed number of voters. In addition, Betzler and
Uhlmann [BU08] studied the parameterized complexity of these control problems for Copelandα ,
where 0

� α �
1 is a rational, and for plurality voting6 if the number of added/deleted candidates is

viewed as a parameter.

3.3 Parameterized Complexity for Optimal Lobbying

Finally, we consider the problem OPTIMAL LOBBYING, another problem from computational social
choice, albeit not related to a particular voting system. Christian et al. [CFRS07] defined this
problem as follows: Given a 0-1 matrix (whose entries give the No/Yes votes for multiple referenda
in the context of direct democracy), a positive integerk, and an external agent’s (called the lobby)
0-1 target vector that gives the lobby’s desired outcome of the referenda, is it possible for the lobby
to reach this target by flipping the votes of at mostk voters? Here, a column of the matrix (which
represents one referendum) gives the outcome Yes if and onlyif a strict majority of voters cast a
Yes vote, i.e., if and only if this column has a strict majority of ones.

The natural parametrization for this problem is the numberk of voters the lobby needs to
influence. Christian et al. [CFRS07] proved that this problem is intractable from the point of view
of parameterized complexity: it is W�2�-complete. Theorem 3.3 is proven via a reduction from

6In plurality, each voter gives his or her most preferred candidate one point; whoever scores the most points
is a plurality winner. Bartholdi, Tovey, and Trick [BTT92] obtained constructive control results for plurality and
Hemaspaandra, Hemaspaandra, and Rothe [HHR07] obtained destructive and additional constructive control results for
plurality.
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the W�2�-complete problem DOMINATING SET to OPTIMAL LOBBYING (which shows OPTIMAL

LOBBYING is W�2�-hard) and via a reduction from OPTIMAL LOBBYING to the W�2�-complete
problem INDEPENDENTDOMINATING SET (which shows OPTIMAL LOBBYING is in W�2�). Both
DOMINATING SET and INDEPENDENTDOMINATING SET were defined in Section 1.

Theorem 3.3 ([CFRS07]) OPTIMAL LOBBYING is W �2�-complete.
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