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Abstract

This supplement provides a brief introduction to the fieldfinéd-parameter tractability
and parameterized complexity. Some basic notions are iegplaand some related results are
presented, with a focus on problems arising in the field of matational social choice.

1 Fixed-Parameter Tractability and Parameterized Complexity

The study of fixed-parameter tractability and parametdrcmmplexity has emerged as a new field
within computational complexity theory in the late 1980s]ahe early 1990s. Since the early
pioneering work of Downey, Fellows, and other researchieis drea has established plenty of
results, notions, and methods, and it provides a usefuldwasrk for dealing in practice with
problems considered intractable by classical complexigoty. This supplement gives only a
rough sketch of some basic notions and techniques withianpaterized complexity theory; for
a deeper and more comprehensive treatise, the textbookobwyndy and Fellows [DF99], Flum
and Grohe [FGO06], and Niedermeier [NieO6] and the survey bgsBand Islam [BI08] are highly
recommendable.

Let P and NP, respectively, denote the classical (worgjcemmplexity classedeterministic
polynomial timeandnondeterministic polynomial timé&iven any two decision problemA&,andB,
we sayA polynomial-time many-one reduces tqd&notedA <F, B) if there is a polynomial-time
computable functiorf such that, for each input x € A if and only if f(x) € B. A setB is said to
be NRhard if for each NP sef, A <k, B. If B € NP is NP-hard theB is said to be NRromplete
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Traditionally, NP-hardness is used to formally capturertbon of intractability of problems
in classical complexity theory (see, e.g., [Pap94, Rot@s]&n introduction to computational
complexity and, more specifically, Garey and Johnson [GiiX@he theory of NP-completeness).

Let us consider three examples of standard NP-completelgonsb INDEPENDENT SET,
DOMINATING SET, and SATISFIABILITY. The INDEPENDENT SET problem asks, given an
undirected, simple grap6 = (V,E) and a positive integek, does there exist an independent set
of size at leask in G, i.e., does there exist a sub$et V such thatl| > k and no two vertices ih
are adjacent? The problemdMINATING SET asks, given an undirected, simple graphk= (V,E)
and a positive integeq, does there exist a dominating set of size at rkastG, i.e., does there exist
a subseD C V such thaiD| < k and every vertex iV either belongs t® or is adjacent to some
vertex inD? Independent sets and dominating sets can be illustratdte aesult of a database
qguery. Consider a database that lists the top 100 math bouk¢ha corresponding authors, and
consider a grapi whose vertices are these authors, where any two authoroanected by an
edge if and only if they have coauthored some of these booksryEsubset of the authors such
that no two of them have jointly written a book so far is an ipeledent set oG. On the other
hand, every subsd of the authors such that each author noDirhas written at least one joint
book with one of the authors i is a dominating set. Graph-theoretic notions such as inkpd
sets and dominating sets arise in many application areaseXample, dominating set is a central
notion in computer networks or communication networks ,(geg., Riege and Rothe [RR06] for
more details). Finally, the &1SFIABILITY problem (SAT, for short) from propositional logic asks,
given a boolean formula, is ¢ satisfiable, i.e., does there exist an assignment of trutiesdog’s
variables that makef true? As a simple example we consider the formglas: (X1 VX2) A (X1 VX2)
and¢, = x1 AX7. Apparently, ¢, is satisfiable by setting, sa; to true andx, to false, whereag,
is not satisfiable at all, i.e., there is no assignment ohtvalues that makeg, true.

INDEPENDENT SET, DOMINATING SET, and SAT are well known to be NP-complete [GJ79],
and thus they cannot be solved in polynomial time (unlessNP). Although NP-completeness
is often taken as evidence that the problem considered riactable, in practical applications
we are usually interested in solving it for certain smallgmaeters. Parameterized complexity
theory measures a problem’s complexity based on differarts of the input, whereas traditional
complexity theory defines complexity measures only in tewhsnput size. In this sense,
parameterized complexity might be seen as some kind of gnigimensional” complexity theory.
In particular, fixed-parameter tractability takes advgataf the fact that problem instances
constitute more than simply strings of certain sizes, btiterahave a structure and contain
parameters that represent diverse aspects of the problaamdt For fixed-parameter tractability
to be a reasonable concept, it is crucial that the chosemmeaea is expected to be small. In this
context, “parameter” stands for an intrinsic value ratlemtfor a value used for getting control
over an algorithm'’s behavior as is common in other discgdirsuch as programming. For example,
let us look at the complexity of database queries. Evalgagiren basic conjunctive queries is NP-
complete when measuring the complexity based on the sibeafdtabase plus the size of the query.
However, since query sizes tend to be significantly smatlen the size of the entire database, the
guery size is a natural parametrization for the databasgygwaluation problem. Note that this
parameter cannot be controlled explicitly, as it is deteediby the query itself.

Formally, a parameterized problem (over some alphapét a pair(, k), wherek : ¥* — N



is a polynomial-time computable parametrization &hd 2* is a set of strings ovex. However,
if the parametek = k(x) is clear from context, we will denote the parameterized lamob(I, k)
simply byI. For example, a natural parametrization for SAT is defined by

K(9) = number of variables op  if ¢ encodes a boolean formula with at least one variable
11 otherwise,

and though the resulting parameterized version of SATSIAT, k), we will simply denote this
problem by SAT when the parameter= k(¢) is clear.

In parameterized complexity theory, a problem parametdrizy some valu& is said to be
fixed-parameter tractabléor to belong to the class FPT) if for each fixed valuekdhere is an
algorithm that solves this problem for instances of sizim time f(k) - n°%, where f is some
computable function. In other words, the seemingly unaaoliel combinatorial explosion in NP-
hard problems is then confined to the parameter. For exarh@earameterized version of SAT
defined above is fixed-parameter tractable via the obvioutetorce algorithm that decides the
satisfiability of a given boolean formula withivariables, encoded as a string of siegin time
O(2¢-m). Accordingly, by means of parameterizing the SAT problensan be solved efficiently,
assuming that the chosen paramété¢the number of variables of the given boolean formula) can
be expected to be small.

Let (M,k) and(M’, k') be two given parameterized problemsparameterized reductiofltom
(M, k) to (M',k’) is a mapping that transforms any problem instafigé) in time f (k) - [x|°
(where f is a computable function) into a problem instari@gk’) such that (a)x,k) is a yes-
instance of N, k) if and only if (X, k) is a yes-instance d¢f1’,k’), and (b)k' = k’(X') depends only
onk = K(x) but not on|x|. For notational convencience, whenever we speak of a rieduoetween
two parameterized problems we mean a parameterized redpatid whenever we we speak of a
reduction between two classical decision problems we megh-eeduction.

The theory of fixed-parameter intractability deals with gbgproblems for which no FPT
algorithms have been discovered yet, and thus might be bardlte even if the chosen parameter
is a fixed small constant. The W-hierarchy has been intratiteelassify these problems according
to their fixed-parameter hardness. There are two main appesathat can be taken to define the
W-hierarchy and its classes. The original definition, psmgmbby Downey and Fellows [DF99],
characterizes fixed-parameter intractable problems imgenf weighted satisfiability problems
on classes of circuits. More recently, Flum et al. [CF03, OBJGdefined the classes [}/
by using nondeterministic algorithms running on restdctandom-access machines. However,
both definitions are technically very complex and beyond ghepe of this supplement. For
a more detailed definition of the entire W-hierarchy and of2Win particular, we refer to
[DF99, FGO06, Nie06] and the survey by Buss and Islam [Bl08)teNhat if a problent1 belongs
to P then the parameterized probléhh k) is in FPT for every parametrization. Note also that

FPTC W[1] CW[2] CW[3| C---.

Natural parametrizations forNDEPENDENT SET and DOMINATING SET are the positive
integersk that are given as the second component of the instance inrtdidem definitions
as bounds on the size of, respectively, an independent sktaadominating set. It is
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widely believed that neither of the corresponding paranedd versions of NDEPENDENT SET
and DOMINATING SET is fixed-parameter tractable (see, e.g., [DF99, FGO06]). reethe
(parameterized) problemNDEPENDENT DOMINATING SET (with parametek) as follows: Given
an undirected, simple grapgh = (V,E) and a positive integek, does there exist an independent
dominating set of siz&? Downey and Fellows [DF99] proved that bottoRINATING SET and
INDEPENDENT DOMINATING SET are complete for the parameterized complexity clagg]Ww
which is widely viewed as strong evidence that these problare not fixed-parameter tractable.
The INDEPENDENT SET problem with the above-mentioned parametrization is {i]W

Regarding the evaluation of database queries, denotingnthé size (i.e., the size of the
database) by and the parameter (i.e., the size of the querykjiyhe conjunctive query evaluation
problem can be solved in tim@(n*), which is still prohibitive even for small values k{unless only
extremely short queries, such as queries of size two or,thwee allowed} The conjunctive query
evaluation problem is suspected to be not fixed-parametetatrle, as it is proven to be complete
for W[1] (see Flum and Grohe [FG06]). Nonetheless, the fixed-pagarirgtactability of the query
evaluation problem is a strong result, since it shows thaetraluation of database queries is hard
even for quite small queries.

2 FPT Resultsfor Kemeny Elections

2.1 Kemeny Elections

Voting systems have been intensely studied within comjmutal social choice, an interesting field
currently emerging at the interface of computer sciencesaahl choice theory. While voting was
previously investigated in such areas as political scie@ecenomics, operations research, and social
choice theory, a wide range of applications in computermseechas been found recently. To give
just a few examples, voting can play a central role in plagfiiER93], similarity search [FKS03],
in the design of recommender systems [GMHS99] or rankingraigns [DKNSO01], and in other
fields that require methods for preference aggregation alhective decision-making to be applied
in, e.g., multiagent systems within distributed artifigrgtkelligence.

For example, Dwork et al. [DKNSO1] designed a ranking akponi with the purpose of
lessening the spam in meta-search web-page rankings. drs¢knario, web pages are viewed
as candidates (or alternatives) and search engines ared/@swoters. Each voter provides a linear
ranking of the candidates (with respect to some search jjudoying systems can then be used to
aggregate the voters’ individual rankings to obtain a “emssis ranking” of a meta-search engine
that is as “close” as possible to the given individual ragkinThe voting system used by Dwork
et al. [DKNSO1] for this purpose is Kemeny's voting systenefisb9, KS60], for this is the unique
voting system that is “neutral, consistent, and Condorst& [DKNSO01, HSVO05]). However, even
determining the winners of a given Kemeny election is a difficomputational task (as will be

LCompleteness and hardness of a problem for a parametedmgulexity class such as 8] is defined with respect
to parameterized reductions.

2«prohibitive” here refers to a practical point of view. Ofurse, technically speakin@(nk) is polynomial time
whenevek is a fixed constant.



explained in more detail below), which is why Dwork et al. [N&01] designed a heuristic called
“local Kemenization” on which their ranking algorithm isdwad.

An election E= (C,V) is given by a se€ of candidates and a sétof voters. A vote is typically
input as a preference list over the candidate€,n.e., as a linear ordering (or a permutation)
of the candidate®. Although Kemeny in his original paper [Kem59] also allowébtto occur in
individual preference rankings, there is no consensusaititdrature about this question. For clarity
and notational convenience, we will use the term “permaitéitto indicate that ties are not allowed,
and we will use the term “preference ranking” when ties al@add.

An election systerfequivalently, avoting systemé’ is a rule that tells us how to determine the
winners of an election. Formally, an election system is apmapfrom electionsE = (C,V) to
subsets o€. In this section, we introduce Kemeny’s election systenmtet.an in Section 3, we are
concerned with the election systems by Condorcet, Dodgémmg, and Copeland as well as the
plurality-rule election system.

Kemeny's system, with ties in individual preference ragkinexplicitly allowed [Kem59,
KS60], works as follows. LeE = (C,V) be a given election. To define “closeness” between any
two preference rankingsands onC, the following distance measure is used:

dist(r,s) = 3y Drs(c,d),
{c,d}

where the sum is taken over all unordered péasl} of candidates i€ and

0 if r andsagree orc andd
1 ifone ofr ands prefersctod ordtocand

the other one is indifferent with respectd¢@andd
2 if r andsstrictly disagree or andd.

Dr’s(c, d) =

TheKemeny scoref a given preference rankingon C is defined a¥Score:(r) = 3y dist(r, v).
For each candidate € C, define KemenyScoggc) = min, KScoreg(r), where the minimum is
taken over all preference rankingson C such that no candidate is ranked higher tikdn r. A
preference ranking on C such thatKScorg:(s) is minimum is said to be &emeny consensus of
E, and aKemeny winner of Bs every candidate that is ranked on top of a Kemeny consaridtis
Let KemenyScoge denote the Kemeny score of a Kemeny consensus. oNote that a Kemeny
consensus dE = (C,V) is not necessarily an element\6f

The decision problem KMENY ScoOREis defined as follows: Given an electié= (C,V) and
a positive integek, is it true thatkemenyScoge < k? The decision problem B®MENY WINNER is
defined as follows: Given an electidh= (C,V) and a distinguished candidatec C, does there
exist a Kemeny consensus Bfin which no candidate is ranked higher thafi.e., is it true that
KemenyScoggc) < KemenyScogg(d) for eachd € C)?

Example 2.1 Consider the election E (C,V) with three candidates and four voters that is given
by candidate set & {b,c,d} and voter set \'= {v1,V»,Vv3,V4}, where the preference rankings of

3By “linear ordering” we here mean a tie-free (i.e., striatiglr ordering.



the voters are
vi: b=c>d
Vo c>b=d
v3: b>c>d
Vg: b=c>d

Note that in this case the rankings afand v are identical, soV can also be seen as a multiset of
votes.

To compute the Kemeny consensus of E and to determine E'sievirmers, we have to find
the minimum KScoggr), where the minimum is taken over th& possible preference rankings r
on C (with ties allowed). Table 1 shows how to obtain the v&l8eore:(r) for each suchr.

| rankingr | dist(r,v1) + dist(r,v2) + dist(r,vs) + dist(

=

,Va) = KScore(r) |

b=c=d 2 + 2 + 3 + 2 = 9
b=c>d 0 + 2 + 1 + 0 = 3
b>c=d 2 + 4 + 1 + 2 = 9
b>c>d 1 + 3 + 1 + 1 = 6
b=d>c 4 + 4 + 3 + 4 = 15
b>d>c 3 + 5 + 2 + 3 = 13
c>b=d 2 + 0 + 3 + 2 = 7
c>b>d 1 + 1 + 2 + 1 = 5
c=d>b 4 + 2 + 5 + 4 = 15
c>d>b 3 + 1 + 4 + 3 = 11
d>b=c 4 + 4 + 5 + 4 = 17
d>b>c 5 + 5 + 4 + 5 = 19
d>c>b 4 + 3 + 6 + 4 = 17

Table 1: Determinind<Score:(r) for each preference rankimgonC

For example, the first row of Table 1 is obtained as follows:

KScorg(b=c=d) = Evdist(b =c=d,v)
Vie

= Z/ (Db=c=dy (b,€) + Dp=c=d; (0,d) + Dp=c=d v (C,d))

Vi€
= (0+14+1)+(14+0+1)+(1+1+21)+(0+1+1)
= 2+2+3+2=0.

Obviously, KScorg(b = ¢ > d) = 3 is the minimum value, so# ¢ > d is the Kemeny consensus,

and since both b and c are the most preferred candidates snkbimeny consensus, they both are
Kemeny winners of E. In general, a Kemeny consensus neecengtifue and need not be an

element of V (which both happens to be the case in this example

Bartholdi, Tovey, and Trick [BTT89b] proved thatefuENY SCORE is NP-complete and
that KEMENY WINNER is NP-hard. Hemaspaandra, Spakowski, and Vogel [HSVOSisely
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pinpointed the complexity of the latter problem by showihgdamplete for the complexity class
P'\|'P, the class of sets solvable via a polynomial-time algorithith parallel access to an NP oracle.
I\Jote that these complexity results hold regardless of wdreath not ties are allowed in individual
preference rankings (see [HSVO05]).

2.2 Fixed-Parameter Tractability for Computing Kemeny Scores

Betzler et al. [BFG 08] studied the problem of computing Kemeny scores from thetwf view of
parameterized complexity. In contrast with the above-ioeetl NP-hardness results, they showed
that computing a Kemeny score is fixed-parameter tractélgain, their results refer to both cases,
with and without ties allowed in individual preference rargs.

For simplicity, we focus on the case in which ties are notvedld. So, instead of preference
rankings, we now consider permutations of the candidat€.s&hen, for any two permutations
and o onC, the distance measure is defineddést(p, 0) = 3 (. 4y KTp o(C,d), where the sum is
again taken over all unordered pajsd} of candidates i€ and the so-calleBendall-Tau distance
(a.k.a. the number of inversions between two permutatisndgfined akT, (c,d) =0 if p and
o rank c andd in the same order, andT, s(c,d) = 1 otherwise. All other notions are defined
analogously with the notions defined in Section 2.1.

Throughout this paper, for all electiofis= (C,V), m= |C| denotes the number of candidates
andn = |V| denotes the number of voters. To highlight the meaning ofdipeeter” in the context
of parameterized complexity as opposed to its traditionehmmng in other disciplines such as
mathematical programming, we consider two parametrigattelow: the numben of candidates
and the maximum Kendall-Tau distanée(to be defined below) between any two votes in the
given election. While the numben of candidates in a given election is immediately clear fromn t
problem instanceg is “intrinsic” to the election. However, recall that it is@gh that a function
K : 2* — N is polynomial-time computable for it to be a parametrizatio our sense. Indeed,
note that the Kendall-Tau distance can be computed in @fralogm) by a divide-and-conquer
algorithm.

2.2.1 First Parametrization: Number of Candidates

Betzler et al. [BFG 08] proved the following result, which says that when the hanof candidates

is a fixed constant, Kemeny scores can be computed in polyhdimie. Note that in most (though
not all) scenarios involving elections, assuming that tin@iper of candidates is bounded by a small
constant is a reasonable assumpfidinthus makes sense to consider the parameterized comyplexit
of computing Kemeny scores with the number of candidatebeapdrameter.

Theorem 2.2 ([BFG'08]) KEMENY SCOREcan be solved in time @™ m?-n).

Let us sketch the proof of Theorem 2.2. Given an eleclioa (C,V) and a positive integet
as input, the algorithm works as follows. For each suBs&tC, the Kemeny score of the election

4An exception is the scenario given in Section 2.1, where veafep are viewed as candidates and search engines are
viewed as voters. Clearly, in this scenario it is more reabteto assume that the number of candidates is huge, whereas
the number of voters is small.



Es = (B,VB), whereVg denotes the restriction of the voter $&to the candidates iB, is to be
computed recursively. The recurrence used for a given shiseo consider every subsBt— {c}
of B with one candidate deleted. For ea8iC C and for eactc € B, let 1z_(¢; be a Kemeny
consensus of electiofB — {c},Vs_(}). Let 1 be the permutation obtained fromg_c; by putting
cin top position. Comput& = mingcc KScore, (&), where the minimum is taken over all subsets
B of C. Output “yes” ifK <k, and output “no” otherwise.

For the proof of correctness of this algorithm, we refer t6@ 08].

2.2.2 Second Parametrization: Maximum Kendall-Tau Distance

Now choose the paramet&r= max, ey dist(u,Vv), the maximum Kendall-Tau distance between any
two votes in a given electiof = (C,V). Betzler et al. [BFG08] designed a dynamic programming
fixed-parameter algorithm for this parametrization. Whds a fixed constant, their algorithm runs
in polynomial time, in the technical sense of the definitibpalynomial time. On the other hand, it
should be noted that already for the rather small valu@ ef4, which is far from being unrealistic
in many settings, the running time of their algorithm amesunt49 816 166 40G- m-n, where the
constanta is due to theO notation and 49 816 166 4G9 (3-4+1)!-4-log4. And ford =5, we
even havé3-5+1)!-5-log5> 242 808 976 650 240.

Theorem 2.3 ([BFG108]) KEMENY SCORE can be solved in time @35 + 1)! - d-logd - m-n),
whered is the maximum Kendall-Tau distance between any two votie igiven election.

Their algorithm uses the following notation. LEt= (C,V) be a given election, and let be
any given permutation of the candidate €etFor eachc € C, the position of ¢ inrTis the number
of candidates ranked higher thann . For example, the top candidate inhas position 0 and
the bottom candidate irr has positiorm— 1. A block of size s with start position, pdenoted by
blocks(p), is the set of candidates whose positiorriiis betweenp and p+s— 1 for at least one
e V. Let block p) = blocks1(p).

Let us roughly sketch the proof idea for Theorem 2.3. GiverelastionE = (C,V) and a
positive integekk as input, the fixed-parameter algorithm is based on decanmgpdocks of size
0+ 1 for computing the Kemeny score of the given election. GiersblocK p). Every candidate
c ¢ block(p) has a position that is either less tharior each voter irV or greater tharp+d + 1
for each voter irvV. Moreover, there exists a Kemeny consensuk of which c's position is in a
certain range that depends dnThus, the algorithm proceeds by iterating from left to tigher the
given permutations i, where it stores the Kemeny scores for all “partial ordefshe candidates
in some block of sizé + 1. Candidates that occur left of this block may be ignored.

In some more detail, the algorithm considers in each itmatome block of sizé + 1. Initially,
it considers all possible orders of the candidates in i@cknd it stores in a table the Kemeny
scores of all such orders with respect to the subele¢tttk(0), Vpiock(0)), WhereVyocko) denotes
the restriction of the voter sktto the candidates in blo¢R). In theith iteration,i > 1, the algorithm
considers bloclt) and computes the Kemeny scores of all orders of the candidatelock(i) by
looking up the table entries for bloik- 1). The size of the table i©((35 + 1)! - m). Finally, the
Kemeny score oE is the minimum of the entries for blok— 5 — 1).

For the formal description of the algorithm and the proof afrectness, we refer to [BF®8].
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3 A Short Survey of Further FPT and Parameterized Complexity
Resultsin Computational Social Choice

In this section we survey some further FPT and parametedpedblexity results for problems
arising in computational social choice. As early as in 198&tholdi, Tovey, and Trick [BTT89b]
studied NP-hard election problems for a bounded number oflidates or a bounded number
of voters, and they obtained efficient fixed-parameter #lgor results for such cases. Within
computational social choice, this approach of designiriigieft fixed-parameter algorithms for
hard problems was pursued in many papers, for example végeot to hard winner problems (see
Section 2.2 and [BFG08, BGN08, RSV03]), with respect to hard problems relatedrazedural
control [FHHRO7, FHHRO08, BU08], and with respect to harditems related to bribery [FHHOG6]
and lobbying [CFRSO07]. In the remainder of this section, wee @ncerned with some of these
results.

3.1 FPT Results and Parameterized Complexity for Determining Dodgson and
Young Winners

As mentioned in Section 2.1, one of the useful properties eh&ny’'s election system is that it
respects the notion of a Condorcet winner [Con85]. A Conetorénner is a candidate that defeats
every other candidate in head-to-head comparison by astajority of votes. It is well known that
Condorcet winners do not always exist, but are unique whendRist. An election systewi is said

to have the Condorcet property if whenever a Condorcet wigrists, he or she is also a winner
of &. Besides the Kemeny system, there are many other electgtamy that have the Condorcet
property (see, e.g., Fishburn [Fis77]), including the eyst proposed by Dodgson [Dod76] (who
may be better known under his pen name, Lewis Carroll, theoautf “Alice in Wonderland” and
other beautiful children’s books) and Young [You77].

Dodgson’s system works as follows. Every candidate a given election is assigned a score:
the smallest number of sequential swaps of adjacent caedidathe voters’ preferences that are
needed to make a Condorcet winner, where swaps are counted separatelyafdr wote and
within each vote. Every candidate with a minimum Dodgsorresamins. Clearly, a candidate
with Dodgson score zero already is the Condorcet winnerpasaap has to be performed. Note
that, unlike Condorcet winners, Dodgson winners alwaystdxit are not necessarily unique.

The decision problem DDGSONScOREis defined as follows: Given an electié= (C,V), a
designated candidatec C, and a positive intege, is it true thatc's Dodgson score is at mok®?
The decision problem DDGSONWINNER is defined as follows: Given an electié= (C,V) and
a distinguished candidatec C, is c a Dodgson winner oE?

Bartholdi, Tovey, and Trick [BTT89b] proved thatdbGsoN ScoREis NP-complete and that
DobGsONWINNER is NP-hard. Hemaspaandra, Hemaspaandra, and Rothe [HHRO@ally
strengthened the latter result by raising the NP-hardragsribound of this problem to match its
obvious upper bound: ObGSON WINNER is complete for the complexity classﬁ"?’(the class
capturing “parallel access to NP,” as mentioned in Sectigih 2

Betzler, Guo, and Niedermeier [BGNO8] investigated thdesys by Dodgson and Young from
a parameterized complexity perspective. In particulagy thtudied the complexity of ®bGSoON



ScoRE parameterized by the numbleof swaps needed. Their result says that if this nunkder
a fixed constant then Dodgson scores can be computed in poightime. Note that a small value
of k for a given candidate means that this candidate is alreddgetto being a Condorcet winner.
Note that individual votes in Dodgson elections are uswusslumed to be (strictly) linear orders,
i.e., they are permutations of the candidates. HemaspaaHémaspaandra, and Rothe [HHR97]
noted that one may allow ties in individual votes and theygssted two natural models of how many
swaps are needed in order to alterate the correspondingrenee rankings. In the first model, we
pay only one swap for changing, say= b > cintoc> a=Vb. In the second model, the same change
costs two swaps. Betzler, Guo, and Niedermeier [BGNO8] ddfitne corresponding problems
of computing Dodgson scores with ties allowed in these twaolets) denoted by DDGSONTIE
SCcORE 1 and DODGSON TIE SCORE 2. Theorem 3.1 lists their results for Dodgson elections.
Interestingly, the two models for how to handle ties yielffledent parameterized complexities.

Theorem 3.1 ([BGNO8]) The problems mentioned below are parameterized by the nmuknbge
swaps needed to make the given candidate a Condorcet winner.

1. DODGSONSCOREcan be solved in time @%-n-k+n-m).
2. DODGSONTIE SCORE2 can be solved in time @-n-k+n-m).

3. DODGSONTIE SCORE1 is W[2]-complete.

Young’s election system [You77] works as follows: As in Dod® system the goal is to make a
candidate the Condorcet winner via the smallest possitdeation of the given election. However,
in Young elections this goal is to be achieved by deleting mimmim number of voters. Formally,
for an electionE = (C,V), the Young score of a candidatec C is defined to be the maximum
number of voters remaining in a subs€tof V such that is the Condorcet winner i(C,V’). Every
candidate with a maximum Young score is a Young winner. Gfearcandidate with Young score
|V| already is the Condorcet winner, as no voter has to be deleted

Define the decision problem &UNG ScoORE as follows: Given an electiok = (C,V), a
designated candidatec C, and a positive integek, is it true thatc's Young score is at least?
The dual probleem, DAL YOUNG ScoORE, focuses on the number of deleted voters: Given an
electionE = (C,V), a designated candidatec C, and a positive integek, canc be made a
Condorcet winner by deleting at mdstvoters fromV? Finally, the decision problem QUNG
WINNER is defined as follows: Given an electi@= (C,V) and a distinguished candidates C,
is ¢ a Young winner ofE? Rothe, Spakowski, and Vogel [RSVO03] proved that, just amENY
WINNER and DODGSONWINNER, YOUNG WINNER is PYP-complete. They also proved, with a
linear program that modifies an integer linear program offigddi et al. [BTT89b], that the winners
in Fishburn’s homogeneousariant of Dodgson’s system (see Fishburn [Fis77] for thind®n)
can be determined in polynomial time.

Betzler, Guo, and Niedermeier [BGNO8] proved that bothuXiG SCOREand DUAL YOUNG
ScoRrE are W2]-complete, where the parameters the bound on the solution sizes given in the

5An election systen® is said to behomogeneout for each election(C,V) and for all positive integerg, we have
&(C,\V) = £&(C,qV), wheregV denotesV replicatedq times ands’(C,V) denotes the set of winners of electid, V)
according to systenf.

10



instances of these problems. Containment of both problenV§[2] is shown via a reduction to
the W2]-complete problem ©TiIMAL LOBBYING (which will be defined in Section 3.3). &]-
hardness of YUNG SCORE is shown via a slight modification of a reduction from thé2hard
problem %T PACKING presented in [RSVO03]. \2]-hardness of DAL YOUNG SCOREis shown
via a reduction from a \{2]-hard variant of the dominating set problem, which is cak¢®-ReD
BLUE DOMINATING SET in [BGNOS].

Theorem 3.2 ((BGNO8]) The problems mentioned below are parameterized by the sifz¢hieir
solution sets.

1. YOUNG ScoREis W[2]-complete.

2. DUAL YOUNG ScoREis W[2]-complete.

3.2 FPT Resultsfor Procedural Control in Copeland Elections

Copeland [Cop51] proposed an election system that is baspdinwvise comparisons of candidates
(see Merlin and Saari [SM96, MS97] for a comprehensive iseatf Copeland elections). The
winner of such a head-to-head contest receives one pomtlotfer receives no point, and both
candidates may receive tie-related points. Since thatites is a bit ambiguous on how ties in such
head-to-head contests are to be rewarded, Faliszewski[E+HHR07] introduced a parameterized
variant of Copeland elections in which ties imply that botindidates receiver points, where
the parameten is a rational number with & a < 1. They denote this system by Copelénd
Every candidate with the most points from head-to-head estst(including tie-related points)
is a Copelan@l winner. The most common variant of “Copeland elections”he titerature is
Copeland®. It is interesting to note that the system here denoted byelaog was proposed
by the philosopher and religious missionary Ramon Llukatty in the thirteenth century (see the
literature pointers in [FHHRO07, FHHRO08]).

Since a Condorcet winner defeats every other candidateai-teehead comparison, Copelé&nd
possesses the Condorcet property for each ratimp@l< a < 1, just like the systems proposed by
Kemeny, Dodgson, and Young. However, unlike these thretsys the winner problem and the
related scoring problem for Copelghdan be solved in polynomial time, and so is immediately
fixed-parameter tractable in every parametrization.

Faliszewski et al. [FHHRO07, FHHRO08] studied Copelansiith respect to procedural control
and bribery. These are settings in which an external agatiedcthe chair for control and the
briber for bribery scenarios) seeks to influence the outcohaggiven election either via modifying
its structure (namely by such actions as adding/deletartifipning voters or candidates), or via
bribing certain voters in order to change their votes. WeeHecus on procedural control of
elections. There are 22 different control scenarios thae Hmeen studied to date; we will not
define them here formally but rather point the reader to theepgaby Bartholdi, Tovey, and
Trick [BTT89a, BTT92], who introduced the notion of congtiive control (where the chair seeks
to make a favorite candidate win), and by Hemaspaandra, Bfgaaadra, and Rothe [HHRO7], who
were the first to study destructive control (where the chegks to preclude the victory of a despised
candidate), see also [FHHRO0O7, FHHRO08].

11



Among systems with a polynomial-time winner problem, Capel® (and indeed Copelafid
for each rationalr, 0 < o < 1) is the first natural election system proven to be fully gtsit
to constructive control [FHHRO7, FHHRO8] (see also [ENR|0Ib a second such system), where
“resistance” means that the corresponding control proldes-hard. To list just the numbers (with
respect to the 22 different control scenarios consideredich NP-hardness results for varyiag
Faliszewski et al. [FHHRO7, FHHRO8] establish 14 resistarfor Copelantiwhena € {0,1}, and
15 resistances for Copelaghevhen 0< a < 1.

In addition, Faliszewski et al. [FHHRO07, FHHRO8] studie@ tharameterized complexity of
these 22 control problems with respect to Copefafud each rationatr, 0 < a < 1. They consider
two parameterizations, namely bounding the number of ciate$ and bounding the number of
voters. For each of the above-mentioned NP-hardness sethidt corresponding control problem
is fixed-parameter tractable when the number of candidatémuinded. Also, for each of the
above-mentioned NP-hardness results for voter contrdilpnas, fixed-parameter tractability holds
when the number of voters is bounded. However, when the nuwibeoters is bounded, the
corresponding candidate-control cases remain open. Tawfspof these FPT results are based
on Lenstra’s [Len83] algorithm for bounded-variable-Gaadity integer programming.

Finally, we mention that Betzler and Uhlmann [BUO08] havevsh@ number of parameterized
intractability results (namely V2]-completeness, V¥|-hardness, and Y4]-hardness) for control by
adding candidates and control by deleting candidatesm@lipelané. In particular, they partially
solved the above-mentioned open question raised by Fak&reet al. [FHHRO7, FHHROS]:
Constructive and destructive control by adding candidatesby deleting candidates remains NP-
hard for Copeland, wherea € {0,1}, even for a fixed number of voters. In addition, Betzler and
Uhlmann [BUO08] studied the parameterized complexity oéheontrol problems for Copelahd
where 0< o < 1 is a rational, and for plurality votiffgf the number of added/deleted candidates is
viewed as a parameter.

3.3 Parameterized Complexity for Optimal L obbying

Finally, we consider the problemr@ImMAL LOBBYING, another problem from computational social
choice, albeit not related to a particular voting system.ristian et al. [CFRS07] defined this
problem as follows: Given a 0-1 matrix (whose entries giveeNto/Yes votes for multiple referenda
in the context of direct democracy), a positive integeand an external agent’s (called the lobby)
0-1 target vector that gives the lobby’s desired outcoméefeferenda, is it possible for the lobby
to reach this target by flipping the votes of at mksoters? Here, a column of the matrix (which
represents one referendum) gives the outcome Yes if andifoalgtrict majority of voters cast a
Yes vote, i.e., if and only if this column has a strict majpof ones.

The natural parametrization for this problem is the numbeaf voters the lobby needs to
influence. Christian et al. [CFRS07] proved that this proble intractable from the point of view
of parameterized complexity: it is |&-complete. Theorem 3.3 is proven via a reduction from

6In plurality, each voter gives his or her most preferred ademe® one point; whoever scores the most points
is a plurality winner. Bartholdi, Tovey, and Trick [BTT92]otained constructive control results for plurality and
Hemaspaandra, Hemaspaandra, and Rothe [HHRO7] obtaistdiat&ve and additional constructive control results for
plurality.
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the W[2]-complete problem DMINATING SET to OPTIMAL LOBBYING (which shows @TIMAL

LOBBYING is W[2]-hard) and via a reduction fromf@IMAL LOBBYING to the W2]-complete
problem NDEPENDENTDOMINATING SET (which shows @TIMAL LOBBYING is in W[2]). Both
DOMINATING SET and INDEPENDENTDOMINATING SET were defined in Section 1.

Theorem 3.3 (([CFRS07]) OPTIMAL LOBBYING is W[2]-complete.
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