
Iterative Compression and Exact Algorithms

Fedor V. Fomin∗ Serge Gaspers† Dieter Kratsch‡

Mathieu Liedloff§ Saket Saurabh¶

Abstract

Iterative Compression has recently led to a number of breakthroughs
in parameterized complexity. Here, we show that the technique can
also be useful in the design of exact exponential time algorithms to
solve NP-hard problems. We exemplify our findings with algorithms
for the Maximum Independent Set problem, a parameterized and
a counting version of d-Hitting Set and the Maximum Induced
Cluster Subgraph problem.

1 Introduction

Iterative Compression is a tool that has recently been used successfully in
solving a number of problems in the area of parameterized complexity. This
technique was first introduced by Reed et al. to solve the Odd Cycle
Transversal problem, where one is interested in finding a set of at most
k vertices whose deletion makes the graph bipartite [23]. Iterative compres-
sion was used in obtaining faster FPT algorithms for Feedback Vertex
Set, Edge Bipartization and Cluster Vertex Deletion on undi-
rected graphs [4, 8, 15, 17]. Recently this technique has led to an FPT
algorithm for the Directed Feedback Vertex Set problem [6], one of
the longest open problems in the area of parameterized complexity.

Typically iterative compression algorithms are designed for parameter-
ized minimization problems with a parameter, say k. Such algorithms pro-
ceed by iterating the so called compression step: given a solution of size
∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway. E-mail:

fomin@ii.uib.no. Partially supported by the Research Council of Norway.
†Centro de Modelamiento Matemático, Universidad de Chile, 8370459 Santiago de

Chile. E-mail: sgaspers@dim.uchile.cl
‡Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine - Metz,

57045 Metz Cedex 01, France. E-mail: kratsch@univ-metz.fr.
§Laboratoire d’Informatique Fondamentale d’Orléans, Université d’Orléans, 45067

Orléans Cedex 2, France. E-mail: liedloff@univ-orleans.fr.
¶Institute of Mathematical Sciences, CIT Campus, Taramani, 600 113 Chennai, India.

E-mail: saket@imsc.res.in.

1

k+1, either compress it to a solution of size k or prove that there is no solu-
tion of size k. To obtain a fixed parameter tractable (FPT) algorithm, one
has to solve the compression step in time f(k)nO(1), where f is an arbitrary
computable function, k is a parameter and n is the length of the input. Tech-
nically speaking, almost all the iterative compression based FPT algorithms
with parameter k have f(k) ≥ 2k+1, as they all branch on all partitions
(A,D) of a k + 1 sized solution S and look for a solution of size k with the
restriction that it should contain all elements of A and none of D.

Given the success of iterative compression in designing fixed parameter
tractable algorithms, it is natural and tempting to study its applicability in
designing exact exponential time algorithms solving computationally hard
problems. The goal of the design of such algorithms is to establish algorithms
of best possible worst-case running time; at least provably faster than the
one of enumerating all prospective solutions, or loosely speaking, algorithms
better than trivial enumeration. For example, for many NP-hard or #P-hard
problems on graphs on n vertices and m edges the prospective solutions are
either subsets of vertices (or edges). Thus a trivial algorithm to solve such
an NP-hard problem basically enumerates all subsets of vertices (or edges)
and finds an optimal solution or all optimal solutions, counts the number
of optimal solutions, or enumerates all optimal solutions. This mostly leads
to algorithms of time complexity 2n (or 2m), modulo some polynomial fac-
tors. Our aim is to demonstrate that iterative compression can become a
useful tool in the design of exact exponential time algorithms as well; we
concentrate on optimization and counting problems.

One simple way to obtain an exact exponential time algorithm from an
FPT algorithm is to use the latter for all possible values of the parameter k.
In many cases this does not lead to faster exact algorithms. Assuming that
the largest (reasonable) value of the parameter k is at least n, using a typical
iterative compression based FPT algorithm does not seem to be of much use
for constructing an exact exponential time algorithm because we would end
up with an algorithm for the compression step having a factor of 2n (or 2m)
in its worst-case running time; and hence the established algorithm would
not be better than trivial enumeration.

There are various well-known techniques to design exact exponential
time algorithms for decision, optimization, counting or enumeration prob-
lems such as branching algorithms, dynamic programming (over subsets)
and inclusion-exclusion algorithms. (We refer the interested reader to [27].)
Iterative compression provides combinatorial algorithms based on certain
structural properties of the problem (in the compression step). While the
improvement in the running time compared to (complicated) branching al-
gorithms is not so impressive, the simplicity and elegance of the arguments
allow them to be used in a basic algorithms course. We find this worth em-
phasising since, despite several exceptions (like the works of Björklund et al.

2

[1, 2, 19]), the area of exact algorithms is heavily dominated by branching
algorithms, in particular, for subset problems. It is very often the case that
an (incremental) improvement in the running time of a branching algorithm
requires an extensive case analysis, which becomes very technical and te-
dious. The analysis of such algorithms can also be very complicated and
even computer based.

To our knowledge, this paper is the first attempt to use iterative com-
pression outside the domain of FPT algorithms. We exemplify this approach
by the following results:

1. We show how to solve Maximum Independent Set for a graph on
n vertices in time O(1.3196n). While the running time of our iterative
compression algorithm is higher than the running times of modern
branching algorithms [12, 13, 24], this simple algorithm serves as an
introductory example to more complicated applications of the method.

2. We obtain algorithms counting the number of minimum hitting sets of
a family of sets of an n-element ground set in time O(1.7198n), when
the size of each set is at most 3 (#Minimum 3-Hitting Set). For
#Minimum 4-Hitting Set we obtain an algorithm of running time
O(1.8997n). For Minimum 4-Hitting Set similar ideas lead to an
algorithm of running time O(1.8704n). These algorithms are faster
than the best algorithms known for these problems so far [11, 22].

3. We provide an algorithm to solve the Maximum Induced Cluster
Subgraph problem in time O∗(φn) where φ = (1 +

√
5)/2 < 1.6181

is the golden ratio. The only previous algorithm for this problem we
are aware of is a very complicated branching algorithm of Wahlström
[26] for solving 3-Hitting Set (let us note that Maximum Induced
Cluster Subgraph is a special case of 3-Hitting Set, where every
subset is a set of vertices inducing a path of length three), which results
in a running time of O(1.6278n).

As a byproduct, we provide FPT algorithms for the (k, d)-Hitting Set
problem, where the input is a family of sets of size at most d, the parameter is
k, and the task is to find a hitting set of size at most k if one exists. For d = 4
and d = 5 we achieve the respective running times O(3.0755k · nO(1)) and
O(4.0755k ·nO(1)), improving the best known algorithms for these cases [11].

2 Maximum Independent Set

Maximum Independent Set (MIS) is one of the well studied problems in
the area of exact exponential time algorithms and many papers have been
written on this problem [12, 13, 24, 25]. It is customary that if we develop a

3

new method then we first apply it to well known problems in the area. Here,
as an introductory example, we consider the NP-complete problem MIS.

Maximum Independent Set (MIS): Given a graph G = (V,E) on n
vertices, find a maximum independent set of G. An independent set of
G is a set of vertices I ⊆ V such that no two vertices of I are adjacent
in G. A maximum independent set is an independent set of maximum
size.

It is well-known that I is an independent set of a graph G iff V \ I is a
vertex cover of G, i.e. every edge of G has at least one end point in V \ I.
Therefore Minimum Vertex Cover (MVC) is the complement of MIS in
the sense that I is a maximum independent set of G iff V \ I is a minimum
vertex cover of G. This fact implies that when designing exponential time
algorithms we may equivalently consider MVC. We proceed by defining a
compression version of the MVC problem.

Comp-MVC: Given a graph G = (V,E) with a vertex cover
S ⊆ V , find a vertex cover of G of size at most |S| − 1 if one
exists.

Note that if we can solve Comp-MVC efficiently then we can solve MVC
efficiently by repeatedly applying an algorithm for Comp-MVC as follows.
Given a graph G = (V,E) on n vertices with V = {v1, v2, ..., vn}, let Gi =
G[{v1, v2, ..., vi}] and let Ci be a minimum vertex cover of Gi. By Vi we
denote the set {v1, v2, ..., vi}. We start with G1 and put C1 = ∅. Suppose
that we already have computed Ci for the graph Gi for some i ≥ 1. We form
an instance of Comp-MVC with input graph Gi+1 and S = Ci ∪ {vi+1}.
In this stage we either compress the solution S which means that we find a
vertex cover S′ of Gi+1 of size |S| − 1 and put Ci+1 = S′, or (if there is no
such S′) we put Ci+1 = S.

Our algorithm is based on the following lemma.

Lemma 1. Let Gi+1 and S be given as above. If there exists a vertex cover
Ci+1 of Gi+1 of size |S| − 1, then it can be partitioned into two sets A and
B such that
(a) A ⊂ S, |A| ≤ |S| − 1 and A is a minimal vertex cover of Gi+1[S].
(b) B ⊆ (Vi+1\A) is a minimum vertex cover of the bipartite graph Gi+1[Vi+1\
A].

Proof. Let Ci+1 be a vertex cover of Gi+1 of size |S| − 1. Its complement
Vi+1\Ci+1 is an independent set. We define A′ = Ci+1∩S and B′ = Ci+1\A′.
Then A′ is a vertex cover of Gi+1[S] and |A′| ≤ |S| − 1. Let A ⊆ A′ be a
minimal vertex cover of Gi+1[S]. We define B = B′ ∪ (A′ \ A). Since A is
a minimal vertex cover of Gi+1[S], we have that S \ A is an independent
set. This in turn implies that Gi+1[Vi+1 \ A] is a bipartite graph (with a

4

bipartition S\A and Vi+1\S). Finally, since Ci+1 is a minimum vertex cover
of Gi+1, we conclude that B is a minimum vertex cover of Gi+1[Vi+1\A].

Lemma 1 implies that the following algorithm solves Comp-MVC correctly.

Step 1: Enumerate all minimal vertex covers of size at most |S| − 1 of
Gi+1[S] as a possible candidate for A.

Step 2: For each minimal vertex cover A find a minimum vertex cover B of
the bipartite graph Gi+1[Vi+1 \A] (via the computation of a maximum
matching in this bipartite graph [16]).

Step 3: If the algorithm finds a vertex cover A ∪ B of size |S| − 1 in this
way, set Ci+1 = A ∪B, else set Ci+1 = S.

Steps 2 and 3 of the algorithm can be performed in polynomial time, and the
running time of Step 1, which is exponential, dominates the running time of
the algorithm. To enumerate all maximal independent sets or equivalently
all minimal vertex covers of a graph in Step 1, one can use the polynomial-
delay algorithm of Johnson et al. [18].

Proposition 2 ([18]). All maximal independent sets of a graph can be enu-
merated with polynomial delay.

For the running time analysis of the algorithm we need the following bounds
on the number of maximal independent sets or minimal vertex covers due
to Moon and Moser [20] and Byskov [3].

Proposition 3 ([20]). A graph on n vertices has at most 3n/3 maximal
independent sets.

Proposition 4 ([3]). The maximum number of maximal independent sets
of size at most k in any graph on n vertices for k ≤ n/3 is

N [n, k] = bn/kc(bn/kc+1)k−n(bn/kc+ 1)n−bn/kck.

Moreover, all such sets can be enumerated in time O∗(N [n, k]).1

Since

max
{

max
0≤α≤3/4

(3αn/3), max
3/4<α≤1

(N [αn, (1− α)n])
}

= O∗(22n/5),

1Throughout this paper we use a modified big-Oh notation that suppresses all poly-
nomially bounded factors. For functions f and g we write f(n) = O∗(g(n)) if f(n) =
O(g(n)poly(n)), where poly(n) is a polynomial. Furthermore, since cn · poly(n) =
O((c + ε)n) for any ε > 0, we omit polynomial factors in the big-Oh notation every
time we round the base of the exponent.

5

we have that by Propositions 2, 3, and 4, all minimal vertex covers of Gi+1[S]
of size at most |S| − 1 can be listed in time O∗(22n/5) = O(1.3196n).

Thus, the overall running time of the algorithm solving Comp-MVC is
O(1.3196n). Since the rounding of the base of the exponent dominates the
polynomial factor of the other steps of the iterative compression, we obtain
the following theorem.

Theorem 5. The given algorithm for the problems Maximum Indepen-
dent Set and Minimum Vertex Cover, established by iterative com-
pression, has running time O(1.3196n) on graphs of n vertices.

3 #d-Hitting Set and parameterized d-Hitting Set

The Hitting Set problem is a generalization of Vertex Cover. Here,
given a family of sets over a ground set of n elements, the objective is to hit
every set of the family with as few elements of the ground set as possible.
We study a version of the hitting set problem where every set in the family
has at most d elements.

Minimum d-Hitting Set (MHSd): Given a universe V of n elements
and a collection C of subsets of V of size at most d, find a minimum
hitting set of C. A hitting set of C is a subset V ′ ⊆ V such that every
subset of C contains at least one element of V ′.

A counting version of the problem is #Minimum d-Hitting Set (#MHSd)
that asks for the number of different minimum hitting sets. We denote an
instance of #MHSd by (V, C). Furthermore we assume that for every v ∈ V ,
there exists at least one set in C containing it.

We show how to obtain an algorithm to solve #MHSd using iterative
compression which uses an algorithm for #MHSd−1 as a subroutine. First
we define the compression version of the #MHSd problem.

Comp-#d-Hitting Set: Given a universe V of n elements,
a collection C of subsets of V of size at most d, and a (not
necessarily minimum) hitting set H ′ ⊆ V of C, find a minimum
hitting set Ĥ of C and compute the number of all minimum
hitting sets of C.

Lemma 6. Let O∗(and−1) be the running time of an algorithm solving
#MHSd−1, where ad−1 > 1 is some constant. Then Comp-#d-Hitting
Set can be solved in time

O∗
(

2|H
′|a
|V |−|H′|
d−1

)
.

Moreover, if |H ′| is greater than 2|V |/3 and the minimum size of a hitting
set in C is at least |H ′| − 1, then Comp-#d-Hitting Set can be solved in

6

time

O∗
((

|H ′|
2|H ′| − |V |

)
a
|V |−|H′|
d−1

)
.

Proof. To prove the lemma, we give an algorithm that, for each possible
partition (N, N̄) of H ′, computes a minimum hitting set HN and the number
hN of minimum hitting sets subject to the constraint that these hitting sets
contain all the elements of N and none of the elements of N̄ .

For every partition (N, N̄) of H ′, we either reject it as invalid or we
reduce the instance (V, C) to an instance (V ′, C′) by applying the following
two rules in the given order.

(H) If there exists a set Ci ∈ C such that Ci ⊆ N̄ then we refer to such a
partition as invalid and reject it.

(R) For all sets Ci with Ci ∩N 6= ∅ put C = C \Ci. In other words, all sets
of C, which are already hit by N , are removed.

Rule (H) is sound because if a set Ci ⊆ C is included in N̄ then no Ĥ ⊆ V \N̄
contains an element of Ci and thus there is no hitting set Ĥ ⊆ V \ N̄ . If
a partition (N, N̄) of H ′ is not invalid based on rule (R) then the instance
(V, C) can be reduced to the instance I ′ = (V ′, C′), where V ′ = V \H ′ and
C′ = {X ∩ V ′ | X ∈ C and X ∩N = ∅}.

Summarizing, the instance I ′ is obtained by removing all the elements of
V for which it has already been decided if they are part of HN or not and all
the sets that are hit by the elements in N . To complete HN , it is sufficient to
find a minimum hitting set of I ′ and to count the number of minimum hitting
sets of I ′. The crucial observation here is that I ′ is an instance of #MHSd−1.
Indeed, H ′ is a hitting set of (V, C) and by removing it we decrease the
size of every set at least by one. Therefore, we can use an algorithm for
#MHSd−1 to complete this step. When checking all partitions (N, N̄) of
H ′ it is straightforward to keep the accounting information necessary to
compute a minimum hitting set Ĥ and to count all minimum hitting sets.

Thus for every partition (N, N̄) of H ′ the algorithm solving #MHSd−1

is called for the instance I ′. There are 2|H
′| partitions (N, N̄) of the vertex

set H ′. For each such partition, the number of elements of the instance I ′

is |V ′| = |V \H ′| = |V | − |H ′|. Thus, the running time of the algorithm is
O∗
(

2|H
′|a
|V |−|H′|
d−1

)
.

If |H ′| > 2|V |/3 and the minimum size of a hitting set in C is at least
|H ′| − 1, then it is not necessary to check all partitions (N, N̄) of H ′ as the
number of relevant partitions of H ′ becomes significantly smaller than 2|H

′|,
and in this case we can speed up the algorithm. Indeed, since

• |H ′| ≥ |Ĥ| ≥ |H ′| − 1, and

• |Ĥ ∩ (V \H ′)| ≤ |V | − |H ′|,

7

it is sufficient to consider only those partitions (N, N̄) of H ′ such that

|N | ≥ |H ′| − 1− (|V | − |H ′|) = 2|H ′| − |V | − 1.

In this case, the running time of the algorithm is O∗
((|H′|

2|H′|−|V |
)
a
|V |−|H′|
d−1

)
.

The following lemma will be useful for the forthcoming running-time anal-
ysis.

Lemma 7. Let n be a natural number and a be a non-negative constant.
The sum of the terms

(
j

2j−n
)
an−j for j = 0, 1, . . . , n is upper bounded by

O∗
((

1+
√

1+4ad−1

2

)n)
.

Proof. Let j = n − m. Then
(

j
2j−n

)
an−j can be rewritten as g(n,m) =(

n−m
n−2m

)
am =

(
n−m
m

)
am. By convention, we set g(n,m) = 0 whenever n < m.

Denote by G(n) the sum
∑n

m=0 g(n,m). By a well-known decomposition of
binomial coefficients, g(n,m) = (

(
n−m−1
m−1

)
+
(
n−m−1

m

)
)am = a·g(n−2,m−1)+

g(n−1,m). ThusG(n) ≤ G(n−1)+a·G(n−2). Standard calculus yields that
this recurrence is asymptotically upper bounded by O∗(αn) where α is the
largest positive root of the polynomial x2−x−a = 0, i.e. α = 1+

√
1+4a
2 .

Now we are ready to use iterative compression to prove the following theo-
rem.

Theorem 8. Suppose there exists an algorithm to solve #MHSd−1 in time
O∗(and−1), 1 ≤ ad−1 ≤ 2. Then #MHSd can be solved in time

O∗
((

1 +
√

1 + 4ad−1

2

)n)
.

Proof. Let (V, C) be an instance of #MHSd, where V = {v1, v2, · · · , vn}.
For i = 1, 2, . . . , n, let Vi = {v1, v2, · · · , vi} and Ci = {X ∈ C | X ⊆ Vi}.
Then Ii = (Vi, Ci) constitutes an instance for the ith stage of the iteration.
We denote by Hi and hi, a minimum hitting set of an instance Ii and the
number of different minimum hitting sets of Ii respectively.

If {v1} ∈ C, then H1 = {v1} and h1 = 1 ; otherwise H1 = ∅ and h1 = 0.
Consider the ith stage of the iteration. We have that |Hi−1| ≤ |Hi| ≤

|Hi−1|+ 1 because at least |Hi−1| elements are needed to hit all the sets of
Ii except those containing element vi and Hi−1 ∪ {vi} is a hitting set of Ii.
Now, use Lemma 6 with H ′ = Hi−1 ∪ {vi} to compute a minimum hitting
set of Ii. If |H ′| ≤ 2i/3, its running time is O∗

(
max0≤j≤2i/3

{
2jai−jd−1

})
=

O∗
(

22i/3a
i/3
d−1

)
(for ad−1 ≤ 2). If |H ′| > 2i/3, the running time is

8

O∗
(

max2i/3<j≤i

{(
j

2j−i
)
ai−jd−1

})
. Since for every fixed j > 2i/3, and 1 ≤

i ≤ n, (
j

2j − i

)
ai−jd−1 ≤

(
j

2j − n

)
an−jd−1 ,

the worst case running time of the algorithm is

O∗
(

max
{

max
1≤i≤n

22i/3a
i/3
d−1, max

2n/3≤j≤n

{(
j

2j − n

)
an−jd−1

}})
.

Finally,
(2n/3
n/3

)
= 22n/3 up to a polynomial factor, and thus the running time

is O∗
(

max2n/3≤j≤n

{(
j

2j−n
)
an−jd−1

})
. By Lemma 7, this latest expression is

bounded by O∗
((

1+
√

1+4ad−1

2

)n)
.

Based on the O(1.2377n) algorithm for #MHS2 [26], we establish the
following corollary :

Corollary 9. #MHS3 can be solved in time O(1.7198n).

The same approach can be used to design an algorithm for the optimization
version MHSd, assuming that an algorithm for MHSd−1 is available. Based
on the O(1.6278n) algorithm for MHS3 [26] this leads to an O(1.8704n) time
algorithm for solving MHS4.

Corollary 10. MHS4 can be solved in time O(1.8704n).

In the following theorem we provide an alternative approach to solve #MHSd.
This is a combination of brute force enumeration (for sufficiently large hit-
ting sets) with one application of the compression algorithm of Lemma 6.
For large values of ad−1, more precisely for ad−1 ≥ 1.6553, this new approach
gives faster algorithms than the one obtained by Theorem 8.

Theorem 11. Suppose there exists an algorithm with running time O∗(and−1),
1 < ad−1 ≤ 2, solving #MHSd−1. Then #MHSd can be solved in time

min
0.5≤α≤1

max
{
O∗
((

n

αn

))
,O∗

(
2αnan−αnd−1

)}
.

Proof. First the algorithm tries all subsets of V of size bαnc and identifies
those that are a hitting set of I.

Now there are two cases. In the first case, there is no hitting set of
this size. Then the algorithm verifies all sets of larger size whether they are
hitting sets of I. It is straightforward to keep some accounting information
to determine the number of hitting sets of the smallest size found during this
enumeration phase. The running time of this phase is O∗

(∑n
i=bαnc

(
n
i

))
=

O∗
((

n
αn

))
.

9

d #MHSd MHSd

2 O(1.2377n) [26] O(1.2108n) [24]

3 O(1.7198n) O(1.6278n) [26]

4 O(1.8997n) O(1.8704n)

5 O(1.9594n) O(1.9489n)

6 O(1.9824n) O(1.9781n)

7 O(1.9920n) O(1.9902n)

Table 1: Running times of the algorithms for #MHSd and MHSd.

In the second case, there exists a hitting set of size bαnc. Then count
all minimum hitting sets using the compression algorithm of Lemma 6 with
H ′ being a hitting set of size bαnc found by the enumeration phase. By
Lemma 6, this phase of the algorithm has running time O∗

(
2αnan−αnd−1

)
.

The best running times of algorithms solving #MHSd and MHSd are sum-
marized in Table 1. For #MHS≥4 and MHS≥5, we use the algorithm of
Theorem 11. Note that the MHS2 problem is equivalent to MVC and MIS.

Finally, it is worth to note that the technique can also be used to solve the
parameterized version of d-Hitting Set. Namely, we consider the following
problem:

(k, d)-Hitting Set (k-HSd): Given a universe V of n elements, a
collection C of subsets of V of size at most d and an integer k, find a
hitting set of size at most k of C, if one exists.

Theorem 12. Suppose there exists an algorithm to solve k-HSd−1 in time
O(akd−1 · nO(1)), where ad−1 ≥ 1. Then k-HSd can be solved in time O((1 +
ad−1)k · nO(1)).

Proof. The proof is very similar to the one of Theorem 8 except that the
size of a solution is now bounded by the parameter k instead of n. Given
a universe V = {v1, v2, . . . , vn} and a collection C, for i = 1, 2, . . . , n, let
Vi = {v1, v2, . . . , vi} and Ci = {X ∈ C | X ⊆ Vi}. Then Ii = (Vi, Ci)
constitutes an instance of k-HSd for the ith stage of the iteration. We
denote by Hi a hitting set of size at most k, if one exists, of the instance Ii.

Clearly, if {v1} ∈ C, then H1 = {v1} (assuming that k ≥ 1); otherwise
H1 = ∅ and h1 = 0.

Consider now the ith stage of the iteration. The relation |Hi−1| ≤ |Hi| ≤
|Hi−1|+ 1 ≤ k + 1 holds since at least |Hi−1| elements are needed to hit all
the sets of Ii except those containing element vi and Hi−1 ∪{vi} is a hitting
set of Ii.

10

d k-HSd

2 O(1.2738k · nO(1)) [5]

3 O(2.0755k · nO(1)) [26]

4 O(3.0755k · nO(1))

5 O(4.0755k · nO(1))

6 O(5.0640k · nO(1)) [11]

7 O(6.0439k · nO(1)) [11]

Table 2: Running times of the best known algorithms solving k-HSd for
various values of d. The algorithms for 4 ≤ d ≤ 5 are based on corollary 13.

As we did in Lemma 6, for every partition (N, N̄) of Hi−1 ∪ {vi} we
apply the rules (H) and (R) (see the proof of Lemma 6). Each not rejected
partition (N, N̄) leads to an instance I ′i = (V ′i , C′i) of k-HSd−1, where V ′i =
Vi \ (Hi−1 ∪ {vi}) and C′i = {X ∩ V ′i | X ∈ Ci and X ∩ N = ∅}. Thus,
by using an algorithm for k-HSd−1, a solution for of size at most k I ′i can
be found, if one exists. The overall running time is given by the formula∑k

i=0

(
k+1
i

)
ak−id−1 ≤ 2 · (1 + ad−1)k.

In particular, an immediate consequence of the previous theorem is the
following :

Corollary 13. Suppose there exists an algorithm to solve k-HS3 in time
O(ak3 · nO(1)). Then, for any fixed d ≥ 4, k-HSd can be solved in time
O((a3 + d− 3)k · nO(1)).

By using an O(2.0755k · nO(1)) algorithm by Wahlström [26] for solving
k-HS3, we obtain the running times depicted in Table 2 for d = 4 and d = 5,
which are, up to our knowledge, the best known algorithms.

4 Maximum Induced Cluster Subgraph

Clustering objects according to given similarity or distance values is an im-
portant problem in computational biology with diverse applications, e.g., in
defining families of orthologous genes, or in the analysis of microarray ex-
periments [7, 10, 14, 17, 21]. A graph theoretic formulation of the clustering
problem is called Cluster Editing. To define this problem we need to
introduce the notion of a cluster graph. A graph is called a cluster graph if
it is a disjoint union of cliques. In the most common parameterized version
of Cluster Editing the problem is stated as follows. The input is a graph
G = (V,E) and a positive integer integer k, the parameter. The task is
to find out whether the input graph G can be transformed into a cluster

11

graph by adding or deleting at most k edges. This parameterized prob-
lem is fixed parameter tractable if there is an algorithm solving it in time
f(k) · nO(1), where f is an arbitrary computable function. The Cluster
Editing problem has been extensively studied in the realm of parameter-
ized complexity [7, 10, 14, 21]. In this section, we study a vertex version
of Cluster Editing. We study the following optimization version of the
problem.

Maximum Induced Cluster Subgraph (MICS): Given a graph
G = (V,E) on n vertices, find a maximum size subset C ⊆ V such that
G[C], the subgraph of G induced by C, is a cluster graph.

Due to the following well-known observation, the MICS problem is also
known as Maximum Induced P3-free Subgraph.

Observation 14. A graph is a disjoint union of cliques if and only if it
contains no induced subgraph isomorphic to the graph P3, the path on three
vertices.

Clearly, C ⊆ V induces a cluster graph in G = (V,E) (that is G[C] is a
disjoint union of cliques of G) iff S = V \ C hits all induced paths on three
vertices of G. Thus solving the MICS problem is equivalent to finding a
minimum size set of vertices whose removal produces a maximum induced
cluster subgraph ofG. By Observation 14, this reduces to finding a minimum
hitting set S of the collection of vertex sets of (induced) P3’s of G. Such a
hitting set S is called a P3-HS.

As customary when using iterative compression, we first define a com-
pression version of the MICS problem.

Comp-MICS: Given a graph G = (V,E) on n vertices and a
P3-HS S ⊆ V , find a P3-HS of G of size at most |S| − 1 if one
exists.

Lemma 15. Comp-MICS can be solved in time O∗(φn) where φ = (1 +√
5)/2 is the golden ratio.

Proof. For the proof we distinguish two cases based on the size of S.
Case 1: If |S| ≤ 2n/3 then the following algorithm which uses matching
techniques is applied.

Step 1: Enumerate all partitions of (N, N̄) of S.

Step 2: For each partition, compute a maximum set C ⊆ V such that
G[C] is a cluster graph, subject to the constraints that N ⊆ C and
N̄ ∩ C = ∅, if such a set C exists.

12

In Step 2, we reduce the problem of finding a maximum sized C to the
problem of finding a maximum weight matching in an auxiliary bipartite
graph. Independent of our work, Hüffner et al. [17] also use this natural idea
of reduction to weighted bipartite matching to obtain an FPT algorithm for
the vertex weighted version of Cluster Vertex Deletion using iterative
compression. For completeness, we present the details of Step 2.

If G[N] contains an induced P3 then there is obviously no C ⊆ V in-
ducing a cluster graph that respects the partition (N, N̄). We call such a
partition invalid.

Otherwise, G[N] is a cluster graph, and thus the goal is to find a max-
imum size subset C ′ of S = V \ S such that G[C ′ ∪ N] is a cluster graph.
Fortunately, such a set C ′ can be computed in polynomial time by reducing
the problem to finding a maximum weight matching in an auxiliary bipartite
graph.

First we describe the construction of the bipartite graph. Consider the
graph G[N ∪ S] and note that G[N] and G[S] are cluster graphs. Now the
following reduction rule is applied to the graph G[N ∪ S].

(R) Remove every vertex b ∈ S for which G[N ∪ {b}] contains an induced
P3.

Clearly all vertices removed by (R) cannot belong to any C ′ inducing a
cluster subgraph of G. Let Ŝ be the subset of vertices of S which are not
removed by (R). Hence the current graph is G[N ∪ Ŝ]. Clearly G[Ŝ] is
a cluster graph since G[S] is one. Further, note that no vertex of Ŝ has
neighbors in two different maximal cliques of G[N] and if a vertex of Ŝ has
a neighbor in one maximal clique of G[N] then it is adjacent to each vertex
of this maximal clique. Thus, every vertex in Ŝ has either no neighbor in N
or it is adjacent to all the vertices of exactly one maximal clique of G[N].

Now we are ready to define the auxiliary bipartite graph G′ = (A,B,E′).
Let {C1, C2, · · · , Cr} be the maximal cliques of the cluster graph G[N]. Let
{C′1, C′2, · · · , C′s} be the maximal cliques of the cluster graph G[Ŝ]. Let A =
{a1, a2, . . . , ar, a

′
1, a
′
2, . . . , a

′
s} and B = {b1, b2, . . . , bs}. Here, for all i ∈

{1, . . . , r}, each maximal clique Ci of G[N] is represented by ai ∈ A; and for
all j ∈ {1, 2, . . . , s}, each maximal clique C′j of G[Ŝ] is represented by a′j ∈ A
and by bj ∈ B.

Now there are two types of edges in G′: ajbk ∈ E′ if there is a vertex
u ∈ C′k such that u has a neighbor in Cj , and a′jbj ∈ E′ if there is a vertex
u ∈ C′j such that u has no neighbor in N . Finally we define the weights
for both types of eges in the bipartite graph G′. For an edge ajbk ∈ E′, its
weight w(ajbk) is the number of vertices in C′k being adjacent to all vertices
of the maximal clique Cj . For an edge a′jbj , its weight w(a′jbj) is the number
of vertices in C′j without any neighbor in N .

This transformation is of interest due to the following claim that uses
the above notation.

13

Claim. The maximum size of a subset C ′ of Ŝ such that G[N ∪ C ′] is a
cluster subgraph of the graph G∗ = G[N ∪ Ŝ] is equal to the maximum total
weight of a matching in the bipartite graph G′ = (A,B,E′).

Proof. We first show that any matching in G′ corresponds to a set Y ⊆ Ŝ
that together with N induces a cluster subgraph of G∗, that is, G[N ∪ Y] is
a P3-free graph. To see this, let M = {e1, e2, . . . , et} be a matching in G′.
Now if el = ajbk then Yl is the set of vertices in C′k which are adjacent to all
vertices of the maximal clique Cj . Otherwise, if el = a′jbj then Yl is the set
of vertices in C′j which have no neighbor in N . Now let us put Y =

⋃t
l=1 Yl.

Clearly, |Y | =
∑t

l=1w(el). Now we claim that G[N ∪ Y] is a disjoint union
of cliques. To the contrary, suppose there exists an induced P3 in G[N ∪Y],
say P = xyz is an induced P3 in G[N ∪Y]. Then two of the vertices of P are
in Y and one in N because of rule (R) and the fact that G[Ŝ] is a cluster
graph. First let x, z ∈ Y and y ∈ N and x ∈ C′t1 , y ∈ Ct2 and z ∈ C′t3 . This
means selecting edges at2bt1 and at2bt3 in M . Secondly, let x, y ∈ Y and
z ∈ N , and thus x and y belong to the same clique C′t1 , and z ∈ Ct2 . This
means having edges at2bt1 and a′t1bt1 in M . In both cases this contradicts M
being a matching. Consequently if there is a matching M ′ in G∗ of weight
k then there is a set Y ⊆ Ŝ of size k such that G[N ∪ Y] is a cluster graph.

To prove the other direction, let {F1,F2, · · · ,Fq} be the maximal cliques
of the cluster graph G[C ′], and let {F ′1,F ′2, · · · ,F ′p} be the maximal cliques
of the cluster graph G[N ∪ C ′]. Clearly, each F ′j , 1 ≤ j ≤ p, contains at
most one of {F l : 1 ≤ l ≤ q}. Let π(l) be the integer such that Fl ⊆ F ′π(l).
If Fl = F ′π(l) then put el = a′lbl. Otherwise, if Fl ⊂ F ′π(l) then put el =
aπ(l)bl. Since π is injective, M = {e1, e2, . . . , eq} is a matching in G′ and
the definition of the weights of the edges in G′ implies that the total weight
of M is

∑q
l=1w(el) = |C ′|. Thus there is a matching of G′ of total weight

|C ′|.

Note that the construction of the bipartite graph G′, including the applica-
tion of (R) and the computation of a maximum weighted matching of G′

can be performed in time O(n3) [9]. Thus, the running time of the algorithm
in Case 1 is the time needed to enumerate all subsets of S (whose size is
bounded by 2n/3) and this time is O∗(22n/3) = O(1.5875n).
Case 2: If |S| > 2n/3 then the algorithm needs to find a P3-HS of G of
size |S| − 1, or show that none exists.

The algorithm proceeds as in the first case. Note that at most n − |S|
vertices of V \ S can be added to N . Therefore, the algorithm verifies only
those partitions (N, N̄) of S satisfying |N | ≥ |S|−1−(n−|S|) = 2|S|−n−1.
In this second case, the worst-case running time is

O∗
(

max
2/3<α≤1

{(
αn

(2α− 1)n

)})

14

and by Lemma 7 being no more than O∗(φn) where φ = (1 +
√

5)/2.

Now we are ready to prove the following theorem using iterative compression.

Theorem 16. Given a graph on n vertices, MICS can be solved in time
O∗(φn) where φ = (1 +

√
5)/2 < 1.6181 is the golden ratio.

Proof. Given a graph G = (V,E) with vertex set V = {v1, v2, . . . , vn}, let
Vi = {v1, v2, . . . , vi} and let Ci be a maximum induced cluster subgraph of
Gi = G[Vi]. Let Si = Vi \ Ci.

The algorithm starts with G1, C1 = {v1} and S1 = ∅. At the ith iteration
of the algorithm, 1 ≤ i ≤ n, we maintain the invariant that we have at our
disposal Ci−1 a maximum set inducing a cluster subgraph of Gi−1 and Si−1

a minimum P3-HS of Gi−1. Note that Si−1 ∪ {vi} is a P3-HS of Gi and
that no P3-HS of Gi has size smaller than |Si−1|. Now use the algorithm
of Lemma 15 to solve Comp-MICS on Gi with S = Si−1 ∪ {vi}. Then the
worst-case running time is attained at the nth stage of the iteration and the
run time is O∗(φn) where φ = (1 +

√
5)/2.

5 Conclusion

Iterative compression is a technique which is succesfully used in the design of
FPT algorithms. In this paper we show that this technique can also be used
to design exact exponential time algorithms. This suggests that it might
be used in other areas of algorithms as well. For example, how useful can
iterative compression be in the design of approximation algorithms?

Carrying over techniques from the design of FPT algorithms to the de-
sign of exact exponential time algorithms and vice-versa is a natural and
tempting idea. A challenging question in this regard is whether Measure
and Conquer, a method that has been succesfully used to improve the time
analysis of simple exponential-time branching algorithms, can be adapted
for the analysis of FPT branching algorithms.

Acknowledgements. The authors are grateful to an anonymous referee
for many suggestions helping us to improve the presentation of the paper.

References

[1] A. Björklund and T. Husfeldt, Inclusion–Exclusion Algorithms for
Counting Set Partitions, in the proceedings of FOCS’06, 575–582
(2006).

[2] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets
Möbius: Fast Subset Convolution, in the proceedings of STOC’07, 67–
74 (2007).

15

[3] J. M. Byskov, Enumerating maximal independent sets with applications
to graph colouring, Oper. Res. Lett. 32(6), 547–556 (2004).

[4] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger, Improved
Algorithms for Feedback Vertex Set Problems, J. Comp. Syst. Sci. 74,
2008, pp. 1188–1198.

[5] J. Chen, I. A. Kanj, G. Xia, Improved Parameterized Upper Bounds
for Vertex Cover, in the proceedings of MFCS’06, 238–249 (2006).

[6] J. Chen, Y. Liu, S. Lu, I. Razgon, B. O’Sullivan, A Fixed-Parameter Al-
gorithm for the Directed Feedback Vertex Set Problem, J. ACM 55(5),
(2008).

[7] F. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw and Y. Zhang,
The Cluster Editing Problem: Implementations and Experiments, in
the proceedings of IWPEC’06, 13-24 (2006).

[8] F. Dehne, M. Fellows, M. Langston, F. Rosamond, and K. Stevens,
An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set
problem, Theory Comput. Syst. 41(3), 479–492 (2007).

[9] J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic
efficiency for network flow problems, J. ACM 19(2), 248–264 (1972).

[10] M. R. Fellows, M. A. Langston, F. A. Rosamond and P. Shaw, Efficient
Parameterized Preprocessing for Cluster Editing, in the proceedings of
FCT’07, 312-321 (2007).

[11] H. Fernau, Parameterized Algorithms for Hitting Set: The Weighted
Case, in the proceedings of CIAC’06, 332-343 (2006).

[12] F. V. Fomin, F. Grandoni, and D. Kratsch, Measure and conquer:
A simple O(20.288n) independent set algorithm, in the proceedings of
SODA’06, 18–25 (2006).

[13] F. V. Fomin, F. Grandoni, and D. Kratsch, A measure & conquer ap-
proach for the analysis of exact algorithms, J. ACM 56(5), (2009).

[14] J. Guo, A more effective linear kernelization for cluster editing, Theor.
Comput. Sci. 410(8-10), 718–726 (2009).

[15] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke.
Compression-based fixed-parameter algorithms for feedback vertex set
and edge bipartization, J. Comput. Syst. Sci. 72(8), 1386–1396 (2006).

[16] J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum match-
ing in bipartite graphs, SIAM J. Computing 2(4), 225–231 (1973).

16

[17] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier, Fixed-
parameter algorithms for cluster vertex deletion, in the proceedings of
LATIN’08, 711-722 (2008).

[18] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, On Generat-
ing All Maximal Independent Sets, Inf. Process. Lett. 27(3), 119–123
(1988).

[19] M. Koivisto, An O(2n) Algorithm for Graph Colouring and Other
Partitioning Problems via Inclusion-Exclusion, in the proceedings of
FOCS’06, 583–590 (2006).

[20] J. W. Moon and L. Moser, On Cliques in Graphs, Israel J. Mathematics
3, 23–28 (1965).

[21] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Trub and
S. Böcker, Exact and Heuristic Algorithms for Weighted Cluster Edit-
ing, in the proceedings of Comput. Syst. Bioinformatics Conference’07,
6 (1), 391-401 (2007).

[22] V. Raman, S. Saurabh, and S. Sikdar, Efficient Exact Algorithms
through Enumerating Maximal Independent Sets and Other Tech-
niques, Theory Comput. Syst. 41(3), 1432-4350 (2007).

[23] B. A. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals,
Oper. Res. Lett. 32 (4), 299-301 (2004).

[24] J. M. Robson, Algorithms for maximum independent sets, J. Algo-
rithms 7, 425–440 (1986).

[25] R. Tarjan and A. Trojanowski, Finding a maximum independent set,
SIAM J. Computing 6(3), 537–546 (1977).

[26] M. Wahlström, Algorithms, measures and upper bounds for satisfia-
bility and related problems, PhD thesis, Linköping University, Sweden
(2007).

[27] G. J. Woeginger, Exact algorithms for NP-hard problems: A survey, in
Combinatorial Optimization - Eureka, You Shrink!, 185–207 (2003).

17

