
ar
X

iv
:1

00
8.

40
67

v1
 [

cs
.D

S]
 2

4
A

ug
 2

01
0

A Full Derandomization of Schöning’s k-SAT Algorithm

Robin A. Moser and Dominik Scheder

Institute for Theoretical Computer Science

Department of Computer Science

ETH Zürich, 8092 Zürich, Switzerland

{robin.moser, dominik.scheder}@inf.ethz.ch

August 25, 2010

Abstract

Schöning [7] presents a simple randomized algorithm for k-SAT with running time
O(an

k
poly(n)) for ak = 2(k − 1)/k. We give a deterministic version of this algorithm

running in time O((ak + ǫ)npoly(n)), where ǫ > 0 can be made arbitrarily small.

1 Introduction

In 1999, Uwe Schöning [7] gave an extremely simple randomized algorithm for k-SAT.
Ten years on, the fastest algorithms for k-SAT are only slightly faster than his, and far
more complicated. His algorithm works as follows: Let F be a (≤ k)-CNF formula over
n variables. Start with a random truth assignment. If this does not satisfy F , pick an
arbitrary unsatisfied clause C. From C, pick a literal uniformly at random, and change
the truth value of its underlying variable, thus satisfying C. Repeat this reassignment
step O(n) times. If F is satisfiable, this finds a satisfying assignment with probability at
least

(

k

2(k − 1)

)n

.

By repetition, this gives a randomized O∗(1.334n) algorithm for 3-SAT, an O∗(1.5n) for
4-SAT, and so on (we use O∗ to suppress polynomial factors in n). Shortly after Schöning
published his algorithm, Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou,
Raghavan and Schöning [2] (henceforth Dantsin et al. for the sake of brevity) came up
with a deterministic algorithm that can be seen as an attempt to derandomize Schöning’s
algorithm. We say attempt because its running time is O∗((2k/(k + 1))n), which is ex-
ponentially slower than Schöning’s. For example, this gives an O∗(1.5n) algorithm for
3-SAT and O∗(1.6n) for 4-SAT. Subsequent papers have improved upon this running
time, mainly focusing on 3-SAT: Dantsin et al. already improve the running time for
3-SAT to O(1.481n), Brueggemann and Kern [1] to O(1.473n), Scheder [6] to O(1.465n),
and Kutzkov and Scheder [4] to O∗(1.439n). All improvements suffer from two drawbacks:
First, they fall short of achieving the running time of Schöning’s randomized algorithm,
and second, they are all fairly complicated. In this paper, we give a rather simple deter-
ministic algorithm with a running time that comes arbitrarily close to Schöning’s, thus
completely derandomizing his algorithm. We also show how to derandomize Schöning’s
algorithm for constraint satisfaction problems, which are a generalization of SAT, allowing
more than two truth values.

1

http://arxiv.org/abs/1008.4067v1

1.1 Notation

We use the notational framework introduced in [8]. We assume an infinite supply of
propositional variables. A literal u is a variable x or a complemented variable x̄. A finite
set C of literals over pairwise distinct variables is called a clause and a finite set of clauses
is a formula in CNF (Conjunctive Normal Form). We say that a variable x occurs in a
clause C if either x or x̄ are contained in it and that x occurs in the formula F if there is
any clause where it occurs. We write vbl(C) or vbl(F) to denote the set of variables that
occur in C or in F , respectively. We say that F is a (≤ k)-CNF formula if every clause
has size at most k. Let such an F be given and write V := vbl(F).

A (truth) assignment is a function α : V → {0, 1} which assigns a Boolean value to
each variable. A literal u = x (or u = x̄) is satisfied by α if α(x) = 1 (or α(x) = 0). A
clause is satisfied by α if it contains a satisfied literal and a formula is satisfied by α if all
of its clauses are. A formula is satisfiable if there exists a satisfying truth assignment to
its variables.

If α and β are two truth assignments over a set V of variables, then their (Hamming)
distance dH(α, β) is defined to be the number of variables x ∈ V where α(x) 6= β(x),
i.e. dH(α, β) := |{x ∈ V | α(x) 6= β(x)}|. For a given assignment α, we denote the set
of all assignments β with Hamming distance at most r from α by Br(α) := {β : V →
{0, 1} | dH(α, β) ≤ r} and call this the Hamming ball of radius r centered at α.

Formulas can be manipulated by permanently assigning values to variables. If F is a
given CNF formula and x ∈ vbl(F) then assigning x 7→ 1 satisfies all clauses containing
x (irrespective of what values the other variables in those closes are possibly assigned
later) whilst it truncates all clauses containing x̄ to their remaining literals. We will write
F [x:=1] to denote the formula arising from doing just this, or equally F [u:=1] where u is
a literal and we mean to assign the underlying variable the value necessary to satisfy u.
If β is a partial assignment, i.e., defined on a subset of vbl(F), then F [β] denotes the
formula we obtain from F by permanently setting the variables from those subset to their
respective values under β.

1.2 Previous Work

Both Schöning’s algorithm and its deterministic versions can be seen as not attacking
SAT directly, but rather a parametrized local search problem:

Promise-Ball-k-SAT: Given a (≤ k)-CNF formula F over n variables,
an assignment α to these variables, a natural number r, and the promise that
the Hamming ball Br(α) contains a satisfying assignment. Find any satisfying
assignment to F .

Let us clarify what we mean by saying “Algorithm A solves Promise-Ball-k-SAT”:
If F , α, and r are as described above, i.e., if Br(α) contains a satisfying assignment,
then A must return some satisfying assignment. We do not require this assignment
to lie in Br(α), however. On the other hand, if F is unsatisfiable, or Br(α) contains
no satisfying assignment, the behavior is unspecified. Of course, since we can quickly
check any purported assignment that the algorithm outputs, we can assume the algorithm
always either returns a satisfying assignment or failure.

Schöning’s original randomized algorithm for Promise-Ball-k-SAT as described in
the introductory section, henceforth called Schöning, repeatedly selects any clause un-
satisfied under α, then randomly picks a literal from that clause and flips the underlying

2

variable’s value. The algorithm gives up if a satisfying assignment has not been encoun-
tered by the time O(n) steps have been performed (it is well-known and easy to check
that n/(k − 2) correction steps are sufficient to achieve optimal efficiency).

Lemma 1 (Schöning [7]). Let F be a (≤ k)-CNF formula, α a truth assignment to its
variables, and r ∈ N. If there is a satisfying assignment in Br(α), then with probability
at least (k − 1)−r, Schöning returns a satisfying assignment. By repetition, this gives a
Monte-Carlo algorithm for Promise-Ball-k-SAT with running time O∗((k − 1)r).

Schöning turns this lemma into an algorithm for k-SAT by choosing the assignment
α uniformly at random from all 2n truth assignments:

Theorem 2 (Schöning [7]). There is a randomized algorithm that runs in polynomial
time and finds a satisfying assignment of F with probability

(

k

2(k − 1)

)n

,

provided F is satisfiable.

Proof. Let α∗ be a satisfying assignment of F and let α be an assignment chosen uni-
formly at random from {0, 1}n. For each 0 ≤ r ≤ n, the probability that the Hamming
distance dH(α,α∗) is r is

(n
r

)

/2n. In this case, Schöning’s random walk returns a satisfying
assignment with probability at least (k − 1)−r. The overall success probability thus is at
least

n
∑

r=0

(

n

r

)

2−n(k − 1)−r =

(

k

2(k − 1)

)n

,

and the running time is clearly polynomial.

By repeating the above algorithm, one obtains a Monte-Carlo algorithm for k-SAT of
running time O∗((2(k − 1)/k)n).

Deterministic Algorithms

What about deterministic algorithms? Dantsin et al. [2] give a simple recursive algo-
rithm for Promise-Ball-k-SAT running in time O∗(kr): If α satisfies F , we are done.
Otherwise, if r = 0, we can return failure. If r ≥ 1 and α does not satisfy F , we let
C be an unsatisfied clause. There are at most k literals in C, thus there are at most k
possibilities to locally change α so as to satisfy C. We recursively explore each possibility,
decreasing r by 1 (see Algorithm 1 for the details). The next achievement of Dantsin et
al. is to show how a deterministic algorithm for Promise-Ball-k-SAT can be turned
into a deterministic algorithm for k-SAT:

Lemma 3 (Dantsin et al. [2]). If algorithm A solves Promise-Ball-k-SAT in time

O∗(ar), then there is an algorithm B solving k-SAT in time O∗
((

2a
a+1

)n)

. Furthermore,

B is deterministic if A is.

Their algorithm to prove the lemma constructs a so-called covering code C ⊆ {0, 1}n
with the property that every assignment α ∈ {0, 1}n has a codeword γ ∈ C at a suit-
ably small Hamming distance from α. Schöning’s randomized selection of an initial as-
signment is turned deterministic by iterating through all codewords γ ∈ C and solving
Promise-Ball-k-SAT around each of them. Provided that the formula is satisfiable,

3

one choice of γ ∈ C will be sufficiently close to a satisfying assignment for the subsequent
local search to succeed.

The recursive algorithm for Promise-Ball-k-SAT of Dantsin et al. has running time
O∗(kr). Therefore Lemma 3 gives a running time of O∗((2k/(k +1))n). For k = 3, clever
branching rules have been designed to improve upon the O∗(3r) bound, leading to the
respective improvements on deterministic running times mentioned in the first paragraph
of this paper.

1.3 Our Contribution

Our contribution is to give a deterministic algorithm solving Promise-Ball-k-SAT in a
running time that gets arbitrarily close to that of the Monte-Carlo algorithm in Lemma 1.

Theorem 4. For every ǫ > 0, there exists a deterministic algorithm which solves the
problem Promise-Ball-k-SAT in time O((k − 1 + ǫ)r).

Combining this theorem with Lemma 3 proves our main theorem:

Theorem 5. For every ǫ > 0, there is a deterministic algorithm solving k-SAT in time

O∗
((

2(k−1)
k + ǫ

)n)

.

Before jumping into technical details, let us sketch the main idea of our improvement
for k = 3. Let F be a 3-CNF formula and α some assignment. Suppose F contains t
pairwise disjoint clauses C1, . . . , Ct, all of which are unsatisfied by α. We let Schöning’s
random walk algorithm process these clauses one after the other: In each clause Ci, it
picks one literal randomly and satisfies it. Thus, of all 3t possibilities to choose one literal
in each Ci, it chooses one uniformly at random. Let α∗ be an assignment satisfying F .
With probability at least 3−t, Schöning’s random walk chooses in each Ci a literal that
α∗ satisfies. In this case, the distance from α to α∗ decreases by t. However, with much
bigger probability, roughly 2−t/3, the random walk chooses the “correct” literal in 2t/3
clauses Ci and a “wrong” literal in the remaining t/3. In this case, the distance from
α to α∗ decreases by t/3. This is the power of Schöning’s algorithm: It hopes to make
a modest progress of t/3, which is much more likely than making a progress of t. Our
key observation is that this choice of Schöning can be derandomized: There is a set of
(roughly) 2t/3 choices which literal to satisfy in each Ci, such that at least one of them
makes a progress of at least t/3.

2 The Algorithm

To begin with, we will formally state the recursive algorithm by Dantsin et al. [2] solving
Promise-Ball-k-SAT in time O∗(kr).

Proposition 6. Algorithm 1 solves Ball-k-SAT in time O∗(kr)

Proof. The running time is easy to analyze: If F is a (≤ k)-CNF formula, then each call
to searchball causes at most k recursive calls. To see correctness of the algorithm, we
proceed by induction on r and suppose that α∗ satisfies F and dH(α,α∗) ≤ r. Let C
be the clause selected in line 6. Since α∗ satisfies C but α does not, there is at least
one literal u ∈ C such that α∗(u) = 1 and α(u) = 0. Let α′ := α∗[u := 0]. We observe
that d(α,α′) ≤ r − 1 and α′ satisfies F [u:=1] (although not necessarily F). Therefore
the induction hypothesis ensures that the recursive call to searchball(F [u:=1], α, r − 1)
return true.

4

Algorithm 1 searchball(CNF formula F , assignment α, radius r)

1: if α satisfies F then

2: return true

3: else if r = 0 then

4: return false

5: else

6: C ← any clause of F unsatisfied by α
7: for u ∈ C do

8: if searchball(F [u:=1], α, r − 1) = true then

9: return true

10: end if

11: end for

12: return false

13: end if

Proposition 7. Suppose F is a (≤ k)-CNF formula, α a truth assignment to its variables,
and r ∈ N. If every clause in F that is unsatisfied by α has size at most k − 1, then
searchball(F,α, r) runs in time O∗((k − 1)r).

Proof. The key observation is that if all clauses in F that are not satisfied by α have at
most k − 1 literals, then the same is true for any formula of the form F [u:=1]. Therefore,
any call to searchball entails at most k − 1 recursive calls.

2.1 k-ary Covering Codes

Before explaining our algorithm, we make a combinatorial detour to k-ary covering codes,
which will play a crucial role in our algorithm.

The set {1, . . . , k}t looks similar to the Boolean cube {0, 1}t in many ways. For
example, it is endowed with a Hamming distance dH : For two elements w,w′ ∈ {1, . . . , k}t,
we define dH(w,w′) to be the number of coordinates in which w and w′ do not agree.
There are also balls: We define

B(k)
r (w) := {w′ ∈ {1, . . . , k}t | dH(w,w′) ≤ r} .

What is the volume of such a ball? Well, there are
(

t
r

)

possibilities to choose the set of
coordinates in which w and w′ are supposed to differ, and for each such coordinate, there
are k − 1 ways in which they can differ. Therefore,

vol(k)(t, r) := |B(k)
r (w)| =

(

t

r

)

(k − 1)r .

We are interested in the question how many balls B
(k)
r (w) we need to cover all of {1, . . . , k}t.

Note that by symmetry, w ∈ B
(k)
r (v) iff v ∈ B

(k)
r (w) for any v,w ∈ {1, . . . , k}t.

Definition 8. Let t ∈ N. A set C ⊆ {1, . . . , k}t is called a code of covering radius r if

⋃

w∈C

B(k)
r (w) = {1, . . . , k}t .

In other words, for each w′ ∈ {1, . . . , k}n, there is some w ∈ C such that dH(w,w′) ≤ r.

5

The following lemma is an adaptation of a lemma by Dantsin et al. [2], only for
{1, . . . , k}t instead of the Boolean cube {0, 1}t.

Lemma 9. For any t, k ∈ N and 0 ≤ r ≤ t, there exists a code C ⊆ {1, . . . , k}t of covering
radius r such that

|C| ≤
⌈

t ln(k)kt
(t
r

)

(k − 1)r

⌉

Proof. The proof is probabilistic. Let m := ⌈(t ln(k)kt)/(
(

t
r

)

(k − 1)r)⌉ and build C by
sampling m points from {1, . . . , k}, uniformly at random and independently. Fix an
element w′ ∈ {1, . . . , k}t. We calculate

Pr[w′ 6∈
⋃

w∈C

B(k)
r (w)] =

(

1− vol(k)(t, r)

kt

)|C|

< e−|C|vol(k)(t,r)/kt ≤ e−t ln(k) = k−t .

By the union bound, the probability that there is any w′ 6∈ ⋃w∈C B
(k)
r (w) is at most kt

times the above expression, and thus smaller than 1. Therefore, with positive probability,
C is a code of covering radius r.

2.2 A Deterministic Algorithm for Promise-Ball-k-SAT

We will now describe our deterministic algorithm. First it chooses a sufficiently large
constant t, depending on the ǫ in Theorem 4, and computes a code C ⊆ {1, . . . , k}t of
covering radius t/k. Since k and t are constants, it can afford to compute an optimal
such code. We estimate its size using Lemma 9 and the following approximation of the
binomial coefficient:

Proposition 10 (MacWilliams, Sloane [5], Chapter 10, Corollary 9). For 0 ≤ ρ ≤ 1/2
and t ∈ N, it holds that

(

t

ρt

)

≥ 1
√

8tρ(1− ρ)

(

1

ρ

)ρt(1

1− ρ

)(1−ρ)t

We apply this bound with ρ = 1/k:

(

t

t/k

)

≥ 1√
8t
kt/k

(

k

k − 1

)(k−1)t/k

=
kt√

8t(k − 1)(k−1)t/k
.

Together with Lemma 9, we obtain, for t sufficiently large:

C ≤
⌈

t ln(k)kt
(t
t/k

)

(k − 1)t/k

⌉

≤ t2kt(k − 1)(k−1)t/k

kt(k − 1)t/k
≤ t2(k − 1)t−2t/k .

The algorithm computes this constant-size code and stores it for further use. It then
calls a recursive procedure that does the real stuff. That procedure first greedily con-
structs a maximal set G of pairwise disjoint unsatisfied k-clauses of F . That is, G =
{C1, C2, . . . , Cm}, the Ci are pairwise disjoint, each Ci in G is unsatisfied by α, and each
unsatisfied k-clause D in F shares at least one literal with some Ci.

At this point, the algorithm considers two cases. First, if m < t, it enumerates
all 2km truth assignments to the variables in G. For each such assignment β, it calls

6

searchball(F [β], α, r) and returns true if at least one such call returns true. Correct-
ness is easy to see: At least one β agrees with the promised assignment α∗, and therefore
α∗ still satisfies F [β]. To analyze the running time, observe that for any such β, the for-
mula F [β] contains no unsatisfied clause of size k. This follows from the maximality of G.
Therefore, Proposition 7 tells us that searchball(F [β], α, r) runs in time O∗((k − 1)r),
and therefore this case takes time 2kmO∗((k− 1)r). Since m < t, and t is a constant, this
is O∗((k − 1)r).

The second case is more interesting: If m ≥ t, the algorithm chooses t clauses from
G to form H = {C1, . . . , Ct}, a set of pairwise disjoint k-clauses, all unsatisfied by α.
At this point, our code will come into play, but first we introduce some notation: For
w ∈ {1, . . . , k}t, let α[w] be the assignment obtained from α by flipping the value of the
wi

th literal in Ci, for 1 ≤ i ≤ t. To do this, the algorithm has to choose a fixed but
arbitrary ordering on H as well as on the literals in each Ci. Note that α[w] satisfies
exactly one literal in each Ci, for 1 ≤ i ≤ t. Strictly speaking α[w] depends not only on
w, but also on H, so we should write α[H,w] instead of α[w]. However, as long as H is
understood, we write α[w].

Let us give an example. Suppose α is the all-0-assignment, t = 3 and H = {(x1 ∨ y1 ∨
z1), (x2 ∨ y2 ∨ z2), (x3 ∨ y3 ∨ z3)}. Let w = (2, 3, 3). Then α[w] is the assignment that sets
y1, z2, and z3 to 1 and all other variables to 0.

Consider now the promised satisfying assignment α∗ with dH(α,α∗) ≤ r. We define
w∗ ∈ {1, . . . , k}t as follows: For each 1 ≤ i ≤ t, we set w∗

i to j such that α∗ satisfies the
jth literal in Ci. Since α

∗ satisfies at least one literal in each Ci, we can do this, but since
α∗ possibly satisfies multiple literals in Ci, the choice of w∗ is not unique. Note that in
any case d(α[w∗], α∗) = d(α,α∗)− t ≤ r − t.

We could now iterate over all w ∈ {1, . . . , k}t and call searchball(F,α[w], r−t). This
would essentially be what searchball does and would yield a running time of O∗(kr),
i.e., no improvement over Dantsin et al. Therefore, we do not do this. Instead, we let
our code C play its crucial role: Rather than recursing on α[w] for each w ∈ {1, . . . , k}t,
we recurse only for each w ∈ C. By the properties of C, there is some w′ ∈ C such that
dH(w′, w∗) = t/k. Observe what happens when we go from α to α[w′]: For at most t/k
coordinates i, we have w′

i 6= w∗
i . For those coordinates, switching the w′

i
th literal of Ci

in the assignment α increases the distance to α∗. On the other hand, there are at least
t − t/k coordinates i where w′

i = w∗
i , and switching the w′

i
th literal of Ci for such an i

decreases the distance to α∗. We conclude that the distance increases at most t/k times
and decreases at least t− t/k times. Therefore

dH(α[w′], α∗) ≤ dH(α,α∗) + t/k − (t− t/k) ≤ r − (t− 2t/k).

Writing ∆ := (t − 2t/k), the procedure calls itself recursively with α[w] and r − ∆ for
each w ∈ C and at least one call will be successful. Let us analyze the running time: We
cause |C| recursive calls and decrease the complexity parameter r by ∆ in each step. This
is good, since |C| is only slightly bigger than (k − 1)∆. We conclude that the number of
leaves in this recursion tree is at most

|C|r/∆ ≤ (t2(k − 1)∆)r/∆ =
(

(k − 1)t2/∆
)r

.

7

Since t2/∆ goes to 1 as t grows, the above term is, for sufficiently large t, bounded by
(k− 1+ ǫ)r. This proves Theorem 4. We summarize the whole procedure in Algorithm 2.

Algorithm 2 searchball-fast(k ∈ N, (≤ k)-CNF formula F , assignment α, radius r,
code C ⊆ {1, . . . , k}t)
1: if α satisfies F then

2: return true

3: else if r = 0 then

4: return false

5: else

6: G← a maximal set of pairwise disjoint k-clauses of F unsatisfied by α
7: if |G| < t then
8: for each assignment β to the variables in G do

9: if searchball(F [β], α, r) = true then

10: return true

11: end if

12: end for

13: else

14: H ← {C1, . . . , Ct} ⊆ G
15: for w ∈ C do

16: if searchball-fast(F,α[H,w], r − (t− 2t/k)) = true, C then

17: return true

18: end if

19: end for

20: end if

21: end if

22: return false

3 Constraint Satisfaction Problems

Constraint Satisfaction Problems, short CSPs, are generalizations of SAT, allowing more
than two truth values. Formally, suppose there is a set V = {x1, . . . , xn} of n variables,
each of which can take on a value in {1, . . . , d}. A literal is an expression of the form
(xi 6= c) for c ∈ {1, . . . , d}. A constraint is a disjunction of literals, for example

(x1 6= 7 ∨ x2 6= 5 ∨ x3 6= d) .

A CSP formula finally is a conjunction of constraints. We call it a (d,≤ k)-CSP formula if
its variables can take d values and each constraint has at most k literals. An assignment α
to the variables V is a function α : V → {1, . . . , d} and can be represented as an element
from {1, . . . , d}n. We say α satisfies the literal (xi 6= c) if, well, α(xi) 6= c. It satisfies a
constraint if it satisfies at least one literal in it, and it satisfies a CSP formula if it satisfies
each constraint in it. Finally, (d,≤ k)-CSP is the problem of deciding whether a given
(d,≤ k)-CSP formula has a satisfying assignment. Note that (2, k)-CSP is the same as
k-SAT. Also, (d,≤ k)-CSP is NP-complete except the following three cases: (i) d = 1, (ii)
k = 1, (iii) d = k = 2. Cases (i) and (ii) are trivial problems, and (iii) is 2-SAT, which is
solvable in polynomial time (well-known, not difficult to show, but still not trivial).

8

For the cases where (d,≤ k)-CSP is NP-complete, what can we do? Iterating through
all dn assignments constitutes an algorithm solving (d, k)-CSP in time O∗(dn). Schöning’s
algorithm [7] is much faster:

Theorem 11 (Schöning [7]). There is a randomized Monte-Carlo algorithm solving (d,≤
k)-CSP in time

O∗

((

d(k − 1)

k

)n)

.

Again, for d = 2 this is the running time of Schöning for k-SAT. In his original
paper [7], Schöning describes how his algorithm seamlessly generalizes to arbitrary domain
sizes d ≥ 2: in each correction step, after a variable to reassign has been selected at
random, another random choice is made among the d − 1 values it may be changed to.
The subsequent analysis in [7] also extends to this case.

However, there is a more direct way to reduce the (d,≤ k)-CSP for d > 2 to the
Boolean problem which is then able to use any k-SAT algorithm as a black box: we
simply select for each variable, uniformly at random and independently from the other
variables, 2 out of the d possible values in the domain. Any satisfying assignment survives
this restriction with probability exactly (2/d)n and thus any k-SAT algorithm with success
probability pn generalizes to a (d,≤ k)-CSP algorithm with success probability (2p/d)n.
When plugging in Schöning for k-SAT, we obtain Theorem 11.

In order to generalize our deterministic variant to arbitrary domain sizes, we will
choose the simple route and derandomize the aforementioned reduction instead of trying
to rework the whole analysis from the previous section, with the additional advantage
that the result scales for any further improvement on the running time for deterministic
k-SAT.

Theorem 12. There exists a deterministic algorithm having running time O∗((d/2)n)
which takes any (d,≤ k)-CSP F over n variables and produces l = O∗((d/2)n) Boolean
(≤ k)-CNF formulas {Gi}1≤i≤l such that F is satisfiable if and only if there exists some
i such that Gi is satisfiable.

Using the k-SAT algorithm we developed in the previous section, we then immediately
get the derandomization of Theorem 11.

Corollary 13. For every ǫ > 0, there is a deterministic algorithm solving (d,≤ k)-CSP
in time

O∗

((

d(k − 1)

k
+ ǫ

)n)

.

Proof of Theorem 12. We start with a useful definition. A 2-box in {1, . . . , n}d is a set
of the form B := P1 × · · · × Pn, where Pi ⊆ {1, . . . , d} and |Pi| = 2. A 2-box can be
seen as a subcube of {1, . . . , d}n of side length 2 and full dimension. A random 2-box is
a 2-box sampled uniformly at random from all 2-boxes in {1, . . . , d}n: This can be done
by sampling each Pi independently, uniformly at random from all

(d
2

)

pairs in {1, . . . , d}.
As mentioned above, the probability that any fixed satisfying assignment of F lies within
a random 2-box is (2/d)n.

In order to derandomize this technique, we need to deterministically cover {1, . . . , d}n
with 2-boxes, in a fashion very similar to the covering codes used by Dantsin et al. [2]:

9

Lemma 14. Let d, n ∈ N. There is a set B of 2-boxes in {1, . . . , d}n such that

⋃

D∈B

B = {1, . . . , d}n

and

|B| ≤
(

d

2

)n

poly(n) .

Furthermore, B can be constructed in time O(|B|).
Given this lemma, our algorithm is complete: It first constructs such a suitably small

set B of 2-boxes, and then, for each 2-box P1 × · · · × Pn = B ∈ B, outputs a (≤ k)-CNF
formula arising from F by restricting the domain of the ith variable to the values in Pi.
This finishes the proof of the theorem.

It remains to prove the lemma.

Proof of Lemma 14. Note that if d is an even number, the proof is easy. For 1 ≤ j ≤ d/2,
define P (j) = {2j − 1, 2j}. Each element w ∈ {1, . . . , d/2}n defines the 2-box

Bw := P (w1) × · · · × P (wn)

and clearly
⋃

w∈{1,...,d/2}n

Bw = {1, . . . , d}n .

The difficulty arises if d is odd. As Dantsin et al. [2], we first show the existence of a
suitable set of 2-boxes, and then use a block construction and an approximation algorithm
to obtain a construction.

Lemma 15. For any n, d ∈ N, there is a set B of 2-boxes such that |B| ≤ ⌈n ln(d)(d/2)n⌉
such that

⋃

B∈B = {1, . . . , d}n.

Proof. The proof works exactly like the proof of Lemma 9. We sample ⌈n ln(d)(d/2)n⌉
many 2-boxes independently, uniformly at random and show that with positive probabil-
ity, the resulting set has the desired properties.

To prove Lemma 14, we have to derandomize the probabilistic argument we have just
seen. For this, we choose a sufficiently large constant b, set n′ := n/b and construct an
instance of Set-Cover: The ground set is {1, . . . , d}n′

and the sets are all 2-boxes therein,

of which there are
(d
2

)n′

≤ d2n
′

. We know from Lemma 15 that there is a cover of 2-boxes
of size ⌈n ln(d)(d/2)n⌉. There is a greedy algorithm for Set-Cover (see Hochbaum [3]
for example) achieving an approximation ratio of O(logN), where N is the size of the
ground set. Since in our case logN = log(dn

′

) = O(n′), this algorithm will give us a set
B of 2-boxes covering {1, . . . , d}n′

of size

|B| ∈ O

(

(n′)2
(

d

2

)n′
)

.

How much time do we need to construct B? The greedy algorithm is polynomial in the
size of its instance, which is O(d2n

′

), thus it takes time O(d2Cn′

) for some constant C.
By choosing b large enough, we can make sure that d2Cn′

= d2Cn/b is smaller than the
running time we are aiming at. Finally, we obtain a set of 2-boxes in {1, . . . , d}n by

10

“concatenating” the boxes in B: We identify a tuple (B1, . . . , Bb) ∈ Bb with the 2-box
B1 × · · · ×Bb, and therefore Bb is a set of 2-boxes covering {1, . . . , n}, and

|B|b ≤ O

(

(n′)2
(

d

2

)n′
)b

 = O

(

(n

b

)2b
(

d

2

)n)

=

(

d

2

)n

poly(n) .

This is a set of 2-boxes covering {1, . . . , d}n of the desired size, finishing the proof of
Lemma 14.

Acknowledgments

We thank our supervisor Emo Welzl for continuous support. The second author thanks
Konstantin Kutzkov for the fruitful collaboration on [4].

References

[1] T. Brueggemann and W. Kern. An improved deterministic local search algorithm for
3-SAT. Theor. Comput. Sci., 329(1-3):303–313, 2004.

[2] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
O. Raghavan, and U. Schöning. A deterministic (2− 2/(k+1))n algorithm for k-SAT
based on local search. In Theoretical Computer Science 289, pages 69–83, 2002.

[3] D. S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS
Publishing Co., Boston, MA, USA, 1997.

[4] K. Kutzkov and D. Scheder. Using CSP to improve deterministic 3-SAT. CoRR,
abs/1007.1166, 2010.

[5] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. II. North-
Holland Publishing Co., Amsterdam, 1977. North-Holland Mathematical Library, Vol.
16.

[6] D. Scheder. Guided search and a faster deterministic algorithm for 3-SAT. In Proc. of
the 8th Latin American Symposium on Theoretical Informatics (LATIN’08), Lecture
Notes In Computer Science, Vol. 4957, pages 60–71, 2008.

[7] U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems.
In FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of Computer
Science, page 410, Washington, DC, USA, 1999. IEEE Computer Society.

[8] E. Welzl. Boolean satisfiability – combinatorics and algorithms (lecture notes), 2005.
http://www.inf.ethz.ch/~emo/SmallPieces/SAT.ps.

11

	1 Introduction
	1.1 Notation
	1.2 Previous Work
	1.3 Our Contribution

	2 The Algorithm
	2.1 k-ary Covering Codes
	2.2 A Deterministic Algorithm for Promise-Ball-k-SAT

	3 Constraint Satisfaction Problems

