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Abstract

We give a self-reduction for the Circuit Evaluation problem (CircEval), and prove the
following consequences.

• Amplifying Size-Depth Lower Bounds. If CircEval has Boolean circuits of nk size
and n1−δ depth for some k and δ, then for every ε > 0, there is a δ′ > 0 such that
CircEval has circuits of n1+ε size and n1−δ

′
depth. Moreover, the resulting circuits

require only Õ(nε) bits of non-uniformity to construct. As a consequence, strong enough
depth lower bounds for Circuit Evaluation imply a full separation of P and NC (even with
a weak size lower bound).

• Lower Bounds for Quantified Boolean Formulas. Let c, d > 1 and e < 1 satisfy
c < (1 − e + d)/d. Either the problem of recognizing valid quantified Boolean formulas
(QBF) is not solvable in TIME[nc], or the Circuit Evaluation problem cannot be solved
with circuits of nd size and ne depth. This implies unconditional polynomial-time uniform
circuit lower bounds for solving QBF. We also prove that QBF does not have nc-time
uniform NC circuits, for all c < 2.

1 Introduction

Recently, Allender and Koucký [AK10] have proved that if certain weak lower bounds hold at all,
they can be amplified, in the sense that lower bounds of the form n1+ε can be extended to arbitrary
nk lower bounds for every k. For example, Allender and Koucký show that if the NC1-complete
problem Balanced Formula Evaluation (BFE) is contained in TC0, then BFE has TC0 circuits of
size n1+ε, for every ε > 0. It follows that even (seemingly) modest TC0 lower bounds on BFE
would imply that TC0 6= NC1. Similar results are proved for other problems within NC1 and NL.
All of them have the form: “an n1+ε lower bound against constant-depth class C implies arbitrary
polynomial lower bounds against the same constant-depth class C.”
∗A preliminary version of this paper appeared in the 2012 IEEE Conference on Computational Complexity [LW12].
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These results suggest an intriguing approach to separating complexity classes: find a problem
for which it is possible to prove small concrete lower bounds, then find an “amplifying” result that
extends the small bound to arbitrary polynomials. For instance, if we could prove that

SAT ∈ TIMESPACE[nO(1), log n]⇒ SAT ∈ TIMESPACE[n1.1, n.7],

then we would separate NP from LOGSPACE, using known time-space tradeoff lower bounds [For00,
FLvMV05, BW12]. It is unclear whether we should expect to prove such an amplification result
for SAT. Allender and Koucký show that any problem with their “oracle self-reduction” property
must already be in NC. (However, this does not rule out the possibility of using the assumption
that SAT is contained in logspace, to obtain an amplifying reduction for SAT.)

Our Results First, we prove an amplification lemma for a P-complete problem, the Circuit Eval-
uation problem (CircEval), relative to low-depth circuit lower bounds. (The Circuit Evaluation
problem is: given a circuit C and input x, determine if C(x) = 1.)

Let SIZEDEPTH[s(n), d(n)] be the class of languages recognized by s(n)-size d(n)-depth circuits.

Theorem 1.1 (Section 3). The following are equivalent:

• There is a k ≥ 1 and δ > 0 such that

CircEval ∈ SIZEDEPTH[nk, n1−δ].

• For all ε > 0, there is a δ′ > 0 such that

CircEval ∈ SIZEDEPTH[n1+ε, n1−δ
′
].

Moreover, these CircEval circuits need at most Õ(nε) bits of non-uniformity; that is, the
circuits can be generated in polynomial time by an algorithm given only nε · poly(log n) bits of
advice.

It follows that, in order to separate P from polynomial-size, no(1)-depth circuits, it suffices to
prove that CircEval is not in SIZEDEPTH[n1.001, n1−o(1)] for circuits with n.001-bit descriptions.
That is, any nontrivial size lower bound for sufficiently large depth implies NC 6= P. This is
counterintuitive: we believe that considering n1.001 size lower bounds should be an easier task than
considering arbitrary polynomial-size lower bounds. Theorem 1.1 says that they are equivalent
tasks for P problems in n1−δ depth.

The amplifying reduction of Theorem 1.1 has applications to proving unconditional lower
bounds. As the resulting small circuits have Õ(nε) bits of non-uniformity (even if the original
polynomial size circuits did not), this reduction can be combined with other ingredients to prove
unconditional time lower bounds for constructing low-depth circuits.

It has been known since Kannan [Kan82] that for every k, there is an Lk ∈ NP that does
not have P-uniform circuits of size O(nk). (That is, no polynomial time algorithm can construct
O(nk)-size circuits computing Lk.) However, it is an open problem to produce a natural problem
of interest (such as SAT) that does not have such circuits (for some k ≥ 1). Even producing a
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natural problem in PSPACE with this property is open. Perhaps the most promising candidate is
the canonical PSPACE-complete problem of Quantified Boolean Formulas (QBF). Although we do
not believe QBF has non-uniform NC circuits (i.e., we believe PSPACE 6⊂ NC/poly), and we know
that QBF does not have LOGSPACE-uniform NC circuits (by the space hierarchy theorem), it is
open whether PSPACE has P-uniform NC circuits [All89]. Indeed, it was even open if QBF had
n1+o(1)-time uniform NC circuits (Eric Allender, personal communication).

Combining the ideas in Theorem 1.1 with other ingredients, we can obtain non-linear time lower
bounds for generating low-depth circuits solving QBF:

Theorem 1.2 (Section 4). Let c, d ≥ 1 and e < 1 satisfy the inequality c < (1− e+ d)/d. Either

• QBF /∈ TIME[nc+o(1)], or

• CircEval does not have circuits of nd+o(1) size and ne+o(1) depth.

Three interesting settings to c, d (letting e = 0) yield the following corollaries for multitape
Turing machines:

Corollary 1.1. QBF does not have O(n1.618)-time uniform circuits of depth no(1).

Corollary 1.2. QBF does not have O(n2−ε)-time uniform circuits of n1+o(1) size and no(1) depth,
for all ε > 0.

Corollary 1.3. Either QBF cannot be solved in n1+ε time for some ε > 0, or P 6⊂ NC/poly.

The proof of Theorem 1.2 is by contradiction: assuming QBF can be efficiently solved and
Circuit Evaluation has small low-depth circuits, we show how to simulate every language recognized
by alternating machines in t time, using only t1−ε time for some ε > 0, contradicting the time
hierarchy for alternating machines. This simulation is rather non-trivial as the low-depth circuits
for CircEval are neither assumed to be uniform nor are they assumed to have a short description;
they may take considerable resources to construct. However, by exploting alternation, we can
guess-and-verify very small circuits for CircEval, and apply the ideas of Section 3 to yield larger
circuits for CircEval which, combined with the assumption on QBF, yields a faster alternating
simulation.

It is worth contrasting Theorem 1.2 with the seminal result of Hopcroft, Paul, and Valiant [HPV77]
who showed that TIME[t] ⊆ SPACE[t/ log t]. The proof of Theorem 1.2 yields a conditional improve-
ment: if CircEval were in nd size and ne depth, then

TIME[t] ⊆ ATIME[t1/c] ⊆ SPACE[t1/c].

That is, low-depth (non-uniform) simulation of P implies a certain uniform low-depth simulation
of P (as alternating time is a uniform analogue of circuit depth).

Our final theorem is an improvement on the time lower bound of Corollary 1.1:

Theorem 1.3 (Section 5). For all ε > 0, QBF does not have n2−ε-time uniform circuits of n2−ε

size and polylog depth.
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The argument is an intricate extension of Theorem 1.2; it is again a proof by contradiction, but
this proof exploits the fact that the low-depth circuits can be constructed efficiently, to recursively
build an alternating simulation that does not have to directly guess small circuits for CircEval.

Prior work has shown how slightly-faster-than-brute-force algorithms for hard problems can
imply circuit lower bounds for EXPNP and NEXP (e.g., [IKW02, KI04, Wil11]). At the other end of
the spectrum, one may investigate the consequences of ultra-efficient algorithms for hard problems,
such as nearly-linear time algorithms (which may construct low-depth circuits) for QBF, to explore
the space of absurdities that result. Such algorithms can sometimes yield circuit lower bounds
so strong that they contradict the existence of the algorithm. This is another way of looking at
Theorem 1.2 and its corollaries.

2 Preliminaries

All functions are considered to be time constructible, unless otherwise specified. We use the notation
poly(x) to denote expressions of the form xc + c where c is a universal constant, independent of x.
We use Õ notation to suppress poly(log n) factors in the running time (this is standard notation in
algorithms).

In this paper, our model of computation is the multitape Turing machine, although sometimes
random-access machines suffice (as we will now explain). When we consider alternating computa-
tion, it is important to keep in mind that multitape Turing machines and random access machines
are known to be equivalent in running time (up to polylogarithmic extra factors). That is, ev-
ery alternating random-access machine running in time t (where t(n) ≥ n) can be simulated by
an alternating multitape TM running in time t · poly(log t) (Gurevich and Shelah [GS89] proved
this result for nondeterministic computation, but their proof extends to alternating computation
straightforwardly).

Moreover, recall that, via the Hennie-Stearns simulation [HS66], multitape TMs and two-tape
TMs are time-equivalent up to polylog factors, and this simulation holds equally well for alternating
computation (the two-tape TM may write a record of all the alternating “guesses” at the beginning
of the computation, then simulate the multitape TM on those guesses). Hence we may assume
the two-tape Turing machine model in our simulations. In any case, for simplicity we often say
“algorithm” instead of the specific computational model.

In this paper, bounds of the form n · poly(log n) are called quasi-linear. We define DQL (Deter-
ministic Quasilinear Time) to be the class of languages solvable by a multitape Turing machine in
n · poly(log n) time [Sch78, NRS95].

We say that a language L? is DQL-hard if for all L ∈ DQL, there is a polylog-time reduction R
from L to L?. More precisely, there is a constant c and an algorithm A that is given random access
to (x, i) where i ranges from 1 to n · (log n)c, such that A outputs the ith bit of R(x) in O((log n)c)
time. (An alternative definition is that A can be implemented by a multitape Turing machine in
poly(log n) time, given O(n) initial steps to first position the tape heads, during which period the
TM cannot write.)

Our specific formulation of the quantified Boolean formula problem (QBF) is: given a sentence
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of the form
ψ = (∃x1)(∀x2) · · · (∃xn)φ(x1, . . . , xn)

where φ is a 3-CNF formula over Boolean variables x1, . . . , xn, determine if ψ is true. It is well
known that QBF is PSPACE-complete. A key property we use of QBF can be derived from the
DQL-hardness of CircEval. Define ATIME[t(n)] to be the class of problems solvable in t(n) time
on an alternating Turing machine. Define AQL (Alternating Quasilinear Time) as the class

AQL :=
⋃
k≥1

ATIME[n · (logk n)].

QBF is known to be complete for AQL under a strong reducibility notion. The following theorem
is implicit in work of Gurevich and Shelah [GS89]; see also Fortnow [For00].

Theorem 2.1. QBF is AQL-complete for polylog-time reductions.

Some Circuit Definitions Let SIZEDEPTH[s(n), d(n)] be the class of languages recognized by
a s(n)-size d(n)-depth family of circuits. For a machine-based complexity class C, a circuit family
{Cn} is C-uniform if there is a multitape Turing machine M obeying the constraints of class C
which produces a description of Cn on the input 1n. Note that, if C ⊆ TIME[t(n)] for some t, then
the number of gates in such a Cn can be no more than t(n).

We say that a circuit family {Cn} has b(n) bits of non-uniformity if there is an infinite family
of strings {sn}, where |sn| ≤ b(n), and a polynomial time algorithm A, such that A(1n, sn) outputs
Cn. That is, the nth circuit in the family can be efficiently described with only b(n) bits. By
a counting argument, most s(n)-size circuit families do not have less than O(s(n) log s(n)) bits of
non-uniformity, so the set of circuit families with low uniformity (say, n.001 bits) is a fairly restricted
class.

Some Related Prior Work Lipton and Viglas [LV03] proved that if P ⊂ NC/poly then
TIME[t] ⊆ SPACE[t1−ε] for some ε > 0. (Compare with Corollary 1.3.) Their proof applies
block-respecting Turing machines in a similar but not identical way.

Several uniform circuit lower bounds are known for SAT and the Permanent function. Allender
and Koucký [AK10] prove there exists a δ > 0 such that SAT cannot be solved with n1+δ size
LOGTIME-uniform TC0 circuits. In the pioneering time-space tradeoffs work of Fortnow [For00],
he also proved that SAT does not have LOGSPACE-uniform branching programs of n1+o(1) size,
and proves a result (attributed to Buhrman) that SAT does not have LOGSPACE-uniform NC1

circuits of n1+o(1) size. Allender et al. [AKRRV01] extended this to prove that SAT does not have
LOGSPACE-uniform SAC1 circuits of n1+o(1) size.

For the Permanent function, Allender [All99] proved that the Permanent does not have LOGTIME-
uniform TC0 circuits of quasi-polynomial size, which uses the fact that the Permanent is #P-
complete under efficient reductions. Koiran and Perifel [KP09] extended this lower bound, showing
that the Permanent cannot be computed by LOGTIME-uniform polynomial-size threshold circuits
of o(log log n) depth. Very recently, Chen and Kabanets [CK12] and Kinne [K12] have proved that
the Permanent does not have LOGTIME-uniform TC0 circuits where the connection language is
polynomial-time computable with no(1) bits of non-uniformity.
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To compare, we show that QBF does not have ne depth circuits constructible in nc time, for
various c > 1 and e < 1. That is, we consider a more powerful circuit class with a more powerful
uniformity notion, but prove lower bounds for an apparently harder problem. This requires a
different approach from the earlier lower bounds, which crucially rely on either clever simulations
of severely space-restricted machines or the extreme (logtime) uniformity of the circuit classes.

3 Amplifying CircEval Lower Bounds

We start with a completeness result for CircEval that is apparently folklore, but not well known:

Theorem 3.1 (Folklore). CircEval is DQL-complete for polylog-time reductions. That is, for all
L ∈ DQL, there is a quasi-linear size circuit family {Cn} such that:

• x ∈ L if and only if C|x|(x) = 1, and

• {Cn} is polylog-time uniform: given n and a gate index i of Cn (both encoded in O(log n)
bits), in poly(log n) time we can compute the tuple 〈j1, j2, g〉 where j1 and j2 are the indices
of the two possible gates in Cn which are input to gate i, and g is the gate type of gate i.

Proof. Let M be a quasilinear time machine. We say that M is oblivious if for every n and input
x of length n, the tape head movements of M(x) depend only on n. That is, M makes precisely
the same sequence of head movements on every input x of length n. Hennie and Stearns [HS66]
showed that for every multitape Turing machine M running in O(t(n)) time there is an equivalent
oblivious M ′ that uses only two tapes and runs in O(t(n) log t(n)) time. From their simulation, it
is easy to construct (in quasilinear time) a circuit C ′ on O(t(n) log t(n)) gates that simulates M ′

on n-bit inputs, completing the reduction from L(M) to CircEval. (Note that Pippenger and
Fischer [PF79] gave a simplified, recursive construction.)

This reduction can be made polylog-time uniform: if we want to compute the ith bit of the
description of the resulting CircEval instance, this can be done in poly(log n) time (independently
of the other bits). The proof that polylog-time uniformity is possible is essentially the same as
the proof of Fortnow et al. [FLvMV05] that SAT is NP-complete under polylog-time uniform
reductions. Their proof observes that the oblivious simulation of Hennie-Stearns and Pippenger-
Fischer is extremely regular: given the index i of a given timestep (encoded in O(log n) bits), we
can efficiently compute (in poly(log n) time) the head positions of the two tapes at timestep i. (We
sketch some details of why this is true in the Appendix.) Therefore, we can efficiently produce the
O(1) gates of the circuit that simulate the transition function of M ′ at timestep i.

It remains to show that CircEval itself is in DQL. First, given a circuit C as a list of tuples
(i, j1, j2, g), indicating that gate i has gate type g and takes its inputs from the outputs of gates
j1, j2, topologically sort the nodes of the directed acyclic graph corresponding to C, in quasi-linear
time. Then evaluate each gate of the circuit in increasing topological order, starting with the
inputs. On a standard algorithm model, this is a simple dynamic program that can be solved
in linear time. For multitape TMs, Fischer ([Fis74], pp.13–14) showed how to solve this problem
in quasilinear time on a multitape Turing machine. (See also Pippenger [Pip77] for a proof that
CircEval ∈ DQL.)
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In more detail, Fischer solved the mail-carrier problem: a mail carrier has a number of pushdown
stacks containing letters to be delivered. Each letter has a number i ∈ {1, . . . , n} corresponding
to a house number. The mail carrier visits houses 1, . . . , n in that order, and must deliver and
receive letters online (at house i, all letters numbered i must be delivered, and all letters that i
wishes to send must be pushed on some stack before going to house i + 1). Fischer shows that
this problem can be solved in such a way that each letter is handled O(log n) times on a multitape
Turing machine. To apply this to CircEval, imagine that we visit each gate of C in increasing
topological order. Each gate i receives letters addressed to it (its input bits) and uses that to
compute the output bit, which is sent in letters to the gates later in the topological order that i
points to. �

Next, we prove that if CircEval has low-depth circuits at all, it must have small low-depth
circuits. Moreover, these small low-depth circuits have sublinear-size representations. The proof of
this implication stems from the fact that CircEval can be solved efficiently on multitape Turing
machines, and that computation is rather local on multitape TMs: the computation can be divided
into t/b time blocks of O(b) steps each, where only O(b) bits of input are read in each time block,
and O(b) bits of output are generated. By replacing each block with a low-depth circuit, we get a
“somewhat low depth” circuit that has small size.

Lemma 3.1 (Size Reduction Lemma). If CircEval can be recognized in t(n) time on a multitape
Turing machine and CircEval has (non-uniform) circuits of size s(n) and depth d(n), then for
all functions b(n) such that Ω(log n) ≤ b(n) ≤ t(n), there is a b̃(n) ≤ b(n) · poly(log b(n)) such that
CircEval has circuits of

O(t(n) log t(n) · s(b̃(n)) size,

O( t(n)·log t(n)b(n) · d(b̃(n)) depth, and

O(s(b̃(n)) log s(b̃(n))) bits of non-uniformity.

Moreover, assuming we are given these bits of non-uniformity as additional input, the resulting
circuits for CircEval are constructible in O(t(n) · poly(log t) · s(b̃(n))) time.

Proof. Let M be a multitape Turing machine for CircEval that runs in O(t(n)) time. First, we
convert M into an oblivious M ′, as in Theorem 3.1. M ′ runs in t′(n) = O(t(n) log t(n)) time. As
mentioned in the proof of Theorem 3.1, this oblivious two-tape simulation is polylog-time uniform,
in that we can determine the head positions in step i in poly(log t) time.

Next, the computation of M ′ can be partitioned using an old trick of Hopcroft, Paul, and
Valiant [HPV77], who call the resulting machines block-respecting. The result is a reimplementation

of M ′ so that its computation of O(t′(n)) time can be partitioned into t′(n)
b(n) time blocks of O(b(n))

steps each, and each tape is partitioned into O( t
′(n)
b(n) ) tape blocks of O(b(n)) cells each. For every

time block, and each tape head, the head stays within exactly one tape block. So we can think of
each time block as running on an input of O(b(n)) bits, and each block outputs O(b(n)) bits (the
new content of those tape blocks). Note that the Hopcroft-Paul-Valiant simulation maintains the
obliviousness of M ′.1

1We remark that, in principle, this additional block-respecting condition is not required, although we think it does
simplify the overall picture. After the machine is made two-tape and oblivious, we can still partition the computation
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Given that M ′ is oblivious, the block-respecting simulation is also uniform, in the following
sense: for every n-bit input x to M ′ we can efficiently construct a computation graph GM ′ on

N = t′(n)
b(n) nodes, where each node v ∈ {1, . . . , N} represents a time block v, and there is an edge

(v, v′) if the O(b(n)) bits of content output by block v is needed as input to the computation of
block v′. More precisely, an edge (v, v′) can arise in two ways. Either:

• v immediately precedes v′ in the computation, in which case the final state and head positions
of the computation in block v is needed to give the initial state and head positions of block
v′, or

• block v writes content to some tape block, and this tape block is not read again until block
v′.

Because M ′ is oblivious, the graph GM ′ is the same for all n-bit inputs. Observe that GM ′ has
O(N) edges: for every node v of GM ′ and for each tape of M ′, there are at most two time blocks
(the block immediately prior to block v, and the last time block accessing the same tape block)
that could affect the input to block v, so each v has at most 2 incoming edges for each of the two
tapes of M ′.

Since CircEval is DQL-hard, the problem of computing the outputs of one block (given the
inputs) can be efficiently reduced to O(b(n)) instances of CircEval, each instance having size
b̃(n) = b(n) · poly(log b(n)). Furthermore, if CircEval has s(n)-size d(n)-depth circuits, then each
of these O(b(n)) instances can be computed with an S = s(b̃(n)) size, D = d(b̃(n)) depth circuit,
call it C.

Suppose we construct a Boolean circuit C ′ which replaces all nodes of GM ′ with copies of C,
feeding the O(b(n))-bit outputs of the various copies of C to the appropriate inputs of other copies,
as dictated by the edges of GM ′ . Note that by properties of the block-respecting simulation, C ′ can

be uniformly constructed, given access to C. As there are N = t′(n)
b(n) blocks and O(b(n)) circuits

per block, the final circuit for CircEval has O(t(n) log t(n) · S) size and O( t(n) log t(n)b(n) ·D) depth,

and the amount of non-uniformity needed is just O(S logS) bits, to encode C. �

Since every language in TIME[nc] has nc+o(1) size circuits, the proof of Lemma 3.1 yields the
following important corollary:

Corollary 3.1. Let T (n) ≥ n. Assume CircEval has (non-uniform) circuits of size s(n) and
depth d(n). Then all b(n) such that Ω(log T (n)) ≤ b(n) ≤ T (n), every L ∈ TIME[T (n)] has circuits

of T (n) · s(b(T (n))1+o(1)) size and T (n)1+o(1)

b(T (n)1+o(1))
d(b(T (n))1+o(1)) depth, with s(b(T (n))1+o(1)) bits of

non-uniformity.

into t′/b blocks of b steps each, and partition the two tapes into blocks of b cells, but it is not necessary to force the
two tape heads to stay in one tape block during each time block. Indeed, within b time steps, at most two blocks of
tape could possibly be visited by a tape head; therefore, at most four tape blocks (two from each tape), as well as the
current state and head position, are needed to compute the input/output of any given time block. (This observation
seems to have first been made by Paul and Reischuk [PR80].) This affects the rest of the proof only in minor ways;
the input/output size of each block computation increases by a small constant factor due to the extra tape blocks.
The definition of the computation graph GM′ remains the same, but now the indegree of a node could be 5 instead
of 4 (for a node v, each of the two tapes can be responsible for two incoming edges, and there may be a 5th incoming
edge from the node corresponding to the block immediately prior to v).
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Proof. By Theorem 3.1, CircEval is in t(n) = n1+o(1) time, and every L ∈ TIME[T (n)] can
be reduced to CircEval instances of Z = T (n)1+o(1) size. By Lemma 3.1 and the assumption
of the theorem, CircEval on inputs of size Z has circuits of Z1+o(1) · s(b(Z)1+o(1)) size and
Z1+o(1)

b(Z) · d(b(Z)1+o(1)) depth, for b(n) in the appropriate range. So L has circuits of size T (n)1+o(1) ·

s(b(T (n))1+o(1)) and depth T (n)1+o(1)

b(T (n)1+o(1))
· d(b(T (n))1+o(1)). �

Lemma 3.1 also has the following intriguing consequence which, on the face of it, has nothing
to do with Turing machines.

Reminder of Theorem 1.1 The following are equivalent:

• There is a k ≥ 1 and δ > 0 such that

CircEval ∈ SIZEDEPTH[nk, n1−δ].

• For all ε > 0, there is a δ′ > 0 such that

CircEval ∈ SIZEDEPTH[n1+ε, n1−δ
′
].

Moreover, these CircEval circuits need at most Õ(nε) bits of non-uniformity; that is, the
circuits can be generated in polynomial time by an algorithm given only nε · poly(log n) bits of
advice.

Proof. One direction (the second implies the first) is obvious. For the other, we set b(n) = n
ε
k in

the Size Reduction Lemma (Lemma 3.1); by Theorem 3.1, it suffices to use t(n) = n1+o(1) in the
Lemma. Letting δ′ = δ · ε/k, we obtain circuits for CircEval with size

n1+o(1) ·
(
nε/k

)k
= n1+ε+o(1)

and depth
n1+o(1)

nε/k
·
(
nε/k+o(1)

)1−δ
≤ n1−(ε/k)δ+o(1) = n1−δ

′+o(1),

with nε+o(1) non-uniformity. The o(1) factors can be neglected by simply adjusting δ′ and b(n) to
be a little smaller. �

Corollary 3.2. Suppose CircEval does not have circuits of n1.1 size and n1−δ depth, for every
δ > 0. Then NC 6= P.

Hence even a modest size lower bound for o(n)-depth circuits is enough to separate P and NC.

4 Uniform Circuit Lower Bounds for Quantified Boolean Formulas

It is a major open problem to prove that QBF is not solvable in n1+ε time, for some ε > 0.
The only relevant result (to our knowledge) is a barely-superlinear time lower bound for a non-
standard encoding of QBF [Will08]. A preliminary step would be to establish that QBF does
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not have n1+ε time algorithms under further restrictions on the algorithms. For one-tape Turing
machines, it has been known since the 1960’s that PALINDROMES cannot be solved in O(n2)
time, so QBF lower bounds are easy in that setting [Cob66]. For algorithms using only n1+ε

time and no(1) space simultaneously, it is also easy to prove lower bounds: it is well known that
PSPACE 6⊆ LOGSPACE-uniform NC, simply because the latter is contained in polylogarithmic space.

An interesting extension would be to prove that PSPACE 6⊆ P-uniform NC. (The class is also
called PUNC [All89].) This separation problem asks if we can solve QBF efficiently in parallel,
provided we are allowed polynomial-time preprocessing (in serial) to prepare the parallel algorithm
for its computation. Such a separation would bring us a little closer to proving P 6= PSPACE.
However, currently the separation of PSPACE from P-uniform NC is still an open problem.

The amplification lemma of the previous section can be applied to prove new uniform circuit
lower bounds for solving quantified Boolean formulas. At a high level, the general idea is similar
to that of time-space tradeoff lower bounds for SAT [For00, FLvMV05, vMe06]. First we use the
assumption that QBF has nice circuits to “speed up” generic deterministic time-bounded com-
putations (using alternations in our sped-up simulation of deterministic time). Then we use the
assumption again to remove these alternations efficiently, resulting in a contradiction to the time
hierarchy theorem. However, the actual arguments involved in our lower bounds are ultimately
quite different from those of the SAT lower bounds. In particular, the “speed-up” portion of our
simulation only works conditioned on the assumption that P has low-depth circuits, unlike in the
time-space setting (where the “speed up” simulation used there works unconditionally).

Reminder of Theorem 1.2 Let c, d ≥ 1 and e < 1 satisfy c < (1− e+ d)/d. Either

• QBF /∈ TIME[nc+o(1)], or

• CircEval does not have circuits of nd+o(1) size and ne+o(1) depth.

Proof. Suppose that both

(A) QBF ∈ TIME[nc+o(1)] and

(B) CircEval has circuits of nd+o(1) size and ne+o(1) depth.

We wish to conclude a contradiction.

Combining assumption (A) with the completeness of CircEval for quasilinear time (Theo-
rem 3.1), we can infer that every QBF instance of length n can be reduced in nc+o(1) time to a
CircEval instance of size nc+o(1) with n input bits. The completeness of QBF for alternating
quasi-linear time (Theorem 2.1) means that, if QBF is solvable in nc+o(1) time, then every language
in ATIME[O(n)] is in nc+o(1) time. By a standard padding/translation argument, this entails that
for all polynomials t(n) we have

ATIME[t] ⊆ TIME[tc+o(1)]. (1)

Assuming (B) is true, we will derive a “fast” simulation of deterministic time:

TIME[tc+o(1)] ⊆ ATIME[tc(1−ε/d)+ecε/d+o(1) + tcε+o(1)], (2)

10



for all ε ∈ (0, d). To minimize the running time of the simulation, we set

c(1− ε/d) + ecε/d = cε.

and obtain
ε = d/(d+ 1− e).

That is, from assumption (B) we conclude that there is a simulation of every tc time multitape
Turing machine that runs in alternating time tcd/(d+1−e)+o(1). But this exponent is less than 1,
provided that c < (1− e+ d)/d. Hence the combination of (1) and (2) yields a simulation of every
language in alternating time t(n) that runs in alternating time o(t(n)). This is a contradiction to
the alternating time hierarchy, which follows from a direct diagonalization, and says that

ATIME[o(t(n)] ( ATIME[t(n)].

Let us discuss how to prove (2). First, note we may assume without loss of generality that our
alternating simulation of CircEval runs on an alternating random-access machine. (As mentioned
in the Preliminaries, alternating RAMs running in time t can be simulated by an alternating 2-tape
Turing machine running in t · poly(log t) time; this is due to Gurevich and Shelah [GS89]. See also
Paul, Prauss, and Reischuk [PPR80] and Fortnow and Lund [FL93].)

Let M be a machine running in tc+o(1) time that we wish to simulate quickly. By Corollary 3.1
of Lemma 3.1 (letting s(n) = nd+o(1), d(n) = ne+o(1), and b(n) = nε/d) and assumption (B),
there is a circuit D that can simulate M on inputs of length n, where D has at most tO(dc) size,
tc(1−ε/d)+ecε/d+o(1) depth, and tcε+o(1) bits of non-uniformity. The bits of non-uniformity encode a
small tcε+o(1)-size circuit D′ for CircEval on instances of size tcε/d. Given free access to D′, we
can efficiently construct the circuit D in tO(dc) time, by constructing the computation graph G with
tc+o(1)−cε/d nodes from Lemma 3.1, and replacing each of its nodes with copies of D′.

We would like to evaluate D efficiently. One could evaluate D in the standard gate-by-gate way,
but as the size of D is tO(1), the standard simulation runs too slowly. Instead, we will exploit the
low depth of D to get a faster alternating simulation.

In particular, we can simulate the evaluation of D on an input x in alternating time

tc(1−ε/d)+ecε/d+o(1) + tcε+o(1),

as follows. First, existentially guess the computation graph G for M on tc+o(1)−cε/d = tc(1−ε/d)+o(1)

nodes, with nodes indexed by time blocks. For each node v of G representing a time block, guess
strings sv,1 and sv,2 of O(log t(n)) bits indicating which b(n)-length block of tape cells (on each
of the two tapes of M) is being accessed in time block v. Next, verify that G is consistent with
respect to sv,1 and sv,2, for all v. That is, verify that:

• vertex 1 has s1,1 = s1,2 = 1
(initially, the first block of cells is being read, on both of the tapes)

• for all i and j = 1, 2, si+1,j ∈ {si,j − 1, si,j , si,j + 1}
(from one time block to the next, the index of the tape block can change by at most 1)
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• for all i > 1, there are edges (j1, i), (j2, i) in G where j1, j2 < i, and sj1,1 = si,1, sj2,2 = si,2
(for each time block i, there are two previous time blocks j1, j2, the outputs of which are inputs
to i, and time blocks j1, j2 wrote to the same two tape blocks that i is reading)

If G does not satisfy these properties, then reject.2

Then, existentially guess a tcε+o(1)-bit string that is intended to represent D′ which according
to assumption (B) may be assumed to have tecε/d+o(1) depth. To check that this guess is correct,
universally guess an tcε/d-bit input y to D′, and verify (in tcε+o(1) time) that D′(y) = CircEval(y)
(if not, then reject). Now we are assured that the guessed small circuit D′ is correct.

The circuit D can be simulated on the input (C, x) with a tc(1−ε/d)+ecε/d+o(1)-depth uniform
circuit using the small circuit D′, along with the graph G and the sequences sv,j to route the
outputs of O(b(n)) copies of D′ (the output of a time block) to the appropriate inputs of other
D′ copies (the input to another time block). This low-depth simulation itself can be performed
in tc(1−ε/d)+ecε/d+o(1) alternating time on a random-access machine, via the standard simulation of
uniform size-tO(1) depth-d circuits in alternating time O(d+ log t) (cf. Borodin [Bor77]).

Note that, during the course of the low-depth simulation, it is possible that the guessed sequence
si,j is found to be incorrect for some i and j (e.g., the tape head of a block moves off the right
at the end of the block, yet the corresponding index does not increase by 1). In such a case, the
simulation rejects. �

Merging the two lower bounds of Theorem 1.2 into one, we obtain a non-linear time lower bound
for constructing low-depth circuits solving quantified Boolean formulas:

Corollary 4.1. For all ε > 0, QBF cannot be solved by circuits of nd size and ne depth constructible
in nc time, where c, d ≥ 1 and e < 1 satisfy c < (1− e+ d)/d.

Notice that we must have d ≤ c, as no circuit of size greater than nc can be constructed in nc

time.

Proof. The assumption that QBF has such circuits implies that QBF is in nc+o(1) time and that
QBF has nd size, ne depth circuits. Since CircEval can be reduced in quasilinear time (and poly-
logarithmic time per bit) to QBF (Theorem 2.1), there is a polylogarithmic depth, quasilinear size
circuit C which takes instances of CircEval and outputs equivalent instances of QBF. Composing
this circuit with a circuit of nd size and ne depth for QBF, we conclude that CircEval has nd+o(1)

size, ne+o(1) depth circuits. Hence the lower bound of Theorem 1.2 applies. �

Of course, we believe that for all c there is no nc time algorithm for QBF (i.e., P 6= PSPACE),
and that for all d, there are no nd size, no(1) depth circuits for QBF (i.e., PSPACE 6⊂ NC/poly).

Let us instantiate some interesting values of c, d, e in Corollary 4.1. When c = d and e = o(1),
then it suffices to set c < φ, where φ = 1.618 · · · is the golden ratio.

2 In principle, we do not have to guess and check the computation graph G. The oblivious Turing machine
simulation (see the Appendix) allows us to efficiently compute the head positions and movements at the beginning
and end of each time block, so we can in fact compute all edges of G in time that is quasi-linear in the number of its
edges. However, including this guess-and-check of G does not affect the asymptotic running time of the simulation,
so we keep it to clarify the presentation.
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Reminder of Corollary 1.1 QBF does not have O(n1.618)-time uniform circuits of depth no(1).

If d = 1 and e = o(1), then c = 2− ε suffices to obtain a lower bound.

Reminder of Corollary 1.2 QBF does not have O(n2−ε)-time uniform circuits of n1+o(1) size
and no(1) depth, for all ε > 0.

Suppose c = 1 and e = o(1). Then d can be any constant, and we can derive directly from
Theorem 1.2 that:

Reminder of Corollary 1.3 Either QBF cannot be solved in n1+ε time for some ε > 0, or
P 6⊂ NC/poly.

Finally, any non-trivial depth reduction in circuits for solving QBF results in a non-trivial size
lower bound:

Corollary 4.2. For every ε > 0, there is a c > 1 such that QBF cannot be solved by circuits of nc

size and n1−ε depth, constructible in nc time.

Proof. Let e = 1−ε and c = d. To obtain the lower bound from Corollary 4.1, we need c < (ε+c)/c,
which holds for all sufficiently small c. �

5 A Nearly-Quadratic Lower Bound

Corollary 1.2 shows that n2−o(1) time is required to produce n1+o(1) size, no(1) depth circuits solving
QBF. But this is a somewhat unnatural statement: in n2−ε time we could, in principle, generate
a circuit of size up to n2−ε. Using a considerably more involved argument, we can in fact prove a
n2−ε time lower bound for generating n2−ε size NC circuits solving QBF.

To build intuition for our approach, let us start by highlighting a weakness in the argument
of Theorem 1.2, which established lower bounds of the form “either QBF is not in nc time or
CircEval doesn’t have low-depth circuits of nd size.” Suppose that QBF is in n2−ε-time uniform
NC. The fast alternating simulation of determinism in the proof of Theorem 1.2 has two factors
that dominate the running time:

(1) the size of the small low-depth circuit D′ for computing blocks of the deterministic computa-
tion, and

(2) the depth of the circuit for the entire deterministic computation, which is obtained by replac-
ing the block computations with copies of D′.

In the proof of Theorem 1.2, our alternating simulation guessed a description of D′ and verified
its correctness (this is part (1)), then used D′ to reduce the overall depth of a larger circuit
computing QBF (this is part (2)). To prove a stronger circuit lower bound, we show how to design
a faster alternating simulation of determinism, under the assumption that QBF is in n2−ε-time NC.
Recall that the small circuit D′ in part (1) is simulating a linear time computation: this linear time
computation takes O(1) blocks of length n as input, simulates for O(n) steps, then produces O(1)
new blocks of output. Therefore (by assumption) the computation of D′ on n-bit inputs also can
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be modeled by n2−ε-time uniform NC circuits: there is an algorithm AD′ which, on 1n, prints an
NC circuit equivalent to D′ on all n-bit instances.

Our key idea is this: rather than guessing an entire description of D′, we instead design a fast
alternating simulation of AD′ which can efficiently compute gate information of D′ on demand.
This alternating simulation will be recursive, in that it divides the computation of AD′ into even
smaller blocks of length n1−δ for some δ, and recursively runs a fast alternating simulation of those
blocks in order to simulate them faster. This construction allows us to essentially construct the
circuit D′ in time that is quasi-linear in the number of inputs to D′ (as opposed to quasi-linear in
the size of D′), which yields a faster alternating simulation and a larger time lower bound.

Theorem 5.1. For all ε > 0, QBF does not have n2−ε-time uniform circuits of n2−ε size and
polylog depth.

Proof. First, note we can already assume ε < .4, from Theorem 1.2. Assume QBF has nk-time
uniform circuits of polylog depth; we want to establish a contradiction when k = 2 − ε. The
assumption says that there is an O(nk) time algorithm G with the property that for all n, G(1n)
outputs a circuit Cn of z ≤ O(nk) size and poly(log n) depth, such that C(F ) = 1 if and only if F
is a valid quantified Boolean formula encoded in n bits. Without loss of generality, G(1n) outputs
the circuit Cn encoded as a sequence of tuples of the form

〈i, i1, i2, g〉,

for all i = 1, . . . , z, where the two inputs to gate i in Cn are the outputs of gates i1 and i2, and the
gate type of i is g ∈ {INPUT,AND,OR,NOT}. (If g = INPUT , then i1 and i2 can be arbitrary;
if g = NOT then i2 can be arbitrary.)

Let L ∈ ATIME[n1+ε/2]. As in Theorem 1.2, we will show that our assumption implies a
simulation of L in ATIME[o(n1+ε/2)], a contradiction.

First, using the efficient reduction from arbitrary languages in alternating linear time to QBF
instances of Õ(n) size (Theorem 2.1), the algorithm G can be used to construct an Õ(nk(1+ε/2))-time
algorithm Print-L-Ckt with the following specification:

• for all n, Print-L-Ckt(1n) outputs a circuit Cn of Õ(nk(1+ε/2)) size and poly(log n) depth,
such that Cn recognizes L on all n-bit inputs.

An efficient algorithm for the connection language of {Cn}. Our goal will be to describe a
decision algorithm Connect-C running in Õ(n) alternating time and accepts the connection language
of the circuit family {Cn}. That is:

• for all n, Connect-C(1n, 〈i, i1, i2, g〉) = 1 if and only if the tuple 〈i, i1, i2, g〉 is output by
Print-L-Ckt(1n).

Given an Õ(n) time algorithm for Connect-C, it is easy to construct an alternating algorithm
running in Õ(n) time for deciding L: as in the proof of Theorem 1.2, we carry out the usual
simulation of a poly(log n)-depth circuit in poly(log n) alternating time, but when the simulation
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requests gate information for a gate i (the gates that feed into a gate i, and the type of gate i), the
relevant tuple 〈i, i1, i2, g〉 can be existentially guessed, and then verified by running Connect-C (in
Õ(n) time) in a separate branch of the computation.3 This implies that

ATIME[n1+ε/2] ⊆ ATIME[n · poly(log n)],

a contradiction to the alternating time hierarchy.

Now we set ourselves to the task of describing Connect-C. In the following, let t ≤ nk(1+ε/2) ·
poly(log n) be the running time of the algorithm Print-L-Ckt. Without loss of generality, we may
assume Print-L-Ckt is oblivious, as this only increases the running time by a log factor. We may also
assume that Print-L-Ckt(1n) waits until the entire circuit description of Cn has been constructed
on some internal tape, then spends its last O(|Cn|) steps copying and pasting the description of
Cn from its internal tapes to its output tape. (That is, Print-L-Ckt(1n) only begins outputting a
description over its last O(|Cn|) steps.)

Suppose (1n, 〈i, i1, i2, g〉) is an input to Connect-C. We will efficiently verify that the tu-
ple 〈i, i1, i2, g〉 is indeed part of the description of Cn, by verifying that this tuple is output by
Print-L-Ckt(1n) at some point. We will do this by simulating the algorithm Print-L-Ckt efficiently
with alternations.

The algorithm Connect-C begins by partitioning the computation of Print-L-Ckt(1n) into n
time blocks of ρ steps each, where ρ = t/n. The algorithm then constructs (via Footnote 2 in
Theorem 1.2) the O(n)-edge, n-node computation graph G, where each node of G corresponds to
a time block of Print-L-Ckt(1n), and arcs between nodes encode how the inputs and outputs of
blocks relate to each other.

It will be very useful to think of the computation graph G itself as a circuit over a single type
of gate, a function

Block : {0, 1}O(1) × {0, 1}b → {0, 1}b′ ,

where b and b′ are Θ(ρ). Block is computed at each node of G: it takes the description of a machine
M (in this particular case, the machine is Print-L-Ckt, but it may be different), as well as b bits of
input corresponding to a constant number of O(ρ)-bit blocks of tape. The Block gates in G perform
linear time computations: Block simulates M for ρ steps on the tape blocks given as input, and
outputs O(ρ)-bit blocks of new tape content, as well as all tuples 〈i′, i′1, i′2, g〉 of the circuit C that
written to output during the given time block. Without loss of generality, since tuples are only
output at the very end of the computation in a copy-paste operation, we may assume that for each
tuple of C there is exactly one time block in which it is output: no tuple is output partially in one
time block, then output partially in a later time block, etc.

By the assumption that QBF has nk-time uniform NC circuits, there is another Õ(nk)-time
algorithm Print-Block-Ckt with the specification:

• for all n, Print-Block-Ckt(1n) outputs a circuit Dn of Õ(nk) size and poly(log n) depth, such
that for all y of length n and all i = 1, . . . , O(n), Dn(M, i, y) equals the ith output bit of
Block(M,y).

3Note this sort of simulation will be described in further detail later, when we describe Connect-C itself.
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That is, Print-Block-Ckt prints a low-depth circuit computing the Block function.4 We now
claim:

Proposition 1. Let k = 2 − ε. Assuming TIME[n] is in nk-time uniform NC, the connec-
tion language of the poly(log n)-depth circuit family {Dn} computing Block can be recognized in
Õ(n) alternating time. That is, there is an alternating algorithm Connect-D such that for all n,
Connect-D(1n, 〈i, i1, i2, g〉) = 1 if and only if 〈i, i1, i2, g〉 is a tuple in the description of Dn.

Provided Proposition 1 is true, we can complete the description of Connect-C so that it is
implementable in Õ(n) time with alternations. In the proof of Theorem 1.2, we guessed and
verified a full description of a small circuit D′ computing Block for a smaller input size, and used
this D′ to efficiently simulate the entire computation with alternations. Connect-C will instead use
the algorithm Connect-D from Proposition 1 to simulate random access to the small circuit D′:
rather than generate a full description of D′, Connect-C guesses the relevant tuple of D′, and runs
the algorithm Connect-D to verify the guess.

More precisely, given the input tuple τ = 〈i, i1, i2, g〉, Connect-C existentially guesses:

• an integer j ∈ {1, . . . , n} corresponding to the time block in which τ is output by Print-L-Ckt,
and

• an integer p ∈ {1, . . . , b′} corresponding to the bit position in the output of time block j
where τ is located.

(Recall that, WLOG, each tuple τ is output in exactly one time block.) To check these guesses,
Connect-C universally chooses a z ∈ {0, . . . , |τ | − 1} and will attempt to verify that the (p+ z)th
bit output during the jth time block of Print-L-Ckt(1n) equals the zth bit of τ . This will certify
that τ is indeed output by Print-L-Ckt.

Now to verify the zth bit of τ , we do a full (alternating) simulation of Print-L-Ckt, going
backwards from the end of the jth block. Using Connect-D to guide us, this simulation will be
fast. Connect-C executes the following procedure P , which evaluates the circuit Db (computing
the Block function) on one ρ-step block:

• Let M be a description of Print-C-Ckt, and set i′ to be the index of the output gate of Db.
Set τ ′ to be the zth bit of τ , the proposed output bit. Set q = p+ z and g = AND.5

• While g 6= INPUT ,

– Existentially guess the tuple 〈i′, i′1, i′2, g〉 for the current gate i′ of Db(M, q, ·)
– Universally guess a bit w.

1. If w = 0, call Connect-D(1b, 〈i′, i′1, i′2, g〉) to verify the tuple is correct. If so, accept.

2. If w = 1, then there are several cases:
If g = NOT then update the current gate i′ to be i′1, and update τ ′ to be ¬τ ′.

4Note that such an algorithm Print-Block-Ckt exists, assuming only that TIME[n] is contained in TIME[nk]-uniform
NC.

5Note this choice for g is arbitrary; it only has to be some value not equal to INPUT .
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If g = AND and τ ′ = 1 then universally guess both i′1 and i′2 to be the new i′

(i.e., verify both inputs are 1).
If g = AND and τ ′ = 0 then existentially guess one of i′1 or i′2 to be the new i′

(i.e., verify some input is 0).
If g = OR and τ ′ = 1 then existentially guess one of i′1 or i′2 to be the new i′

(i.e., verify some input is 1).
If g = OR and τ ′ = 0 then universally guess both i′1 or i′2 to be the new i′

(i.e., verify both inputs are 0).

In other words, to verify the output bit τ [z], procedure P starts at the output gate of Db

computing the Block function, and guesses the connection information for this gate. Then in
parallel, it verifies the correctness of the guess in one branch, and continues evaluating the circuit
Db for output τ [z] in the other branch. As it continues traversing down the circuit from the output
gate, it continues to guess connection information, verifying each guess in a separate computation
branch. P continues until an input gate of Db(M, q, ·) is reached.

After P completes, the computation graph G is consulted to determine which block j′ < j
produced the input bit i′ to block j, and which output bit q′ of block j′ is the input bit i′ to block
j. (This part can be done efficiently by guessing j′ and q′, then universally both inspecting G to
verify j′, q′ and continuing the simulation assuming correct guesses.) Then i′ is updated to be the
output gate of Db again, the current block j is updated to be j′, the output bit index q is updated
to be q′, and the procedure P is started again from the beginning of the While loop, with the
current bit τ ′ and the new q and j.

This entire process is repeated until the 1st block is reached (j = 1), in which case the input
bit i′ refers to one of the original input bits to Print-L-Ckt; then, the bit can be verified directly
(it must be a 1, as the input is assumed to be unary).

Let us analyze the running time of the alternating machine Connect-C. The initial processing
to generate the computation graph G on n nodes takes n ·poly(log n) time. There are n total blocks
of computation, so the number of times P is executed in any branch of the computation is at most
n. As the depth of the circuit D is poly(log n), each execution of P takes alternating time

poly(log n) + timeD(ρ),

where timeD(m) is the running time of Connect-D on input of length m. Every call to Connect-D
happens in a separate branch of the computation, hence the running time is upper bounded by the
time of one call to Connect-D plus poly(log n) extra time for the depth. Indeed, this is true for
the entire computation over all calls to P : every single call to Connect-D is executed in a separate
branch of the alternating computation, so the running time timeD(ρ) contributes only an additive
factor to the overall running time.

Therefore we can upper bound the running time of Connect-C as

t′ ≤ n · poly(log n) + timeD(ρ).

Recalling that ρ = t/n, t = Õ(nk(1+ε/2)), and k = 2− ε, we have k(1 + ε/2)− 1 = 1− ε2/2 and

t′ ≤ Õ(n) + timeD(n1−ε
2/2 · poly(log n)).
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Assuming Proposition 1 and ε > 0, timeD(n1−ε
2/2 · poly(log n)) ≤ Õ(n), hence t′ ≤ Õ(n). We

therefore have an n · poly(log n) time algorithm for recognizing L ∈ ATIME[n1+ε/2] and our desired
contradiction to the alternating time hierarchy.

Efficiently computing a circuit for the Block function. Now we prove Proposition 1, which
will conclude the proof of the theorem. We want to describe the algorithm Connect-D which will
determine in Õ(n) alternating time whether a given input tuple 〈i, i1, i2, g〉 is part of the description
of the circuit Dn, which computes the Block function on n-bit inputs. As mentioned above, by
assumption we have an Õ(nk)-time algorithm Print-Block-Ckt that for all n, outputs the circuit Dn

when given the input 1n. The algorithm Connect-D will simulate Print-Block-Ckt efficiently using
alternations, analogously to the algorithm Connect-C. The difference is that now we are taking an
algorithm which prints a circuit that processes blocks, partitioning that algorithm’s computation
into smaller blocks, then constructing circuits for those smaller blocks in order to construct the
overall circuit. In this case, the call to Connect-D will become a recursive call.

Let t′ ≤ nk · poly(log n) be the running time of Print-Block-Ckt on the input 1n. The com-
putation Print-Block-Ckt(1n) is partitioned into n time blocks as was with Print-L-Ckt, but now
each block takes only Õ(t′/n) ≤ Õ(n1−ε) time steps each. The overall circuit Dn printed by this
algorithm computes a Block computation on n bits, but the algorithm itself is divided up into n
time blocks, each of which are Block computations on Õ(n1−ε) bits.

The behavior of Connect-D is totally analogous that of Connect-C, but instead of simulating
Print-L-Ckt(1n) we now simulate the computation Print-Block-Ckt(1n). We still make calls to
Connect-D in order to simulate blocks efficiently, but now the calls are recursive. In more detail,
Connect-D has an analogous initial processing of a computation graph G encoding the relations
between the n time blocks; this processing runs in Õ(n) time. For a given input tuple τ of Dn that
Connect-D is supposed to verify, it guesses the time block j ∈ {1, . . . , n} of Print-Block-Ckt(1n) in
which τ is generated, and will make up to j calls to a procedure P (analogous to that of Connect-C)
which processes a single time block of Õ(n1−ε) steps. Each call to P takes poly(log n) alternations
to evaluate the circuit Db (where b ≤ Õ(n1−ε)), and in each computation branch, the procedure
makes at most one recursive call to Connect-D on inputs of length b, to verify a guessed tuple
for some gate in the circuit Db. As before, all calls to Connect-D occur in separate computation
branches, so each one only contributes an additive factor to the overall running time. Analogously to
Connect-C, the running time of Connect-D on any instance (1n, 〈i, i1, i2, g〉) can be upper bounded
by the recurrence:

timeD(n) ≤ Õ(n) + timeD(n1−ε · poly(log n)),

which solves to timeD(n) ≤ Õ(n). This proves Proposition 1, and completes the proof of the
theorem. �

6 Discussion

In this paper, we have applied some fairly old techniques to prove new lower bounds. Every
component we use has been essentially known since the 1980’s. Perhaps the major difference
between then and now is our perspective. What else might we have missed? For example, could a
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clever recursive argument finally show that PSPACE is not contained in P-uniform NC? Could the
techniques here be used (along with other ideas) to finally prove that QBF is not in n1.1 time?

An interesting consequence of the Size Reduction Lemma is that, to prove a non-uniform size-
depth lower bound for CircEval, it suffices to prove one for circuits with succinct descriptions
(o(n) bits of non-uniformity). This is very intriguing, because it looks far easier to prove lower
bounds against succinctly described circuits, compared to arbitrary circuits. For example, it is not
difficult to show that there is a language in O(n log4 n) time that does not have linear-size circuits
with n-bit descriptions:

Proposition 2. TIME[n log4 n] * TIME[O(n log2 n)]/n.

Proof. (Sketch) The proof idea is identical to that of Tourlakis [Tou01], who proved NTIME[nk] *
coNTIME[o(nk)]/n. The diagonalizing machine M running in O(n log4 n) time simulates the |x|th
linear time machine M|x| on input x, treating x also as the advice string, and outputs the opposite
result. For every input length n and linear time Mn/y with advice string y, M(y) 6= (Mn/y)(y).�

However, if the restriction to n-bit descriptions is removed, it is possible that every polynomial-
time computable language has linear-size circuits. Therefore this restriction to low-uniform circuits
is rather significant, with respect to what we can prove.

One intermediate direction for future work is to try to understand the space of these new lower
bound proofs for QBF. For SAT time-space tradeoffs, the known proof methods are now extremely
well-understood, in terms of their power and limits [BW12]. The proofs for QBF here have a similar
flavor: one component turns alternating time computations into deterministic time computations,
and another component simulates deterministic time computations faster using alternations. Can
we generalize and rigorously formalize the methods used here, and build an automatic search that
can find better lower bounds?
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A Polylog-time uniformity of Pippenger-Fischer

Here we give a few more details about why the tape head positions of the Pippenger-Fischer circuit
construction (for multitape Turing machines running in time n · poly(log n)) can be computed in
poly(log n) time, given the index of a timestep t = 1, . . . , n ·poly(log n). Without loss of generality,
suppose the running time of the machine M is a power of two, 2k. The first tape is for copying and
pasting blocks of tape cells; the second tape holds the configurations of all tapes (their cell content
and “virtual” head positions) on its tracks. Also on the second tape, there is a specially marked
cell called the “home” cell. At the beginning, all “virtual” tape heads are positioned on the home
cell.

First, the simulation of one step of M is done by direct simulation, moving the head one cell
to the left (marking the tape for those tape heads that are supposed to move to the left) then
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moving two steps to the right (for those tape heads that move to the right), then moving left once
to recenter the tape head of the simulation at the home cell. (Note we are implicitly assuming that
the virtual tape heads are within one cell of the home cell: in general, the invariant is that at the
beginning of a 2q-step simulation, all virtual tape heads are within 2q cells of the home cell.)

Then a simulation of 2 steps is performed, followed by 4 steps, 8 steps, and so on, until 2k

steps are reached. The simulation of 2q steps of M (for q ≥ 1) takes two recursive calls to simulate
2q−1 steps, with two O(2q)-time phases of “shifting” before the calls, in which the tape heads move
obliviously. A shifting phase does a cyclic shift of the 2q+1 + 1 cells of the tape that are within 2q

cells of the current tape head position, either to the left or to the right, for 2q−1 cells (depending
on the content and the state). (Recall the purpose of this shift is to bring the “virtual” heads to
within 2q−1 cells of the home cell, to facilitate the recursive calls.) This involves sweeping the tape
heads 2q cells to the left of the current head position and 2q cells to the right of this position, for a
small constant number of times. After the second recursive call, two “cleanup” phases occur, where
the cyclic shifts from the shifting phases are undone. The head movements here are analogous; we
note that the two shifting phases need to record a few bits for the later cleanup phases.

To produce the head positions for a given timestep t, we only have to calculate where step
t lies within the above procedure. The number of steps in the simulation of 2q steps of M is
precisely c · 2q−1 (the cost of the shifting phases and cleanup phases) plus twice the number of
steps used to simulate for 2q−1 steps, for a small integer c. Hence each simulation of 2q steps of
M takes precisely d · q2q steps, for a fixed integer d. This 2q-step simulation is run in phases, for
increasing q = 0, 1, 2, . . ., until halting is reached. To determine which phase q that step t refers to,
we only need to perform poly(log n) arithmetic operations on O(log n)-size integers. (For example,
we could compute t := t − d · i2i for increasing i, until t < 0. This yields the desired q as well
as the step number s within the simulation of 2q steps.) Once the phase q is known, determining
where t lies within the simulation of 2q steps again only requires poly(log n) arithmetic operations
on O(log n)-size integers. (If s < e · 2q−1 for a certain integer e, then we are in the first shifting
phase; if s ∈ [e · 2q−1, e · 2q−1 + d · (q − 1)2q−1] we are in the first simulation of 2q−1 steps; if
s ∈ [e · 2q−1 + d · (q − 1)2q−1 + 1, e · 2q−1 + d · (q − 1)2q−1 + e · 2q−1] we are in the second shifting
phase, etc. The point is that all of these checks can be done with a little arithmetic.)

It is worth noting that even stronger uniformity conditions are known to hold for the Pippenger-
Fischer simulation. Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [BGHSV05] have observed
(for the purpose of providing efficiently described PCPs) that an O(log n)-space uniform circuit
of poly(n) size and O(log n) depth can implement the above reduction for simulating 2n steps, by
embedding the oblivious simulation of M into a computation on a butterfly graph (or de Bruijn
graph) and using the recursive structure of butterfly graphs to ensure an easily-described circuit.
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