
Algorithms for Quantified Boolean Formulas

Ryan Williams∗

Abstract

We present algorithms for solving quantified Boolean for-

mulas (QBF, or sometimes QSAT) with worst case runtime

asymptotically less than O(2n) when the clause-to-variable

ratio is smaller or larger than some constant. We solve QBFs

in conjunctive normal form (CNF) in O(1.709m) time and

space, where m is the number of clauses. Extending the

technique to a quantified version of constraint satisfaction

problems (QCSP), we solve QCSP with domain size d = 3

in O(1.953m) time, and QCSPs with d ≥ 4 in O(dm/2+ε)

time and space for ε > 0, where m is the number of con-

straints. For 3-CNF QBF, we describe an polynomial space

algorithm with time complexity O(1.619n) when the num-

ber of 3-CNF clauses is equal to n; the bound approaches

2n as the clause-to-variable ratio approaches 2. For 3-CNF

Π2-SAT (3-CNF QBFs of the form ∀u1 · · ·uj∃xj+1 · · ·xn F),

an improved polyspace algorithm has runtime varying from

O(1.840m) to O(1.415m), as a particular clause-to-variable

ratio increases from 1.

1 Introduction

The recent past has seen the rise of an entire subfield of
improved exponential time algorithms for NP -complete
problems such as 3-coloring, satisfiability (SAT), and
vertex cover (cf. [7], [18, 19, 5, 14, 10, 15], [4],
respectively, to name a few). By “improved”, we
mean that the base of the exponent in the runtime
is smaller than that of a brute-force search. For
example, the deterministic local search method of [5],
building upon the work of Schöning [19], solves 3-CNF
SAT in O(1.481n) time, where n is the number of
variables. This is a significant advance over O(2n); for
example, instances with 60 variables can be solved in
approximately 1010 steps, instead of 1018 (which may
not be tractable). The study of improved algorithms is
a practical way to work around the difficulty of solving
NP -hard problems by solving small to medium-sized
instances provably quickly.

Our work is an initial step in exploring improved
algorithms for PSPACE-complete problems, such as

∗Department of Computer Science, Cornell University, Ithaca,
NY, 14850. Email: rrw9@cornell.edu. Supported by a NSF
Graduate Research Fellowship.

quantified Boolean formulas (QBF). QBF is a general-
ization of the satisfiability problem. For this problem we
inquire: given a prefix normal form first-order sentence
in propositional logic, is the sentence true?

In this paper, we will give algorithms for determin-
ing the truth of sentences where the corresponding for-
mula is in conjunctive normal form (CNF). The first
algorithm solves arbitrary CNF QBF and executes in
O(1.709m) time and space, where m is the number of
clauses. This outperforms brute-force search when the
clause-to-variable ratio is less than 1.294. Generalizing,
we solve quantified constraint satisfaction problems effi-
ciently as well. The other algorithms require only poly-
nomial space, solving 3-CNF QBF and 3-CNF Π2-SAT.
Our interest in these special cases stems from the wide
interest in 3-SAT algorithms, and the role of 3-CNF
Π2-SAT as a canonical problem studied in experimental
QBF algorithms [16, 3, 8].

It has been proposed that an “easy-hard-easy”
phase transition for 3-CNF Π2-SAT occurs at a smaller
clause-to-variable ratio than that for 3-SAT: either when
m/n ≈ 1.4, or m/n ≈ 2, depending on the procedure
used to select random 3-CNF formulas [8]. These small
threshold values add significance to our bounds stated
in terms of m.

2 Obstacles

All non-trivial algorithms we could find for PSPACE-
complete subsets of QBF have only been verified ex-
perimentally in the literature [16, 3, 9]. Our research
program was to study improved algorithms for SAT,
and extract components of these algorithms that work
for universally quantified variables. Several obstacles
arose.

• Lack of locality. The technique of “local search”
for a satisfying assignment, given a candidate assign-
ment, has been very successful for finding improved SAT
algorithms [18, 19, 5]. However, considering QBF as a
two-player game, where competitors take turns setting
variables of the formula, it appears difficult to model the
opposing strategies of the players using a greedy local
search method.

1

2

• Fixed ordering on variables. Quantifying
the variables of a formula forces some variables to be
dependent on others. E.g. the value of an existential
xi that makes a formula true may depend directly on
the value of a universal uj quantified prior to xi. In an
algorithm solving this QBF, we would intuitively need
to try values for uj before we try those for xi.

On the other hand, SAT algorithms such as those of
Paturi, Pudlak, and Zane [13] (with Saks in [14]) work
well because one can randomly choose which variable
should be given a value next. In fact, most SAT
algorithms we studied have improved running times
because the “next variable” to try is chosen carefully.
Our situation is somewhat alleviated by considering 3-
CNF Π2-SAT, because then we can choose among any
of the universal variables.

• Resolution versus Q-resolution. Q-resolution
[2] is a sound and complete proof system for QBF,
and a simple extension of the well-known resolution
proof system. Several improved algorithms for SAT,
especially those with bounds in terms of the number
of clauses [10, 11], depend crucially on resolution to
ensure (among other things) that there are at least two
positive and at least two negative occurrences of each
variable in the formula. However, Q-resolution cannot
provide such guarantees. Rintanen [17] demonstrates
that the set of QBFs where each universal variable
appears at most twice is still PSPACE-complete. Even
with existential variables, Q-resolution does not enjoy
the Davis-Putnam property [6]: replacing all clauses
containing an existential variable xi with all of the “q-
resolvents” of these clauses can change the truth value
of a QBF.

• No autarkies. The concept of autarkness has
fueled much research in SAT algorithms, beginning with
Monien and Speckenmeyer [12]. An assignment of some
variables V = {vi1 , . . . , vik

} of F is autark if every
clause containing a vij is satisfied by the assignment.
Autarkness is nice because if an assignment of V is
autark, then we may remove all of the clauses containing
the vij , yet preserve satisfiability. While this has been
beneficial for SAT, it does not seem to help with QBF.
We found generalizations of autarkness for use with
QBF to be very messy.

What remains of the above? We employ two basic
strategies in our work. One is to break the QBF into
many small subformulas, and use dynamic programming
to solve the subformulas efficiently. The second is to
search over all possible satisfying assignments, but do
so in conservative ways. The second is possible when
considering k-CNF formulas.

3 Notation

We indicate universally (resp. existentially) quantified
variables over the true/false symbols {>,⊥} by ui

(resp. xi), for integers i. We require that for all
i = 1, . . . , n, either ui or xi is a variable in a formula,
but not both. This permits us to assume a linear
ordering on the variables in general. vi refers to the
ith variable (be it universal or existential). A literal of
vi (positive vi or negative vi) is denoted by li. A literal
is called existential (resp. universal) if it represents an
existentially (resp. universally) quantified variable.

Let F be a Boolean formula in conjunctive normal
form over the variables v1, . . . , vn. We represent F
as a family of subsets over {v1, v1, . . . , vn, vn}, where
vi and vi never appear in the same subset, for all i.
As is standard, the sets of F are called clauses. The
number of clauses in a formula is denoted by m, and
the number of 3-CNF clauses is t. We designate the
order of quantification by the index of the variable, i.e.
the outermost quantified variable is either x1 or u1, and
if 1 ≤ i < j ≤ n, then vi is quantified before vj in
the formula. This representation of QBFs is convenient
because with it we can eliminate the quantification
prefix that normally precedes a QBF.

4 Algorithm for CNF QBF

Our first algorithm has two stages. In the first, for
δ > 1

2 , a rule-based polyspace search over all possible
assignments of the first δm variables occurs. The
second stage is a dynamic programming method used on
resulting formulas over the remaining n− δm variables.
The two phases can be performed independently of each
other. To optimize the running time, we find a value for
δ such that the two stages require approximately the
same amount of time.

We start by describing the data structure of stage
2. Let F be a QBF over n variables, and C ⊆ F ,
where v1, . . . , vj are monotone in C; that is, the first
j variables appear either only negatively in C, only
positively, or they do not appear in any clause of C.
The Stage 2 solves “subformulas” of F with the form
(C, j) ∈ {>,⊥}. (C, j) represents the value of the
formula after the first j variables have been assigned
values, and the clauses C ⊆ F have not yet been
satisfied as a result. Therefore, if (monotone) v1, . . . , vj

appear in C, we can set these variables such that their
literals are false (i.e. ⊥), without loss of generality.

For simplicity, we will define the predicate

M(C, V) := (∀vi ∈ V)[vi is monotone in C],

3

where V ⊆ {v1, . . . , vn}. We state the above rule for the
sake of formality:

Rule 4.1. (Subformula rule)

For all (C, i), if a literal lj appears in C, and j < i,
then set lj := ⊥ in C.

Along with this rule, we provide additional simplifi-
cation rules to be performed in stages 1 and 2. We apply
them repeatedly, in the order that they are presented,
until they are no longer applicable, or until (C, i) is set
to a value. (They are being formulated in the notation
of stage 2, but may also be used in stage 1 as well.)

Rule 4.2. (Contradiction and truth rules)

If some c ∈ C is such that all lj ∈ c have lj := ⊥,
then (C, i) := ⊥. If C = ∅ then (C, i) := >.

Rule 4.3. (Monotone literal rule)

For all (C, i), if i ≤ j and M(C, xj), then set
(C, i) := (C − {c ∈ C : xj or xj ∈ c}, i). If M(C, uj),
then remove all occurrences of uj from C while the rest
of the rules are being applied.

I.e. if xj occurs only positively (resp. negatively),
then satisfy all clauses it occurs in by xj := > (resp. ⊥).
If uj occurs only positively (resp. negatively), then in
the worst case uj := ⊥ (resp. >). The monotone literal
rule has been around since Davis-Putnam [6].

4.1 Algorithm

Let be a QBF formula F in CNF, and δ > 1
2 be a

parameter to be fixed later.

Stage 1. Applying rules 4.1-4.3, perform the
usual polyspace algorithm for QBF on the first dδme
variables of F that are not automatically set by the
rules. For each assignment of dδme variables, and
resulting subformula C, find (C, δm) ∈ D from Stage
2 and return its value.

Stage 2. (Construct initial subformulas for dy-
namic programming.) For all C ⊆ F with |C| ≤
m − (n − 1) and M(C, v1, . . . , vn−1), substitute into C
the appropriate values for v1, . . . , vn−1, and try vn := ⊥
in C, then try vn := > in C. If vn is universal (existen-
tial), and C is true for both trials (one of them), then
(C, n− 1) := >. Otherwise, (C, n− 1) := ⊥.

(Build table for the last n−dδme variables.) Initial-
ize D to contain all (C, n) pairs formed above; i := n−1.

Repeat:

F := {C ⊆ F : (|C| ≤ m − i) ∧
M(C, v1, . . . , vi)}.

For all C ∈ F ,

Apply rules 4.1 − 4.3 to (C, i) if
possible. If they do not yield a value
for (C, i), then:

If vi is existential (resp. uni-
versal), then by referencing D,
set (C, i) :=
[(C − {c ∈ C : vi ∈ c}, i + 1) ∨
(resp. ∧)
(C − {c ∈ C : vi ∈ c}, i + 1)].

End for

D := {(C, i) : C ∈ F}; i := i− 1.

Until i ≤ δm.

4.2 Analysis

The proof of correctness follows from the validity
of the rules and the fact that for any subformula C
resulting from stage 1, there is a corresponding pair
(C, δm) ∈ D in stage 2 that contains the correct truth
value for C. This is true since every subset of F that
is a subformula after i variables have been set has at
most m − i clauses. (Each variable that is given a
value removes at least one clause, because we do not
set variables unless they appear both positively and
negatively.) In the algorithm, every subformula C with
size at most m− i is considered as a pair (C, i).

Let h be the entropy function; that is, h(ε) =
ε log 1

ε +(1−ε) log 1
1−ε . The following describes an upper

bound on the runtime of the algorithm.

Theorem 4.1. For 1
2 < δ < n/m, the above algorithm

runs in O(2δm +2h(δ)m) time and O(2h(δ)m +δm) space
within a polynomial factor.

Proof. In the worst case, the first stage takes 2δm steps
and δm space.

For a fixed i, the second stage considers at most∑m
j=i

(
m

m−j

)
different subformulas of type (C, i). Each

(C, i) can be evaluated in polynomial time, using the
rules and previously stored subformulas. Thus the total
time of the second stage is bounded from above by a
polynomial factor times

n−1∑

i=δm

m∑

j=i

(
m

m− j

)
≤

n−1∑

i=δm

[
(m− i)

(
m

m− i

)]

4

≤ (n− δm)(m− δm)
(

m

m− δm

)
,

when n > δm > 1
2 . The space complexity of the second

stage is upper bounded by |F |·(n−δm)(m−δm)
(

m
m−δm

)
,

since at any given time we only save the subformulas
(C, i) for the current i.

A well known result from coding theory says that
when δ > 1

2 , 2h(1−δ)m ≥ p(n) · (m
(1−δ)m

)
, where p(n) is a

polynomial. From this and the fact that h(1−δ) = h(δ),
the result follows. ¤

The time is minimized when δ = h(δ), or δ ≈ .7729.
Then, the time is O(1.709m) and it is an improvement
when m/n < 1.294.

Since h(δ) > δ for δ ≤ .7729, the above bound is
optimal (for both time and space) when δ ≥ .7729.
In this case, a tradeoff between time and space usage
occurs. For example, when δ = .85, the algorithm runs
in O(1.906m) time (the time for stage 1) and O(1.289m)
space.

While we are achieving a better runtime, the ex-
ponential space bound can be somewhat costly. Later,
we will discuss polynomial space algorithms for 3-CNF
quantified Boolean formulas.

4.3 Generalization

The dynamic programming technique does not rely
heavily on specific properties of CNF Boolean formulas.
It not surprising, then, that it can be used with quanti-
fied constraint satisfaction problems (QCSPs) in which
the variables are quantified over a domain D of size d.

Our constraint notation follows that of [7, 19]. A
constraint is a set of pairs of the form (variable, value),
and a CSP is a collection of constraints. A constraint
c = {(vi1 , d1), . . . , (vik

, dk)} is satisfied by an assignment
a (a function from variables to domain D) if there is
a pair (vij , dj) ∈ c such that a(vij) 6= dj . A QCSP of
domain d and constraint size k is defined as a first-order
sentence in prefix normal form, where the predicate of
the sentence is a CSP of domain d with k variables per
constraint. QCSPs may be thought of as two-player
versions of the usual CSPs, where one player tries to
satisfy the constraints, and an adversary tries to foil his
attempt by setting “bad” values to variables.

Stage 1 of our revised algorithm consists of dδm

steps of trying possible solutions for the first δm vari-
ables that are not trivially set by the rules, and remov-
ing constraints that are satisfied by these variable set-
tings.

Domain size δ value Time bound
d = 2 .7729 1.709m

d = 3 .6091 1.953m

d ≥ 4 .5 + ε dm/2+εm

Table 1: Worst case upper bounds for quantified CSPs
in terms of number of constraints.

For Stage 2, we store subproblems here exactly how
we stored subformulas in the original algorithm. It
is not hard to see that for the subproblem (C, j), if
some constraint c ∈ C contains the pair (vi, dk), and
i < j, then it must be that a(vi) = dk in the (partial)
assignment a that led to C. This is an analogue of the
subformula rule, and it means that by specifying (C, j),
we may quickly determine the values of any variables vi

(with i < j) that appear in C.

Notice that the previous running time bound of
Stage 2 works here. When δm variables have been set
to values, it is still true that at least δm constraints
have been already been satisfied, so we still only need
to choose subsets of size at most m− δm.

Thus the running time is O(dδm + 2h(δ)m), within
a polynomial factor. The following table gives times for
several values of d, in comparison to brute-force search.

For d ≥ 4, our algorithm does not work optimally;
this is because the optimal value for δ in this case is
less than or equal to 1/2, and our results only hold for
δ < 1/2. Thus, for d ≥ 4, the bound is O(d(.5+ε)m), for
ε > 0.

5 Algorithm for 3-CNF QBF

By restricting ourselves to 3-CNF formulas, we find
an improved time bound for QBF that requires only
polynomial space. It is well known that 2-CNF QBF is
polynomial time solvable [1]. Our idea is to branch in a
such way that either two 3-CNF clauses are “reduced”
to 2-CNF (or removed entirely), or more than just one
variable is removed in one of the branches.

A crucial observation we use has its origins with
Monien and Speckenmeyer [12], and is essentially a
reformulation of unit clause elimination. That is, given
the QBF F ∧{li, lj}, with vi as the outermost quantified
variable, if vi is existential/universal then F ∧ {li, lj} is
true if and only if F [li := >] is true, or/and F [li :=
⊥, lj := >] is true.

Additionally, we use another rule in this algorithm:

Rule 5.1. (Unit clause rule)

5

For {lj} ∈ F , if li is universal, then F := ⊥. If li
is existential, then set F := F − {c ∈ C : la ∈ c}.

Like the monotone literal rule, unit clause was intro-
duced with Davis-Putnam [6]. If a literal is universal
and is the only literal of a clause, then any F contain-
ing this clause is false. If the literal is existential, it
must be that li is true, if F is to be a true formula.

5.1 Algorithm

Given a QBF F ,

Apply monotone literal rule (4.3) and unit clause
(5.1). If some clause is false, return ⊥. If all clauses are
true, return >.

Base cases: If there are no 3-CNF clauses in F , then
solve the 2-CNF QBF and return its value. If n = 1,
then try both values for the variable and return the
value of F .

(A) If there are clauses of the form {li, lj}, {li, lj},
and i < j, then replace vj (and vj) with vi (vi) in F .

(B) If there are clauses of the form {li, lj}, {li, lj},
and i < j, then if vj is universal, return ⊥. Otherwise,
set lj := >.

(C) If clauses of form {li, lj}, {li, lk}, {lj , lk}, then
replace vj (vj) and vk (vk) with vi (vi).

Let vi be the variable with the smallest index in F .
There are five cases:

(1) If there are clauses of the form {li, lj1 , lk1} and
{li, lj2 , lk2}, then recursively call the algorithm on both:

F with li := ⊥, and

F with li := >.

(2.1) If clauses of the form {li, lj1 , lk}, {li, lj2}, and
{lj2 , la}, call the algorithm on:

F with li := ⊥, and

F with li := lj2 := la := >.

(2.2) If clauses of the form {li, lj1 , lk}, {li, lj2}, and
{lj2 , la, lb}, call the algorithm on:

F with li := ⊥, and

F with li := lj2 := >.

(3.1) If clauses of form {li, lj}, {li, lk}, {lj , la},
{lk, lb}, then call the algorithm on:

F with li := ⊥, lj := la := > and

F with li := >, lk := lb := >.

(3.2) If clauses of form {li, lj}, {li, lk}, {lj , lk, la}
(or lj ,lk appear in separate 3-CNF clauses), then call
the algorithm on:

F with li := ⊥, lj := >, and

F with li := >, lk := >.

For each of these cases, if vi is universal (resp.
existential), then return > iff both (resp. one of the)
calls return >.

5.2 Analysis

The proof of correctness is straightforward; cases
3.1 and 3.2 are sufficient since (C) takes care of the
case where {lj , lk} is in F . Note that in cases 2.1
and 3.1, it is true that three distinct variables are set:
if i = a or i = b, then these cases would already
been eliminated by either rules (A), (B), or (C), a
contradiction. It is obvious that the above algorithm
requires only polynomial space.

Let T (n, t) be the worst case running time of the
algorithm for F when the number of 3-CNF clauses is
t, and the number of variables is n. When case (1) is
taken, the recurrence is bounded by 2T (n − 1, t − 2);
one 3-CNF clause is reduced to 2-CNF, the other is
removed entirely. For case (2.1), the time is less than
T (n − 1, t − 1) + T (n − 3, t − 1). In case (2.2), it is
T (n− 1, t− 1) + T (n− 2, t− 2), and for cases (3.1) and
(3.2), it is 2T (n−3, t) and 2T (n−2, t−1), respectively.

Then we have the following double recurrence rep-
resenting an upper bound on T :

T (n, 0) = O(n2).
T (1, t) = O(1).

T (n, t) = max

2T (n− 1, t− 2),
T (n− 1, t− 1)+

T (n− 3, t− 1),
T (n− 1, t− 1)+

T (n− 2, t− 2),
2T (n− 3, t),
2T (n− 2, t− 1)

+ p(n),

where p(n) is a polynomial representing the runtime
of rule applications, (A)-(C), and case identification.

We solved for values of the recurrence assuming t =
cn, for some interesting values of c; the results are shown
in Table 2. Notice that as the ratio of 3-CNF clauses to
variables approaches 2, the running time approaches 2n.
Due to space considerations, we only prove the t = n
case. To disregard distracting polynomial factors in the
analysis, we work with a simplified recurrence T ′. Note
that here we set T ′(n, 1) as running in polynomial time,

6

which is true in the algorithm (if a formula has one 3-
CNF clause, cases (1)-(3.2) are only considered once in
the execution). This observation simplifies the proof.

T ′(n, i) = 1 for i ≤ 1, T ′(j, t) = 1 for j ≤ 1.

T ′(n, t) = max

2T ′(n− 1, t− 2),
T ′(n− 1, t− 1) + T ′(n− 3, t− 1),
T ′(n− 1, t− 1) + T ′(n− 2, t− 2),
2T ′(n− 3, t),
2T ′(n− 2, t− 1)

.

Theorem 5.1. T (n, n) = O(1.619n).

Proof. It will help us to prove the facts

(1) If n < t, T ′(n− 1, t) ≤ T ′(n, t− 1), and
(2) For n ≥ 5,

T ′(n, n− 1) = T ′(n− 1, n− 2) + T ′(n− 2, n− 3),

simultaneously with
(3) For n ≥ 3,

T ′(n, n) = T ′(n− 1, n− 1) + T ′(n− 2, n− 2),

the Fibonacci reccurrence; this will imply the theorem
since T ′(n, n) = p(n) ·T (n, n) for some sufficiently large
polynomial p(n).

First, fact (1) follows by induction on n+ t. For the
first four values of n + t, we observe that

T (1, 2) = 1 ≤ 1 = T (2, 1),
T (1, 3) = 1 ≤ 2 = T (2, 2),
T (1, 4) = 1 ≤ 2 = T (2, 3).
T (1, 5) = 1 ≤ 2 = T (2, 4) ≤ 3 = T (3, 3).

Assume that (1) holds for n′, t′ with 6 ≤ n′ + t′ <
n + t. Then by induction:

• 2T ′(n− 2, t− 2) ≤ 2T ′(n− 1, t− 3),

• T ′(n− 2, t− 1) + T ′(n− 4, t− 1) ≤ T ′(n− 1, t− 2) +
T ′(n− 3, t− 2),

• T ′(n− 2, t− 1) + T ′(n− 3, t− 2) ≤ T ′(n− 1, t− 2) +
T ′(n− 2, t− 3),

• 2T ′(n− 4, t) ≤ 2T ′(n− 3, t− 1), and

• 2T ′(n− 3, t− 1) ≤ 2T ′(n− 2, t− 2), which imply all
together that T ′(n− 1, t) ≤ T ′(n, t− 1), by definition of
T ′.

Applying fact (1) to the terms in T ′(n, n), T ′(n −
3, n − 1) ≤ T ′(n − 2, n − 2) and T ′(n − 3, n) ≤ T ′(n −
2, n− 1) ≤ T ′(n− 1, n− 2), so we find that

T ′(n, n) = max
{

2T ′(n− 1, n− 2),
T ′(n− 1, n− 1) + T ′(n− 2, n− 2)

}
.

t/n ratio Time bound
c = 1 3 · 1.619n = O(1.619n)

c = 1.294 2 · 1.524t = O(1.725n)
c = 1.4 2 · 1.4983t = O(1.762n)
c = 1.8 3 · 1.436t = O(1.919n)
c = 2 2 · 1.415t = O(2n)

Table 2: Calculated bounds for the 3-CNF QBF algo-
rithm.

Now we simultaneously prove (2) and (3) by induc-
tion. For n = 5, T ′(5, 4) = T ′(4, 3) + T ′(3, 2), and for
n = 3, T ′(2, 2) + T ′(1, 1) = T (3, 3).

For the inductive step, suppose facts (2) and (3)
for any k < n. By induction, T ′(n − 1, n − 2) =
T ′(n− 2, n− 3) + T ′(n− 3, n− 4) by (2), so

T ′(n, n) =

max
{

2T ′(n− 2, n− 3) + 2T ′(n− 3, n− 4),
T ′(n− 1, n− 1) + T ′(n− 2, n− 2)

}
.

By definition of T ′, 2T ′(n−2, n−3) ≤ T ′(n−1, n−1)
and 2T ′(n − 3, n − 4) ≤ T ′(n − 2, n − 2), therefore
T ′(n, n) ≤ T ′(n − 1, n − 1) + T ′(n − 2, n − 2), and (3)
holds.

To prove (2), T (n− 1, n) =

max
{

2T ′(n− 2, n− 2),
T ′(n− 1, n− 2) + T ′(n− 2, n− 3)

}
,

and by induction on fact (3), 2T ′(n − 2, n − 2) =
2T ′(n− 3, n− 3) + 2T ′(n− 4, n− 4).

Again, by definition of T ′, T ′(n−1, n−2) ≥ 2T ′(n−
3, n− 3) and T ′(n− 2, n− 3) ≥ 2T ′(n− 4, n− 4), so we
conclude T (n−1, n) ≤ T ′(n−1, n−2)+T ′(n−2, n−3).
¤

6 Solving 3-CNF Π2-SAT

By considering more restrictive quantifications of vari-
ables, we obtain a better bound. The formulas in 3-
CNF Π2-SAT consist of 3-CNF formulas F of the form:
∀u1 · · · ∀uj∃xj+1 · · · ∃xn F . More formally, for some j,
if i ≤ j then ui is a variable in F , and if i > j then xi

is a variable.

We will say that a clause is i-universal if it contains
exactly i universal literals. In solving 3-CNF Π2-SAT,
we may choose the order of what kind of clauses we
remove: 0, 1, or 2-universal. Since the quantification
consists of one set of universal variables followed by
existential variables, the strategy is clear: we efficiently
eliminate the clauses containing universal variables,
then solve the remaining 3-SAT instance.

7

This algorithm uses another new rule:

Rule 6.1. (Trivial falsity rule)

If there is a clause c ∈ F containing only universal
variables, then set F := ⊥.

I.e. if a clause has no existential literals, this clause can-
not possibly be satisfied in every case, so the subformula
is false. This rule appears in Cadoli, et. al. [3] and in
Büning, et. al. [2].

6.1 Algorithm

Given a 3-CNF Π2-SAT instance F ,

(0) If some clause is false, return ⊥. If all clauses
are true, return >. Aply trivial falsity (rule 6.1), unit
clause elimination (rule 5.1), and monotone literal (rule
4.3).

(1) For each 2-universal 3-CNF clause {li, lj , lk}
with li and lj as universal, recursively call the algo-
rithm three separate times, with the following values
substituted in F for each call:

li := >, and

li := ⊥, lj := >, and

li := lj := ⊥, lk := >.

Return true iff all three calls return true.

(2) [No 2-universal 3-CNF clauses for the rest of the
computation.] For each 1-universal 2-CNF clause {li, lj}
with li as universal, call the algorithm twice separately,
with the following values substituted in F :

li := >, and

li := ⊥, lj := >.

Return true iff both calls return true.

(3) [No 2-universal clauses, and all 1-universal
clauses are 3-CNF.] For each 1-universal clause
{li, lj , lk} with li as universal, try both possible values
for li in the algorithm, and return true iff both values
lead to true.

(4) Using Eppstein’s O(1.365t) 3-SAT algorithm [7]
and return true iff the remaining 3-SAT instance is
satisfiable.

6.2 Analysis

The correctness of the above algorithm is easy to
see, and so is the proof that it only uses polynomial
space.

We use the concept of branching tuples [11] (also
called work factor) [7] to aid analysis. Let (t1, . . . , tk)
be a tuple of integers, and define λ(t1, . . . , tk) as the
smallest positive root to the equation 1−∑k

i=1
1

xti
= 0.

Suppose an algorithm has k separate recursive calls
or “branches” within it (a la our algorithm above), and
for the ith recursive call (i = 1, . . . , k), a measure µ
of the input (e.g. µ = m or µ = n) is reduced to
µ − ti. Assume these reductions take polynomial time
each. From the work of Kullmann and Lockhardt [11],
we find that the running time of this algorithm is at
most

T (µ) ≤
k∑

i=1

[T (µ− ti) + p(n)] ≤ q(n)λ(t1, . . . , tk)µ,

where p(n), q(n) are polynomials. This bound is
O((λ(t1, . . . , tk) + ε)µ), for any ε > 0. For example, an
algorithm consisting of only case (1) above reduces n to
n− 1 for its first recursive call, n− 2 for its second, and
n − 3 for its third. Thus, this algorithm runs in time
bounded by (λ(1, 2, 3) + ε)n.

Using branching tuples, we obtain the following
result:

Theorem 6.1. Suppose m2/n2 ≈ r, where m2 is the
number of 2-universal 3-CNF clauses and n2 is the
number of variables in these clauses. Then the above
algorithm runs in time O(1.415m+(1.757/r−1)m2).

Proof. First, we remark that the cases of the algorithm
can be considered independently, in a sense. Once all
2-universal 3-CNF clauses have been considered and
eliminated, case (1) no longer holds for the remainder of
the algorithm’s execution. The same holds for case (2)
with respect to (3) and (4), and case (3) with respect
to (4). Based on these observations, let ni represent
the number of variables of F considered during case
i of the algorithm, and mi be the number of 3-CNF
clauses eliminated (by being satisfied, or by becoming
2-CNF) in case i (so for example, m1 = m2, m2 = 0).
By considered, we mean that the variable appears in a
clause where the algorithm sets values to some or all of
the variables, depending on the branch.

Due to this case independence, multiplying the time
for (1) given above (in terms of n1 instead of n) with
the time for (2), (3) and (4) gives a bound on the total
time. Independently of the others, case (2) requires time
(λ(1, 2) + ε)n2 = O(1.619n2).

Let m′ be the number of 3-CNF clauses that have
been satisfied in a branch after cases (1) and (2) are

8

m2/n2 Time bound
r ≥ 1.757 1.415m

r ≥ 1.4 1.546m

r ≥ 1.294 1.603m

r ≥ 1 1.840m

Table 3: Bounds for 3-CNF Π2-SAT algorithm.

done, and n′ be the number of variables considered in
these clauses. Clearly n′ = n1 + n2, but also we claim
that m′ ≥ m1 = m2: if some 2-universal 3-CNF clause
c is not satisfied after the execution of case (1), then a
literal in c was falsified before our algorithm considered
c. Either its existential literal was falsified (and trivial
falsity would imply that F is false), or two universal
literals were falsified (and unit clause elimination would
satisfy the clause), or one universal literal was falsified.
In that case, c becomes 1-universal 2-CNF, so it is then
satisfied by case (2).

Therefore, when considered independently of case
(1) and (2), case (3) takes at most (λ(2, 2) + ε)m−m′ ≤
(λ(2, 2)+ε)m−m2 time; with either recursive step of case
(3), two 3-CNF clauses are eliminated. Consequently,
case (4) requires O(1.365m−m2−m3) time, due to Epp-
stein’s 3-SAT algorithm based on the number of 3-CNF
clauses [7].

In the worst situation, case (4) is never considered,
and all of the clauses are removed by cases (1), (2), and
(3), because 1.365 < 1.415 ≈ λ(2, 2) + ε, for sufficiently
small ε > 0. Initially, every clause of F is 3-CNF,
so each 1-universal 2-CNF clause {lj , lk} considered by
case (2) was originally some 2-universal 3-CNF clause
{li, lj , lk} reduced by case (1). This implies that the
number of variables in 2-universal 3-CNF clauses is at
least the number considered in case (1) and (2), i.e.
n2 ≥ n1 + n2, for all branches of the algorithm.

Then, the running time is bounded by 1.840n2 ·
1.619n1 · 1.415m−m2 = O(1.840n2 · 1.415m−m2).
When m2/n2 ≈ r, then the time is at most
1.415log(1.840)/ log(1.415)m2/r+m−m2 , or more compactly,
O(1.415(1.757/r−1)m2+m). ¤

As the clause-to-variable ratio for the 2-universal
clauses increases, the running time decreases. Note
that this is an opposite effect from the 3-CNF QBF
algorithm. Table 3 quantitatively demonstrates the
tradeoff between clause-to-variable ratio and running
time.

6.3 Relation with the QBF phase transition

We now consider our results in relation to the
fraction of QBFs that are conjectured to be the hardest,
as claimed by Gent and Walsh [8]. They give two
models for choosing random QBFs. Model A consists
of choosing a 3-CNF Π2-SAT instance at random, then
discarding all 3-universal and 2-universal clauses. With
this model, Gent and Walsh observe a phase transition
of the “easy-hard-easy” type at m/n ≈ 2. That is,
random instances generated by this model are true with
high probability when either m/n < 2 and false with
high probability when m/n > 2.

The second model, Model B, constructs random 3-
CNF Π2-SAT instances with m clauses and n variables
by choosing two existential literals at random, then a
universal variable, for each clause. The resulting for-
mulas are of the same type as Model A, but the random
choice produces an easy-hard-easy phase transition at a
different point, m/n ≈ 1.4.

Our algorithm for 3-CNF Π2-SAT works well in the
absence of 2-universal clauses: if the only 3-CNF clauses
are 0 and 1-universal (so only cases (3) and (4) are
considered), the running time is O(2m1/2 ·1.365m−m1/2),
where m1 is the number of 1-universal clauses. In the
worst case, m = m1 and the bound is 1.415m. This
implies that the algorithm runs in time better than 2n

when m/n < 2, for all formulas that may be chosen out
of Model A or Model B. Hence the “easily true” instances
from both models can be solved in time less than 2n,
using our Π2-SAT algorithm. Notably, for m/n ≈ 1.4
(the phase transition point for Model A), the algorithm
runs in time O(1.625n).

7 Conclusions

We have seen various ways in which QBF algorithms
can be devised: using dynamic programming, transfor-
mation rules, and pieces of existing SAT algorithms.
The algorithms presented are simple yet effective, as to
provide a solid starting point in research towards im-
proved algorithms for QBF. Here are a few suggestions
for further study.

• Recall that the proof for the time bound on
the arbitrary CNF QBF algorithm only uses the first
three transformation rules given (subformula, contra-
diction/truth, and monotone literal). This bound can
probably be significantly improved by using more of
these rules in our reasoning.

• It is interesting that in practice, 2-universal
clauses in 3-CNF Π2-SAT were not considered in eval-
uating “hard” formulas [8], yet the time bound for our
algorithm is hampered by their presence. Perhaps an

9

interleaving of this algorithm with one closer to the ex-
perimental algorithms (which do well with 2-universal
clauses) would give a solid O(1.414m) bound, or better.

• Our algorithms set the values for variables accord-
ing to their order, except when a variable is forced to
be a value (due to the rules). However, it is possible
that some QBF solvers need not preserve the order of
quantification when they set variables. For example,
consider ∀y1 · · · yk∃z F . We could set z := >, keeping a
record of those yi-values with which z := > works. Then
when z := ⊥ is considered, we ensure that if some value
of y does not work in this case, then it worked when
z := >. Rintanen [16] describes a similar procedure
he calls quantifier inversion. However, his randomized
strategy for changing the order of the variables appears
difficult to analyze rigorously.

• It seems plausible that a variation on local search
could be implemented for Π2-SAT. The search could
have two phases: one in which a search for a “bad”
assignment of universal variables ensues, and one in
which a satisfying assignment of the existential variables
is found, given the candidate universal assignment. One
heuristic for local change towards a “bad” assignment
is: if there exists a clause c such that exactly one of its
literals li is true and li is universal, flip the variable value
of ui. (Such a clause and literal exist, otherwise the
formula is true if it is satisfied by the current existential
assignment.)

8 Acknowledgements

I am indebted to Dieter van Melkebeek and Eva Tardos
for their generous comments and suggestions on drafts
of this paper.

References

[1] B. Apswall, M. F. Plass and R. E. Tarjan, A linear-
time algorithm for testing the truth of certain quanti-
fied Boolean formulas, Information Processing Letters,
8:121-123, 1979.

[2] H. K. Buning, M. Karpinski, and A. Flogel, Resolu-
tion for quantified Boolean formulas, Information and
Computation, 117(1):12-18, 1995.

[3] M. Cadoli, A. Giovanardi, and M. Schaerf, An algo-
rithm to evaluate quantified Boolean formulae, Pro-
ceedings of AAAI-98, pp. 262-267, 1998.

[4] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: Further
observation and further improvements, Lecture Notes
in Computer Science 1665 (WG’99), Springer-Verlag,
Berlin, pp. 313-324, 1999.

[5] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan,
J. Kleinberg, C. Papadimitriou, P. Raghavan, U.
Schöning, A deterministic (2 − 2

k+1
)n algorithm for

k-SAT based on local search, Accepted in Theoretical
Computer Science, 2001.

[6] M. Davis and H. Putnam, A computing procedure for
quantification theory, Journal of the ACM, 7(1):201-
215, 1960.

[7] D. Eppstein, Improved Algorithms for 3-Coloring, 3-
Edge-Coloring, and Constraint Satisfaction, Proceed-
ings of 12th ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 329-337, 2001.

[8] I. Gent and T. Walsh, Beyond NP: the QSAT phase
transition, Proceedings of AAAI-99, 1999.

[9] E. Giunchiglia, M. Narizzano, and A. Tacchella.
QUBE: A system for deciding quantified Boolean for-
mulas satisfiability, Proceedings of the Int. Joint Con-
ference on Automated Reasoning, 2001.

[10] E. A. Hirsch. New worst-case upper bounds for SAT,
Journal of Automated Reasoning, 24(4): 397-420,
2000.

[11] O. Kullmann and H. Luckhardt, Deciding proposi-
tional tautologies: algorithms and their complexity,
http://www.cs.toronto.edu/~kullmann.

[12] B. Monien and E. Speckenmeyer, Solving satisfiability
in less than 2n steps, Discrete Applied Mathematics,
10:287-295, 1985.

[13] R. Paturi, P. Pudlak, and F. Zane, Satisfiability cod-
ing lemma, Proceedings of 38th IEEE Symposium on
Foundations of Comp. Sci., pp. 566-574, 1997.

[14] R. Paturi, P. Pudlak, M. E. Saks, and F. Zane.
An improved exponential-time algorithm for k-SAT,
Proceedings of 39th IEEE Symposium on Foundations
of Comp. Sci., pp. 628-637, 1998.

[15] R. Rodosek, A new approach on solving 3-satisfiability,
Proceedings of 3rd Int. Conference on AI and Symbolic
Mathematical Computing, Springer-Verlag, LNCS
1138, pp. 197-212, 1996.

[16] J. Rintanen, Improvements to the evaluation of quan-
tified Boolean formulae, 16th Int. Joint Conference on
AI, pp. 1192-1197, 1999.

[17] J. Rintanen, Partial implicit unfolding in the Davis-
Putnam procedure for quantified Boolean formulas,
Workshop on Theory and Applications of QBF, Int.
Joint Conference on Automated Reasoning, 2001.

[18] R. Schuler, U. Schöning, and O. Watanabe, An im-
proved randomized algorithm for 3-SAT, Technical Re-
port TR-C146, Dept. of Mathematical and Computing
Sci., Tokyo Inst. of Tech., 2001.

[19] U. Schöning, A probabilistic algorithm for k-SAT and
constraint satisfaction problems, Proceedings of 40th
IEEE Symposoum on Foundations of Comp. Sci., pp.
410-414, 1999.

