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Abstract

We present new combinatorial algorithms for Boolean matrixmultiplication (BMM) and preprocess-
ing a graph to answer independent set queries. We give the first asymptotic improvements on combi-
natorial algorithms for dense BMM in many years, improving on the “Four Russians”O(n3/(w log n))
bound for machine models with wordsizew. (For a pointer machine, we can setw = log n.) The
algorithms utilize notions from Regularity Lemmas for graphs in a novel way.

• We give two randomized combinatorial algorithms for BMM. The first algorithm is essentially a
reduction from BMM to theTriangle Removal Lemma. The best known bounds for the Trian-
gle Removal Lemma only imply anO

(

(n3 log β)/(βw log n)
)

time algorithm for BMM where
β = (log⋆ n)δ for someδ > 0, but improvements on the Triangle Removal Lemma would
yield corresponding runtime improvements. The second algorithm applies the Weak Regular-
ity Lemma of Frieze and Kannan along with several information compression ideas, running in
O
(

n3(log log n)2/(log n)9/4)
)

time with probability exponentially close to 1. Whenw ≥ log n,
it can be implemented inO

(

n3(log log n)2/(w log n)7/6)
)

time. Our results immediately im-
ply improved combinatorial methods for CFG parsing, detecting triangle-freeness, and transitive
closure.

• Using Weak Regularity, we also give an algorithm for answering queries of the formis S ⊆ V an
independent set?in a graph. Improving on prior work, we show how to randomly preprocess a
graph inO(n2+ε) time (for allε > 0) so that with high probability, all subsequent batches oflog n
independent set queries can be answered deterministicallyin O

(

n2(log log n)2/((log n)5/4)
)

time.
Whenw ≥ log n, w queries can be answered inO

(

n2(log log n)2/((log n)7/6)
)

time. In addition
to its nice applications, this problem is interesting in that it is not known how to do better than
O(n2) using “algebraic” methods.

∗IBM T.J. Watson Research Center, Yorktown Heights, NY. Email: nikhil@us.ibm.com.
†IBM Almaden Research Center, San Jose, CA. Research performed while the author was a member of the Institute for Ad-

vanced Study, Princeton, NJ. Supported by NSF Grant CCF-0832797 (Expeditions in Computing) at IAS, and the Josef Raviv
Memorial Fellowship at IBM. Email:ryanwill@us.ibm.com.

1



1 Introduction

Szemerédi’s Regularity Lemma is one of the most remarkableresults of graph theory, having many diverse
uses and applications. In computer science, regularity notions have been used extensively in property and
parameter testing [4, 6, 11, 45, 12], approximation algorithms [25, 26, 17], and communication complex-
ity [32]. In this paper we show how regularity can lead to faster combinatorial algorithms for basic problems.

Boolean matrix multiplication (BMM) is among the most fundamental problems in computer science.
It is a key subroutine in the solution of many other problems such as transitive closure [24], context-free
grammar parsing [56], all-pairs path problems [21, 28, 50, 52], and triangle detection [33].

There have been essentially two lines of theoretical research on BMM. Algebraic algorithms, beginning
with Strassen’s̃O(nlog2 7) algorithm [53] and ending (so far) with Coppersmith and Winograd’sÕ(n2.376)
algorithm [20], reduce the Boolean problem to ring matrix multiplication and give ingenious methods for
the ring version by utilizing cancellations. In particular, multiplication-efficient algorithms are found for
multiplying finite matrices over an arbitrary ring, and these algorithms are applied recursively. There have
been huge developments in this direction over the years, with many novel ideas (cf. [42] for an overview of
early work, and [18, 19] for a more recent and promising approach). However, these algorithms (including
Strassen’s) have properties (lack of locality, extra spaceusage, and leading constants) that may make them
less desirable in practice.1

The second line of work on matrix multiplication has studiedso-calledcombinatorialalgorithms, the
subject of the present paper. Combinatorial algorithms formatrix multiplication exploit redundancies that
arise from construing matrices as graphs, often invoking word parallelism, lookup tables, and Ramsey-
theoretic arguments. These algorithms are considered to bemore practical, but fewer advances have been
made. All algorithms for the dense case [40, 8, 48, 9, 47, 10, 57] are loosely based on the “Four Russians”
approach of Arlazarov, Dinic, Kronrod, and Faradzhev [8] from 1970, which runs inO(n3/(w log n)) on
modern computational models, wherew is the maximum oflog n and the wordsize.2 Given its importance,
we shall briefly describe the approach here. The algorithm partitions the first matrix inton× ε log n subma-
trices, and the second matrix intoε log n×n submatrices. Eachn×ε log n submatrix is treated as a function
from ε log n bits ton bits; this function is stored in a table for direct access. Each table hasnε entries, and
n bits in each entry. With this table one can multiply eachn× ε log n andε log n× n submatrix together in
O(n2) time. An additionalw-factor can be saved by storing then-bit outputs of the function as a collection
of n/w words, or alog-factor is saved by storing the outputs as a collection ofn/ log n pointers to nodes
encodinglog n bit strings in a graph, cf. [47, 10, 57]. To date, this is stillthe fastest known combinatorial
algorithm for dense matrices.

Many works (including [1, 21, 37, 49, 44, 38, 15]) have commented on the dearth of better combinatorial
algorithms for BMM. As combinatorial algorithms can often be generalized in ways that the algebraic ones
cannot (e.g., to work over certain interesting semirings),the lack of progress does seem to be a bottleneck,
even for problems that appear to be more difficult. For instance, the best known algorithm for the general all-
pairs shortest paths problem [15] is combinatorial and runsin O(n3 · poly(log log n)/ log2 n) time – essen-

1For this reason, some practical implementations of Strassen’s algorithm switch to standard (or “Four Russians”) multiplication
when the submatrices are sufficiently small. For more discussion on the (im)practicality of Strassen’s algorithm and variants,
cf. [37, 16, 2].

2Historical Note:The algorithm in [8] was originally stated to run inO(n3/ log n) time. Similar work of Moon and Moser [40]
from 1966 shows that the inverse of a matrix overGF (2) needs exactlyΘ(n2/ log n) row operations, providing an upper and lower
bound. On a RAM, their algorithm runs inO(n3/(w log n)) time.
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tially the same time as Four Russians. Some progress on special cases of BMM has been made: for instance,
in thesparsecase where one matrix hasm << n2 nonzeros, there is anO(mn log(n2/m)/(w log n)) time
algorithm [23, 13]. See [41, 49, 38] for a sampling of other partial results. The search for practical and fast
Boolean matrix multiplication is still ongoing.

2 Our Results

In this paper we present what are arguably the first concrete improvements on combinatorial algorithms
for dense BMM since the 70’s. Our approach opens an new line ofattack on the problem by connecting
the complexity of BMM to modern topics in graph theory, such as the Weak Regularity Lemma and the
efficiency of Triangle Removal Lemmas.

2.1 Triangle Removal Lemmas and BMM

A Triangle Removal Lemma [46, 30] states that there is a function f satisfying limx→0 f(x) = 0 such
that for every graph with at mostεn3 triangles, we can efficiently findf(ε)n2 edges that hit all triangles.
This lemma is one of the many deep consequences of Szemerédi’s Regularity Lemma [54]. We prove
that good removal lemmas imply faster Boolean matrix multiplication. Letw be the wordsize (typically
w = Θ(log n)).

Theorem 2.1 Suppose there is anO(T (n)) time algorithm that, for every graphG = (V,E) with at most
εn3 triangles, returns a setS ⊆ E with |S| ≤ f(ε)n2 such thatG′ = (V,E \ S) is triangle-free. Then
there is a randomized algorithm for Boolean matrix multiplication that returns the correct answer with high

probability and runs inO
(

T (n) + f(ε)n3 log(1/f(ε))
w log n + n2

ε · log n + εn3
)

time.

Unfortunately the best known upper bound forf is f(ε) = O(1/(log⋆ 1/ε)δ) for someδ > 0 (cf.
Section 3.1). Forε = 1/

√
n, we obtain a very modest runtime improvement over Four Russians. However

no major impediment is known (like that proven by Gowers for the full Regularity Lemma [31]) for obtaining

a much betterf for triangle removal. The best known lower bound onf(ε) is only 2−O(
√

log(1/ε)), due to
Rusza and Szemerédi [46]. Given a setS ⊆ [n] with no arithmetic progression of length three, Ruzsa and
Szemerédi construct a graphG′ with O(n) nodes andO(n|S|) edges whose edge set can be partitioned
into n|S| edge-disjoint triangles (and there are no other triangles). Using Behrend’s construction of anS
with |S| ≥ n1−Θ(1/

√
log n), in the case ofG′ we haveε = |S|/n2 = 1/(n2Θ(

√
log n)) andf(ε) = |S|/n =

1/2Θ(
√

log n) ≥ 2−Θ(
√

log(1/ε)). Hence it is possible that the running time in Theorem 2.1 could imply an
n3−Θ(

√
log n) time bound.

2.2 Weak Regularity and BMM

Our second algorithm for BMM gives a more concrete improvement, relying on the Weak Regularity Lemma
of Frieze and Kannan [25, 26] along with several other combinatorial ideas.
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Theorem 2.2 There is a combinatorial algorithm for Boolean matrix multiplication in Ô(n3/(log2.25 n))
(worst-case) expected time on a pointer machine.3 More precisely, for anyn × n Boolean matricesA and
B, the algorithm computes their Boolean product with probability exponentially close to 1, and takes time
O(n3(log log n)2/(log2.25 n)). On a RAM with wordsizew ≥ log n, the algorithm can be implemented in
O(n3(log log n)/(w log7/6 n)) time.

These new algorithms are interesting not so much for their quantitative improvements, but because they
showsomefurther improvement. Some researchers believed thatO(n3/(w log n)) would be the end of the
line for algorithms not based on algebraic methods. This belief was quantified by Angluin [7] and Sav-
age [48], who proved in the mid 70’s that for a straight-line program model which includes Four Russians,
Ω(n3/(w log n)) operations are indeed required.4

2.3 Preprocessing for Fast Independent Set Queries

Finally, we show how our approach can improve the solution ofproblems that seem beyond the reach of
algebraic methods, and give a partial derandomization of some applications of BMM. In theindependent set
query problem, we wish to maintain a data structure (with polynomial preprocessing time and space) that
can quickly answer if a subsetS ⊆ V is independent. It is not known how to solve this problem faster than
O(n2) using Strassenesque methods. Previously it was known that one could answer one independent set
query inO(n2/ log2 n) [57] (or O(n2/(w log n)) with wordsizew).

Theorem 2.3 For all ε ∈ (0, 1/2), we can preprocess a graphG in O(n2+ε) time such that with high
probability, all subsequent batches oflog n independent set queries onG can be answered deterministically
in O(n2(log log n)2/(ε(log n)5/4)) time. On the word RAM withw ≥ log n, we can answerw independent
set queries inO(n2(log log n)/(ε(log n)7/6)) time.

That is, theO(n2+ε) preprocessing is randomized, but the algorithm which answers batches of queries
is deterministic, and these answers will always be correct with high probability. The independent set query
problem of Theorem 2.3 has several interesting applications; the last three were communicated to us by
Avrim Blum [14].

1. Triangle Detetection in Graphs. The query algorithm immediately implies a triangle detection al-
gorithm that runs inO(n3(log log n)/(log n)9/4) time, orO(n3(log log n)/(w(log n)7/6)) time. (A
graph is triangle-free if and only if all vertex neighborhoods are independent sets.)

2. Partial Match Retrieval. The query problem can also model a special case of partial match retrieval.
Let Σ = {σ1, . . . , σk}, and let⋆ /∈ Σ. Imagine we are given a collection ofn vectorsv1, . . . , vn of
lengthn overΣ∪{⋆} such that everyvj has only two components fromΣ (the rest of the components
are all⋆’s). A series of vectorsq ∈ (Σ ∪ {⋆})n arrive one at a time, and we want to determine if
q “matches” somevj, i.e., there is aj such that for alli = 1, . . . , n, eithervj [i] = ⋆, q[i] = ⋆, or
vj [i] = q[i]. To formulate this problem as an independent set query problem, make a graph with

3TheÔ notation suppresses poly(log log n) factors.
4More precisely, they proved that Boolean matrix multiplication requiresΘ(n2/ log n) bitwise OR operations onn-bit vectors,

in a straight-line program model where each line is a bitwiseOR of some subset of vectors in the matrices and a subset of previous
lines in the program, and each row of the matrix product appears as the result ofsomeline of the program.
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kn nodes in equal-sized partsV1, . . . , Vk. Put the edge(i, j) ∈ Va × Vb iff there is a vectorvℓ

in the collection such thatvℓ[i] = σa andvℓ[i] = σb. A query vectorq corresponds to asking if
Sq =

⋃k
i=1{j ∈ Vσi | q[j] = σi} is an independent set in the graph.

3. Preprocessing 2-CNF Formulas.We can also a preprocess 2-CNF formulaF on n variables, in
order to quickly evaluateF on arbitrary assignments. Make a graph with2n nodes, one for each
possible literal inF . For each clause(ℓi ∨ ℓj) in F , put an edge between nodes¬ℓi and¬ℓj in the
graph. Now given a variable assignmentA : {0, 1}n → {0, 1}, observe that the setSA = {x | A(ℓ) =
1} ∪ {¬x | A(x) = 0} is independent if and only ifA satisfiesF .

4. Answering 3-SUM Queries. Independent set queries can solve a query version of the well-known
3-SUM problem[29]. The 3-SUM problem asks: given two setsA andB of n elements each, are there
two elements inA that add up to some element inB? The assumption that 3-SUM cannot be solved
much faster than the trivialO(n2) bound has been used to show hardness for many computational
geometry problems [29], as well as lower bounds on data structures [43].

A natural query version of the problem is: given two setsA andB of n integers each, preprocess
them so that for any query setS ⊆ A, one can quickly answer whether two elements inS sum to an
element inB. Make a graph with a node for each integer inA, and an edge between two integer inA
if their sum is an element inB: this gives exactly the independent set query problem.

3 Preliminaries

The Boolean semiringis the semiring on{0, 1} with OR as addition and AND as multiplication. For
Boolean matricesA andB, A ∨ B is the componentwise OR ofA andB, A ∧ B is the componentwise
AND, andA ⋆ B is the (Boolean) matrix product over the Boolean semiring. When it is clear from the
context, sometimes we omit the⋆ and writeAB for the product.

Since the running times of our algorithms involve polylogarithmic terms, we must make the computa-
tional model precise. Unless otherwise specified, we assumea standard word RAM with wordsizew. That
is, accessing a memory location takesO(1) time, and we can perform simple operations (such as addition,
componentwise AND and XOR, but not multiplication) onw-bit numbers inO(1) time. Typically, speedups
in combinatorial algorithms come from either exploiting some combinatorial substructure, by preprocessing
and doing table lookups, or by some “word tricks” which utilize the bit-level parallelism of the machine
model. In our results, we explicitly state the dependence ofthe word size, denoted byw. The reader may
assumew = Θ(log n) for convenience. In fact all algorithms in this paper can be implemented on a pointer
machine under this constraint.

We now describe some of the tools we need.

3.1 Regularity

Let G = (V,E) be a graph and letS, T ⊆ V be disjoint. Definee(S, T ) = {(u, v) ∈ E | u ∈ S, v ∈ T}.
Thedensity of(S, T ) is d(S, T ) = e(S, T )/(|S||T |). Thusd(S, T ) is the probability that a random pair of
vertices, one fromS and one fromT , have an edge between them. Forε > 0, the pair(S, T ) is ε-regular if
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over allS′ ⊆ S andT ′ ⊆ T with |S′| ≥ ε|S| and|T ′| ≥ ε|T |, we have|d(S′, T ′) − d(S, T )| ≤ ε. That is,
the density of all sufficiently large subsets of(S, T ) is approximatelyd(S, T ).

Definition 3.1 A partition {V1, . . . , Vk} of V is anε-regular partition ofG if

• for all i, |Vi| ≤ ε|V |,

• for all i, j, ||Vi| − |Vj || ≤ 1, and

• all but at mostεk2 of the pairs(Vi, Vj) are ε-regular.

Szemerédi’s celebrated theorem states that inevery sufficiently large graphandeveryε, an ε-regular
partition exists.

Lemma 3.1 (Regularity Lemma) For all ε > 0, there is aK(ε) such that everyG has anε-regular parti-
tion where the number of partsk is at mostK(ε).

We need to compute such a partition in less than cubic time, inorder to perform faster matrix multi-
plication. There exist several polynomial time constructions of ε-regular partitions [3, 27, 26, 35]. The
fastest deterministic algorithm runs inO(K ′(ε)n2) time (for someK ′(ε) related toK(ε) and is due to
Kohayakawa, Rödl, and Thoma [35].5

Theorem 3.1 (Kohayakawa-R̈odl-Thoma [35]) There is an algorithm that, on inputε > 0 and graphG
on n nodes, outputs anε-regular partition in K ′(ε) parts and runs inO(20/(ε′)5(n2 + K ′(ε)n)) time.
K ′(ε) is a tower of at most20/(ε′)5 twos whereε′ = (ε20/1024).

Let us give a few more details on how the above algorithm is obtained. The above theorem is essentially
Corollary 1.6 in Section 3.2 of [35], however we have explicitly spelled out the dependency betweenε′,
K ′, andε. Theorem 1.5 in [35] shows that inO(n2) time, we can either verifyε-regularity or obtain a
witnessfor ε′-irregularity (withε′ as above). Here, a witness is simply a pair of subsets of vertices for which
the ε′-regularity condition fails to hold. Lemma 3.6 in Section 3.2 of [35] shows how to take proofs of
ε′-irregularity for a partition and refine the partition in linear time, so that the index of the partition increases
by (ε′)5/20. In 20/(ε′)5 iterations of partition refinement (each refinement takingO(K ′(ε)n) time) we can
arrive at anε-regular partition.

We also need the Triangle Removal Lemma, first stated by Ruzsaand Szemerédi [46]. In one formula-
tion, the lemma says there is a functionf such thatf(ε) → 0 asε → 0, and for every graph with at most
εn3 triangles, at mostf(ε)n2 edges need to be removed to make the graph triangle-free. We use a version
stated by Green ([30], Proposition 1.3).

Lemma 3.2 (Triangle Removal Lemma)SupposeG has at mostδn3 triangles. Letk = K(ε) be the
number of parts in someε-regular partition ofG, where4εk−3 > δ. Then there is a set of at mostO(ε1/3n2)
edges such that their removal makesG triangle-free.

In particular, let {V1, . . . , Vk} be anε-regular partition ofG. By removing all edges in pairs(Vi, Vi),
the pairs(Vi, Vj) with density less than2ε1/3, and all non-regular pairs,G becomes triangle-free.

5[35] claim that [25, 26] give an algorithm for constructing aregular partition that runs inlinear time, but we are unsure of this
claim. The algorithm given in [26] seems to require that we can verify regularity in linear time without giving an algorithm for this
verification.
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Proof. (Sketch) LetG′ be the graph obtained by takingG and removing all edges from the pairs(Vi, Vi),
the pairs(Vi, Vj) with density less than2ε1/3, and all non-regular pairs. Note the total number of such edges
is at most10ε1/3n2.

We now need to show thatG′ is triangle-free. Suppose there is a triangle amongu ∈ Vi, v ∈ Vj , and
w ∈ Vk for some distincti, j, k. Note that|Vi|, |Vj | and|Vk| are all at leastn/k − k, the density of all pairs
of edges is at least2ε1/3, and all pairs areε-regular. By a standard counting lemma, we have that the number
of triangles betweenVi, Vj, andVk (for sufficiently largen) is at least

(2ε1/3)3(n/k − k)3 − 4εn2 ≥ 8εn3/k3 − 4εn2 > δn3,

a contradiction to our hypothesis onG. �

Notice that the lemma gives an efficient way of discovering which edges to remove, when combined
with an algorithmic Regularity Lemma. However the above proof yields only a very weak bound onf(ε),
of the formc/(log⋆ 1/ε)δ for some constantsc > 1 andδ > 0. It is of great interest to prove a triangle
removal lemma with much smallerf(ε).

There are also other (weaker) notions of regularity that suffice for certain applications, where the depen-
dence onε is much better. We discuss below a variant due to Frieze and Kannan [26]. There are also other
variants known, for example [34, 4, 22]. We refer the reader to the survey [36]. Frieze and Kannan defined
the following notion of a pseudoregular partition.

Definition 3.2 (ε-pseudoregular partition) Let P = V1, . . . , Vk be a partition ofV , and letdij be the
density of(Vi, Vj). For a subsetS ⊆ V , and i = 1, . . . , k, let Si = S ∩ Vi. The partitionP is ε-
pseudoregularif the following relation holds for all disjoint subsetsS, T of V :

∣

∣

∣

∣

∣

∣

e(S, T ) −
k
∑

i,j=1

dij |Si||Tj |

∣

∣

∣

∣

∣

∣

≤ εn2.

A partition isequitableif for all i, j, ||Vi| − |Vj || ≤ 1.

Theorem 3.2 (Frieze-Kannan [26], Thm 2 and Sec 5.1)For all ε ≥ 0, an equitableε-pseudoregular par-
tition of an n node graph with at mostmin{n, 24⌈64/(3ε2)⌉} parts can be constructed inO(2O(1/ε2) n2

ε2δ3 )
time with a randomized algorithm that succeeds with probability at least1 − δ.

The runtime bound above is a little tighter than what Frieze and Kannan claim, but an inspection of their
algorithm shows that this bound is achieved. Note that Lovasz and Szegedy [39] have proven that for any
ε-pseudoregular partition, the number of parts must be at least 1/4 · 21/(8ε).

3.2 Preprocessing Boolean Matrices for Sparse Operations

Our algorithms exploit regularity to reduce dense BMM to a collection of somewhat sparse matrix multipli-
cations. To this end, we need results on preprocessing matrices to speed up computations on sparse inputs.
The first deals with multiplication of an arbitrary matrix with a sparse vector, and the second deals with
multiplication of a sparse matrix with another (arbitrary)matrix.
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Theorem 3.3 (Blelloch-Vassilevska-Williams [13])Let B be an × n Boolean matrix and letw be the
wordsize. Letκ ≥ 1 and ℓ > κ be integer parameters. There is a data structure that can be constructed
with O(n2κ/ℓ ·∑κ

b=1

(ℓ
κ

)

) preprocessing time, so that for any Boolean vectorv, the productB ⋆ v can be

computed inO(n log n + n2

ℓw + nt
κw ) time, wheret is the number of nonzeros inv.

This result is typically applied as follows. Fix a value oft to be the number of nonzeros we expect in
a typical vectorv. Chooseℓ andκ such thatn/ℓ = t/κ, and

∑κ
b=1

(ℓ
κ

)

= nδ for someδ > 0. Letting
κ = δ ln(n)/ ln(en/t) andℓ = κ · en/t we obtain:

Theorem 3.4 Let B be an × n Boolean matrix. There is a data structure that can be constructed with
Õ(n2+δ) preprocessing time, so that for any Boolean vectorv, the productB ⋆ v can be computed in

O(n log n + nt ln(en/t)
δw ln n ) time, wheret is the number of nonzeros inv.

We should remark that we do not explicitly apply the above theorem, but the idea (of preprocessing for
sparse vectors) is used liberally in this paper.

The following result is useful for multiplying a sparse matrix with another arbitrary matrix.

Theorem 3.5 There is anO(mn log(n2/m)/(w log n)) time algorithm for computingA⋆B, for everyn×n
A andB, whereA hasm nonzeros andB is arbitrary.

This result follows in a straightforward manner by combining the two lemmas below. The first is a graph
compression method due to Feder and Motwani.

Lemma 3.3 (From Feder-Motwani [23], Thm 3.3) Let δ ∈ (0, 1) be constant. We can write anyn × n
Boolean matrixA with m nonzeros asA = (C ⋆ D) ∨ E whereC, D are n × m/n1−δ, m/n1−δ × n,
respectively, both with at mostm(log n2/m)/(δ log n) nonzeros, andE is n × n and has at mostn2−δ

nonzeros. Furthermore, findingC, D, E takesO(mnδ log2 n) time.

Since the lemma is not stated explicitly in [23], let us sketch the proof for completeness. Using Ramsey
theoretic arguments, Feder and Motwani show that for every bipartite graphG on 2n nodes (withn nodes
each on left and right) andm > n2−δ edges, its edge set can be decomposed intom/n1−δ edge-disjoint
bipartite cliques, where the total sum of vertices over all bipartite cliques (a vertex appearing inK cliques
is countedK times) is at mostm(log n2/m)/(δ log n). EveryA can be written in the form(C ⋆ D) ∨ E,
by having the columns ofC (and rows ofD) correspond to the bipartite cliques. SetC[i, k] = 1 iff the ith
node of the LHS ofG is in thekth bipartite clique, and similarly setD for the nodes on the RHS ofG. Note
E is provided just in caseA turns out to be sparse.

We also need the following simple folklore result. It is stated in terms of wordsizew, but it can easily
be implemented on other models such as pointer machines withw = log n.

Lemma 3.4 (Folklore) There is anO(mn/w + pq + pn) time algorithm for computingA ⋆ B, for every
p × q A andq × n B whereA hasm nonzeros andB is arbitrary.

Proof. We assume the nonzeros ofA are stored in a list structure; if not we construct this inO(pq) time.
Let Bj be thejth row of B andCi be theith row of C in the following. We start with an output matrixC
that is initially zero. For each nonzero entry(i, j) of A, updateCi to be the OR ofBj andCi. Each update
takes onlyO(n/w) time. It is easy to verify that the resultingC is the matrix product. �
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4 Combinatorial Boolean Matrix Multiplication via Triangl e Removal

In this section, we prove Theorem 2.1. That is, we show a more efficient Triangle Removal Lemma implies
more efficient Boolean matrix multiplication. LetA andB be the matrices whose productD we wish to
compute. The key idea is to split the task into two cases. First, we use simple random sampling to determine
the entries in the product that have many witnesses (wherek is awitness for(i, j) if A[i, k] = B[k, j] = 1).
To compute the entries with few witnesses, we set up a tripartite graph corresponding to the remaining
undetermined entries of the matrix product, and argue that it has few triangles. (Each triangle corresponds
to a specific witness for a specific entry inD that is still undetermined.) By a Triangle Removal Lemma,
a sparse number of edges hit all the triangles in this graph.6 Using three carefully designed sparse matrix
products (which only require one of the matrices to be sparse), we can recover all those entriesD[i, j] = 1
which have few witnesses.

Let C be a collection of sets over a universeU . A setR ⊆ U is anε-net forC if for all S ∈ C with
|S| ≥ ε|U |, R ∩ S 6= ∅. The following lemma is well known.

Lemma 4.1 Let C be a collection of sets over a universeU . A random sampleR ⊆ U of size3 ln |C|
ε is an

ε-net with probability at least1 − |C|−2.

We now describe our algorithm for BMM.

Algorithm: Let A andB ben × n matrices. We wantD = A ⋆ B, i.e. D[i, j] = (∨n
k=1A[i, k] ∧ B[k, j]).

Random sampling for pairs with many witnesses.First, we detect the pairs(i, j) with at leastεn wit-
nesses. Construct an × n matrixC as follows. Pick a sampleR of (6 log n)/ε elements from[n]. For each
(i, j), 1 ≤ i, j ≤ n, check if there is ak ∈ R that is a witness for(i, j) in the product. If yes, setC[i, j] = 1,
otherwiseC[i, j] = 0. Clearly, this takes at mostO((n2 log n)/ε) time. NoteC is dominated by the desired
D, in thatC[i, j] ≤ D[i, j] for all i, j. LetSi,j be the set of witnesses for(i, j). By Lemma 4.1,R is anε-net
for the collection{Si,j} with probability at least1− 1/n4. Hence we may assumeC[i, j] = D[i, j] = 1 for
every(i, j) with at leastεn witnesses.

Triangle removal for pairs with few witnesses.It suffices to determine those(i, j) such thatC[i, j] = 0
andD[i, j] = 1. We shall exploit the fact that such pairs do not have many witnesses. Make a tripartite
graphH with vertex setsV1, V2, V3, each withn nodes indexed by1, . . . , n. Define edges as follows:

• Put an edge(i, k) ∈ (V1, V2) if and only if A[i, k] = 1.

• Put an edge(k, j) ∈ (V2, V3) if and only if B[k, j] = 1.

• Put an edge(i, j) ∈ (V1, V3) if and only if C[i, j] = 0.

That is, edges fromV1 to V3 are given byC, the complement ofC. Observe(i, k, j) ∈ (V1, V2, V3)
is a triangle if and only ifk is a witness for(i, j) and C[i, j] = 0. Thus our goal is to find the pairs
(i, j) ∈ (V1, V3) that are in triangles ofH.

Since every(i, j) ∈ (V1, V3) has at mostεn witnesses, there are at mostεn3 triangles inH. Applying
the promised Triangle Removal Lemma, we can find in timeO(T (n)) a set of edgesF where|F | ≤ f(ε)n2

6Note that the triangle removal lemma may also return edges that do not lie in any triangle.
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and each triangle must use an edge inF . Hence it suffices to compute those edges(i, j) ∈ (V1, V3) that
participate in a triangle with an edge inF . DefineAF [i, j] = 1 if and only if A[i, j] = 1 and(i, j) ∈ F .
Similarly defineBF andCF . Every triangle ofH passes through at least one edge from one of these three
matrices. LetTA (resp.TB andTC) denote the set of triangles with an edge inAF (resp.BF andCF ). Note
that we do not know these triangles.

We can determine the edges(i, j) ∈ (V1, V3) that are in some triangle inTA orTB directly by computing
C1 = AF ⋆ B andC2 = A ⋆ BF , respectively. AsAF andBF are sparse, by Theorem 3.5, these products
can be computed inO(|F | log(n2/|F |)/(w log n)) time. The1-entries ofC ∧C1 (resp.C ∧C2) participate
in a triangle inTA (resp.TB). This determines the edges in(V1, V3) participating in triangles fromTA∪TB.

SetC = C ∨ (C1 ∧ C) ∨ (C2 ∧ C), and updateC and the edges in(V1, V3) accordingly. The only
remaining edges in(V1, V3) that could be involved in a triangle are those correspondingto 1-entries inCF .
We now need to determine which of these actually lie in a triangle.

Our remaining problem is the following: we have a tripartitegraph on vertex set(V1, V2, V3) with at most
f(ε)n2 edges betweenV1 andV3, and each such edge lies in at mostεn triangles. We wish to determine the
edges in(V1, V3) that participate in triangles. This problem is solved by thefollowing theorem.

Theorem 4.1 (Reporting Edges in Triangles)Let G be a tripartite graph on vertex set(V1, V2, V3) such
that there are at mostδn2 edges in(V1, V3), and every edge of(V1, V3) is in at mostt triangles. Then the
set of edges in(V1, V3) that participate in triangles can be computed inO(δn3 log(1/δ)/(w log n) + n2t)
time.

Settingδ = f(ε) andt = εn, Theorem 4.1 implies the desired time bound in Theorem 2.1. The idea
of the proof of Theorem 4.1 is to work with a new tripartite graph where the vertices have asymptotically
smaller degrees, at the cost of adding slightly more nodes. This is achieved by having some nodes in our
new graph correspond tosmall subsets of nodesin the original tripartite graph.

Proof of Theorem 4.1. We first describe how to do the computation on a pointer machine withw = log n,
then describe how to modify it to work for the word RAM.

Graph Construction:We start by defining a new tripartite graphG′ on vertex set(V1, V
′
2 , V ′

3). Let
γ < 1/2. V ′

2 is obtained by partitioning the nodes ofV2 into n/(γ log n) groups of sizeγ log n each. For
each group, we replace it by2γ log n = nγ nodes, one corresponding to each subset of nodes in that group.
ThusV ′

2 hasn1+γ/(γ log n) nodes.

V ′
3 is also constructed out of subsets of nodes. We formn/ℓ groups each consisting ofℓ nodes inV3,

whereℓ = γ(log n)/(δ log(1/δ)). For each group, we replace it bynγ nodes, one corresponding to each
subset of size up toκ = γ(log n)/(log(1/δ)). Simple combinatorics show this is possible, and thatV ′

3 has
O(n1+γ/ℓ) nodes.

Edges in(V ′
2 , V ′

3): Put an edge betweenu in V ′
2 andx in V ′

3 if there is an edge(i, j) in (V2, V3) such
that i lies in the set corresponding tou, andj lies in the set corresponding tow. For each such edge(u, x),
we make a list of all edges(i, j) ∈ (V2, V3) corresponding to it. Observe the list for a single edge has size
at mostO(log2 n).

Edges in(V1, V
′
2): The edges fromv ∈ V1 to V ′

2 are defined as follows. For each group inV2 consider
the neighbors ofv in that group. Put an edge fromv to the node inV ′

2 corresponding to this subset. Eachv
has at mostn/(γ log n) edges to nodes inV ′

2 .
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Edges in(V1, V
′
3): Let v ∈ V1. For each groupg of ℓ nodes inV3, let Nv,g be the set of neighbors of

v in g. Let dv,g = |Nv,g|. PartitionNv,g arbitrarily into t = ⌈dv,g/κ⌉ subsetss1, . . . , st each of size at
mostκ. Put edges fromv to s1, . . . , st in V ′

3 . The number of these edges fromv is at most
∑

g⌈dv,g/κ⌉ ≤
n/ℓ + dv/κ, wheredv is the number of edges fromv to V3. Since

∑

v dv ≤ δn2, the total number of edges
from V1 to V ′

3 is O(δ log(1/δ)n2/(γ log n)).

Final Algorithm: For each vertexv ∈ V1, iterate over each pair ofv’s neighborsu ∈ V ′
2 andx ∈ V ′

3 . If
(u, x) is an edge inG′, output the list of edges(i, j) in (V2, V3) corresponding to(u, x), otherwise continue
to the next pair. From these outputs we can easily determine the edges(v, j) in (V1, V3) that are in triangles:
(v, j) is in a triangle if and only if nodej in V3 is output as an end point of some edge(i, j) ∈ (V2, V3)
during the loop forv in V1.

Running Time:The graph construction takes at mostO(n2+2γ). In the final algorithm, the total number
of pairs(u,w) in (V ′

2 , V ′
3) that are examined is at most

(n/ log n) · O(δn2(log 1/δ)/ log n)) ≤ O(δ log(1/δ)n3/ log2 n).

We claim that the time used to output the lists of edges is at most O(n2t). A nodej from V3 is on an
output list during the loop forv in V1 if and only if (v, j) is an edge in a triangle, with some node inV2

that has a 1 in the nodei in V ′
2 . Since each edge from(V1, V3) in a triangle is guaranteed to have at mostt

witnesses inV2, the nodej is output at mostt times over the loop forv in V1. Hence the length of all lists
output during the loop forv is at mostnt, and the total time for output is at mostO(n2t).

Modification forw-word RAM:Finally we show how to replace alog-speedup by aw-speedup with
wordsizew. In the above, each node inV1 andV ′

3 hasn/(γ log n) edges to nodes inV ′
2 , and these edges

specify ann-bit vector. The idea is to simply replace these edge sets toV ′
2 with ordered sets ofn/w words,

each holding aw-bit string. Eachv ∈ V1 now points to a collectionSv of n/w words. Each nodex in
V ′

3 also points to a collectionTx of n/w words, and an array ofn/w pointers, each of which point to an
appropriate list of edges in(V2, V3) analogous to the above construction. Now for everyv in V1, the ith
word q from Sv for i = 1, . . . , n/w, and every neighborx ∈ V ′

3 to v, we look up theith wordq′ in theTx,
and computeq ∧ q′. If this is nonzero, then each bit locationb whereq ∧ q′ has a 1 means that the node
corresponding tob forms a triangle withv and some vertex in the set corresponding tox. �

Remark. Note that we only use randomness in the BMM algorithm to determine the pairs(i, j) that
have many witnesses. Moreover, by choosing a larger sampleR in the random sampling step (notice we
have a lot of slack in the running time of the random sampling step), the probability of failure can be made
exponentially small.

Using the best known bounds for triangle removal, we obtain the following corollary to Theorem 2.1:

Corollary 4.1 There is aδ > 0 and a randomized algorithm for Boolean matrix multiplication that works

with high probability and runs inO
(

n3 log(log⋆ n)
w(log n)(log⋆ n)δ

)

time.

Proof. Let ε = 1/
√

n. By the usual proof of the triangle removal lemma (via the Regularity Lemma), it
suffices to setf(ε) = 1/(log⋆ 1/ε)δ in Theorem 2.1 for a constantδ > 0. �

It is our hope that further work on triangle removal may improve the dependency off . In the next
section, we show how to combine the Weak Regularity Lemma along with the above ideas to construct a
faster algorithm for BMM.
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5 Faster Boolean Matrix Multiplication via Weak Regularity

We first state a useful lemma, inspired by Theorem 3.3. It usesa similar technique to our algorithm for
reporting the edges that appear in triangles (Theorem 4.1).

Theorem 5.1 (Preprocessing for Bilinear Forms)LetB be ann×n Boolean matrix. Letκ ≥ 1 andℓ ≥ κ
be integer parameters. For the pointer machine, there is a data structure that can be built inO(n2/ℓ2 ·
(
∑κ

b=1

(ℓ
b

)

)2) time, so that for anyu, v ∈ {0, 1}n, the productuT Bv over the Boolean semiring can be
computed inO(nℓ + (n

ℓ + tu
κ )(n

ℓ + tv
κ )) time, wheretu and tv are the number of nonzeros inu and v,

respectively. Moreover, the data structure can output the list of pairs(i, j) such thatuiB[i, j]vj = 1 in O(p)
additional time, wherep is the number of such pairs.

On the word RAM withw ≥ log n, the same can be achieved inO(nℓ + n
w · (n

ℓ + min(tu,tv)
κ )) time.

For our applications, we shall setℓ = log2 n andκ = 1/5 · log n/(log log n). Then the preprocessing is
n3−Ω(1), uT Bv can be computed in time

O

((

n

log2 n
+

tu log log n

log n

)(

n

log2 n
+

tv log log n

log n

))

(1)

on a pointer machine, and it can be computed on RAMs with largewordsizew in time

O

(

n2

w log2 n
+

n min(tu, tv) log log n

w log n

)

. (2)

Proof of Theorem 5.1. As in the proof of Theorem 4.1, we first describe how to implement the algorithm
on a pointer machine, then show how it may be adapted. We viewB as a bipartite graphG = (U, V,E) in
the natural way, whereU = V = [n] and(i, j) ∈ E iff B[i, j] = 1. We group vertices inU andV into
⌈n/ℓ⌉ groups, each of size at mostℓ. For each groupg, we introduce a new vertex for every subset of up to
κ vertices in that group. LetU ′ andV ′ be the vertices obtained. We view the nodes ofU ′ andV ′ also as
vectors of lengthℓ with up toκ nonzeros. Clearly|U ′| = |V ′| = O(n/ℓ ·∑κ

b=1

(

ℓ
b

)

).

For every vertexu′ ∈ U ′, we store a tableTu′ of size|V ′|. Thev′-th entry ofTu′ is 1 iff there is ani ∈ U
in the set corresponding tou′, and aj ∈ V in the set corresponding tov′, such thatB[i, j] = 1. Each(i, j)
is said to be awitness toTu′ [v′] = 1. In the output version of the data structure, we associate a list Lv′ with
every nonzero entryv′ in the tableTu′ which contains those(i, j) pairs which are witnesses toTu′ [v′] = 1.
Note that|Lv′ | ≤ O(κ2).

Given query vectorsu andv, we computeuT Bv and those(i, j) satisfyinguiB[i, j]vj = 1 as follows.
Let ug be the restriction of the vectoru to groupg of U . Note |ug| ≤ ℓ. Let t(u, g) denote the number of
nonzeros inug. Expressug as a Boolean sum of at most⌈t(u, g)/κ⌉ vectors (nodes) fromU ′; this can be
done since each vector inU ′ has up toκ nonzeros. Do this over all groupsg of U . Nowu can be represented
as a Boolean sum of at mostn/ℓ + tu/κ vectors fromU ′. We repeat a similar procedure forv over all
groupsg of V , obtaining a representation ofv as a sum of at mostn/ℓ + tv/κ vectors fromV ′. These
representations can be determined in at mostO(nℓ) time.

Let Su ⊆ U ′ be the subset of vectors representingu, andSv ⊆ V ′ be the vectors forv. For allu′ ∈ Su

andv′ ∈ Sv, look upTu′ [v′]; if it is 1, output the listLv′ . ObserveuT Bv = 1 iff there is someTu′ [v′] that
equals1. It is easily seen that this procedure satisfies the desired running time bounds.
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Finally, we consider how to implement the above on the word RAM model. We shall have two (analo-
gous) data structures depending on whethertu ≤ tv or not.

Supposetu ≤ tv (the other situation is analogous). As previously in Theorem 4.1, we form the graphU ′

with vertices corresponding to subsets of up toκ nonzeros within a vector of sizeℓ. With each such vertex
u′ ∈ U ′ we associate ann-bit vectorTu′ (which is stored as ann/w-word vector), obtained by taking the
union of the rows ofB corresponding tou′. Now, sincev can also be stored as ann/w-word vector, the
productTu′ · v can be performed inn/w time. For a givenu there are at most at mostn/ℓ + tu/κ relevant
vectorsTu′ and hence the productuT Bv can be computed in timeO((n/ℓ + tu/κ)(n/w)). �

Theorem 5.2 There is a combinatorial algorithm that, given any two Boolean n × n matricesA and B,
computesA ⋆ B correctly with probability exponentially close to 1, inO(n3(log log n)2/(log2.25 n)) time
on a pointer machine, andO(n3(log log n)/(w log7/6 n)) time on a word RAM.

Proof. The algorithm builds on the ideas in Theorem 2.1 (the BMM algorithm using triangle removal),
while applying the bilinear form preprocessing of Theorem 5.1, the algorithm for reporting edges in triangles
(Theorem 4.1), and Weak Regularity. We first describe the algorithm for pointer machines.

Algorithm. As in Theorem 2.1, by taking a random sample of
√

n indices from[n], we can determine
those pairs(i, j) such that(A ⋆ B)[i, j] = 1 where there are at leastn3/4 witnesses to this fact. This takes
O(n2.5) time and succeeds with probability1 − exp(−nΩ(1)).

Next we construct a tripartite graphG = (V1, V2, V3, E) exactly as in Theorem 2.1, and just as before
our goal is to determine all edges(i, j) ∈ (V1, V3) that form at least one triangle with some vertex inV2.

Compute anε-pseudoregular partition{W1, . . . ,Wk} of the bipartite subgraph(V1, V3), with ε =
1

α
√

log n
for anα > 0. By Theorem 3.2 this partition can be found in2O(α2 log n) time. Setα to make the

runtime(n2.5). Recalldij is the density of the pair(Wi,Wj). The preprocessing stores two data structures,
one for pairs with “low” density and one for pairs with “high”density.

1. (Low Density Pairs) LetF be the set of all edges in(V1, V3) that lie in some pair(Wi,Wj), where
dij ≤ √

ε. Note|F | ≤ √
εn2. Apply the algorithm of Theorem 4.1 to determine the subset of edges

in F that participate in triangles. Remove the edges ofF from G.

2. (High Density Pairs) For all pairs(Wi,Wj) with dij >
√

ε, build the data structure for computing
bilinear forms (Theorem 5.1) for the submatrixAij corresponding to the graph induced by(Wi,Wj),
with ℓ = log2 n andκ = log n/(5 log log n).

Then for each vertexv ∈ V2, let Si(v) = N(v) ∩ Wi, andTj(v) = N(v) ∩ Wj. Compute all pairs of
nodes inSi(v)× Tj(v) that form a triangle withv, using the bilinear form query algorithm of Theorem 5.1.

Analysis.Clearly, the random sampling step takesO(n2.75) time. Consider the low density pairs step.
Recall|F | ≤ √

εn2 and every edge in(V1, V3) is in at mostn3/4 triangles. Moreover, the functionf(δ) =
δ log(1/δ) is increasing for smallδ (e.g., over[0, 1/4]). Hence the algorithm that reports all edges appearing
in triangles (from Theorem 4.1) takes at mostO(

√
εn3 log(1/ε)/ log2 n) ≤ O(n3 log log n/ log2.25 n) time.

Now we bound the runtime of the high density pairs step. Firstnote that the preprocessing for bilinear

forms (Theorem 5.1) takes onlyO( n2

log2 n
·
( log2 n
log n/(5 log log n)

)2
) ≤ O(n2+4/5) time overall.
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Let e(S, T ) denote the number of edges between subsetsS andT . Since there are at mostn2.75 triangles,
∑

v∈V2

e(N(v) ∩ V1, N(v) ∩ V3) ≤ n2.75. (3)

Since{Wi} is ε-pseudoregular, (3) implies
∑

v∈V2

∑

i,j

dij |Si(v)||Tj(v)| ≤ εn3 + n2.75 ≤ 2εn3

for largen. Summing over densitiesdi,j ≥
√

ε, we obtain

∑

v∈V2

∑

i,j:di,j≥
√

ε

|Si(v)||Tj(v)| ≤ 2
√

εn3 ≤ 2n3

log.25 n
. (4)

Applying expression (1), the time taken by all queries on thedata structure for bilinear forms (Theorem
5.1) for a fixed pair(Wi,Wj) is at most

∑

v∈V2

(

(n/k)

lg2 n
k

+
|Si(v)| lg lg n

k

lg n
k

)(

(n/k)

lg2 n
k

+
|Tj(v)| lg lg n

k

lg n
k

)

.

Expanding the products and applying (4), the total runtime is upper bounded by

∑

v∈V2

∑

i,j:dij≥
√

ε

|Si(v)||Tj(v)|(log log n)2

w log n
≤ 2n3(log log n)2

w log1.25 n
.

Finally, the random sampling step ensures that the number ofwitnesses is at mostn.75 for every edge, so
the output cost in the algorithm is at mostO(n2.75).

Modification for the word RAM.To exploit a model with a larger wordsize, we apply the same algorithm
as above, except we run the low density pairs step for pairs(Wi,Wj) with densitydij ≤ ε1/3 (instead of√

ε). For the pairs(Wi,Wj) with dij > ε1/3, construct the data structure for bilinear forms (Theorem 5.1)
for the word RAM.

As in the analysis above, the preprocessing step for reporting the edges appearing in triangles (Theorem
4.1) has running time

O(ε1/3n3 log(1/ε)/(w log n)) ≤ O(n3 log log n/(w log7/6 n)).

Now consider the time due to bilinear form queries on the datastructure of Theorem 5.1. Using an argument
identical to that used to obtain (4), the time is

∑

v∈V2

∑

i,j:di,j≥ε1/3

|Si(v)||Tj(v)| ≤ 2ε2/3n3 ≤ 2n3

log1/3 n
. (5)

Applying expression (2), the total running time is

∑

v∈V2

∑

i,j

(

(

n
k

)2

w log2 n
k

+
n
k · min(|Si(v)|, |Tj(v)|) log log n

k

w log(n/k)

)
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≤ n3

w log2 n
k

+
∑

v∈V2

∑

i,j

n
k · min(|Si(v)|, |Tj(v)|) log log n

k

w log n
k

. (6)

To bound the second term, observe that
∑

v∈V2

∑

i,j

min(|Si(v)|, |Tj(v)|)

≤
∑

v∈V2

∑

i,j

(|Si(v)| · |Tj(v)|)1/2

≤ k
√

n ·
√

∑

v∈V2

∑

i,j

|Si(v)||Tj(v)|,

by Cauchy-Schwarz. By the inequality (5), this is at most2kn2/ log1/6 n. Thus the expression (6) can be
upper bounded byO(n3 log log n/(w log7/6 n)) as desired. �

6 Independent Set Queries Via Weak Regularity

We consider the followingindependent set queryproblem. We want to preprocess ann-node graph in
polynomial time and space, so that given anyS1, . . . , Sw ⊆ V , we can determine inn2/f(n) time which of
S1, . . . , Sw are independent sets. Using such a subroutine, we can easilydetermine inn3/(wf(n)) time if a
graph has a triangle (provided the preprocessing itself canbe done inO(n3/(wf(n))) time), by executing
the subroutine on collections of sets corresponding to the neighborhoods of each vertex.

The independent set query problem is equivalent to: preprocess a Boolean matrixA so thatw queries
of the form “vT

j Avj = 0?” can be computed inn2/f(n) time, where the products are over the Boolean
semiring. We shall solve a more general problem: preprocessA to answerw queries of the form “uT Av =
0?”, for arbitraryu, v ∈ {0, 1}n.

Our method employs weak regularity along with other combinatorial ideas seen earlier in the paper.

Theorem 6.1 For all δ ∈ (0, 1/2), everyn × n Boolean matrixA can be preprocessed inO(n2+δ) time
such that given arbitrary Boolean vectorsu1, . . . , ulog n andv1, . . . , vlog n, we can determine ifuT

p Avp = 0,

for all p = 1, . . . , log n in O(n2(log log n)2

δ(log n)5/4
) time on a pointer machine.

On the word RAM we can determine ifuT
p Avp = 0, for all p = 1, . . . , w in timeO(n2(log log n)

δ(log n)7/6
) where

w is the wordsize.

Proof of Theorem 6.1. We describe the algorithm on the pointer machine; it can be extended to the word
RAM by a modification identical to that in Theorem 5.2. We start with the preprocessing.

Preprocessing.InterpretA as a bipartite graph in the natural way. Compute aε-pseudoregular partition
of the bipartiteA = (V,W,E) with ε = Θ(1/

√
log n), using Theorem 3.2. (Note this is the only random-

ized part of the algorithm.) LetV1, V2, . . . , Vk be the parts ofV and letW1, . . . ,Wk be the parts ofW ,
wherek ≤ 2O(1/ε2).
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Let Aij be the submatrix ofA corresponding to the subgraph induced by the pair(Vi,Wj). Let dij be
the density of(Vi,Wj). Let ∆ =

√
ε.

For each of thek2 submatricesAij, do the following:

1. If dij ≤ ∆, apply graph compression (Theorem 3.5) to preprocessAij in timemnδ log2 n, so thatAij

can be multiplied by anyn/k × log n matrixB in timeO(m log((n/k)2/m)/ log(n/k)), wherem is
the number of nonzeros inAij . (Notem ≤ ∆(n/k)2.)

2. If dij > ∆, apply the bilinear form preprocessing of Theorem 5.1 toAij with ℓ = log2 n andκ =
δ log n/(5 log log n).

Query Algorithm.Given Boolean vectorsup andvp for p = 1, . . . , log n, let Sp ⊆ [n] be the subset
corresponding toup andT p ⊆ [n] be the subset corresponding tovp. For1 ≤ i, j ≤ k, let Sp

i = Sp ∩ Vi

andT p
j = Tj ∩ Wj .

1. ComputeQp =
∑k

i,j=1 dij|Sp
i ||T

p
j | for all p = 1, . . . , log n. If Qp > εn2, then outputuT

p Avp = 1.

2. LetI = {p : Qp ≤ εn2}. Note|I| ≤ log n. We determineuT
p Avp for eachp ∈ I as follows:

• For all (i, j) with dij > ∆, apply the bilinear form algorithm of Theorem 5.1 to compute
ep
ij = (Sp

i )T AijT
p
j for eachp ∈ I.

• For all(i, j) with dij ≤ ∆, form ann
k ×|I| matrixBj with columnsT p

j over allp ∈ I. Compute
Cij = Aij ⋆Bj using theAij from preprocessing step 1. For eachp ∈ I, compute the (Boolean)
dot productep

ij = (Sp
i )T · Cp

ij, whereCp
ij is thep-th column ofCij .

• For eachp ∈ I, returnuT
p Avp =

∨

i,j ep
ij .

Analysis. We first consider the preprocessing time. By Theorem 3.2, we can chooseε so that theε-
pseudoregular partition is constructed inO(n2+δ) time. By Theorems 3.5 and 5.1, the preprocessing for
matricesAij takes at mostO(k2(n/k)2+δ) time for someδ < 1/2. Thus, the total time is at mostO(n2+δ).

We now analyze the query algorithm. Note step 1 of the query algorithm works byε-pseudoregularity:
if Qp > εn2 then the number of edges betweenSp andT p in A is greater than0. Computing allQp takes
time at mostO(k2n log n).

Consider the second step. As
∑

i,j dij |Sp
i ||T

p
j | ≤ εn2 for eachp ∈ I, we have

∑

i,j:dij≥∆

|Sp
i ||T

p
j | ≤

εn2

∆
=

√
εn2. (7)

Analogously to Theorem 5.2, the total runtime over allp ∈ I and pairs(i, j) with dij > ∆ is at most

∑

p∈I

∑

i,j:dij>∆

(

n/k

log2 n
k

+
|Sp

i | log log n
k

log n
k

)

·
(

n/k

log2 n
k

+
|T p

i | log log n
k

log n
k

)

≤ O





n2

log3 n
+
∑

p∈I

∑

i,j:dij>∆

|Sp
i ||T

p
i |(log log n)2

log2 n



 . (8)
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The inequality (7), the fact that|I| ≤ log n, and our choice ofε imply that (8) is at most

O(n3(log log n)2/ log5/4 n).

Now we consider the pairs(i, j) with dij ≤ ∆. By Theorem 3.5, computing the productCij = AijBj

for all p ∈ I (at once) takes

O

(

∆
(

n
k

)2
log(1/∆)

log(n/k)

)

.

Summing over all relevant pairs(i, j) (there are at mostk2), this isO(n2(log log n)/ log5/4 n) by our choice
of ∆. �

7 Conclusion

We have shown how regularity concepts can be applied to yieldfaster combinatorial algorithms for funda-
mental graph problems. These results hint at an alternativeline of research on Boolean matrix multiplication
that has been unexplored. It is likely that the connections are deeper than we know; let us give a few reasons
why we believe this.

First, we applied generic tools that are probably stronger than necessary, so it should be profitable to
search for regularity concepts that are designed with matrix multiplication in mind. Secondly, Trevisan [55]
has promoted the question of whether or not the Triangle Removal Lemma requires the full Regularity
Lemma. Our work gives a rather new motivation for this question, and opens up the possibility that BMM
may be related to other combinatorial problems as well. Furthermore, there may be similar algorithms for
matrix products over other structures such as finite fields orthe(min,+)-semiring. These algorithms would
presumably apply removal lemmas from additive combinatorics. For instance, Shapira [51] recently proved
the following, generalizing a result of Green [30]. LetMx = b be a set of linear equations over a finite field
F , with n variables andm equations. IfS ⊆ F has the property that there are onlyo(|F |n−m) solutions
in Sn to Mx = b, theno(|F |) elements can be removed fromS so that the resultingSn has no solutions
to Mx = b. In light of our work, results such as this are possible toolsfor finite field linear algebra with
combinatorial algorithms.
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