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Abstract

We present new combinatorial algorithms for Boolean matnitiplication (BMM) and preprocess-
ing a graph to answer independent set queries. We give thasdysptotic improvements on combi-
natorial algorithms for dense BMM in many years, improvimgtbe “Four Russians? (n?/(wlogn))
bound for machine models with wordsize (For a pointer machine, we can set= logn.) The
algorithms utilize notions from Regularity Lemmas for gnapn a novel way.

e We give two randomized combinatorial algorithms for BMM.€Tfirst algorithm is essentially a
reduction from BMM to theTriangle Removal LemmaThe best known bounds for the Trian-
gle Removal Lemma only imply a® ((n3 log 8)/(Bwlog n)) time algorithm for BMM where
B = (log*n)® for somed > 0, but improvements on the Triangle Removal Lemma would
yield corresponding runtime improvements. The secondrilgo applies the Weak Regular-
ity Lemma of Frieze and Kannan along with several infornratompression ideas, running in
O (n®(loglog n)?/(log n)°/*)) time with probability exponentially close to 1. When> logn,
it can be implemented i@ (rn®(loglogn)?/(wlogn)™/°)) time. Our results immediately im-
ply improved combinatorial methods for CFG parsing, détectriangle-freeness, and transitive
closure.

e Using Weak Regularity, we also give an algorithm for ansagueries of the forris S C V an
independent setth a graph. Improving on prior work, we show how to randomlggmocess a
graph inO(n?*¢) time (for alle > 0) so that with high probability, all subsequent batchel®gf
independent set queries can be answered determinisiitallyn?(log log n)?/((log n)>/*)) time.
Whenw > log n, w queries can be answereddh(n?(log log n)?/((log n)"/°)) time. In addition
to its nice applications, this problem is interesting intthhas not known how to do better than
O(n?) using “algebraic” methods.
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1 Introduction

Szemerédi’'s Regularity Lemma is one of the most remarkadelts of graph theory, having many diverse
uses and applications. In computer science, regularitpm®thave been used extensively in property and
parameter testing [4, 6, 11,145,112], approximation algami [25/ 26| 1I7], and communication complex-
ity [82]. In this paper we show how regularity can lead todasbombinatorial algorithms for basic problems.

Boolean matrix multiplication (BMM) is among the most fumdlental problems in computer science.
It is a key subroutine in the solution of many other problemshsas transitive closuré [24], context-free
grammar parsing [56], all-pairs path problermns|[21, 28] &), &d triangle detection [33].

There have been essentially two lines of theoretical reke@m BMM. Algebraic algorithms, beginning
with Strassen’®) (n!°%27) algorithm [53] and ending (so far) with Coppersmith and Vdiraa’s O (n>376)
algorithm [20], reduce the Boolean problem to ring matrixltiplication and give ingenious methods for
the ring version by utilizing cancellations. In particylanultiplication-efficient algorithms are found for
multiplying finite matrices over an arbitrary ring, and teedgorithms are applied recursively. There have
been huge developments in this direction over the yearh, many novel ideas (cf._[42] for an overview of
early work, and([18, 19] for a more recent and promising apgind. However, these algorithms (including
Strassen’s) have properties (lack of locality, extra spsage, and leading constants) that may make them
less desirable in practiEb.

The second line of work on matrix multiplication has studsedcalledcombinatorialalgorithms, the
subject of the present paper. Combinatorial algorithmshfatrix multiplication exploit redundancies that
arise from construing matrices as graphs, often invokingdwaarallelism, lookup tables, and Ramsey-
theoretic arguments. These algorithms are considered modoe practical, but fewer advances have been
made. All algorithms for the dense case|[40, 8,48, 9] 47, TPake loosely based on the “Four Russians”
approach of Arlazarov, Dinic, Kronrod, and FaradzHtev [8hir1970, which runs if©(n3/(wlogn)) on
modern computational models, wherds the maximum ofogn and the wordsizB.Given its importance,
we shall briefly describe the approach here. The algorithtitipas the first matrix into x € log n subma-
trices, and the second matrix irddog n x n submatrices. Each x ¢ log n submatrix is treated as a function
from ¢ log n bits ton bits; this function is stored in a table for direct accesscr&able has:© entries, and
n bits in each entry. With this table one can multiply each ¢ log n ande log n x n submatrix together in
O(n?) time. An additionakso-factor can be saved by storing thebit outputs of the function as a collection
of n/w words, or alog-factor is saved by storing the outputs as a collection tfog n pointers to nodes
encodinglog n bit strings in a graph, cf[[47, 10, 57]. To date, this is gtk fastest known combinatorial
algorithm for dense matrices.

Many works (including([l], 21, 37, 40, 44,138,/115]) have comtedron the dearth of better combinatorial
algorithms for BMM. As combinatorial algorithms can oftea ¢eeneralized in ways that the algebraic ones
cannot (e.g., to work over certain interesting semirintf®,lack of progress does seem to be a bottleneck,
even for problems that appear to be more difficult. For ircstathe best known algorithm for the general all-
pairs shortest paths problem [15] is combinatorial and mir(n> - poly(log log n)/log® n) time — essen-

For this reason, some practical implementations of Strésaégorithm switch to standard (or “Four Russians”) nplitiation
when the submatrices are sufficiently small. For more dgonson the (im)practicality of Strassen’s algorithm andiasats,
cf. [37,[16)2].

2Historical Note: The algorithm in[[8] was originally stated to run@(n?/ log n) time. Similar work of Moon and Mosef [40]
from 1966 shows that the inverse of a matrix o@&r (2) needs exactl®(n?/ log n) row operations, providing an upper and lower
bound. On a RAM, their algorithm runs @(n®/(w logn)) time.



tially the same time as Four Russians. Some progress oraspases of BMM has been made: for instance,
in the sparsecase where one matrix has << n? nonzeros, there is ai(mn log(n?/m)/(w logn)) time
algorithm [23] 13]. See [41, 49, B8] for a sampling of othettiphresults. The search for practical and fast
Boolean matrix multiplication is still ongoing.

2 Our Results

In this paper we present what are arguably the first concrepgovements on combinatorial algorithms
for dense BMM since the 70’s. Our approach opens an new lirstatk on the problem by connecting
the complexity of BMM to modern topics in graph theory, suchtlee Weak Regularity Lemma and the
efficiency of Triangle Removal Lemmas.

2.1 Triangle Removal Lemmas and BMM

A Triangle Removal Lemmeél [46, 30] states that there is a fancf satisfyinglim,_.o f(z) = 0 such
that for every graph with at most? triangles, we can efficiently find()n? edges that hit all triangles.
This lemma is one of the many deep consequences of SzeraeRejularity Lemmal[54]. We prove
that good removal lemmas imply faster Boolean matrix miidiion. Letw be the wordsize (typically
w = O(logn)).

Theorem 2.1 Suppose there is af(7'(n)) time algorithm that, for every grapy = (V, E) with at most
en? triangles, returns a se§ C E with |S| < f(e)n? such thatG’ = (V, E \ S) is triangle-free. Then
there is a randomized algorithm for Boolean matrix multtglion that returns the correct answer with high
probability and runs inO (T(n) + LEnPlog(/fE) | %2 -logn + En3) time.

wlogn

Unfortunately the best known upper bound fbiis f(¢) = O(1/(log* 1/¢)°) for somes > 0 (cf.
Sectior 3.11). For = 1/4/n, we obtain a very modest runtime improvement over Four RassiHowever
no major impediment is known (like that proven by Gowers fierfull Regularity Lemmél [31]) for obtaining
a much betterf for triangle removal. The best known lower bound f@) is only 2~9(V1e(1/9)) ' due to
Rusza and Szemerédi [46]. Given a Se€ [n]| with no arithmetic progression of length three, Ruzsa and
Szemerédi construct a graglf with O(n) nodes and)(n|S|) edges whose edge set can be partitioned
into n|S| edge-disjoint triangles (and there are no other trianglelsing Behrend’s construction of &
with |S| > n!'~©1/VIeen) 'in the case of’ we haves = |S|/n? = 1/(n2°WV1°s™) and f(¢) = |S|/n =

1/20(loegn) > 9-O(Vloe(1/2))  Hence it is possible that the running time in Theofem 2.lccauply an
n3~9Wlogn) time bound.

2.2 Weak Regularity and BMM

Our second algorithm for BMM gives a more concrete improveirelying on the Weak Regularity Lemma
of Frieze and Kannam [25, 6] along with several other cowtoirial ideas.



Theorem 2.2 There is a combinatorial algorithm for Boolean matrix mplication in O(n?/(log?% n))
(worst-case) expected time on a pointer macRindore precisely, for any: x n Boolean matricesA and
B, the algorithm computes their Boolean product with probigbexponentially close to 1, and takes time
O(n?(loglogn)?/(log??° n)). On a RAM with wordsizes > log n, the algorithm can be implemented in
O(n?(loglogn)/(wlog™% n)) time.

These new algorithms are interesting not so much for theintiiative improvements, but because they
showsomefurther improvement. Some researchers believed@taf /(wlogn)) would be the end of the
line for algorithms not based on algebraic methods. Thigbalas quantified by Angluin_[7] and Sav-
age [48], who proved in the mid 70’s that for a straight-limegram model which includes Four Russians,
Q(n?/(wlogn)) operations are indeed requiv@d.

2.3 Preprocessing for Fast Independent Set Queries

Finally, we show how our approach can improve the solutioproblems that seem beyond the reach of
algebraic methods, and give a partial derandomizationrsapplications of BMM. In thindependent set
query problemwe wish to maintain a data structure (with polynomial poggssing time and space) that
can quickly answer if a subsétC V' is independent. It is not known how to solve this problemdatian
O(n?) using Strassenesque methods. Previously it was known tieat@uld answer one independent set
query inO(n?/log?n) [57] (or O(n?/(wlogn)) with wordsizew).

Theorem 2.3 For all ¢ € (0,1/2), we can preprocess a graphi in O(n?*¢) time such that with high
probability, all subsequent batcheslog n independent set queries 6hcan be answered deterministically
in O(n?(loglogn)?/(s(log n)°/4)) time. On the word RAM withy > log n, we can answew independent
set queries ir0(n?(loglogn)/((log n)7/%)) time.

That is, theO(n?*¢) preprocessing is randomized, but the algorithm which arswatches of queries
is deterministic, and these answers will always be corréitt iwgh probability. The independent set query
problem of Theoremh 213 has several interesting applicgtitime last three were communicated to us by
Avrim Blum [14].

1. Triangle Detetection in Graphs. The query algorithm immediately implies a triangle detattal-
gorithm that runs irO(n?(log log n)/(log n)*/*) time, or O(n?(log log n)/(w(log n)7/%)) time. (A
graph is triangle-free if and only if all vertex neighborliscare independent sets.)

2. Partial Match Retrieval. The query problem can also model a special case of parti@ihmetrieval.
Let>X = {oy,...,0%}, and letx ¢ X. Imagine we are given a collection afvectorsvy, ..., v, of
lengthn overX U {x} such that every; has only two components frob (the rest of the components
are allx’s). A series of vectorg € (X U {x})" arrive one at a time, and we want to determine if
q “matches” somey;, i.e., there is g such that for ali = 1,...,n, eitherv;[i] = *, q[i] = *, or
vjli] = q[i]. To formulate this problem as an independent set query @nobimake a graph with

The O notation suppresses pélyg log n) factors.

“More precisely, they proved that Boolean matrix multipfica requiresd (n?/ log n) bitwise OR operations on-bit vectors,
in a straight-line program model where each line is a bitv@8eof some subset of vectors in the matrices and a subsetwbpse
lines in the program, and each row of the matrix product afgpasithe result aSsomeline of the program.



kn nodes in equal-sized parig,...,V,. Put the edgdi,j) € V, x V, iff there is a vectory,
in the collection such that,[i] = o, andwv.[i] = op. A query vectorg corresponds to asking if
Sy = Uf’:l{j € V,, | q[j] = 0:} is an independent set in the graph.

3. Preprocessing 2-CNF Formulas.We can also a preprocess 2-CNF formiilaon n variables, in
order to quickly evaluatg” on arbitrary assignments. Make a graph with nodes, one for each
possible literal inF'. For each claus¢/; v ¢;) in F, put an edge between nodes; and—/; in the
graph. Now given a variable assignmeht {0,1}" — {0, 1}, observe that the séty = {z | A(¥) =
1} U{—z | A(z) = 0} is independent if and only ifl satisfiesF.

4. Answering 3-SUM Queries. Independent set queries can solve a query version of thekweiin
3-SUM problenj29]. The 3-SUM problem asks: given two setand B of n elements each, are there
two elements in4 that add up to some element B? The assumption that 3-SUM cannot be solved
much faster than the triviaD(n?) bound has been used to show hardness for many computational
geometry problems [29], as well as lower bounds on datatsires[43].

A natural query version of the problem is: given two sdtgend B of n integers each, preprocess
them so that for any query s8tC A, one can quickly answer whether two elements’'isum to an
element inB. Make a graph with a node for each integetdinand an edge between two integerdn

if their sum is an element iB: this gives exactly the independent set query problem.

3 Preliminaries

The Boolean semirings the semiring on{0, 1} with OR as addition and AND as multiplication. For
Boolean matricesA and B, A vV B is the componentwise OR of and B, A A B is the componentwise

AND, and A x B is the (Boolean) matrix product over the Boolean semiringheWit is clear from the

context, sometimes we omit thkeand write AB for the product.

Since the running times of our algorithms involve polylotanic terms, we must make the computa-
tional model precise. Unless otherwise specified, we assust@ndard word RAM with wordsize. That
is, accessing a memory location takeél) time, and we can perform simple operations (such as adgdition
componentwise AND and XOR, but not multiplication) @rbit numbers irO(1) time. Typically, speedups
in combinatorial algorithms come from either exploitingremcombinatorial substructure, by preprocessing
and doing table lookups, or by some “word tricks” which atlithe bit-level parallelism of the machine
model. In our results, we explicitly state the dependenci®fvord size, denoted hy. The reader may
assumev = O(logn) for convenience. In fact all algorithms in this paper canrbplemented on a pointer
machine under this constraint.

We now describe some of the tools we need.

3.1 Regularity

LetG = (V, E) be a graph and le¥, T C V be disjoint. Define:(S,T") = {(u,v) € E|u € S,v € T}.
Thedensity of(S,T") is d(S,T) = e(S,T)/(|S||T|). Thusd(S,T) is the probability that a random pair of
vertices, one fron$ and one froni’, have an edge between them. Eas 0, the pair(S, T') is e-regular if



over allS’ C SandT’ C T with |S’| > ¢|S| and|T"| > ¢|T'|, we haveld(S’,T") — d(S,T)| < e. Thatis,
the density of all sufficiently large subsets(éf, 7') is approximatelyi(S, T').

Definition 3.1 A partition {V1,...,Vi} of V is ane-regular partition of7 if

e forall 7,

Vil <elV

e foralli,j, ||Vi| —|V;|| <1, and

e all but at mostk? of the pairs(V;, V;) are e-regular.

Szemerédi's celebrated theorem states thavery sufficiently large grapandeverye, ane-regular
partition exists.

Lemma 3.1 (Regularity Lemma) For all € > 0, there is aK (¢) such that everys has ans-regular parti-
tion where the number of partsis at mosti(¢).

We need to compute such a partition in less than cubic timerder to perform faster matrix multi-
plication. There exist several polynomial time constrtsi of e-regular partitions[[3, 27, 26, 85]. The
fastest deterministic algorithm runs @(K’(¢)n?) time (for someK’(¢) related toK (¢) and is due to
Kohayakawa, Rodl, and Thoma [ﬁ].

Theorem 3.1 (Kohayakawa-RdI-Thoma [35]) There is an algorithm that, on input > 0 and graphG
on n nodes, outputs aa-regular partition in K’(¢) parts and runs inO(20/(¢’)®(n? + K'(¢)n)) time.
K'(¢) is a tower of at mos20/ (') twos wheres’ = (£20/10%4).

Let us give a few more details on how the above algorithm igiobt. The above theorem is essentially
Corollary 1.6 in Section 3.2 of [35], however we have explcspelled out the dependency betwegn
K’, ande. Theorem 1.5 in[[35] shows that i@(n?) time, we can either verifg-regularity or obtain a
witnessfor ¢’-irregularity (withe’ as above). Here, a witness is simply a pair of subsets otesrfor which
the ¢/-regularity condition fails to hold. Lemma 3.6 in Sectior2 &f [35] shows how to take proofs of
¢’-irregularity for a partition and refine the partition indiar time, so that the index of the partition increases
by (¢)°/20. In 20/(¢’)? iterations of partition refinement (each refinement takind<’(s)n) time) we can
arrive at are-regular partition.

We also need the Triangle Removal Lemma, first stated by Ram$&zemerédi [46]. In one formula-
tion, the lemma says there is a functigrsuch thatf(¢) — 0 ase — 0, and for every graph with at most
en? triangles, at mosf (¢)n? edges need to be removed to make the graph triangle-free.skve version
stated by Greenl([30], Proposition 1.3).

Lemma 3.2 (Triangle Removal Lemma) Suppose’ has at mostn? triangles. Letk = K(c) be the
number of parts in someregular partition ofG, wheredek—3 > 6. Then there is a set of at mas{e!/?n?)
edges such that their removal mak&driangle-free.

In particular, let{V,...,Vi} be ane-regular partition of G. By removing all edges in paird/, V;),
the pairs(V;, V;) with density less thaps!/3, and all non-regular pairs( becomes triangle-free.

5[85] claim that [25[25] give an algorithm for constructingegyular partition that runs ilinear time, but we are unsure of this
claim. The algorithm given in_[26] seems to require that we eerify regularity in linear time without giving an alganin for this
verification.



Proof. (Sketch) LetG’ be the graph obtained by takirig and removing all edges from the paifs;, V;),
the pairs(V;, V;) with density less thape!/2, and all non-regular pairs. Note the total number of suctesdg
is at mostl0e!/3n2.

We now need to show th&t’ is triangle-free. Suppose there is a triangle among V;, v € V;, and
w € Vj, for some distinct, j, k. Note that|V;|, |V;| and|V}| are all at least/k — k, the density of all pairs
of edges is at leagt!/3, and all pairs are-regular. By a standard counting lemma, we have that the sBumb
of triangles betweefy;, V;, andV}, (for sufficiently largen) is at least

(2633 (n/k — k)? — den® > 8en® /K — den® > o0,

a contradiction to our hypothesis ¢h |

Notice that the lemma gives an efficient way of discoveringciwledges to remove, when combined
with an algorithmic Regularity Lemma. However the aboveoprgelds only a very weak bound ofy¢),
of the forme/(log* 1/)° for some constants > 1 andé > 0. It is of great interest to prove a triangle
removal lemma with much smallégi(e).

There are also other (weaker) notions of regularity thdteaufor certain applications, where the depen-
dence orx is much better. We discuss below a variant due to Frieze anddfa[26]. There are also other
variants known, for examplé [34] 4,]22]. We refer the readehé survey([36]. Frieze and Kannan defined
the following notion of a pseudoregular partition.

Definition 3.2 (s-pseudoregular partition) Let ? = Vi,...,V;, be a partition ofV, and letd;; be the
density of(V;,V;). For a subsetS C V, andi = 1,...,k, letS; = SN V;. The partitionP is e-
pseudoregulaif the following relation holds for all disjoint subsefs T of V'

k
e(S,T) = > dij|Sil|Ty| | < en®.

ij=1
A partition isequitableif for all 4, 5, ||V;| — |V;]] < 1.

Theorem 3.2 (Frieze-Kannan([26], Thm 2 and Sec 5.1For all £ > 0, an equitables-pseudoregular par-
tition of ann node graph with at mosiin{n, 2464/3<*1} parts can be constructed i@(2°("/=*) 2 )
time with a randomized algorithm that succeeds with proligtat least1 — 6.

The runtime bound above is a little tighter than what Friezd ldannan claim, but an inspection of their
algorithm shows that this bound is achieved. Note that Lowasl Szegedy [39] have proven that for any
e-pseudoregular partition, the number of parts must be at l¢/d - 21/(8¢).

3.2 Preprocessing Boolean Matrices for Sparse Operations

Our algorithms exploit regularity to reduce dense BMM to hemtion of somewhat sparse matrix multipli-
cations. To this end, we need results on preprocessingaestio speed up computations on sparse inputs.
The first deals with multiplication of an arbitrary matrix thvia sparse vector, and the second deals with
multiplication of a sparse matrix with another (arbitranyatrix.



Theorem 3.3 (Blelloch-Vassilevska-Williams[[13])Let B be an x n Boolean matrix and letv be the
wordsize. Lek > 1 and/ > x be integer parameters. There is a data structure that candmestcucted
with O(n?k/€- >, (f;)) preprocessing time, so that for any Boolean veetothe productB x v can be

computed irO(nlogn + % + L) time, wheret is the number of nonzeros in

Rw

This result is typically applied as follows. Fix a valuetdfo be the number of nonzeros we expect in
a typical vectoro. Choosel andx such that/¢ = ¢/, and Y ;_, (£) = n® for somes > 0. Letting
k =01In(n)/In(en/t) and? = k - en/t we obtain:

'[heorem 3.4 Let B be an x n Boolean matrix. There is a data structure that can be comsta with
O(n?*9) preprocessing time, so that for any Boolean veaipthe productB % v can be computed in

O(nlogn + "2n/Dy time wheret is the number of nonzeros in

dwlnn

We should remark that we do not explicitly apply the abovetbem, but the idea (of preprocessing for
sparse vectors) is used liberally in this paper.

The following result is useful for multiplying a sparse nwawwvith another arbitrary matrix.

Theorem 3.5 There is arO(mn log(n?/m) /(w log n)) time algorithm for computinglx B, for everyn xn
A and B, whereA hasm nonzeros and3 is arbitrary.

This result follows in a straightforward manner by combnthe two lemmas below. The first is a graph
compression method due to Feder and Motwani.

Lemma 3.3 (From Feder-Motwani [23], Thm 3.3) Let§ € (0,1) be constant. We can write amy x n
Boolean maitrixA with m nonzeros asd = (C' x D) V E whereC, D are n x m/n'=%, m/n'=% x n,
respectively, both with at most (logn2/m)/(d logn) nonzeros, and® is n x n and has at most?~?
nonzeros. Furthermore, finding, D, & takesO(mn5 log? n) time.

Since the lemma is not stated explicitly in [23], let us sketwe proof for completeness. Using Ramsey
theoretic arguments, Feder and Motwani show that for eviggrtite graphGG on 2n nodes (withn nodes
each on left and right) angh > n?~° edges, its edge set can be decomposedsinta’'—° edge-disjoint
bipartite cliques, where the total sum of vertices over gialite cliques (a vertex appearing i cliques
is countedK times) is at mostn(log n?/m) /(5 logn). Every A can be written in the forniC x D) v E,
by having the columns af’ (and rows ofD) correspond to the bipartite cliques. $&t, k] = 1 iff the ith
node of the LHS of7 is in thekth bipartite cliqgue, and similarly sé? for the nodes on the RHS 6éf. Note
FE is provided just in casd turns out to be sparse.

We also need the following simple folklore result. It is sthin terms of wordsizev, but it can easily
be implemented on other models such as pointer machinesonitHog n.

Lemma 3.4 (Folklore) There is anO(mn/w + pq + pn) time algorithm for computingd x B, for every
p x ¢ Aandg x n B whereA hasm nonzeros and is arbitrary.

Proof. We assume the nonzeros 4fare stored in a list structure; if not we construct thigipg) time.
Let B; be thejth row of B andC; be theith row of C' in the following. We start with an output matrix
that is initially zero. For each nonzero entiy j) of A, updateC; to be the OR of3; andC;. Each update
takes onlyO(n/w) time. It is easy to verify that the resulting is the matrix product. |
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4 Combinatorial Boolean Matrix Multiplication via Triangl e Removal

In this section, we prove Theordm R.1. That is, we show a nifiest Triangle Removal Lemma implies
more efficient Boolean matrix multiplication. Let and B be the matrices whose produbt we wish to
compute. The key idea is to split the task into two casest,Fiesuse simple random sampling to determine
the entries in the product that have many witnesses (wherawitness for(i, j) if Ali, k| = Bk, j] = 1).

To compute the entries with few witnesses, we set up a tiipagtaph corresponding to the remaining
undetermined entries of the matrix product, and argue thes few triangles. (Each triangle corresponds
to a specific witness for a specific entry ihthat is still undetermined.) By a Triangle Removal Lemma,
a sparse number of edges hit all the triangles in this dﬁap!sjng three carefully designed sparse matrix
products (which only require one of the matrices to be spavee can recover all those entriéy:, j] = 1
which have few witnesses.

Let C be a collection of sets over a univerSe A setR C U is ane-net for(C if for all S € C with
|S| > e|U|, RN S # @. The following lemma is well known.

3In|C|
€

Lemma 4.1 LetC be a collection of sets over a univerEe A random samplé? C U of size is an

e-net with probability at least — |C|~2.
We now describe our algorithm for BMM.

Algorithm: Let A andB ben x n matrices. We wanb = A « B, i.e. D[i, j] = (V}_,Ali, k] A B[k, j]).

Random sampling for pairs with many witnessesst, we detect the pairg, j) with at leasten wit-
nesses. Constructrax n matrix C' as follows. Pick a sampl& of (6log n)/< elements fromn|. For each
(i,5), 1 < 1,57 <n,checkifthereis & € R thatis a witness fofi, j) in the product. If yes, set|:, j| = 1,
otherwiseC|[i, j] = 0. Clearly, this takes at mo&)((n? logn)/e) time. NoteC' is dominated by the desired
D, inthatC[s, j] < D[i, 5] for all i, j. Let.S; ; be the set of witnesses f@r, j). By Lemm& 4.l R is ans-net
for the collection{S; ;} with probability at least — 1/n*. Hence we may assund&(i, j] = Dl[i, j] = 1 for
every(i, j) with at leastn witnesses.

Triangle removal for pairs with few witnessdssuffices to determine thoge, j) such thatC[i, j] = 0
and D[i, j] = 1. We shall exploit the fact that such pairs do not have mangpesges. Make a tripartite
graphH with vertex setd/, V5, V3, each withn nodes indexed by, . . ., n. Define edges as follows:

e Putanedgéi, k) € (V1,Vs) ifand only if A7, k] = 1.
e Putan edgék,j) € (Va, V3) ifand only if Bk, j] = 1.
e Putanedgéi,j) € (V1,V3) ifand only if C[i, j] = 0.
That is, edges froni; to V3 are given byC, the complement of”. Observe(i, k,j) € (Vq,Va,V3)

is a triangle if and only ifk is a witness for(i, 7) and C|[i,j] = 0. Thus our goal is to find the pairs
(i,7) € (V4,V3) that are in triangles off .

Since every(i, j) € (V1,V3) has at mostn witnesses, there are at mast® triangles inH. Applying
the promised Triangle Removal Lemma, we can find in ti{& (n)) a set of edge# where|F| < f(¢)n?

®Note that the triangle removal lemma may also return edgesithnot lie in any triangle.



and each triangle must use an edgeinHence it suffices to compute those edgeg) < (V1, V3) that
participate in a triangle with an edge in Define Ar[i, j] = 1 if and only if A[,j] = 1 and(i,j) € F.
Similarly defineBr andC'r. Every triangle off passes through at least one edge from one of these three
matrices. Lefl’4 (resp.Tz and7) denote the set of triangles with an edgedip (resp.Br andC'r). Note

that we do not know these triangles.

We can determine the edg@s;) € (V1, V3) that are in some triangle ifiy or Tz directly by computing
C, = Ar x Band(Cy, = A x B, respectively. AsAr and By are sparse, by Theordm B.5, these products
can be computed i0(|F|log(n?/|F|)/(wlogn)) time. Thel-entries ofC A Cy (resp.C A Cy) participate
in a triangle inT'4 (resp.Tz). This determines the edges(ivi;, V3) participating in triangles frorfi’y UTp.

SetC = C Vv (C; AC) V (Cy AC), and update”’ and the edges AV, V3) accordingly. The only
remaining edges ifiV;, V3) that could be involved in a triangle are those corresponttingentries inC'r.
We now need to determine which of these actually lie in a glien

Our remaining problem is the following: we have a tripartjtaph on vertex sét/;, V5, V3) with at most
f(e)n? edges betweeh; andV3, and each such edge lies in at mestriangles. We wish to determine the
edges in(V1, V3) that participate in triangles. This problem is solved byftiilwing theorem.

Theorem 4.1 (Reporting Edges in Triangles)Let G be a tripartite graph on vertex séi;, V5, V3) such
that there are at mosin? edges in(V4, V3), and every edge dfl;, V3) is in at mostt triangles. Then the
set of edges itiVy, 13) that participate in triangles can be computed@{én> log(1/6)/(w logn) + n?t)
time.

Settingd = f(¢) andt = en, Theoreni 4.1l implies the desired time bound in Thedrer 2tk idlea
of the proof of Theorerh 411 is to work with a new tripartite ginavhere the vertices have asymptotically
smaller degrees, at the cost of adding slightly more nodéss i$ achieved by having some nodes in our
new graph correspond wmall subsets of nodé&s the original tripartite graph.

Proof of Theorem[4.1. We first describe how to do the computation on a pointer machith w = log n,
then describe how to modify it to work for the word RAM.

Graph Construction:We start by defining a new tripartite graglf on vertex setV;, V4, Vy). Let
v < 1/2. V3 is obtained by partitioning the nodes 6§ into n/(~ylog n) groups of sizeylog n each. For
each group, we replace it B 1°8” = n” nodes, one corresponding to each subset of nodes in thgi.grou
ThusVy hasn!'*7/(y1logn) nodes.

V4 is also constructed out of subsets of nodes. We faytfigroups each consisting éfnodes inVs,
where? = ~y(logn)/(d1log(1/9)). For each group, we replace it y nodes, one corresponding to each
subset of size up te = y(logn)/(log(1/4)). Simple combinatorics show this is possible, and #iahas
O(n'*7/¢) nodes.

Edges in(V3, V4): Put an edge betweenin V; andx in V3 if there is an edgé:, ) in (Va, V3) such
thati lies in the set corresponding tg andj lies in the set corresponding te. For each such edge, x),
we make a list of all edges, j) € (4, V3) corresponding to it. Observe the list for a single edge haes si
at mostO (log? n).

Edges in(V1,V3): The edges from € V; to V] are defined as follows. For each grouplinconsider
the neighbors of in that group. Put an edge fromto the node ifi; corresponding to this subset. Each
has at most./(y log n) edges to nodes if;.
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Edges in(Vi, V4): Letwv € Vj. For each groug of ¢ nodes inVs, let N, , be the set of neighbors of
ving. Letd,, = |N,g4|. PartitionN, , arbitrarily intot = [d, /x| subsetssy, ..., s, each of size at
mostx. Put edges from to s1, ..., s, in V3. The number of these edges franis at mosty_ [dy,q/k] <
n/l + d,/k, whered, is the number of edges fromto V. Sinced_, d, < én?, the total number of edges
from V3 to V4 is O(§log(1/8)n? /(ylogn)).

Final Algorithm: For each vertex € V7, iterate over each pair afs neighborsu € Vj andz € V3. If
(u, z) is an edge ', output the list of edge§, j) in (5, V3) corresponding tdu, ), otherwise continue
to the next pair. From these outputs we can easily determaedgesv, j) in (V1, V3) that are in triangles:
(v,7) is in a triangle if and only if nodg in V3 is output as an end point of some edgej) € (12, V3)
during the loop fow in V1.

Running TimeThe graph construction takes at ma¥t2+27). In the final algorithm, the total number
of pairs(u, w) in (V3, V) that are examined is at most

(n/logn) - O(0n?*(log 1/5)/logn)) < O(8log(1/6)n*/log? n).

We claim that the time used to output the lists of edges is at@on?t). A nodej from V3 is on an
output list during the loop fop in V; if and only if (v, j) is an edge in a triangle, with some nodelin
that has a 1 in the nodein V3. Since each edge froii;, V3) in a triangle is guaranteed to have at most
witnesses irl,, the nodej is output at most times over the loop fov in V;. Hence the length of all lists
output during the loop for is at mostnt, and the total time for output is at maS{(n2t).

Maodification forw-word RAM: Finally we show how to replace lag-speedup by av-speedup with
wordsizew. In the above, each node 4 and V3 hasn/(ylogn) edges to nodes iy, and these edges
specify amn-bit vector. The idea is to simply replace these edge selt§ twith ordered sets of /w words,
each holding av-bit string. Eachv € V; now points to a collectiord, of n/w words. Each node in
V4 also points to a collectioff}, of n/w words, and an array of/w pointers, each of which point to an
appropriate list of edges ifV%, V3) analogous to the above construction. Now for eveiin V7, theith

word ¢ from S, for i = 1,...,n/w, and every neighbar € Vj to v, we look up theith word¢’ in the T,
and computey A ¢'. If this is nonzero, then each bit locatibrwhereq A ¢’ has a 1 means that the node
corresponding td forms a triangle withy and some vertex in the set corresponding to |

Remark. Note that we only use randomness in the BMM algorithm to deitee the pairs(s, j) that
have many withesses. Moreover, by choosing a larger saRjitethe random sampling step (notice we
have a lot of slack in the running time of the random samplieg)s the probability of failure can be made
exponentially small.

Using the best known bounds for triangle removal, we obtagrfollowing corollary to Theorem 2.1:

Corollary 4.1 There is a > 0 and a randomized algorithm for Boolean matrix multiplicatithat works

with high probability and runs i (%) time.

Proof. Lete = 1/4/n. By the usual proof of the triangle removal lemma (via the iRagty Lemma), it
suffices to sef (¢) = 1/(log* 1/£)? in Theoreni 211 for a constafit> 0. u

It is our hope that further work on triangle removal may im@dhe dependency of. In the next
section, we show how to combine the Weak Regularity Lemmagaiuith the above ideas to construct a
faster algorithm for BMM.
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5 Faster Boolean Matrix Multiplication via Weak Regularity

We first state a useful lemma, inspired by Theofem 3.3. It asssnilar technique to our algorithm for
reporting the edges that appear in triangles (Thegrein 4.1).

Theorem 5.1 (Preprocessing for Bilinear Forms)Let B be ann xn Boolean matrix. Lek > 1and/ >
be integer parameters. For the pointer machine, there is & déructure that can be built i®(n?/¢2 -
iy (5))?) time, so that for any,v € {0,1}", the productu” Buv over the Boolean semiring can be
computed inO(nf + (% + &)(% + L)) time, wheret,, andt, are the number of nonzeros inand v,
respectively. Moreover, the data structure can outputisteof pairs(i, j) such thatu; B[i, jlv; = 1in O(p)

additional time, wherg is the number of such pairs.

min(ty,ty)
K

On the word RAM withw > log n, the same can be achieved@{nl + 2 - (% + )) time.

For our applications, we shall set= log? n andx = 1/5 - log n/(log log n). Then the preprocessing is
n3~M) 4T By can be computed in time

O(( n2 +tuloglogn>< n2 +tvloglogn>> )
log®n logn log®n logn

on a pointer machine, and it can be computed on RAMs with lengelsizew in time

( n? N nmin(t,, t,) log 10gn>
wlog?n wlogn ’

(2)

Proof of Theorem[5.1. As in the proof of Theorern 4.1, we first describe how to impletibe algorithm

on a pointer machine, then show how it may be adapted. We Bies a bipartite graptiy = (U, V, F) in

the natural way, wher& = V = [n] and(i,j) € E iff Bi,j] = 1. We group vertices i/ andV" into
[n/f] groups, each of size at mastFor each groupg, we introduce a new vertex for every subset of up to
K vertices in that group. Le’” andV”’ be the vertices obtained. We view the nodeg/6fand V'’ also as
vectors of lengtt? with up tox nonzeros. Clearlit/’| = [V'| = O(n/f - S5, (1))

For every vertex)’ € U’, we store a tabl@),, of size|V’|. Thev'-th entry of T, is 1 iff there isani € U
in the set corresponding td, and aj € V in the set corresponding td, such thatB|[i, j| = 1. Each(i, j)
is said to be avitness tdl/[v'] = 1. In the output version of the data structure, we associatt &, with
every nonzero entry’ in the tableT,, which contains thos€, j) pairs which are witnesses 1, [v'] = 1.
Note that|L,/| < O(k?).

Given query vectors, andv, we computeu” Bv and thosei, j) satisfyingu; B[i, jlv; = 1 as follows.
Let u, be the restriction of the vectarto groupg of U. Note |u,| < ¢. Lett(u, g) denote the number of
nonzeros inu,. Expressu, as a Boolean sum of at mogt(u, g) /x| vectors (nodes) frony’; this can be
done since each vector i has up tos nonzeros. Do this over all grougf U. Now u can be represented
as a Boolean sum of at mosy/¢ + t,/x vectors fromU’. We repeat a similar procedure forover all
groupsg of V, obtaining a representation ofas a sum of at most//¢ + ¢,/ vectors fromV’. These
representations can be determined in at nitst/) time.

Let S, C U’ be the subset of vectors representingandS, C V' be the vectors fov. For allu’ € S,
andv’ € S,, look upT,/[v]; if itis 1, output the listL,,. Observeu” Bv = 1 iff there is someT, [v'] that
equalsl. It is easily seen that this procedure satisfies the desinauimg time bounds.

12



Finally, we consider how to implement the above on the wordvRAodel. We shall have two (analo-
gous) data structures depending on whethex ¢, or not.

Suppose,, < t, (the other situation is analogous). As previously in Theddel, we form the grapt’’
with vertices corresponding to subsets of ug:toonzeros within a vector of size With each such vertex
u' € U’ we associate an-bit vectorT,, (which is stored as an/w-word vector), obtained by taking the
union of the rows ofB corresponding ta’’. Now, sincev can also be stored as arfw-word vector, the
productT,, - v can be performed in/w time. For a givern there are at most at mos{¢ + ¢,,/« relevant
vectorsT,, and hence the produef Bv can be computed in im@((n/¢ + t,/k)(n/w)). [ |

Theorem 5.2 There is a combinatorial algorithm that, given any two Bemle: x n matricesA and B,
computes4 x B correctly with probability exponentially close to 1, @(n?(loglogn)?/(log?? n)) time
on a pointer machine, an@(n?(log logn)/(wlog™ % n)) time on a word RAM.

Proof. The algorithm builds on the ideas in Theorem] 2.1 (the BMM atgm using triangle removal),
while applying the bilinear form preprocessing of Theoted &e algorithm for reporting edges in triangles
(Theoreni4.11), and Weak Regularity. We first describe therdlgn for pointer machines.

Algorithm. As in Theoreni 211, by taking a random sample 6t indices from[n|, we can determine
those pairg(i, j) such that A « B)[i, j] = 1 where there are at least/* witnesses to this fact. This takes
O(n?®) time and succeeds with probability— exp(—n1).

Next we construct a tripartite graght = (4, V5, V3, E) exactly as in Theorein 2.1, and just as before
our goal is to determine all edgés j) € (V1, V3) that form at least one triangle with some verteX/in

Compute are-pseudoregular partitiof W7, ..., Wy} of the bipartite subgraptiVy, V3), with ¢ =
—L1__forana > 0. By Theoreni 3.2 this partition can be foundaf(¢*1osm) time. Setn to make the

ay/logn
runtime (n?). Recalld;; is the density of the paifi¥;, W;). The preprocessing stores two data structures,
one for pairs with “low” density and one for pairs with “higkfensity.

1. (Low Density Pairs) Lef” be the set of all edges ifi;, V3) that lie in some paiWV;, W;), where
dij < v/e. Note|F| < /zn?. Apply the algorithm of Theoref 4.1 to determine the sub$etiges
in F that participate in triangles. Remove the edge$ dfom G.

2. (High Density Pairs) For all pairdV;, W;) with d;; > /¢, build the data structure for computing
bilinear forms (Theorer 5.1) for the submatrlx; corresponding to the graph induced B, W;),
with ¢ = log? n andx = logn/(5loglogn).

Then for each vertex € Vs, let S;(v) = N(v) N W;, andT;(v) = N(v) N W;. Compute all pairs of
nodes inS;(v) x T} (v) that form a triangle withy, using the bilinear form query algorithm of Theoremi5.1.

Analysis. Clearly, the random sampling step take&:> ") time. Consider the low density pairs step.
Recall|F| < \/en? and every edge iV, V3) is in at mostz®/* triangles. Moreover, the functiofi(d) =
dlog(1/6) is increasing for smalf (e.g., overl0, 1/4]). Hence the algorithm that reports all edges appearing
in triangles (from Theorein 4.1) takes at mo&t/en> log(1/¢)/log® n) < O(n?loglogn/log*?® n) time.

Now we bound the runtime of the high density pairs step. Fios¢ that the preprocessing for bilinear

2
forms (Theorem 5]1) takes on{y(log—jn “(logn /1(°5gliglogn)) ) < O(n?+4/%) time overall.
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Lete(S, T') denote the number of edges between sulisersd7. Since there are at most " triangles,
> e(N(v) N Vi, N(v) N V3) < n*7. (3)
veVs

Since{W;} is e-pseudoregular[{3) implies
Z ZdwlS NTj(v)] < en® +n?™ < 2en®

veVa 4,

for largen. Summing over densitieg ; > V/€, we obtain

TL3
S Y S@IT0)] < 2vEnd < —m )

~ log®n
veV2 i,j:d; j>/E g

Applying expressior{1), the time taken by all queries ondata structure for bilinear forms (Theorem
[5.7)) for a fixed paifW;, W;) is at most

> ((n2/]z) N |Si(v)|1_§1g%> ((n2/lz) . |Tj(1)11£|lﬂglg%>‘
k

veVs lg % lgk lg %

Expanding the products and applyifg (4), the total runtisngpper bounded by
Ty STl n)? _ 2n*(loglogn)®

wlogn — wlogt®n

vEV2 4,5:d;>/e
Finally, the random sampling step ensures that the numbeitoésses is at most " for every edge, so
the output cost in the algorithm is at mag{n?">).

Modification for the word RAMTo exploit a model with a larger wordsize, we apply the sargerithm
as above, except we run the low density pairs step for p&ifs1V;) with densityd;; < /3 (instead of
V). For the pairW;, W;) with d;; > /3, construct the data structure for bilinear forms (Theoef) 5
for the word RAM.

As in the analysis above, the preprocessing step for reppttie edges appearing in triangles (Theorem
[4.7) has running time

O(e3n’log(1/e)/(wlogn)) < O(n®loglogn/(wlog™% n)).

Now consider the time due to bilinear form queries on the ditacture of Theorefn 5.1. Using an argument
identical to that used to obtaif] (4), the time is

3
> Y IS@ITe) <2 < ®)

veV2 i,j:di$j281/3 log

Applying expressior[{2), the total running time is

-min(|S;(v)], [T;(v)|) log log
Z Z (wlog " : wlog(n/k) k)

veVy 1] &

k
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N Z Z 7 -min(|S;(v)|, |T; (v)|)loglog%. ©)
wlog x T i wlog ¢

To bound the second term, observe that

> > min(|Si(v)], 1T (v)))

veVa 1,7
< DD (18w (v))'/?
veEVa 1,
< kvne [ Z\S T (v

ve V2 7.7

by Cauchy-Schwarz. By the inequalifyd (5), this is at mdist2/log/® n. Thus the expressiofl(6) can be
upper bounded b (n? log log n/(wlog™% n)) as desired. u

6 Independent Set Queries Via Weak Regularity

We consider the followingndependent set quemgroblem. We want to preprocess amode graph in
polynomial time and space, so that given &hy. .., S,, C V, we can determine in?/f(n) time which of

S1,...,S, are independent sets. Using such a subroutine, we can dagéiymine im?3/(wf(n)) time if a

graph has a triangle (provided the preprocessing itselbeatione inO(n3/(wf(n))) time), by executing
the subroutine on collections of sets corresponding to ¢éhghtvorhoods of each vertex.

The independent set query problem is equivalent to: pregsa Boolean matrid so thatw queries
of the form * TAv] = 0?” can be computed in?/f(n) time, where the products are over the Boolean

semiring. We shall solve a more general problem: preprodessanswenv queries of the form ¢’ Av =
0?”, for arbitraryu,v € {0, 1}".

Our method employs weak regularity along with other comioinal ideas seen earlier in the paper.

Theorem 6.1 For all § € (0,1/2), everyn x n Boolean matrixA can be preprocessed i(n>+9) time

such that given arbitrary Boozlean vec2toz§, .oy Ulegp @NAYY, . .., Vigg n, WE CAN determine iiZAvp =0,
. log 1 . . .
forallp=1,...,lognin O(%) time on a pointer machine.
On the word RAM we can determineuﬁAvp =0, forallp=1,...,win tlmeO(%) where

w is the wordsize.

Proof of Theorem[6.1. We describe the algorithm on the pointer machine; it can benebed to the word
RAM by a modification identical to that in Theorém5.2. We steith the preprocessing.

PreprocessinglnterpretA as a bipartite graph in the natural way. Computepseudoregular partition
of the bipartiteA = (V, W, E) with e = ©(1/+/logn), using Theorerh 312. (Note this is the only random-
ized part of the algorithm.) LeVy, V5, ...,V be the parts o¥ and letWWy, ..., W, be the parts oV,
wherek < 20(1/¢),
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Let A;; be the submatrix oft corresponding to the subgraph induced by the @gir1V;). Letd;; be
the density of V;, ;). LetA = \/e.

For each of the&:? submatricesd;;, do the following:

1. If d;; < A, apply graph compression (Theoreml3.5) to preproggs# timemn? log® n, so thatd,;
can be multiplied by any/k x log n matrix B in time O(m log((n/k)?/m)/log(n/k)), wherem is
the number of nonzeros ;. (Notem < A(n/k)2.)

2. If d;; > A, apply the bilinear form preprocessing of Theorlen 5. Atpwith ¢ = log?n andx =
dlogn/(5loglogn).

Query Algorithm. Given Boolean vectors, andv, for p = 1,...,logn, let S C [n] be the subset
corresponding ta,, and7? C [n] be the subset correspondingup Forl <i,j < k, letS? = SPNV;

andTy = T; N W;.

1. ComputeQ? = Z” L dig|SP||T7 [ forall p = 1,...  logn. If QP > en?, then outputu) Av, = 1.
2. Letl = {p: QP < en?}. Note|I| < logn. We determine.. Av, for eachp € I as follows:

e For all (i,7) with d;; > A, apply the bilinear form algorithm of Theorelm b.1 to compute
= (S)T AT} for eachp € I.

e Forall (i, j) with d;; < A, form ang x |I| matrix B; with columnsT7’ over allp € I. Compute
Cij = A;j* Bj using theAw from preprocessing step 1. For each I, compute the (Boolean)
dot producte!; = (S7)" - CF;, whereCy) is thep-th column ofC;;.

e Foreacly € I, retunu Av, = \/, ; el

Analysis. We first consider the preprocessing time. By Theokem 3.2, amechoose: so that thes-
pseudoregular partition is constructed(xn?>+°) time. By Theorem§ 3|5 arid 5.1, the preprocessing for
matricesA;; takes at mosD (k% (n/k)*+?) time for somes < 1/2. Thus, the total time is at mo&(n?*?).

We now analyze the query algorithm. Note step 1 of the queygrahm works bye-pseudoregularity:
if QP > en? then the number of edges betweghand 7 in A is greater thafh. Computing allQ” takes

time at mosO(k?n logn).
Consider the second step. As; ; d,j]S”HT”] < en? for eachp € I, we have

z—:n . 2
> ISHIT]| < % = ven®, (7)

i,j:dij > A
Analogously to Theoreiin 5.2, the total runtime overgaét I and pairs(z, j) with d;; > A is at most

Z Z n/k \Sf\loglog% n/k N IT?|log log %
log® n log 7 log? 7 log ?

pel i,5: dLJ>A k

|SP||TF|(log log n)?
<0 . 8
- <log n Z Z log?n ®

pel 4,5 dlj >A
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The inequality[(V), the fact thaf| < log n, and our choice of imply that (8) is at most

O(n®(loglogn)?/log®* n).

Now we consider the pair§, j) with d;; < A. By Theoreni 35, computing the product; = A;; B;
for all p € I (at once) takes

2
O A (E) log(1/A)
log(n/k) )~
Summing over all relevant paits, ;) (there are at mogt?), this isO(n2(log log n) / log®* n) by our choice
of A. |

7 Conclusion

We have shown how regularity concepts can be applied to jaslgr combinatorial algorithms for funda-
mental graph problems. These results hint at an alternate®f research on Boolean matrix multiplication
that has been unexplored. Itis likely that the connectioaglaeper than we know; let us give a few reasons
why we believe this.

First, we applied generic tools that are probably strongan thecessary, so it should be profitable to
search for regularity concepts that are designed with matultiplication in mind. Secondly, Trevisan [55]
has promoted the question of whether or not the Triangle Rahicemma requires the full Regularity
Lemma. Our work gives a rather new motivation for this guestand opens up the possibility that BMM
may be related to other combinatorial problems as well. feunhore, there may be similar algorithms for
matrix products over other structures such as finite fieldsefmin, +)-semiring. These algorithms would
presumably apply removal lemmas from additive combinesorior instance, Shapira [51] recently proved
the following, generalizing a result of Green [30]. etz = b be a set of linear equations over a finite field
F, with n variables andn equations. IfS C F' has the property that there are onl§jF'|"~"") solutions
in S™to Mz = b, theno(|F|) elements can be removed frashso that the resulting™ has no solutions
to Mz = b. In light of our work, results such as this are possible tdoidfinite field linear algebra with
combinatorial algorithms.
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