
Finding the smallest H-subgraph in real

weighted graphs and related problems

Virginia Vassilevska1, Ryan Williams1, and Raphael Yuster2

1 Computer Science Department, Carnegie Mellon University, Pittsburgh, PA
{virgi,ryanw}@cs.cmu.edu

2 Department of Mathematics, University of Haifa, Haifa, Israel
raphy@math.haifa.ac.il

Abstract. Let G be a graph with real weights assigned to the vertices
(edges). The weight of a subgraph of G is the sum of the weights of its
vertices (edges). The MIN H-SUBGRAPH problem is to find a minimum
weight subgraph isomorphic to H, if one exists. Our main results are new
algorithms for the MIN H-SUBGRAPH problem. The only operations
we allow on real numbers are additions and comparisons. Our algorithms
are based, in part, on fast matrix multiplication.
For vertex-weighted graphs with n vertices we obtain the following re-
sults. We present an O(nt(ω,h)) time algorithm for MIN H-SUBGRAPH
in case H is a fixed graph with h vertices and ω < 2.376 is the exponent
of matrix multiplication. The value of t(ω, h) is determined by solving a
small integer program. In particular, the smallest triangle can be found
in O(n2+1/(4−ω)) ≤ o(n2.616) time, the smallest K4 in O(nω+1) time,
the smallest K7 in O(n4+3/(4−ω)) time. As h grows, t(ω, h) converges
to 3h/(6 − ω) < 0.828h. Interestingly, only for h = 4, 5, 8 the running
time of our algorithm essentially matches that of the (unweighted) H-
subgraph detection problem. Already for triangles, our results improve
upon the main result of [VW06]. Using rectangular matrix multiplica-
tion, the value of t(ω, h) can be improved; for example, the runtime for
triangles becomes O(n2.575). We also present an algorithm whose running
time is a function of m, the number of edges. In particular, the smallest
triangle can be found in O(m(18−4ω)/(13−3ω)) ≤ o(m1.45) time.
For edge-weighted graphs we present an O(m2−1/k log n) time algorithm
that finds the smallest cycle of length 2k or 2k − 1. This running time is
identical, up to a logarithmic factor, to the running time of the algorithm
of Alon et al. for the unweighted case. Using the color coding method
and a recent algorithm of Chan for distance products, we obtain an
O(n3/ log n) time randomized algorithm for finding the smallest cycle of
any fixed length.

1 Introduction

Finding cliques or other types of subgraphs in a larger graph are classical prob-
lems in complexity theory and algorithmic combinatorics. Finding a maximum
clique is NP-Hard, and also hard to approximate [Ha98]. This problem is also

conjectured to be not fixed parameter tractable [DF95]. The problem of finding
(induced) subgraphs on k vertices in an n-vertex graph has been studied exten-
sively (see, e.g., [AYZ95,AYZ97,CN85,EG04,KKM00,NP85,YZ04]). All known
algorithms for finding an induced subgraph on k vertices have running time
nΘ(k). Many of these algorithms use fast matrix multiplication to obtain im-
proved exponents.

The main contribution of this paper is a set of improved algorithms for find-
ing an (induced) k-vertex subgraph in a real vertex-weighted or edge-weighted
graph. More formally, let G be a graph with real weights assigned to the ver-
tices (edges). The weight of a subgraph of G is the sum of the weights of its
vertices (edges). The MIN H-SUBGRAPH problem is to find an H-subgraph of
minimum weight, if one exists. Some of our algorithms are based, in part, on
fast matrix multiplication. In several cases, our algorithms use fast rectangular
matrix multiplication algorithms. However, for simplicity reasons, we express
most of our time bounds in terms of ω, the exponent of fast square matrix mul-
tiplications. The best bound currently available on ω is ω < 2.376, obtained by
Coppersmith and Winograd [CW90]. This is done by reducing each rectangular
matrix product into a collection of smaller square matrix products. Slightly im-
proved bounds can be obtained by using the best available rectangular matrix
multiplication algorithms of Coppersmith [Cop97] and Huang and Pan [HP98].
In all of our algorithms we assume that the graphs are undirected, for simplic-
ity. All of our results are applicable to directed graphs as well. Likewise, all of
our results on the MIN-H-SUBGRAPH problem hold for the analogous MAX-
H-SUBGRAPH problem. As usual, we use the addition-comparison model for
handling real numbers. That is, real numbers are only allowed to be compared
or added.

Our first algorithm applies to vertex-weighted graphs. In order to describe its
complexity we need to define a small integer optimization problem. Let h ≥ 3 be
a positive integer. The function t(ω, h) is defined by the following optimization
program.

Definition 1.

b1 = max{b ∈ N :
b

4 − ω
≤ b

h − b

2
c}. (1)

s1 = h − b1 +
b1

4 − ω
. (2)

s2(b) = max{h − b + b
h − b

2
c , h − (3 − ω)b

h − b

2
c}. (3)

s2 = min{s2(b) : b
h − b

2
c ≤ b ≤ h − 2}. (4)

t(ω, h) = min{s1, s2}. (5)

By using fast rectangular matrix multiplication, an alternative definition for
t(ω, h), resulting in slightly smaller values, can be obtained (note that if ω = 2,
as conjectured by many researchers, fast rectangular matrix multiplication has
no advantage over fast square matrix multiplication).

Theorem 1. Let H be a fixed graph with h vertices. If G = (V,E) is a graph
with n vertices, and w : V → < is a weight function, then an induced H-subgraph
of G (if exists) of minimum weight can be found in O(nt(ω,h)) time.

It is easy to establish some small values of t(ω, h) directly. For h = 3 we have
t(ω, 3) = 2 + 1/(4 − ω) < 2.616 by taking b1 = 1 in (1). Using fast rectangular
matrix multiplication this can be improved to 2.575. In particular, a triangle of
minimum weight can be found in o(n2.575) time. This should be compared to
the O(nω) ≤ o(n2.376) algorithm for detecting a triangle in an unweighted graph.
For h = 4 we have t(ω, 4) = ω + 1 < 3.376 by taking b = 2 in (4). Interestingly,
the fastest algorithm for detecting a K4, that uses square matrix multiplication,
also runs in O(nω+1) time [NP85]. The same phenomena also happens for h = 5
where t(ω, 5) = ω + 2 < 4.376 and for h = 8 where t(ω, 8) = 2ω + 2 < 6.752, but
in no other cases! We also note that t(ω, 6) = 4+2/(4−ω), t(ω, 7) = 4+3/(4−ω),
t(ω, 9) = 2ω + 3 and t(ω, 10) = 6 + 4/(4 − ω). However, a closed formula for
t(ω, h) cannot be given. Already for h = 11, and for infinitely many values
thereafter, t(ω, h) is only piecewise linear in ω. For example, if 7/3 ≤ ω < 2.376
then t(ω, 11) = 3ω +2, and if 2 ≤ ω ≤ 7/3 then t(ω, 11) = 6+5/(4−ω). Finally,
it is easy to verify that both s1 in (2) and s2 in (4) converge to 3h/(6− ω) as h
increases. Thus, t(ω, h) converges to 3h/(6 − ω) < 0.828h as h increases.

Prior to a few months ago, the only known algorithm for MIN H-SUBGRAPH
in the vertex-weighted case was the näıve O(nh) algorithm. Very recently, [VW06]

gave an O(nh·ω+3

6) ≤ o(n0.896h) randomized algorithm, for h divisible by 3. Our
algorithms are deterministic, and uniformly improve upon theirs, for all values
of h.3

A slight modification in the algorithm of Theorem 1, without increasing its
running time by more than a logarithmic factor, can also answer the decision
problem: “is there an H-subgraph whose weight is in the interval [w1, w2] where
w1 ≤ w2 are two given reals?” Another feature of Theorem 1 is that it makes a
relatively small number of comparisons. For example, the smallest triangle can
be found by the algorithm using only O(m + n log n) comparisons, where m is
the number of edges of G.

Since Theorem 1 is stated for induced H-subgraphs, it obviously also applies
to not-necessarily induced H-subgraphs. However, the latter problem can, in
some cases, be solved faster. For example, we show that the o(n2.616) time bound
for finding the smallest triangle also holds if one searches for the smallest H-
subgraph in case H is the complete bipartite graph K2,k.

Several H-subgraph detection algorithms take advantage of the fact that G
may be sparse. Improving a result of Itai and Rodeh [IR78], Alon, Yuster and
Zwick obtained an algorithm for detecting a triangle, expressed in terms of m
[AYZ97]. The running time of their algorithm is O(m2ω/(ω+1)) ≤ o(m1.41). This
is faster than the O(nω) algorithm when m = o(n(ω+1)/2). The best known
running times in terms of m for H = Kk when k ≥ 4 are given in [EG04].

3 [VW06] also give a deterministic O(B · n(ω+3)/2) ≤ o(B · n2.688) algorithm, where B
is the number of bits needed to represent the (absolute) maximum weight. Note this
algorithm is not strongly polynomial.

Sparseness can also be used to obtain faster algorithms for the vertex-weighted
MIN H-SUBGRAPH problem. The triangle algorithm of [VW06] extends to a
randomized O(m1.46) algorithm. We prove:

Theorem 2. If G = (V,E) is a graph with m edges and no isolated vertices,
and w : V → < is a weight function, then a triangle of G with minimum weight
(if exists) can be found in O(m(18−4ω)/(13−3ω)) ≤ o(m1.45) time.

We now turn to edge-weighted graphs. An O(m2−1/dk/2e) time algorithm for
detecting the existence of a cycle of length k is given in [AYZ97]. A small im-
provement was obtained later in [YZ04]. However, the algorithms in both papers
fail when applied to edge-weighted graphs. Using the color coding method, to-
gether with several additional ideas, we obtain a randomized O(m2−1/dk/2e) time
algorithm in the edge-weighted case, and an O(m2−1/dk/2e log n) deterministic
algorithm.

Theorem 3. Let k ≥ 3 be a fixed integer. If G = (V,E) is a graph with m
edges and no isolated vertices, and w : E → < is a weight function, then a
minimum weight cycle of length k, if exists, can be found with high probability
in O(m2−1/dk/2e) time, and deterministically in O(m2−1/dk/2e log n) time.

In a recent result of Chan [Ch05] it is shown that the distance product of two
n × n matrices with real entries can be computed in O(n3/ log n) time (again,
reals are only allowed to be compared or added). [VW06] showed how to reduce
the MIN H-SUBGRAPH problem in edge-weighted graphs to the problem of
computing a distance product. (The third author independently proved this as
well.)

Theorem 4 ([VW06]). Let H be a fixed graph with h vertices. If G = (V,E)
is a graph with n vertices, and w : E → < is a weight function, then an induced
H-subgraph of G (if exists) of minimum weight can be found in O(nh/ log n)
time.

We can strengthen the above result considerably, in the case where H is
a cycle. For (not-necessarily induced) cycles of fixed length we can combine
distance products with the color coding method and obtain:

Theorem 5. Let k be a fixed positive integer. If G = (V,E) is a graph with n
vertices, and w : E → < is a weight function, a minimum weight cycle with k
vertices (if exist) can be found, with high probability, in O(n3/ log n) time.

In fact, the proof of Theorem 5 shows that a minimum weight cycle with k =
o(log log n) vertices can be found in (randomized) sub-cubic time.

Finally, we consider the related problem of finding a certain chromatic H-
subgraph in an edge-colored graph. We consider the two extremal chromatic
cases. An H-subgraph of an edge-colored graph is called rainbow if all the edges
have distinct colors. It is called monochromatic if all the edges have the same
color. Many combinatorial problems are concerned with the existence of rainbow
and/or monochromatic subgraphs.

We obtain a new algorithm that finds a rainbow H-subgraph, if it exists.

Theorem 6. Let H be a fixed graph with 3k + j vertices, j ∈ {0, 1, 2}. If G =
(V,E) is a graph with n vertices, and c : E → C is an edge-coloring, then a
rainbow H-subgraph of G (if exists) can be found in O(nωk+j log n) time.

The running time in Theorem 6 matches, up to a logarithmic factor, the running
time of the induced H-subgraph detection problem in (uncolored) graphs.

We obtain a new algorithm that finds a monochromatic H-subgraph, if it
exists. For fixed H, the running time of our algorithm matches the running time
of the (uncolored) H-subgraph detection problem, except for the case H = K3.

Theorem 7. Let H be a fixed connected graph with 3k+j vertices, j ∈ {0, 1, 2}.
If G = (V,E) is a graph with n vertices, and c : E → C is an edge-coloring,
then a monochromatic H-subgraph of G (if exists) can be found in O(nωk+j)
time, unless H = K3. A monochromatic triangle can be found in O(n(3+ω)/2) ≤
o(n2.688) time.

Due to space limitation, the proofs of Theorems 6 and 7 will appear in the
journal version of this paper.

The rest of this paper is organized as follows. In Section 2 we focus on vertex-
weighted graphs, describe the algorithms proving Theorems 1 and 2, and some
of their consequences. Section 3 considers edge-weighted graphs and contains
the algorithms proving Theorems 3, 4 and 5. The final section contains some
concluding remarks and open problems.

2 Minimal H-subgraphs of real vertex-weighted graphs

In the proof of Theorem 1 it would be convenient to assume that H = Kh is a
clique on h vertices. The proof for all other induced subgraphs with h vertices
is only slightly more cumbersome, but essentially the same.

Let G = (V,E) be a graph with real vertex weights, and assume V =
{1, . . . , n}. For two positive integers a, b, the adjacency system A(G, a, b) is the
0-1 matrix defined as follows. Let Sx be the set of all

(

n
x

)

x-subsets of vertices.
The weight w(U) of U ∈ Sx is the sum of the weights of its elements. We sort the
elements of Sx according to their weights. This requires O(nx log n) time, assum-
ing x is a constant. Thus, Sx = {Ux,1, . . . , Ux,(n

x)
} where w(Ux,i) ≤ w(Ux,i+1).

The matrix A(G, a, b) has its rows indexed by Sa. More precisely, the j’th row
is indexed by Ua,j . The columns are indexed by Sb where the j’th column is in-
dexed by Ub,j . We put A(G, a, b)[U,U ′] = 1 if and only if U ∪U ′ induces a Ka+b

in G (this implies that U ∩U ′ = ∅). Otherwise, A(G, a, b)[U,U ′] = 0. Notice that
the construction of A(G, a, b) requires O(na+b) time.

For positive integers a, b, c, so that a + b + c = h, consider the Boolean
product A(G, a, b, c) = A(G, a, b)×A(G, b, c). For U ∈ Sa and U ′ ∈ Sc for which
A(G, a, b, c)[U,U ′] = 1, define their smallest witness δ(U,U ′) to be the smallest
element U ′′ ∈ Sb for which A(G, a, b)[U,U ′′] = 1 and also A(G, b, c)[U ′′, U ′] = 1.
For each U ∈ Sa and U ′ ∈ Sc with A(G, a, b, c)[U,U ′] = 1 and with U ∪ U ′

inducing a Ka+c, if U ′′ = δ(U,U ′) then U ∪ U ′ ∪ U ′′ induces a Kh in G whose

weight is the smallest of all the Kh copies of G that contain U ∪U ′. This follows
from the fact that Sb is sorted. Thus, by computing the smallest witnesses of
all plausible pairs U ∈ Sa and U ′ ∈ Sc we can find a Kh in G with minimum
weight, if it exists, or else determine that G does not have Kh as a subgraph.

Let A = An1×n2
and B = Bn2×n3

be two 0-1 matrices. The smallest wit-
ness matrix of AB is the matrix W = Wn1×n3

defined as follows. W [i, j] = 0
if (AB)[i, j] = 0. Otherwise, W [i, j] is the smallest index k so that A[i, k] =
B[k, j] = 1. Let f(n1, n2, n3) be the time required to compute the smallest wit-
ness matrix of the product of an n1 ×n2 matrix by an n2 ×n3 matrix. Let h ≥ 3
be a fixed positive integer. For all possible choices of positive integers a, b, c with
a + b + c = h denote

f(h, n) = min
a+b+c=h

f(na, nb, nc).

Clearly, the time to sort Sb and to construct A(G, a, b) and A(G, b, c) is over-
whelmed by f(na, nb, nc). It follows from the above discussion that:

Lemma 1. Let h ≥ 3 be a fixed positive integer and let G be a graph with n ver-
tices, each having a real weight. A Kh-subgraph of G with minimum weight, if ex-
ists, can be found in O(f(h, n)) time. Furthermore, if f(na, nb, nc) = f(h, n) then
the number of comparisons needed to find a minimum weight Kh is O(nb log n+
z(G, a + c)) where z(G, a + c) is the number of Ka+c in G.

In fact, if b ≥ 2, the number of comparisons in Lemma 1 can be reduced to only
O(nb + z(G, a + c)). Sorting Sb reduces to sorting the sums X + X + . . . + X
(X repeated b times) of an n-element set of reals X. Fredman showed in [Fr76a]
that this can be achieved with only O(nb) comparisons.

A simple randomized algorithm for computing (not necessarily first) wit-
nesses for Boolean matrix multiplication, in essentially the same time required
to perform the product, is given by Seidel [Sei95]. His algorithm was derandom-
ized by Alon and Naor [AN96]. However, computing the matrix of first witnesses
seems to be a more difficult problem. Improving an earlier algorithm of Bender et
al. [BFPSS05], Kowaluk and Lingas [KL05] show that f(3, n) = O(n2+1/(4−ω)) ≤
o(n2.616). This already yields the case h = 3 in Theorem 1. We will need to ex-
tend and generalize the method from [KL05] in order to obtain upper bounds
for f(h, n). Our extension will enable us to answer more general queries such as
“is there a Kh whose weight is within a given weight interval?”

Proof of Theorem 1: Let h ≥ 3 be a fixed integer. Suppose a, b, c are three
positive integers with a+b+c = h and suppose that 0 < µ ≤ b is a real parameter.
For two 0-1 matrices A = Ana×nb and B = Bnb×nc the µ-split of A and B is
obtained by splitting the columns of A and the rows of B into consecutive parts of
size dnµe or bnµc each. In the sequel we ignore floors and ceilings whenever it does
not affect the asymptotic nature of our results. This defines a partition of A into
p = nb−µ rectangular matrices A1, . . . , Ap, each with na rows and nµ columns,
and a partition of B into p rectangular matrices B1, . . . , Bp, each with nµ rows
and nc columns. Let Ci = AiBi for i = 1, . . . , p. Notice that each element of Ci is
a nonnegative integer of value at most nµ and that AB =

∑p
i=1 Ci. Given the Ci,

the smallest witness matrix W of the product AB can be computed as follows.
To determine W [i, j] we look for the smallest index r for which Cr[i, j] 6= 0. If
no such r exists, then W [i, j] = 0. Otherwise, having found r, we now look for
the smallest index k so that Ar[i, k] = Ar[k, j] = 1. Having found k we clearly
have W [i, j] = (r − 1)nµ + k.

We now determine a choice of parameters a, b, c, µ so that the time to compute
C1, . . . , Cp and the time to compute the first witnesses matrix W , is O(nt(ω,h)).
By Lemma 1, this suffices in order to prove the theorem. We will only consider
µ ≤ min{a, b, c}. Taking larger values of µ results in worse running times. The
rectangular product Ci can be computed by performing O(na−µnc−µ) products
of square matrices of order nµ. Thus, the time required to compute Ci is

O(na−µnc−µnωµ) = O(na+c+(ω−2)µ).

Since there are p such products, and since each of the na+c witnesses can be
computed in O(p + nµ) time, the overall running time is

O(pna+c+(ω−2)µ + na+c(p + nµ)) = O(nh−(3−ω)µ + nh−µ + nh−b+µ)

= O(nh−(3−ω)µ + nh−b+µ). (6)

Optimizing on µ we get µ = b/(4 − ω). Thus, if, indeed, b/(4 − ω) ≤ min{a, c}
then the time needed to find W is O(nh−b+b/(4−ω)). Of course, we would like
to take b as large as possible under these constraints. Let, therefore, b1 be the
largest integer b so that b/(4 − ω) ≤ b(h − b)/2c. For such a b1 we can take
a = b(h − b1)/2c and c = d(h − b1)/2e and, indeed, µ ≤ min{a, c}. Thus, (6)
gives that the running time to compute W is

O(nh−b1+b1/(4−ω)).

This justifies s1 appearing in (2) in the definition of t(ω, h). There may be cases
where we can do better, whenever b/(4−ω) > min{a, c}. We shall only consider
the cases where a = µ = b(h − b)/2c ≤ b (other cases result in worse running
times). In this case c = d(h − b)/2e and, using (6), the running time is

O(nh−(3−ω)bh−b

2
c + nh−b+bh−b

2
c).

This justifies s2 appearing in (4) in the definition of t(ω, h). Since t(ω, h) =
min{s1, s2} we have proved that W can be computed in O(nt(ω,h)) time.

As can be seen from Lemma 1 and the remark following it, the number of
comparisons that the algorithm performs is relatively small. For example, in the
case h = 3 we have a = b = c = 1 and hence the number of comparisons is
O(n log n + m). In all the three cases h = 4, 5, 6 the value b = 2 yields t(ω, h).
Hence, the number of comparisons is O(n2) for h = 4, O(n2 + mn) for h = 5
and O(n2 + m2) for h = 6.

Suppose w : {1, . . . , nb} → < so that w(k) ≤ w(k+1). The use of the µ-split in
the proof of Theorem 1 enables us to determine, for each i, j and for a real interval

I(i, j), whether or not there exists an index k so that A[i, k] = B[k, j] = 1 and
w(k) ∈ I(i, j). This is done by performing a binary search within the p = nb−µ

matrices Ci, . . . , Cp. The running time in (6) only increases by a log n factor. We
therefore obtain the following corollary.

Corollary 1. Let H be a fixed graph with h vertices, and let I ⊂ <. If G =
(V,E) is a graph with n vertices, and w : V → < is a weight function, then,
deciding whether G contains an induced H-subgraph with total weight in I can
be done O(nt(ω,h) log n) time.

Proof of Theorem 2: We partition the vertex set V into two parts V =
X∪Y according to a parameter ∆. The vertices in X have degree at most ∆. The
vertices in Y have degree larger than ∆. Notice that |Y | < 2m/∆. In O(m∆)
time we can scan all triangles that contain a vertex from X. In particular, we can
find a smallest triangle containing a vertex from X. By Theorem 1, a smallest
triangle induced by Y can be found in O((m/∆)t(ω,3)) = O((m/∆)2+1/(4−ω))
time. Therefore, a smallest triangle in G can be found in

O

(

m∆ +
(m

∆

)2+1/(4−ω)
)

time. By choosing ∆ = m(5−ω)/(13−3ω) the result follows.

The results in Theorems 1 and 2 are useful not only for real vertex weights,
but also when the weights are large integers. Consider, for example, the graph
parameter β(G,H), the H edge-covering number of G. We define β(G,H) = 0
if G has no H-subgraph. Otherwise, β(G,H) is the maximum number of edges
incident with an H-subgraph of G. To determine β(G,Kk) we assign to each
vertex a weight equal to its degree. We now use the algorithm of Theorem 1 to
find the maximum weighted Kk. If the weight of the maximum weighted Kk is w,
then β(G,Kk) = w−

(

k
2

)

. In particular, β(G,Kk) can be computed in O(nt(ω,k))
time.

Finally, we note that Theorems 1 and 2 apply also when the weight of an
H-subgraph is not necessarily defined as the sum of the weights of its vertices.
Suppose that the weight of a triangle (x, y, z) is defined by a function f(x, y, z)
that is monotone in each variable separately. For example, we may consider
f(x, y, z) = xyz, f(x, y, z) = xy + xz + yz etc. Assuming that f(x, y, z) can be
computed in constant time given x, y, z, it is easy to modify Theorems 1 and 2
to find a triangle whose weight is minimal with respect to f in O(n2+1/(4−ω))
time and O(m(18−4ω)/(13−3ω)) time, respectively.

We conclude this section with the following proposition.

Proposition 1. If G = (V,E) is a graph with n vertices, and w : V → < is a
weight function, then a (not necessarily induced) minimum weight K2,k-subgraph
can be found in O(n2+1/(4−ω)).

Proof. To find the smallest K2,k we simply need to find, for any two vertices
i, j, the first k smallest weighted vertices v1, . . . , vk so that each vi is a common

neighbor of i and j. As in Lemma 1, this reduces to finding the first k smallest
witnesses of a 0-1 matrix product. A simple modification of the algorithm in
Theorem 1 achieves this goal in the same running time (recall that k is fixed).

3 Minimal H-subgraphs of real edge-weighted graphs

Given a vertex-colored graph G with n vertices, an H-subgraph of G is called
colorful if each vertex of H has a distinct color. The color coding method pre-
sented in [AYZ95] is based upon two important facts. The first one is that, in
many cases, finding a colorful H-subgraph is easier than finding an H-subgraph
in an uncolored graph. The second one is that in a random vertex coloring
with k colors, an H-subgraph with k vertices becomes colorful with probability
k!/kk > e−k and, furthermore, there is a derandomization technique that con-
structs a family of not too many colorings, so that each H-subgraph is colorful
in at least one of the colorings. The derandomization technique, described in
[AYZ95], constructs a family of colorings of size O(log n) whenever k is fixed.

By the color coding method, in order to prove Theorem 3, it suffices to prove
that, given a coloring of the vertices of the graph with k colors, a colorful cycle
of length k of minimum weight (if exists) can be found in O(m2−1/dk/2e) time.

Proof of Theorem 3: Assume that the vertices of G are colored with
the colors 1, . . . , k. We first show that for each vertex u, a minimum weight
colorful cycle of length k that passes through u can be found in O(m) time. For
a permutation π of 1, . . . , k, we show that a minimum weight cycle of the form
u = v1, v2, . . . , vk in which the color of vi is π(i) can be found in O(m) time.
Without loss of generality, assume π is the identity. For j = 2, . . . , k let Vj be the
set of vertices whose color is j so that there is a path from u to v ∈ Vj colored
consecutively by the colors 1, . . . , j. Let S(v) be the set of vertices of such a path
with minimum possible weight. Denote this weight by w(v). Clearly, Vj can be
created from Vj−1 in O(m) time by examining the neighbors of each v ∈ Vj−1

colored with j. Now, let wu = minv∈vk
w(v)+w(v, u). Thus, wu is the minimum

weight of a cycle passing through u, of the desired form, and a cycle with this
weight can be retrieved as well.

We prove the theorem when k is even. The odd case is similar. Let ∆ = m2/k.
There are at most 2m/∆ = O(m1−2/k) vertices with degree at least ∆. For each
vertex u with degree at least ∆ we find a minimum weight colorful cycle of
length k that passes through u. This can be done in O(m2−2/k) time. It now
suffices to find a minimum weight colorful cycle of length k in the subgraph
G′ of G induced by the vertices with maximum degree less than ∆. Consider a
permutation π of 1, . . . , k. For a pair of vertices x, y, let S1 be the set of all paths
of length k/2 colored consecutively by π(1), . . . , π(k/2), π(k/2+1). There are at
most m∆k/2−1 = m2−2/k such paths and they can be found using the greedy
algorithm in O(m2−2/k) time. Similarly, let S2 be the set of all paths of length
k/2 colored consecutively by π(k/2 + 1), . . . , π(k), π(1). If u, v are endpoints of
at least one path in S1 then let f1({u, v}) be the minimum weight of such a path.
Similarly define f2({u, v}). We can therefore find, in O(m2−2/k) a pair u, v (if

exists) so that f1({u, v})+f2({u, v}) is minimized. By performing this procedure
for each permutation, we find a minimum weight colorful cycle of length k in G′.

Let A = An1×n2
and B = Bn2×n3

be two matrices with entries in < ∪
∞. The distance product C = A ? B is an n1 × n3 matrix with C[i, j] =
mink=1...,n2

A[i, k] + B[k, j]. Clearly, C can be computed in O(n1n2n3) time
in the addition-comparison model. However, Fredman showed in [Fr76] that
the distance product of two square matrices of order n can be performed in
O(n3(log log n/ log n)1/3) time. Following a sequence of improvements over Fred-
man’s result, Chan gave an O(n3/ log n) time algorithm for distance products.
By partitioning the matrices into blocks it is obvious that Chan’s algorithm
computes the distance product of an n1 × n2 matrix and an n2 × n3 matrix in
O(n1n2n3/ log min{n1, n2, n3}) time. Distance products can be used to solve the
MIN H-SUBGRAPH problem in edge weighted graphs.

Proof of Theorem 4: We prove the theorem for H = Kh. The proof for
other induced H-subgraphs is essentially the same. Partition h into a sum of
three positive integers a + b + c = h. Let Sa be the set of all Ka-subgraphs of
G. Notice that |Sa| < na and that each U ∈ Sa is an a-set. Similarly define Sb

and Sc. We define A to be the matrix whose rows are indexed by Sa and whose
columns are indexed by Sb. The entry A[U,U ′] is defined to by ∞ if U ∪U ′ does
not induce a Ka+b. Otherwise, it is defined to be the sum of the weights of the
edges induced by U ∪U ′. We define B to be the matrix whose rows are indexed
by Sb and whose columns are indexed by Sc. The entry A[U,U ′] is defined to
by ∞ if U ∪ U ′ does not induce a Kb+c. Otherwise, it is defined to be the sum
of the weights of the edges induced by U ∪ U ′ with at least one endpoint in U ′.
Notice the difference in the definitions of A and B. Let C = A ? B. The time to
compute C using Chan’s algorithm is O(nh/ log n). Now, for each U ∈ Sa and
U ′ ∈ Sc so that U ∪U ′ induces a Ka+c, let w(U,U ′) be the sum of the weights of
the edges with one endpoint in U and the other in U ′ plus the value of C[U,U ′].
If w(U,U ′) is finite then it is the weight of the smallest Kh that contains U ∪U ′.
Otherwise, No Kh contains U ∪ U ′.

The weighted DENSE k-SUBGRAPH problem (see, e.g., [FKP01]) is to find
a k-vertex subgraph with maximum total edge weight. A simple modification
of the algorithm of Theorem 4 solves this problem in O(nk/ log n) time. To our
knowledge, this is the first non-trivial algorithm for this problem. Note that the
maximum total weight of a k-subgraph can potentially be much larger than a
k-clique’s total weight.

Proof of Theorem 5: We use the color coding method, and an idea similar
to Lemma 3.2 in [AYZ95]. Given a coloring of the vertices with k colors, it
suffices to show how to find the smallest colorful path of length k−1 connecting
any pair of vertices in 2O(k)n3/ log n time. It will be convenient to assume that
k is a power of two, and use recursion. Let C1 be a set of k/2 distinct colors,
and let C2 be the complementary set of colors. Let Vi be the set of vertices
colored by colors from Ci for i = 1, 2. Let Gi be the subgraph induced by Vi.

Recursively find, for each pair of vertices in Gi, the minimum weight colorful
path of length k/2−1. We record this information in matrices A1, A2, where the
rows and columns of Ai are indexed by Vi. Let B be the matrix whose rows are
indexed by V1 and whose columns are indexed by V2 where B[u, v] = w(u, v).
The distance product DC1,C2

= (A1 ? B) ? A2 gives, for each pair of vertices
of G, all shortest paths of length k − 1 where the first k/2 vertices are colored
by colors from C1 and the last k/2 vertices are colored by colors from C2. By
considering all

(

k
k/2

)

< 2k possible choices for (C1, C2), and computing DC1,C2

for each choice, we can obtain an n × n matrix D where D[u, v] is the shortest
colorful path of length k− 1 between u and v. The number of distance products
computed using this approach satisfies the recurrence t(k) ≤ 2kt(k/2). Thus, the
overall running time is 2O(k)n3/ log n.

The proof of Theorem 5 shows that, as long as k = o(log log n), a cycle with k
vertices and minimum weight can be found, with high probability, in o(n3) time.
The previous best known algorithm (to our knowledge) for finding a minimum
weight cycle of length k, in real weighted graphs, has running time O(k!n32k)
[PV91].

4 Concluding remarks and open problems

We presented several algorithms for the MIN finding H-SUBGRAPH in both
real vertex weighted or real edge weighted graphs, and algorithms for the re-
lated problem of finding monochromatic or rainbow H-subgraphs in edge-colored
graphs. It may be possible to improve upon the running times of some of our
algorithms. More specifically, we raise the following open problems.
(i) Can the exponent t(ω, 3) in Theorem 1 be improved? If so, this would imme-
diately imply an improved algorithm for first witnesses.
(ii) Can the logarithmic factor in Theorem 3 be eliminated? We know from
[AYZ97] that this is the case in the unweighted version of the problem. Can the
logarithmic factor in Theorem 6 be eliminated?
(iii) Can monochromatic triangles be detected faster than the O(n(3+ω)/2) algo-
rithm of Theorem 7? In particular, can they be detected in O(nω) time?

Acknowledgment

The authors thank Uri Zwick for for some useful comments.

References

[AN96] N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix
multiplication and construction of perfect hash functions. Algorithmica,
16:434–449, 1996.

[AYZ95] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM,
42:844–856, 1995.

[AYZ97] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length
cycles. Algorithmica, 17:209–223, 1997.

[BFPSS05] M. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin.
Lowest common ancestors in trees and directed acyclic graphs. J. Algo-
rithms, 57(2):75–94, 2005.

[Ch05] T.M. Chan. All-Pairs Shortest Paths with Real Weights in O(n3/ log n)
Time. In Proc. of the 9th WADS, Lecture Notes in Computer Science 3608,
Springer (2005), 318–324.

[CN85] N. Chiba and L. Nishizeki. Arboricity and subgraph listing algorithms.
SIAM Journal on Computing, 14:210–223, 1985.

[Cop97] D. Coppersmith. Rectangular matrix multiplication revisited. Journal of
Complexity, 13:42–49, 1997.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. J. Symbol. Comput., 9:251–280, 1990.

[DF95] R.G. Downey and M.R. Fellows. Fixed-parameter tractability and com-
pleteness II. On completeness for W[1]. Theoret. Comput. Sci., 141(1-
2):109-131, 1995.

[EG04] F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter
clique and dominating set. Theoret. Comput. Sci., 326(1-3):57–67, 2004.

[FKP01] U. Feige, G. Kortsarz and D. Peleg. The Dense k-Subgraph Problem.
Algorithmica, 29(3):410–421, 2001.

[Fr76] M.L. Fredman. New bounds on the complexity of the shortest path prob-
lem. SIAM Journal on Computing, 5:49–60, 1976.

[Fr76a] M.L. Fredman. How good is the information theory bound in sorting?
Theoret. Comput. Sci., 1:355–361, 1976.

[Ha98] J. H̊astad. Clique is hard to approximate within n1−ε. Acta Math.,
182(1):105-142, 1998.

[HP98] X. Huang and V.Y. Pan. Fast rectangular matrix multiplications and
applications. Journal of Complexity, 14:257–299, 1998.

[IR78] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM
Journal on Computing, 7:413–423, 1978.

[KKM00] T. Kloks, D. Kratsch, and H. Müller. Finding and counting small induced
subgraphs efficiently. Inf. Process. Lett., 74(3-4):115–121, 2000.

[KL05] M. Kowaluk and A. Lingas. LCA Queries in Directed Acyclic Graphs.
In Proc. of the 32nd ICALP, Lecture Notes in Computer Science 3580,
Springer (2005), 241–248.

[NP85] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem.
Comment. Math. Univ. Carolin., 26(2):415–419, 1985.

[PV91] J. Plehn and B. Voigt. Finding Minimally Weighted Subgraphs. In Pro-
ceedings of the 16th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), Springer-Verlag, 1991.

[Sei95] R. Seidel. On the All-Pairs-Shortest-Path Problem in Unweighted Undi-
rected Graphs. J. Comput. Syst. Sci., 51(3):400–403, 1995.

[VW06] V. Vassilevska and R. Williams. Finding a maximum weight triangle in
n3−δ time, with applications. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (STOC), to appear.

[YZ04] R. Yuster and U. Zwick. Detecting short directed cycles using rectangular
matrix multiplication and dynamic programming. In Proc. of the 15th
ACM-SIAM Symposium on Discrete Algorithms (SODA), ACM/SIAM
(2004), 247–253.

