
Parallelizing Time With Polynomial Circuits

Ryan Williams

Carnegie Mellon University
and

Microsoft Research (Intern)

0-0

RED GREEN BLUE ORANGE

1

Parallelism and Serialism: Some Questions

2

Parallelism and Serialism: Some Questions

• To what extent can arbitrary serial computations be parallelized?

2-a

Parallelism and Serialism: Some Questions

• To what extent can arbitrary serial computations be parallelized?

• To what extent can serial algorithms running in time t(n) be

parallelized?

– Assuming a robust serial machine model.

2-b

Parallelism and Serialism: Some Questions

• To what extent can arbitrary serial computations be parallelized?

• To what extent can serial algorithms running in time t(n) be

parallelized?

– Assuming a robust serial machine model.

• What is the smallest f(n) = o(n) such that a serial time t algorithm

can be represented by a circuit of depth at most f(t)?

– Note could always have an exponential sized circuit of O(1) depth

and unbounded fan-in

2-c

Parallelism and Serialism: Some Questions

• To what extent can arbitrary serial computations be parallelized?

• To what extent can serial algorithms running in time t(n) be

parallelized?

– Assuming a robust serial machine model.

• What is the smallest f(n) = o(n) such that a serial time t algorithm

can be represented by a circuit of depth at most f(t)?

– Note could always have an exponential sized circuit of O(1) depth

and unbounded fan-in

• What is the smallest f such that a serial time t algorithm can be

represented by a t(n)O(1)-size circuit of depth at most f(t(n))?

– Can circuits with only poly(t) gates speed up serial time t

computations?
2-d

Can circuits with only poly(t) gates

speed up serial time t computations?

This is the question we address.

3

Can circuits with only poly(t) gates

speed up serial time t computations?

This is the question we address.

Short Answer:

YES,
... but some gates in the circuits have unbounded fan-in

3-a

Prior Work, in brief

Relatively old area

• All prior work for general computational models focused on extending

Hopcroft-Paul-Valiant’s seminal and deep result:

TIME[t(n)] ⊆ SPACE[t(n)/ log t(n)]

4

Prior Work, in brief

Relatively old area

• All prior work for general computational models focused on extending

Hopcroft-Paul-Valiant’s seminal and deep result:

TIME[t(n)] ⊆ SPACE[t(n)/ log t(n)]

Main Idea of TIME[t(n)] ⊆ SPACE[t(n)/ log t(n)]:

4-a

Prior Work, in brief

Relatively old area

• All prior work for general computational models focused on extending

Hopcroft-Paul-Valiant’s seminal and deep result:

TIME[t(n)] ⊆ SPACE[t(n)/ log t(n)]

Main Idea of TIME[t(n)] ⊆ SPACE[t(n)/ log t(n)]:

Divide-and-conquer on Computation Graph:

DAG with a node for each timestep (or block of timesteps)

– Value of node i is state and symbols read/written in step(s)

corresponding to i

Arcs: represent read/write/state dependencies

4-b

Main Idea of TIME[t(n)] ⊆ SPACE[t(n)/ log t(n)]

Main Idea of TIME[t(n)] ⊆ SPACE[t(n)/ log t(n)]

G1, ≈ t/2 nodes

G2, ≈ t/2 nodes

accept/
reject

in
iti
al

E′

u1 v

u2

?

Main Idea of TIME[t(n)] ⊆ SPACE[t(n)/ log t(n)]

G1, ≈ t/2 nodes

G2, ≈ t/2 nodes

accept/
reject

in
iti
al

E′

u1 v

u2

?

|E′| ≤ t/ log t =⇒ “Guess” values at endpoints of E′, recurse on G1 and G2 separately

Main Idea of TIME[t(n)] ⊆ SPACE[t(n)/ log t(n)]

G1, ≈ t/2 nodes

G2, ≈ t/2 nodes

accept/
reject

in
iti
al

E′

u1 v

u2

?

|E′| ≤ t/ log t =⇒ “Guess” values at endpoints of E′, recurse on G1 and G2 separately

|E′| > t/ log t =⇒ To get value of v in G2, recurse on G1 for value of u1 and u2

Known: Big barriers to this approach

Lower bounds on how well divide-and-conquer can do

E.g. To get o(t) depth circuits, need a super-polynomial number of gates

6

Known: Big barriers to this approach

Lower bounds on how well divide-and-conquer can do

E.g. To get o(t) depth circuits, need a super-polynomial number of gates

Intuition:

Too much information to be stored when one tries to guess all

possible E ′ in parallel!

6-a

Random Access TM Model

(The serial model we’re going to simulate in parallel)

7

Random Access TM Model

(The serial model we’re going to simulate in parallel)

Have:

• Registers storing O(1) bits each

• Index tape I of O(log t) bits

7-a

Random Access TM Model

(The serial model we’re going to simulate in parallel)

Have:

• Registers storing O(1) bits each

• Index tape I of O(log t) bits

In a single step, can:

1. Modify a bit of I

2. Read corresponding register

3. Write to corresponding register

4. Change state

Robust model – can simulate log-cost RAMs (unbounded registers) with

constant factor overhead

7-b

Main Result

Time t(n) random access TMs can be simulated by a

tO(1)-size circuit family of depth O(t/ log t).

(Note: More general result in paper; can tradeoff depth and size)

8

Main Result

Time t(n) random access TMs can be simulated by a

tO(1)-size circuit family of depth O(t/ log t).

(Note: More general result in paper; can tradeoff depth and size)

Bad news: Some of the circuit’s gates have unbounded fan-in.

8-a

Main Result

Time t(n) random access TMs can be simulated by a

tO(1)-size circuit family of depth O(t/ log t).

(Note: More general result in paper; can tradeoff depth and size)

Bad news: Some of the circuit’s gates have unbounded fan-in.

Good news: Construction is uniform –

Gives explicit, efficiently constructed circuits.

8-b

Our Approach:

A less extreme type of divide-and-conquer

9

Our Approach:

A less extreme type of divide-and-conquer

1. Partition computation into O(t/ log t) blocks

2. Each block represents O(log t) consecutive steps

Blocks are succinctly representable: O(log t) bits

9-a

Our Approach:

A less extreme type of divide-and-conquer

1. Partition computation into O(t/ log t) blocks

2. Each block represents O(log t) consecutive steps

Blocks are succinctly representable: O(log t) bits

3. Processing of single block is possible in O(1) depth and poly(t) size:

• “String” these together

=⇒ O(t/ log t) depth over all blocks

9-b

Local Actions and Blocks

Define local action of A(x) at step i to be ` = (i, r, I), where

r is transition, I is description of index tape at step i

• Note |`| = O(log t)

10

Local Actions and Blocks

Define local action of A(x) at step i to be ` = (i, r, I), where

r is transition, I is description of index tape at step i

• Note |`| = O(log t)

Define SA(x) to be the (unique) string of the form

`0 ~r0 `1 ~r1 · · · `(t/ log t)−1 ~r(t/ log t)−1,

10-a

Local Actions and Blocks

Define local action of A(x) at step i to be ` = (i, r, I), where

r is transition, I is description of index tape at step i

• Note |`| = O(log t)

Define SA(x) to be the (unique) string of the form

`0 ~r0 `1 ~r1 · · · `(t/ log t)−1 ~r(t/ log t)−1,

where `i is local action of A(x) at step i · (log t) + 1,

10-b

Local Actions and Blocks

Define local action of A(x) at step i to be ` = (i, r, I), where

r is transition, I is description of index tape at step i

• Note |`| = O(log t)

Define SA(x) to be the (unique) string of the form

`0 ~r0 `1 ~r1 · · · `(t/ log t)−1 ~r(t/ log t)−1,

where `i is local action of A(x) at step i · (log t) + 1,

~ri is vector of (log t)− 1 transitions taken, starting at step i · (log t) + 2.

10-c

Local Actions and Blocks

Define local action of A(x) at step i to be ` = (i, r, I), where

r is transition, I is description of index tape at step i

• Note |`| = O(log t)

Define SA(x) to be the (unique) string of the form

`0 ~r0 `1 ~r1 · · · `(t/ log t)−1 ~r(t/ log t)−1,

where `i is local action of A(x) at step i · (log t) + 1,

~ri is vector of (log t)− 1 transitions taken, starting at step i · (log t) + 2.

I.e. Write O(t/ log t) local actions that are O(log t) steps apart from

each other. Then add in the transitions for the missing steps.

10-d

Local Actions and Blocks

Define local action of A(x) at step i to be ` = (i, r, I), where

r is transition, I is description of index tape at step i

• Note |`| = O(log t)

Define SA(x) to be the (unique) string of the form

`0 ~r0 `1 ~r1 · · · `(t/ log t)−1 ~r(t/ log t)−1,

where `i is local action of A(x) at step i · (log t) + 1,

~ri is vector of (log t)− 1 transitions taken, starting at step i · (log t) + 2.

I.e. Write O(t/ log t) local actions that are O(log t) steps apart from

each other. Then add in the transitions for the missing steps.

• |SA(x)| = O(t)

10-e

Local Actions and Blocks

Define local action of A(x) at step i to be ` = (i, r, I), where

r is transition, I is description of index tape at step i

• Note |`| = O(log t)

Define SA(x) to be the (unique) string of the form

`0 ~r0 `1 ~r1 · · · `(t/ log t)−1 ~r(t/ log t)−1,

where `i is local action of A(x) at step i · (log t) + 1,

~ri is vector of (log t)− 1 transitions taken, starting at step i · (log t) + 2.

I.e. Write O(t/ log t) local actions that are O(log t) steps apart from

each other. Then add in the transitions for the missing steps.

• |SA(x)| = O(t)

Define a block to be an `i ~ri substring of SA(x).

10-f

Sketch of the Simulating Circuit

Circuit on input x constructs SA(x) in parallel, one block at a time

11

Sketch of the Simulating Circuit

Circuit on input x constructs SA(x) in parallel, one block at a time

Circuit implements two procedures, VERIFY and LAST-WRITE:

11-a

Sketch of the Simulating Circuit

Circuit on input x constructs SA(x) in parallel, one block at a time

Circuit implements two procedures, VERIFY and LAST-WRITE:

1. VERIFY(`~r, i) accepts ⇐⇒ `~r is the ith block of SA(x), and

2. LAST-WRITE(I, i, σ) accepts ⇐⇒

symbol σ is written at register I in the most recent timestep (over blocks

1, . . . , i) where register I is accessed

11-b

Sketch of the Simulating Circuit

Circuit on input x constructs SA(x) in parallel, one block at a time

Circuit implements two procedures, VERIFY and LAST-WRITE:

1. VERIFY(`~r, i) accepts ⇐⇒ `~r is the ith block of SA(x), and

2. LAST-WRITE(I, i, σ) accepts ⇐⇒

symbol σ is written at register I in the most recent timestep (over blocks

1, . . . , i) where register I is accessed

Fairly involved procedures

They invoke a number of deterministic logspace checks on a block

11-c

Sketch of the Simulating Circuit

Circuit on input x constructs SA(x) in parallel, one block at a time

Circuit implements two procedures, VERIFY and LAST-WRITE:

1. VERIFY(`~r, i) accepts ⇐⇒ `~r is the ith block of SA(x), and

2. LAST-WRITE(I, i, σ) accepts ⇐⇒

symbol σ is written at register I in the most recent timestep (over blocks

1, . . . , i) where register I is accessed

Fairly involved procedures

They invoke a number of deterministic logspace checks on a block

=⇒ Simulate a check with an O(log2 t) depth, O(poly(n)) size circuit

11-d

Sketch of the Simulating Circuit

Circuit on input x constructs SA(x) in parallel, one block at a time

Circuit implements two procedures, VERIFY and LAST-WRITE:

1. VERIFY(`~r, i) accepts ⇐⇒ `~r is the ith block of SA(x), and

2. LAST-WRITE(I, i, σ) accepts ⇐⇒

symbol σ is written at register I in the most recent timestep (over blocks

1, . . . , i) where register I is accessed

Fairly involved procedures

They invoke a number of deterministic logspace checks on a block

=⇒ Simulate a check with an O(log2 t) depth, O(poly(n)) size circuit

Can guess a check’s answer, then

Run the check AND Continue simulation in parallel

11-e

Sketch of the Simulating Circuit

Circuit on input x constructs SA(x) in parallel, one block at a time

Circuit implements two procedures, VERIFY and LAST-WRITE:

1. VERIFY(`~r, i) accepts ⇐⇒ `~r is the ith block of SA(x), and

2. LAST-WRITE(I, i, σ) accepts ⇐⇒

symbol σ is written at register I in the most recent timestep (over blocks

1, . . . , i) where register I is accessed

Fairly involved procedures

They invoke a number of deterministic logspace checks on a block

=⇒ Simulate a check with an O(log2 t) depth, O(poly(n)) size circuit

Can guess a check’s answer, then

Run the check AND Continue simulation in parallel

=⇒ Checks don’t contribute to overall depth by more than a constant
11-f

Sketch of VERIFY(`~r, i):

(Top-down description, starting from output gate)

Use an AND to simultaneously pick a transition in ~r, AND pick `

12

Sketch of VERIFY(`~r, i):

(Top-down description, starting from output gate)

Use an AND to simultaneously pick a transition in ~r, AND pick `

If ` is picked:

• Use OR to guess the (i − 1)th block `′~r′,

• Call VERIFY(`′~r′, i − 1) to check state and index tape of `.

Call LAST-WRITE to check that the symbol read in ` is correct.

12-a

Sketch of VERIFY(`~r, i):

(Top-down description, starting from output gate)

Use an AND to simultaneously pick a transition in ~r, AND pick `

If ` is picked:

• Use OR to guess the (i − 1)th block `′~r′,

• Call VERIFY(`′~r′, i − 1) to check state and index tape of `.

Call LAST-WRITE to check that the symbol read in ` is correct.

If the jth component rj of ~r is picked:

• Use OR to guess I , index tape for the step

• Use ` and ~r to check that the state of rj , I are correct

• Call LAST-WRITE on I to check that symbol claimed to be read in rj

is correct

12-b

Sketch of LAST-WRITE(I, i, σ):

• Use OR to guess ith block: `i~ri.

• Use AND to simultaneously:

1. Call VERIFY(`i~ri, i) (ensure block is correct), and

2. Check if index tape is ever I in the block;

if so, then verify σ is written,

if not, then call LAST-WRITE(I, i − 1, σ).

13

Sketch of LAST-WRITE(I, i, σ):

• Use OR to guess ith block: `i~ri.

• Use AND to simultaneously:

1. Call VERIFY(`i~ri, i) (ensure block is correct), and

2. Check if index tape is ever I in the block;

if so, then verify σ is written,

if not, then call LAST-WRITE(I, i − 1, σ).

Observations:

• Constant number of OR/AND switches between two recursive calls.

• Depth of recursion = O(t/ log t)

13-a

VERIFY(b1, (t/ log t) − 1) VERIFY(btO(1) , (t/ log t) − 1)

LAST-WRITE(I, t/ log t, σ)

··
·

CHECKS

··
·

··
·

LAST-WRITE(I, (t/ log t) − 1, σ)

LAST-WRITE(I, 1, σ)

VERIFY(btO(1) , 1)VERIFY(b1, 1)

··
·

··
·

· · · · · ·

to CHECKS

to CHECKS

to CHECKS

to CHECKS

to CHECKS

log2(t) depth

tO(1) size

to CHECKS

from VERIFY

VERIFY(btO(1) , t/ log t)· · · · · ·

· · · · · ·

· · · · · ·

VERIFY(b1, t/ log t)

∀ I ∈ {1, . . . , log t}, σ ∈ Σ

all possible blocks of O(log t) bits

de
pt

h
=

O
(t

/
lo

g
t)

14

Implications for Parallel Simulations

Corollary. Every log-cost time t RAM can be simulated by a log-cost

CRCW PRAM in O(t/ log t) time with tO(1) processors.

Previous parallel simulations required 2Ω(t/ log t) processors

15

Conclusion

Allow some unbounded fan-in

=⇒ Get poly(t) size, O(t/ log t) depth circuits, for time t algorithms.

16

Conclusion

Allow some unbounded fan-in

=⇒ Get poly(t) size, O(t/ log t) depth circuits, for time t algorithms.

• Can the same be done in the case of bounded fan-in?

• Can we improve upon t/ log t depth?

16-a

Conclusion

Allow some unbounded fan-in

=⇒ Get poly(t) size, O(t/ log t) depth circuits, for time t algorithms.

• Can the same be done in the case of bounded fan-in?

• Can we improve upon t/ log t depth?

Perhaps possible –

combine our ideas with Hopcroft-Paul-Valiant divide-and-conquer(?)

16-b

