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ABSTRACT
We consider a model of teaching in which the learners are
consistent and have bounded state, but are otherwise arbi-
trary. The teacher is non-interactive and “massively open”:
the teacher broadcasts a sequence of examples of an ar-
bitrary target concept, intended for every possible on-line
learning algorithm to learn from. We focus on the prob-
lem of designing interesting teachers: efficient sequences of
examples that lead all capable and consistent learners to
learn concepts, regardless of the underlying algorithm used
by the learner. We use two measures of teaching efficiency:
the number of mistakes made by the worst-case learner, and
the maximum length of the example sequence needed for the
worst-case learner. Our results are summarized as follows:
• Given a uniform random sequence of examples of an n-

bit concept function, learners (capable of consistently learn-
ing the concept) with s(n) bits of state are guaranteed to
make only O(n · s(n)) mistakes and exactly learn the con-
cept, with high probability. This theorem has interesting
corollaries; for instance, every concept c has a sequence of
examples can teach c to all capable consistent on-line learn-
ers implementable with s(n)-size circuits, such that every

learner makes only Õ(s(n)2) mistakes. That is, all resource-
bounded algorithms capable of consistently learning a con-
cept can be simultaneously taught that concept with few
mistakes, on a single example sequence.

We also show how to efficiently generate such a sequence
of examples on-line: using Nisan’s pseudorandom genera-
tor, each example in the sequence can be generated with
polynomial-time overhead per example, with an O(n · s(n))-
bit initial seed.
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• To justify our use of randomness, we prove that any non-
trivial derandomization of our sequences would imply circuit

lower bounds. For instance, if there is a deterministic 2n
O(1)

time algorithm that generates a sequence of examples, such
that all consistent and capable polynomial-size circuit learn-
ers learn the all-zeroes concept with less than 2n mistakes,
then EXP 6⊂ P/poly.
•We present examples illustrating that the key differences

in our model – our focus on mistakes rather than the total
number of examples, and our use of a state bound – must
be considered together to obtain our results.
• We show that for every consistent s(n)-state bounded

learnerA, and every n-bit concept thatA is capable of learn-
ing, there is a custom “tutoring” sequence of only O(n ·s(n))
examples that teaches A the concept. That is, in principle,
there are no slow learners, only bad teachers: if a state-
bounded learner is capable of learning a concept at all, then
it can always be taught that concept quickly via some short
sequence of examples.

Categories and Subject Descriptors
F.1.3 [Computation by Abstract Devices]: Complex-
ity Measures and Classes; I.2.6 [Artificial Intelligence]:
Learning—Concept learning

General Terms
Theory

1. INTRODUCTION
In 1960, Hans Freudenthal [10] proposed a non-interactive

message called LINCOS, which attempts to teach the“whole
bulk of our knowledge” in a way that can be easily under-
stood by any intelligent being. Using regularities in the mes-
sage itself, the message presents a long sequence of examples
for each concept, starting with basic concepts such as equal-
ity (of natural numbers), gradually building up a vocabulary
of arithmetic, and then proceeding onwards to more complex
concepts using the existing vocabulary. Freudenthal’s intent
was to broadcast this message into outer space, to teach alien
civilizations about humanity.

Inspired by this remarkable (but perhaps a bit zany) work,
we ask a more grounded question: can concepts be taught
to every capable and bounded computational device in a
non-interactive way? This sort of question is “dual” to the
usual type of problem that arises so often in TCS, where we
wish to design an algorithm that is “useful” on a large class
of data. Here we have a problem of data design: presenting



an arrangement of data that is useful to a large class of al-
gorithms. We wish to design, once and for all, a sequence
of inputs and outputs so that no matter who or what ob-
serves the behavior (including future observers we haven’t
conceived of), so long as its complexity is bounded, the ob-
server will discover the structure of the underlying process.
Is this possible, even in principle? What are the constraints
involved?

To properly formalize these questions, we consider a new
variant of teaching model in which the learners are of lim-
ited computational complexity (and consistent), but other-
wise arbitrary. A vast array of teaching models already exist
in the literature (cf. Section 1.2); most of these works have
either considered models in which either the learner is as-
sumed to be more sophisticated, or the teacher and learner
are designed as a pair. Our study is most closely related to
the well-known work on teaching dimension by Goldman and
Kearns [11] and Shinohara and Miyano [26], which studies
the number of examples needed to identify each concept in a
given class. Our work can be seen as a complexity-theoretic
extension of the work on teaching dimension, focused on ef-
ficient learners. (See Section 2 for more comparison.) The
model we consider retains a complexity-theoretic “universal”
flavor along the lines of Goldreich, Juba, and Sudan [13]: we
wish to design sequences of examples for efficiently teaching
an unknown but capable bounded-state learner.

1.1 Our Results
We first observe that the number of examples required to

teach some very simple concepts for very simple learners can
be maximally large. (The precise definitions we use are re-
called in Section 2.) Let AC0-LINEAR be the class of on-line
learning algorithms whose functionality is computable by
AC0 circuits of size O(n); more precisely, the learner’s pre-
dictions and hypothesis updates are computable with AC0

circuits of O(n) size (as a consequence, the learner’s hy-
potheses is stored among at most O(n) bits of state).

Theorem 1.1. (Teaching simple learners requires
many examples.) There is a concept class H such that for
all n, there is a concept hn ∈ H such that, for every sequence
sn of n-bit examples that allow all AC0-LINEAR learners to
identify c, the length of sn equals 2n.

Hence we cannot measure learning efficiency by the num-
ber of examples, without further constraints. Furthermore,
we observe that existing results on PAC-learning readily im-
ply methods for approximately teaching concepts to many
bounded learners. However, if we instead focus on exact
learning, and consider the number of mistakes made by
learners, we enter interesting territory. We find that there
are simple, efficient (per round, on-line) universal teaching
strategies for learners with bounded state. Informally, we
say that a learning algorithm is s(n)-bounded if, in learning
any n-bit concept function, the maximum length of its state
descriptions is s(n). (Full definitions will come later.)

Theorem 1.2. (Exact learning with few mistakes
from random examples.) For all concepts h : {0, 1}n →
{0, 1} and δ > 0, every consistent s(n)-bounded A for h
learns h and makes at most O(s(n)(n+log 1

δ
)) mistakes with

probability at least 1− δ, when the instances of length n are
chosen uniformly at random.

Theorem 1.2 has interesting corollaries; for example, any
concept that is consistently learnable by some subset of the
s(n)-size circuits can be learned all such circuits simultane-

ously, with Õ(s(n)2) mistakes by any learner, just by broad-
casting uniform random examples (Corollary 3.1). Our use
of the probabilistic method begs the question of whether
such a sequence can be generated efficiently, with little to no
randomness. As a partial answer, we confirm that Nisan’s
pseudorandom generator [21] for space-bounded computa-
tion can be used to obtain an efficient teaching strategy that
uses few bits of randomness.

Theorem 1.3. (Few mistakes from low randomness.)
Using a block length of Θ(s(n) + n+ log 1

δ
) (and k = O(n+

log 1
δ
)), Nisan’s pseudorandom generator produces a sequence

of 2O(n) random bits for which with probability 1−δ over the
seed h1, . . . , hk, x, any consistent learning algorithm that is
s(n)-bounded on a given concept exactly identifies that con-
cept and makes at most O(s(n)(n+ log 1

δ
)) mistakes.

So using O(s(n) · n) random bits, we can generate 2O(n)

examples such that any learning algorithm consistent on h
can be taught h with at most O(s(n) ·n) mistakes on the ex-
amples, with high probability. This still does not answer the
question of whether we can eliminate randomness entirely.
We show that a deterministic exponential time algorithm for
generating a sequence with similar properties would imply
strong circuit lower bounds for EXP.

Theorem 1.4. (Deterministic sequences teaching all
learners implies circuit lower bounds.) Let F be a
class of functions from N to N. Suppose there is a deter-
ministic t(n) time algorithm M such that for all s(n) ∈ F
and all sufficiently large n, M(1n) prints a sequence S of
examples of the empty concept h : {0, 1}n → {0} such that
every consistent s(n)-size circuit learner A for h learns h
and makes less than 2n mistakes on the sequence S. Then
there are problems solvable in t(n) time that do not have
circuits of size s(n), for all s(n) ∈ F and almost every n.

To illustrate, let F contain all functions of the form f(n) =

2δn and let t(n) = 2O(n). Suppose there is an ε > 0 and a

2O(n) time algorithm which (for all n) prints a sequence such
that all consistent learners implementable with 2εn-size cir-
cuits learn the empty concept with less than 2n mistakes.
Then Theorem 1.4 implies E lacks 2εn size circuits (almost
everywhere), which by Impagliazzo and Wigderson [15] im-
plies P = BPP. (In contrast, Theorem 1.2 says that a uni-
form random sequence would teach all such learners with
less than 23εn mistakes.) For another example, let F con-

tain all polynomials and let t(n) = 2n
k

for a fixed k. Then

any 2n
k

time algorithm which prints a sequence teaching
all polynomial-size circuit learners the empty concept with
less than 2n mistakes implies EXP 6⊂ P/poly. Hence our
teaching model provides another case where non-trivial de-
randomization of a simple random process implies circuit
lower bounds [14, 17]. Theorem 1.4 also clarifies why we
consider our “data design” problem to be dual to algorithm
design: positive solutions to the data design problem entail
negative solutions to some circuit design problems.

Another natural question is whether we could remove the
dependence on the state size s(n) in the above bounds. We
prove that this dependency is inherent:



Theorem 1.5. (Learners with large space can make
many mistakes.) For every integer s ∈ [n, 2n], there is a
concept class H, a concept h ∈ H and a consistent on-line
learning algorithm A for H, computed by a uniform family
of AC0 circuits of size O(s · n) using s-bit states, such that
for every sequence of examples of c, A makes at least s− 1
mistakes before identifying c.

Finally, we consider a slightly relaxed objective. Suppose
we have chosen both a concept h and a particular algorithm
A capable of learning the concept. Can A be taught h
quickly? A variant of our analysis in Theorem 3.1 estab-
lishes that there is always a short sequence of examples that
forces any given state-bounded learner to identify any con-
cept it is capable of learning:

Theorem 1.6. (Short sequences of examples for ex-
act identification.) For every concept class H, every
h ∈ H, and every consistent s(n)-bounded learner A for H,
there is a sequence of examples of length O(n · s(n)) after
which A identifies h.

1.2 Existing models of teaching
Although we will try to review the main threads of re-

search here, we advise the interested reader to consult the
recent survey of Balbach and Zeugmann [6]. The oldest
model of teaching, described by Freivalds et al. [22] is a vari-
ant of inductive inference (featuring little to no emphasis on
computational complexity) in which the learner is given a
carefully selected set of“good instances.” Balbach and Zeug-
mann [4] considered a different sort of inductive-inference
model in which a neighborhood structure is imposed on the
space of concepts, and they study the structural properties
of such learning—for example, they consider a variant in
which the teacher may view the learner’s hypothesis.

The highly influential notion of teaching dimension was in-
dependently introduced and studied by Shinohara and Miya-
no [26] and by Goldman and Kearns [11]. While we will
discuss the relationship of our work to teaching dimension
further in Section 2, a brief summary is warranted here, as
it motivated most subsequent work. The underlying goal is
to select minimum sets of examples so that a target concept
can be uniquely identified out of the class of possible con-
cepts; the maximum size of such a set (over all concepts in
the class) is called the teaching dimension of that concept
class. (The definition may also be cast in terms of consis-
tent learning, a point we return to in Section 2.) Although
the definition is highly natural and has spawned much in-
teresting work, its consequences are unfortunately counter-
intuitive. For instance, the set CONJ of non-contradictory
conjunctions over n variables has polynomial-size teaching
dimension, but when the empty (always false) concept is in-
cluded in CONJ , the teaching dimension jumps to 2n, i.e.,
every example must be presented to the learner.

In follow-up work, Anthony et al. [2] consider (among
other results) the average teaching dimension (under the
uniform measure over concepts), where the above undesir-
able effect disappears. In a similar vein, Balbach and Zeug-
mann [5] consider an “average” learner modeled by a MDP
that chooses its concept at random from the space of con-
sistent concepts; they also restrict the number of states in
the MDP.

A different direction concerns models in which the teacher
and learner are designed together. The main obstacle in

such a model is that somehow the teacher must “honestly”
teach the class to the learner, and not“collude”by coordinat-
ing an encoding of the concepts, and thus directly sending
an encoding of the target concept, e.g., by either requiring
that the learner still operate correctly with an adversarial
teacher (as in Jackson and Tomkins [16]), by requiring that
the learner still identify the concept correctly when (e.g.)
additional examples are inserted into the teaching set (as
in Goldman and Mathias [12] and Mathias [20]), or by giv-
ing the teacher and learner different representations of the
concept (as in Angluin and Kri kis [1]).

Another recent direction assumes a helpful and powerful
teacher who provides a minimal set of examples necessary
for learning a concept, so the learner can eliminate compet-
ing concepts based on the size of the teaching set [3, 28].
Naturally, the strange behavior of the learner on the con-
tradictory concept also vanishes in this model (and in fact,
this concept has a teaching set of size O(1)), but only under
the troublesome assumption that the learner “knows” the
optimal size of teaching sets—troublesome because Serve-
dio [25] showed that the optimal size of teaching sets (in the
traditional sense) is NP-hard to compute, so it is doubtful
that these more sophisticated notions of teaching dimension
could be computed easily.

1.3 Compression in learning and other struc-
tural learning themes

Our main results can be seen as a variant on the theme
that learning algorithms which compress the data well must
necessarily learn efficiently. At the most basic level, we note
in Section 3 that a standard hypothesis-size analysis in PAC-
learning establishes the existence of short teaching sequences
for approximate concept identification. A more general re-
sult for the PAC model, starting from an arbitrary com-
pression scheme, was the content of the well-known work by
Blumer et al. [7] on Occam’s razor. The difference here is
that we start with a stronger algorithm – a consistent on-line
learning algorithm rather than a consistent batch algorithm
(or mere “compression scheme”) – but then show that the
given algorithm learns exceptionally well, obtaining exact
rather than approximate identification in a mistake-bounded
model. The “moral” that compression implies generalization
is certainly a common thread across these results. Relation-
ships between compression schemes and learnability were
also considered by Littlestone and Warmuth [19], and fur-
ther developed by Floyd and Warmuth [9], but there the
learner was restricted to remember a list of examples that
“compressed”the given sample; Floyd [8] also studied on-line
algorithms in a similar vein. Our learners are not restricted
to store information in any particular form.

Our analysis, which considers the performance of an on-
line learning algorithm on i.i.d. examples from an arbi-
trary distribution, is thus also vaguely related to construc-
tions that convert on-line learning algorithms to batch PAC-
learning algorithms (cf. [18, 24]). Here, we analyze an on-line
model and obtain mistake bounds for exact identification
from random examples, rather than extracting an approxi-
mately good hypothesis in the batch model from an (on-line)
algorithm.

2. PRELIMINARIES AND DEFINITIONS
We first recall some standard terminology for on-line learn-

ing algorithms.



Definition 2.1 (On-line learning algorithms). An
on-line learning algorithm is specified by a pair of algorithms,
EVAL and UPDATE, and an initial state σ0 ∈ {0, 1}∗ which
may depend on the instance length n. Learning of a target
concept h : {0, 1}n → {0, 1} from a concept class H pro-
ceeds in a sequence of trials: given the current state of the
algorithm σ ∈ {0, 1}∗ and the current instance x ∈ {0, 1}∗,
EVAL(σ, x) produces a prediction p ∈ {0, 1}. The subsequent
state of the algorithm is output by UPDATE(σ, x, p, h(x)) for
a reinforcement value h(x). If p 6= h(x), then we say that
the algorithm has made a mistake. The mistake bound of
an algorithm for a concept class H and fixed size n is given
by the maximum number of mistakes over all h ∈ H and
(infinite) sequences of instances of length n.

Let C be a class of algorithms. We say that an on-line
learning algorithm is C-bounded if the algorithms EVAL and
UPDATE are given by algorithms from C. If C is a class of
non-uniform circuits, we require that for each n ∈ N that
the algorithms EVAL and UPDATE on examples of length n are
given by circuits from C having n-bit inputs.

We say that a learning algorithm is consistent on H if, for
every n and every h ∈ H, after every sequence of examples
x1, . . . , xt ∈ {0, 1}n of h, the algorithm is in a state σ such
that EVAL(σ, xi) = h(xi) for all i.

The algorithm is said to have identified or learned h if
the algorithm is in a state σ such that for every subsequent
sequence of examples x1, . . . , xt ∈ {0, 1}n the algorithm cor-
rectly predicts h(xi) for all i.

Finally, the algorithm is a learner for h if there is a se-
quence of examples after which the algorithm identifies h.

The most relevant learning concept to our present work is
that of teaching dimension.

Definition 2.2 (Teaching dimension). Let H be a con-
cept class. A teaching sequence for an h ∈ H is a list of ex-
amples such that all consistent learners for H identify h af-
ter receiving those examples. The minimum teaching length
for an h ∈ H is the minimum number n of examples in any
teaching sequence for h. The teaching dimension of H is the
maximum over all h ∈ H of the minimum teaching length
for h.

Therefore, the teaching dimension specifies the minimum
number of examples needed for any consistent learner to
distinguish any concept in H from all other concepts. This
concept is quite similar to the notion of teaching that we
consider; the two major differences are that we only con-
sider learners with bounded state complexity, and we will
focus on the number of mistakes rather than the number
of examples in order to achieve meaningful generic bounds.
The tutoring sequences considered in Section 4 are differ-
ent from the teaching sequences in the above definition, in
that they are tailored to a specific learner and they take into
account the learner’s complexity.

As noted earlier, the teaching dimension model [11, 26]
has some counterintuitive properties, namely that some very
simple concepts are maximally hard to teach, i.e., it requires
specifying the entire domain. An example we will use is:

Definition 2.3 (Singletons and empty concept).
For each y ∈ {0, 1}n, the singleton concept for y is given by
the function that evaluates to 1 at y and 0 everywhere else;
the class of singletons is thus the set of all singleton concepts.
The empty concept is the constant all-0 function.

We define S to be the concept class consisting of all sin-
gleton concepts and the empty concept, for all n.

3. TEACHING CONSISTENT LEARNERS OF
BOUNDED COMPLEXITY

Can we find sequences of examples that force every sim-
ple consistent learning algorithm to identify the target hy-
pothesis? For approximate identification (i.e., standard PAC
guarantees) this is immediate: the standard counting anal-
ysis shows that for learners that find consistent hypotheses
of size at most s(n), presenting O( 1

ε
(s(n) + log 1

δ
)) random

examples suffices to guarantee that any such learner arrives
at a 1 − ε-accurate hypothesis with probability 1 − δ. Our
hope is that the introduction of a “simple” requirement on
the learners might reduce the complexity of (exact) teaching.
In one sense, we can show that this cannot be true. The con-
cept class S from the previous section, which is hard to learn
in the usual (Goldman-Kearns-Shinohara-Miyano) teaching
model, remains hard under severe complexity restrictions on
learners. Recall from the Introduction that AC0-LINEAR is
the class of on-line learning algorithms whose functionality
is computable by AC0 circuits of size O(n).

Reminder of Theorem 1.1 For all n, let hn : {0, 1}n →
{0, 1} be the all-zeroes concept (i.e., the empty concept). For
every sequence sn of n-bit examples that allow all AC0-LINEAR
learners to identify hn, the length of sn equals 2n.

Note the length of the sequence cannot exceed 2n: once all
examples have been seen, the concept is certainly identified.
Hence we only have to prove a lower bound of at least 2n.

Proof. Consider the following class of learners L: for
each z ∈ {0, 1}n, the initial hypothesis for Lz ∈ L is the sin-
gleton concept for z, which is used for prediction until either
Lz makes a mistake on z, or Lz makes a mistake on some
other y. In the former case, Lz switches to the empty con-
cept; in the latter case, Lz switches to the singleton concept
for y. Finally, if the current hypothesis is the empty con-
cept, and Lz makes a mistake on some y, then Lz switches
to the singleton for y.

Observe that for all z ∈ {0, 1}n, the learner Lz is con-
sistent for the concept class S, and every Lz can be imple-
mented with linear size depth-2 circuits which output states
of length at most n + 1. The first n bits of the state are
used to represent a singleton concept, and the last bit of the
state is 1 if and only if the current hypothesis is the empty
concept. The algorithm UPDATE for Lz works as follows: if
the label of the current example is 1, then the first n bits of
state are switched to the current example and the last bit
of state is set to 0. If the label is 0 and the current example
equals z, then the last bit of state is set to 1. This behavior
can be easily implemented with an OR of ANDs of O(n)
size. The algorithm EVAL just tests if the input equals the
first n bits of state (and that the last bit of state is 0), which
can be done with a linear size depth-2 circuit.

Note that for any sequence sn of length less than 2n, there
must be some z ∈ {0, 1}n that does not appear in the se-
quence. Then the learner Lz, after reading the sequence sn,
still has not identified the empty concept (it will make a
mistake on z).

Rather than being discouraged, let us consider other mea-
sures of the complexity of teaching. Notice that



1. The learners Lz constructed above only make at most
two mistakes.

2. For every learner Lz, there is a one-example sequence
after which Lz identifies the target concept.

In the following sections, we show that some version of these
nice properties hold of low-complexity learners in general for
state-bounded learners, and for arbitrary concepts that they
can learn.

3.1 Sequences guaranteeing few mistakes for
state-bounded learners

Another measure of the quality of a teaching strategy is
the number of mistakes that the learners make. Here, we
show how to construct strategies for which every consis-
tent learner with bounded state makes at most a polynomial
number of mistakes in its space bound and the size of the
examples.

Definition 3.1 (Space-bounded learner). Let A =
(EVAL, UPDATE) be an on-line learning algorithm, and let s :
N → N. A is s(n)-bounded if, on all length-n instances,
the length of the initial state of A is at most s(n), and all
outputs of UPDATE (on all length-n instances and all states
of length at most s(n)) have length at most s(n).

That is, an s(n)-bounded learner always stores its hy-
pothesis and its general summary of the n-bit examples it
has seen, using at most s(n) bits. We note that consistent
learning by simple memorization of examples can always
be performed (i.e., for any concept) in space s(n) = 2n,
whereas consistent learning of an n-bit concept Hn requires
s(n) ≥ log |Hn|. Thus, for any concept class, there is some
well-defined space complexity of consistent learning; our re-
sults will only be of interest for concept classes for which this
complexity is o(2n/n). Note that there are several examples
in the literature of consistent on-line learning algorithms
with polynomially bounded state, such as the learning al-
gorithms we have described for learning singletons, learning
constant-degree polynomials over F2, and the elimination al-
gorithm for learning conjunctions (analyzed by Valiant [27]
in the original work on PAC-learning) which also lends to
learning k-CNF formulas.

The core of our analysis is the following theorem, giving
a mistake bound for consistent on-line learning algorithms
when presented with i.i.d. examples (as opposed to adversar-
ial). A key point is that the quality of the final hypothesis
improves exponentially with the number of mistakes—this
will ensure that we can get exact identification of a concept
in a polynomial number of mistakes.

Theorem 3.1. (Random examples teach consistent
bounded learners with few mistakes.) For every con-
cept h : {0, 1}n → {0, 1}, ε > 0, δ > 0, distribution D over
examples of length n, and consistent s(n)-bounded learner A
for h, the following holds. Given random labeled examples
drawn from D, after A makes at most O(s(n)(log 1

ε
+log 1

δ
))

mistakes on the examples, the hypothesis of A agrees with h
on all but an ε-fraction of D, with probability at least 1− δ.

The proof of this theorem requires a couple of useful def-
initions.

Definition 3.2 (Configurations and knowledge).
Given an s(n)-bounded learning algorithm A, and a concept

h : {0, 1}n → {0, 1}, we define the configuration graph of A
on h to be a directed graph in which the vertices correspond
to the O(2s(n)) states of the algorithm, and there is an edge
from a state σi to a state σj labeled by x ∈ {0, 1}n provided
that UPDATE(σi, x, EVAL(σi, x), h(x)) = σj.

For a given concept h and algorithm A, we say that a state
σ knows (the label of) x ∈ {0, 1}n if there is a path from the
initial state σ0 to σ such that some edge in the path is labeled
by x.

Note that there may be many paths between configura-
tions of the algorithm; on a given teaching sequence, the
algorithm only takes one of these paths, but the final con-
figuration “knows” the labels of all of the examples on all of
the paths. The key property of our “knowledge” definition
is the following:

Proposition 1. For any on-line learning algorithm that
is consistent on h and is in a state σ that knows an instance
x, we have EVAL(σ, x) = h(x). Furthermore, all states σ̃
reachable from σ must also know x.

Next, we show that after making s(n) mistakes, the frac-
tion of instances not known by the algorithm drops by a
constant fraction. For a distribution D, we say that a subset
S ⊆ D is a ρ-fraction of D provided that Prx∈D[x ∈ S] = ρ.

Lemma 3.1. Suppose that the algorithm A is in a state σt
that knows all but a ρ-fraction of D. Then, after a sequence
of trials in which instances are drawn from D and A makes
s(n) mistakes, A enters a state σt+1 that knows all but a

(3/4 · ρ)-fraction of D, with probability at least 1− 2−s(n).

Proof. Consider any state σ̃ that is reachable from a
path from σt on which s(n) mistakes occur, and that knows
less than a (1 − 3/4 · ρ)-fraction of D. Since σt knows a
(1 − ρ)-fraction of D, and all mistakes made by A starting
from σt must fall in the ρ-fraction that σt does not know,
this means that the s(n) mistakes leading to σ̃ must have all
been drawn from a set that has conditional probability at
most 1/4, out of the instances that σt does not know. The
probability that we hit such a set of conditional probability
at most 1/4 for s(n) times (for our s(n) mistakes) is at most

2−2s(n). Therefore the probability that we reach σ̃ from
σt (assuming we make s(n) mistakes) is at most 2−2s(n).

Taking the union bound over all (at most 2s(n)) such states
σ̃, the probability that we reach some state that does not
know at least a (1−3/4·ρ)-fraction ofD is at most 2−s(n).

The final ingredient in the proof of Theorem 3.1 is the
following probabilistic inequality, which can be derived from
Chernoff-Hoeffding bounds:

Theorem 3.2. Let X1, . . . , Xt be independent Bernoulli
random variables such that E[Xi] ≥ 1/2 for all i, let δ >
0, and let s ∈ N. Then for t = 3s + 3 log(1/δ) trials,
Pr[
∑t
i=1Xi < s] ≤ δ.

The proof of Theorem 3.2 is in the appendix. Now we can
complete the proof of Theorem 3.1:

Proof of Theorem 3.1. Let A and h be as in the theo-
rem statement. Until A has correctly labeled every instance
correctly (in which case we are done), A reduces the fraction
of D that it does not know by a (3/4)-factor, after every se-
quence of examples from D in which it makes s(n) mistakes,



with probability at least 1− 2−s(n) (independently on each

such sequence). This 1 − 2−s(n) probability event only has
to occur u = (log 1/ε)/ log(4/3) times, in order for the frac-
tion of D that A does not know to drop below ε. Letting
t = 3 · u + 3 log(1/δ) and applying Theorem 3.2, we find
that after t · s(n) = O(s(n)(log 1/δ+ log 1/ε)) mistakes, the
probability that A knows all but an ε-fraction of D is at
least 1− δ. �

Exact learning from Theorem 3.1.
It is now straightforward to construct the desired teach-

ing strategies for state-bounded consistent learners: we only
need to present the learner with i.i.d. examples from a dis-
tribution for which the minimum probabilities are relatively
large (at most exponentially small). Of course, the uniform
distribution meets these needs optimally:

Reminder of Theorem 1.2 For every concept h : {0, 1}n →
{0, 1} and δ > 0, every consistent s(n)-bounded A for h
makes at most O(s(n)(n + log 1

δ
)) mistakes with probability

at least 1 − δ, when the instances of length n are chosen
uniformly at random.

Proof. Since the instance space has size 2n, once the al-
gorithm is in a state that is correct on all but a ε-measure set
under the uniform distribution for ε < 2−n, the algorithm
must label every instance correctly. The claim thus follows
immediately from Theorem 3.1.

Theorem 1.2 only guarantees that the sequence of exam-
ples selected by the strategy works for a particular learner
with high probability. Of course, when the probability is
exponentially close to 1, we can obtain a fixed sequence that
guarantees a polynomial mistake bound for all of the learn-
ers from some finite class. Let SIZE[s(n)] denote the class
of all circuit families {Cn} such that Cn has bounded fan-in
and s(n) size.

Corollary 3.1. For every concept h : {0, 1}n → {0, 1}
and every size bound s(n) ≥ n, there is a sequence of exam-
ples of h such that every SIZE[s(n)]-bounded learner for h
makes at most O(s(n)2 log s(n)) mistakes.

Proof. First, note that if the learning algorithm is com-
putable by a circuit of size s(n), its states must have length
at most s(n). Second, note that there are at most S =

s(n)O(s(n)) circuits of size s(n). Therefore, by taking δ <
1/S, we find by Theorem 1.2 that a random sequence of ex-
amples guarantees that every consistent learner for h with
states of size s(n) makes at most O(s(n)(n+logS)) mistakes
with probability > 1−1/S. By taking a union bound over all
S circuits, we find that every circuit makes a number of mis-
takes not exceeding O(s(n)(n + logS)) ≤ O(s(n)2 log s(n))
with nonzero probability, hence some sequence of examples
suffices.

Finally, before moving on, we note that some polynomial
dependence on the space bound (hypothesis size) is essen-
tially inevitable in the mistake bound of any teaching se-
quence for learners given any reasonable complexity bound.
Recall that S is the class consisting of all singleton and
empty concepts.

Reminder of Theorem 1.5 For every integer s ∈ [n, 2n],
there is a consistent on-line learning algorithm A for the

concept class S computed by a uniform family of AC0 cir-
cuits of size O(s · n) using s-bit states, such that for every
sequence of examples of the empty concept, A makes at least
s− 1 mistakes before identifying the empty concept.

Proof. We describe our “adversarial” learning algorithm
A. Fix a lexicographic ordering on strings, and divide the
space of {0, 1}n into s− 1 intervals of equal length in which
the first s− 2 intervals all have length b2n/(s− 1)c (and the
final interval contains the rest). If A ever sees an example
y such that h(y) = 1, then it switches to the singleton for
y as its concept. Otherwise, A represents its concept by a
bit-vector of length s − 1, corresponding to each of these
intervals. Initially the bits are all set to 1, and if A sees
an example falling in an interval with its corresponding bit
set to 1, EVAL predicts 1, otherwise it predicts 0. When the
UPDATE algorithm sees an example z for which h(z) = 0 in
an interval with a bit previously set to 1, that bit is set to
0. (All other bits remain unchanged.) We observe that this
A is consistent on the class of singletons with the empty
concept—once it sees a 1, it always predicts the singleton
correctly (and likewise correctly labels all of the other points
it previously saw labeled 0), and until that point, every ex-
ample it sees labeled 0 will subsequently be predicted to be
0 (along with the rest of the interval it belongs to). We also
observe that the lexicographic comparisons can be carried
out in uniform AC0, and that the hypotheses of A can be
represented in s bits as required. Finally, observe that until
A has received an example from each of the s− 1 intervals,
A does not identify the empty concept.

On the efficiency of teaching.
Although we noted in Theorem 1.1 that teaching concepts

such as even the singletons and empty concept may involve
presenting exponentially many examples, there is a sense in
which the teaching sequences of Theorem 1.2 are efficiently
generated. Namely, if we consider an on-line communication
model such as the one introduced by Goldreich, Juba, and
Sudan [13], then as our teaching strategy simply chooses an
n-bit example uniformly at random on each round, our strat-
egy is a (randomized) linear-time on-line universal teach-
ing strategy (for space-bounded consistent learners) that
achieves polynomial error complexity (in n and the space
bound).

3.2 Sequences guaranteeing few mistakes, from
Nisan’s generator

We have already noted that the teaching sequences we
consider must be exponentially long in order to guarantee
that every consistent algorithm identifies the target concept.
Nevertheless, we might hope to improve the construction
of such sequences in Theorem 1.2 by reducing the number
of random bits they require. As stated, Theorem 1.2 re-
quires exponentially many random bits. However, given that
the sequences are uniform-random and the learners have
bounded state, one might anticipate that Nisan’s pseudo-
random generator for space-bounded computation [21] could
generate sequences with similar properties, from a short ran-
dom seed. Although Nisan’s analysis says nothing about
such a property of the entire string – it only considers the
probability that the algorithm ends up in an accepting state



– we can confirm that it also generates sequences suitable
for our purposes. We prove:

Reminder of Theorem 1.3 Using a block length of Θ(s(n)+
n + log 1

δ
) (and k = O(n + log 1

δ
)), Nisan’s pseudorandom

generator produces a sequence of 2O(n) random bits for which
with probability 1 − δ over the seed h1, . . . , hk, x, any con-
sistent learning algorithm that is s(n)-bounded on a given
concept exactly identifies that concept and makes at most
O(s(n)(n+ log 1

δ
)) mistakes.

Nisan’s pseudorandom generator.
We recall that Nisan’s generator uses a family of pairwise-

independent hash functions H taking b bits to b bits, i.e.,
satisfying the property that for x1, x2, y1, and y2 in {0, 1}b,
for a uniformly chosen h ∈ H, Prh[h(x1) = y1 and h(x2) =
y2] = 2−2b; we know that these can be constructed from
O(b) random bits by, e.g., multiplying by a random Toeplitz
matrix and adding a random vector. The construction is
then a recursive construction, in which Gk takes a b-bit seed
and k hash functions: G0(x) = x, and

Gk(x, h1, . . . , hk) =

Gk−1(x, h1, . . . , hk−1)Gk−1(hk(x), h1, . . . , hk−1)

i.e., concatenating the output of Gk−1 on x with Gk−1 on
hk(x). So, the generator stretches O(kb) bits to b2k bits. We
refer to b as the block length of the generator (observe that
the sequence is a concatenation of blocks of length b obtained
by hashing x with the many various subsets of h1, . . . , hk).

As is well known, Nisan’s generator is also time-efficient
in an on-line sense: after the initial choice of seed and k
hash functions, the ith block (out of 2k) of the generator’s
output may be computed by taking, for each jth bit in the
binary representation of i that is a 1, the hash function hj ,
and applying them to the seed in order. Thus, by keeping
a k-bit counter of the blocks, the sequence of examples can
be computed on-line in time polynomial in n and s(n). So,
Theorem 1.3 also yields an efficient on-line universal teach-
ing strategy with polynomial error complexity.

Our starting point is the following lemma encapsulating
the abstract version of the analysis of Nisan’s generator. For
convenience, given δ > 0, for each k, b ∈ N and pairs of states
i and j of a given (learning) algorithm, we will define events

B
h1,...,hk
i,j that Gk(x, h1, . . . , hk) takes state i to state j, and

events Aki,j that a sequence of 2k uniformly chosen blocks of
b bits takes state i to state j.

Lemma 3.2 (Lemma 2 of Nisan [21]). Let any space-
s(n) algorithm that reads its input n bits at a time from a
read-once input tape be given. Let H be a family of pairwise-
independent hash functions on b bits, δ > 0, and k ∈ N.

Then with probability at least 1− k26s(n)

δ2
2−b over h1, . . . , hk

chosen from H,

‖
[

Pr[Aki,j ]
]
−
[

Pr[B
h1,...,hk
i,j ]

]
‖1 ≤ (2k − 1)δ

Now, instead of merely examining the probability that
h1, . . . , hk take state i to state j (as Nisan does), we will
also examine the probability that the algorithm makes a
given number of mistakes, m. Ultimately, we will argue
that the joint distribution over final states and number of
mistakes remains close (in `1-distance) when Nisan’s PRG

is substituted for uniform random bits; we do this by noting
that the algorithm could be modified to keep count of the
number of mistakes that it makes in an n-bit counter (using
total space s(n) + n) and then the distribution over states
of this modified algorithm captures the joint distribution
over states of the original algorithm and total number of
mistakes. Then by a union bound over the various sources of
error, we obtain a general analysis of the quality of Nisan’s
pseudorandom generator for generating easy sequences of
examples:

Theorem 3.3. (Nisan’s pseudorandom generator pro-
duces easy sequences.) Using a block length of Θ(s(n) +
n + log 1

δ∗ + logR) rounded to a multiple of n (and k =
logR/b), Nisan’s pseudorandom generator produces a se-
quence of R random bits for which with probability 1 − δ∗
over the seed h1, . . . , hk, x, for any consistent learning al-
gorithm that is space-s(n) bounded on a given concept, the
distribution over states and total number of mistakes of the
learning algorithm induced by the generator for the concept
is δ∗-close to the distribution induced by the uniform distri-
bution over R bits in `1.

Proof. Given any consistent space-s(n) bounded learn-
ing algorithm A for a given concept, consider the algorithm
A′ with states given by pairs (σ,m) where σ is a state of A
and m is an integer, which simulates A and keeps count of
the number of mistakes A makes in the second component;
note that since A is consistent, it can never make more than
2n mistakes (since the concept is then identified) and hence
A′ uses at most s(n) + n bits of state.

By Lemma 3.2, for this block length, with probability
1− δ∗ over the choice of hash functions and seed, the pseu-
dorandom generator produces a sequence of R random bits
such that the statistical distance over final states of A′ is
δ∗-close to the distribution over states of A′ on R uniformly
chosen bits; as A′ behaves identically to A, by considering
the two components of the states of A′, we find that the
joint distribution over final states of A and total number of
mistakes made by A is therefore δ∗-close to the distribution
over states and mistakes of A on R uniformly chosen bits.
The theorem follows.

In particular, we can get exact identification sequences,
establishing the main theorem of this section:

Proof of Theorem 1.3. By the coupon collector’s bound,
the expected number of uniformly random examples needed
to include every example is O(n2n), and by Markov’s in-
equality, the probability that this exceeds Ω( 1

δ
n2n) is at

most δ/3. So, using R = O( 1
δ
n22n) random bits, the al-

gorithm enters a state that knows the entire domain with
probability 1 − δ (and therefore exactly identifies the con-
cept). By Theorem 1.2, the algorithm makes more than
O(s(n)(n + log 1

δ
)) mistakes with probability at most δ/3.

By a union bound over these two events, we find that on
R uniform bits, the algorithm enters a state that identifies
the concept and makes at most O(s(n)(n+ log 1

δ
)) mistakes

with probability at least 1− (2/3)δ. Therefore, Theorem 3.3
guarantees that for the stated block length, the probabil-
ity that the algorithm fails to identify the concept or makes
more than O(s(n)(n+ log 1

δ
)) mistakes on the output of the

generator is greater by at most δ/3. �



3.3 Deterministic sequences guaranteeing few
mistakes implies circuit lower bounds

We now turn to the question of whether the random seed
can be removed entirely in generating a sequence which
teaches all bounded consistent learners a concept. We show
that a deterministic sequence achieving any mistake bound
less than 2n for all bounded learners implies circuit lower
bounds:

Reminder of Theorem 1.4 Let F be a class of functions
from N to N. Suppose there is a deterministic t(n) time
algorithm M such that for all s(n) ∈ F and all sufficiently
large n, M(1n) prints a sequence S of examples of the empty
concept h : {0, 1}n → {0} such that every consistent s(n)-
size circuit learner A for h learns h and makes less than
2n mistakes on the sequence S. Then there are problems
solvable in t(n) time that do not have circuits of size s(n),
for all s(n) ∈ F and almost every n.

Proof. By contradiction. Suppose there is a determinis-
tic algorithm that runs in t(n) time and prints a sequence S
of examples for the empty concept h with the hypothesized
property. Further suppose that for every problem solvable
in time t(n) there is an s(n) ∈ F such that the problem
has circuits of size s(n), for infinitely many input lengths n.
First note that all 2n strings must appear among in S, other-
wise some O(n)-size circuit learner which learns the class S
of singletons with the empty concept will not be able to dis-
tinguish h from some singleton concept (cf. Theorem 1.1).
This also entails that t(n) ≥ 2n.

We define a “bad” on-line algorithm A for learning h as
follows. First, order the n-bit strings by the order in which
they first appear in the sequence S, and re-index the strings
as x1, x2, . . . , x2n . (That is, x1 is the first instance in S, x2
is the next distinct instance, x3 is the one after that, and so
on. Since every string must appear somewhere in S, this is
indeed an ordering on all n-bit strings.)

• The states of A are the integers from 0 to 2n, and the
initial state is 0.

• Given an example (x, 0) on which a mistake was been
made:
UPDATE the state to be the integer i such that x = xi.

• EVAL(i, x) predicts 0 if x = xj for some j ∈ [1, i], oth-
erwise it predicts 1.

That is, in the initial state 0, all examples are classified
as 1, but if A makes a mistake on example x, x must have
the label 1. A rectifies this by increasing the state to i such
that x = xi.

It is easy to verify that, assuming every language in time
t(n) has circuits of size s(n) ∈ F for infinitely many n, the
above UPDATE and EVAL functions can be implemented with
O(s(n))-size circuits for some s(n) ∈ F and some sufficiently
large n – this follows because the sequence S can be gener-
ated in t(n) time.

Observe that A is consistent for h: the state i always
increases with each mistake, and when we make a mistake
on xi, we increase the state to some j ≥ i such that this
never happens again. However, on the sequence S, A makes
2n mistakes: it predicts every example it sees to have label 1,
until all 2n examples have appeared in S. That is, the state
i must equal 2n in order for A to correctly label all examples

as 0, but when A receives examples in the sequence S, the
state i increases only by 1 for each mistake that is made.

Therefore A is consistent for the empty concept, and it
learns the empty concept, but on the sequence S of exam-
ples generated by 1n, A makes 2n mistakes. This is a con-
tradiction.

Note it is not hard to show that A actually learns the
empty concept from a uniform random sequence of examples
with only O(n) mistakes, with high probability, confirming
our earlier results. Moreover, it is easy to quickly teach A
the empty concept: simply give it the last example (x2n , 0).

4. SHORT TUTORING SEQUENCES
Finally, we consider the problem of generating short se-

quences of examples tailored to a given learner and given
concept that lead the learner to exactly identify the con-
cept. We will informally refer to these as tutoring sequences.
Although the motivation for considering such sequences is
somewhat different from that we discussed for the “massive
on-line” teaching models, one can think of it as a communi-
cation model that reveals a sense in which a weaker receiver
may be easier to communicate with.

The technique from Theorem 3.1 also easily yields a proba-
bilistic (nonconstructive) proof of existence of such sequences,
which have length that is only polynomially related to the
learner’s state complexity. This is in stark contrast to the
earlier setting, where the lengths of sequences were forced
to be exponential.

Reminder of Theorem 1.6 For every concept class H,
every h ∈ H, and every consistent s(n)-bounded learner A
for H, there is a sequence of examples of length O(n · s(n))
after which A identifies h.

Proof. The argument is quite similar to Theorem 3.1:
we again consider the configuration graph of the algorithm,
and will argue that the set of examples the algorithm does
not know shrinks exponentially. We first state an appropri-
ately modified version of Lemma 3.1 (assuming the uniform
distribution, along the lines of Theorem 1.2):

Claim 1. Suppose that the on-line algorithm is in a state
σt that knows all but a ρ-fraction of {0, 1}n. Then, after a
sequence of s(n) instances chosen uniformly at random from
the set of instances that σt does not know, the algorithm
enters a state σt+1 that knows all but a (3/4 · ρ)-fraction of

{0, 1}n, with probability at least 1− 2−s(n).

The proof is essentially the same as Lemma 3.1. Now,
since the algorithm reaches such a state with nonzero proba-
bility, we can in particular fix a sequence of s(n) examples for
which the remaining instances decreases by a factor of 3/4;
thus, after log2(4/3) ·n of these sequences of s(n) examples,
the algorithm identifies the target concept as needed.

5. CONCLUSION
We have introduced a new model of teaching that at-

tempts to teach all“worst-case learners”a concept with a sin-
gle sequence of labeled examples, and have established that
the number of mistakes made by consistent learners on ran-
dom examples are only polynomially related to the learner’s



state complexity. Several interesting questions arise natu-
rally.

The most immediate question is: how tight is the con-
nection between mistakes and state complexity? The lower
bound in Theorem 1.5 only provides an Ω(s(n)) lower bound
on the number of mistakes, whereas our constructions all
achieve mistake bounds of O(s(n) · n). Is this extra factor
of n essential (say, for constant probability of success)?

Of course, our results analyze the mistake bound just in
terms of the state bound of the (consistent) algorithm. In
the standard (batch) PAC model, analyses based on rep-
resentation sizes have been very useful, e.g., for analyzing
Rivest’s algorithm for learning decision lists [23]. Our anal-
ysis may not be very useful for many learning algorithms,
because they do not satisfy such a strong “consistency” con-
dition (it is often the case that an algorithm may initially
label an example correctly, and later switch to a hypothesis
that labels it incorrectly). Is it possible to generalize the
class of learning algorithms further and achieve similar re-
sults? Perhaps our work can help give a novel analysis of
some interesting on-line learning algorithms.

We have found another setting where uniform random
bits do the job, but generating similar bits deterministically
would entail circuit lower bounds. Could we build a sequence
for ACC-circuit learners in such a way that we separate EXP
from ACC? Does EXP 6⊂ P/poly imply the existence of good
deterministic teaching sequences?
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APPENDIX
A. TAIL BOUND DERIVATION

Here we prove:

Reminder of Theorem 3.2 Let X1, . . . , Xt be independent
Bernoulli random variables such that E[Xi] ≥ 1/2 for all i,
let δ > 0, and let s ∈ N. Then for t = 3s+ 3 log(1/δ) trials,
Pr[
∑t
i=1Xi < s] ≤ δ.

The theorem will follow from a calculation using Hoeffd-
ing’s inequality (a.k.a. the additive Chernoff bound).



Theorem A.1. Let X1, . . . , Xt be independent Bernoulli
random variables such that E[Xi] ≥ 1/2 for all i, and

E

[
1

t

t∑
i=1

Xi

]
= µ.

Then for any ε > 0,

Pr

[
1

t

t∑
i=1

Xi < µ− ε

]
≤ exp(−2tε2)

To prove our inequality, we want to compute the number
of trials t so that at least s of these Xi come up 1, with
probability 1 − δ. Naturally, in 2s trials, we have at least
s in expectation; we will calculate the number of additional
trials a needed to guarantee at least s with probability 1−δ.
That is, we want a such that the probability that fewer than
s out of the 2s + a trials come up 1 is at most δ. Plugging
in Hoeffding’s inequality, we find that a satisfying

exp

(
−2(2s+ a)

(
a

2(2s+ a)

)2
)

= exp

(
−a2

2(2s+ a)

)
≤ δ

suffices. As a > 0 increases, the LHS decreases, so we merely
need to find the smallest a that suffices. We note that equal-
ity holds when

ln
1

δ
=

a2

2(2s+ a)

0 = a2 − 2a ln
1

δ
− 4s ln

1

δ

which has the solutions

a =
2 ln 1

δ
±
√

4 ln2 1
δ

+ 16s ln 1
δ

2
= ln

1

δ
±
√

ln2 1

δ
+ 4s ln

1

δ
.

To simplify the expression for a, we recall that
√
x2 + y2 ≤

x + y and
√
xy ≤ (x + y)/2 for non-negative x and y, and

obtain:

a = ln
1

δ
+

√
ln2 1

δ
+ 4s ln

1

δ

≤ ln
1

δ
+ ln

1

δ
+ 2

√
s ln

1

δ

≤ ln
1

δ
+ ln

1

δ
+ s+ ln

1

δ

Therefore, t = 2s+ a ≤ 3s+ 3 ln(1/δ) trials suffice.


