
Access Complexity

May 7, 2001

A thesis presented

for partial fulfillment of the requirements for

Honors in Mathematics

Bachelor of Arts

Cornell University

by

Ryan Williams

1

Copyright

Ryan Williams, 2001. All rights reserved.

2

Abstract

We propose new formalisms for representing the fundamental complexity classes

L, NL, P , NP , PNP , and PSPACE. The idea is to start with a weak Turing machine

model (we choose logspace TMs) and augment the model with an extra tape, which

we will call the “reference.” Models capturing various complexity classes arise from

three conditions imposed on the reference:

(1) the length of the tape with respect to the input size,

(2) the access restrictions to the tape (i.e. how the tape may be read or

written to),

(3) the initial contents of the tape with respect to an input.

We find many natural kinds of tape restrictions where the resulting model captures

the classes above. For example, those machines such that the reference can be accessed

two-way, read, and write-once accept exactly those sets in P .

Using this new formulation, we prove several new theorems relating classes, and

generalize some of our results to more classes. We call the study of such models

“access complexity”, since the fundamental differences between the classes here are

in the accessibility of massive storage.

3

Table of Contents

1. Acknowledgements

2. Introduction

3. Preliminaries

3.1. Augmentations and references

3.2. Access Permissions

4. Main Characterizations

4.1 NL

4.1.1. NL using sublogarithmic space

4.2 P

4.3 NP

4.3.1 Using less than logspace

4.4 Observations on the models

4.5 Characterizations with sublogarithmic space

5. Relations with Finite Automata.

5.1. DFA emptiness problems and access complexity

5.2 A PSPACE characterization

4

6. The “Repeated Proof” Method and NL vs. NP

6.1 An Upward Collapse Theorem.

6.2 Two One-Way Heads are Powerful

7. Strengthening Savitch’s Theorem

7.1 The Logspace Case

7.2 The General Case

8. The Complexity of Brute Force Search

8.1 Logspace + Polynomial Increment = PSPACE

8.2 Enforcing order on PSPACE computations

8.3 A deterministic formalism for PNP

9. Conclusions

10. References

5

1 Acknowledgements

I would first like to recognize my research advisor Juris Hartmanis, who has listened

patiently to all of my results with a watchful eye and a great deal of encouragement.

Much of the synthesis prevailing throughout the text– the big picture commentary of

where and why access complexity is an interesting and significant field of study– is

the direct result of many enlightening discussions with Professor Hartmanis.

Among those who have given me priceless advice during my undergraduate study,

I give many thanks to Anil Nerode, Charles Van Loan, Sergei Artemov, Dieter van

Melkebeek, and David Gries. There are many others who are not listed. This is due

not to their lack of good advice, but my lack of long-term memory.

For continuously helping me preserve my sanity throughout these four years, I am

indebted to Kate Chabarek.

Finally, I wish to thank my parents, who with enormous understanding have

allowed me to attend this wonderful institution.

And for no particular reason, I acknowledge my current roommate, John Briggs.

Hey, buddy!

6

2 Introduction.

From its beginning, computational complexity has been focused on the study of how

quantitatively measured resources affect computation– what can and cannot be de-

cided when algorithms are allowed bounded resources which grow with the size of the

input. The intuitive notions of nondeterminism [13] versus alternation [2], and time

[5] versus space [6] as resources have been cornerstones in the development of the

theory. Complexity theorists have placed a strong emphasis on understanding com-

putable sets via the time and space requirements of deterministic, nondeterministic,

or alternating machines recognizing them.

Such a philosophy has given rise to robust complexity classes of problems solvable

by machines with some particular bounded resource. The complexity classes L, NL,

P , NP , and PSPACE have been by far the most studied of these classes, especially

P and NP . We would like to know precisely how these classes are related; we know

that each class in the list above is contained in its successor, and we know that

NL ̸= PSPACE, but this is the extent of our knowledge, more or less. For example,

we cannot say if L is properly contained in NP , or if P is properly contained in

PSPACE. It has been steadfastly conjectured that both of these propositions are

true. But it appears that our current proof methods are woefully inadequate for

resolving these problems.

7

In this work, we present a novel way to represent the major complexity classes.

We homogenize the model of computation under which the classes are defined, and

express the conjectured differences between the classes as differences between read-

only vs. read/write-once vs. read/write capabilities, and 1-way head vs. 2-way head

capabilities. That is, we express the conjectured differences between the classes in the

form of access permissions. This is done by introducing to a logspace machine an extra

“reference” tape of polynomial or exponential size, and placing various restrictions

on how this tape may be accessed. The result is that we are able to express the

complexity classes in terms of the how massive storage is accessed rather than how

much time/space the machine requires. Under our canonical formulation, NL, P ,

NP , PNP , and PSPACE machines all have polynomial space available to them.

How they use the space is what makes them different.

8

3 Preliminaries

We assume familiarity with Turing machines, basic hierarchy theorems, and the

classes L, P , NP , PNP , and PSPACE.[7] Our coverage here will not be overly

technical; rather, we will precisely define what all of the pieces of our machines will

do, taking it as a matter of course that such things could be easily rigorously defined.

The significant workings of our model are all contained in their conceptual meanings.

3.1 Augmentations and references

Definition 3.1 Let M be a Turing machine. An k head, X permission, f(n)-

augmentation of M is a machine M ′ which consists of M with k additional heads

accessing an additional tape W of f(n) size, where n is the length of the input to

M . W is completely independent of the input, work, and output tapes of M , and will

be called the reference of M ′. The means by which the k heads can access W are

dictated by the expression X; possible values for X will be given later.

Our definition of an augmentation is intentionally vague with respect to accessing

the reference. What will be computable with the augmentation M ′ depends upon the

capability of the head that is reading and writing to W . Furthermore, we will allow

either the initial contents of W to vary, or W will be forced to be initially blank.

9

By default, unless otherwise specified, we drop the “k heads” designation and

assume that k is arbitrary in our statements; we will also do this similarly with X.

We first deal with the issues of what the reference will initially hold.

Definition 3.2 (Initial contents of references)

Let M ′ be an f(n)-augmentation of some M , and let W be the reference of M ′.

The initial content of W on input x is defined as a string y, |y| = f(n) to appear

on W when M ′ is in its initial configuration on x. Note there may be more than one

initial content.

We say that W is arbitrary content iff the initial content of W is dependent

on the input x to M ′. That is, for all inputs x, there exists a string yx which is the

initial contents of W .

W is blank iff for all inputs x, yx = Bf(n) in the above, where B is the blank

symbol.

It should be obvious that arbitrary content has some direct analogy with nondeter-

minism: for all inputs x, there exists a string yx which is given to us for computation.

Later on, we will see that access restrictions can dictate what kind of nondeterministic

resources (space or time) our augmentations can simulate.

10

Just like determinism and nondeterminism, the two kinds of tapes have different

acceptance criteria:

Definition 3.3 Let M ′ be an X-permission f(n)-augmentation of M , and let W be

the reference of M ′.

If W is blank, then M ′(x) accepts if and only if M(x) accepts when given W and

access permissions X to W .

If W is arbitrary content, M ′(x) accepts iff there exists some string yx such that

when given yx as the initial content of W , M(x) accepts when given W and access

permissions X to W .

In other words, in the case where W is blank, acceptance is what you think it is,

and when W is arbitrary content, acceptance occurs if there is something which can

be initially written to W such that the augmentation accepts.

3.2 Access Permissions

In the previous section, we abstracted away the precise access permissions of our

augmentations of M , without giving an example of what such an access permission

would be like. We will now eliminate this difficulty by defining the range of possible

access permissions we will consider in this work.

11

Access permissions are simply specifications on how the reference of an augmenta-

tion can be accessed. In the following definitions, let C be a space bounded complexity

class. That is, for some space constructible fC , C = SPACE[fC]. We will say that a

Turing machine M is a C-machine if L(M) ∈ C. Let f(n) be space constructible in

C.

Definition 3.4 (1-Way Read-Only Accessibility)

C + 1f(n)RO is the class of languages accepted by 1-head, 1-way read-only per-

mission, f(n)-augmented C-machines, with arbitrary content reference. That is, one

head has 1-way, read-only access to the reference W : it moves in only one direction,

and no symbols may be written to the tape.

Definition 3.5 (Read-Only Accessibility)

C + f(n)RO is the class of languages accepted by 1-head, (2-way) read-only per-

mission, f(n)-augmented C-machines with arbitrary content reference, i.e. for each

C-machine M accepting a language in the class, the single head accessing the reference

W is two-way read-only.

Definition 3.6 (Blank, Write Once Accessibility)

Define C + f(n)WO is the class of languages accepted by 1-head, (2-way, read-

only) write-once permission, f(n)-augmented C-machines with blank reference.

12

Definition 3.7 (Full Accessibility)

Define C+f(n)RW is the class of languages accepted by 1-head, read-write permis-

sion, f(n)-augmented C-machines, i.e. the reference may be treated as an additional

worktape of the C-machine.

These are the access permissions to be discussed in the first seven sections. In

Section 8, we will add “increment accessibility” to this list.

Our convention will be that if f(n) represents an arbitrary polynomial, we will

denote it by P . Thus for example, L + PRW is the class of languages accepted by

1-head reading and writing to polynomial-augmented logspace machines. This gives

us a first, but trivial equivalence.

Corollary 3.1 L+ PRW = PSPACE.

13

4 Main Characterizations

In our discussions, we will mostly restrict ourselves to the case where C = L.

4.1 NL

The following result relates restricted access to the reference with space-bounded

non-determinism.

Theorem 4.1 L+ 1PRO = NL.

Proof. We start with L+1PRO ⊆ NL. LetM be an augmented logspace machine

with T of the required form. We construct a nondeterministic logspace machine M ′

such that L(M) = L(M ′).

Begin M ′(x):

Guess the first symbol of T on M(x) and write it to worktape location T ′. Write

the initial state of M(x) on tape (for the input tape, store only the head position, so

we use only logspace).

While the simulation of M(x) hasn’t halted, do:

(1) Execute a step of M(x) using the current symbol at T ′ as the contents of T .

14

(2) If the head of T in M is supposed to move right during the step, then guess a

symbol and write it to T ′, overwriting the previous symbol.

Accept x ⇐⇒ the simulation of M(x) accepted.

End of M(x).

Clearly, M ′ is an NL machine. Our claim is that the state of the simulated M(x)

in M ′(x) is σ iff there is a y such that the state M(x) with T := y is σ.

The proof is by induction on |y|. The claim clearly holds when y is the empty

string, since then the head of T never moves, so M ′(x) is actually deterministic, in

which case it behaves exactly like M(x) by definition.

Suppose the claim is true for |y| = n. Let’s assume there exists ya such that M(x)

when T := ya. Let the time at which the head of T reaches the square holding a be t.

By induction hypothesis, after t steps of both machines, the simulated state of M(x)

in M ′ is equal to the state of M(x).

For the remaining execution of M(x), if the head of T does not move right to a

then we are done. If the head does move right, then M ′(x) will just guess a and write

it as the current symbol. In this case, M ′(x) accepts.

Conversely, if M ′(x) accepts, then that means it guessed an a such that from its

state s at time t, it performed a deterministic simulation of M(x) that accepted. By

15

induction there is a y such that from M(x) at time t, T := y will be in s. Since any

deterministic parts of the two simulations yield the same result, T := ya will yield

M(x) accepting.

NL ⊆ L+1PRO: Given an NL machine M , we assume WLOG that for any con-

figuration, there are at ≤ 2 transitions applicable to that configuration. Furthermore,

we assume an ordering on the transitions. We construct the following augmented M ′:

Begin M ′(x):

Initially, write the initial configuration of M(x) on tape (head position of input

tape, blank logspace worktape, initial state).

While the simulation of M(x) hasn’t halted:

(1) If there are 2 applicable transitions for the current configuration of M(x),

then read the current bit of T . If the bit is 0, choose the lesser of the two transitions

(wrt to the ordering we assumed). Otherwise choose the greater of the two. Simulate

M(x) on the chosen transition and move the head of y to the right.

(2) Otherwise, execute M(x) (deterministically) for 1 step.

Accept x iff the simulation accepted.

End of M ′(x)

16

We claim that there is a y such that M ′(x) accepts when T := y iff M(x) accepts.

The reasoning is as follows.

M(x) accepts ⇐⇒ there is a sequence of transition “choices” such that executing

M(x) on those choices leads to acceptance

⇐⇒ there is a bit string y specifying those choices, with its ith bit as 0 if the

ith chosen transition is the lesser of the two and 1 otherwise, such that when T := y,

the simulation of M(x) in M ′(x) accepts, i.e. M ′(x) itself accepts.

2

A simple corollary that follows from the result is that 1-way read-only access

of the reference augmented on NL machines does not increase the overall power of

the machines. This is because the action of the head and the tape contents can be

reproduced by a sequences of guesses by the NL machine. In other words,

Corollary 4.1 NL+ 1PRO = NL.

In general, we have the following, which we will leave to the reader.

Theorem 4.2 Let C, D be complexity classes, X be an accessibility requirement as

given above, and C +X = D. Then D +X = D.

17

4.1.1 NL using sublogarithmic space

A different characterization of NL can be found if we trade working storage for access

permissions. In particular, if we let the read-only access to the reference be two-way

instead of one-way, but restrict the Turing machine model to use only O(log log n)

space, the resulting complexity class is still NL.

Theorem 4.3 NL = SPACE[log log n] + PRO

Proof. (Sketch) Given an NL machine M , we construct a SPACE[log log n] +

PRO machine N that verifies valid computation histories (valcomps [7, 9]) on its

reference using only log log n space. We describe an N with this property below.

On input x, the contents of the polynomial reference of N contains (1) a “prim-

ing sequence” used for constructing log log n worktape, and (2) a valcomp of the

NL machine M . This priming sequence is the usual b0#b1# · · ·#bn, where bi is the

binary representation of integer i. Therefore, when a polynomial reference with arbi-

trary content is given to N , log log n is indeed constructible by the machine, because

given this sequence of binary numbers, precisely log log n space can be marked on the

worktape.

We assume that each the transition of the NL machine M is assigned a unique

integer, stored in the control of N . Each configuration C specified in the valcomp of

18

M on the reference has the current worktape contents, and the index of the transition

chosen to take by the NL machine. (The worktape head positions can be computed

using log log n space, so this is kept in N ’s own working storage.)

Essentially, N uses the reference to simulate having both log n worktape and

nondeterminism, by:

(a) keeping track of the worktape heads of M ,

(b) moving the input head exactly as M does,

(c) storing and changing the current state of M ,

(d) choosing the transitions specified by the valcomp (via a constant length inte-

ger), and

(e) verifying that what should be written to the worktape of M appears on the

reference.

Finally, N must verify that the rest of the worktape contents from one configura-

tion to the next is identical, except for at most one change due to a transition. N does

this by having two O(log log n) space counters: we will call them square and mover.

Initially square = 1, mover = 0. N records the first symbol σ1 on the worktape of

the current configuration, moves k · log n steps backwards on the reference for some

constant k (incrementing mover at each step), then checks that current symbol σ′
1 and

σ1 are the same, moves forwards once (incrementing square), recording the current

19

symbol, moving k · log n steps (decrementing mover), etc. When square is equal to the

current worktape position of the simulation, we check the transition. When square

= k log n, N is done. When N reaches the end of the reference and the simulation of

M is in an accept state, we accept.

In the other direction, we want to mimic the O(log log n) space machine’s two-

way access using logspace and one-way. It suffices to find a way to simulate not

only the “forwards” one-way movements of the tiny space machine, but also the

“backwards” movements; that is, when the machine moves its reference head to the

left. The crucial point is that the worktape of a O(log log n) space machine will begin

to repeat a configuration after taking k · log n steps to the left on the reference, for

some constant k (k will be the number of states in the machine, times the constant

for the O(log log n) space machine’s worktape). It thus suffices for our L + 1PRO

machine simulating the SPACE[log log n] + PRO machine to continuously save the

previous k · log n symbols it has read from the reference to worktape.

2

This tradeoff between space and access permissions is an interesting and instruc-

tive example of precisely how greater permissions can be used in lieu of extra space

or time resources.

We remark here but do not prove that a similar characterization of L can be found

20

using write-once, read-only access, rather than arbitrary content read-only access.

4.2 P

Our next result relates logspace plus write-only access to polynomial reference to

general polynomial time. It is quite interesting that a model defined in terms of space

bounds and access permissions can capture a robust time complexity class naturally.

Theorem 4.4 L+ PWO = P .

Proof. L + PWO ⊆ P : We show that for any L + PWO machine M , there is

a polynomial p(n) such that after p(n) steps of computation on inputs of size n, M

will cycle if it has not already accepted or rejected. Thus each L+PWO machine M

can be fixed with a counter that forces M to reject after p(n) steps, and the language

accepted by M is not changed.

Let M be an L + PWO machine, x be an input to M , and c be such that the

number of configurations of M(x) is bounded from above by |x|c. Suppose that the

reference ofM(x) is |x|k symbols long, so there are at most |x|k writes to the reference.

Let w(i) be the index of the step of M(x) in which the ith write to the reference

occurs. For example, if the first write to the reference occurs in step 6 of M(x)’s

execution, then w(1) = 6.

21

Let

s(|x|) = max
i : 2≤i≤|x|k

[w(i)− w(i− 1)].

That is, s(|x|) represents the longest interval of steps that M(x) executes without

writing to the reference. When s(|x|) ≥ |x|c, then M(x) cycles since no writes occur;

therefore the only component being modified in M is the logspace machine, which

cycles after |x|c steps. Furthermore, if M cycles then the reference cannot change

during the cycle (since M cannot erase the tape, as long a write occurs M cannot

cycle) and the logspace machine must cycle.

Hence M accepts if and only if at most |x|k writes to the reference occur, with at

most s(|x|) ≤ |x|c steps occurring between these writes.

We conclude M(x) accepts if and only if the running time of M(x) is ≤ |x|k+c.

Thus L(M) ∈ P .

P ⊆ L+ PWO : One method to show this is to generate the entire computation

history of the polynomial time machine on reference, and verify it is correct using

logspace.

Another proof uses the fact that HornSAT is P -complete with respect to logspace

(many-one) reductions. 1 The canonical polynomial time algorithm for HornSAT

1When we say “reduction” without qualification, we will always mean “many-one reduction”

unless otherwise stated.

22

can be performed easily in L+PWO, by letting the reference contain those variables

which are set to true. Initially, all variables are false (the tape is blank). For every

clause of the form (⊤ → xi) in the formula, the index i is written to the reference.

For every clause of the form (xi1 ∧ · · · ∧ xik → xj), if i1, . . . , ik all appear on the

reference, then j is appended to the tape. This is done until all clauses have been

satisfied in this way, or a contradiction is found. Therefore for any set S ∈ P , we use

a logspace machine to reduce S to HornSAT and then solve HornSAT using the

logspace machine and write-once reference. The theorem follows.

2

4.3 NP

The characterization for NP is perhaps the most straightforward of any we will prove.

We shall use the following fact:

Fact 4.1 (Cook) [3]

For all S ∈ NL, there is a logspace reduction from S to 3CNF-SAT.

The below result exposes a fundamental difference between NL and NP , relating

NP with augmented machines when the reference can be accessed 2-way read-only.

Theorem 4.5 L+ PRO = NP .

23

Proof. NP ⊆ L + PRO: First, note that when given a satisfying assignment,

F ∈ 3CNF -SAT can be verified in L. This is because each clause is at most O(log n)

bits long, so we can verify each clause individually as satisfying the given assignment,

using only logspace for each one. Hence, an L+PRO machine accepting 3CNF−SAT

begins on input F with the reference containing the satisfying assignment for F , and

the assignment is verified as satisfying using the logspace machine.

Since every language in NP can be logspace reduced to 3CNF -SAT , every lan-

guage in NP can be accepted via a logspace reduction followed by a L + PRO

computation (which is all in all an L+ PRO computation).

L + PRO ⊆ NP : Let M be an L + PRO machine. The corresponding NP ma-

chine N on input x guesses the contents of the reference, then simulates the logspace

machine of M(x) with the guessed contents in polynomial time.

2

4.3.1 Using less than logspace

Access complexity is interesting because it unifies the complexity classes using one

particular space-bounded model of computation. One may inquire as to how small

this space-bounded model needs to be. As it stands, the difficulty between separating

the models of access complexity lies in the power of logspace reductions, not in the

24

access mechanisms (which by themselves have varying levels of power). We would like

to be able to replace the logspace machine with an even weaker model of computation.

Here we demonstrate a result of this form for NP .

We define the complexity class Π3−TIME[log n]:

S ∈ Π3−TIME[log n] ⇐⇒

S = {x : (∀w : |w| ≤ log |x|)(∃y : |y| ≤ log |x|)(∀z : |z| ≤ log |x|) R(x,w, y, z)},

where R(·, ·, ··) is a predicate that is solvable on a random-access machine running

in time O(log n). (To recall, a random access machine is a Turing machine that on

input x has an O(log |x|) length “index tape”, upon which it may write an integer i.

In the next step of the machine, the input tape head is defined to be situated at the

ith input tape square.)

The result is that we can replace the logspace machine in our NP model with a

logtime machine that uses only three alternations.

Theorem 4.6 Π3−TIME[log n] + PRO = NP .

Proof. (Sketch) One inclusion is obvious. To show than any NP machine can be

modelled using a very small amount of computation, we give a predicate solvable in

Π3−TIME[log n] that expresses the acceptance of a valid computation history of an

25

NP machine on x. The fact that our polynomial reference can hold such a valid

computation allows us to conclude the result.

For an NP machine N running in time nc, let x be an input to the machine, and

let all the configurations of N(x) be of a fixed size q ·nd for some d > c. Furthermore,

let us suppose that N has only one worktape, and q0 be the initial state of N , and B

be the blank symbol. Let h be a candidate for a valid computation history of N(x)

with this restriction.

Define LETTER(x, i, n) = σ1σ2 · · · σn to be true if and only if the ith letter of x is

σ1, the i+1th letter is σ2, . . ., the (i+n− 1)th letter is σn. Note that such equalities

can be tested in constant time on a logtime machine, if j − i is independent of the

input size. (This definition was inspired by the work of Barrington, Immerman, and

Straubing [1].)

It can be verified that N(x) accepts if and only if:

(1) C0 is valid (this can be checked in Π1-TIME[log n]),

(2) the final configuration Cnc is accepting (this can be checked in Π1-

TIME[log n], assuming there is a unique accepting configuration), and

(3) for every configuration Ci, there exists a position k in Ci so that the

following holds:

If the transition from Ci to Ci+1 is t = (q, σ) → (q′, σ′,−1), then there is a ρ ∈ Σ∗

26

such that one of the following clauses C(i, k, t) is true:

L(ρ, i, k, t) = (LETTER(h, i·|x|c+k−1, 3) = ρqσ)∧(LETTER(h, (i+1)·|x|c+k−1, 3) =

q′ρσ′). (If t is not of the above form, we define L(ρ, i, k, t) = 0.)

That is, for configuration i, if the head is in the kth position, then the transition

t should write to the (k + 1)th square, and move the head to the (k − 1)th position.

For those transitions t = (q, σ) → (q′, σ′,+1), we define the following clause:

R(i, k, t) = (LETTER(h, i · |x|c+k, 2) = qσ)∧ (LETTER(h, (i+1) · |x|c+k, 2) = σ′q′).

(If t is not of the above form, we define R(i, k, t) = 0.)

That is, for configuration i, if the head is in the kth position, then the transition

taken should write to the kth square, and move the head to the (k + 1)th position.

We also have predicates PL(j), PR(j) which checks those positions j /∈ {k, k +

1, k− 1} (all other letters appearing in the two configurations) are exactly the same.

Depending on whether or not t moves the head to the left or right, the (k − 1)th

letter may or may not need to be checked. If the clause is of the form L(i, k, t)

(R(i, k, t)), the PL(j) (PR(j)) predicate is used. This checking of equality of letters

can be performed in Π1-TIME[log n].

Formally, N(x) accepts ⇐⇒

(∀1 ≤ i ≤ |x|c)(∃1 ≤ k ≤ |x|c)

27

[(∨
t∈T

[∨ρ∈ΣL(ρ, i, k, t)]

)
∧ (∀1 ≤ j ≤ |x|c)[PL(j)]

]
∨

[(∨
t∈T

R(i, k, t)

)
∧ (∀1 ≤ j ≤ |x|c)[PR(j)]

]

which can be rewritten as:

(∀1 ≤ i ≤ |x|c)(∃1 ≤ k ≤ |x|c)(∀1 ≤ j ≤ |x|c)

[(∨
t∈T

[∨ρ∈ΣL(ρ, i, k, t)]

)
∧ PL(j)

]
∨

[(∨
t∈T

R(i, k, t)

)
∧ PR(j)

]

The multiplication of various i values (of size O(log n)) with nc (written on tape

as 1c logn) can be done in Π1-TIME[log n]. Adding two i and j values together takes

O(log n) time. Therefore, since the innermost quantifier is universal, we conclude

that the entire process takes only three alternations; that is, it can be accomplished

in Π3−TIME[log n].

2

This tight characterization of NP is a surprise, since it appears that we cannot re-

place the logspace machine with a lesser machine in any of the other characterizations

given (NL as L+ 1PRO, P as L+ PWO in the next subsection here, PSPACE as

L+PI in Section 8, or L+ERO in Section 5.2, PNP as L+PIR in Section 8). In all

of these, replacing the logspace machine with a constant alternation logtime machine

appears to weaken the machine significantly (especially in the L+ ERO case, where

28

such a machine cannot even specify a negligible fraction of squares on the reference).

However, an intuition is never a final judgement, and due to the existence of complete

problems using extremely restrictive reductions, such as first-order projections (see

Immerman and Landau [12]), we are confident that weaker models can be used in

lieu of logspace for some of these equivalences. These weaker models will allow us to

focus more on the access permissions in our study of how complexity classes relate to

one another.

4.4 Observations on the models

Contemplating on this new formulation, we may compare NL and NP in a simple

yet enlightening way. NP is the set of problems that, if there is a short proof, then

given this proof you may examine it all you like, reading backwards and forwards over

it, and after polynomial time has passed, you either accept it as a valid proof or you

don’t. NL is the set of problems that, if there is a short proof, in your verification

of its correctness you may only read the proof in one direction– there is no looking

back at previous steps. When you are done with your one-way reading of the proof,

you either accept it or reject.

Now we have reached a significant point in our reflection on NL versus NP . The

conjectured difference between the two classes can be seen not only as an intuitive

29

separation of lesser and greater space/time resources, but as a difference in how the

short proofs are allowed to be accessed. If a problem requires proofs so complex that

any logspace computational device must peruse the proof as it verifies, introspectively

looking back at previous parts of it to remind itself of bits/assignments/ formulas,

etc., then this problem cannot be solved in NL. NL is only equipped for problems

where the proof can be formulated so that the reader of the proof never has to look

back at (more than a logarithmic number of) previous bits to verify. In a logical

system, such a proof would have to resemble a linear chain of implications in order to

have this property. (This is informal justification for why 2SAT is in NL; its proofs

consist of linear chains of literals implying literals.)

Extending this analogy, one could say that P represents those problems that don’t

require a proof at all, but a logspace device can construct one given a blank reference.

The device can examine its work all it wants; however it can never change its mind

about the current proof it is writing. That is, once a bit of the proof has been written,

it is cemented, and cannot be overwritten. This restriction on tape accessibility

prevents the device from searching over an exponential number of possible proofs.

Furthermore, PSPACE is those problems where, given a proof or not, one can

overwrite pieces of the proof and read all over the proof, as much as one wants. One

can “revise” the proof as much as one wants, verifying every possible one if necessary.

30

It is the class with no restrictions on the accessibility of the proof. In the next

section, we will see a sharper characterization of PSPACE which further elucidates

the differences between this class and NP .

From this angle, it can almost seem strange that NL ⊆ P . On the left hand side,

one is given a proof, and is allowed to read it in one direction; on the right hand side,

one is given no proof at all, and is forced to construct one from scratch. Of course,

one may reply that this situation just reveals the power of a two-way head on the

reference: since it is exponentially larger than the worktape, being able to use it for

storage and referencing old information is a huge advantage, even if the information

constructed was done deterministically.

31

5 Relations with Finite Automata.

In this section, we use reductions from finite automata to logspace machines in order

to find more access complexity characterizations of various classes, giving reproofs of

the completeness of several finite automata problems along the way. We will see that

the proposed models have a very strong and natural connection with various brands

of finite automata.

5.1 DFA emptiness problems and access complexity

Our first result here shows what will be a general theme: the non-emptiness problem

for DFAs with some kind of access to its input of a particular length is complete for

L+X, where X denotes the same kind of access/length.

Theorem 5.1 1DFAempty = {⟨M⟩ | M is a 1DFA and L(M) = ∅} is NL-complete

with respect to AC0 reductions.

Proof. First, note that {⟨M,x, 1|x|
k⟩|M(x) is an L + 1PRO machine that rejects

x in ≤ |x|k steps} is NL-complete (since NL = coNL = L+ 1PRO) [11], [17].

The AC0 circuit reducing ⟨M,x, 1|x|
k⟩ to a DFA is as follows. Each possible

configuration of the logspace machine in M(x) will be treated as a state in the DFA.

32

That is, the state q, the |x| symbols of the input tape, and the log |x| symbols of the

worktape, and the input/worktape head positions all make up a single state of the

DFA.

The AC0 circuit deduces every possible transition from each configuration C of

M(x) to another configuration D. Each such transition is of the form (q, i, σ, t) →

(q′, σ′, d, d′), where i is the input symbol, σ is the worktape symbol, t is the symbol

on the reference, q′ is the new state, σ′ is the symbol written, d is the direction for

the input head, and d′ is the direction for the worktape.

For a configuration C and a reference symbol t, there is a unique configuration

D to which the logspace machine changes. For each pair of configurations, whether

or not there is a transition from them when reference symbol t has been read can be

computed separately in parallel, using only constant depth. Each transition will be

thought of as a transition in the DFA that occurs on reading the reference symbol

t. The initial configuration of the logspace machine is the start state, and the final

states are any accepting configurations.

Now, M(x) rejected iff the DFA N constructed accepts nothing.

2

In contrast, we give the following result for logarithmic space:

Theorem 5.2 1DFAacc = {⟨M,x⟩ | M is a DFA and M(x) accepts} is L-complete

33

with respect to AC0 reductions.

Proof. Reduction from the universal complete language {⟨M,x, 1|x|
k⟩|M is a logspace

machine that rejects x in ≤ |x|k steps}. Use the AC0 reduction in the previous proof,

but instead of labeling the DFA transitions using the reference’s symbols, use the

symbols of x. In the reduction, carry over the same x in ⟨M,x, 1|x|
k⟩ to the resulting

⟨M ′, x⟩.

2

Note that we can also use this reduction to show unary(1DFAempty) = {⟨M⟩ | M

is a 1DFA with Σ = {0} and L(M) = ∅} is L-complete. This result shows that

L+ 1PRO where the reference alphabet of the machines are unary is equal to L.

Theorem 5.3 2DFAnotempty≤n = {⟨M⟩ | M is a 2DFA and ∃x, |x| ≤ |M | such that

x ∈ L(M)} is NP -complete.

Proof. The proof for 2DFAnotempty≤n is analogous to the above proof, using

2DFAs with NP machines and the result that L+ PRO = NP (Theorem 4.4).

2

34

5.2 A PSPACE characterization

Using these standard reductions from DFAs to logspace machines and from logspace

machines to DFAs, it is very interesting to contrast the above two results with:

Theorem 5.4 (Hunt, [8])

2DFAnotempty = {⟨M⟩ | M is a 2DFA and ∃x such that x ∈ L(M)} is PSPACE-

complete.

This old result and the reductions between logspace and DFAs yield a different

characterization of PSPACE. Let L + ERO be the class of sets accepted by doubly

exponentially augmented logspace Turing machines; that is, on inputs x the reference

is of length d|x|
k
for some d > 1, k ≥ 1.

Theorem 5.5 L+ ERO = PSPACE.

Proof. Use that: (1) 2DFAnotempty is PSPACE-complete, (2) there is a reduc-

tion given in previous proofs from augmented logspace Turing machines to 1DFAs

and 2DFAs, and (3) if a 2DFA accepts any string at all, then it accepts a string of

length exponential in the number of states.

2

35

The previous characterizations give us yet another interesting insight to an open

problem: NP vs. PSPACE. NP is equivalent to logspace computation with two-

way access to a polynomially long reference. From the above, PSPACE is equivalent

to logspace computation with two-way access to an arbitrarily long reference (but we

can restrict it to exponential without any loss of generality). It is strange that we have

a classification of PSPACE which uses not polynomial space, but both logarithmic

and exponential space! The logarithmic space can be manipulated in the usual way,

while the exponential space is given nondeterministically yet it can only be read.

Obviously, the logspace machine reading this exponential space will cycle many times

while reading it, but the fact that the machine may move bidirectionally on the tape

makes the problem non-trivial. The intuitive analogy that leads to our conjecture

of NP ̸= PSPACE is that when computing devices are given proofs of a size that

its memory can handle (that is, it does not cycle while reading in one direction),

then what it is capable of recognizing is strictly less than when the computing device

is given proofs of an enormous length. In the latter case, in order for the logspace

machine to know its position on the reference, it is necessary for the reference to

provide that information as well. (What is most interesting is that this is all the

information the logspace machine needs in order to accept PSPACE, as we will see

in the section on increment access.)

36

Translating the result that NL ̸= PSPACE into the language of our models is

somewhat intriguing, and investigating what it means (the easiness of one-way with

respect to two-way access in determining emptiness) in light of access complexity may

well lead to new proof techniques. From this result we know that L with one-way

read-only access to polynomial space is strictly less powerful than L with two-way

read-only access to exponential space. However, why is it so difficult to show that

NL ̸= NP , or NP ̸= PSPACE? This point is especially emphasized in the second

case, where the space increase from one model to the other is exponential.

For another characterization of PSPACE, we may consider the set

1DFAint = {⟨M1, . . . ,Mn⟩|Mi are 1DFA,
⋂n

i=1 L(Mi) ̸= ∅},

which is PSPACE-complete [10]. Using this fact allows us to construct yet an-

other machine model with computational power equivalent to PSPACE: a PSPACE

machine can be denoted by an infinite family of L+1PRO machines (Li1 , . . . , Lin , . . .)

such that on inputs of size n, the first n machines in the family execute simultaneously

on the input, and the overall machine accepts if they all accept and have the same

contents on their reference. It is not difficult to show that there exists a machine of

this type that can simulate arbitrary L + 1PRO computations when given them as

input.

Similarly, we can do the same for families of NP machines, yielding a result

37

concerning 2DFAint: any class that can accept 2DFAint is different from NP .

38

6 The “Repeated Proof” Method and NL vs. NP

We have suggested earlier in our more philosophical paragraphs that the new mod-

els for NL and NP may be useful in finding novel ways to relate the two classes,

exploiting the intuitive disparity between one-way and two-way head movement. In

this section, we give two examples of a technique that is used to relate one-way and

two-way head movement in a unifying manner.

The gist of our idea is this: suppose we wish to solve an NP language L with

an L + 1PRO machine M ′. In order to mimic two-way head movement with a

unidirectional head, M ′ will do two things on an input x:

(1) Let y be a certificate that an L+PRO machineN ′ accepting L would use

to prove x ∈ L. On the reference of M ′, we assume y is repeated every time the

reference head of N ′ is supposed to move backwards. (The number of times

this happens should be a polynomial, so the reference is still of polynomial

length.) M ′ simulates N ′ using this information.

(2) Use another mechanism of M ′ to verify that the reference consists of

some y being repeated.

39

6.1 An Upward Collapse Theorem

Via the aid of the NL and NP formulation, we show that NL with a one-way input

head is extremely weak; weaker than a low level of the logarithmic hierarchy, unless

NL = NP .

Similar to Section 4.3.1, we define Π1-TIME[log n] by the following:

S ∈ Π1−TIME[log n] ⇐⇒ S = {x : (∀y : |y| ≤ log |x|) R(x, y)},

where R(·, ·) is a predicate that is solvable on a random-access machine running in

time O(log n). (A reminder: a random access machine has some O(log n) length

index tape, upon which it writes an integer i. In the next step, the input tape head

is situated at the ith tape square.)

This class is extremely restrictive; it basically amounts to doing a polynomial

number of O(log n) time computations in parallel, and accepting if and only if each

computation branch accepts. Still, it is terribly unlikely that this class can be simu-

lated by one-way nondeterministic logspace.

Theorem 6.1 If Π1-TIME[log n] ⊆ 1-NL, then NL = NP .

Proof. Let L′ = {⟨x, n⟩|∃w ∈ Σ∗, ∃m ∈ N , [|w| = n, x = wm]}. L′ can be

expressed in the following way:

40

L′ = {⟨x, n⟩|∀i : |i| ≤ (log(|x| − n)), BIT(x, i) = BIT(x, i + n)}, where BIT(x, j)

is equal to the jth bit of string x. It is easy to see that the BIT predicate can be

computed in O(log n); thus L′ is in Π1-TIME[log n]. (BIT is defined in Barrington,

Immerman, and Straubing [1].)

We show that if L is decidable in 1-way NL, then 3CNF SAT can be solved in NL.

Suppose a 1-way NL-machine N accepts L. Then an L + 1PRO machine deciding

3CNF -SAT is the following.

On input formula F with n variables and m clauses, the machine has three stages

which are interleaved:

(1) This stage has a 1-way read-only reference containing one variable assignment

for F , written m times in succession (one copy of the assignment for each clause).

We follow each of these copies with a special marker, so there are n(m+ 1) symbols

on the tape. In this stage, the machine checks each clause of F individually with

the current satisfying assignment it is reading from the reference. This can easily be

done in logspace, even when the assignment is read in only one direction. This stage

accepts iff every clause is satisfied by its corresponding assignment on the reference.

(2) In this stage, the machine verifies that the contents of the reference is indeed

a string being repeated m times. This is done using the 1-way NL machine N , which

considers the reference as an input tape, and using the reference head, determines

41

that it is a string being repeated by assumption. This stage accepts iff N accepts.

(3) A counter independently checks that the special marker on the reference is

being guessed every n + 1 steps (and in no other steps), to ensure that the string

being repeated is indeed n+ 1 bits long.

The NL machine accepts F ⇐⇒ All three stages accept F

⇐⇒ There is a truth assignment that satisfies all m clauses in F

⇐⇒ F ∈ 3CNF -SAT .

2

We note as a matter of course that this theorem could have been proven without

the characterization of L+1PRO; however, we argue that the formalism chosen makes

it vastly easier to visualize the satisfying assignment being “guessed repeatedly”.

6.2 Two One-Way Heads are Powerful

Using the repeated proof method, it is also possible to show that the power of logspace

machines given access to a reference via two one-way read-only heads is equivalent to

that of NP . We define the class of languages accepted by such machines L+2[1PRO].

The proof of this theorem is sketched below.

Theorem 6.2 L+ 2[1PRO] = NP .

42

Proof. It is easy to see that L+ 2[1PRO] ⊆ L+ PRO, since a two-way head can

mimic two heads by storing the head positions of both on the working storage of the

logspace machine.

For the other inclusion, we construct a machine recognizing 3SAT , in which the

reference contains the same certificate given in the previous proof: some satisfying

assignment for the input formula is repeated m times, where m is the number of

clauses in the input formula. We read each clause of the input formula one at a

time, storing the literals of the current clause in working storage (they require only

logspace).

The responsibility of the first head is to check that the current assignment it is

reading is consistent with the current clause it is reading. The second head checks

that the next assignment on the tape is identical to the one the first head. If either of

the two checks fail, then the machine rejects, and if they both succeed, it accepts. The

checking for the second head is done by situating the second head n tape squares to

the right of the first one, by letting the second head move right n times initially. After

that, the second head is moved right exactly when the first head is. The logspace

machine matches the symbol under the second head with the symbol under the first

head; these symbols should be the same until the last assignment is reached.

2

43

7 Strengthening Savitch’s Theorem

7.1 The Logspace Case

In this section, we use the equivalence of reading 1-way arbitrary content tape with

nondeterministic space, and provide a stronger version of Savitch’s theorem [15],

which states that for any space constructible S(n) ≥ log n, NSPACE[S] ⊆ SPACE[S2].

By giving a closer inspection of the algorithm used in Savitch’s theorem, it is an easy

corollary of the theorem that NTISP [T, S] ⊆ SPACE[S ·log T], where NTISP [T, S]

is the class of languages accepted by Turing machines running in time T (n) and space

S(n). Our theorem is another level of precision. We show that a simple modifica-

tion of the nondeterministic machine under consideration allows us to conclude that

NTISP [T, S] ⊆ SPACE[S · log T ′], where T ′(n) is the number of nondeterministic

steps taken during the computation; that is, the number of steps in the computation

for which the transition function is not well-defined.

Although the following is covered by our previous definitions, we state it again for

convenience:

Definition 7.1 Let f(n) be space constructible in L. Then L+1f(n)RO is defined as

the class of languages accepted by logspace Turing machines f(n)-augmented, arbitrary

content reference, with 1-way, read-only access.

44

Theorem 7.1 (Savitch Generalization, logspace version)

Let f(n) ≥ log n be space constructible. Then L+ 1f(n)RO ⊆ SPACE[log f(n) ·

log n].

Proof. If for all c > 0, f(n) > nc infinitely often, then the theorem follows easily

since L+1f(n)RO = NL for any superpolynomial f(n), andNL ⊆ SPACE[log2 n] ⊊

SPACE[log f(n) · log n].

Assume then that log n ≤ f(n) ≤ nc for some c > 0. Our goal is to simulate a

logspace machine M with 1-way read-only access to an f(n) length reference using a

small amount of space. Recall from the proof of L+1PRO = NL that if the logspace

machineM has 1-way read-only access to an f(n) length reference, this is equivalent to

saying that at most f(|x|) of the steps taken during the computation of the augmented

machine M ′ are nondeterministic steps. We will call critical configurations those

configurations C of M such that when C steps to a configuration D, the reference

head moves right. These configurations correspond precisely to the points in the

computation where a nondeterministic step happens.

Let us enforce these nondeterministic steps to be “uniformly spaced” throughout

the computation of M(x); i.e. we modify M so that it is in a critical configuration

exactly once every k steps of the computation, for some k. In particular, we will

modify M so that a critical configuration of M(x) is reached once every T (|x|) deter-

45

ministic steps, where T (n) is the running time of M . Our modified machine M∗ will,

on input x, have an extra worktape of length log T (|x|) acting as a counter initialized

at 0. Since f(n) ≤ nc, and our logspace machine has ≤ nd configurations for some

d > 0, T (|x|) is a polynomial. Hence this counter requires O(log n) space.

Each step of M∗(x) simulates M(x) for one step and increments the counter by

one. M∗ simulates M(x) until M(x) reaches a critical configuration C. (To detect

that C is a critical configuration, we determine if the number of possible transitions

out of C is greater than one. This can be done in O(1) time.) Then, the simulation of

M(x) is “stalled” at C until the counter reaches T (|x|). When this occurs, the counter

resets to zero, the nondeterministic step is made, and the process begins again.

Let us call this modified machine M∗. Observe that the running time of M∗ is

O(f(n) · T (n)). That is, after every T (n) steps, a new square on the reference is

read, and there are only f(n) of these squares. The space usage of M∗ is O(log n +

log T (n)) = O(log n).

We now apply the traditional divide-and-conquer technique of Savitch’s theorem

to M∗, obtaining a machine M∗∗ which simulates M∗ and uses O(log n · log f(n))

space. We consider a configuration C of M(x) to be the worktape contents, input

head position, and reference head position, so a configuration requires O(log n) space.

M∗∗(x) :

46

Let I be the initial configuration of M∗(x).

Let A be the unique accepting configuration of M∗(x).

Execute REACH(I, A, f(|x|)), and accept iff it accepts.

The algorithm REACH(C,E, s) will accept iff there is a path from C to E that

has ≤ s nondeterministic steps.

REACH(C,E, s) :

Execute M∗ starting from C, until a critical configuration C ′ is reached.

If (C ′ = E) then accept.

If (s = 0), then reject.

For all configurations D of M∗(x),

If REACH(C ′, D, ⌊s/2⌋) and REACH(D,E, ⌈s/2⌉) accept, then accept.

End for.

Reject.

The crucial observations to make in the above algorithm are that:

(a) We need not store the counter along with our configurations. For every recur-

sive call of REACH, it is assumed that in configurations C and E, the counter has

just been reset (i.e. set to 0). Note that this is preserved by our construction.

47

(b) We only make a recursive call when the reference is to be accessed. Two points:

(1) This occurs f(|x|) times during the computation, and (2) for configurations C,E

that are input, if they are separated by ≤ T (|x|) steps, then no recursive call is made.

This follows from (a).

(c) From the “uniformly spaced” construction ofM∗, we are guaranteed that every

time the two recursive calls of the procedure are made, both calls will encounter the

same number of critical configurations (within one).

Thus, from (b) and (c) we conclude that at any point we will have at most

O(log f(n)) configurations saved to tape, and from (a) we conclude this corresponds

to O(log f(n) · log n) space used to store configurations. We need O(log n+ log T (n))

space to simulate the logspace machine, but as T (n) ≤ nd, this quantity is negligible.

2

Corollary 7.1 For all k > 0, L + 1 logk(n)RO ⊆ SPACE[log(logk n) · log n] ⊊

SPACE[log2 n].

Proof. Let f(n) = logk n in the previous theorem, and apply the space hierarchy

theorem. 2

This shows that logspace with 1-way read-only polylog reference is properly con-

tained in O(log2 n) space, demonstrating further the power of reading and writing to

48

some proof versus reading some proof sequentially.

We do not know if L + 1PRO = NL ⊊ SPACE[log2 n], i.e. if logspace with

polynomial 1-way reading is weaker than log2 n space, but the above result establishes

that logspace with sublinear 1-way reading is indeed weaker.

More formally,

Theorem 7.2 If for some c > 0, f(n) = o(n)c, then L+1f(n)RO ⊊ SPACE[log2 n].

This is because L + 1f(n)RO ⊆ SPACE[log n · c · log o(n)]. In other words,

logspace with one-way read-only sublinear advice is not as powerful as log-squared

space. Hence we have a result that is very close to NL ⊊ SPACE[log2 n], but not

quite. It is still an interesting result: the class we have specified clearly contains L, is

most likely more powerful than L, and its corresponding machines run in polynomial

time. However, it is properly contained in SPACE[log2 n].

7.2 The General Case

Let SPACEN [S(n), f(n)] be the class of languages accepted by S(n) space machines

taking at most f(n) nondeterministic steps on inputs of size n, i.e. possessing a 1-way

read-only reference of size f(n). (Of course, f(n) must be S(n) space constructible.)

Using the techniques of the L + 1PRO = NP result (Theorem 4.4), it is easy to

49

see that SPACEN [S(n), f(n)] = SPACE[S(n)] + 1f(n)RO. We note some simple

observations, all of which are easy to prove using standard simulation techniques:

(1) If S1(n) ∈ O(S2(n)) and f1(n) ∈ O(f2(n)) then SPACEN [S1(n), f1(n)] ⊆

SPACEN [S2(n), f2(n)].

(1) If S1(n) ∈ o(S2(n)) and f1(n) ∈ o(f2(n)) then SPACEN [S1(n), f1(n)] ⊊

SPACEN [S2(n), f2(n)].

(3) SPACEN [S(n), 2O(S(n))] = NSPACE[S(n)].

Our result here is the expected one:

Theorem 7.3 (Generalized Savitch)

SPACEN [S(n), f(n)] ⊆ SPACE[S(n) log f(n)].

We use an argument analogous to the previous theorem, substituting log n for

S(n). The argument works because T (n), the running time of the S(n) space machine,

is still exponential in S(n) (so a log T (n) counter can be written to S(n)).

2

Our next result shows a tight relation between SPACEN [S(n), o(2O(S(n)))] and

NSPACE[S(n)]:

50

Lemma 7.1 NSPACE[o(S(n))] ⊆ SPACEN [S(n), 2O(1)·o(S(n)))] ⊆ NSPACE[S(n)].

Proof. NSPACE[o(S(n))] = SPACEN [o(S(n)), 2O(1)·o(S(n))]

⊆ SPACEN [S(n), 2O(1)·o(S(n))].

2

So this class is sandwiched tightly between NSPACE[S(n)] and all the classes

below it. It is easy to see as a corollary that:

Either NSPACE[o(S(n))] = SPACEN [S(n), 2O(1)·o(S(n)))],

or SPACEN [S(n), 2O(1)·o(S(n)))] = NSPACE[S(n)].

Therefore, by considering one-way read-only access, we obtain interesting com-

plexity classes that are “between” two classes which should not have any classes

strictly between them. The upshot is a surprising one: that either o(S(n)) nonde-

terministic space can capture S(n) deterministic space (with asymptotically fewer

nondeterministic steps than the general case), or S(n) nondeterministic space can

be captured by taking asymptotically fewer nondeterministic steps than the general

case.

The obvious open question here asks which is more powerful: asymptotically more

worktape, or asymptotically more one-way read-only reference. Our intuition (and

the models we have provided) tells us that the first is more powerful, though a proof

that SPACEN [S(n), 2O(1)·o(S(n)))] = NSPACE[S(n)] is not known.

51

8 The Complexity of Brute Force Search

The models we have provided have been quite natural in terms of access permissions.

However, of the models we have considered, there is a large gap in computational

power when the tape is initially blank: logspace and write-once on polytape is P , and

writing arbitrarily many times is PSPACE. It would be nice to find a model which

has initially blank tape, but captures complexity classes between P and PSPACE.

This model would probably have the potential to run in exponential time, but its

writes to the reference are still restricted in some sense.

In this vein, we formalize a model which represents a precise machine-theoretic

characterization of the Russian notion of perebor, or an exhaustive “brute-force”

search for a solution through all possible answers.2 The model consists of a weak un-

informed solution-checker, which simply tests every possible solution in lexicographic

order, starting with the smallest in the ordering.

A natural question to ask of this model is how much information should be carried

from the checking of one solution to the next. Should these processes be somewhat

independent, in that no information is truly carried from one solution check to the

next (other than the fact that all of the solutions lexicographically smaller than the

current one have been examined thus far)? Or should we allow a small amount of

2For a highly informative survey of this work, see Trakhtenbrot’s historical account [18].

52

information O(log n) to pass from one checking phase to the next? As expected, this

measure directly determines the power of the model.

We propose the following model: a logspace machine with read-only access to a

polynomial reference that holds a binary string which is initially all zeroes. The three

distinctive sets of states for this machine will be the usual accept and reject states,

and additional increment states. When a machine enters such a state, the binary

number on the reference is incremented by one. Once the number is all ones, the

computation is required to halt in either an accept or reject state. Thus the kind of

access to the reference is twofold: reading, and incrementing. We will call such access

to the reference increment access, for obvious reasons.

Intuitively, one would believe with little hesitation that SAT and perhaps also

some lower levels of the polynomial time hierarchy can be solved using such a model.

As it turns out, this model is quite powerful: it captures precisely PSPACE. We

have established yet another equivalence between an access complexity based model

and a traditional complexity class.

The arguments proving this are both simple and subtle. The implications of the

equivalence are surprising. For example, all problems solvable using polynomial space

can be solved using logspace plus a one-way brute force search of exponentially many

solutions (in a fixed ordering, totally independent of the input). The languages in

53

PSPACE can be decided by a machine such that for all inputs x, the configurations

of the valid computation history of the machine appear in lexicographic order, modulo

a O(log n) factor. Furthermore, the result also emphasizes the power of addition, even

when we are merely adding one repeatedly.

8.1 Logspace + Polynomial Increment = PSPACE

We have defined what is increment access above. We now define a particular increment

access model to be studied.

Definition 8.1 L + PI is the class of languages accepted by logspace Turing ma-

chines with 2-way read-only increment access to polynomial reference, i.e. the

content of the tape is treated as an (initially zero) integer that the logspace machine

can increment; that is, add one to the current integer on the tape. We enforce ac-

ception/rejection behavior: an increment cannot happen when the integer is all ones;

rather, the machine must accept or reject in this position.

We have strong motivations for defining such a model. First, the ability to read

and increment is intuitively more powerful than reading alone, and also less powerful

than reading and writing. It is a restrictive form of writing, in which sometimes only

one bit is written, and other times all bits change. This model may be construed as

54

an abstract version of a brute force searching mechanism. Normally when one thinks

of brute force search, the classes NP or ∆P
2 come to mind. However, our result

shows that if a logspace machine is truly given the capability of accessing all possible

solutions to a problem instance, we can exploit our access the solution space to find

more than just one solution, or two or three or exponentially many solutions. Rather,

we can simulate alternating polynomial time with the solution space and our logspace

machine. Recall that alternating polynomial time is equivalent to PSPACE [2].

Theorem 8.1 PSPACE = L+ PI.

Proof. L+ PI ⊆ PSPACE is true since the L+ PI model always uses no more

than polynomial space.

For the other direction, it suffices to prove that for any S ∈ AP (alternating

polynomial time), we can decide S using a L+ PI machine.

For all S ∈ AP , without loss of generality we may consider the logical formula

describing S as having polynomially many repeated pairs of existential and universal

variables, followed by a polynomial time predicate P . Call these pairs of variables

“Σp
2-pairs”. That is, we can express the decision criteria for S by the following:

For some constants c, d,

x ∈ S ⇐⇒ (∃y1∀y2)(∃y3∀y4) · · · (∃y2|x|d−1∀y2|x|d)P (x, y1, y2, . . . , y2|x|d),

55

and each yi is such that |yi| ≤ |x|c − 1.

Observe that the formula described above has |x|d Σp
2-pairs.

First, we describe the design of the reference. Let the running time of predicate

P be ne. The reference will be of length n(c+d)(1+e), storing nd variables yi, each

of length nc − 1, and an additional string of length n(c+d)e. 3 The location for the

variable yk on the reference will start at the index (k−1)nc and end at index knc−1.

The remaining (rightmost) bits of the tape will be called valcomp, used for the search

for a valid computation history of P (x, y1, y2, . . . , y2|x|d).

We now describe some helper functions for the algorithm. Given the reference, the

function zeroes(i) returns true iff yi = yi+1 = · · · = yn = 0n
c
and valcomp = 0n

(c+d)(1+e)
.

zeroes can be implemented using logspace, since the reference is of polynomial length.

The command “Increment yi” increments the reference until some bit in variable

block yi changes, i.e. yi+1, . . . , yn and valcomp are all zeroes, i.e. zeroes(i+ 1).

Let MP be a polytime machine deciding predicate P in time ne. The algorithm

decides S using possibly exponentially many calls to MP (x, y1, . . . , y2|x|d), for various

values of yi. The logspace machine is used to (1) search for a valid computation

history for MP using x with the current values of yi, and (2) increment the tape in a

way that simulates alternation. Point (2) is achieved using a pointer to the reference

3This length is an upper bound on the tape required, but no loss of generality results.

56

called current, which will indicate the current Σp
2-pair under consideration, a boolean

variable accept which represents what the last call to MP returned (true or false), and

a direction, which is either left (L) or right (R). The actual procedure implementing

point (2) is described below.

Point (1) is done in the following way. Given that valcomp = 0n
(c+d)(1+e)

, we use

the logspace machine to determine if, given the current values of yi (and the fact that

we can locate any of them quickly) and x, that the current contents of valcomp is a

valid computation history of MP with these particular values as input. If it is, then

we set accept accordingly. If it is not, we increment valcomp, and try again. Since

MP is a polytime machine, we will find an accepting or rejecting valcomp before we

have exhausted all possible values of valcomp. However, when a valcomp is found,

we increment valcomp until it is 1n
(c+d)(1+e)

.

The rest of the procedure is given below.

Input: (∃y1∀y2)(∃y3∀y4) · · · (∃yn−1∀yn)F .

Initially, current = n, direction = R, and the reference is all zeroes.

Repeat until current < 2:

If current = n, then

accepted =1 if MP (x, y1, . . . , y2|x|d) accepts, else it is 0. direction =L.

57

else if direction = L then

If accepted then

If ycurrent ̸= 1n
c
then increment y2, direction = R.

else

If ycurrent−1 ̸= 1n
c
then increment y1, direction = R.

End if

End if

If direction = R, then current = current + 2, else current = current - 2.

End repeat.

Return accepted.

Note that the algorithm accepts iff (accepted = 1) and for all k = 1, . . . , |x|d,

y2k = 1n
c
. We argue that this condition holds iff

(∃y1∀y2)(∃y3∀y4) · · · (∃y2|x|d−1∀y2|x|d)P (x, y1, y2, . . . , y2|x|d).

More precisely, our claim is that when y1, . . . y2(k−1) fixed, accepted = 1, direction =

L, and current = 2k if and only if (∃y2k−1∀y2k) · · · (∃y2|x|d−1∀y2|x|d)P (x, y1, y2, . . . , y2|x|d).

If |x|d = 1, (one Σp
2-pair) the claim is easy. When y1 is incremented, y2 = 0n

c
. If

y2 = 1n
c
, then y2 was incremented 2n

c
times, i.e. MP accepted for all 2n

c
values of

58

y2, and y1 never changed during these runs of MP . Therefore, there exists a y1 such

that for all values of y2, MP accepts. Conversely, if such a y1 exists, then clearly once

the algorithm has incremented y1 to this value, all values for y2 will accept, so y2 will

reach 1n
c
and the algorithm will accept.

Our inductive step is to assume the claim holds for 2k variables yi (i.e. k Σp
2-

pairs). Suppose at the end of the algorithm,(accepted = 1) and for all k = 1, . . . , n/2,

y2k = 1n
c
. Let us say the algorithm almost accepts at step i of the algorithm

when current is decremented to 2 in that step, and accepted = 1. Our induc-

tion hypothesis is that when this happens, given the current values of y1 and y2,

(∃y3∀y4) · · · (∃y2|x|d−1∀y2|x|d)P (x, y1, y2, . . . , y2|x|d). Since y2 = 1n
c
, we claim that by

the properties of the algorithm, it almost accepts for each value of y2. Furthermore,

y1 is fixed throughout each almost acceptance, and each value of y2. Hence there

exists a y1 such that for all y2, almost acceptance occurs.

Conversely, if (∃y1∀y2)(∃y3∀y4) · · · (∃y2|x|d−1∀y2|x|d)P (x, y1, y2, . . . , y2|x|d), almost

acceptance will fail to occur until the algorithm increments y1 to be some value,

and then each time y2 is valued 0n
c
to 1n

c
, almost acceptance will occur. Thus by

induction this direction holds.

2

59

8.2 Enforcing order on PSPACE computations

We mentioned briefly above that L+PI may be considered as an abstract version of

a brute force searching mechanism. It is important to note that the mechanism we

have described is somewhat unidirectional over the search space. That is, suppose we

replace the polynomial reference with an exponential (in nc) reference, with one-way

read-only access to a blank tape, but our machine can read the reference head’s current

position on the reference. It is not difficult to show that this model is equivalent to

the L+ PI model.

But this observation does indicate something very strange about the nature of

one-way versus two-way access itself, when our reference size is doubly exponential

in our working storage size. When the tape is blank, and can only be accessed it

one-way, the only useful information the machine obtains from the reference is the

current position of the reference head. However, simply being able to discern this

position makes the model as powerful as if the reference was full of information, and

could be accessed bidirectionally.

The phenomenon we are observing here (of moving from one-way with a polyno-

mial index to two-way with exponential information) is due to the weakness of the

logspace machine. Even with a full exponential length plate of data at its side, it

will cycle after reading only a polynomial amount of it in one direction. Therefore, a

60

logspace machine in this situation must rely on the reference to indicate its position

on the tape (it may verify over time that the reference is not lying about the posi-

tion, but it cannot possibly store this position itself). Our result shows that all the

logspace machine needs to know in order to simulate PSPACE is its current position

on the reference, and any other information the tape gives it is extraneous (it can be

verified by the logspace machine itself).

In other words, we can give a weaker PSPACE-complete problem about finite

automata, which is an improvement of Hunt’s result [8] that the emptiness problem

for two-way DFAs is PSPACE-complete:

Theorem 8.2

2DFABIN = {⟨M⟩ : (M is a 2DFA)∧(0|M |#0|M |/2−11#0|M |/2−210# · · ·#1|M |/2 ∈ L(M))}

is PSPACE-complete.

Proof. This problem is PSPACE hard because we can reduce from any L + PI

computation to it, using the same techniques as given in the previous section on

automata. Given a L+ PI machine G and input x, without loss of generality it can

be assumed that when G(x) increments its reference, it moves the reference head to

the leftmost tape square, without recording anything new to worktape, and without

moving its input head in the process. (This follows from the proof that L + PI =

61

PSPACE.) We reduce the logspace portion of G(x) to a two-way automaton M ,

such that G(x) accepts if and only if there is a string that M accepts. We construct

M such that:

In configuration C, G(x) increments its tape and moves its tape head to the

leftmost square ⇐⇒ M in its own state C moves to the right until it reaches a

#, then it moves right once more; otherwise, the simulation of G(x) using M is

straightforward.

It is in PSPACE: initially, a worktape will consist of the bit string 0|M |, plus a

#. The 2DFA M is simulated on that string, until M wishes to advance its head to

the right beyond the #. Then, the string on the tape is incremented, the worktape

head moves to the leftmost tape square, and the simulation continues. When M

wishes to advance to the left beyond the current string on tape, the string on the

tape is decremented, the worktape head moves to the rightmost tape square, and the

simulation continues. As a matter of course, the end boundaries of the worktape are

also enforced: if the string on worktape is 0|M |, requests by M to move left beyond

this string are denied; if the string is 1|M |, requests to move right beyond this string

are denied.

2

Given a 2DFA M , if there exists an NP procedure which proves that M accepts a

62

very natural and highly redundant exponential length string, then NP = PSPACE.

Compare this with the earlier result that the non-emptiness problem for strings of

length ≤ |M | is NP -complete. In one case, we are asked to find any string at all of

length |M |. In the other, we are asked to determine acceptance for a particular string

of length 2|M |. Is it more difficult to find a short proof, or to verify a very long one?

At this stage of our work, we cannot say.

8.3 A deterministic formalism for PNP

We have seen that in terms of complexity, logspace is actually a tremendous amount

of working storage to give to a machine that is performing brute-force search of a

polynomial-sized solution space. However, reducing the working storage to less than

logspace may be too restrictive for our goal of finding models characterizing classes

between NP and PSPACE.

Rather than reducing the amount of working storage, we should limit the length

of time for which bits can be held in storage. In our proof that L+PI = PSPACE,

it was crucial that we could save the pointers for much longer than polynomial time,

waiting until some part of the reference consists of all ones.

This motivates us to restrict the time for which pointers can stay in working stor-

age, say polynomial time. We would cripple our increment model if it were unable to

63

keep its working storage, state, and head positions after it incremented the reference–

if the logspace machine resets to its initial configuration every time an increment is

performed. Our model would lend itself to parallelization, since with such a restric-

tion one can execute the machine with its reference set to y, somewhat independently

of a run where the reference is set to some z ̸= y.

We informally define L+ PIR as the class of L+ PI machines with the obvious

restriction: when the logspace machine enters an increment state, it writes blanks

on every square of its worktape, moves its tape heads to the leftmost positions, and

resets to the initial state. The main result of this section is that given this “reset”

restriction, the model is indeed crippled, but its complexity falls to an unexpected

level of the polynomial time hierarchy.

Theorem 8.3 L+ PIR ⊆ PNP .

Proof. Let Mlog(·, ·) denote the logspace portion of an arbitrary L + PIR ma-

chine M . That is, Mlog is a logspace machine with read-only inputs x and a polyno-

mially related reference y, with final states being accepting, rejecting, or increment-

ing. Furthermore, (∀x, y ∈ Σ∗)[M(x) accepts/rejects/increments on reference y ⇐⇒

Mlog(x, y)!accepts/rejects/increments. So the logspace portion represents what M

does on a fixed reference.

64

Note that specifying the logspace portion of the machine is sufficient for specifying

an M . To show the theorem, it suffices to demonstrate that a particular language L

is both in PNP , and L+ PIR-complete under logspace reductions. Define

ISAT := {⟨Mk
log, x, 1

nk⟩ : (∃y : |y| ≤ |x|k)(∀z < y)[M(x, z) increments ∧M(x, y) accepts},

where Mk
log are logspace machines executing in nk time.

Lemma 8.1 ISAT is L+ PIR-complete under logspace reductions.

Proof. Let Mlog be the logspace part of a L + PIR machine M , and x be an

input. By the criterion given for acceptance and rejection, we know there is at least

one string y that, when it is set as the reference, Mlog(x, y) either accepts or rejects.

But for a deterministic execution of M on x, this reference y may never be reached;

that is, it may accept or reject on an z < y.

To be precise, M(x) accepts (rejects) if and only if there is a reference y such that

for all z < y, an increment is called at the end of each z computation, and on y the

machine accepts, i.e.

M(x) accepts ⇐⇒ (∃y : |y| ≤ |x|k)(∀z < y)[Mlog(x, y) accepts ∧Mlog(x, y) increments]

Using a standard padding technique, ISAT as defined above is L+PIR-complete

under logspace reductions.

65

2

Lemma 8.2 ISAT ∈ PNP .

Proof. On an input ⟨Mk
log, x, 1

nk⟩, the following PNP procedure will test at most

nk values for y with the predicate R(x, y) = (∀z ≤ y)[Mk
log(x, z) = increment], which

can be tested in one step using an NP oracle.

Given a string x = σ1 · · · σm ∈ Σ∗, for i = 1, . . . ,m we define x[i] := σ1 · · · σi.

Algorithm(⟨Mk
log, x, 1

nk⟩):

u := ϵ, v := 10n
k−1.

While v ̸= ϵ,

Set y := uv.

If R(x, y) then

If Mk
log(x, y) accepts/rejects then accept/reject, else u := u1.

else u := u0.

End if

v := v[|v| − 1]

End while

66

It is clear that the while loop is finished in nk iterations. Besides the oracle, the

algorithm executes in deterministic polynomial time, using only a polynomial number

of queries.

Suppose M(x) accepts/rejects. Then there exists a unique y with Mk
log(x, y) ac-

cepting/rejecting, with all z < y having M(x, z) increment. Observe that if R(x, y′)

is true, then y is greater than or equal to y′. If R(x, y′) is false, then y′ ≤ y. This

allows us to perform a binary search technique on the exponential number of possible

y values. If R(x, y) is true in the ith iteration (i = 1, . . . , nk), y is increased by 2n
k−i.

If R(x, y) is false, y is decreased by 2n
k−i. By repeatedly querying a “midpoint” of

the current solution space (such as 10n
k−1 in the list of strings from 0n

k
to 1n

k
), we

half the number of solutions under consideration during each iteration of the while

loop.

Conversely, if the simulation accepts/rejects, then the final y value obtained is

such that Mk
log(x, y) accepts/rejects, and the z < y all increment, by definition of

R(x, y).

2

Theorem 8.4 PNP ⊆ L+ PIR.

Proof. Our goal is to build a brute-force simulation for PNP machines. A natural

way to simulate machine models involves verifying valid computation histories that

67

claim the model accepts or rejects on the given input. It will be helpful then to find

a way to characterize valid computation histories for PNP .

We start by extending the notion of a valid computation history for nondetermin-

istic machines, to include tokens which indicate rejection.

Let N be execute in nk nondeterministic time, and assume without loss of gener-

ality that 1n
2k

is not a valid computation of N for any x.

Definition 8.2 The set of extended valcomps of N on x is VALCOMP∗(N, x) :=

VALCOMP(N, x) ∪ {1|x|2k}, where VALCOMP(N, x) is the well-known set of valid compu-

tation histories of N on x. 4

One may argue that 1|x|
2k

is not a well-defined token. Indeed, it could very well

represent the rejection of any string of length |x|. Those who would speculate in this

manner should be patient.

This definition is generalized to PNP machines. Let x be an input, and MN be the

PNP machine under consideration, where the query machine M ? and N execute in

4For the sake of brevity we do not formally define what a valid computation history is, nor do

we define the set of them. For more examples of applications using VALCOMPS, see Kozen’s book, or

Hopcroft and Ullman [9], [7].

68

nk and nc time, respectively. We assume M ? has a separate query tape with content

y, and entering state q? of M ? represents querying if N(y) accepts or not.

Suppose the configurations ofM ?(x) are (ordered from initial to final) C1, C2, . . . , Cnk .

Set the configurations of M ?(x) that are in state q? as Ci1 , . . . , CiQ , and the queries

as y1, . . . , yQ. We label them in the order they appear; that is, Cij queries N about

yj, and Cij ⊢∗ Cij+1
. Assume Cnk is a final configuration.

Definition. We define the extended valcomp of MN(x) as

VALCOMP∗(MN , x) :=

C1 · · ·Ci1VALCOMP
∗(N, y1)Ci1+1 · · ·Ci2VALCOMP

∗(N, y2)Ci2+1 · · ·

· · ·CiQVALCOMP
∗(N, yQ)CiQ+1 · · ·Cnk

Intuitively, we thread the VALCOMPs of the machine N within the string of

configurations of machine M ?. Note that VALCOMP∗(MN , x) may be a set of several

strings, since VALCOMP∗(N, yi) may obviously be a set.

As it stands, there is no reason to assume that these extended valid computations

are of any validity in themselves. Their certification arises when they are analyzed

with a brute-force search mechanism that resets itself after each solution check.

SIMM,N(x) :

Try to verify that the reference is in VALCOMP∗(MN , x) via this process:

69

verify transitions for M the usual way. Verify transitions for a query N(yi) in

the usual way as well, except for all N(yi), interpret 1
|yi|2c as a valcomp that

represents a “no” answer to the query. When a mistake is found, increment the

reference and reset. Return the outcome (accept or reject) of the first string

found to be in VALCOMP∗(MN , x).

It is easy to see that:

(1) This procedure can be performed by a logspace machine with increment

access to a polynomial length reference.

(2) SIMM,N(x) returns an answer if and only if its current reference is a

member of VALCOMP∗(MN , x).

(3) If MN(x) accepts (rejects), then any element of VALCOMP∗(MN , x) will

be considered an accepting (rejecting) computation by SIMM,N(x).

Of course, these facts disregard the actual validity of strings in VALCOMP∗(MN , x).

They merely show that SIMM,N(x) returns when it finds a member of a restricted

subset of references, though they may represent invalid computations (that is, 1|yi|
2k

may appear in the place of an accepting valcomp of N(yi)).

Now we prove: if SIMM,N(x) accepts (rejects) when the reference is a member

of VALCOMP∗(MN , x), then MN(x) accepts (rejects). First, observe that for a given

70

x, there is a unique list of queries y1, . . . , yQ made by M ?(x). This is because M is

deterministic, and the query yi has one possible outcome.

Let us recall the expression

C1 · · ·Ci1VALCOMP
∗(M, y1)Ci1+1 · · · · · · · · ·CiQVALCOMP

∗(N, y2)CiQ+1 · · ·Cnk as VALCOMP∗(MN , x).

First, SIMM,N(x) increments the reference until it is of the form C1C2 · · ·Ci10000 · · · 0000.

Then the incremental search over all possible strings of length n2c for a member of

VALCOMP∗(N, y1) continues until either an accepting valcomp is found (and the query

answer is “yes”), or 1|y1|
2c

appears (and the query answer must thus be “no”, as all

other possible members will have been already considered). The verification proce-

dure then returns to M , incrementing until Ci1+1 · · ·Ci2 appear, and the verification

of N(y2) begins. The same desired properties (that the rest of the reference other than

what SIMM,N has verified is 0 · · · 0 when a query is made, that the “no” inference

for a query is valid) hold for all other successive configurations under consideration.

Without loss of generality, every configuration of MN(x) always has a successor

(or is final). Therefore, SIMM,N never increments in a way that damages our valcomp

construction’s progress: there is always a valid configuration following the configura-

tions it has constructed so far, which is found by incrementing before an overflow can

occur.

2

71

Several remarks are in order. Our above result equates a complexity class defined

in terms of an abstract, non-physical model, with one defined by concrete, mechanical

model. The abstract model executes in polynomial time but receives advice about

difficult problems from an oracle. The concrete model uses exponential time but a

highly restrictive brute-force search. We have classified what appears (on the face of

it) as an extremely artificial and contrived model of computation, using a model that

follows a completely deterministic and physical procedure. For those concerned about

the real-world relevance of particular portions of complexity theory, this should be a

pleasant surprise.

Next, consider a three-valued predicate R that can be evaluated in logspace. The

previous theorem implies a very natural characterization of a well-studied complexity

class between co-NP (NP) and Σp
2 (Πp

2).

Corollary 8.1 {x : (∃py)(∀z < y)[R(x, y) = 0 ∧R(x, z) = 1]} and

{x : (∀py)(∃z < y)[R(x, y) = 0 ∧R(x, z) = 1]} are complete for PNP .

Compare and contrast the following three results:

{x : (∀pz)[R(x, z) = 1]} is co-NP complete.

{x : (∃py)(∀z < y)[R(x, y) = 0 ∧R(x, z) = 1]} is PNP complete.

{x : (∃py)(∀pz)[R(x, y, z) = 1]} is Σp
2 complete.

72

The complete problem for PNP has the two quantifiers as Σp
2, placing an ordering

restriction on the universal quantifier. However, it retains the binary predicate as

found with the co-NP complete problem.

We remark that a similar analogy can be drawn between NP , PNP , and Πp
2. We

conjecture that this result may be generalized in a straightforward way to Σp
k, ∆

p
k,

and Πp
k+1.

73

9 Conclusion

A new formulation of the basic complexity classes has been presented. It is significant

for several reasons. It builds a new picture of the relative power of each class, and

further empirical evidence for why we should believe each class is different from the

others in question. Every logspace machines is equivalent to some k-head-DFA, where

the heads may know their positions on the input. What is the complexity of a k-

DFA with sequential read-only access to a short arbitrary reference, versus random

read-only access? This is the essence of the NL ?= NP problem. What is the

resulting complexity when a k-DFA has append access to a blank short reference,

versus random read-only access to any fixed short reference? Herein lies the P vs.

NP problem. When there are no access restrictions to the reference, the model

computes PSPACE. Our model translates these fundamental questions into formal

questions in system security and protection: for example, if P = NP , then a user

with logspace can (given append access to massive storage) reconstruct some massive

reference to which it does not have random read-only access. The increment models

are interesting in their own right, demonstrating that access to a exponential time

counter is enough to capture polynomial space in general, and resetting the machine

on a counter change gives the oracle-based complexity class PNP .

On a philosophical level, access complexity is a fundamentally different way to

74

think of well-studied objects. One may think of computation universally as a me-

chanical (and in the abstract, sometimes physically unrealizable) search for an an-

swer to a well-defined problem. The theory proposed in this work advocates a view

of complexity which distills the robustness of the most studied classes from the search

mechanism, the component that truly indicates the differences between the classes.

That is, the arbitrary logspace Turing machine gives our models the power of reduc-

tions (and thus complete sets), and the various access permissions determine how

solutions are found. One might say that while the robustness of the classes makes

them difficult to separate, the wildly varying range of searches they employ continue

to convince us that they must be separable. As we have seen, for NP this robustness

can be whittled down to an logtime machine with three alternations. Continuing

work is being done on finding weaker machine models to substitute for logspace in

the given formulations, with the motivation being that if we shrink the contribution

given by robustness, the search mechanisms may be more pronounced.

This leads to our final point: that the pronounced dichotomy between robustness

and access may have further implications on the formal level, in the way of proof

methods. Separating the classes under these new models may or may not be an easier

task; however, studying the power of access permissions appears to admit different

proof methods than those found in traditional complexity theory. With the alleged

75

disparities of the classes pointed out by markedly more intuitive notions (reading,

writing, increment, sequential and random access) it seems clear that new results

concerning disparities between classes (conditionally or unconditionally) should arise

from further study of the ideas presented.

10 References

[1] D. Barrington, N. Immerman, H. Straubing, “On Uniformity withinNC1”, Journal

of Computer and System Sciences, 41:3, 274-306, 1990.

[2] A. Chandra, D. Kozen, L. Stockmeyer, “Alternation,” Journal of the ACM, 28:114-

133, 1981.

[3] S. Cook, “Short propositional formulas represent nondeterministic computations,”

Information Processing Letters, 26:269-270, 1988.

[4] J. Hartmanis, “On nondeterminacy in simple computing devices,”Acta Informat-

ica, 1, 336-344, 1972.

[5] J. Hartmanis and R. Stearns, “On the computational complexity of algorithms,”

Transactions of the AMS, 117: 285-306, 1965.

[6] J. Hartmanis, P. Lewis, R. Stearns, “Hierarchies of memory-limited computations,”

Proc. 6th Annual IEEE Symp. on Switching Circuit Theory and Logic Design, 179-

76

190, 1965.

[7] J. Hopcroft and J. Ullman, Introduction to Automata Theory, Languages, and

Computation, Addison-Wesley, Reading, MA, 1979.

[8] H. Hunt, On the Time and Tape Complexity of Languages, Doctoral Thesis, Dept.

of Computer Science, Cornell University, Ithaca, NY, 1972.

[9] D. Kozen, Automata and Computability, Springer-Verlag, New York, NY, 1994.

[10] D. Kozen, “Lower bounds for natural proof systems,” Proc. 18th Annual Sym-

posium on Foundations of Computer Science, IEEE Computer Society, 254-266.

[11] N. Immerman, “Nondeterministic space is closed under complement,” SIAM

Journal of Computing, 17: 935-938, 1988.

[12] N. Immerman and S. Landau, “The Complexity of Iterated Multiplication,” In-

formation and Computation, 116:103-116, 1995.

[13] M. Rabin and D. Scott, “Finite automata and their decision problems,” IBM

Journal of Research 3:115-125, 1959.

[14] S. Rudich, et. al. Computational Complexity Lecture Notes, Carnegie Mellon

University, 2000.

[15] W. Savitch, “Relationship between nondeterministic and deterministic tape classes,”

Journal of Computer and System Sciences, 4: 177-192, 1970.

77

[16] M. Sipser, “Halting space-bounded computations,” Theoretical Computer Sci-

ence, 10: 335-338, 1980.

[17] R. Szelepcseyni, “The method of forcing in automata,” Bulletin of the EATCS,

33: 96-100, 1987.

[18] B. Trakhtenbrot, “A survey of Russian approaches to perebor (brute-force search)

algorithms”, Annals of the History of Computing, 6: 384-400, 1984.

78

