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Abstract
A hybrid algorithm is a collection of heuristics, paired
with a polynomial time selector S that runs on the input
to decide which heuristic should be executed to solve the
problem. Hybrid algorithms are of particular interest
in scenarios where the selector must decide between
heuristics that are “good” with respect to different
complexity measures.

We focus on hybrid algorithms with a “hardness-
defying” property: for a problem Π, there is a set of
complexity measures {mi} whereby Π is known or con-
jectured to be unsolvable for each mi, but for each
heuristic hi of the hybrid algorithm, one can give a com-
plexity guarantee for hi on the instances of Π that S
selects for hi that is strictly better than mi. More con-
cretely, we show that for several NP-hard problems, a
given instance can either be solved exactly with substan-
tially improved runtime (e.g. 2o(n)), or be approximated
in polynomial time with an approximation ratio exceed-
ing that of the known or conjectured inapproximability
of the problem, assuming P �= NP.

1 Introduction
The seeming intractability of NP-hard problems has led
to the development of many diverse algorithmic strate-
gies. We present an approach for coping with hardness
that combines existing strategies, in an attempt to cir-
cumvent each strategy’s limitations.

In particular, we focus on the two strategies of effi-
cient approximation and improved exponential time al-
gorithms. Both strategies are relatively old and are now
well-known to have their own limitations. For example,
the PCP Theorem [2] and related results demonstrate
that for many hard problems, approximating them well
is no easier than solving them exactly. The theory of
fixed-parameter tractability [11] also suggests similar
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limitations for improved exponential time algorithms on
a wide range of problems.

Hybrid Algorithms. Our idea is to use a combi-
nation of multiple strategies such as approximation and
improved exponential algorithms, where only one strat-
egy is chosen for each instance of the problem. More
precisely, we efficiently partition the duty of solving a
problem into different cases, so that within each case
a different strategy can be applied to obtain a greater
degree of success than what was possible without such
partitioning. The fact that this type of partitioning is
possible may sound somewhat counterintuitive and we
will elaborate on this later. For now, let us first intro-
duce the notion of hybrid algorithms (“hybrids”).

We define a hybrid algorithm as a collection of
algorithms H = {h1, . . . , hk} called heuristics, coupled
with an efficient (polynomial time) procedure S called a
selector. Given an instance x of a problem, S(x) returns
the index i of some heuristic hi ∈ H and then hi is
executed on x. Intuitively, the purpose of S is to select
the “best” hi for solving or deciding x. The design
of selectors given an existing collection of heuristics
is called the algorithm selection problem [34] and has
been studied in numerous contexts within artificial
intelligence and operations research (see [31, 12, 18] for
a sample). Our novelty is to allow the use of a different
performance measure for each heuristic.

Performance Measures. At first glance, the idea
of hybrid algorithms may seem to be a trivial1 proposal:
asymptotically speaking, if minimum runtime is the de-
sired measure, then for a constant number of heuristics,
one can simply interleave the runs of all heuristics until
one of them stops. However, when the heuristics are
good according to somewhat orthogonal performance
measures, algorithm selection becomes an interesting
and highly non-trivial exercise.

In this paper, we focus on hybrids with two heuris-
tics: one is a super-polynomial time exact algorithm
and the other is a polynomial time approximation. We

1We are aware of one exception in the study of competitive
analysis (see [27]), where one can switch between an unbounded
number of heuristics based on the requests.



will see that some NP-hard problems admit a hybrid
algorithm where a given instance can either be solved
exactly in “sub-exponential” (2o(n)) time, or be approx-
imated in polynomial time but with an approximation
ratio exceeding that of the known inapproximability of
the problem, assuming P �= NP.

1.1 Contributions
Existence of Good Hybrids. While it seems

that restricting a heuristic to a special case would likely
improve its performance, we feel that the ability to par-
tition the problem space of some NP-hard problems by
efficient selectors is mildly surprising. First, for many
problems, it appears that the special cases admitting
an improved approximation and the cases with an im-
proved exponential time solution typically have great
overlap. Examples of this are myriad in the literature.2

Moreover, the prevailing intuition appears to be that
problem classes not approximable to within some con-
stant (or worse) factor also do not admit 2o(n) time exact
algorithms, e.g. MAX-SNP [25]. Hence the partitioning
of an NP-hard problem seems, a priori, to be either
unlikely or impossible. Furthermore, even if such parti-
tioning is possible, the most näıve way of doing so could
still require a selector capable of solving NP-hard prob-
lems, which would defeat its purpose. (See Remark 3.1
for a technical example.) Thus an efficient selector is in
itself interesting.

Longest Path and Minimum Bandwidth. We
give hybrid algorithms for two long-studied optimiza-
tion problems on undirected graphs: Longest Path

and Minimum Bandwidth. For any �(n), our algo-
rithm for Longest Path yields either
• a longest path in O(m + n2�(n)�(n)!) time, or
• an �(n) node path in linear time.

The algorithm selector will be a simple DFS algo-
rithm that returns either a long path or a path de-
composition of low width, for any graph. If we set
�(n) = n

α(n) log n for any unbounded function α, the

trade-off becomes Õ(2n/α(n)) time or an O(α(n) log n)-
approximation to Longest Path. Note that the best
exact algorithm known is a 40-year-old Õ(2n) dynamic
programming solution due to Bellman, also Held and
Karp [4, 22]. It is also known that Longest Path can-
not be O(2log1−ε n)-approximated unless NP is in quasi-
polynomial time [28]. Hence we have substantially im-
proved upon on both fronts by considering an exact
vs. approximation trade-off.

2For one, Planar Dominating Set has a PTAS [3] and
is fixed-parameter tractable [11], whereas Dominating Set is
probably not (1 − ε) log n-approximable [13], and not fixed-
parameter tractable unless W[2] = FPT [11].

We also show a weaker but still compelling trade-off
for Minimum Bandwidth. Our algorithm yields either
• a layout achieving the exact minimum bandwidth

in 4n+o(n) time, or
• an O(γ(n) log2 n log log n)-approximation in poly-

nomial time for any unbounded γ.
Both cases outperform the best known correspond-
ing worst-case algorithms, one taking Õ(10n) run-
time to solve exactly [14] and one being an O(log3 n)-
approximation in polynomial time [30]. Minimum

Bandwidth is hard for any fixed level of the W-
hierarchy [7]; consequently, it is difficult to approximate
to within some constant factor. Recent results further
suggest that we are unlikely to have an algorithm that,
given b and a graph, determines if the graph has band-
width b in f(b)no(b) time for any reasonable function
f [9]. Confronted with such intractability, we feel that
the hybrid approach may be a more productive strategy
for this problem. The techniques we use to obtain the
trade-off here are somewhat interesting in themselves:
we either find a large low-diameter subgraph—resulting
in a good bandwidth lower bound and therefore approx-
imation ratio, or we decompose the graph using small
separators and solve the problem exactly.

Building upon the above result, we also sketch an-
other hybrid for Minimum Bandwidth that approxi-
mates in both cases, with either
• an O(log n)-approximation in polynomial time, or
• a (1 + ε)-approximation in 2O(n/ log log n) time.

Maximum Constraint Satisfaction. In Max-

Ek-Lin-p, the goal is to satisfy a maximum number
of linear equations over Zp with exactly k ≥ 3 variables
per equation, for some constant k. This problem has
been widely studied in learning, cryptography, and
complexity theory. For odd k and all fixed ε > 0, we
present a simple hybrid algorithm for Max-Ek-Lin-p
that, after a polynomial time test on an instance with
n variables and m equations, does exactly one of the
followings:
• produces an optimal solution in O(pεn) time, or
• approximates the optimum in polynomial time,

with a 1/p + ε′ performance ratio, for ε′ =
O(εn/m).

Note the case where m/n = O(1) is in general hard
to (1/p + ε)-approximate [20]. We will see that the
approach for our hybrid can be extended to various
hard-to-approximate constraint satisfaction problems.

This result is counterintuitive in the following sense,
for k > 2. If Max-Ek-Lin-2 is in O(2εn) time for
all ε, it is not hard to show that many other NP-hard
problems are also solvable within that time. Similarly,
Max-Ek-Lin-p is not approximable within 1/p + ε for



any ε > 0, unless P = NP [20]. Therefore, neither of
these two measures seem almost-everywhere achievable,
but we can efficiently select exactly one of the measures
on every instance.

Limitations of Hybrids. Finally, we have shown
several limitations on hybrid algorithms of the exact
vs. approximate variety based on natural hardness as-
sumptions such as “SAT requires 2Ω(n) time” and P �=
NP. These results are omitted here, but appear in the
full version [38].

1.2 Discussions
Sub-exponential Time Approximation. It

seems natural to allow approximation algorithms an
sub-exponential running time in exchange for better
approximation guarantees. For example, this idea
appeared in the long history of approximating the
permanent [26]. The three hybrid algorithms men-
tioned above, however, provide a different mix of
guarantees—should the need of a sub-exponential run-
ning time arise, these algorithms actually return exact
solutions instead of approximations. Since hybrids
provide stronger guarantees than super-polynomial
approximation algorithms, they are often harder to
obtain. In Section 2.3 we show that Minimum Band-

width admits a straightforward super-polynomial
approximation algorithm, yet our hybrid algorithm
requires significantly more work.

A Word of Caution. We note that our intention
to use hybrids is to, in a sense, circumvent hardness re-
sults since collapses of some complexity classes seem un-
likely. However, we also note that applying existing hy-
brids to new problems may become complicated.3 Still
we also believe that the study of hybrids may be fruit-
ful for designing better worst-case approximation algo-
rithms and/or improved exponential time algorithms, in
that a good hybrid algorithm can expose the “difficult”
cases for both strategies.

2 Hybrid Algorithms for Graph Problems
We now turn our attention to two well-studied NP-
complete problems on graphs: Longest Path and
Minimum Bandwidth.

Our Longest Path algorithm attempts to greedily
construct a long path. If this fails, it builds a path
decomposition of small width, in which case a dynamic
programming algorithm is applied. Our Minimum

Bandwidth algorithm employs a selector which either

3One issue would be the composability of hybrid algorithms.
A worst-case algorithm invoking a hybrid in this paper as a
subroutine may end up having to deal with with “the worse of
both worlds” as it must be prepared to accept an approximate
solution or incur a super-polynomial running time.

establishes a lower bound on the graph bandwidth, or
returns a separator decomposition of the graph. A
lower bound on the bandwidth can be used to show
that an algorithm by Blum et al. [5] gives a good
approximation for the instance; on the other hand, a
separator decomposition can be used to efficiently solve
the problem exactly.

As a warm-up, we begin this section with a hybrid
algorithm for Max-Cut.

2.1 A Fast Max-Cut Hybrid Max-Cut is well-
studied from both the exact and approximation algo-
rithms point of view. It is solvable exactly in O(2m/5)
time by Scott and Sorkin [37], or in O(2ωn/3) by
Williams [39], where m and n are the number of edges
and vertices respectively and ω is the matrix multipli-
cation exponent. Max-Cut is approximable within
0.87856 using an SDP relaxation by Goemans and
Williamson [17]. This approximation ratio is optimal,
assuming the Unique Games Conjecture [29]. Although
extremely useful as an approximation technique, SDP
is computationally intensive. Hence it makes sense to
look for fast approximations that do not involve SDP.
For Max-Cut, the current best approximation without
SDP is the 0.5-approximation obtained by Sahni and
Gonzales [35]. Here we present a fast and simple hybrid
algorithm for Max-Cut which trades off approximation
quality for the efficiency of an exact solution.

Theorem 2.1. For any ε > 0, Max-Cut admits an
algorithm that given a graph G with m edges always
produces, after a linear time test, either
• a maximum cut in Õ(2εm) time, or
• a (1

2 + ε
4 )-approximation in linear time.

Proof. The selector finds a maximal matching M in
G. This is easily accomplished in linear time. Then
if |M | < εm/2, the exact algorithm is run, otherwise
the maximum cut is approximated.

In the exact case, for all 2εm possible 2-partitions of
the vertices in M , the vertices from the independent set
V − M are greedily distributed among the partitions,
maximizing the current cut. The algorithm returns the
maximum of all cuts examined in time Õ(2εm).

The approximation algorithm is run whenever
|M | ≥ εm/2. For each edge (u, v) ∈ M , with proba-
bility 1

2 , u is placed in partition A and v in partition
V − A, and with probability 1

2 , v is placed in A and
u in V − A. Each vertex w not in M is placed with
probability 1

2 in A, otherwise in V − A. As a result,
all edges in M cross the cut, and each edge not in M
crosses the cut with probability 1

2 . We get a cut of ex-
pected size at least m( ε

2 + (1−ε/2)
2 ) = m(1

2 + ε
4 ), which

is a (1
2 + ε

4 )-approximation, in linear time. �



We remark that the above can be derandomized
using conditional expectation.

2.2 Longest Path The Longest Path problem has
been notoriously difficult in terms of obtaining good
approximation and good exact algorithms. For years
it was not even known how to find a path of length
O(log n) (or determine none exists) in polynomial time,
until Alon, Yuster, and Zwick [1] in 1994. The best
known result to date is Gabow’s algorithm giving a
path of length exp(

√
log L/ log log L) in a graph with

longest path length L in polynomial time [16]. On the
other hand, it is known that an exact 2o(�) algorithm
for finding a path of length � would imply 3-SAT (hence
many other NP-hard problems) is in 2o(n) time [8].
Lingas and Wahlen [32] recently claimed the following
trade-off for Longest Path.

Theorem 2.2. (Lingas and Wahlen, Corollary 1)

Let G be an (undirected) graph on n vertices, and let
1 ≤ q ≤ n. One can produce either a simple path in
G of length not less than q in polynomial time, or a
longest path of G in time 2O(q

√
n log2.5 n).

Their algorithm is fairly complex and requires the
unfolding of other (complicated) algorithms from the
literature [33, 19]. Here, we present a much simpler
hybrid achieving a much better trade-off.

Theorem 2.3. Let �(n) ∈ o(n) be a proper (con-
structible) function of n. Longest Path admits an
algorithm that always produces either
• a longest path in O(m + n2�(n)�(n)!) time, or
• an �(n) node path in linear time.

Remark 2.1. For �(n) = o( n
log n ), the above hybrid

takes 2o(n) time. In contrast, Lingas and Wahlen [32]
only guarantee 2o(n) time in the exact case when the
polynomial time case finds an o(

√
n

log2.5 n
) length path.

We begin with a procedure that, in linear time, ei-
ther finds a long path or builds a good path decompo-
sition of the graph.

Lemma 2.1. Let � > 0 be an integer. There is an O(m)
time algorithm Path-Decomp that on a graph G either
produces a path that is at least � nodes long, or produces
a path decomposition of G with width at most � − 1.

Path-Decomp starts by considering a DFS tree T
of G rooted at an arbitrary vertex r. If the length
of the longest path from r to a leaf of T is at least
�, then return that path. If not, we can turn the
DFS tree into a good path decomposition. For a leaf

vertex v in T , define the bag Wv to be v along with
its ancestors in T . Let v1, . . . , vk be the order that leaf
nodes appear in an in-order traversal of T . Note by
DFS, all the neighbors of a vertex u are either ancestors
or descendants of u in T . From this observation,
it is easy to show that the collection {Wv} paired
with P = {(v1, v2), (v2, v3), . . . , (vn−1, vn)} is a path
decomposition of G. As the longest path in T is at
most �, the width of each bag is at most � − 1.

2.2.1 Hybrid Algorithm for Longest Path Let �
be a function of n. Given a graph G, run Path-Decomp
with parameter �. If it returns a length � path, then we
are done; otherwise, it returns a path decomposition of
width ≤ � − 1. Bodlaender [6] claims the existence of
O(2��!n) time algorithm for Longest Path on graphs
of tree width at most �.

Theorem 2.4. (Theorem 2.2, [6]) There exists an
algorithm that uses O(2kk!n) time and finds the longest
cycle (or path) in a given graph G that is given together
with a tree decomposition of G with tree width ≤ k.

Unfortunately, the “proof” of this result gives nei-
ther an algorithm, nor even a hint of how to start one.
For completeness, we include a simple but slightly slower
dynamic programming algorithm.

Theorem 2.5. There exists an algorithm which given a
path decomposition of width at most �, finds the longest
path of an n node graph in time O((2� · �! · n)3�).

Proof. (Sketch) Let {Wi} with i ∈ [n′] for some n′ ≤ n
denote the bags of a path decomposition. We will use
dynamic programming and start building subproblems
from one endpoint of the path (W1), with the “final”
subproblems appearing at the other endpoint (Wn′ ).

First we fix two vertices u and v of G upfront, as
the endpoints of the path. (Hence the following will be
run O(n2) times.) Along the way, in the subproblems
we will implicitly only permit a single edge to connect
to u and v.

The subproblems are represented by: an integer
i ∈ [n′], and a collection C of pairs (ui

j , v
i
j) where

ui
j, v

i
j ∈ Wi for every j. We will build up a function

f whereby f(C, i) is the maximum length of a path
collection over W1 ∪ · · · ∪ Wi where the endpoints of
the j-th path are precisely (ui

j , v
i
j).

For i = 1, we enumerate all ways to choose a subset
S of W1 (the endpoints) along with a permutation π of
� nodes. It is easy to see that S and π specify a path
collection, and that every possible path collection gets
specified by at least one such S and π. This step takes
O(2��!�) time and produces f(C, 1) for all possible C.



Now suppose we know f(C, i) for all C and i, and
we want to determine f(C′, i + 1) for some collection of
pairs C′ = {(ui+1

j , vi+1
j )}j drawn from Wi+1. To obtain

this, we consider all possible orderings π of vertices
from Wi+1, subsets S of Wi+1, subsets T of Wi with
cardinality |S|, and orderings of T . Over those orderings
such that the k-th vertex of S has an edge to the k-th
vertex of T for every k, we determine

f(C′, i + 1) = max{[length of paths in Wi+1 induced
by ordering π with S and C′ as endpoints]+f(CT , i)},

where CT is the collection of pairs corresponding to the
ordering of T ; i.e., for T = (t1, t2, . . . , t�′), it is the set
of (tj , tj+1) where j is odd.

At each path node i, there are at most 2��! subprob-
lems to save in a table. For each, there are (2��!)2 pos-
sible orderings and sets to be considered in the max, it
takes O(�) time to verify one. Therefore, the algorithm
takes at most O((2��!)3�n3) time, where the extra n2

comes from enumerating all possible pairs of nodes. �

We remark that a similar strategy yields an identi-
cal trade-off for Longest Cycle.

2.3 Minimum Bandwidth Algorithm The mini-
mum bandwidth problem is (in)famous in combinato-
rial optimization. Given an undirected graph G, we
wish to embed its vertices onto a line such that the
maximum stretch of any edge of G is minimized. Let
[n] = {1, . . . , n}. Formally, we are given G = ([n], E)
for some natural number n, and are looking for π ∈ Sn

such that
max

{i,j}∈E
|π(i) − π(j)|

is minimized. The best known exact algorithm for min-
imum bandwidth is by Feige and Kilian [14] and runs
in Õ(10n) time. The best known approximation algo-
rithm is an O(log3 n)-approximation by Krauthgamer
et al. [30]. We present a hybrid algorithm that im-
proves on these in both of its cases. While its ex-
act case uses 4n+o(n) time, its approximation case has
an O((log2 n)(log log n)γ(n)) ratio, for any unbounded
(constructible) function γ(n).

We would like to note that a super-polynomial
time approximation of Minimum Bandwidth is easily
accomplished. A dynamic programming algorithm by
Saxe [36] can determine in time O(nk+1) whether a
graph G has bandwidth k, for any fixed k. From this,
an approximation can be obtained by running Saxe’s
algorithm for all values of k from 1 to εn/ logn. If a
linear arrangement is not found, then we have a lower
bound of εn/ logn for the minimum bandwidth of the

graph, hence any arrangement whatsoever is at worst
an O(1

ε log n) approximation.

Proposition 2.1. A O(1
ε log n)-approximation to the

bandwidth can be found in Õ(2εn) time.

Of course, this algorithm runs in super-polynomial time,
which makes it less desirable for some applications.

We will present two hybrids for bandwidth, where
the second one is developed using ideas from the first.

Theorem 2.6. Let γ(n) be any unbounded (con-
structible) function. Minimum Bandwidth admits an
algorithm that given an n-node graph G always produces,
after a polynomial time test, either
• a linear arrangement achieving the minimum band-

width in 4n+o(n) time, or
• an O(γ(n) log2 n log log n)-approximation in poly-

nomial time.

This first hybrid employs an algorithm of Blum
et al., which approximates the minimum bandwidth B
to within a factor of O(

√
n
B log n).

Theorem 2.7. (Blum et al. [5]) There exists a poly-
nomial time algorithm which, given a graph with mini-
mum bandwidth B, finds a linear ordering whose band-
width is at most O(

√
nB log n), with high probability.

Recall a graph has diameter at most d iff the
shortest path distance between any pair of points is at
most d. The following claim establishes a relationship
between the graph diameter and bandwidth.

Claim 2.1. If a graph G has a subgraph H on k nodes
of diameter at most d, then the bandwidth of G is at
least k−1

d .

Proof. Take the endpoints of any linear arrangement
of the vertices of H . By assumption, there is a path
of length at most d between them in G, so some edge
on this path is stretched by at least (k − 1)/d by the
arrangement. �

To apply the above observation, we give a simple
algorithm that attempts to efficiently find low diameter
subgraphs. In the case where the algorithm fails, it
returns a good graph separator instead. The high-level
idea is that if a low-diameter subgraph is uncovered, the
approximation algorithm of Blum et al. will perform
provably well on the overall graph. On the other hand,
if we can decompose the graph into separators, then a
special exact algorithm can solve the problem.

Lemma 2.2. (Diameter-or-Separator Lemma)

Let L ≥ 1 and a(n) be an unbounded (constructible)
function. There is an O

(
(m + n)(n

a + L logn)
)

time
algorithm that, on any undirected graph, either returns



• an (induced) subgraph H on at least n
a nodes with

diameter at most 2L logn, or
• a (1

2 + 1
a )-separator S of O(n

L ) nodes.

Proof. The algorithm will maintain a set A and a
prospective separator S, which is initially empty. The
following loop is executed.

Main Loop: Start with an arbitrary vertex
v. Run a breadth-first search from v for levels
1,2,. . ., until either

1. the BFS tree contains more than n/a nodes, or
2. if the next level of neighbors is added to the BFS

tree, then the BFS tree will fail to expand its size
by a (1 + 1/L) factor.
In the first termination case of the loop, the BFS

tree is a subgraph H of at least n/a nodes, where every
node in H has a path of length at most log(n/a)/ log(1+
1/L) ≤ L logn to a common vertex v. Thus H has
diameter ≤ 2L logn.

If the second case happened, note the BFS tree T
has at most n/a nodes. Let N be the set of neighbors
of T , i.e. the vertices not in T that have an edge to a
vertex in T . By the expansion failure, |N | ≤ |T |/L.

Remove T from the current graph, and add it to A.
Remove N , and add it to S.
If |A| ≥ n/2, or |G − A − S| ≤ n/2, stop and

return S. Otherwise, go back and run Main Loop on
G − A − S.

We now show that S is a separator of the required
kind. Note at the point where |A| first exceeds n/2,
it can have at most (n/2 − 1) + n/a nodes. Hence S
is a (1/2 + 1/a) separator. To obtain a bound on |S|,
observe by construction,

|S| ≤ |A|
L

≤ n

L

(
1
2

+
1
a

)
<

n

L
. �

Proof of Theorem 2.6:
Let N be the number of nodes in the “current”

graph. Initially N = n. Execute the following:

Set LN = N
n · a log n. If N < n

a log n , then stop.
Otherwise, run the Diameter-or-Separator algorithm
from the Lemma on the current graph G of N nodes,
with L = LN .

If it returns a subgraph of size N/a with diameter
at most 2LN log N , then we have a lower bound of the
bandwidth of Ω( n

a2 log2 n
). Run the SDP relaxation of

Blum et al. [5], resulting in a O(log n
√

a2 log2 n) =
O(a log2 n) approximation.

If the algorithm returns a separator S of size
O(N/LN ) = O( n

a log n ), then recurse on the two parts
of G − S, setting N and LN to the appropriate values,
according to the sizes of these subgraphs.

As the recursion bottoms out when the number of
nodes drops below n/(a logn), it follows that the depth
of recursion is O(log(a log n)) = O(log a + log log n).

In summary, we obtain a decomposition of the
original graph into n/(a(n) logn) size, (1/2 + 1/a)-
separators. We now present an exact algorithm that
runs in 4n+o(n) time, when a is set to γ(n) log log n for
unbounded γ(n).

Given a separator decomposition of the graph,
our recursive algorithm for Minimum Bandwidth will
build up a partial linear arrangement φ of the nodes on
the line, along with a set C of layout constraints for the
remaining nodes in the current subtree of T . (Initially,
these two are empty.)

Suppose there are at most s nodes in each tree node.
Bandwidth(T, C, φ):

Let r be the root of T and let Sr be the separator
of r. Let TL and TR be the left and right subtrees of T .
Let t be the number of nodes of G appearing in the tree
nodes of T .

If T is a single node, try all 2O(s log s) ways to extend
φ to the nodes of T under constraints C and return the
one with smallest bandwidth.

Try all O(ts) extensions of φ to Sr (call it φ′)
that obey C, and all O(2t−s) ways to give constraints
(call them C′) specifying which (currently) unassigned
indices of the linear arrangement should contain nodes
of TL, and which contain nodes of TR. Let C′′ = C∪C′.

Obtain φL = Bandwidth(TL, C′, φ′) and φR =
Bandwidth(TR, C′, φ′). Return a φ′′ yielding the min-
imum bandwidth over all φ′ and C′′, where

φ′′(v) =

⎧⎪⎨
⎪⎩

φL(v) for v ∈ TL,

φR(v) for v ∈ TR,

φ′(v) for v ∈ Sr.

The following can be shown by induction on n:

Claim 2.2. The above algorithm returns the minimum
bandwidth of G.

Claim 2.3. The above algorithm runs in time 4n+o(n).

Proof. Modulo polynomial factors, we have the follow-
ing recurrence for the runtime:

T (n) ≤ 2n−s · ns · 2T (n/2) + 1, T (s) ≤ 2O(s log s).
One can easily check by induction that T (n) =

4n ·ns log(n/s) works for any s such that s < ε n
log n·log(n/s)

for all ε > 0. As γ(n) is unbounded, we have s =
o( n

log n·log log n ) which suffices. �

The second hybrid for Minimum Bandwidth is de-
scribed by the following theorem. Rather than guaran-
teeing an exact solution, we allow approximation in both



cases. This allows the hybrid to be substantially faster
in its “approximation scheme” case than the previous
algorithm was in its exact case.

Theorem 2.8. For all ε > 0, there is a hybrid for
Minimum Bandwidth that, after polynomial time,
returns either
• an O(log n)-approximation in polynomial time, or
• a (1 + ε)-approximation in 2O( n

log log n ) time.

Due to the lack of space, we will just briefly
outline how the above hybrid can be obtained from
our prior one. Akin to the first hybrid algorithm’s
exact case, Feige and Talwar [15] recently found a
(1 + ε)-approximation for bandwidth on trees that runs
in 2Õ(

√
n/ε) time. Their algorithm in fact performs

dynamic programming on the separators of a given
tree, and can be extended to compute the bandwidth
of graphs with small separators. If the separator size
is at most s(n), their algorithm runs in nO(s(n)+

√
n/ε)

time. Using the Diameter-or-Separator Lemma with
L = log n/ log log n, a = log log n, we get one of the
following outputs for any graph:
• a decomposition into (1

2 + 1
log log n )-separators

of size O(n log log n/ logn), implying a

2O( n
log logn +

√
n/ε log n) = 2O( n

log logn ) time algo-
rithm that is a (1 + ε)-approximation.

• a subgraph H of bandwidth Ω( n
aL) = Ω(n/ logn),

in which case any layout at all is an O(log n)-
approximation.

3 Hybrid Algorithms for Constraint
Satisfaction Problems

In Max-Ek-Lin-p, we are given a set of m linear
equations each having k variables over n variables with
values from Zp, and the goal is to find a variable
assignment that maximizes the number of equations
satisfied. It will be convenient to translate the set of
equations into a set of constraints, in which case an
equation (

∑
j∈I xj ≡ b mod p) becomes a constraint

(
∑

j∈I xj −b). For a given constraint c, define vars(c) to
be the set of variables appearing in c. An i-constraint
is defined as a constraint with exactly i variables.

It is known that for all k ≥ 3 and primes p, Max-

Ek-Lin-p is (1/p)-approximable by choosing random
assignments, and this is optimal unless P = NP [20]. We
do not know of improved exponential time algorithms
for Max-3-Lin-2, though some have been proposed
for Max-3-Sat. Dantsin, Gavrilovich, Hirsch, and
Konev [10] showed that Max-3-Sat can be (7/8 + ε)-
approximated in O(28εm) time (later improved to be in
terms of n by Hirsch [24]). Our proposal is of course

much stronger, in that we only wish to commit to sub-
exponential time for an exact solution. Furthermore, it
does not seem possible to convert the exponential time
approximation of [10] into a hybrid algorithm.

3.1 Counting the Fraction of Solutions to a 2-
CNF We begin our CSP algorithms with a warm-up
example. It is not known if there is a polynomial time
approximation with additive error 1/2f(n) for counting
the fraction of 2-SAT solutions for any f(n) ∈ o(n),
though a 2O(f(n)) time algorithm exists [23]. A hybrid
approach gives a quick partial result in this direction.

Theorem 3.1. For any ε > 0 and f(n) ∈ o(n), there
is a hybrid algorithm for the fraction of satisfying as-
signments of 2-SAT, that gives either the exact fraction
in Õ(2εn) time, or counts within additive error at most
1/2f(n) in polynomial time.

Proof. Choose a maximal independent set M over the
2-CNF clauses (all clauses in M are disjoint). If
|M | ≤ log3(2)εn, then try all 3log3(2)εn = 2εn satisfying
assignments of M for the exact fraction. Otherwise, at
most a (3

4 )log3(2)εn fraction of the assignments satisfy
the formula. If (3

4 )log3(2)εn > (1
2 )f(n) and f(n) = o(n),

n is at most a constant, and exact solution takes O(1)
time. Otherwise, output (3

4 )log3(2)εn as an approximate

fraction within an additive error of 1
2

f(n). �

3.2 Algorithm for Max-E3-Lin-2 We now present
a hybrid algorithm for Max-E3-Lin-2. Later on, we
will extend this to Max-Ek-Lin-p for any odd k and
prime p.

Theorem 3.2. For all ε > 0, there is a polynomial time
selector that, on all instances F of Max-E3-Lin-2 with
n variables and m equations, either
• runs an exact algorithm that returns an optimal

solution to F in Õ(2εn) time, or
• runs a polynomial time algorithm that returns a

(1
2 + εn

12m )-approximate solution.

Remark 3.1. Note a näıve attempt at obtaining this
trade-off requires an NP-hard selector. Namely, suppose
one could estimate the fraction of equations satisfiable
by the procedure. If the fraction is less than (1 − ε)m,
then the randomized algorithm returning m/2 is a good
approximation. If the fraction is at least (1− ε)m, then
for all Õ(

(
m
εm

)
) sets S of at most εm equations, attempt

to satisfy all equations in F − S, which can be checked
in polynomial time using Gaussian elimination.

Proof of Theorem 3.2: Let F denote a collection of
k-constraints, where k = 3 in this proof. (The definition



below will also be used for general k.) The selector will
search for an S ⊆ F of the following kind.

Definition 3.1. Let S ⊆ F , β ∈ (0, 1]. S is a β-
disjoint hitter of F iff
(Hitting) For all c ∈ F − S, at least k − 1 variables of

c appear in S.
(Disjointness) There exists D ⊆ S such that |D| ≥

β|S|, and every c ∈ D has at least two variables
not appearing in any c′ ∈ D s.t. c′ �= c.

We say that a class of instances has explicit β-
disjoint hitters if there is a polynomial time algorithm
that, given an instance from the class, produces a β-
disjoint hitter S and D ⊆ S such that D has the above
disjointness property. The theorem immediately follows
from two claims, which will be established in the next
two sections.

Claim 3.1. If Max-E3-Lin-2 has explicit β-disjoint
hitters, then Max-E3-Lin-2 admits a hybrid algorithm
that either solves in Õ(2εn) time or approximates with
ratio 1

2 + εβn
6m .

Claim 3.2. Max-E3-Lin-2 has explicit 1/2-disjoint
hitters.

Claim 3.2 is easier, so we prove it first. We
conjecture that it can be substantially improved upon.

3.2.1 Proof of Claim 3.2 We greedily construct a
1/2-disjoint hitter. Construe the constraints as sets,
taking a constraint c as its variable set vars(c). First,
greedily obtain a maximal disjoint collection M of 3-sets
from F . Now remove M from F . For each c remaining
in F , remove every variable x in vars(M)∩vars(c) from c.
The remaining is a (possibly multi-)set F ′ with at most
two variables per set. Construct a maximal disjoint set
N over the 2-sets of F ′. Let N ′ ⊆ F be the original
collection of 3-sets corresponding to the 2-sets in N .
Set S = M ∪ N ′ and D to be the larger of M and N ′.

Clearly, |D| ≥ |S|/2. The hitting property holds for
S, by construction. The disjointness property holds, as
either D = M , where the c ∈ M are disjoint, or D = N ′,
where each c ∈ N ′ has two variables not appearing in
any other c′ ∈ N ′. �

3.2.2 Proof of Claim 3.1 First we give the overall
proof idea. After removing degeneracies from the
instance, the selector finds an explicit disjoint hitter S.
Depending on |S|, the selector will decide whether to
approximate or solve exactly. Intuitively,
• if S is large, its “disjointness” makes it possible to

satisfy at least 1
2 + βεn

6m of the constraints in F , and

• if S is small, “hitting” ensures that any assignment
to the variables in S reduces F to an instance that
is exactly solvable in polynomial time.
The selector first removes some degeneracies from

F , if they exist. Define a constraint c ∈ F to be
degenerate if c′ ∈ F where c′ ≡ (c+1) mod 2. Observe
that the total number of degenerate constraints is even.

Fact 3.1. Let Fdeg be the set of degenerate con-
straints. Then every variable assignment satisfies ex-
actly |Fdeg|/2 constraints of Fdeg.

This follows since every assignment satisfies either
c or c + 1, but not both. W.l.o.g., we can remove all
degenerate pairs of constraints from F , as exactly 1/2
of them are always satisfied. Then the selector finds a
β-disjoint hitter S. If |S| ≤ εn/3, the selector returns
“exact”, otherwise it returns “approximate”.

The exact algorithm takes S as above, and tries
all possible assignments to the variables in S. By the
hitting property, after each such variable assignment,
the remainder is a Max-1-Lin-2 instance which is
solved exactly in linear time. This takes Õ(8εn/3) =
Õ(2εn) time.

Now we describe the approximation algorithm. Let
D ⊆ S have the disjointness property. Define a
procedure Choose: for all c ∈ D, choose a satisfying
assignment for c uniformly at random; then set each
unassigned variable in F to 0 or 1 with equal probability.

Note Choose can be derandomized using conditional
expectation. We claim that Choose it is at worst a
(1
2 + εβn

6m )-approximation on instances where the selector
says “approximate”. Let m∗ be the maximum number
of satisfiable constraints in F . Let mnon−deg and mdeg

be the number of non-degenerate and degenerate c ∈
F , respectively. Let mD = |D|. Note we have the
inequalities mnon−deg ≥ mD, mnon−deg + mdeg = m,
and mnon−deg + mdeg

2 ≥ m∗.
The following lemma implies that half of the non-

degenerate remainder is satisfied, in expectation. Infor-
mally, it says that the distribution of assignments that
Choose returns “looks random” to each constraint of
F − D. The proof appears in the full version [38].

Lemma 3.1. Suppose D has the disjointness property.
Then for any non-degenerate 3-constraint c′′ ∈ F − D,
Choose satisfies c′′ with probability 1/2.

By Lemma 3.1, the expected number of constraints
satisfied is therefore at least

mD +
mnon−deg − mD

2
+

mdeg

2

=
m + mD

2
≥ (

1
2

+
εβn

6m
)m∗.



This completes the proof of the claim and hence
Theorem 3.2. �

A Quick Application. Note that the 1/ε in the
theorem may be replaced by any polynomial time com-
putable f(n, m) such that f(n, m) > 1/12. H̊astad and
Venkatesh [21] proved strong inapproximability bounds
for Max-E3-Lin-2.

Theorem 3.3. (Håstad and Venkatesh [21]) For
all sufficiently small ε > 0, if NP � TIME[2(log m)O(1)

],

then Max-E3-Lin-2 is not
(

1
2 + 1

2(log m)1−ε

)
-

approximable in 2(log m)O(1)
time.

However, by Theorem 3.2 we may, for example, ei-
ther (1

2 + 1

12·2(log m)1/2 )-approximate in polynomial time,

or solve exactly in 2m/2(log m)1/2

time. Thus in a cer-
tain sense, this inapproximability result can be sub-
exponentially side-stepped with a hybrid algorithm.

3.3 A More General Case Extending the algo-
rithm to Max-Ek-Lin-p for odd k ≥ 3 and prime p
is relatively straightforward. First, observe the degen-
eracy notion here means that at most one of the con-
straints among a group of at most p are satisfied by any
assignment, and in our case, we satisfy at least one of
them. The notion of correlated pairs is analogous.

The selector now picks a 1
k−1 -disjoint hitter on the

instance, choosing sets of constraints Sk, Sk−1, . . ., S2.
Each Si is a maximal disjoint set of k-constraints, chosen
after the variables of the sets Sk, . . . , Si+1 were elim-
inated from consideration. (In the result for Max-

E3-Lin-2, we only chose an S3, then an S2.) If
| ∪k

i=2 Si| ≤ εn/k, then do an exact solution as before
in time (pk)εn/k = pεn. Otherwise, some Si is of size
at least εn

k(k−1) . Choose now selects a random satisfying
assignment over all constraints in Si, with independent
random assignments for all variables appearing in multi-
ple constraints of Si and variables not in Si. Now there
are i ≥ 2 variables remaining in each equation of Si, and
a random satisfying assignment is chosen from them.

We claim that now every non-degenerate k-
constraint c not in Si is satisfied with probability 1/p.
Consider just the case i = 2; the other cases follow simi-
larly. If c contains no correlated pairs, then trivially it is
satisfied with probability 1/p. Otherwise, because k is
odd, there is at least one variable x in c whose correlated
counterpart (if there is one) does not appear in c; x is
thus set 0-1 uniformly and independently from the k−1
other variables of c and the claim follows. Therefore,
we obtain:

Theorem 3.4. Let k ≥ 3 be odd. For all ε > 0,
there is an algorithm for Max-k-Lin-p on n variables

and m equations that either returns a ( 1
p + εn

pk(k−1)m )-
approximate solution in polynomial time, or an exact
solution in Õ(pεn) time.

4 Conclusion
Hybrid algorithms offer a means to unify seemingly
incompatible ideas and strategies. In this extended
abstract, we have focused solely on hybrids yielding
exact vs. approximate trade-offs; cf. the full version
[38] for more examples. Our study has revealed several
interesting and counterintuitive results. Below are some
future directions that we think are promising.
• Find hybrid algorithms for other well-studied prob-

lems in constraint satisfaction, e.g. Max-3-Sat.
This task has resisted our efforts for some time,
although we have found that sometimes even the
simplest hybrid can be surprisingly elusive.

• Many existing graph algorithms work assuming the
absence of certain minors; diametrically, it is in-
triguing to ask what problems are better solved in
the presence of a large minor. For example, our
bandwidth hybrid exploits the fact that an expand-
ing subgraph can be helpful in approximation. We
have proven an extension to a theorem by Plotkin,
Rao and Smith [33], showing that for graphs G and
H there is a polynomial time algorithm that either
produces a large H-minor in G, or a separator of
G whose size depends on H . This theorem allows
for a different hybrid algorithm [38] for bandwidth.
A minor-or-separator trade-off of this kind is likely
to lead to good hybrids for other graph problems.

• Prove hardness results, i.e., that particularly strong
exact vs. approximate hybrid algorithms are impos-
sible for some NP-hard problems, assuming they
cannot be solved in sub-exponential time. We have
already proven some preliminary results in this di-
rection [38]. It might be productive to focus on
problems that are very hard to approximate, such
as Independent Set.
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