
Topics in Circuit Complexity (CS354, Fall’11)

Week 1: An Overview of Circuit Complexity
Lecture Notes for 9/27 and 9/29

Ryan Williams

1 Welcome

The area of circuit complexity has a long history, starting in the 1940’s. It is full of open
problems and frontiers that seem insurmountable, yet the literature on circuit complexity is
fairly large. There is much that we do know, although it is scattered across several textbooks
and academic papers. I think now is a good time to look again at circuit complexity with fresh
eyes, and try to see what can be done.

2 Preliminaries

An n-bit Boolean function has domain {0, 1}n and co-domain {0, 1}. At a high level, the
basic question asked in circuit complexity is: given a collection of “simple functions” and a
target Boolean function f , how efficiently can f be computed (on all inputs) using the simple
functions? Of course, efficiency can be measured in many ways. The most natural measure is
that of the “size” of computation: how many copies of these simple functions are necessary to
compute f?

Let B be a set of Boolean functions, which we call a basis set. The fan-in of a function
g ∈ B is the number of inputs that g takes. (Typical choices are fan-in 2, or unbounded fan-in,
meaning that g can take any number of inputs.)

We define a circuit C with n inputs and size s over a basis B, as follows. C consists of a
directed acyclic graph (DAG) of s+ n+ 2 nodes, with n sources and one sink (the sth node in
some fixed topological order on the nodes). The nodes are often called gates. For i = 1, . . . , n,
the ith gate in topological order is a source associated with the ith input bit. (These nodes are
often called input gates.) The gates numbered j = n + 1, . . . , s in topological order are each
labeled with a function fj from B. Each function fj has fan-in equal to the indegree of j. We’ll
sometimes call such a C a B-circuit, for short.

Evaluating a circuit C on an n-bit input x = (x1, . . . , xn) ∈ {0, 1}n is done as follows. The
value on x of the ith gate is defined to be xi. For j = n + 1, . . . , s, the value on x of the jth

1

gate is vj = fj(vi1 , . . . , vik), where i1, . . . , ik < j are those nodes with edges to node j (listed
in topological order), vi` is the value of node i`, and fj is the function assigned to node j. The
output of C is the value of the sth gate on x. We often write C(x) to refer to the output of C on
x. A circuit computes a function f : {0, 1}n → {0, 1} if for all n-bit strings x, f(x) = C(x).

An essentially analogous circuit definition also places the constants 0 and 1 in the circuit: we
may add two more sources v0 and v1 to the DAG, which are defined to always take the values 0
and 1 (respectively). These values can then be fed into the other gates in an arbitrary way. When
the basis B can simulate OR, AND, and NOT, these constants can be easily simulated by having
a gate computing the function ZERO = (x ∧ ¬x) and a gate computing ONE = (x ∨ ¬x)
for an arbitrary input x. So for all the basis sets we’ll consider, the difference in circuit size
between the two models is only an additive factor.

2.1 Complexity Measures

We sometimes use size(C) to refer to the size s of C.

Size roughly measures the amount of time that would be needed to evaluate the circuit,
if we used a single processor for circuit evaluation. However, if we could devote arbitrarily
many processors for evaluating a circuit, then size is not the bottleneck for running time. The
depth of a circuit is the longest path from any source to the sink. This measure would be more
appropriate in measuring the time efficiency of a circuit which is being evaluated over many
processors.

Another interesting measure of complexity is the wire-complexity of a circuit, which is the
total number of edges in the DAG. Note that as long as the indegree of each node is bounded
by a constant (i.e., the fan-in of each gate is constant), the wire-complexity and the size are
related by constant factors. (For indegree at most d, the wire-complexity is at most d times the
size.) So in most cases we’ll study, the wire complexity is approximately the circuit size. But
sometimes we will study circuits where the gates have unbounded fan-in, and there it is easy
to have complex circuits with few gates and many wires.

2.2 An Example

Consider the MOD3 function on 4 bits: MOD3(x1, x2, x3, x4) = 1 ⇐⇒
∑

i xi = 0
(mod 3). The function is 1 when the sum of bits is either 3 or 0. Here is an optimal size
circuit for computing MOD3 on 4 bits where the circuit is over all 2-bit functions, where ⊕ is
the XOR of two bits and ≡ is the negation of XOR (the EQUALS function):

2

The circuit was found by Kojevnikov, Kulikov, Yaroslavtsev 2009 using a SAT solver, and
the solver verified that there is no smaller circuit computing this function. Pretty awesome.

2.3 Circuit Complexity

Given a Boolean function f and a basis set B, we define CB(f) to be the minimum size over
all B-circuits that compute f . The quantity CB(f) is called the circuit complexity of f over B.

What possible B’s are interesting? For circuits with bounded fan-in, there are two which
are generally studied. (For circuits with unbounded fan-in, there are many more, as we’ll see.)
One basis used often is B2, the set of all 222 = 16 Boolean functions on two bits. (In general,
Bk refers to the set of all functions f : {0, 1}k → {0, 1}.) This makes the circuit complexity
problem very natural: how efficiently can we build a given f ∈ Bn from functions in B2?

The next most popular basis is U2, which informally speaking, uses only AND, OR, and
NOT gates, where NOT gates are “for free” (NOT gates are not counted towards size).

More formally, for a variable x, define x1 = x and x0 = ¬x. Define the set

U2 = {f(x, y) = (xb1 ∧ yb2)b3 | b1, b2, b3 ∈ {0, 1}}.

U2 consists of 8 different functions. When we have constants 0 and 1 built-in to the circuit, we
can get more functions out of U2 without any trouble. By plugging constants into functions
from U2, we can obtain f(x, y) = x, f(x, y) = ¬x, f(x, y) = y, f(x, y) = ¬y, f(x, y) = 0,

3

and f(x, y) = 1. That’s six more functions, so we’re up to 14. The only two functions we’re
missing from B2 is

XOR(x, y) = (x ∧ ¬y) ∨ (¬x ∧ y)

and its complement, EQUALS(x, y) = ¬XOR(x, y).

Clearly for every f , CB2(f) ≤ CU2(f), because B2 only contains more functions than U2.
From the above discussion, we also have:

Proposition 1. For all f , CU2(f) = CB2−{XOR,EQUALS}(f).

Proof. Because every function from U2 is in B2 − {XOR,EQUALS}, we have CU2(f) ≥
CB2−{XOR,EQUALS}(f). Every function from B2−{XOR,EQUALS} can be simulated with
a function from U2 (using built-in constants), so CU2(f) ≤ CB2−{XOR,EQUALS}(f): given a
minimum size circuit over B2−{XOR,EQUALS} we can get a circuit of the same size over
U2.

Proposition 2. For all f , CU2(f) ≤ 3CB2(f).

Proof. To get a U2-circuit from aB2-circuit, we only have to replace the XOR and NOT(XOR)
gates with U2 functions. As

EQUALS(x, y) = (x ∧ y) ∨ (¬x ∧ ¬y),

hence we can simulate EQUALS with 3 gates from U2. Taking the negation of this we also get
XOR.

The above shows that caring about whether you use U2 or B2 only makes sense if you care
about constant leading factors, since the two circuit complexities within (small) constant factors
of each other. Such linear factors could make a difference though, if the circuit complexity were
only a linear function in n, i.e. CB2 = cn. (For many functions, this is unfortunately the best
we know!)

A more general result can be shown. A basisB is defined to be complete if for every Boolean
function, there exists a Boolean circuit over B that computes f . (For example B = {AND} is
not a basis, while B = {NOR} is a basis.) We can see that B2 and U2 are complete, because
we can write any function f in disjunctive normal form (DNF), as a huge OR of O(2n) ANDs,
where each AND outputs 1 on exactly one input of f . So writing f as a “tree” of up to 2n ORs,
where each leaf has n ANDs of variables and their negations, we can get a circuit for f over
U2 with size O(n2n).

Theorem 2.1. Let B be any complete basis of Boolean functions with constant fan-in. Then
for all Boolean functions f , CB(f) = Θ(CU2(f)) = Θ(CB2(f)).

4

Here the constant factors depend on B. The proof is simple: if a basis B is complete, then
we can write all the functions from U2 as small circuits over the basis B. Each of these circuits
has constant size since the number of inputs to U2 is two. Conversely, every function from B
can be written as an DNF, which can then be converted to a constant-size U2-circuit (due to the
constant fan-in of the functions in B).

So we see a certain strong “robustness” with circuit complexity: because the complexity
only changes by small constant factors in front, choose your favorite complete basis, and work
with that. Maybe you like all your circuits to be composed of only NOR gates. That’s fine up
to constant factors.

3 Why Study Circuit Complexity?

Here are four good reasons.

3.1 Reason #1: Complexity of Finite Functions

Circuit complexity is a sensible difficulty measure for functions that take only finitely many
inputs (you know, the functions we see in reality). Let INTEGER-FACTORING1024 be the
problem of finding a prime factorization of a given 1024-bit integer n. (We can make this
a function that outputs a single bit, by having the input be 〈n, i〉 and changing the objective
to outputting the ith bit of the prime factorization under some reasonable encoding.) After
the encodings of numbers and factorizations have been fixed, it is sensible to ask: what is
CU2(INTEGER-FACTORING1024)? Is it at most 1010? That would be amazing – integer
factorization would be practical, given the appropriate circuit. There would be some circuit out
there which, if we can just discover it and build it, we’d be able to factor without much trouble
(using today’s technology).

Maybe instead the circuit complexity is at least 1080? That would be a huge step towards
provable security! (For provable security, we’d also need further strengthenings, e.g., that there
is no circuit of small size that can factor a sufficiently large fraction of all 1024-bit integers.)

So the chief advantage of circuit complexity is that you can talk directly about finite-input
problems and say very meaningful things. We cannot achieve such understanding of finite
problems by studying things like the time complexity of Turing machines, because every finite
problem (i.e., having only finitely many inputs) can be solved in “linear time” on a Turing ma-
chine, by just embedding a huge lookup table for each instance of the problem in the transition
table of the Turing machine.

Circuit complexity is more fine-grained than this. We are studying not only the “computa-
tion time” of the algorithm but also the “program size” of algorithms that run on n-bit instances.

5

However, we don’t wish to go too far with this, and suggest that the usual “uniform” time/space
complexity notions are inferior to circuit complexity in the long run. On the contrary, it is ex-
tremely useful to have finite programs that will work for huge inputs now and even larger inputs
in the future. So we’ll still talk a lot about problems in time/space complexity and relate them
to circuit complexity.

Here is a concrete circuit complexity lower bound.

Theorem 3.1 (Meyer-Stockmeyer). There is a natural logic problem Π such that every Boolean
circuit over B2 that decides every sentence over Π on all 3660-bit instances requires size at
least 10125.

(Incidentally, Π is the decision problem for sentences in the theory WS1S, or “Weak Monadic
Second-Order Theory of 1 Successor”. Very briefly, each sentence can contain first-order vari-
ables x1, ..., xn that range over the natural numbers, and “monadic” second-order variables
S1, ..., Sk that are allowed to range over all subsets of variables. The vocabulary constants 0
and 1, the + function, the relation ≤ on the first-order variables, and the equality relation on
the second-order variables. The problem is, given a sentence φ over some quantified first-order
and second-order variables with the above vocabulary, is φ true or not?)

3.2 Reason #2: Circuit Complexity Lower Bounds Imply Complexity
Class Separations

If there are “efficient enough” functions that still require large circuits, then we can separate
complexity classes of languages. Although circuits are defined to compute finite functions, we
can also use them to compute infinite languages (like in the usual model of complexity theory),
by giving a new circuit for each input length. So when we talk about circuits computing infinite
languages (like SAT, TSP, etc.) we’ll give an infinite family of circuits {Cn} where Cn works
on n-bit inputs.

For a language L ⊆ {0, 1}?, let Ln = {0, 1}n ∩ L. Let s : N → N and d : N → N be
functions.

Definition 1. A language L ⊆ {0, 1}? has s(n)-size d(n)-depth circuits if for all n, there is a
circuit Cn such that size(Cn) ≤ s(n), depth(Cn) ≤ d(n), and for all x, Cn(x) = 1 ⇐⇒ x ∈
Ln.

A language L has polynomial size circuits if L has p(n)-size circuits for some polynomial
p(n). Having infinitely many circuits computing a language effectively gives us an “infinite”
computational model.

Can we show that presumably hard problems like TSP and SAT do not have polynomial-size
circuits? This is only harder than the P versus NP question:

6

Theorem 3.2. If there is a language L ∈ NP such that L does not have nk size circuits for
every k, then P 6= NP.

An analogous statement holds for PSPACE. The theorem follows directly from the fact that
P has polynomial-size circuits.

3.3 Reason #3: Circuit Complexity Upper Bounds Imply Complexity
Class Separations

If “hard enough” functions have small circuits, then we can again we can separate complexity
classes.

Theorem 3.3. If every language in EXP has polynomial-size circuits, then P 6= NP.

Observe that, if we could prove if every language in PSPACE has polysize circuits, then
P 6= PSPACE then we would have proved P 6= PSPACE unconditionally.

3.4 Reason #4: Circuit Complexity Lower Bounds Imply Universal De-
randomization

Given a hard function in the form of its truth table, we can “de-randomize” every randomized
algorithm: for every randomized algorithm A we can run an algorithm that uses the hard func-
tion to efficiently simulate A without randomness. Here is one amazing theorem from a few
years back:

Theorem 3.4 (Umans’05). For every k, there is a polytime computable functionG : {0, 1}2m×
{0, 1}m → {0, 1}mk

such that, if f is an m-bit Boolean function which doesn’t have circuits
of size m3k, then for every circuit C of size mk (and at most mk inputs), |Pry[C(y) = 1] −
Prx[C(G(f, x)) = 1]| < 1/mk.

That is, assuming f is hard, G is a pseudorandom generator that “fools” mk-size circuits:
the output of G(f, x) over all m-bit x “looks random” to all mk-size circuits. So if we want to
deterministically simulate a randomized algorithm that uses mk random bits, we can convert
that algorithm into a circuit, then run it on the output of G(f, x) over all x of m bits. This takes
only O(2mpoly(mk)) time, rather than the 2O(mk) time of exhaustive search over all random
bits. So we’d get a subexponential time simulation of randomized algorithms:

Theorem 3.5. If there is a function in TIME[2O(n)] that doesn’t have polynomial size circuits,
then BPP can be simulated in 2nε

time on infinitely many input lengths, for all ε > 0.

7

Notice the parameters are not like those of pseudorandom generators used in cryptography.
The running time of the generator G is high – higher than the circuit size. Exponential-size
circuit lower bounds for exponential time would imply an even stronger consequence:

Theorem 3.6 (Impagliazzo-Wigderson ’97). : If there is a language L ∈ TIME[2O(n)] and
some c > 0 such that for all n, Ln requires 2cn size circuits, then P = BPP .

These are amazing results, because they are turning negatives into positives! Even if there
are very hard exponential time functions out there, life is not so bad: we can use them for
positive algorithmic effect.

In general, there are incredible connections between lower bounds and algorithms that can
be formally realized through the study of circuit complexity, and we are still only beginning to
understand these connections.

4 Goals, Methods, Mindsets

Right now I have two basic goals for this course.

• The basics of circuit complexity: understand how small and large the complexity is, for
interesting functions and interesting types of circuits. We’ll look at how these results
have been proved, the ideas behind them, and how we might do better.

• Connect circuit complexity to the “usual” uniform complexity theory that you’ve seen
before. We’ll use the vehicle of circuit complexity to tour and introduce other areas of
complexity, such as exponential-time algorithms.

4.1 Methods

Broadly speaking, there have been three classes of techniques for proving circuit complexity
lower bounds:

1. Restriction methods. Here is the basic idea.

• We pick a collection of n-bit functions, e.g. the PARITY function {PARITYn},
where computing the n-bit version has a close relationship with computing the k-bit
version for k < n. In the case of PARITY, there are relations like

PARITYn(x1, . . . , xn) = PARITYn−k+1(PARITYk(x1, . . . , xk), xk+1, . . . , xn).

8

• Argue that, if you set some of the input bits to a small n-bit circuit (i.e., replace
some of the input variables with fixed constants), and simplify the resulting circuit,
the circuit becomes “too small” to compute the function on k bits. This is generally
an inductive method.

Examples of “restriction methods” include gate elimination and the method of random
restrictions. They may be the most versatile methods we currently know.

2. Polynomial methods. The basic idea is to represent the circuit (approximately or ex-
actly) as a “nice” polynomial, then prove your target function simply can’t be represented
with this “nice” polynomial.

The most prominent examples of the polynomial method is that the circuit class AC0

(constant-depth circuits of polynomial size over the basis of unbounded fan-in AND and
OR, with NOTs for free) can be “approximated” by poly(log n)-degree polynomials.
This can be used to prove significant lower bounds on AC0 circuits.

3. Brute force methods. Here we try to construct functions that by design do not have
small-size circuits. We try to do this as efficiently as possible. If could do this in PSPACE
or NP, we’d separate P from PSPACE (or NP).

4.2 Mindsets

What are these classes of methods used for? Broadly speaking, we can imagine three basic
approaches to proving results in circuit complexity that people have taken over the years:

1. Bottom-up: We look at restricted circuits (typically the circuits are restricted by depth,
or by gate basis), prove nice lower bounds for these weak circuit models, and try to relax
the restrictions gradually. In short, we make the model so weak that finding functions
they can’t compute isn’t so difficult.

2. Top-down: We start with functions that we already know to be hard for circuits in some
sense, and try to algorithmically produce these functions more efficiently. We make the
function so strong that ruling out all circuits to compute it isn’t so difficult.

3. Middle: We start with fairly easily computable functions, and try to prove unrestricted
circuit lower bounds anyway.

Polynomial methods seem inherently based on a bottom-up approach: your circuit has to be
somewhat restricted, to have a chance of looking like a polynomial. Brute-force methods are
definitely top-down. Restriction methods have been used in both “middle-first” and “bottom-
up” approaches.

9

Recently, we’ve been studying a combination of “top-down” and “bottom-up”: we focus on
restricted circuits, and functions that are “hard by definition”, but exploit the restrictions on the
circuits to get more efficiently computable functions that are still hard. (What I am saying is
hopelessly vague, but I hope things will become clearer later on.)

5 Some Popular Circuit Complexity Classes

There are many complexity classes related to circuit complexity. Here we briefly list them, in
decreasing order of power:

• P/poly = languages computed by polynomial-size circuits

• NCk = languages computed in O(logk n) depth, polynomial size, bounded fan-in
A particularly well-studied case is NC1, which is equivalent in power to polynomial size
Boolean formulas.

• TCk−1 = languages computed in O(logk−1 n) depth, polynomial size, unbounded fan-
in over MAJORITY gates (with NOTs for free). A MAJORITY gate outputs the most
popular input; if there is a tie then it outputs 1.
Here the main focus is the class TC0.

• ACk−1[m] = languages computed in constant-depth, polynomial size, unbounded fan-in
over the basis AND, OR, MODm, where a MODm gate outputs 1 iff the sum of its input
bits is divisible by m. Note that NOT can be simulated with MODm, but it is open
whether AND (or OR) can be simulated with only MODms in constant depth.
Here the main focus is the class AC0[m].

• ACC =
⋃

mAC
0[m].

• ACk−1 = ACk−1[m] without the MODm gates.

We have the following containments, for all constants m:

NC0 ⊆ AC0 ⊆ AC0[m] ⊆ ACC ⊆ TC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 ⊆ AC2 ⊆ · · · ⊆ P/poly.

5.1 Known Limitations

How many of these containments are proper? We don’t know many of them. It is easy to prove
that NC0 6= AC0:

10

Proposition 3. If f : {0, 1}n → {0, 1} is computed by an NC0 circuit, then f only depends on
a constant number of input bits.

Proof. If the depth is d, and fan-in is b, then the maximum number of variables that f can
depend on is bd, which is constant.

Corollary 5.1. The AND function on n variables is not in NC0.

Proof. Suppose it were; we will find a circuit in the NC0 family and an input on which AND
is computed incorrectly. Choose n > bd where b is the fan-in and d is the depth. Let Cn be the
NC0 circuit for ANDn. Cn only depends on bd variables; setting all of these variables to 1 will
make Cn output a value v. If v = 1, then set one of the unset variables to 0, so the AND is 0.
If v = 0, then set all the unset variables to 1, so the AND is 1.

5.2 AC0 and ACC

So much for NC0. What about AC0? In the 80’s, there were many upper and lower bounds
proved for AC0. We will cover most of the below results in this course. For now, we will just
state them.

Recall the PARITY function: PARITYn(x1, ..., xn) =
∑

i xi (mod 2).

Theorem 5.1 (Hastad ’85). PARITYn has depth-d AC0 circuit complexity 2Θ(n1/(d−1)).

PARITY is the negation of the MOD2 function, so we have:

Corollary 5.2. AC0 6= AC0[2].

Theorem 5.2 (Razborov ’87). The MAJORITY of n bits requires AC0[2] circuits of size expo-
nential in n.

Corollary 5.3. AC0[2] 6= TC0.

Theorem 5.3 (Smolensky ’86). The MOD3 function requires AC0[2] circuits of exponential
size. In fact, for all distinct primes p 6= q, and all constants k, the MODp function is not in
AC0[qk].

Corollary 5.4. AC0[3] 6= AC0[2].

Question: What about MOD4? Where does it lie in this hierarchy?

Answer: Good question!

11

Exercise: Is MOD4 ∈ AC0[2]? What about MOD2k for all constants k ≥ 2?

The above lower bounds hinge on properties of polynomials over finite fields; this is why we
see prime powers pop up. What about constant-depth circuits over {OR,AND,NOT,MOD3,MOD2}?
How powerful are multiple moduli?

Claim 1. Any circuit over the basis {OR, NOT, AND, MOD3, MOD2} can be efficiently ex-
pressed as a circuit over {OR, AND, NOT, MOD6}.

Proof. Follows from the equations:
MOD6(x1, . . . , xn) = MOD3(x1, . . . , xn) ∧MOD2(x1, . . . , xn)
MOD2(x1, x2, . . . , xn) = MOD6(x1, x1, x1, x2, x2, x2, . . . , xn, xn, xn)
MOD3(x1, . . . , xn) = MOD6(x1, x1, x2, x2, . . . , xn, xn).

So by looking into constant-depth circuits over MOD3, MOD2, AND, OR, NOT, we’re
really studying the class AC0[6].

HERE, WE’RE REALLY STUCK! MAYBE YOU CAN HELP!

It has been conjectured that MAJORITY /∈ AC0[6]. (This would imply that AC0[6] = TC0.)
However it is consistent with current knowledge that AC0[6] = P/poly, which would be amaz-
ing if true. But could we really achieve a massive parallelism of arbitrary serial computations
by using just MOD6’s? Honestly this looks ridiculous. Furthermore, it’s possible that every
exponential-time computable function could be efficiently simulated by a AC0[6] circuit fam-
ily, even though this family is only polynomial size! (The fact that we are allowed a separate
circuit for each input length is absolutely critical: if there were an efficient algorithm that could
generate all circuits in the family, separating exponential time from AC0[6] is easy.) Only last
year did we rule out that NEXP (nondeterministic exponential time) is contained in AC0[6].

Even though we are rather stuck at MOD classes like AC0[6] for proving super-polynomial
size lower bounds, interesting results can still be proved for more general circuit classes.

5.3 TC0 and higher

As we relax the restrictions we place on circuits, our knowledge becomes weaker. Concerning
the class TC0, we do know that depth-3 TC0 is strictly more powerful than depth-2 TC0. Let
TC0

d denote depth-d TC0.

Theorem 5.4 (Hajnal, Maass, Pudlák, Szegedy, and Turán ’93). TC0
2 (TC0

3.

12

Also, TC0 with depth-3 already looks quite powerful. We can simulate all of ACC with
three layers of MAJORITY gates (and NOTs for free), provided our size bound is relaxed from
polynomial to quasi-polynomial:

Theorem 5.5. Every problem in ACC can be simulated with TC0 circuits of depth 3 with
npoly(logn) size.

It is known that NC1 corresponds to the languages recognized by an infinite family of
Boolean formulas {Fn} of polynomial size. For Boolean formulas, we know some interest-
ing size lower bounds, like quadratic size and cubic size lower bounds. The best known to date
is:

Theorem 5.6 (Håstad). There is a function in P that requires n3/ log2 n size formulas over U2.

Open Problem 1. Is there a language in NP that requires formulas of size at least n4 over U2?

Open Problem 2. Is there a language in NP that requires circuits of size at least 6n over U2?

The problems are still open if we replace NP with the much larger class TIME[2n]NP.

5.4 Uniform Circuit Classes

The above circuit classes are called non-uniform, in that we get a separate algorithm for each
input length, and the number of lines of code in that algorithm can grow with the input. This is
in contrast to the one-algorithm-for-all uniform model that is more common. But there are also
uniform versions of all these circuit complexity classes, where there exists an fixed, efficient
algorithm that will generate the nth circuit on demand for us, when we give the algorithm an
n-bit input (say, 1n).

Let U be a small uniform complexity class (like LOGSPACE) and let C be a circuit class.
Then the class U -uniform C is defined to be the set of languages recognized by a circuit family
{Cn} from C, and there is an algorithm A implementable in U such that A(1n) prints Cn as
output.

There is a very rich theory of how much uniformity is needed to generate circuits: how effi-
ciently can we generate a circuit with an algorithm. We can even have LOGTIME-uniformity,
where there is an algorithm A that, given n and an index i = 1, ..., s, runs in O(log n) time
and prints the gate information for the ith gate of Cn. That is, A(n, i) prints the gate type of
i (whether it is AND, OR, NOT, etc.), and A(n, i) prints gate numbers j1, j2 < i such that
there are wires (j1, i), (j2, i) in the circuit. Such an algorithm can very quickly print “local
information” about the overall circuit. I am not planning to talk too much about these uniform
circuit classes, but you should definitely know that they are out there.

13

	Welcome
	Preliminaries
	Complexity Measures
	An Example
	Circuit Complexity

	Why Study Circuit Complexity?
	Reason #1: Complexity of Finite Functions
	Reason # 2: Circuit Complexity Lower Bounds Imply Complexity Class Separations
	Reason # 3: Circuit Complexity Upper Bounds Imply Complexity Class Separations
	Reason # 4: Circuit Complexity Lower Bounds Imply Universal Derandomization

	Goals, Methods, Mindsets
	Methods
	Mindsets

	Some Popular Circuit Complexity Classes
	Known Limitations
	AC0 and ACC
	TC0 and higher
	Uniform Circuit Classes

