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ABSTRACT

In this paper we describe a software system that
presents the programmer with many views of the parallel pro-
gram. We describe the objects of a parallel program that we
consider significant. Information conceming these objects are
entered into a database. In addition, the program is automati-
cally instrumented so that during execution, many events and
status information can be collected and placed in the database.
In particular, the system identifies all accesses to shared vari-
ables that may causc problems and whose values may be sensi-
tive to the various scheduling policies or relative speeds of the
processors. All such access are then automatically monitored.
The programmer can then interact with the system to see vari-
ous views of the program exccution in order to determine
where the bugs and performance bottlenecks occur.  This tool
is being developed as part of the Makbilan parallel processing
project at Hebrew University.

1. INTRODUCTION

A recurrent problem plaguing computer science is the
undcrestimation of the software effort. Even from the earliest
days, the hardware component of a major computer project has
been viewed as requiring the most research and creative
energy; only once the hardware is completed does the enor-
mity of the software effort become apparent. The recent emer-
gence of parallel processing is no exception. For example, an
overwhelming number of research efforts have been directed
toward describing various aspects of designing and implement-
ing parallel processors, while there is a paucity of research
addressing how one will actually program these machines.

Parallel processing is a radical departure from the tradi-
tional sequential processing. It promises machines that can
execute extraordinarily large numbers of instructions per
second. The main challenge now is not whether these
machines can be built but whether they can be programmed in
such a way as to make effective use of the increased computing
power. It is not the raw computing power that is important, it
is the effective computing power. Experience indicates that
the future programmer of parallel processors will require assis-
tance in order to make effective use of the machine and to
efficiently produce efficient parallel programs.

Historically, the programmer of a paralle! processor has
been a rather knowledgable scienlist or engineer who was bur-
dened with the task of creating parallel applications using rudi-
mentary environments. Detailed multiprocessor architecture
and operating system knowledge as well as intricate ability to
manually map parallel algorithms into a parallel virtual archi-
tecture and "exlended” sequential languages, are just some of
the hurdles such users had to overcome. A correct parallel pro-
gram is not even the end of the task. Often, the only reason for
developing a parallel program is for the real time performance.
The difficult task of performance debugging and the interpreta-
tion of the fecdback in the context of a rudimentary program
environment requires an even more specialized and highly
knowledgable programmer.

This paper describes one such tool that is being
developed as part of the Makbilan parallel processing project
al Hebrew University [RS]. This tool uses the approach of per-
formance dcbugging through programming for Observability.
Performance debugging is a system-wide issue, involving
detailed knowledge of algorithm implementation, operating
system, and paralle] architecture. Hence provisions for observ-
ing status and performance events at all levels are required,
together with facilities for combining semantic runtime infor-
mation and development-time information, into a unique high-
level representation. We refer 1o this feature as Programming
for Observability [GS].

There are a few projects that are related 1o this research.
The PIE system [SR] is the closest, although it is centered
around a particular paralle] programming language, MP. Mon-
itoring [Sn82) and debugging [Ga] of distributed programs
address a few of the issues that are of concern to us. A major
component of our system is the visual display of information
concemning the structure and execution of a parallel program.
Related research in this area has be concerned with program
animation [Re] and visual programming {RGR]. Finally, the
reader is referred to a survey article on concepls in concurrent
programming [AS] for many of the basic features of synchroni-
zation and parallel programming.

In this paper we describe a sofiware system that
presents the programmer with many views of the parallel pro-
gram. Some of the views are only concerned with the static
program structurc while as others capture the dynamic runtime
behavior. We describe the objects of a parallel program that
we consider significant. Information concerning these objects
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are enlered into a database. The database is then used 10 con-
struct the static program views. In addition, the program is
automatically instrumented so that during excculion, many
cvents and status information can be collected and placed in
the database. In particular, the system identifies all accesses to
shared variables that may cause problems and whose values
may be sensitive to the various scheduling policies or relative
speeds of the processors. All such access arc then automati-
cally monitored. The programmer can then interact with the
system to sec various views of the program execulion in order
to determine where the bugs and performance bottlenccks
occur.

We first describe the types of parallel program objects
that are of interest to our system. The subsequent two sections
(sections 3 and 4) enumerate Lhe monitoring primilives used to
accumulate information relevant o these objects and how this
information is to be presented to the user. Section 5 presents &
general scheme to identify the potentially harmful accesses.
The scheme requires the identification of all processes (or parts
thereof) that may be execuled concurrently. Specific details
are then presented concerning the currently supporied pro-
gramming language, Occam+, in section 6, and in section 7, an
example application is presented.

2. PARALLEL PROGRAM OBJECTS

In this section we describe the objects or aspects of a
paralle] program that we wish to monitor. We have attempted
to enumerate those universal and essential qualities that should
be present in most parallel programs, regardless of their imple-
mentation language. Note that we assume that the program
will be writlen in some paralle]l programming language and
thereby explicitly exclude systems that automatically attempt
o detect the parallelism in a program written in a sequential
programming language.

The activity of observing events (the unit of information
for observability) is termed monitoring. The agent executing
the monitoring mechanism is a monitor. In this paper the term
monitoring will be used to denote the process of collecting
static and dynamic information concerning a parallel program.

2.1. Processes Every parallel program has some notion of
process (somelimes called task, activity, or thread of control).
During the execulion of a parallel program, parallel work is
performed. This parallel work consists of a set of processes
that arc execuling in parallel. In some languages, the processes
are specified directly by the programmer (e.g. [BH]) and in
others it is indircctly specified (e.g. Concurrent Prolog (Sh]
where some operations can be carried out in parallel, such as
unifications or parameter evaluation). In either case, one is
concerned with the creation, destruction, halting, and restarting
of processes, as this indicates the performance of the machine.

A process may either be a templel process or an instantiated
process depending on the context: the program specification or
the execution of a program. We assign a static id to each
unique process templet or siatic process. Each dynamic pro-
cess, i.¢. an instantiation of some static process during the pro-
gram execution, is assigned a unique dynamic process id.

2.2. Synchronization Parallcl models of computation can
be classified as either SIMD or MIMD [Fl]: Single lastruction
streany Multiple Data stream or Multiple Instruction stream/
Multipie Data stream. In the former, all the process execute in
lock step, synchronizing after each operation. In the latter,
synchronization or the gathering together of the execution of
processes so thal no one proceeds past a certain point in the
computation until the cxeculion of other processes have
rcached a specified point. Some parallel programming
languages provide explicit mechanisms for synchronization
whereas in others it is implicit at the end of a parallel construc-
tion. In general, one can consider closed parallel constructs,
such as begin/end or parallel iteration loops, where processes
are crealed at the start of the construct and terminated at the
end. Open constructs, in contrast, are much more unwieldy,
such as thc rendezvous mechanism of Ada [Ada), and their
occurrence is of great importaace.

2.3. Basic Sequential Blocks Each process consists of a
set of basic sequential blocks. Each such block is a sequence
of statements (code segment) that do not cause the creation of
new processes nor contain any rendezvous points. In other
words, it is the sequence of code between two synchronization
points.

Note that the term is similar to that of a basic block (as used in
compilers) and should not be confused the term block used in
programming languages. We distinguish between static and
dynamic basic sequential blocks depending upon if they are
part of a static or a dynamic process.

2.4, Atomic Compound Actions Every parallel proces-
sor must support atomic operations. That is, some operation
that cannot be externally decomposed into more primitive
actions [FF]. At some level of abstraction, the programmer
also assumes the existence of atomic operations. Often, indivi-
dual loads and stores 1o simple variables are assumed 1o be
atomic, however, more complicated operations may also be
supported. In particular, a machine or a language may support
particular instances of Read-Modify-Write instructions. The
well known test-and-set operation is an example of the latter.
Even more complicated operations may be assumed to be
alomic, such as an individual statement in the programming

language or an operation on a complex, multi-field shared data
structure.

2.5. Communication At various points in a program, a
process may communicale with other processes. This com-
munication may take the form of an explicit send/receive
mechanism or may be more implicit as in the case of access to
shared memory. The points in the program where such com-
munication occurs are interesting objects.
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2.6. Operating System Calls Varous invocations of
operating system routines may be significant to the execution
of a parallel program. Examples of significant events include
access to external devices, access to a terminal, spawning of
new processes. These are significant events in a program. In a
uniprocessor, the time of their occurrence with respect to the
whole computation might be interesting but rarely effects the
overall performance of the program. In parallel processing,
this is not so. The simultaneous request for a particular operat-
ing system function by many processes may be a cause of con-
cern since it may significantly degrade the performance.

2.7. Virtual Processors Some parallel programming
languages give the programmer explicit control as to how
processes or activities are allocated or mapped o the proces-
sors. We call such processors virtual, since they are at the pro-
gram level. During runtime, the virtual processors are mapped
onto real processors. The mapping, if supported by the
language, is a significant event [JS}, [Occ].

2.8. User Defined Events In order to monitor the perfor-
mance of 2 parallel program, the user may want to note the
execution or occurrence of an execution of an event. Later in
this paper we shall describe this in more detail. However, here
it is worthwhile noting that such events are significant objects
in a parallel program. In the worse case, the event reporting
may effect execulion, if it is not supported by the underlying
hardware. )

2.9. Relations between Objects It is not only important
to note the existence of the objects described above, it is also
important to understand how these objects relate to each other.
For exampie, which processes are synchronizing, what is being
sent between one process and another.

3. MONITORING PRIMITIVES

The monitoring mechanism in our system is composed
out of two components: sensors and a data-base. The sensors
arc logical entities which are responsible for information col-
lection. The information collected by the sensors is recorded in
the data-base of the monitoring mechanism. This data-base
provides the tools for organizing and manipulating the col-
lected information.

We record information conceming the significant
objects of a program both at compile time and at runtime. At
compile time, the static information is recorded. Hooks are
installed into the code so that the dynamic information can be
collected at runtime. Each point in the program where an
object occurs is recorded in a database. The position in the
source code is recorded so that the user can be presented with
the surounding context, at a later point in time. As much
significant information is recorded depending on the type of
object.

It is important that the collection of runtime information
be as non-intrusive as possible. Since a parallel computation

may gencrale a very large number of events that are o be mon-
itored, one desires substantial hardware support for monitor-
ing: a parallel processor may be needed o monitor the parallel
processor.

Integration of monitoring information from compile
time and runtime and its subscquent graphical interactive
display gives our system substantial power. Various levels of
monitoring can be presented 1o the user, as described in a later
section, once the particular runtime actions have been
recorded. We plan Lo extend our system to also provide moni-
toring information about low level hardware functions, such as
cache hit ratios, page faults, and bus loads. A user could then
discover, for example, how the bus load changes as a function
of the status of some shared data structure.

4. INDETERMINACY CONSIDERED HARMFUL

One of the major sources of errors in parallel programs
arises from the fact that the execution of most paralle] pro-
grams is not deterministic. The relative speeds of the proces-
sors, conlention when accessing shared resources, and the
scheduling policies of the operating system have a major effect
on the execution of a parallel program. While it is expected
that these factors affect the performance of a parallel program,
it is ofien the case that they also effect the results of the com-
putation. Two executions of the same program with the same
input may follow different computation paths because the rela-
tive speed of the processors differ during each execution. Such
nondeterministic behavior is considered harmful.

Except when required, it is better for a program to be
determinate than indeterminate. The non-deterministic
behavior required by the program should be explicitly
specified through the appropriate constructs. We are concemed
with identifying and monitoring parts of a program in that may
be a source of non-explicit indeterinacy. We refer 1o such pro-
gram parts as being harmful. Thus, there are harmful code sec-
lions, harmful memory access, harmful variables, etc.

Recall our notion of basic sequential block identifying a
piece of sequential code between synchronization points. If we
assume that the program is sequentally consistent ((La] and
(KRS]), then any interleaving of the instructions in one basic
sequential block with the instructions in another concurrent
basic sequential block, is legal. The many possible interleav-
ings may give rise to non-explicit indeterminancy.

4.1. Harmful Actions

Shared variables play a crucial role in parallel process-
ing. Communicalion among activilies on a shared memory
multiprocessor is often more efficient when memory is mani-
pulated directly by the activities than when information is
exchanged solely through inlerprocess message passing
mechanisms. Shared variables also make it easy 1o share infor-
mation by many processes over long periods of time, such as in
a symbol table. (See [Sn] for additional arguments in favor of
shared variables.) On the other hand, in our experience,
indiscriminate usc of shared memory promotes hard-to-find
bugs. The indeterminacy of the execution can make it difficult
to determine a priori if one process will read a shared variable
before or after it has been updated by another process.

4.1.1.
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A harmful shared memory access is one that inlroduces
non-explicit indeterminacy. An access that stores a value into
a shared variable thal may be accessed concurrently by another
process is considercd harmful. That is, let A denote a store to a
variable and B dcnote any access o that sane variable by
another process. If, for a given input, it is possible for A to
occur before B in one exccution and for B to occur before A in
another exccution, then A and B are considered harmful
accesses. Similarly, we refer to the shared variable that is the
target of a harmful access as a harmful shared variable.

Message passing or synchronous communications
between processes can also be harmful. The sending of a mes-
sage can be considered to be like a store to a shared variable
and the receiving of a message is analogous 1o the reading of a
shared variable. Thus, if two processes send a message to a
third process and they are all execuling concurrently, the mes-
sages may be received in different orders, introducing indeter-
minacy.

We would like to protect the programmer from harmful
accesses. There are three possibilites:

(i) Disallow the possibility of harmful accesses by syn-
taxtic mechanism. That is, enforcement at the language
level.

(ii) Runtime enforcement.
(iii) Compile-time and Runtime warnings.

The first choice is usually considered too restrictive and the
second may be too cxpensive. In this section, we show how to
support the third choice. This allows the programmer the free-
dom 10 depend on his detailed understanding of the program
logic and control flow to ensure that there are no harmful
access, while at the same lime, providing a mechanism to tell
him when he is wrong. The situation is analogous to runtime
array bounds checking present in many sequential program-
ming languages.

4.2. Detecting Harmful Actions

Throughout the rest of this paper, we consider a res-
ricted type of paralle]l program in which there are only closed
parallel constructs. That is, we exclude rendezvous and similar
barrier synchronizations, and do not consider synchronous
message passing 1o be an adequale mechanism to enforce syn-
chronization or to guard access o shared variables.

Our overall strategy consists of three phases. The first
phase occurs during program compilation. The parallel pro-
gram is analyzed 1o determine the actions that may be harmful.
Code is then added to the program so that these critical actions
can be monitored. The second phase occurs during runtime.
The critical actions are checked to see if they are indeed harm-
ful or even if they may be harmful. That is, it may be the case
that although during the current execution, the actions are not
found to be harmful, however, they couid be harmful during
different executions. Information conceming the critical
actions is recorded in a database. The third phase occurs after
program execution and consists of presenting the results of the
monitoring o the user.

The underlying mechanism in the first two phases is a
special method of assigning labels (ids) to basic sequential
blocks so that harmful actions can be quickly identified. Static
labels arc assigned during the first phase and dynamic ones
during the second phase. In both cases, the same scheme is fol-
lowed. We describe the scheme for detecting harmful access
1o shared variables (and harmful shared variables). Harmful
message passing aclions arc similarly handled.

In order lo motivate our mechanism, consider simple
paralle] programs with no message passing, only closed paral-
lel constructs, and no procedure calls. Then, for each variable,
we find all access to it in concurrent basic sequential blocks. If
one such access is a write, then the shard variable may be
harmful and the concurrent access o it may also be harmful.
Thus, the problem reduces o determining which basic sequen-
tial blocks may be executed concurrently.

Consider a process invocation graph before any of the
parallel constructs have terminated. The resulting structure is
a tree, with cach edge representing a basic sequential block and
each vertex representing a parallel fork. From this tree, it is
easy to see that two processes, X and Y, may not execute con-
currently, iff one is a direct ancestor of the other.

A Process Execution Graph Before Joins
Figure 4.2.1. Preorder (left to right) Numbering

A Process Execution Graph Before Joins
Figure 4.2.2. Preorder (right to left) Numbering




We label the edges in the wree in preorder fashion
({AHUY)), visting the children in a left to right ordering (sce
Figure 4.2.1). (Note that usually one labels vertices; we assign
the same label to the edge that points 1o a vertex.) It is not hard
to see the following:

Claim: Let u and v be two edges in a process tree.
E.label(u) > E.label(v), if and only if one of
the following is true

(i) v is a direct anceslor of u

(ii) v is a left sibling of some ancestor of u.

In a similar fashion, label the edges in the tree in preorder
fashion but visiting the children in a right to left order (see
Figure 4.2.2) giving H.labels!

Claim: Let u and v be two cdges in a process tree.
H.label(u) > H.label(v) if and only if one of
the following is true

(i) v is adirect ancestor of u

(ii) v is a right sibling of some ancestor of u.
From the two claims, a third claim follows:

Claim: Let u and v be two edges in a process tree.
E.label(u) > E.label(v) and
H.label(u) > H.label(v)

if and only if v is a direct ancestor of u

The E.labels and H.labels can thus be used to determine
if two basic sequential blocks are concurrent. To implement
this idea, however, we must overcome two problems: the label-
ing must be performed dynamically, since we do not know how
deep it will go, and the closing of parallel constructs must be
handled.

"z 123,811

12,121

1241,1132 1212, 1131

A Process Execution Graph Before Joins
Edge labeled as E.label , H.label
Figurec 4.2.3. An example of E.labels and H.labels

The letters E and H denoting the type of labels are used because
English is written from lefl to right and Hebrew is wrilten from right to
left.
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labels in our scheme will be strings of arbitrary length.
Let C,,C,,...C, be k processes in a parallel construct of pro-
cess p, then we assign labels recursively as follows:

E.label[C,] = E.label[p] @ i
and H.label[C;] = H.label[p] @ (k-i+1)

where @ is the append operator (see Figure 4.2.3).

labels are compared in a lexigraphical ordering: compare
labels digit by digit starting from the left, and if these do not
match then the shorter one is smaller.

The second problem is how to assign process labels
after a parallel construct has terminated. The code up until the
parallel construct is one basic sequential block with a particu-
lar label. A set of basic sequential blocks are then created and
assigned labels as just described. After the parallel construct,
there is a new basic sequential block that must be assigned a
label. The simplest method is to use the maximum E.label and
H.label of all the basic sequential blocks that just terminated,
These labels are thus greater than all labels in the processes
derived from the previous parallel construct. Unfortunately,
the length of the labels begins to grow unreasonably fast; at
least by one digit for each paralicl construct. However, after
the first join, subsequent joins need only increase the last digit
of the previous labels (see Figure 4.2.4). These labels

1,

1921, 1222

A Process Exccution Graph
Figure 4.2.4. An example of E.labels and H.labels after Joins




4.3. Compile Time Issues

During compile time, the widths of a parallel construct
may not be known, as in the case of a FOR ALL statements
with a variable limit. In such a case, we just assume a value of
two, since we only want to determine possible concurrency.

Procedures calls introduce an added complexity. Pro-
cedures may be invoked from many different parts of the pro-
gram, variable may be passed by reference causing an aliasing
problem, and procedures may be recursive. If a procedure is
called by two processes running concurrently, then all the vari-
ables it reference may be changed.

Our approach during compilation, is to view procedure
calls as processes invocations with the parameters that are
passed by reference substituted for the formal parameters. Care
is required to avoid infinite expansion for recursive calis.
Upon encountering a procedurc call, we check all previous
occurrences of the procedure on the process invocation graph.
If any of them are direct ancestors of this call and with the
same variable paramecters passed, then the procedure is not
expanded; we did all possible static checking. A preprocessor
is used to perform this expansion.

4.4, Runtime Issues

During program execution, we wish lo detect both
harmful and potentially harmful actions. Potentially harmful
actions discovercd at runtime are ones that may be harmful
although there is no cvidence during the execution that they
are indeed harmful. : )

Our detection mechanism works as follows. We record,
for each wrile access lo 2 critical variable, the dynamic labels
of the basic sequential block executing the write, Although we
use the term variable, during runtime, we use the actual
address of the variable. This avoids problems with aliasing
variables passed by reference and with access to components
of larger data structures such as arrays. We only keep the
labels of the last write access. Each write or rcad access
causes a runtime check. If the basic sequential block of the
last write 1o the variable is still execuling, then the accesses
are harmful. This check is performed by searching the list of
currently execuling processes o see which basic sequential
blocks are still executing. In our simulation of a paralle] pro-
cessor, this check is easy. A real parallel will require hardware
support for this action, since the offending basic sequential
block may terminate during the execution of the check. Poten-
tially harmful actions are detected by just checking to see if the
previous write was performed by a direct ancestor or not.

5. VIEWS

The monitoring mechanism data-base provides a tool
for associating information from development lime and run-
time and providing a variety of views on the behavior of a
paralle] program. A view is a graphical representation of some
information which was collected by the monitoring mechan-
ism.

Currently the system provides four views: static process
information, dynamic invocation tree, activily execution times,

4.

and harmful shared variables view.

(1)  Static Process Information - There are two instantia-
tions of this view. Onc presents the graph of relations
among processes al development lime. In this graph,
one node is associated to each static process specified in
the program. Lines beciween nodes represent
parent/child relations. A node with self-loop indicates a
recursive process call.

The second instantiation presents the control flow graph
of the program in terms of basic sequential blocks. The
graph is a directed one, each edge representing a basic
sequential block. Verticies are either fork or join
points,  representing  synchronizations  between
processes. That is, given a sysiem with only closed
parallel constructs, each vertex is either the creation of a
sct of processes or the termination of a set of processes.
With open parallel constructs, the verticics represent
rendezvous. Note that this graph presents possible rela-
tionships among processes and basic sequential blocks.
These relations may not hold at runtime, and in fact, the
basic blocks are only templets, as there may be many
instantiations of a basic sequential block at runtime.

(2) Dynamic Invocation Tree - This view represents the
dynamic invocation sequence of processes (i.e., which
processes initiated which other processes). Again, there
are two modes indicating whether processes or basic
sequential blocks are 1o be displayed. The user controls
the nesting depth of the display. For example, at the
highest level, only those processes or basic sequential
blocks created by the main program. We use the term
zoom in or zoom out 10 indicatc the changing of the
level of nesting displayed.

(3)  Activity Execution Times - This view displays the exe-
cution times of activities in the form of a bar graph with
a separate indicator for cach instance of an activity. The
total execution time of the experiment is divided inlo a
number of slots, for each slot during which an activity is
active, the bar is blackened. The bar graph gives a glo-
bal view of the parallelism of the application as a func-
tion of time.

(4)  Potentially Harmful Variables - This view displays the
dynamic reference to shared varjables that are or may be
harmful. The actual implementation of this view is part
static and part dynamic.

6. OCCAM and OCCAM+

Occam |Occ] is a programming language designed o
support concurrent applications in which many parts of a sys-
tem operalte separaiely and interact. Its primary application is
for programing transputers. It is a very simple language mak-
ing it easy to describe as well as to analyze. Occam+ is an
extension encorporating support for shared variables. Because
of its simplicity and power, it was chosen as the parallel pro-
gramming language to be instrumented. In this section, we
describe the basic features of Occam and its extension.

1.1.
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6.1. Basic Occam Features

Occam enables the programmer o ¢xpress a program in
terms of concurrent processes which communicate by sending
messages through communication channels. This has two
important consequences: it gives the program a clear and sim-
ple structure and it allows the program lo exploit the perfor-
mance of many computing components, as each concurrent
process may be executed by an individual processor.

Occam can capture the hicrarchical structure of a sys-
tem by allowing an interconnected sct of proceses W be
regarded from the outside as a single process. Al any level of
detail, the programmer is only concemed with a small and
manageable set of processes. A process can be a single state-
ment, a set of statements, or a set of other processes.

Communication between processes take place through a
channel, which is the only mechanism by which processes can
transfer information among themselves. The channel is a one-
way commupication element belween (two concurrent
processes. It may be viewed as a bounded buffer
consumer/producer mechanism, with a buffer size of zero.
That is, communication is synchronized such that output can-
not take place unless the channel is frec, and input cannot lake
place unless the channel is suplying a value. Thus both the
input and the output processes must be ready before transfer
can take place. There is no implicit buffering associated with
channels. The channels operators are input (?) and output (!).

To contro! the order of execution of the processes,
Occam defines three busic constructs : sequential (SEQ) block,
where program elements are executed in sequecnce; parallel
(PAR) block, where program elements are execuled in parallel
and forming the basis of the closed parallel constructs, and
alternative (ALT), in which one program element is selected
from a set and providing explicit nondeterminism in the
language. The conventional 'WHILE' statement achieves
repelitive execution of a process, and the conventional 'IF’
statement executes the first component process for which some
evaluated expression is TRUE. The SEQ, PAR and IF con-
structs may be replicated, giving, in particular, a closed ForAll
parallel construct.

It should be noted that concurrency in Occam can take
place at the lowest level of the language. Single statements are
processes which can run concurrently. The statements of the
language are joined together by constructs.

A name can be given to any process allowing that pro-
cess to be used by name when it is required. The PROC
declaration introduces an identificr to name a process. The
named process may have formal parameters. These parameters
are replaced by the actual parameters of the substitution,
before the named process is executed. Occam has standard,
algol-type scoping rules for declaration and referencing of
objects. -

6.2. Occam+ Occam+ is an extention o the standard
Occam language [MS]. Whereas, Occam was designed to pro-
gram a set of interconnected processes, it has been extended o
support programs for shared memory parallel processors.
Using the standard scoping rules already part of Occam,

Occam+ allows variables to be referenced by any process
within their scope. In addition, variables can be passed by
reference to declared processes (i.e. procedures) providing yet
another mechanism o concurrent processes to shared access to
variables. Occam+ also allows declared processes to be recur-
sive.

Despite their similarity, Occam+ programs are expected
use shared memory as the primary communication mechanism
between processes and use the synchronous message passing
facility as a low level synchronization mechanism.

6.3. Development Time Monitoring

The sensors which arc responsible for collecting
development time information are hooked in the parser of the
Occam compiler. These sensors are actions which were added
to certain grammer rules. It is important to emphasis that no
changes werc made in the grammer. This mecans that these
modifications can be done with any other programing
language. We simply need to take the parser of the programing
language compiler and add to it actions (in the appropriate
places) which implement development time sensors.

The information collected during development time
concerns virtual processes and shared variables. For each vir-
al process we record its : parent id, childs list, name, type,
start line and end line. Each process is given a unique process
id which distinguish it from all other processes. The type of a
process may be either: assignment, input, output, seq construct,
par construct, etc. If the process is of type process call, the
name of the process is the name of the called process, other-
wise the process as no name. A hierarchy of processes is
created, forming the structure of a graph.

We look at Occam programs as if they are composed
from a set of routines corresponding to each of the named
processes and to the main process. The creation of the graph of
processes is done separatly to each of these routines.

Also the information concemning the control flow graph
used to detect harmful access and variables is collected during
development time. This information is used to associate infor-
mation collect at runtime with the program specification,

6.4. Runtime Monitoring

Some of the sensors which are responsible for the col-
lection of runtime information are hooked into the code of the
program. These sensors (i.e., these code installations) are gen-
erated by development time sensors. The other runtime sensors
are inserted into the runtime library. The runtime sensors are
responsible for collecting information conceming execution
times, instantiations of virtual processes and accesses to shared
variables.

7. AN EXAMPLE APPLICATION

In this section, we demonstrate various features of our
system by describing sample application. We chose the
straightforward paralellization of the quicksort because of its
familiarity and simple recursive structure. Quicksort starts

4.1.1.
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Var tab[max]:
Var maxdepth:
Extern Proc chassign(chan c, Value ch, fd):

Proc partition(Var tab[], Value left, right, Var mid)=
Var Smaller{max], Bigger[max]:
Var SmalerSize, BiggerSize, n, median:
n:= (right - left) /2
median := (labfleft] + tab[right]) / 2
Par i=[0For right)
If
tab[i] < median
Smaller{i] := tab[i]
1ab(i] >= median
Biggerli] := tab{i]
pack2right(Smaller, n, tab, left, SmallerSize)
pack2left(Bigger, n, Lab, lefi+SmallerSize, BiggerSize)
mid := left + SmallerSize

Proc gsort(Var tab[], Value n,curlevel, Var depth)=

Var mid:
Seq
If
n>1
Seq
partition(tab, n, mid)
Par
gsort(1ab{0], mid, curlevel+1, depth)
gsort(tab{mid], n-mid, curlevel+1, depth):
n=1
If
depth < curlevel
depth := curlevel
Seq -- main process
Readlnput(tab) -- read the numbers to be sorted
- into the array tab
maxdepth := 0
gsort(tab, max-1, 0, maxdepth)
PrintSorted Array(tab) — print the sorted array

Figure 7.4. Quicksort Program Fragment

4.1.1.



smaller than this value into set Smaller, and those equal to or

greater than this value into set Bigger. The parallelization

recursively applies quicksort o the subsets Smaller and Bigger

Main in parallel. The shared variable maxdepth is used (errone-
ously) to record how deep the recursion goes.

Figure 7.4 shows the interesting parts of the Occam+
program for quicksort. Two control flow graphs at different
zooming levels are shown in Figure 7.5 and Figure 7.6. The
user can point to a part of the graph with the mouse, and the
system will show the various information about the process
which is represented by this node. This information includes
the process' code, its name and type, the file in which it
appears, its start line in this file, etc.

gqsort

partition

gsort gsort There are two §hared data structures in lhf: program: the

array tab and the variable maxdepth. The first is the array of

values to be sorted, and the second is used just o sce how deep

the recursion goes. At first glance it appears as if the array tab

is written and rcad concurrently by many processes. At run-

. : time, however, we detect that this is not the case and that the

Figure 7.5. Control Flow Graph of Quicksort, Zoom Level = 2 array Tab is  harmless aray. On the other hand, the accesses

to the variable maxdepth are harmful, and will be so detected,

since il is wrilten and read concurrently by many different
proccsses.

8. CONCLUSION

Main We have described parts of a systerm under develop-

ment. Currently, the system has been implemented on a
l VAX/780 machine running the 4.2 Berkely version of the Unix
gsort operating system. In the near future the system will be imple-

mented on a Sun 3 workstation (also running the 4.2 Berkeley
version of Unix). The window system of the Sun 3 will help to

partition implement the graphics features of the system. The language
we choose was Occam+, which is an extension of the standard
Occam.

Par i Par i In place of a parallel processor, we are currently using a

simulator that exccutes compiled Occam+ code on a uniproces-
sor with a primitive scheduler to switch executions between
processes. The system has already provided insights as to what
are the important actions that should be mouitored. In addition,
we have a better understanding of the future needs for such a

pack2right

pack2left system.
In particular, the database appears to be a significant
+ bottleneck. It is crucial for the runtime information to be
assimilaled as fast as possible. Moreover, the user display
requires a complex access to the wealth of data accumulated
gsort qsort from each execution.

We are investigating various methods of performing the
monitoring via hardware sensors. We hope lo integrate the
monitoring within the parallel processor currently being
designed at Hebrew University.

. . ot In our cstimation, the weakest part of the current system
Figure 7.6. Control Flow Graph of Quicksort, Zoom Level =3 is the graphical display of information. Currently the system

only provides a set of predefined views. Being a feasibility
project, we have focused our attention on the exploration of
how all the pieces of the system interact. Future developments
of this system may provide the user with high level tools fo
programming his own views.

with a sel of numbers, divides the sct into lwo subsels, and then
recursively sorts them. The subsets are formed by choosing a
candidate median value and placing in parallel all elements

4.1.1,
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