
A Simple Load Balancing Scheme for

Task Allocation in Parallel Machines

Larry Rudolph Miriam Slivkin-Allalouf

Department of Computer Science John Bryce Ltd.

Hebrew University, Jerusalem, Israel Science Based Industries

and currently visiting PO BOX 23838

IBM TJ Watson Research Center Jerusalem, Israel

Yorktown Heights, NY

Abstract

A collection of local workpiles (task queues) and a sim-

ple load balancing scheme is well suited for schedul-

ing tasks in shared memory parallel machines. Task

scheduling on such machines has usually been done

through a single, globally accessible, workpile. The

scheme introduced in this paper achieves a balancing

comparable to that of a global workpile, while minimiz-

ing the overheads. In many parallel computer archi-

tectures, each processor has some memory that it can

access more efficiently, and so it is desirable that tasks

do not mirgrate frequently.

The load balancing is simple and distributed: When-

ever a processor accesses its local workpile, it performs a

balancing operation with probability inversely propor-

tional to the size of its workpile. The balancing op-

eration consists of examining the workpile of a random

processor and exchanging tasks so as to equalize the size

of the two workpiles. The probabilistic analysis of the

performance of the load balancing scheme proves that

each tasks in the system receives its fair share of com-

putation time. Specifically, the expected size of each

local task queue is within a small constant factor of the

average, i.e. total number of tasks in the system divided

by the number of processors.

1 Introduction

The scheduling of the activities of a parallel program

on a parallel machine can significantly influence its per-

formance. A poor scheduling policy may leave many

Permission to copy without fee all or part of this matertial is granted pro-
vided that tbe copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

Eli Upfal

Department of Applied Mathematics

Weizman Institute, Rehovot, Israel

and

IBM Almaden Research Center

San Jose, Ca

processors idle while a clever one may consume an un-

duly large portion of the total CPU cycles. The main

goal is to provide a distributed, low cost, scheme that

balances the load across all the processors.

Scheduling schemes are only important when tl~e

system is allowed to schedule and map tasks to proces-

sors. Many users of today’s parallel machines demand

maximum performance and are therefore willing to in-

vest an Herculerian effort in doing the mapping and

scheduling themselves. On the otherhand, shared memo-

ry machines as well as a few message passing ones wish

to relieve the user of this job and allow development of

more portable code. We focus on shared memory, asyn-

chronous parallel machines, but believe that our results

are more widely applicable.

Many load balancing schemes for parallel process-

ing have been studied, although most make differ-

ent assumptions or require a detailed knowledge of ei-

ther the architecture or the application. For examplle,

when adaptive meshes are used in applications such

as Particle-in-cell methods, finite difference and finite

element calculations, load balancing schemes are con-

cerned with how to move boundries to equalize the num-

ber of particles allocated to each processor ([DG89]).

Here information is exchanged at natural synchroniza-

tion points.

Independent of the application, some schemes try

to find the global average load and the least and mc)st

loaded node in the system using a minimum of com-

munication steps. The strategy is to query only a

small number of neighbors at periodic intervals in the

hope of keeping its own information up-to-date (e.g.

[CK79] ,[BKW89] ,[J W89]). Sometimes a central server

is considered ([B K90]). There have also been attempts

to use simulated annealing ([FFKS89]).

Schemes are often directly related to the machine

architectures. There have been many schemes proposed

for hypercubes ([DG90], [DG89]) and either balance

@ 1991 ACM 0897914384/91/0007/0237 $1.50

237

only between local neighbors or recursively balance be-

t ween adj scent sub cubes.

Similar to our scheme, Hong et al. [HTC89] try to

achieve global balance by equalizing the loads between

pairs of processors. The balancing, however, occurs at

fixed, predetermined intervals and they are interested

in the effects of changing the interval times. Another

approach that also uses random polling [KR89] has the

processors poll only when they are idle.

In contrast, our work is concerned with tightly cou-

pled shared memory parallel machines where the tasks

may all be part of the same parallel program. We as-

sume that communication between PEs is uniform and

inexpensive although it appears that our results can also

aPPIY to restricted communication architectures, such
as hypercubes. Moreover, we are able to prove a bound

of the performance of the balancing scheme.

Parallel shared-memory machines designed in the

past often provided a flat global memory and so there

was a minimal cost in moving a task from one proces-

sor to another. The single global workpile is sufficient

for these architectures (e.g. see [R87]). Each proces-

sor (PE) chooses the next task in the global workpile

and executes it for a given time-quantum. If the task

does not terminate within the time-quantum, it is re-

turned to the end of the global workpile and the PE

chooses the next task. Thus, unless the number oft asks

mat ched the number of PEs, it was unlikely that task

would be resumed on the same PE. The global workpile

with time-slicing gives the appearance that there are

many more PEs executing in parallel than may physi-

cally exist in the system. The work-load of the tasks is

also evenly balanced among all the PEs and no PE will

be idle while there is a task ready to be executed.

The global workpile scheme is not well suited for

more advance architectures in which there is a more

complex memory hierarchy and where the amount of

local state is significant. Here, it is preferable for a

task to resume its execution by the same processor

that executed it previously. A local workpile associated

with each PE will provide this continuity, but it suf-

fers from a potential unequal distribution of the work

(tasks) among the processors. One PE may have a very

long workpile while another may have a very short or

empty one. Unless the system employes some load bal-

ancing technique, tasks will then execute at different

rates, inversely proportional to the average length of

their workpiles.

We first state our assumptions and requirements for

a parallel task system. Our load balancing scheme is

then presented. Its behavior and performance is then

analyzed and the results of simulations are presented.

Finally, we show that there are cases in which a t=k

allocation scheme based on local workpiles with load

balancing performs better than one based on global

workpiles.

2 Foundations

Each processing element consists of a CPU, registers, lo-

cal memory for local computation and 1/0 ports which

will enable it to work independently on a task. We con-

sider the task as an indivisible entity, the smallest viable

computational unit.

We assume a parallel processor that is executing a

parallel program. A task is a piece of code that is

to be executed, possibly in parallel with other tasks.

We assume that tasks are generated dynamically by the

processors and can be executed by any of the processors.

All existing, ready-to-run tasks in the system are either

being executed by some processor or are are maintained

in a data structure that we call a workpile. We use this

term instead of the traditional term of task queue since

a strict FIFO order is not required. Tasks are inserted

to and deleted from the workpile.

The workpile can be organized two different ways:

as a single, global work pile accessible to all processors

or as set of local workpiles, one associated with each

processor. Of course hybred schemes are also possible

although not considered in this paper. All tasks are

assumed to have the same priority; multiple priority

levels can be implemented with the schemes presented

here used within each distinct priority level.

Since tasks may closely interact and since there may

be more tasks than the number of processors, a preemp-

tive scheduling strategy is required. That is, a proces-

sor executes a task for a period of time, usually called

a time-quantum, or until the task voluntarily gives up

cent rol.

2.1 The WorkpHe as a Global Queue

When the task allocation scheme is based on a single

global queue, all insertions and deletions of tasks are

directed to the same data-structure. Each idle processor

removes a task from the workpile and begins to process

that task. The process executes the task until the task

either terminates, suspends, or a quantum of time has

elapsed. In the latter case, the task is returned to the

global workpile for continued processing at a later time.

The processor is then considered idle and thus chooses

another task from the global workpile and the process

continues. If the workpile is empty, the processor retries

after a short idle period. Access to the global workpile

is sequential in that only one processor may be adding

or removing a task from the global workpile at any time.

If multiple PEs simultaneously attempt access, they are

serialized in an arbitrary fashion.

238

x

x x

x x x x

x x x x x

x x x x x x

x x x x x x x x

PE1 PEz PE3 PE4 PE5 PE6 PE7 PE8

Figure 1: Each PE has a workpile associated with it.

It inserts and deletes only to this workpile. A load bal-

ancing mechanism may move tasks from one workpile to

another. PEi executes a load balancing operation with

probability I/li where li is the length of the i. workpile.

This scheme appears to provide the best load balanc-

ing since it is never the case that a processor remains

idle while there is a task ready to be executed. But this

is true only in a very limited setting. First, since many

processors may concurrently access the global workpile,

some of these access may have to be delayed. Second,

if the number of tasks is only slightly larger than the

number of processors, there will be too many needless

context switches. Finally, it is highly unlikely that a

task will be rescheduled on the same processor that pre-

viously executed it and if the processors have the ability

to keep a significant amount of task state in their local

memory then this migration will be expensive.

2.2 The Workpile As A Set Of Local

Queues

An alternative to the global workpile is for each pro-

cessor to maintain its own local workpile of tasks. Each

processor chooses the next task only from its own lo-

cal workpile (Figure 1). The local workpile is organized

as a FIFO queue so that the tasks are processed in a

round-robin fashion. If the local workpile is empty, the

associated processor remains idle.

Newly created tasks are also placed into the local

workpile of the processor executing the creation opera-

tion. This allows an optimization in certain situations.

Many parallel languages, and or operating systems, al-

low a task to be spawned or created with an associated

multiplicity count, m. In a single call, m distinct tasks

are created, each one assigned a different index in the

range O to m — 1. The optimization consists of placing

only a single templete into the workpile and as each task

begins execution, the full task control block is created.

If the tasks require only a small amount of CPU time,

this optimization will be significant.

There

the local

are several advantages

workpile organization.

and disadvantages to

The advantages are

Balancing Task for PE ~

lock Workpile:

r = random number in the range [1, p] but not i

lock workpile,

if I size of WorkpileC — size workpiler 1 > r

then move task from the end of the longer

to the end of the smaller so as to

equalize their workpile sizes.

unlock Workpilei and workpiler

Figure 2: The load balancing task

that tasks may be inserted and removed in parallel and

tasks remain on the same processor that first executed

them. On the otherhand, there may be many idle pro-

cessors. Indeed, without any explicit load balancing, idl

the tasks might be on a single local workpile. Two types

of load balancing are possible, initial allocation where

newly created tasks are inserted onto any of the local

workpiles and continuous balancing where tasks may

be moved from one local workpile to another whenever

they are not executing. Any combination of these two

are possible; we focus on the latter case.

3 The Balancing Scheme for Lo-

cal Workpiles

The most striking feature of our load balancing

scheme is that it is adaptive, distributed, and very sim-

ple. Each processor makes its own local, independent

decision as to when to balance and with whom. It is

suprising that although no processor has global knowl-

edge of the system load, the expected load on each node

is about the average load thoughout the system.

The main problem related to the function of control-

ling and balancing the workpiles is the conflict between

the desire to control and the unwillingness to have one

single master processor. Also it is not desirable that

each processor check the situation of the whole system

during each time period. Rather the load-balancing is

done dynamically with minimal interference.

Load balancing has traditionally been exectued in

one of two different ways. In the periodic solution a tilme

period is fixed throughout the system during which lclad

balancing is performed. In the when necessary or polling
solution, whenever a PE is idle it polls the other PEs to

share in their work.

We propose using a different approach to scheduling

the load balancing work. There is no set time during

which a processor executes the load balancing task. In-

stead, the load or size of the local workpile dictates the

239

frequency of its execution. Let li,t be the number of

tasks on the workpile associated with processor i at time

t.Let t be the time at which processor i is accessing its

scheduling code. At time t,before scheduling the next

task from its local workpile, processor i flips a coin and

executes the load balancing task with probability I/li,t.

If li,t = O, then the processor delays a certain amount

before executing the balancing task once again. In our

implement ation, we use an exponential backoff scheme

in this case,

A processor with many tasks in its local workpile

will thus execute the load-balancing task infrequently

while one with a short workpile will frequently try to

load-balance. The fraction of time that a processor will

invest in load balancing is inversly proportional to its

own workload.

The load-balancing task simply chooses some other

PE at random and tries to equalize the load between the

two workpiles (see Figure 2). If the difference in load

between the two workpiles is greater than some lower

limit, tasks are then migrated from the heavier loaded

workpile to the lighter one. If the other workpile is

current ly being accessed, then either the PE may give

up or else wait until the workpile becomes free. Our

implementations suggest that there is little difference

between these strategies.

There are several implement ation details that re-

quire further explanation:

The simplist way of choosing another local workpile

with which to balance is by choosing one at ran-

dom. Each processor begins with a unique seed for

its random number generator.

Concurrent access to a local workpile is not allowed.

Local workpiles are accessed in FIFO order.

The load of a workpile is measured as the number

of tasks on the workpile.

A system-wide threshold value, r, is fixed such that

only task workpiles whose length differs by more

than ~ will perform a balancing operation.

A balancing operation consists of moving tasks

from one workpile to another in order to equal-

ize their lengths. Tasks from the end of the

longer workpile are moved to the end of the shorter

workpile.

No starvation occurs. Since workpiles are accessed

in FIFO order a task the does not migrate will even-

tually be executed. If it is migrated, it is moved to

a position closer to the head of the queue.

In summary, in a heavily loaded system, there is lit-

tle load balancing and in a lightly loaded system, load

balancing is frequently attempted. This also holds true

for each individual processor. Furthermore, since the

sizes of the workpiles are roughly equal, there is very

little task migration. It is also very rare that some pro-

cessor will attempt to access a workpile will some other

processor is currently accessing it.

4 Results

Since there is no single, generally accepted performance

criteria for task scheduling, we present several different

analyses of the behavior of our scheme. Of prime impor-

tance is how well does our scheme perform in a real sys-

tem with real workloads. Many factors, such as memory

access time, network traffic, type of application, and low

level implementation details influence the performance.

We have there for measured and compared the perfor-

mance of our scheme and the global workpile one using

a simulation system of a parallel computer with sample

application programs. The results are reported in the

first subsection. Simulations are not sufficent, however,

to prove the general applicability of our result. The

second subsection, therefore, presents analytical results

proving that each tasks in the system receives compu-

tation time that is proportional to its size in the entire

system, that is, p/T, where p is the number of processors

and T is the total number of active tasks in the system.

The final subsection explains the effect of the scheduling

and load balancing and presents an example where the

decentralized scheme outperforms the centralized one.

4.1 Simulation Results

For two different application programs, we present the

results of a simulation system of an ideal parallel com-

puter. The simulation system makes many simplifica-

tions:

1.

2.

3.

4.

5.

there is no difference in the costs of memory ac-

cesses.

no overhead in moving a thread from one processor

to another.

no overhead in updating cache or page table entries.

no contention on the global workpile and inser-

tion/deletion takes no time.

load balancing takes zero time.

All these assumptions, save the latter, favor the global

workpile scheme since such overheads are higher in

the global workpile scheme than in any other scheme.

240

We wish to argue that even without these bene-

fits, the decentralized workpile scheme with adaptive

load-balancing is competitive with the global workpile

scheme. There are, of course, many situations that favor

the centralized scheme. Thus, the ultimate choice de-

pends on how costly are these measures on a particular

machine.

We present the results of two different applications

and four different schemes. The applications are a par-

allel version of quicksort and a master/slave skeleton

program. In the first, a random splitting element is

choosen, the array is subdivided into those elements

larger and those smaller than the splitting element. The

sort is recursively and in parallel applied to these two

sets. The second application has a master process ex-

ecuting and then spawns off a number of slave tasks,

16 of them in our case, to work in parallel with the

master. The slaves run for a short time. Somewhat

later, the master once again spawns off a set of slave

tasks. The process continues a number of times, 16 in

our case. In both cases, the problem size is fixed and

we vary the number of processors and measure the time

to completetion.

Figures 5, and 5 summarize the results of the simu-

lation that focuses only on the load-balancing features.

There are two points to note. First, the scheduling

schemes affect the performance even when one ignores

the overheads of migration and concurrent access to

the global workpile. This is important since it gives

credence to the simulations and the same applications.

Second, when one considers just the balance, the local

workpile scheme gives a balance which is as good as the

global workpile.

We also examined what happends when the first two

simplifications are dropped. That is, we assumed that

memory references can be either local, shared, or re-

mote. We present results when these values are 1, 2,

and 3, respectively. In the global workpile situation, all

memory references are cha~ged as shared. In the local

workpile situation, memory references are either local

or remote. Without loab balancing, tass are initially

allocated to random processors and never moved. Their

memory accesses always are charged as local. When

there is migration, a task is first charged at the remote

rate and after a while, it reverts to a local rate. We hope

to capture the fact that initially, there is a high cost but

after some time, the state can be transfered to the local

memory. Figure 5 presents these results. We can see

that the global workpile case is always twice as expen-

sive as the others. This implies that there is not too

much migration. It is also interesting to note that with-

out load balancing, performance is as bad as the global

case. The unbalanced work load wastes about half the

processing power.

4.2 Analysis

We prove that the load balancing scheme indeed pro-

vides a good balance. The expected length of local

workpiles is within a small constant factor times the

average length. The key observation is that if the sys-.

tern starts in balanced, then it will stay that way. Of

course this result depends on some reasonable assump

tions concerning the creation and termination of tasks,,

Denote by Lp,t the load (= number of tasks) proces-.

sor p has at the start of step t,and by AP,t its change to

its own load at time t ignoring load balancing changes,

i.e. the number of new tasks processor p generates at

step t minus the number of tasks terminated at proces-

sor p at this step. AP,t might have an arbitrary distri-

bution, but we require that lAP,t I is bounded by some

constant 6.

Denote by Lt = ~P~v LP,t the total load of the syst-

em at time t,and by At = ~ the average load at time

t;there are n processors. Let Pp,t denote the probability

that processor p initiates a load balancing procedure at

time t.We prove that if the system starts balanced, and

if Pp,t > &, for some constant 0 > 1, then the sys-

tem achiev~s optimal load balancing up to a constant

factor. In other words, the expected waiting time of

processes in workpiles of different processors differ only

by a constant factor.

Theorem 1: There are constants a, and C, indepen-
dent of the number of processors n, and the distribution
of AP,t (the schedule of tasks to the processors), such
that when the system starts balanced, and the load bal-

ancing algorithm is executed, for each processor p, and

at each step t,

~[Lp,d s W% + c’.

proofi To simplify the analysis we consider a weaker

load balancing scheme in which PP,t (the probability

that processor p initiates a load balancing procedure

at time t) is always bounded by min[fi, +] for some

p >0. Thus, we restrict the activity of the very lightt~

loaded processors. We also assume a very weak conflict

arbitration scheme: If processor p is initiating a load

balancing procedure at a given step, it ignores messages

from other processors initiating load balancing at this

step. Furthermore, if processor p did not initiate a load

balancing procedure but was chosen by more than one

processor, then p does not balance its load with any

processor. The performance of the original algorithm

clearly dominates the performance of this algorithm.

We prove by induction on t that E[LP,t] < aAt + C’.
The theorem assumes that the system started balanced.,

thus the induction hypothesis holds for t = O. Assuming

that the claim holds for t we bound EILP,t+l].

241

~[~P,t+-1] = ~[%p] + ~[Ap,tl + ~[CI] – ~[cz],
where Cl gives the contribution to Lp,t+l from load bal-

ancing with a processor chosen by p, and C’2 gives the

load lost by a load balancing with a processor choosing

P.

Clearly, p never receives more than half the load of

the processor it chooses, the probability that p initiates

a load-balancing procedure at step t + 1 is bounded by

~ If it initiates load balancing, the probability that.At “
Itchooses processor z is 1 /(n – 1), and in that case it

receives no more than L.,t /2 tasks. Thus,

Bounding E[C2] is more complicated since we need

a lower bound. Let Alt denote the set of processors

with Lm,t < 2At. Clearly lLl~ I ~ n/2. The probability

that a processor z c A4 initiates load balancing is at

least min[~, fi, ~]. The probability that processor z

chooses p, p is not chosen by any other processor, and

p is not initiating load balancing at this step is at least

Let y = min[d/2, p], then

[

l-f

z

Lp,t – Lz,t
13[C2] z min E[1)

4(n – 1) z ~6M 2

Lp,t – Lz,t
E[1

Rx 14(n – 1) 2 .~M 2 1
~ min

[
E[~(P,L ~ – 2At)], E[‘Lp”l; ‘J]] ~

Set a = 6+86, p = 0/2 = a+l, C = 8p+16(a+l)6,

and recall that At+l ~ At – 6.
If ~ < ~ then

EILp,t+l] = .E[Lt,p] + E[Ap,t] + E[cd – E[cz]

<CYAt+C +6+p/2-y(@ -2)/8 s~At+I+ C’.

E[Lp,t+,] = E[Lt,,] + E[Ap,t] + EICI] – ‘[cd

<~ At+ C+6+p/2– C/16 <cxAt+l +C.

❑

We measured how much the length of the task

queues differed from the global average and plotted the

resut 1s in Figure 5. We ran 10 master-slave applications

together and measured how the local workpile lengths

differed from the global average. At each time step,

we computed the global average, At, and summed the

square of the differences of the queue lengths from At.

We averaged this value and then took the average over

alltime steps. That is,

We see that the load balancing keeps the size of the

workpiles very near the average. This value ranged be-

tween 2 and 3.

4.3 FIFO Not Always Best

We present another example when the decentralized

scheme provides better scheduling than the central-

ized one. It is interesting since at first blush, the global

queue seems to provide the best possible balance. We

use the term queue in place of workpile in order to em-

phasize its FIFO nature. Let us assume p PEs and p+ 1

tasks. One of the tasks is much longer than the other

and it takes h time quantum units to execute it. The

other tasks are equal sized - each requiring s time quan-

tum units, where s << h. First, consider the global

task queue scheme: The time until all the short tasks

complete requires ((p + I)/p) * s time quantum units.

The remainder part of the long task has h – s units of

time. Thus, the whole execution takes

h–s+((p+ l)/p)*s=ll+s/P

units.

Next, consider the local task queue scheme with load

balancing and a threshold T = 1. There are two diffent

possibilities: The long task can be inserted into a queue

with another short task (this happens with a probability

of 1/p) or the long task is alone and some other task

queue has two short tasks. If the long task is alone in

the queue the execution time is h. Otherwise it takes

h+s/2. Thus, the whole execution is expected to require

l/p(h + s/2) + ((P – 1)/p)h = h + s/(zP).

Since s/(2p) < s/p the global task queue scheme does

not provide the best scheduling.

5 Conclusions

We believe that the local workpile with load balancing is

ideally suited for shared memory parallel processors. It

gives the programmer the ability to program at a higher

level of abstraction since he does not need to know the

exact number of processors available. Moreover, the

load balancing scheme adapts to the current load on

the system.

242

It is interesting to consider how our scheme performs

when faced with the popular paridigm of “loosly syn-

chronous” programs and a multiprogrammed environ-

ment. Here, each program consists of a set of tasks

that execute in a loosely synchronous fashion. That is,

each task executed for a period of time and then partic-

ipates in a communication or information exchange step

with all the other tasks in the program. It is expected

that the execution periods of the tasks are about equal.

Now suppose there are several of these programs run-

ning concurrently. If there are enough processors for all

the tasks, then our scheme will quickly approach that

mapping. If the total number of tasks is much larger

than the number of processors, then our scheme will

cluster together tasks belonging to the same program

since there tasks were initially placed on the same task

queue.

Our experimental results showed that there is hardly

any difference between the two schemes in terms of the

distribution of work among the processors. Thus, ar-

chitectures that encourage local state, would be better

served with the local workpile scheme.

The key insight in the analysis is to demand that

the system begin in a balanced state. It can be shown

that the random selection is necessary to get our result.

It each processor had chosen to balance only with a

small set of neighbors, the it is possible to form little

mountains or heaps with the peak located at a processor

that continues to generate new tasks and the size of the

workpiles decreasing as one gets further from the peak

processor.

One of the weaknesses of the scheme is that the load-

balancing tasks are executed with the same frequency

whether the system is balanced or not. A possible im-

provement is in the dynamically setting the threshold

value.

The scheme should be investigated for non-fully con-

nected topologies such as the hypercube. It is our belief

that it is nevertheless worthwhile to treat the hypercube

as a completely interconnected network and to simply

pay the extra cost when sampling or moving tasks be-

tween non-adj scent processors.

Another extention to this work involves treating

newly created tssks differently from already executing

ones. If is cheaper to move a task before it has exe-

cuted. One should move such tasks first and only when

that does not provided a good enough balance should

other tasks be moved. Of course both types of migra-

tion can be based on the same load balancing scheme,

only using different probabilities.

References

[BKW89] Baumartner, K., R. Kling, and B. Wah, “im-

plementation of GAMMON: an efficient load bal-

ancing strategy for a local computer system,” Proc-

eedings of the International Conference on Paratlel

Processing, Vol 2, pp. 77-80, Aug. 1989.

[BK90] Bonomi, F. and A. Kumar, ‘(Adaptive optima]

load balancing in a nonhomogeneous multiserver

system with a central job scheduler,” IEEE Trans-

actions on Computers, Vol. 39, pp. 1232-50, Oct.

1990.

[CK79] Y.C. Chow and W. Kohler, “Models for Dy-

namic Load Balancing in a Heterogeneous Multiple

Processor System,” IEEE Transactions on Comput-

ers, Vol. C-28, pp. 334-361, May 1979.

[DG90] Dehne, F. and M. Gastaldo, “A note on the

load balancing problem for coarse grained hypercube

dictionary machines,” Para!lel Computing, Vol 116,

pp. 75-79, Nov 1990.

[DG89] Dragon, K, and J. Gustafson, “A low cost hy-

percube load balancing algorithm,” Proceedings of

the Fourth Conference on Hypercubes, Concurrent

Computers and Applications, Vol 1, pp. 583-539,

March 1989

[FFKS89] Fox, G., W. Furmanski, J. Keller, and P.

Simic, “Physical optimization and load balancing

algori thins ,“ Proceedings of the Fourth Conference

on Hypercubes, Concurrent Computers and Applica-

tions, Vol 1, pp. 591-594, March 1989

[HTC89] Hong, J., X. Tan, and M. Chen, “Dynamic

cyclic load balancing on hypercubes,” Proceedings

of the Fourth Conference on Hypercubes, Concurrent

Computers and Applications, Vol 1, pp. 595-598,

March 1989

[JW89] Juang, J. and B. Wah, “Load balancing amd

ordered selection in a computer system with multi-

ple contention buses,” Journal of Parallel and L)is-

tributed Computing, Vol 7, pp 391-415, Dec. 1989.

[KR89] Kumar, V, and V. Rae, “Load balancing on the

hypercube architecture,” Proceedings of the Fourth

Conference on Hypercubes, Concurrent Compuiers

and Applications, Vol 1, pp. 603-608, March 1989

[K89] Keller, J., “The MOOS H Operating System and

Dynamic Load Balancing” Proceedings of the Fourth

Conference on Hypercubes, Concurrent Computers
and Applications, Vol 1, pp 599-602, March 1989

[R87] Raetz, G. “Sequent general purpose paraJlel pro-

cessing system,” Northcon\87, pp. 7/2/1-5, Sept.

1987.

243

quicksort (size 500)

5500] I I I I I I I I

5000

K

Global Workpile +---

No Load Balancing +

4500 Load Balancing, Static Initial Placement ~

Load Balancing, Random Initial Placement x

4000

3500
Time

3000I

2500

2000

1500
I

1000I [I I I I 1 I I

O 2 4 6 8 10 12 14 16 18

P

Figure 3: Quicksort application of size of 500. The scheduling strategy clearly affects the performance and there

are times when the global workpile does not yield the best performance. Even without the local memory access

advantages, we see that the load balancing scheme yields good performance.

9000

8000~

7000

6000

Time 5000

4000

3000

2000

1000

master-slave (size 8); uniform memory access costs

I I i I I I I

Global Workpile ~

No Load Balancing (Local) +

Load Balancing, Static Initial Placement -

Load Balancing, Random Initial Placement x

I I I I I I I

1 2 3 4 5 6 7 8 9

P

Figure 4: This data shows that when memory access costs are the same and the number of tasks is a little more than

the number of processors, then our load balancing gives better results than then global workpile.

244

master-slave (size 64); nonuniform memory costs

900000 I I I I I I I I

800000

1

Global Workpile e .

No Load Balancing (Local) +

700000 Load Balancing, Static Initial Placement - -

Load Balancing, Random Initial Placement x

600000

500000
Time

400000 -

300000-

200000-

100000-

0 ~ 1 I I I I I i

O 2 4 6 8 10 12 14 16 18

P

Figure 5: A memory access to local memory is charged 1 unit and to remote meory is charged 3 units. Shared

memory access are charged 2 units. After a task migrates, its 10 access are charged at the highest rate of 3 units.

Each task executes a total of 64 accesses. In this application, the master task spawns 64 slave tasks. After all these

slaves finish, another batch is started. The results shows that the global workpile is about twice as bad due to the

fact that each memory access time is twice as expensive, Thus we see that very few of the accesses are remote.

Without load balancing performance degrades due to the poor scheduling even though all the accesses are charged

1 unit.

multiple master-slave; variance of queue lengths

700 I L I I I I I I I

300

200

100
1/

1,~..uNo Load Balancing (Local) -9-

600 Load Balancing, Static Initial Placement +

oad Balancing, Random Initial Placement e

500

400
X2

O 2 4 6 8 10 12 14 16 18
P

Figure 6: We ran 10 master-slave applications together and measured how the local workpile lengths differed from

the global average. We plotted the following ~ zic~ ~ ~ie~ (b,t– -4)2)where T ranges over all time values, n. is

the number of processors, Li,t is the length of workpile at processor i at time t,and At is the average number of

tasks in the system at time t.We see that the load balancing keeps the size of the workpiles very near the average.

245

