L8

Larry Rudolph '\i\aéaaen'%? “-XEj ul
*u p\s -

March 15, 2006 o e e g

I- Massachusetts
_L db J Institute of

CSAIL Technology Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

User Interface Goal

® Convey and gather information from user(s)

® when useris not sitting in frontofa PC

® Support a set of standard actions and outputs

® Graphical User Interfaces (GUI) have been well studied
® Must understand them before generalizing
® Pervasive computing uses many types of use intssfaces
® A web page is an example of a GUI
® Whg is there a need for angthing else?
® Because of historical and egiciencg reasons

Ch ® Want more direct and richer varietg of interface
iy

_L%-r/dﬁ J

CSAIL 2 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Tl

User Interface Goal Il

“As interfaces become easier to use, they become harder
to create” [Meyers 1994]

® Do you agree?
® KISS: Keep ltSimple
® |t takes alot of hard work to make things look simple
® What user interfaces do you like?
® Pod, Tivo, ...
® Microsoft Windows 2000 have dynamic pulldown menus

® Does anyone like them? whg not?

® The new Microsoft office menu’s -- do they help?

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Tl

KISS: Keep it simple

® Goal is for user to not think about how to do
something; it should be automatic:

o Ifthereisa choice, then one must think

® /mouic theaters offer uery limited choice of candy

® Supemaskets offer huge variety of Soft deinks - - what is difference?
® Save file via menu, kegboard, icon, rightclick,

® One mouse button simpler than tl’lf’CC

® Paya lot of money for large screen, whg waste it on rarelg
used menu bar

4 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

KISS: Keep it simple

® People do not think about repetitive actions
® ‘Do you rca”g want to delete file?”
® after third time, people usually click O without thinking

@ Lots of research on design principles
® anditis often ignorecl :(

5 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Manipulation

® Indirect Manipulation

L4 E.g. Program Places gral:)hic objects on screen
° Nothingis “clickable”

o Tocla I Feel?)awkwarci to use kegs on mobile Phone to
mamﬁu ate o Jects on screen.

® Cuctything used to be that way.
® Direct Manipulation of Objects

® (Jser cﬁrcct? manipulates Grapl’tical Objects with mouse
or keyboar

° “Tangiblc Usﬁrlrjtenc ce” of thf\’cﬁtqr‘% users will
manlpulatep 9s|ca|0Jectsw1t their hands

6 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Alphagrips
o

o o
Certy

CSAIL Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Widgets

® For lack of natural term, GUI objects are Widgets
® Everything in a GUI is a widget

® Widget is picture displayed on screen that is under
control of the GUI.

® Widgets are hierarchical: they contain other widgets.
Examples are:

¢ Window frame, radio button) scroll bar, menu, ..

@ GUI's support certain types of pictures

° others types must be converted

CSAIL 8 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

(c) 2003 incognito Games Lid.

® “Any problem in computer programming can
be solved by adding a level of abstraction”

® “Performance can be improved in programs by </
removing a level of abstraction” 2L A

® Indirection used to support abstraction

I - Massachus:
In: u t of
Technology Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Non-widgets

® A GUI is a level of abstraction between user and
program, hence it affects performance

® Graphical Computer Games demand high performance
for realistic animations

° They directlg manipulate the screen, mouse, kegboard
® Audio not part of GUI
* Duh. OK, but not Part of window system either

L4 Could do it bg ass:gnmga chanpcl to eaclﬁ aPPlxca‘clon
an have user select the channe as in a radio

[{L

CS A | L 10 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Mice

® Mouse is clicked inside of window or widget

® eg: controls standard widgets: drag a slider, twist a dial,
SCro up or down --a l ways to enter a number

® Major innovation: mouse cursor changes sprite as
moves between widgefs

® Re 31 world anaf {:ro looks cl gercnt ona l | Pad
in the pon car lodks same in drive- & park-'way

® Mouse is part of GUI, but not multiple mice

o NCTV I’LCCCJ arlsmg 1Crom WlY'ClCSS mousce ancl From PCJa or
ce P one as “mouse”

® Perhaps we ncecl Aigerent s[:)rites Per user?

1 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Mice |l

® Mouse actions:
e Click is two actions: “button down” and “button uP”

® Movement is relative: “delta x, delta y’ events
] Drag: move while button is down
e Wheel: “Button D” or “Button U” events

® One button mouse easier to handle

® Multiple button mouse requires training

L4 PCOPIC have bCCﬂ SUCCCSSFU”\lj trained alreaclg

® Mouse acceleration big success.

® Are there other applications of acceleration?

12 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Touch Screens

® Not exactly the same as a mouse

@ Click: no button down or button up

o dwell: leave ﬁnger in same location

o double click hard to hit same Pixel twice in a row

@ Movement: absolute, no consistent origin
® top left, or bottom righ’c can be (0,0)

@ Drag: very difficult, need "modal” command
® modes are considered harmgul) e.g shift lock is bad

® Wheel: perhaps use some gesture?

@ Not easy to simply replace mouse with touch

13 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Keyboards

® |t seems simple, precise, and nothing new
® One hand typing --
® my idea: double keypress -- means mirror key
® “aa” means“;” “ss” means“ll” & “gg” means “hh”
® | needed it when | sat with a baby in my lap
® there exist other one hand keyboards:
® twiddler (chording keyboard)
® half keyboard
® Telephone pad keyboard: 1-2,2-3, |-4, 1-4-2-5, 2-5

® Keyboard entry not exact
® on-screen keyboard
® 3“G” could be an “f”,“t”,“h”, or “b”
® Cellphone keyboard
® 3“G” could be a“4” or “H” or “I”

14 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

CSAIL

ual Laser Keyboard

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

& Twidor- The Twiddler Tutor! =lalx|
Twidor Tutor Twiddier Lesson
Lesson 1: Sentence 4
a bad aged face
a bad agd fac_
WPM AER
Last 36.0 7.6%
Lesson 41.0 2.5%

Twiddler Keyboar

Here you can see the tutor highlighting errors the user has made.

CSAIL

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

[ished—
by

Dasher o

frat
de mao ns —

T
=l
oo

(=]
]
|
<,
J5m o

=0
as)

<
ai}

= o m‘[%

ralis

demonstrat

® go to www.finference.phy.cam.ac.uk/dasher

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Expressive Typing

fuzzmail

® Writing with a pen on
paper does more than
express words:

® tisa Picture &
conveys non- —verbal
expressmn

® Use the intercharacter
fyp|ng speed to vary stoner) (ozoat) fEasies) (oo a1 Lrensy
either the font or the
inter-character spacing
or vertical alignment

e f il like thi
0 oo e diecthy

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

GUI Programming

® Embed in code

® Java AWT, Python TCL,TK

® Very hard to code, debug, maintain and modify
® Use GUI builder, e.g.Visual Basic

® rapid prototype

® reliable

® consistency across applications

® easier to implement “help” and “undo”

® easier to port

HEm Massachusetts
Institute of

Technology 19 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Glade (for linux, x-
windows)

® Three layers:

® user application, user GUI, window system

® we care about first two, glade deals with GUI
® Application separate from GUI

® |[nterface is via “callbacks”

® Each widget has a set of standard interfaces

® see http://glade.gnome.org/index.html

20 Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Review

® Examples of handheld interface

® device is with you & knows location ==>
it knows your location

® can “improve” location information
® Device can interface with other devices

® e.g.those nearby via bluetooth & those in
the world via internet & that it knows
and trusts

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Review ||

® Handhelds have functionality of computers
® but with more constraints

® exploit computation to compensate for
shortcomings -- main message of course

® Small screens & keyboards

® Probably also small microphones, speakers, and
other I/O -- discuss implications for Ul

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Bi-directional
Abstraction Barriers

® Expectations: (probability distribution)
® engine --> interface

® Disambiguation: (choices and their likelihood
-- n-best)

® interface --> engine

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Manipulation

® How does user interact to make things happen?
® Direct vs Indirect -- what does this mean?

® Drag & Drop, Click, Keyboard command

® Rule: Do something when an event happens
® Pervasive theme: direct vs indirect

® Examples: turn on computer; word vs latex

® Many other examples

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Specifying Ul View

® Direct: in code
® within program execution
® separate resource & specialized language
® what are the pro’s and con’s

® Indirect: implicitly specify via something

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Symbian Views

® (Not a python thing)

® FEach application has 5 components, one is
view

® Do not want text strings with code if app
is for international audience. So use ptr?

® Use whole view. Different view package
for different locations / languages / screen

® Make view available to other applications

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Implicate Method

® Structured domain, automatically generate
view

® If all menu handlers are in same object
(class), can use introspection to generate
menu items. Done at run-time.

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

def refresh(self):
app.title = u"Larry's First App"
app.menu = [(u"add to set", self.add_handler),
(u"new object”, self.new_handler),
(u"change mode", self. mode_handler),
(u"Cut", self.cut_handler),
(u"Paste", self.paste_handler),

]

def mode_handler(self):
self.currentMode = ModelList[popup_menu(List)]
self.display()

def cut_handler(self):
index = self.Ib.current()
cf = self.rawentries[index]
self.clipboard = cf
self.display()

from install_menu import *

class test_menu:
def __init__(self):
self.a = initial values
def menu_zero(self):
print "got a callback to zero"
def menu_one(self):
print "got a callback to one"
def menu_two(self):
print "got a callback to two"

m = install_menu(test_menu())

def install_menu(c):
""" given a pointer to a class, add all class methods

whose names begin with 'menu_' to the menu.

menu_items = []
for n in dir(c):
if n.find('menu_') ==
s = eval('c.'"+n)
menu_items.append((unicode(tag[5:]) ,s))
if n.find('exit_") == 0: exit_key = eval('c."+n)

appuifw.app.menu = menu_items
appuifw.app.exit_key handler = exit_key

Handlers everywhere

® We have constraints on where are handlers
® In same class, easy
® In other classes, how to reference them?

® make class instances global?

® pass methods into menu builder?

® what do you think?

SMea

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Indirection to the rescue

class EventPublisher:

utility class to provide basic Publish/Subscribe functionality.
def __init__(self):

self.__published = {}

self.notify = e32.a0_callgate(self.__notify)

def subscribe(self, event, callback):
""" Subscribes a callback function to specified event. There are no
timing restrictions on callback . Event must have been published."""
if event not in self.___published:
raise ValueError("no such event %s" % str(event))
if not callable(callback):
raise ValueError("callback must be callable")
self.__published[event].append(callback)

def publish(self, event):

publishes an event, so that subscribers can subscribe

if event in self.__ published:

raise ValueError("already publishing %s" % event)
self. __published[event] =[]

def __ notify(self, event, *args):

notifies the event subscribers that an event has occured. Schedules each subscribed callback function
to be invoked with the specified args. Does not actually invoke them, to ensure that a call to this

method returns promptly and without blocking. all callbacks will be invoked in the context of the thread that created
this object. "™

funclist = self.___published[event]
if len(funclist) > 0:

dbg("util", "%s - callbacks to notify: %d" % (event, len(funclist)))
for cb in funclist:
def callback(cb=cb, args=args):
try:
cb(*args)
except Exception, e:
dbg("util", "uncaught exception in callback!")
dbg_exc("util")
e32.a0_sleep(0, callback)

® Different screen resolutions

® e.g.176x208;240x320 (quarter vga);
352x416

e® Different screen orientations

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Navigation

® On each screen, user should be able to
answer questions:

® Where am I?

® Where can | go from here!?

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

