
Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Middleware,
Debuggging,
Virtualization

Larry Rudolph
MIT 6.883

May 10, 2007

1

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Publish & Subscribe
Larry Rudolph
May 3, 2006

SMA 5508 & MIT 6.883

2

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• An agent is an autonomous program.

• It executes code and can communicate with other agents.

• All the components in a pervasive computing
application (whatever that is) usually called agents

• An agent may be a “proxy” for a device
• Devices, like camera or keyboards, are controlled by

some proxy agent

• Agents may appear or disappear at any time

• There is some issue in how to start them
• There can be problems when they crash

• there may be replicates
3

Agents

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph4

• Parallel or distributed programming

• a bunch of communicating agents
working to solve a problem

• faster
• two heads better than one

• geographically distributed
• everyone can’t live together

A collection of agents

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph5

• Two main choices:

• (which was best used to be “religious
battle”)

• Shared memory (SM)

• agents load and store values
• start with a set of numbers

• remove two numbers, insert their sum

• done when only one value remains

• issues: synchronization, locks, etc.

• Message-passing (MP)

Agent communication

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph6

• Message-passing (destination, data)

• Agent Bob: Send(Alice, “Do you want to go out?”)
• Agent Alice: Recv(from,msg)

• from = Bob; msg = “do you want to go out?”

• send(Bob, “No”)

• Issues:
• Sender must know destination, recv need not
• blocking or non-blocking
• low performance, lots of copying of data

• MP can implement SM and vica-versa

• MP on clusters, SM on multiprocessors

Agent
communication

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph7

• Sockets are general

• Application can
specify

• port
• protocol
• other attributes

• Message-Passing

• library does all the
specification

• may reformat data

Message Passing via Sockets

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph8

• A third communication mechanism!

• formed basis of Linda programming language
• tuple: ordered collection of typed elements

• Basic Operations

• out: inserts a tuple, whose fields are either
• actual: a static value formal: a program variable

• in: extracts tuple, argument is template to match
• actuals match fields of equal type and value

• formals match fields of same type

• rd: same as in, but does not remove matched tuple

Tuple-space

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph9

Tuple-space example

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph10

Linda programming example

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph11

• Virtual shared memory

• tuples with [address,value]
• stores are inserts, loads are non-

destructive reads

• Virtual message passing

• tuples with [dest, data]
• recv are destructive reads

• Even more, when matching on
multiple fields

• Allows many types of
implementations

What is the big deal?

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph12

• Direct communication model

• Jini
• FIPA

• Indirect, Shared Data-space models

• EventHeap (centalized)
• MARS (fully distributed)

• Event-based publish/subscribe models

• Siena
• Jini Distributed Events
• Selective subscription

Agent Interaction Choices

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph13

• Based on Tuple Space paradigm

• tuple: arbitrary mix of typed fields

• mechanism for passing data & events

• Extensions make it useful for agents

• many projects exist based on different
extensions

Stanford’s Event Heap

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph14

• Extended Delivery Semantics:

• Per-source ordering, always see events in
order they are generated by the source

• Total order: if tuple space is centralized,
get this even if multiple sources

• Persistent Queries:

• non-destructive read of those matching
• also matches tuples inserted in future

• Event Notification:

• like PQ, get notified of future matches
• at most once semantics

Event Heap Extensions

Need more than simple
event heap

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Suggested additions

• Need “distributed, replicated or federated local
instances

• (from paper by Storz, Friday, & Davies)

• Multiple event heap instances -- but not easy of
implement

• View: processes that share a view have consistent
ordering

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph17

• Lots and lots of middleware systems

• no winner (may never happen)

• What gets communicated?

• services, events, XML records

• The shared space is often a: BROKER

• The broker stores the tuples and does the matching

More general issues

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph18

• Naming

• This is a big, big deal.
• e.g. how do you name a camera:

• model brand, IP, DNS name, location, virtual space

• via attributes (color, 740x1024), ownership?

• Is there only one name for the agent?

• Matching

• A big deal
• Which attributes explicit, which implicit

• Where to do the lookup?

Big Issues

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph19

• Addition information provided by broker

• for services: how to interface them
• filtering events
• higher level events implemented at broker

• based on multiple basic events

• Adaptivity

• When to discard services, events
• keep alive, heartbeats

• Invoke new instance of service automatically
• Fault tolerance

Issues

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph20

• Standards

• XML, SOAP, WSDL
• Proprietary Interfaces

• Middleware may be new Operating
System

• Whoever controls it will dominate
• Not clear if there is or will be a winner

• Integration with web-services

• Lightweight devices are different
• May want stateful communication

Issues

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Debugging Applications
in Pervasive Computing

24

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Turning bugs
into features

• Speech recognition is not 100%

• Who likes it when its wrong?

• Children

• Example: story telling (easy reading)

• Computer recognizes the words that the
child is reading and animates it

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Voice controlled
animation

• A very fertile domain: room for improvement

• mouse is very limited
• hard to specify parameters

• choose from list -- awkward when long

• one action and one parameter

• speech allows multiple parameters (and sub-
parameters)
• objects are parameters; adjectives are params of params

• Unfortunately, no good models of children’s voices

• so we have to act like children :)

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Testbed for other ideas

• Naming

• give basic object a name
• give composite object a name (macro)
• many parameters come from context (environment)
• differentiate between base object and instantiated

object

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Controlling Errors

• Two types of consequences to errors:

• something useful (or interesting)
• something destructive (or boring)

• Who gets to decide?

• tolerating some errors --> flexibility
• avoiding all errors --> too rigid

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Semantics

• Where does the semantics get checked?

• no consensus (speech, vision, sketch)

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Co-animation Approach

• Command: action and parameters

• error: incompatible action and param
• dogs: sit, run, lick, beg, bark

• cats: sit, run, lick, sleep, purr

• Consider the error: “dog purr”
• if cat is on stage, it purrs

• if dog is on stage, do random action

• random actor does random action

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Considerations

• Really depends on the cost of error

• can action be “undone” easily?
• is the user getting frustrated?

• Rather than selecting at random

• choose the most likely action

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Informing the user

• System consisted of lots of components
on lots of machines

• flash (XP), galaxy (Linux), audio (iPaq)
• how to find out about serious errors?

• cannot inform user; no output dev

• not clear if other apps will forward

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Some Challenges of
“traditional” debugging

approaches

33

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Stop/Inspect/Go

• Stepping through the code (e.g. gdb)

• break; inspect memory & data structures
• hard to get program to stop or break at correct

point

• Run backwards

• problem usually occurs just before death, so
backup and check data-structures

• Many ops are reversible (x = x + 1 x = x - 1)
• push on stack control flow and non-reverse ops

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Stop/Inspect/Go

• Logs

• Log all interesting events (I/O ?)
• Need way to organize independent logs
• Need way to see paths in the forest

• visualization tools are helpful

• extensive log event tags

• Log control-flow history

• off-line playback or re-execution

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Risk of Masking
Bugs

• Shared Memory (lots of experience)

• Many things look like share memory
• automatic synchronization; caching; distributed FS

• Low-level bugs due to strange timing bugs
• set flag; check flag; do operation

• Programmers think everything executes at same rate

• weird bugs when on process executes a little, pauses,
executes a little more, pauses, etc.

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Concurrency

• Debuggers don’t deal well with threads.

• Conditional Breakpoints:

• Break when phone locks DB & camera locks mic

• Need deterministic replay

• Need to understand all possible parallel executions

• race-condition detector

• Software Transactions (memory & data-base)

• hand time-outs
• heart-beat messages

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Distributed
Communication

• Central way to control
system-wide parameters

• duplicate message detection;
non-idempotent operations

• unified interface to debuggers
on different systems & OS’s

• start up; switch between
debuggers

• Distributed LEDs (one per
process)

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Virtual
Computer

• Start with a set of

• Emulators & Virtual Computers

• Add

• Scheduler (various orderings)
• Fault-Injection
• Instrumentation

• Debug under idealized world

• then move to real world

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Yet another approach

40

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Change-point
detections

• What do you do when things stop
working?

• Seek out a friend. Their first question:
“What did you change?”

• Your first response: “Nothing”
• Your second response: “Oh yea,

thanks”

• Too hard with pervasive computing
environment

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

How to support this?
• Too hard at the moment to automatically fix

all problems.

• Worthwhile to point out potential sources

• Monitor everything, learn what’s typical

• report what is atypical
• monitoring must be on-line and cheap

• Use human-level timing

• sec, min, hour, day, week, month, year

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Isn’t this like data-mining?

• Data mining for failure indicators?

• No long log files; no labeled data
• On-line and easier

• Finding outliers is expensive

• Finding what recently changed is cheap

Outlier

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Use out-of-band
communication

• If main application has problems

• error messages may not get
forwarded

• normal channels of
communication might be the
source of difficulties

• want separate communication
channel

• Use IM & SMS for query

• ubiquitous, natural, usually works

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Wrapping up

• My conclusion is that

• physical world poses new challenges
• user’s must help in fixing problems
• system must help the user in this task
• we’ve only just begun ...

Virtualization
Helping to make

Pervasive Computing
Pervasive

Larry Rudolph
MIT / CSAIL

Pervasive Computing

Intelligent Environments

Mobile Computing

Natural Interfaces and Interactions with

digital media

other humans

The Good News: Success!

Lots of interesting projects in

pervasive; ubiquitous; mobile computing

Most successful ones

use special or uniform hardware

user-to-user via remote, third party server
and simple data (text, picture, location, ...)

More than a curiosity?

Most projects remain “in the lab”

system built

evaluated

published

forgotten

Example: In Education

Student has trouble with homework and needs a little help:

Social networking formulation: Friend of a friend, who took same course
with same teacher and got a good grade

phone records classes attended, problem sets completed

when you walk around; phones silently interact and tell you if
someone nearby can help

but its 3 AM -- is there someone who can help?

broadcast help request; after one answer delete others

Require mobile phone integrated w/ PC to monitors (profile) everything

Nothing more than an experiment.

Solution: Virtualize

Provide abstraction layer to overcome limitations of
application, machines, and digital appliances

PC’s have already been virtualized, I want Phone

Why virtualize smartphone and handhelds?

it is powerful enough for many applications

but simple enough to be universal

phones are always with us

Solution: Virtualize

Data, Applications, Communications can be moved to:

physical phone (symbian, windows, palm, linux, ...)

much different phone or PDA

laptop

desktop

Virtual Phone

My
Phone

apps
data
config

Only use
one device
at a time

Host Page Tables

Interrupt Vector

Host OS Code, Services, Device
Drivers

Host Application Code
and
Data

Virtualize ARM cpu

Control “traps”

Control page tables

Snapshot state to
make it easy to
migrate

VM Interrupt Vector

VM OS Code, Services, Device

Drivers

VM Application Code
and
Data

VM Page Tables

Page
Table
Anchor

Page
Table
Anchor

Flash Memory

VM Application Data
Write Thru

Virtual Telephone
Modem: call host modem,
send dest. phone number,
connect when call succeeds

WiFi: send request to server,
server calls, establish VoIP
to server

Bluetooth: VPhone acts as
bluetooth headset

Physical Phone
Components

modemWiFiBluetooth

Speaker

RadioCamera

Microphone Keypad

Display Identity

VPhone

modemwifibluetooth

modemWiFiBluetooth

Personal
ServerTelephone

Network

Virtualize Services

Phone and PC Services

location

messages

browser

apps

.....

One Phone;
Many vPhones Host’s Phone

Alice’s
vPhone

Bob’s
vPhone

Charlie
vPhone

Adam’s Family vPhone

User explicitly chooses vPhone to use

Protection (Isolation) mechanism

Incoming call ==> correct vPhone accounting

Transfer data between vPhones via Cut-n-paste

E.G. Take picture, copy, switch vPhones, Paste.

Group Phone
one vPhone;
many hosts

Dial the group, all ring, anyone can answer

Call out, anyone can join in.

Anyone takes picture, appears in all group phones.

need to sync at virtual device layer

Group Credit-card; anyone can charge and all see

Host A

Alice’s
vPhone

Host B

Alice’s
vPhone

Host C

Alice’s
vPhone

Summary

My phone is always with me and can monitor what
I do with it

But there is more to my life (beyond phone)

I spend time in front of a computer

Infrastructure that enables application to run on
large set of devices

Make pervasive applications “real” and “private”

Phone Components
Telephone & Keypad

SMS Messaging

MMS Messaging

EMAIL

Calendar

Browser

speaker & microphone

camera (still & video)

music player

video player (also tv)

WiFi

Bluetooth

Personal Identify Keys

e.g. credit cards

Also: Location Info & Applications

vPhone Components
Telephone (in & out)

Messaging (in & out)

EMAIL

Calendar (sync)

Browser (record)

speaker & microphone
(virtualize)

Cache & Memory

camera

music/video/tv

WiFi (virtualize)

Bluetooth (virtualize)

Personal Identity
(virtualize & trust)

Also: Location Info & Applications

SMS Messages
via Personal Server.

multiple messages in short time, encoded via
phone call to server!

need to understand probability of next msg to be
sent (or received). Can be learned

Simple compression ==> 2 messages in one

Personal
Server

Telephone

Network

VPhone

System Services
Phone is more like appliance than general purpose dev.

Applications on the phone make use of system services.

Like device drivers, these may be shared

Physical Devices

Device Drivers

OS and Services

Applications
V. Device Drivers

Guest OS & Services

Applications

V. Services & Drivers

Guest OS

Applications

