
Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Intro Python Material
To be redone but useful anyway

1

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Introduction

• Is there anything fundamental?

• Python is a scripting language

• fast prototyping

• good for experimentation

• Why is it not a good idea?

There is a bit of tension at this point in the course. On the one hand, the lecture notes
should contain information, ideas, concepts, techniques and insights that should be
general and eternal. But we need to understand how our phones work.

The big point is that programming languages come in all different shapes and sizes. We
have learned that it is best to use the right language for the right task. (If you go on an
interview and you are asked which language you prefer, the right answer is that it depends
upon the task.)

Python is good for us because we can get started quickly and we are not ready to develop
large applications for the phone. It may be surprising how much functionality is possible
from having a bunch of phones interacting.

On the otherhand, no language is ideal. What are Python’s drawback for cell phone
programming? The most obvious is the lack of libraries - there are many things that
cannot be done with Python under Symbian. Remember, we are not computing the results

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Two different versions

• Mobile computing is new

• we have yet to learn the basics

• lots of experimentation

• less concern about backward compatibility

• past were static appliances mostly

• All fields go through such experimentation

New technologies, especially ones with major economic payoffs, go through a period of
great diversity and experimentation. For example, when automobiles were new, there were
many different manufactures and lots of innovation. Old movies often show office desks
with five or six phones. It takes time to see what works and what doesn’t (and often this
has little to do with technological superiority -- features win or lose based on a whole
range of factors).

Mobile phones are enjoying a period of great diversity in the search for the right
combination of features. But even more so, the appliance aspect imply that there really is
little need to be backward compatibility. So, we suffer because of this innovation.

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Where to find
installation files?

• Sourceforge -- look for pys60

• Mirrored on our wiki

• Python document is 73 pages, get it

• S60 2nd Edition phones (6680): easy

• S60 3rd Edition phones (N80): trickier

Do not try to understand the numbering. Once again, it is worthwhile to learn to
appreciate that technology does not always “rule” -- there are other considerations.
Personally, since programs that ran on S60, 2nd edition may not run on 3rd edition
phones, it would make sense to give it a new major number, say calling it S65, but I do not
make these decisions.

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Installation for the
certificate phones

• Install the self-signed
version on Symbian 9

• The freedevcert have
more capabilities but
you must sign them
yourself

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Python Fundamentals

• Python runs as an application

• scripts run within the application

• only one program at a time

• You can build a stand-alone application

• takes more effort to package it up

A program is something that has a start point. It gets loaded by the OS and control is
passed to its first instruction. There is meta-information required to tell the loader how
and where to place the various parts. An application is a whole lot more than a program.
It might have resources, license requirements, an icon, and perhaps capabilities. It is like
buying a item in the store. There is all this packaging, SKU’s, UPC codes, and a whole
bunch of other things that is required. This si true even for a simple connector; the
packaging can cost more than the product itself. Modern applications are like this as well.

What is great about using an interpreter, is that Python has already been packaged for us.
We need to only write the scripts and we can let the Python application run them for us.

The drawback is that we can only have one python programming running at a time, and the
startup actions are multiphased: first startup Python, then select a script, and then
execute the script.

It is possible to build a stand-alone application in Python, but for that, we must master the

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Libraries for Nokia
• appuifw: nokia ui interface

• (UIQ is another ui but for Sony-Ericsson)

• e32: symbian specific library

• special purpose libraries:

• graphics, e32db, audio, sysinfo, telephone,
contacts, location, camera, messaging, calendar

• print (could be redirected to file, via e32._stdo)
with putools: comes to console

There are two main libraries. The first is the application user interface frame work
(appuifw).
Obviously, it contains all the user interface routines that are part of Nokia’s user interface.
There are other user interface frameworks, UIQ is the other famous one.

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

• Threads:

• first thread must be last thread to exit

• first thread is the UI thread

• non-first thread may not use appuifw

• first thread should not use thread.lock()

• cannot share file handles, sockets, etc.

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Processes, Threads,
Active Objects

• Process: address space + threads

• A main thread interacts with user interface. Can
directly call UI. If blocks, application blocks

• Heap (shared by all threads)

• No statics (in DLL), but yes in new: S60-FP3

• Thread: Program Counter + AO + stack (small)

• AO (Active Object): Pieces of thread code that
interacts with User Interface

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

DLL’s and API’s
• API: the exported published behavior that a system

component exposes to other components

• Symbian OS DLL components can:

• define an API for use by other components
(system libs, app. engines)

• implement an API defined by a framework

• GUI applications, device drivers

• these are plug-in’s into a framework

Apps, DLL, API

Kernel: ekern.exe

System Libs: cone.lib, wserv.lib, estor.lib, euser.lib

User Library: euser.dll

Server

.exe .app .dll .dll

Application

 UI

Application

Engine

Server

API

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Processes (exe, app)

• an application has
only one user
interface thread

• sockets & file
objects cannot be
shared among
threads

• why?

Process

Server

ProcessProcess

Thread

Thread

UI

Thread

Thread

Thread
UI

Thread

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Process & Threads

• only one thread in
process has access
to UI

• sockets & file
objects cannot be
shared among
threads

• why?

Process

UI Thread Thread Thread

Active

Object

Active

Object

Active

Object

Active

Object

Active

Object

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

What kind of OS?

• Multi-tasking

• Multi-threading

• Real-time

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

UI Thread
• places objects on screen

• registers callbacks procedures associated with
screen & keyboard events

• when event occurs, want to pass control to the
callback procedure.

• what if thread is executing something else?

• Callbacks should execute quickly

• UI thread should spend most of the time idle

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Coordination
• Don’t use normal thread locks:

import thread

lock = thread.allocate_lock()

• Whole application gets blocked, since no UI
actions would be handled

• Use e32.Ao_lock instead

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Active Objects
• If Symbian written

today, AO’s would be
called “listeners”

• Get called by
scheduler (have a
little bit of state)

• Run to completion
then return to
scheduler

Active Scheduler
Class Bob is AO

Run(event)
.....

Class Charlie is AO
Run(event)

......

Class Alice is AO
Run(event)

.......

AO

Charlie

AO Bob

AO Alice

Event

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Python’s AO

• Previous discussion was for Symbian in
general

• Python hides the scheduler

• but after setting up callbacks, just do a
return

• Can control AO by allocating an
e32.Ao_lock() and then doing wait() and
signal() with this lock

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Symbian UI

• Uikon is generic user
interface components

• Product UI is S60 or UIQ

• Product LAF: Look & Feel

• None of this is relevant
to us now

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Python User Interface

• This diagram shows
the pieces

• Ignore it

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

User Interface Approach
• What should we care about?

• Graphical User Interface (GUI) is big deal

• Small screen ==> make best of poor situation

• Will screens get bigger? Will Nokia’s UI approach
scale?

• What about other input modalities?

• Alternatives: PocketPC, Palm, Blackberry

• Gameboy, Playstation, Smart Watches

Personally, I do not think any of these UI will survive. They are not suited to mobile, one-
handed operation. Perhaps it will be speech-based UI, but that probably does not cover all
the usage scenarios. There are lots of alternatives for input: pen, gestures (think about
the Nintendo WII), buttons (like on appliances, such as ipod), or telepathy. In 20 years,
come back at tell me if I was right or wrong.

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Nokia’s Approach

• Nokia’s UI philosophy (are they unique?)

• Uniform across apps; branded look&feel

• Screen title at top

• Optional tabs just below that

• Body (and for pop-ups)

• Bottom softkeys: Menu (left), Exit (right)

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

SPy60 Approach
• provide option for more usable screen area

• great for prototyping.

• Use default font & size; minor graphics

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Using the screen
• Appuifw contains an instance of the class

application, called app

appuifw.app.title = u’title of screen’
appuifw.app.screen = ‘normal’ # size
from appuifw import *
app.body = Text | Listbox | Canvas
app.menu = list of (title, callback)
app.set_tabs(list of tab names, callback)

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

SMS messaging

• Can send SMS: sms_send(nmbr, mess)

• limit of 160 characters

• Can access phone’s inbox

• plop it into a list, access fields of mess

• Register callback for whenever mess arrives

• Need to be connect to phone network and
need to be running when msg arrives

import e32
import appuifw

e32.ao_yield()

class MyApp:
 def __init__(self):
 self.lock = e32.Ao_lock()

 self.old_title = appuifw.app.title
 appuifw.app.title = u"My Application"

 self.exit_flag = False
 appuifw.app.exit_key_handler = self.abort

 appuifw.app.body = appuifw.Listbox([u"Loading..."], self.handle_modify)
 appuifw.app.menu = [(u"Add", self.handle_add), (u"Delete", self.handle_delete)]

import e32
import appuifw
from MyDataAccess import MyDataAccess

e32.ao_yield()

def format(item):
 # Format the item as a short unicode string.
 return u"" # omitted
class MyApp:
 def __init__(self):
 self.lock = e32.Ao_lock()

 self.old_title = appuifw.app.title
 appuifw.app.title = u"My Application"

 self.exit_flag = False
 appuifw.app.exit_key_handler = self.abort

 self.data = []
 appuifw.app.body = appuifw.Listbox([u"Loading..."], self.handle_modify)

 self.menu_add = (u"Add", self.handle_add)
 self.menu_del = (u"Delete", self.handle_delete)
 appuifw.app.menu = []
 # First call to refresh() will fill in the menu.

 def loop(self):
 try:
 self.lock.wait()
 while not self.exit_flag:
 self.refresh()
 self.lock.wait()
 finally:
 self.db.close()

 def close(self):
 appuifw.app.menu = []
 appuifw.app.body = None
 appuifw.app.exit_key_handler = None
 appuifw.app.title = self.old_title

 def abort(self):
 # Exit-key handler.
 self.exit_flag = True
 self.lock.signal()

 def handle_modify(self):
 item = self.get_current_item()
 if item is not None:
 # Display data in Form for user to edit.
 # Save modified record in database.
 pass # omitted

 def handle_add(self):
 new_item = self.edit_item(ToDoItem())
 if new_item is not None:
 # User enters new data into Form.
 # Save new record in database.
 pass # omitted

 def handle_delete(self):
 item = self.get_current_item()
 if item is not None:
 # Remove record from database.
 pass # omitted

 def get_current_item(self):
 # Return currently selected item, or None if the list is empty.
 if not self.data:
 return None
 else:
 current = appuifw.app.body.current()
 return self.data[current]

def main():
 app = MyApp()
 try:
 hosts = [u"some.foo.com", u"other.foo.com"]
 i = appuifw.popup_menu(hosts, u"Select server:")
 if i is not None:
 app.connect(hosts[i])
 app.loop()
 finally:
 app.close()

if __name__ == "__main__":
 main()

Pervasive Computing MIT 6.883 Spring 2007 Larry Rudolph

Processes
• Each application and each service (I think)

execute as separate processes

• Each process has its own address space

• We will not deal with interprocess
communication (but could use sockets)

• An application is a process that may have

• UI and Engine parts

• Access System and Server APIs

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Server Codeimport sys, socket

if len(sys.argv) < 2:
 print "usage: socketserver <port>"
 sys.exit(2)

create the server socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

port = int(sys.argv[1])

allow the socket to be re-used immediately after a close
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind(("0.0.0.0", port))

s.listen(5) # start the server socket

(client, address) = s.accept()
print "accepted connection from %s:%d" % (address[0], address[1])

while True:
 data = client.recv(1024)
 if len(data) == 0:
 print "connection with %s closed." % address[0]
 break
 sys.stdout.write(data)
client.close()

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Client Code
import sys
import socket

if len(sys.argv) < 3:
 print "usage: socketclient <address> <port>"
 sys.exit(2)

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((sys.argv[1], int(sys.argv[2])))

print "connected. type stuff."

while True:
 data = sys.stdin.readline()
 if len(data) == 0:
 print "closing connection with server"
 break

 s.send(data)

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Online Tutorials

• Tutorials
• http://www.python.org/doc/tut/tut.html

• http://diveintopython.org/

• http://www.intelinfo.com/
newly_researched_free_training/Python.html

• use google or go to python.org

Pervasive Computing MIT 6.883 SMA 5508 Spring 2006 Larry Rudolph

Discussion about
network infrastructure

• Initialization

• Network

• Static IP, DNS server -- why IPv6 and why not

• DHCP: get ip and dns server -- vast improvement

• Servers

• Feed, chat, device, anything new

• too many servers & must always be up

• What will naive user do?

