

The Compatible Time-Sharing System

A Programmer's Guide

The M. I. T. Computation Center

F. J. Corbat6

M. M. Daggett

R. C. Daley

R. J. Creasy

J. D. Hellwig

R. H. Orenstein

L. K. Korn

The M. I. T. Press
Massachusetts Institute of Technology

Cambridge, Massachusetts, 1963 1111111

The Compatible Time-Sharing System

A Programmer's Guide

Copyright @ 1963

by

The Massachusetts Institute of Technology

All Rights Reserved

Second Printing May, 1964

Library of Congress Catalog Card Number: 63-19793

Printed in the United States of America

PREFACE

This handbook is an attempt to document the techniques of using a

current version (Model 13) of the compatible time-sharing-system (CTSS)

which has been developed at the MIT Computation Center. It is primarily

a manual of how to use the system,in contrast to many of the research

memos, which have been more detailed in their documentation pf the

techniques of implementation. Because CTSS is basically a system which

will allow an evolutionary development of time-sharing while continuing

to allow more conventional background systems to operate, it is ex­

pected that the present manual will of necessity be revised many times

before it reaches a final form. A good deal of the difficulty arises

from, on the one hand, the rather drastic change in user operating

techniques which time-sharing permits, and on the other hand the immense

amount of programming required to fully implement the system.

The present work, although not highly polished, is being presented

now to assist in this evolutionary process. It is expected to be a

supplement to the Computation Center's Procedures Handbook which ex­

plains many of the general administrative details of the Center.

Furthermore, a knowledge of programming is assumed of the reader. It

has been our objective to present to an experienced programmer a

reasonably complete manual which will allow him to use wisely the

present Version of the time-sharing system.

Because of the rapidity with which many of the features are being

implemented, and the delays in distributing the inevitable revisions,

seme features are described here which are not yet accomplished. The

reason for this is that it was felt to be important to indicate the

intended scope and objectives of the system so that individual USers

could plan ahead in their applications. The features which are not

implemented will be found listed in an appendix which will be revised

periodically. In addition, each of the chapters can be expected to be

periodically revised.

Since the present work is primarily a handbook, no attempt has

been made to make any comparisons w~th the several other time-shar~ng

v

and remote-console efforts which are being developed by groups else­

where. The only other general purpose time-sharing system known to be

operating presently, that of the Bolt, Beranek and Newman Corporation

for the PDP-l computer, was recently described by Professor John

McCarthy at the 1963 Spring Joint Computer Conference. Other time-sharing

developments are being made at the Carnegie Institute of Technology with

a G20 computer, at the University of California at Berkeley with a 7090,

at the Rand Corporation with Johnniac.and at MIT (by Professor Dennis)

with a PDP-I. Several systems resemble our own in their logical

organization; they include the independently developed BBN system for

the PDP-I, the recently initiated work at IBM (by A. Kinslow) on the

7090 computer, and the plans of the System Development Corporation with

the Q32 computer.

To establish the context of the present work, it is informative to

trace the development of time-sharing at MIT. Shortly after the first

paper on time-shared computers, by C. Strachey at the June 1959 UNESCO

Information Processing Conference, H. M. Teager and J. McCarthy at MIT

delivered an unpublished paper "Time-Shared Program Testing" at the

August 1959 ACM Meeting. Evolving from this start, much of the time­

sharing philosophy embodied in the CTSS system has been developed in

conjunction with an MIT preliminary study committee (initiated in

1960), and a subsequent working committee. The work of the former

committee resulted, in April 1961, in an unpublished (but widely circu­

lated) internal report. Time-sharing was advocated by J. McCarthy in

his lecture, given at MIT, contained in "Management and the Computer of

the Future 1t (MIT, 1962). Furthe r study of the des ign and impl emen ta­

tion of man-computer interaction systems is being continued by a

recently organized institute-wide project under the direction of

Professor Robert M. Fano. In November 1961 an experimental time­

sharing system, which was an early version of CTSS, was demonstrated

at MIT, and in ~my 1962 a paper describing it was delivered at the

Spring Joint Computer Conference.

As might be expected, the detailed design and implementation of

the present CTSS system is largely a team effort with the major portions

vi

of i't being prepared by 'the following: Mrs. Marjorie M. Dagget't,

Mr. Robert Daley, Mr. RObert Creasy, Mrs. Jessica Hellwig, Mr. Richard

orenstein,and Professor F. J. Corbat~. Important contributions to some

of 'the commands and the background system have been made by Mrs. Lynda

Kom. Valuable criticism and advice has been offered by Professor Jack

Dennis, Mr. J. R. Steinberg, and members of the Computation Center S'taff.

Mrs. Leslie Lowry, Mr. Louis Pouzin, and Mrs. Evelyn Dow have contributed

to the preparation of the commands.

Special credit is given to Professor Herbert Teagcr for the design

and development of his Flexowriter control subchannel which allowed

'the original experimental version of the present system to be developed,

tested, and evaluated; only with such an opportunity was it possible

to have the confidence to make 'the present pilot development of the

CTSS system.

We should also like to extend our thanks to 'the Computer Center

of the University of Michigan where Professor Bernard Galler, Mr.

Bruce Arden, and Mr. Robert Graham have been very helpful in advising

us on the use of their Mad Compiler in our time-sharing system. In

addition, Mr. Robert Rosin kindly made available the Madtran editing

program for processing Fortran II subprograms to Mad subprograms.

We should further like to take this occasion to acknowledge

partial support by the National Science Foundation, the Office of Naval

Research, and the Ford Foundation, of the development of our present

system. We also add our appreciation for the support provided the

Computation Center by the IBM Corporation.

Finally, we should like to encourage the readers of this handbook

to examine the present system with a view toward improvements, and we

shall welcome such criticisms.

F. J. Corbat~

Cambridge, Massachusetts

May 1963

vii

CONTENTS

Introduction 1

History, Plans and Current Status of System 4

General Description and Usage Techniques 8

The Supervisor 8

Command Format 9

Command Initiation 10

Program Termination 10

Input and Output Wait States 10

SchedulinglO

Change of Program Size 11

Message Interaction Considerations and Usage Times 12

Storage Allocation 13

Memory Protection and Relocation 13

User Communication with the Supervisor 14

Time-Used Messages 15

Interval Timer Clock 15

Break Characters 16

Quit Signals and Console Input Levels 16

Character Mode Switch 17

Consoles and Character Sets 17

Special Input Modes 22

Interconsole Messages 22

Disk Memory Control 23

Organization of the Disk Memory 24

Keypunching and Card Input to the Disk 25

Delayed Output and Disk Editor Control Cards from the Console 25

Disk Editing Control Cards 26

Disk Reliability, Malfunctions, and Recovery 26

Disk Editing Procedures 27

System Service Changes and Supervisor Messages 30

Assignment of Input-Output Units 31

Magnetic Tape Usage 31

ix

Dataphones

Command Programming

Console-Initiated Background

Estimate of Computation Completion Time

Background System Restrictions

4. Supervisor Subroutine Calls

Directory

Descriptions

5. Use OI the 1301 Disk Memory

Master Disk Control Subroutine

Disk Editor Control Cards

6. CTSS Library

Elementary Function Routines

Fortran Built-in Functions

Input-Output Routines

Reading and Writing the Disk

Simulated Tape Usage

Auxiliary Routines for Simulated Tape Usage

General Utility Routines

Supervisor Entry Subroutine

7. Console Commands

Index

Descriptions

Appendix A. Example of a Session at a Console

Appendix B. Current Restrictions

References

x

32

32

33

34

35

39

39

40

45

45

52

55

55

56

57

57

61

63

63

65

67

67

69

89

92

94

CHAPTER 1

INTRODUCTION

The motivation for time-shared computer usage arises out of the

slow man-computer interaction rate presently possible with the bigger,

more advanced computers. This rate has changed little (and has become

worse in some cases) in the last decade of widespread computer use.

In part, this effect has been due to the fact that as elementary

problems become mastered on the computer, more complex problems im­

mediately become of interest. As a result, larger and more complicated

programs are written to take advantage of larger and faster computers.

This process inevitably leads to more programming errors and a longer

period of time required for debugging. Using current batch monitor

techniques, as is done on most large computers, each program bug usually

requires several hours to eliminate, if not a complete day. The only

alternative hitherto available was for the programmer to attempt to

debug directly at the computer, a process which is grossly wasteful of

computer time and hampered seriously by the poor console communication

usually available. Even if a typewriter is the console, there are

usually lacking the sophisticated query and response programs which are

vitally necessary to allow effective interaction. Thus, what is desired

is drastically to increase the rate of interaction between the programmer

and the computer without large economic loss and also to make each inter­

action more meaningful by extensive and complex system programming to

assist in the man-computer communication.

In addition to allowing the development of usable and sophisticated

debugging techniques, an efficient time-sharing system should make

feasible a number of relatively new computer applications which can be

implemented only at great cost in a conventional system. Any problem

requiring a high degree of intermixture of computation and communication

on a real-time basis should readily lend itself to time-sharing tech­

niques. Examples of this type of application include: decision-tree

problems; real-time management problems (airline reservations, hospital

administration, etc.); gaming problems; sociological experiments;

1

teaching machines; language learning problems; library retrieval; text

editing; algebra manipulators; and many more.

The Compatible Time-Sharing System (CTSS) is a general-purpose

programming system which allows a new form of computer operation to

evolve and yet allows most older pre-time-sharing programming systems

to continue to be opera"ted. CTSS is used at a console which may be of

several varieties, but which in essence is an electric typewriter. Each

console user controls the computer (i.e. as seen by him) by issuing

standard commands, one at a time. The commands allow convenient per­

formance of most of the routine programming operations such as input,

translation, loading, execution, stopping and inspection of programs.

This command convenience, although it has a fixed format, is with no

loss of generality since a command can also be used to start an arbi­

trary programming su~system with its own control language level.

The consoles of CTSS form the foreground system, with computation

being performed for the active console users in variable-length bursts,

on a rotation basis, according to a scheduling algorithm. The back­

ground system is a conventional programming system (slightly edited for

the time-sharing version) which, at the least, operates whenever the

foreground system is inactive, but which may also be scheduled for a

greater portion of the computer time. The entire operation of the com­

puter is under the control of a supervisor program which remains

permanently in the 32,768 word A-bank of core memory; all user programs

are either kept in the 32,768 word B-bank of core memory, or swapped in

and out of the disk (or drum) memory as needed.

Not only are the active user programs swapped in and out of the
6

two secondary memory disk modules (4.6 x 10 words each) and the drum
6

(.2 x 10 words) but it is expected that all console users will utilize

theC;isk memory for semi-permanent storage of their active program and

data files. Cards and magnetic tapes will still- serve in secondary

roles as long-time and back-up storage devices; they will be usable in

CTSS only through the central Computation Center facilities and not

directly through the remote user consoles.

2

Figure 1.1 is a system diagram of the 7090 computer at the Compu­

tation Center, which is to oe conver~ed to a 7094 Modell in August,

1963, with the addition of the 7320 drum at the same time. The motiva­

tion for the equipment configuration is described in the next chapter.

7090/94 SYSTEM DIAGRAM

.----- CR, CP, PR, SCOPE
,----""1......_-----1 8 - 729 1 V TAPES .-----.,

IV TAPES

r---'
I 732.0 I -----------i I ~----~ I DRUM I
L... ___ ...J

3 FLEXOWRITERS
3 PLOTTERS

2 - 1014 CONSOLES

2.8 TELETYPES

PDP-I

1---1620

Figure 1.1 7090/94 System Diagram

3

CH4.PTER 2

HISTORY, PLANS, AND CURRENT STATUS OF SYSTEM

Initially an experimental time-sharing system was developed using

the special three-Flexowriter subchannel designed and built under

H. Teager's direction. The first public demonstrations of this system

were in November 1961, and the work was reported at the Spring JOint

Computer Conference in May, 1962. During the latter half of 1962, in

addition to refinement of the initial system, studies were made of how

to remove several limitations in the system, namely: 1) the limited

number of typewriter console stations, 2) difficulties of installing

and maintaining remote connections, 3) lack of compatibility of opera­

tion with other 7090 programming systems, and 4) problems of information

retrieval and information security associated with a large on-line

secondary memory.

These studies resulted in plans for the conversion of the experi­

mental time-sharing system to a pilot system which would be capable of

operating simultaneously with most of the work load already handled by

the 7090 at the Center. These plans for the 7090 included: 1) the

implementation of the interrupt clock, memory protection, and relocation

features; 2) the addition of an IBM 7750 communications channel which

allows up to 112 T3letype consoles to be attached via phone lines at

remote locations; 3) the addition of a second bank of 32,768 words of

core memory; 4) the installation of the IBM 1301 disk file; and 5) the

design and programming of a master disk control subroutine (memo CC-196)

and an associated disk editor program (memo CC-208) for flexibility in

using the crucial secondary memory. As separate experiments, two smaller

computers are being specially attached to the 7750 channel by telephone

line links: the Electrical Engineering PDP-l is to be used as an ex­

perime~tal display console, and the Civil Engineering IBM 1620 will be

used to control remote analog input-output equipment such as a pen

plotter. All of the above equipment and attachments should be installed

by spring, 1963, and the necessary programming adaptation required for the

4

first pilot version of the time-sharing system is expected to be com­

pleted by summer, 1963. In fall, 1963, the addition of an IBM 7320

moderate-speed drum should further increase system performance by

allowing somewhat faster secondary memory access and transmission speeds

for swapping programs in and out of core memory, although the drum

memory capacity is limited. At this time the general performance of the

7090 will be improved by upgrading it to a 7094 Modell.

To implement effective operation of a pilot time-sharing system,

the initial 16 Teletype consoles have been deployed as follows: two

consoles for the Center system programming staff to assist in implementa­

tion and evaluation; one in the programmer consulting office to allow

rapid assistance to users in the location of errors; one with the Center

keypunch operators for service keypunching directly into the disk

memory; one for the 7090 computer console operator; one for the 7090

tape-mount operator; one in Professor Minsky's research group for their

applications and system evaluation; one in Professor Corbato's office

for analysis, monitoring, demonstrations, and programming purposes; one

more remotely located at Professor Miller's Civil Engineering Computation

installation; and seven in an open pool for general time-sharing users

at the Center.

One of the principal design features of the pilot system is that

most older pre-time-sharing systems may be operated in the role of a

background program simultaneously with the foreground time-sharing console

system (memo CC-202-l). Because of the weakness of input-output memory

protection in the 7090, it was necessary to develop an intricate input­

output analyzer-monitor program for safe operation of older programs

which had been developed without time-sharing in mind. Besides easing

the programming transition problems of changing from batch processing

to time-sharing techniques, this compatibility feature eliminates the

necessity for immediately satisfying all of the Center's 400 research

Users (and a similar number of student users) with the initial version

of the time-sharing system.

To achieve programming compatibility. the time-sharing system uses

the same programming languages normally available in the major Center

5

system, FMS: Fap, Mad, and Fortran in the form of the nearly

equivalent Madtran (memo CC-l88). Initial requirements dictated

special core-memory-only versions of these compiler programs, but

this restriction is being eliminated.

To contrast with batch-computing techniques, it is informative to

summarize a typical time-sharing usage. A user has written a subprogram

in a compiler language and wishes to incorporate it into his set of pro­

grams already developed and kept in the central disk file. After sitting

down at a console, he first gives a login command to identify himself.

His next command, input, turns his console into a pseudo-keypunch. Using

simple conventions, he types in his subprogram for storage with other

subprograms on the disk. If he should note any typing or logic errors

in his new file, now or at any later time, he can correct the file

using an ~ command. (If he wanted to avoid the tedium of typing a

long program, a suitably trained keypunch operator could just as easily

have done the operation in advance.) Using an appropriate command the

user can compile his subprogram, and if he has no diagnostics requiring

correction, he can prepare to test it. Using the ~ command, he

collects in core the newly compiled subprogram in binary form, any sub­

programs previously prepared, and the necessary library subprograms

drawn from as many libraries as he wishes. If loading is successful,

and does not require re-entry for the addition of missing subprograms,

a start command initiates his program. He notes the results (if any)

that he receives, and after stopping the program, if necessary, inspects

the status of various locations and variables within the set of subpro­

grams loaded. After a suitable amount of probing he detects his

programming error, makes the necessary corrections, and continues in thjs

manner until he wishes to terminate the session by giving a log~

command.

To the above basic time-sharing system, which consists presently

of a few dozen commands, many new features and additional commands must

added before it will be generally acceptable. Among the more important

ideas are the ability 1) to request from -the consoles large-scale delayed

printing or punching of programs and cards at the central Center facility

6

l) to create delayed graphical plots at the Center; 3) to allow

foreground-initiated jobs to be run as background after a user leaves

hiS console; 4) to assign by user request, for the duration of a console

session, various input-output units, such as tape units, from the common

central pool; 5) to allow inter-user console communication for activi­

ties such as management games; 6) to be more flexible and versatile in

the allowable debugging techniques such as traces, interpreters, selec­

tive dumps, and so forth. Specifications for some of these features are

described in later sections.

In addition to the obviously heavy programming development required

for ~he above improvements, there are large operational questions which

will need to be determined in the areas of reliability, error detection,

programming system and hardware maintenance under conditions of near­

continuous operation, automatic traffic and performance monitoring, and

automatic accounting.

Finally, in the areas of hardware, there are evaluations to be

made of the various consoles: the various model Teletypes, especially

models 28 and 33, the Kleinschmidt 311 Teleprinter, the IBM 1050

Selectric typewriter, as well as possibly others. Vast questions lie

in the area of self-maintaining display consoles, and finally questions

of improved high-speed drums and future memory hierarchy schemes will

need to be studied.

7

CR~PTER 3

GENERAL DESCRIPTION AND USAGE TECHNI~UES

The foreground system is organized around commands, which each

user gives at his console, and the user's private program files which

are kept on the disk. For convenience, the format of the disk files is

such that they have titles with name and class designators. (Files can

be entered from cards or punched out at disk editing time.)

The Supervisor

The supervisor program remains in A-core at all times when CTSS is

in operation. Its functions include: (handling of all input and output

for the consoles; scheduling of console-initiated (foreground) and off­

line-initiated (background) jobs; temporary storage and recovery of

programs during the scheduled swapping; monitoring of all input and

output from the disk, as well as input and output performed by the back~

ground system; and performing the general role of monitor for all

foreground jobs. These tasks can be carried out by virtue of the

supervisor's direct control of all trap interrupts, the most crucial of

which is the one associated with the Interval Timer Clock.

The Interval Timer Clock is set for a small quantum of time, ~.

Every ~ seconds the supervisor can interrupt the program currently

running in B-core in order to accept input from the consoles or to issue

output to the consoles. If the input from a console is other than a

command line, it is left in the supervisor's core buffers until i~ is

read by the user's program (whether a command or a user-written program)

If the input line is a command, it is given immediate priority and the

supervisor, after dumping as much as necessary of the current B-core

program onto drum or disk, brings in the requested command program from

the disk.

Except for this initial top priority, the time-sharing programs are

each run ~or a burst of ~ime which is some multiple of ~ determined ac­

cording to the scheduling algorithm. At the end of each program's

appropriate time the supervisor determines which user is to be run next.

8

It must then determine whether the program or programs currently in core

~ust be dumped (to disk or drum), in part or entirely, to leave room in

core for the next user. The next user must then be retrieved from

secondary storage together with the proper machine conditions.

In addition to maintaining input and output buffers for each user

console, the supervisor keeps a record of the status of each user. The

status of a user may be: "working," where a program is ready to continue

running whenever it is next brought in; "waiting command," where the user

has just completed a command line at his console; "j,nput-wait" or "output­

wait," where the program is temporarily held up waiting to get a console

line in or out; "dormant," where the program has stopped running and

returned control to the supervisor, but machin,") conditions and the status

of memory are preserved for inspection, modification, or re-entry; and

"dead," where the program has terminated, control has been returned to

the supervisor, and machine conditions and the status of memory have

been scrapped.

It should be noted that command programs are handled in exactly the

same manner as the user's own programs, with respect to status and

scheduling. The background system is also considered another user; at

present it has a different place in the scheduling algorithm, with per­

manently lowest priority. In addition there will be another type of

background, consisting of batch jobs initiated from consoles but left

to run without console interaction; these jobs will be run with exactly

the same type of scheduling as normal foreground programs.

Command Format

The commands are typed by the user to the time-sharing supervisor

(not to his own program) and thus can be initiated at any time regardless

of the particular program in memory. (For similar reasons of coordina­

tion, the supervisor handles all input-output of the foreground system

typewriters.) Commands are composed of segments separated by blanks;

the first segment is the command name, and the remaining segments are

parameters pertinent to the command. Each segment consists of the last

6 characters typed (initially an implicit 6 blanks). A carriage return

is the signal which initiates action on the command. Whenever a command

9

is received by the supervisor, "WAIT" is typed back. When the command

is completed, "READY" is typed back. '.'Ihere possible, the computer re­

sponses are in the opposite color from the user's typing. A command

may be abandoned at any stage, including during the typing of the command

line or during command output, by giving the "quit signal" peculiar to

the console.

Command Initiation

A user starts a command when he completes a command line at his

console and is automatically placed in a ~~ting ~~nd status. The

time-sharing supervisor uses the interrupt clock feature every quantum

of time to interrupt the user program being run and assign the users in

waiting command status to a working status with an initial priority

based on the size of the requested command program.

Program Termination

A foreground program leaves the working status by two means. It

can re-enter the supervisor in a way which eliminates itself and places

the user in a dea~ status; alternatively, by a different entry the pro­

gram can be placed in a ~o~ status (or be manually placed there by

the user giving a quit signal). The dormant status differs from th~

dead status in that the user may still restart or examine his program.

Input and Output Wait Sta~~

User input-output is through each typewriter via the supervisor,

and even though the supervisor has a few lines of buffar space available

it is possible for a program to become input-output limited. Consequent

there is an input-wait status and an output-wait status, both similar to

dormant, into which the user program is automatically placed by the

supervisor whenever input-output delays develop. When buffers become

nearly empty on output or nearly full on input, the user program is

automatically returned to working status; thus waste of computer time

is avoided.

Scheduling

In order to optimize the response time to a user's command or

10

program, the supervisor uses a multi-level scheduling algorithm. The

basis of the algorithm is the assignment of each user program, as it

enters the system to be run (or as a response to a user is completed),

to an ith level priority queue. Programs are initially entered into a

level i corresponding to their size, such that
o

([w /w J + 1) 1 p q
(3.1)

where w is the number of words in the program, w is the number of
p q

words which can be transmitted in and out of the high-speed memory from

the secondary memory in the time of one quantum, q, and the bracket

indicates "the integral part of". Ordinarily the time of a quantum,

the c time unit (currently about 200 ms.), is as small as possible

without excessive overhead losses when the supervisor switches from one

program in high-speed memory to another. The process starts with the

time-sharing supervisor operating the program at the head of the lowest­

level occupied queue, i, for up to 2L quanta of time, and then if th~
program is not completed (i.e. has not made a response to the user)

placing ita t the end of the L+l level queue. If there are no programs

entering the system at levels lower than L, this process proceeds until

the queue at level £ is exhausted; the process is then iteratively begun

again at level L+l, where now each program is run for 2L+l quanta of
L

time. If during the execution of the 2 quanta of a program at level i,

a lower level, t', becomes occupied, the current user is replaced at the

end of the Lth queue and the process is reinitiated at level L'.

~nge of Program Size

Similarly, if a of size w at level L, during operation
p

requests from the time-sharing supervJsor a change in memory size to

w ", then the enlarged (or reduce<:!-) version of the program should be
p

placed at the end of the L" queue where

L" = 1- + [log2 (w "/ w) J p p

11

(3.2)

Again the process is re-initiated with the head-of-the-queue user at

the lowest occupied level l'.

Message Interaction Considerations and Usage Times

Because a user cannot "see" his program running, it is important

that the programmer resort to appropriate cues and confirmation messages

in his programming. Thus when input is expected, a good technique is

to have the program first type out a message such as "type next data

set" or "A:". Similarly after input it is often reassuring, if a long

computation is required, to see some program output acknowledging the

receipt (and perhaps the accuracy) of the input message.

The reply response time is governed by the basic scheduling

algorithm described earlier and depends on the number of other users.

In the current implementation of the algorithm a user-computer inter­

action consists of the period from an input message to an output

message. Although the response time is only a few milliseconds if the

user's program is already in core, whenever there is more than one

user the usual minimum time for a response, which is the minimum com­

puter usage time per response, is (in the current drumless system)

approximately S/8 seconds plus the response computation time, where S

is the number of program words in thousands. For example, eight different

user programs, of one thousand words each, could simultaneously respond

within a second to input messages requiring only negligible computation.

For those interactions which require non-trivial computation, the

computer usage time is approximately given by the sum of two series, the

first of which is for the computation:

n

T = I
i=O

s (8) sec. (3.3)

where t~e nth term of the series is that just necessary to complete

the computation. As can easily be seen, in the limit of large compu

tations the ratio of usage time to computation time asymptotically

approaches one.

12

Storage Allocation

Presently only one user program is kept in core memory at a

time. However, in order to improve response time, as many user pro­

grams as possible should be left in core memory. When required, as

such as necessary of the lowest priority program in the scheduling

algorithm may be moved to the disk (or drum) memory to make more core

memory available. Because of the relative slowness of the 7320 drum

and the 1301 disk transfers, moving program segments about in core is

an effective way to consolidate space into which to read the user pro­

gram next to be run. Thus the swap time required to give a response to

a user will be only that dictated by the size of his own program. To

carry out this procedure,. several storage allocation algorithms are

under consideration.

Although other possibilities exist, as in the Atlas Computer,

initially no attempt will be made to operate any user program unless

all of its program segments are contiguous and sequential in core

memory. Also the possibility exists of performing a look-ahead opera­

tion of swapping a user program in or out while operating another user

program (i.e., multiprogramming). Again, initially no attempt will be

made to implement the look-ahead feature, since the effectiveness is

seriously reduced if scheduling changes (i.e., program completions) are

frequent, or if there is frequent competition with the operating program

for use of the drum or disk channel.

Memory Protection and Relocation

To avoid fatal conflicts between the supervisor and multiple users,

the CTSS IBM 7090/94 includes a special modification which behaves as

follows:

Core memory is considered to Qe divided into 256-word blocks. There

are two 7-bit protection registers which, when the computer is in its

normal mode, can be set by program to any block numbers. Whenever a

User program is run, the supervisor, as a final step just before trans­

ferring to the user program, switches the computer to a special mode

Such that if execution of any memory address outside the range of the

Protection register block numbers is attempted, the normal mode is

13

restored and a trap occurs to the supervisor.

~ere is also a 7-bit relocation register which modifies every

memory address, during execution, by addition of the relocation register

block number~ Thus programs which have been interrupted by the super­

visor may ~moved about in memory, if necessary, with only the proper

readjustment of the relocation register required.

Finally, if the user program, while in the special mode, should

attempt to execute any instructions concerning input-output, changes in

mode or core bank reference status, or resetting of the protection or

relocation registers, the normal mode is restored and a trap occurs to

the supervisor program in core bank A.

User ommunication with the Supervisor

The supervisor performs a number of control functions which may be
/'

directly requested by the user. These include: all input and output

(e.g., disk, drum, consoles, tapes); requests for information about or

extension of the user program memory allocation; simulation of floating

trap; control of each user's status, input level, and input mode; and

other functions which involve communication with, or control by, the

supervisor ~

Since all protection violations cause a trap to the supervisor, a

convenient means of user-supervisor communication is for the user to

cause a protection violation; if the violation conforms to an established

convention it may be recognized as a call to a subroutine in the super­

visor. Since the supervisor is in A-core at all times, and since the

user is in B-core operating in the protection mode, the following con­

vention is used:

LOC

TIA

Bel

LOC

1 ,NAME

(or equivalently, TIA =HNAME) where NAME is the BCD name of the desired

subroutine; the attempted transfer from B-core to A-core causes a pro­

tection violation.

In the future, should memory space in the supervisor region be

available, some commonly-used library subroutines may be kept in this

14

region and reached via dummy subprograms which issue th~ appropriate

supervisor call.

Time-Used Messages - Since usage time and computation time are different from real time,

the user may periodically want to know how much computer time he has

used. He may request from the supervisor a message of the following

form:

MIN. USED = 12.070 + 2.005 IN 24.011 + 5.725

In this example, the user has logged 2.005 minutes of computer time

since he last requested a time message, which was 5.725 minutes (real

time) agoj at that time he had used 12.070 in 24.011 minutes; he has

now used a total of 14.075 minutes since he logged in 29.736 minutes

ago. Comparison of these sets of figures affords an estimate of his

ra te of service.

The time-request is made by typing in a special message at any

level of console input; the message convention is initially set to "TIME"

followed by carriage return. If the user wishes he may by use of the

time command either change the time-request message to another set of

characters or discontinue the facility altogether.

Interval Timer Clock

To facilitate running programs for a limited amount of time, the

CTSS IBM 7090/94 has an interval timer clock available. This clock is

completely under control of the supervisor; its action is as follows:

location 5, memory A, is incremented in the units portion every 1/60 sec;
35

whenever it overflows on a count of 2 ,an interrupt occurs which, if
'-

the clock is enabled,causes a trap to location 7 and the trap location

to be stored in location 6.

~e supervisor uses this clock both for interrupting programs and

for time accounting.) Base-time and,day-of-the-month information are

obtained from the on-line printer clock. The supervisor can, however,

simulate the interrupt clock behavior for each user. By supervisor

calls similar to those of MITMR (memo CC-193), the user can program

for nested interrupts and computation time readings.

15

Break Characters

Whenever a user types in~o his console, regardless of whether his

program is running or not, ~he input character is received at the super­

visor level within 200 ms. The supervisor compares the character against

the break charac~er list of ~ha~ user. (In routine circumstances, and

after every command, the break character list includes only the carriage

return.) The inpu~ charac~er is added to the user's inpu~ message and

if it is not a break character, no further action is taken. If the

character is a break character, the message is called complete and one

of several actions results.

If the user input was at the command level (i.e., the user was in

the dead or dormant status), he is placed in a waiting command status.

If the user's program was in an input-wait status, it is returned to

the working status so that it may resume by reading the input message.

If the user's program was already in the working status, the message

is merely considered early and is left in the buffer for subsequent

reading by his program. (If early messages continue to arrive and the

inpu~ buffer area becomes nearly filled, a message is typed out to the

user requesting that he stop typing until his previous input is read.)

If a programmer desires to in~eract more frequently with input

messages (including character-by-character reading), any arbitrary

break character may be added to and deleted from his break character

list by means of subroutine calls to the supervisor. The programmer,

however, should anticipate response time delays and the extra computer

time usage for each interaction.

Quit Signals and Console Input Levels

When a user issues a command, two actions are initiated. First,

his console input level is logically dropped from level 0 (command

level) to level 1; second, a program is started (i.e., placed in working

status), either the command program or his own, which executes until it
,

terminates and enters dead or dormant status, or until the user manually

terminates the program and places it in dormant status. Clearly this

manual quit feature is desirable in that it allows the user to change

his mind, correct mistakes, etc. The termination is performed by the

16

user'S issuing a single qui~ signal (varying with the console type)

which may be issued even if the console is typing out. Upon issuance

of the quit signal, the user's console input level is raised by one,

normally back to level O.

In addition to this basic two-level scheme, it is possible for the

user to extend the number of input levels, thereby allowing for program

subsystems, each with its own control language (e.g., for debugging).

This is accomplished by the program giving subroutine calls to the

supervisor, which on each entry drops the user console a level (to a

limit of level 3). Whenever a quit signal from the console is received

by the supervisor, the user's input level is raised by I (but no further

than level 0); control is returned (by means of a push-down list) to the

subsystem entry point previously assigned by the program to the current

level, or finally, after the right number of quit signals, to dormant

status.

Character Mode Switch

For routine computer work, especially older applications, the

normal 7090/94 BCD character set is sufficient for console messages.

This set consists of 47 characters and blank, augmented by a few console

control functions, namely: carriage return, tabulation, back space,

color shift, delete-last-character, delete-Iast-message, and ignore;

this normal BCD set is contained in a 6-bit code. When the character

mode switch of a console is set to "normal ", a console will transmit in

the normal BCD mode.

The user's program, however, by issuing specific subroutine calls

to supervisor entry pOints, may change the character switch to the "full"

setting which, by means of a l2-bit character code, allows the user

precise knowledge of console input as well as full flexibility upon

output. Whenever a user program is completed and the supervisor is

receiving input from a console at the command language level, the charac­

ter mode switch is automatically restored to the "normal" setting.

£?nsoles and Characte~ Sets

Each type of console attached to CTSS has associated input~output

17

mapping tables (Figure 3.1) for both the 6-bit and l2-bit character

codes. (The high order 6 bits will be referred to as logical case

bits.) In addition each console has a particular quit signal technique

All characters are interpreted individually; hence any combination of

legal characters may be used in a message. In particular, the physical

case is automatically kept track of on both input and output, so that

the user need not program physical case shifts.

In the case of 6-bit normal BCD mode input, characters which do

not map into normal BCD characters or functions are enclosed in

parentheses on the following chart and are ignored on input. The 6-bit

normal BCD mapping is obtained by deleting the 6 high-order case bits.

In a l2-bit mode input, all characters are coded and kept in a message.

In the case of console output, in the 6-bit normal BCD mod~ logical

case 0 will be used, while in the full 12-bit mode, all characters will

be printed as specified with unused codes being ignored. After all

output messages, the console physical case will be restored to its

previous case before output, except for the IBM 1014 and 1050 Selectric

typewriter consoles, where lower case will be restored after output.

When using Madel 28 Teletype consoles, the quit signal is generated

by depressing and relasing the break key. There are no backspace or

color shift functions available.

When using the IBM 1014 Selectric typewriter consoles, the quit

signal is generated by the sequence of: inquiry request, "#," inquiry

release. To initiate each line of input, the inquiry request key must

be depressed. If the check light comes on from typing too fast, inquiry

cancel must be given and the line reinitiated. Inquiry release acts as

a carriage return Signal. The color shift function automatically re­

verses between input and output and is not codable. The only break

character possible is carriage return. Type balls may be changed by a

chball command. It is not possible to input a non-printing message,

hence when it is desired to issue a carriage return with no message, the

character "1f, tt which is always ignored, is issued before the carriage

return.

When using the Flexowriter consoles, the quit signal is generated,

18

if there is no output typing, by the following sequence: depressing

and releasing "code delete" (a lever above the keyboard), followed by

a carriage return. If there is output typing, instead the red button

on the control box in front of the keyboard must be depressed once. At

present these consoles are only implemented for a single break character

of carriage return.

12-bit mode

input to the
user program

output from
the user
program

6-bit mode

input to
the user
program

Code Table Conventions, Figure 3.1

In the columns for the appropriate console, the keys

with the characters or control functions indicated,

when depressed, generate a logical case and 6-bit

code as a single l2-bit code. A keystroke causes no

CTSS control action, with the exception of a break

character or quit signal. In the case of the quit

signal, no code is transmitted to the program.

The character or control function corresponding to

the logical case and 6-bit code in the columns under

the appropriate console is typed out. If there is

no character shown for the code, nothing types out.

In either of the columns for the appropriate console,

depression of a key with an indicated character or

control fUnction produces the corresponding 6-bit

input code; if a character or control function is

enclosed in parentheses the character is ignored and

no input code is produced. In the case of the delete­

character (d.c.), delete-message (d.m.) and quit signals,

no code is transmiuted to the user's program and in-

stead the appropriate control action is taken. All

other characters or control function codes are

transmitted to the user's program. (The end-of­

command character (e.o.c.) is generated by CTSS as

a terminal flag to mark the end of the command

19

Mod. 28 Mod. 1014 Mod. 1050
7090 7090 CTSS 7090 Teletype Selectric Flexowri ter PDP-l 1620 Selectric
Prog. Prog. Input Octal Log. Case Log. Case Log. Case Log. Case Log. Case Log. Case
Q\1tput • Input Mean ins: ~ 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 00 0 (I.f.) 0 (J) 0 0 0 (Red) 0 0 (0)

1 1 1 01 1 1 «) 1 1 (D1ack) 1 1 (±)
2 2 2 02 2 (bell) 2 (» 2 2 2 (-) 2 2 (~)
3 3 3 03 3 3 (I) 3 3 3 (-) 3 3 (;)
4 4 4 04 4 4 4 " 4 (::» 4 4 (II)
5 5 5 05 5 5 (A) 5 5 5 (V) 5 5 (%)
6 6 6 06 6 6 (#) 6 6 6 (A) 6 6 (@)
7 7 7 07 7 7 7 7 7 «) 7 7
8 8 8 10 8 8 (-) 8 8 8 (» 8 8
9 9 9 11 9 9 ([) 9 9 9 9 9

12
= = = 13 = :a. = = :: ::

14 1 @

15
~

16 0
17

+ + + 20 + + + + + + &
A A A 21 A A a A a A a A A a
B B B 22 B B b B b B b B B b
C C C 23 C C c C c C c C C c
D D D 24 D D d D d D d D D d
E E E 25 E E e E e E e E E e
F F F 26 F F f F f F f F F f
G G G 27 G G g G g G g G G g
H H H 30 H H h H h H h H H h
I I I 31 I I i I i I i I I 1

32
33 (color up)

))) 34)))) J)) " down)
b.s. b.s. b.s. 35 b.s. b.s. b.s.
c.s. C.5. c.s. 36 c.s. c.s.

d.c. 37 " " "
40 (-)

J J J 41 J J j J j J j J J j
K K K .42 K K k K k K k K K k

~
~

M M M 44 M M m M m M
N N N 45 N N n N n N
0 0 0 46 0 0 0 0 0 0
P P P 47 P P P P P P
Q Q Q 50 Q Q q Q q Q
H R R 51 H R r H r R

52
$ $ $ 53 $ $ t

* * * 54 * * X
c.r. c.r. c.r. 55 c.r. 11' c.r. c.r.

d.m. 56 ? ?
ignore quit 57 r
blank blank blank SO sp. sp. sp. sp.
I I I 61 I I I I
S S S 62 S S s S 5 S
T T T 63 T T t T t T
U U U 64 U U u U u U
V V V 65 V V v V v V
W W W 66 W W w W w W
X X X 67 X X x X x X
y y y 70 Y Y Y y Y Y
Z Z Z 71 Z Z z Z z Z
tab tab tab 72 tab tab tab tab
, , 73 , , (%) , ,
((74 ((((

75
76

e,a,c. e,o,c, 77

note 1) PDP-l, log. case 1, codes 00 and 01: red and black, ou~put only.

note 2) 1014, log. case 0, code 55: pi as c.r. only if entire message.

m
n
0

P
q
r

"-

S

t
u
v
w
x
Y
z

[

Figure 3.1 Console Input-Output Mapping Table

M M m
N N n
0 0 0

P P P
Q Q q
R R r

$ $

* *
:I: c.r.

sp. sp.
I I (?)
S S 5

T T t
U U u
V V v
W W w
X X x
Y Y Y
Z Z z

tab
, (5 ingle line)
((double line)

output from
the user
program

parameter list.) It is not possible to input to a

program the codes for which there are blanks in the

column labelled "7090 program input. n

The character or control function corresponding to

logical case 0 and the 6-bit code in the column

under the appropriate console is typed out.. If for

a code there is no character or control function

indicated in the column labelled "7090 program

output, It the code will be ignored; for uniformity

and future compatibility, it is recommended that

the standard "ignore" code be used if this effect

is desired.

Special Input Modes

To anticipate noisy console lines, especially for future remote or

dialed connections, a coni irma tion mode will be ava Hable. In this :mode

every input message (i.e., up to the break character) will immediately

be copied back as an output message. If a user detects a garble he

should issue a quit signal or take whatever action he has anticipated

in his program.

When a person is working closely with his console at the command

level, it will be possible to enter a brief mode. All programs which

have been properly prepared will be able to iuterrogate the brief mode

status indicator and to adjust the verbosity of their output accordingly

Both the brief and confirmation modes are set by the use of a command.

Interconsole Messages

Any user console can send a message to another user console by

subroutine calls to the supervisor. These messages are placed in an

input message pool for the Ieceiving user along with the user number of

the sentler. The receiving user program can read its message pool at any

time by a supervisor call similar to that for reading its own input

console; an input-wait status can occur if no messages are present. If

a receiver fails to read or aknowledge a message this is assumed to be

22

inten~ional. The user number of ano~her console must be determined by

supervisor subroutine calls which give the desired user number on the

basis of the console location, problem number and/or programmer number.

Disk Memory Control

For a good understanding of the disk control subroutine, the

following list of considera~ions concel~ing the use of the disk may be

helpful.

1. The user is able to write and maintain permanent program and

data files on ~he disk.

2. System programs (commands and standard library) are permanently

recorded on the disk.

3. The user has only symbolic reference to his files.

4. 'lhe user is able ~o read and write many files simul~aneously,

and, for ~he sake of efiiciency, may specify in which logical module a

new file is to be written. In this way much unnecessary seek time may

be avoided by using two separate modules for a simple read-write operatioI

5. The user is not able to reference any files not authorized to

him.

6. The user is able to initiate files in different modes, such as

temporary files, permanent files, or permanent read-only files.

7. In order to utilize the maximum storage capacity of the disk

file and to be compat1ble w1th any future 1.B.M. programs using ~he

the disk, Format 1 (i.e., a single record per track) is used.

A high level of user information protection can be achieved using

the 1301 disk unit with the CTSS 7090. Complete protection is maintained

(up to machine error and user identification errors) of all information

on the disk unit. All users and systems use a single standard super­

visor subroutine for reading and writing the disk. Because of the

input-outpu~ trapping and memory protection features, mishaps will not

occur if the user executes wild transfers, tries to store spurious

information in the subroutine, or tries to execute explicit instructions

for writing the disk.

It is desirable, from the point of view both of programming and

of disk administration, that the user have no notion of the absolute

23

location where his files of information are stored in the disk. Rather,

~he user will refer to his files only by symbolic names and logical mode

number. Furthermore, if the user does not specify the logical module

number, it will be assigned for him by· ~he subroutine. Each of the

user's files has two names; cOhlmonly the second name is descriptive of

the type of file, as "FAP," "DATA," "BSS," etc. Each name is at most

six BCD characters long; the characters may be any alphanumeric charac­

ters, but special characters should not be used; the special characters

are used ~o distinguish the names of certain files created for the

user by the supervisor.

Normally different programmers on the same problem are treated as

different users. To allow convenient cooperation between programmers,

such as students in classes or group projects, there is a feature which

makes it possible to have files common to several different programmers

with the same problem number. To gain access to these common files

(referred to by programmer number zero) a special supervisor call must

be given which places the user in a "common file mode;" another super­

visor entry allows the user to return to the normal "personal file

mode." More elaborate cross-referencing of files can be accomplished

by the ~ or copy disk editor control cards described in Chapter 5.

Organization of the Disk Memory

When the user initially requests use of CTSS in his Computation

Center Problem Application Form he may also request the allocation of a

number of tracks on the disk. If none are requested, an initial

allotment will be made automatically which may later be extended by

request. The track allocation information is kept on the disk in the

master file directory of all users, which in addition contains the

location of each user file directory. A track usage table is also

maintained on the disk.

Each user has on the disk a user file directory (UFD) which con­

tains a 4-word entry for each of his files. The first two words contain

the file name and class name of the file. The third word contains the

mode of the file in the prefix, a document number (a number assigned

in~ernally to each file, for tracing and retrieval purposes) in the

24

decrement, and the address of the first track of the file in the

address and tag. The fourth word contains the number of tracks used

by the file in the address, and the date the file was last used (day,

month, and last digit of year, coded as ~UIDDY, in octal) in the decrement.

If the user exceeds his track quota while writing a file, there will

be an automatic temporary extension of his quota. This will allow him

to complete any file he has begun; it will also allow for the automatic

dumping of his machine status in case of system shut-down (see "System

Service Changes and Supervisor Messages"). As soon as the track quota

is exhausted the supervisor will notify the user of the fact. The

extension will be maintained when the user issues logout. When he next

logs in, he should relieve the excess in his track quota by adequate

deletions. Should he fail to do this, a sufficient number of his

oldest files will automatically be dumped at the next disk editing to

restore his track quota to normal; the procedure for dumping these files

will be similar to that for over-age files (see "Disk Editing Proce­

dures ").

Keypunching and Card Input to the Disk

Normally, it is expected that casual program writing, editing and

data generation will be done directly from the user's console. Even

for the case of long programs which are too tedious for the programmer

to type, a trained typist can still type the program directly into the

disk memory. However, for various reasons such as distance, convenience,

or exchange with other computer centers, it is still sometimes necessary

to input punched cards. In this case, input cards must be brought, with

an appropriate control card, to the Center Dispatching Area for entry

into the disk during the disk editing period, which occurs at least

once a day.

~layed Output and Disk Editor Control Cards from the Console

Normally, a programmer will find it more convenient to maintain

brief but frequent interactions with his program through his console,

but there will be occasions when large-scale output is desired. This

output may still be obtained via the Center 1401 computers in the form

25

of printing, punched cards, or pen plotting, by the user's issuing

appropriate delayed output commands. The output files must be stored

by the user on the disk in appropriate formats. The delayed output

commands initially will cause appropriate disk editor control cards to

be generated by the supervisor and automatically inserted in the disk

editing procedure; thus the delayed output occurs at disk editing time.

The user can also by appropriate commands or supervisor calls generate

other disk editor control cards to be entered into the disk editing

process.

Disk Editing Control Cards

Periodically. requests will be processed by the Center Staff for

input to the disk from cards and for output from the disk, either

printed or punched. Control cards are submitted to the Center Dispatch

Area which specify these reques~. A variety of operations, specified

by control cards, may be performed at disk-editing time, including, in

addition to off-line input and output: editing of a binary program onto

the disk; deletion of a file, with or without punched-card dumping;

changing the mode of files (in particular of "read-only class 2" files)

copying a user's file for another user; and linking several users

(i.e., giving them access) to a particular user's file.

Disk R~liability, Malfunctions and Recovery

The 1301 disk memory is expected to be quite reliable - more so, for

example, than tape - but to date enough information has not been

gathered to offer any definite appraisal of its reliability.

During times when CTSS is not in operation, the disk may on

occasion be used by other systems. For this reason, as well as to

protect information from loss due to malfunction of the disk, the con­

tents of the disk are dumped onto magnetic tapes as needed and at

least once a day. These tapes are used to reload the disk at the same

time t~at any requests for new input to the disk are being processed.

Disk dump tapes are written in duplicate to safeguard against tape

errors. Dump tapes will be kept for backup purposes for several days,

and a set of dump tapes will also be preserved from certain fixed pointS

26

in the past (e.g.,week-old, month-old, three-month-old, etc.). Thus if

any information on the disk should be lost or garbled, any or all user

files could be restored to the status of an earlier day.

For example, were the entire contents of the disk to be erased,

the last set of dump tapes would be used for reloading, and the loss

confined to less than twenty-four hours worth of new information.

ThiS is not expected to happen since erasure does not occur easily and

the disk normally retains all information in case of power failure.)

If both sets of duplicate dump tapes were to prove unreadable, the

loss would be no greater than twenty-four hours, since the preceding

day's tapes would be available. If the dump tapes were being used to

restore information after disk loss, and both sets of tapes were

musable (an unlikely concatenation of misfortunes), the loss would still

be confined to forty-eight hours since an earlier day's tapes would be

available.

If an individual user's file is lost or garbled due to undetected

failure of one or more disk tracks or to undetected tape error, the

single file could be retrieved from earlier dump tapes either in

earlier form or precisely, using the document number of the file for

confirmation. If the user does not reference the file very frequently,

however, it is possible that he might not ascertain the error until, say,

a week after the loss occurred, and it might not exist on any older

backup tape. Consequently, as with every type of information storage,

it behooves the user to take his own precautions concerning valuable

files.

Disk Editing Procedures

Despite the rather large capacity of the IBM 1301 disk modules for

secondary storage they are still capable of being filled by various

Beans, from runaway programs to car0less user file "housecleaning." To

minimize the latter effect, each User is assigned an initial but

Usually adequate track quota, which can only be extended by a formal

request to the Center. Furthermore a technique is used of automatically

displacing, from the disk secondary storage to magnetic tape tertiary

storage, those user files which have been unused and inactive for

27

several weeks. These tertiary storage tapes will be created in dupli­

cate each week and will be called history tapes. History tapes will

automatically be erased after six months. No direct notice of file

displacement will be made to each user; rather each user, upon

examining his file directory. can by inspection see which files are

still on the disk. Any attempt to use a displaced file will result in

a console message to the user.

The above ,history tape procedure represents a compromise between

automatic information disposal and the convenience of the user. The

procedure which is illustrated in Figure 3.2 is done in conjunction

with the normal disk editing procedures of dumping and loading the

disk (at least daily).

7090 DUMP
CONTROL CARDS

BCD PRINT
BCD PUNCH

BINARY PUNCH
PREFIX - 7 CARDS

(SAVED
2 WEEKS)

1401 LOAD CONTROL CARDS

7090 LOAD CONTROL

(SAVED 6
MONTHS)

T

1401
LOAD

1401
T- PR
T-PU

7090

LOAD

DISK INPUT CARDS
(SAVED 2 WEEKS)

Figure 3.2 Diagram of Disk Editing Procedure

The first phase of the procedure starts with the 7090 dump editor

and 7090 dump control cards being recorded on magnetic tape via the 1401

to run as a standard 7090 FMS job. The job first processes control

card files left on the disk by the time-sharing supervisor, and then

28

the input tape control cards, before producing the requested dump tapes.

In addition, the current history tapes are extended by the over-age

files and any files which the user has asked to be deleted; correspon­

ding file directory entries are marked along wi~h the date dumped and

the history tape position. Finally, the dump program produces an out­

put tape for the 1401 of output requested by thu dump control cards,

both those submitted directly and those generated from consoles. This

output consists of: BCD printing, BCD and binary cards, prefix-7 binary

cards (for convenient and safe reloading of the disk), and those

remaining control cards not acted upon which were produced at the

consoles and left by the supervisor. The latter control cards, which

may include requests to restore to the disk some files which have been

displaced to the history tapes, are sorted for systematic retrieval in

the next editing phase. Requested disk output of all forms will be

kept at the Center for a period of only 2 weeks before being disposed of.

During this time, it is the user's responsibility to pick up his

output at the Center.

The second phase of the procedure is that of loading the disk.

The load-edit program is placed in the 1401 card reader, along with

the control cards produced by the 7090 dump-edit program, as well as

those load-control cards and input card decks submitted to the Center

Dispatching Area. Input card decks, after they have been used by the

edit program, will be placed in the Output Request Section of the Center

and have a similar 2-week lifetime before disposal. By means of a

special 1401 program. the above input is used to write a 7090 input

tape which includes those files requested from history tapes. The

latter is accomplished by the 1401 load-control cards produced by the

7090, which log on the 1401 printer giving the 1401 operator detailed

instructions on the mounting and dismounting of history tapes. Finally

the 7090 load-edit program, with input data, is run as a standard FMS

job, where the input edit data and the previous disk dump tapes form

the input.

The user will be able by a retrve command to retrieVe his file

from a history tape and replace it on the disk while at his console. This

command will first give the user an estimate of the minutes of 7090

29

computer time required to position the appropriate history tape; if the

user wishes to continue, the command will carry out the retrieval using

the attach command; otherwise the user is free to create a 1401 load-edit

control card such that the desired file will be entered into the disk at

the next disk-edit period.

System Service Changes and Supervisor Messages

Normally the CTSS system will operate for scheduled periods in

blocks of time during each day. System operation will commence with

messages typed on all consoles that are on (or can be remotely turned

on and off) stating that the system is on and at what time the system

will cease to operate again.

When the CTSS system is shut down, either on a scheduled basis or

an emergency basis, the following procedure occurs. Each active user

Ceases to run, a cutoff message is sent to his console, all files are

closed, all attached input-output units are disconnected, the user's

program is created as a file of name cutoff with class saved, the user

is given a logout command, and a message is placed in the user's

console message file on the disk giving a summary of the cutoff process

including the unread characters in the console input buffer.

\Vhenever there are individual or general disk failures as well as

system changes of great importance, appropriate messages will be placed

by the supervisor in each of the user console message files. A console

message file (named "MESSAG & .FILE") is created for the user when

necessary and is normally typed out by the login command, at which time

it is deleted. During operation of his console, additional messages

may be generated; a user can read his console message file at any time

with the printf command, which will not delete the file. The console

message files, which are created by the supervisor, use disk tracks of

the user's quota.

For wr4ting message files and for saving the user's program at

the time of a system shut-down, the supervisor may have to take advantage

of the feature which allows an extension of the user's track quota (see

"Organization of the Disk Memory"). In this event the user should, the

next time he is at a console, relieve this condition by dumping some of

30

hiS files, or else older files will be dumped automatically for him at

disk editor time. If at shut-down time the user himself has already

exceeded his quota, no further extension will be allowed; his machine

statuS will be lost and so may his message.

Assignment of Input-Output Units

There are numerous devices such as tape units, scopes, plotters,

satellite computers, etc., which are of such a nature that it is

desirable to assign them to a single user for his session at his console.

This assignment is done by means of an attach command, where the user

may receive a busy signal whenever requested units are actively engaged.

Addressing conventions of input-output units will always be by logical

unit numbers except when location is relevant.

The supervisor will maintain for each user an input-output aSSign­

ment table in which the logical-physical unit number interconnection

will be kept. When a user gives a logout command at his console at

the end of his session, all assigned units will be disconnected.

Magnetic Tape Usage

~lthough for a large number of cases the disk memory, because of

its quasi-random access, is more appropriate for program data and

temporary storage requirements, there are still many problems such as

payrolls, bubble chamber scanner output, etc., where magnetic tapes are

more appropriate. This is true partly because of the vast quantities

of information.

Within CTSS, the user may use private tape reels in the following

way. The user types in an attach command specifying, for example, that

file-protected private tape reel 103 should be mounted as logical tape 2

on logical channel 2. The computer repl ies "WAIT," as the command re­

quests from the supervisor pool an available tape drive. Upon receipt

of an appropriate tape drive assignment, the attach command sends an

interconsole message to the tape operator's console (where his program

is continuously process~ng messages), of the form:

"mount reel 103 as tape A3, file protected."

The tape operator, on completing the action, types "ok" which causes

31

a confirming interconsole message ~o be sen~ back to the a~~ach command

The command can relay ~o the user ~he tape mounting information by

repeating the inpu~ informa~ion and concluding with "READY."

Dataphones

In addition to Teletypes, the IBM 1'750 Communicat:ion Channel

allows the attachment of higher speed devices (1200 bits/sec.) by means

of Bell System Model 202B Dataphone sets, one at the 7750 and another

at the device, with a telephone line between them. The devices (e.g.,

PDP-I computer or a 1620 computer) will appear as input-output units,

and a user, from his console, may request to have them logically attached

to his program. For convenience each device can be considered by the

programmer to consist of several logical subuni~si in particular, for

control purposes one of these subunits (e.g., the typewri~er keyboard)

can represent a user console, so that an auxiliary console is not needed

Provision has been made for error de~ection and transmission correction

in the internal character and message formats, which are further des­

cribed in memo CC-210.

Command Programming

Whenever a user issues a command at his console, the command name

and parame~er segments are placed in order in a command parameter list,

and the corresponding command program is located and started wherever

indica~ed by the initial machine conditions of the program. The command

program reads the parameter segments by issuing supervisor calls.

The only exception to the above process occurs wi~h the resume

command where the format for resuming program a. which has been

"saved" by ~he ~ command, is

resume a PI P2 ••• Pn"

"In this case, just before starting the a program, ~he command list is

reordered to contain the sequence a PI P2 ••• Pn' The purpose of this

exception is to allow ~e user a trivial way to develop and use private .
commands which can also be compatibly added to the general system.

A useful property of the command mechanism is the ability of one

command to call another command. The set~ing of ~he next command name

32

and parameter lis~ is done by the operating command program issuing

appropria~e supervisor calls.

By let~ing a command program set up an in~ernal "command loca~ion

counter" (not seen by ~he user), i~ is possible to run a master conunand

program which in effec~ operates a "program" of subcommands, each of

which returns to the master command after increasing the command location

counter; the master command effects the return to ~he supervisor. The

master command and ~he subcommands may, by means of a supervisor sub­

routine call, modify the command parameter list.

When this procequre is used, a fresh copy of the mas~er command

program is brought in each time it is executed, and the "command

location counter" is used to dispatch control to the next command se­

quence. Condi~ional branching can be realized by letting the subcommand

increase the location counter by a variable amount. Communication be­

tween subcommands must be accomplished by leaving data files on the

disk.

Console-Initiated Background

AI~hough the foreground console system is highly useful for

preliminary programming, experimentation, and general man-machine

1nteract10n problems, there are occasions when long, uninterrupted com­

putations must be performed by foreground programs. In these cases, the

user ordinarily neither needs nor wants to occupy a console during the

computation. To avoid this situa~ionJ it will be possible for the user,

by placing his operating program in dormant status and issuing a bkgrnd

command, to turn his job over to the supervisor for operation as console­

initiated background. In the bkgrnd command ~he user will specify as

parameters: the computation cut-off time; the name of the job file; a

name for the file to contain the final 'status of the program; and the

name of a file for any console messages which may develop (including

information concerning the final job status).

After a console-initia~ed background program is ~urned over to the

supervisor, the user, at a later ~ime (even after he has issued logout

and login commands), may in~errogate ~he supervisor by means of a sta~us

command ~o ob~ain ~he status of his one or more jobs. From the status

33

command, the user receives a I'eport containing: whether the job has

finished or not; the time the job was submitted; the computer time used

to date; the cutoff time; the current program level number; and the

level populations in the scheduling algorithm.

Estimate of Computation Completion Time

When a user is present at his console operating a foreground pro~

gram, he can easily determine the rate of computational progress by the

use of the time command. However in the case of console-initiated

background, estimation of completion time becomes a more difficult

problem. For this purpose, an estimate command will be made available.

Its properties are expected to be as follows:

Th~ console user gives as command parameters the designation of

the particular background job in question, and the total expected

computation time required by the job. The estimate command can determine

the position of the job in the scheduling algorithm, and it has available

a cumulative history of the scheduling traffic on, for example, an

hourly basis over a period of a week. For each hour, the traffic

history consists of a histogram, for each level of the scheduling

algorithm, of the number of job initiations versus the total computation

time required (including time in subsequent levels). Knowing in

addition the current job status and the scheduling algorithm itself,

the estimate command is in a position to run a high-speed Monte carlo

simulation, into future time, of the expected system behavior. By

running several such simulations, using different initial settings of

the pseudo-random number generator, the estimate command can type out

a message like: "Range of estimates over 3 trials = 131 min. to 237 min~

Estimated Completion time between 3 :16 pm July land 5 :02 pm July 1."

(An alternative message might be "job already completed. rt)

If the estimated time is too long, the user will initially have

no recourse except to cancel or stop the background job. Future

systems may contain priority alternatives, with additional usage charges

serving as restraints.

34

Background System Restrictions

The normal user of CTSS will not need to concern himself with the

following section which is primarily of interest to those programmers

dealing with older pre-time-sharing programs.

Certain programming conventions or restrictions must be followed

in programs running as background jobs in CTSS. These restrictions

are principally dictated by the need periodically to interrupt all

programs operating in CTSS. Normally, well-programmed systems will

already satisfy the requirements. What is required, in the main, is a

program which is timing-insensitive (i.e., one which would operate

correctly were the computer to be put in man"lal operation at any moment).

1. The use of the following instructions is prohibited; if a

system uses one of these instructions, a protection mode violation

occurs and a diagnostic will be given.

ECTM

ESNT

ESTM

ETM

LCH

LPI

LRI

SEA

SEB

TIB

2. Data channel traps on channels A and B will operate normally

except that when a trap occurs, instead of an effective XEC of location

13 or 15, control is transferred to location 13 or 15. Therefore, if

data channel traps are expected, location 13 or 15 can only contain

an unconditional transfer for proper program operation. (If this

condition is not satisfied a diagnostic will occur.)

3. The background system, if authorized by the Center, may use

the Disk Control Subroutines (Chapter 5) by calls identical with those

used by foreground programs.

4. Since many foreground usel"S may have programs operating, it

is undesirable to have the operator intervene in the conventional manner

to take terminal post-mortems. The "Load Cards" and "Load Tape" buttons

are not to be used by the operator, since they reset the memory pro­

tection and relocation mode. The "Start" button cannot be used because

the operator does not know when the background system is operating.

35

However, in order that the operator may effectively perform these

functions, the address of the console keys is continually checked by

the Time-Sharing Supervisor. (The background system cannot use the

address section of the keys.) When the supervisor finds certain codes.

it simulates the following functions:

a. Depressing the "Load Cards" button.

b. Depressing the If Load Tape" button.

c. Depressing the "Start" button.

d. Initiating the "standard error procedure. "

The "standard error procedure" consists of storing the instruction

counter in a specified location, and transferring control to some

address which is the start of a post-mortem routine or a return to the

background system monitor. The background system should therefore

specify two locations for use by the Time-Sharing Supervisor. This is

done by the following call to a supervisor subroutine:

TSX

PZE

DEFERR,4

ERRILC, ,ERRTR.~

where DEFERR contains: TIA =HDEFERR. DEFERR is the name of a super­

visor subroutine which defines the error procedure. ERRILC is the

address where the instruction counter will be stored, and control will

be transferred to location ERRT&\.

5. GETTM is the subroutine used to read the date and time from

the special Computation Center on-line printer clock. The original

version of the program uses the "load channel" instruction (which is

illegal), and is not interruptable. A new, interruptable version will

be available.

The interval timer clock will be simulated for use by the back-·

ground system. This clock will only operate when the background system

is in control and should therefore be used to determine the amount of

time run. MITMR, the Center's timer program (CC-193), may be used

in the normal manner.

6. In general on the 7090, when an interrupt occurs, the inter­

rupted program is resumed at the location specified in the appropriate

lower core register. When the 7090 is stopped by an HPR instruction,

36

the ins~ruc~ion coun~er is set ~o ~he next location; i~ is this location

.hich is s~ored if an interrupt occurs. Thus if there is an interrupt

~t this poin~, the program resumes at ~he next instruction after the HPR.

Swce interrupts are a normal occurrence in the Time-Sharing System, the

1090 cannot always be stopped by an HPR instruction. The HTR instruc­

tion, however, produces a genuine program stop and should be used in

place of the HPR.

7. Only the following I/O units are available for background

systems:

a. the card reader, card punch and printer;

b. tape units Al-A6, AlO, Bl-B6 and BIO.

If other units are referenced, a diagnostic will occur.

8. The "Load Channel" instruction is prohibited. A diagnostic

will occur if an LCHX instruc~ion is used. A "Reset and Load Channel"

wstruc~ion, if given, mus~ immedia~ely follow ~he selec~ instruc~ion;

otherwise, the I/O check light will be turned on. An exception is made

for three instructions; up to three SPR's, or SPU's, and/or NOP's

may be inser~ed between the selec~ and reset and load instruc~ions.

9. All I/O commands (including TCH commands) must have a "1" in

bit position 20. This will automatically be done on assembly if the

BeORE pseudo-op is used in the Center version of the Fap assembler.

I/O instructions, if generated, must also contain this bi ~. A diagnostic

will be given if this condition is not met.

10. When the supervisor determines that the background system is

to be saved while a foreground program receives attention, the

background system's machine conditions must be saved. In order to save

the status of an I/O channel, ~he sup~rvisor must wait for current I/O

activity to stOp. If the background system reads or writes long records

on tape, the time spent waiting in the supervisor can be detrimental to

the foreground response time. It is n,ormally required, therefore, that

all physical records read or writ~en on tape be less than 1000 words.

If this condition canno~ be met, the matter should be discussed with

the Computation Center S~aff.

37

11. To ensure insensitivity to timing, proper interlocking of

I/O commands and the CPU program must be guaranteed, usually with TCOX

instructions. IYhen this is not done, it is sometimes possible to get

erratic program operation due to the probabilistic nature of other pro­

gram interrupts (and consequent program delays) occurring during the

operation time of I/O commands which change the working data area of

the interrupted program. This also applies to control-card coding •

..

38

CHAPTER 4

SUPERVISOR SUBROUTINE ~LLS

The subrou~ines listed below are available to CTSS users through

the supervisor program; a brief descrip~ion of their function follows.

The entries to ~he disk con~rol subroutine are also via the supervisor;

the function of each of these entries is described in Chapter 5.

Supervisor Subroutines

RDFLXA

WRFLX

WRFLX.<\

DEAD

DORMNT

(EFTM)

(LFTM)

GETMEM

SETMEM

GETCOM

AKNOLG

TSSFIL

USRFIL

SETBRK

SA VB RK

GETBRK

SETFUL

SETBCD

NEXCOM

GETILC

FNRTN

INSTRT

INPEND

Disk Con~rol Subroutine Entries

• DUMP

.LOA.D

.ASIGN

.WRITE

• APEND

.FILE

.SEEK

.READK

.ENDRD

.RELRW

• CLEAR

.DLETE

.RENAM

• RESET

.FILDR

.FSTAT

39

Supervisor subroutines are called by means of the trapping con­

vention described in Chapter 3, "User Communication with the Supervisor

'Nhere arguments are expected, they are located relative to index

register 4 as in normal calling sequences; for example

TSX RDFLXA,4

PZE BUFF, ,4

RDFLXA TIA =HRDFLXA

is a call to RDF~\ with a single argument in (1,4) and a return to

(2,4). The BCD name of the supervisor entry, as specified in the

TIA instruction, must be left -justified wi t;h trailing blanks.

To read an input line from t;he console,

TSX RDFLXA,4

PZE BUFF

reads 14 words into memory starting at BUFF. On return the logical

AC contains N where the break character is the Nth character; the

word containing the break has blanks to the right of the break;

subsequent words contain blanks.

To issue an output line to the console,

TSX W'RFLX .4 or TSX WRFLXA ,4

PZE BUFF, IN PZE BUFF I.N

where WRFLX writes the N words (~14) starting at BUFF, adding a

carriage return at the end of the line, and a color shift at beginning

and cnd where the color shift is available; blanks are deleted from the

end of the line. WRFLX~ differs in that it does not add carriage return

or color shift, and does not delete terminal blanks.

All entries ~o the master disk control subroutine are interpreted

like supervisor calls. See Chapter 5.

The call:

TSX DE.'\D,4

returns control to the supervisor and puts the user in dead status,

40

i.e., machine conditions are not saved.

TSX DORMNT,4

~turns control to the supervisor and puts the user in dormant status,

i.e., machine conditions and the current status of the user's program

are saved, unless a command is issued which causes a new program to be

read into memory. If the start command is issued, control returns to (1,4)

The call:

TSX (EFTM),4

causes entry into the floating-point trapping mode, with trapping

simulated in B-core.

TSX (LFTM),4

causes exit from this mode.

The call:

TSX GETMEM,4

returns in the address of the AC the size of the user's current memory

allocation. The call:

TSX SETMEM,4

sets the size of the user's memory allocation to the value in the

address portion of the AC. This subroutine must be used whenever the

user wishes to increase the size of his program. If he fails to do

so and refers to locations outside his original memory allocation he may

not cause a protection violation, since the protection indicators are

set by block count rather thun word count; but dumping, when users are

swapped in and out of core, is done by word count, and all information

.stored beyond the memory bound will be lost.

The call:

TSX GETCOM,4

nE N

returns in the logical AC the Nth word of the user's latest command.

Each command issued by the user is written in the supervisor region,

one word per argument, in an IS-word buffer; after the last word

(the last parameter in the command line) a marker is written consisting

41

of a word of octal 7's. The command name itself is word zero.

The call:

TSX AKNOLG,4

BCI 1,*

where * may be any console character (other than zero), puts the user

in an input acknowledge mode; whenever a message is received from the

console the specified character will immediately be typed out. To

leave the acknowledge mode, the following call is given:

TSX AKNOLG,4

PZE

The call:

TSX TSSFIL,4

allows the user to read CTSS system files from the disk (e.g., the

CTSS library). When in this mode only CTSS files may be read; to

reset the mode,

TSX USRFIL,4

allows the user to reference his own files again.

To drop the console input level (see Chapter 3, "Quit Signals

and Console Input Levels") and set the corresponding quit entry point,

the following sequence is used:

TSX SETBRK,4

FZE ILC

which drops the input level by one and sets the return corresponding to

the new level to the value of ILC. The call:

TSX SAVBRK,4

raises the console input level by one and returns in the AC the quit

entry point corresponding to the level just left. If the command level

(level 0) is reached, the contents of the AC is zero. The call:

TSX GETBRK, 4·

returns in the AC the value of the instruction location counter at the

time the user last gave the quit signaL.

42

The call:

TSX SETFUL,4

sets the console character mode switch to "full" l2-bi t mode.

TSX SETBCD,4

restores the console character mode switch to "normal" 6-bi t BCD

lIIode.

The next group of subroutines have been designed for fairly special

purposesj they are most likely to be useful for the writing of commands.

The call:

TSX NEXCOM,4

where the AC contains the name of a command, right-justified with

leading blanks, puts the user in waiting-command status with the

specified command as his next command. (This is used, for example, by

the madtrn command to chain into the mad command.)

The call:

TSX GETILC,4

returns in the AC the value of the instruction location counter at the

time when the user last entered dormant status. The call:

TSX FNRTN,4

returns the user to dormant statusj the user's instruction location

counter is reset to the value it had when he last entered dormant

status. (Both these entries are used by the p~ command.)

The call:

TSX INSTR'I,4

puts the user into console input mode. The contents of the AC is taken

as a decimal initial line number; after adding ten to this number the

supervisor prints it out; when a line is typed in it may then be read

by RDFLXA. The supervisor continues to generate line numbers, incre­

menting by ten. According to the conventions described under the input

command, (Chapter 7), a manual mode may be entered where the supervisor

Suspends the generation of line numbers. To exit from the console input

43

mode the following call is given:

TSX INPEND,4

(Both these entries are used by the input command.)

Additional supervisor entries, to be added in the near future,will

allow the following requests: setting a break character other than the

normal one for the console; setting a character or set of characters

which when typed by the user will denote a request for a time-used

message; setting the input confirmation mode; requesting interconsole

communication; calling adapters for the attachment of additional console

units; requesting access to files assigned to other programmers with

the same problem number; altering the increment used in automatic

generation of line numbers (input command); modifying by program the

command parameter list.

44

CHAPTER 5

USE OF THE 1301 DISK MEMORY

Master Disk Control Subroutine

The disk control subroutine may be considered an extension of the

supervisor. It provides means whereby the CTSS user may store informa­

tion on the disk for indefinite periods, such information to be

completely protected and readily accessible for console and off-line

reference.

Each user is assigned one or more tracks to serve as a directory

of all his private files currently stored on the disk. The directory

consists of a set of 4-word entries, each of which contains a file

name (two BCD words) and two control words indicating the type of file,

the date the file was last used, and the address of the first track

assigned to this file. If the file is more than one track long, a

second track is chained to the first sucn that the first data word of

the first track assigned to the file will contain the address of the

second track. Additional tracks as needed are chained in the same

manner. The first data word of the last track of a file will contain

a pointer to the last word in the file. Additional tracks for the

user's private file directory may also be chained in a similar manner,

if necessary. This chaining of tracks is done automatically by the

disk control subroutine so the user will never need to concern himself

with absolute addresses within the disk.

The user may specify any of four modes for a file. The mode is

designated by a prefix code in certain of the disk-routine calling

sequences. The following is a list of the permissible prefix codes

with their meanings:

PZE

PON

PTW

Temporary file, will be deleted as soon as it is

read.

Permanent file, can be read or all:ered indefinitely.

Read-only (class I), can be read but not altered until

the mode has been changed.

45

PTH Read-only (class 2), can be read but not altered except

by edi~ cards submitted to the Cen~er. Any attempt by

a program to alter a file in this mode will cause a

diagnostic commen~ ~o be prin~ed.

Temporary files will be deleted when the user gives the logout

command. They are not included in his track quota, and he may use as

many as he wishes as long as there are enough free tracks on the disk.

All input and output for disk files is effected through the disk

control subrou~ine. A set of entries is provided which are called like

CTSS supervisor subroutines, i.e., by setting index register 4 and

entering the subroutine by means of a TIA instruction (see Chapter 4).

To dump a continuous block of core onto the disk as a file the

following sequence is used;

TSX .DUMP,4

*** FIL~\M"MODNO

PZli: A, ,n

where A is the location of the first word to be dumped, n is the number

of words to be dumped, FILNAM is the location of the first of 2 consecu­

tive BCD words which will become the name of this new file, and MODNO

is the logical module number. Logical modules 1 and 2 will be available,

although only 1 is used at present. If MOONO is zero, the disk control

subroutine will assign the module number. *** is a prefix code which

defines the mode of the file. Upon completion of a dump operation, the

new file name is added to the user's private file directory.

To load a continuous block of core from a file previously recorded

on the disk, the .LOAD entry is provided:

TSX .LOAD,4

PZE FILNAM

PZE A"n

where A,n, and FIL~\M are of the same form as in the .DUMP calling

sequence with the exception that n may be set to a larger value than

necessary for loading files of indeterminate length. The prefix code

and module number need not be specified.

46

For cases in which the .DUMP and .L~D entries are insufficient

(i.e., the blocks of core to be read or written are not contiguous

or are to be read or written in small units) a more versatile set of

entries is provided. The first is the .ASIGN entry that prepares the

system for the writing of a new file. (More than one file may be

written at one time.) The calling sequence is of the following form:

TSX .ASIGN,4

*** FILNAM"MODNO

PZE WBUFl"WBUF2

where WBUFI and WBUF2 are the initial locations of two 470-word blocks

of core to be used by the disk control subroutine for the buffering of

subsequent calls for writing. If available storage space is not

sufficient for double buffering, WBUF2 may be specified as zero and

only the single buffer specified by WBUFI will be used. FILNAM and

MODNO are of the same form as described in the .DUMP calling sequence.

The prefix code *** determines the mode of the new file and is as

described under the .DUMP calling sequence.

The .ASIGN routine assigns a free track. in the module specified

by MODNO, to be the first track of the new file and sets the disk

control hardware in motion to find this track. While the apparatus is

looking for this track, the .ASIGN routine returns to the calling

program which may then make use of the seek time.

To write information into a file initiated by a call to the

.ASIGN entry, any number of calls to the .WRITE entry may be used in

the following form:

TSX • WRITE, 4

PZE FILNAM

PZE A, ,n

Starting from location A, n words will be wri1:ten into the file specified

by FILNI\M.

To write additional information at the end of an existing file,

the following entry may be used in place of the .ASIGN entry;

TSX .APEND,4

PZE FILNAM

PZE WBUFl"WBUF2

47

which will loca~e the file specified by FILNAM and prepare to write

starting at the end of the information already recorded. In other

respects this entry is used just as ~SIGN.

To terminate ~he writing of a file and free the write buffers for

other work, the following sequence is used:

TSX .FILl:;,4

pZE FILNAM

The .FILl:; routine will write out ~he last buffer load of ~he file

specified by FILNAM with a pointer to the last word of the file. The

user's private file directory is updated wi~h the new file name.

To initialize the disk control subroutine for reading a file

from the disk, the following calling sequence is provided:

TSX .SEEK,4

pZE FILNAM

pZE RBUFI J ,RBUF2

where RBUFI and RBUF2 are the initial locations of two 470-word blocks

of core ~o be used by the disk control subroutine for the buffering of

subsequent calls for reading. If available storage space is not sufficient

for double buffering, RUBF2 may be specified as zero and only the single

buffer specified by RBUFl will be used.

The .SEEK routine will locate the file specified by FILNAM in the

user's private file directory, pick up the address of the first track

of the file, and set the disk con~rol hardware in motion ~o find this

track. While the apparatus is looking for ~he track, the .SEEK routine

returns to ~he calling program which may then make use of the seek time.

To read information from a file initialized by a call to the .SEEK

routine, any number of calls to the .READK entry may be used in the

following form:

,.

TSX

PZE

.READK,4

FILNAM

PZE A"n

P'ZE X

The first or next n consecutive words will be read from the file

specified by FILNAM, and stored in consecutive locations starting with

48

location A. If an at~empt is made to read past ~he last word of the

file, con~rol is transferred to location X. :Vhen this occurs, the file

being read is dropped out of ~he read status, and the buffers being used

are available for other work.

To terminate ~he reading of a file without having to read past the

last word in the file, the following sequence is used:

TSX • ENDRD ,4

PZE FILNAM

For some applications, it is logically much simpler to ~reat each

file as an addressable secondary memory. To facilitate this procedure,

the next group of calls are alternatives to ~he above ~ape-like calls.

The call:

TSX .RELRW,4

PZE FILNAM

PZE RWBUF

will allow the specified file to be treated as an addressable secondary

memory. Only one buffer should be specified, as double-buffering is

not feasible in this case. This may be followed by calls to both .WRITE

and • READK , using the calling sequences next described.

The call:

TSX .WRITE,4

PlE F ILNAM, ,RELADR

PZE A, ,n

will write the n words starting a~ core memory location A into the n

words of the file star~ing at relative location RELADR.

Similarly as in the .WRITE call, when the first parameter of a

. READK call is

PZE F ILNAM, ,REL.\DR

and RELADR is non-zero, the reading process s~arts from that relative

address of the file.

When reading and/or writing is terminated, a call ~o .FILE or to

.ENDRD is given; when in the relative read-write mode, .FILE and

.ENDRD are interchangeable.

49

The call:

TSX .CLEAR,4

*** F ILNAM, ,n

will create a file called FILK\M and of mode ***, and will write n zeros

into the f He.

To delete a file from a user's private file directory and thus

free the tracks aSSigned to the file for other use by the same or by

a different user the following sequence is provided:

TSX .DLETE,4

PlE FILNAM

The .DLETE routine does not require any buffer storage, but it still

must read every track of the file in order to find the addresses of all

th~ tracks used by this file and make the necessary changes in the track

usage table. Any file which has been placed in the read-only status

(either class 1 or 2) cannot be deleted in this way.

The name or mode of a file may be changed by the following

sequence:

TSX • RENAM. 4

*** NEW~~.,FILNAM

The .RENAM routine will replace the file name specified by FILNAM with

the name specified by NEWNAM (two BCD ~ords at NE',I/NAM and NE~VNAM+l) in

the user's private file directory. The prefix code (***) determines the

new mode for the file. A file which is in the class 1 read-only mode

may be altered only by first changing its mode with a call to .RENAM.

If it is desired to delete a file which is in the class 2 read-only

mode, it is necessary to submit an edit card to the enter.

The call:

TSX .RESET,4

will drop from active read or write status any of t·he user's active

files. Files which are reset fro~ active write status will be lost.

Temporary fil~s reset from active read status will be deleted.

To obtain a copy of the user file directory, the following se­

quence is used:

50

TSX .FILDR,4

PZE O,O,BUFF

The first track of the UFO is read into the 470 locations starting at

BUFF. The decrement of the first word is zero if there is more than

one track to the UFO; in this caSe the address and tag of this word con­

tain information to be transmitted to the supervisor to obtain the next

track; this address and tag must be stored in the argument of the next

call, as:

TSX .FILOR,4

PZg **,**,BUFF2

which will bring in the next track of the UFO.

The decrement of the first word of the last (or only) track con­

tains the number of words in this track not counting the first. The

address of the second word contains the user's total track count. The

set of 4-word entries for each file follOWS, beginning with the third

word.

Information concerning a file may be obtained by the following

sequence:

TSX • FSTAT,4

PZE FILNAM

which will return the following information in the logical AC:

*** WDCNT, ,MOONO

where *** specifies the mode, WDCNT is an estimated (maximum) word

count based on the number of traCks, and MOONO is the logical module

number.

Error Procedure. The disk control subroutine will handle error

conditions, unless the user adds another argument to any of the above

calling sequences, specifying an errOr return. If this additional

argument has a prefix of PZE, a diagnostic will be printed and control

will be transferred to the specified location with an error code in the

AC. If the error-return argument has a prefix ~~E, the diagnostic will

be suppressed but otherwise action will be the same as with PZE. Note

that an HTR instruction may not follow a disk-routine call as it will

be interpreted as an error-return parameter.

51

The following is a list of possible error conditions with the

corresponding error codes;

Error Condition

Illegal calling sequence

Too many active files

User not in Master File Directory

Available space on module exhausted

File not found

Allotted track quota exhausted

Disk Editor Control Cards

Error Code

PZE 1

PZE 2

PZE 3

PZE 4

PZE 5

PZE 6

Requests for off-line disk input and output and for other opera­

tions carried out at the time the disk is edited (loaded or dumped)

are submitted to the Center Dispatching Area in the form of punched

control cards. In the case of input, the input deck is submitted with

the control card.

The general format for control cards is as follows: starting in

card column 1, a variable number of fields, each of variable length

not exceeding 6 characters; fields are separated by commas, and

reading of the card is terminated by a blank. In general the fields

are:

1. Control word

2. Problem number

3. Programmer number

4. Primary file name

5. Secondary (class) file name

The following control words are used:

Input: This allows a file to be input from cards. The con~rol

card has the general format with a sixth field specifying the mode of

the file, as a digit:

, 0 = temporary

1 = permanent

2 = read only, class I

3 = read only, class 2

52

The deck immediately following the control card is put on the disk

a~ a single file. The input deck must be followed by a standard end-of­

file card or a decimal card, blank in cols. 1-7, with *EOF* in columns

8-12. Column binary and decimal cards may be mixed in the input deck.

If the card is binary, 28 words are read; if decimal 14 words. When the

end of the file is encountered, the file is added to the user's file

directory.

Files which have been dumped from the disk onto cards may be re­

loaded using this control card. These dumped cards have a special

prefix, 7, which is recognized by the editor program and causes the

original file to be recreated. Such cards are sequenced, and they must

be in order and form a complete set when reloaded.

Edit: The control card has the same format as Input. This provides

a means of loading a binary deck to form a core image of a program,

which is then written as one record on the disk. The control card is

followed by a column-binary record card for the deck; the record card

has a prefix of 1 in the first word; the third word contains in the

decrement the last address used by th~ program. The cards following

must be absolute column-binary cards with correct check sums. The deck

must be followed by an end-of-file card as described under Input.

Print: The control card has the general format. The specified

file is printed off-line. The file is assumed to be 14 words per line;

a blank word is inserted before each line to ensure single spacing. If

each line is preceded by a line mark, variable-length lines will be

printed. The line mark has 7's in prefix and decrement, and the ad­

dress contains the number of words in the line to follow. The first

character of the first word following each line mark must be the print

Control character.

Dpunch: This is the same as Print except that the files are

Punched off-line. Line-marked files are also recognized.

Bpunch: The control card has the general format. The file is

Punched off-line, 28 words per card. No provision is made for 7-9

Punches or check sums, which are assumed to be included in the card

image where required.

53

Delete: The con~rol card has ~he general format, with an op~ional

sixth field. The specified file is dele~ed from the user's file direc~

tory. If the word "CARDS" appears in "the six~h field, "the file will be

dumped in the form of special cards. These are column-binary cards

with a prefix of 7 in the first word of each card; instead of a loading

address they have a sequence number. These cards may be reloaded using

Input.

7punch: The con"trol card has "the general format. The file is

dumped in the form of prefix-7 cards, as in Delete with the "CARDS"

option. The file is not dele~ed.

Chmode: This allows the mode of a file to be changed. The control

card has a sixth field specifying the new mode desired for the file

(according to conven"tions specified under Input). If ~he new mode is

temporary, "the user track count is adjus~ed.

Copy: This control card causes a specified file assigned to one

user to be copied for another user so that each has an individual copy_

The general format is used to specify where the file is going and what

it is to be called. Four additional fields specify the file that is to

be copied: problem number, programmer number, and two file names. The

mode of the file is unchanged.

Link: The format is similar to Copy. The specified file is not

copied, but is made accessible to the designated second user. More than

one link may be made to a given file. The linked file may be read by

all of the users who have access to it, but it may be altered only by

the primary user.

,.

54

CHAPTER 6

CTSS LIBRARY

The library routines briefly described below are presently available

to console users. More detailed descriptions of usage, restrictions,

calling sequences, etc., may be found in short subroutine writeups for

each routine,which may be obtained from the Computation Center. For

the manner in which the CTSS library is made accessible see the

description of the load command, Chapter 7.

Elementary Function Routines

ASIN, AC0S

ATAN, ATN

EXP

EXP(l

EXP(2

£XP(3

INDV, DPNV

L0G

RANN0, SETU

SIN, C0S

Arc sine, arc cosine functions; floating-point

argument.

Arc tangent function; floating-point argument.

x
Exponential function e ; floating-point

argument.

J
Computes I j fixed-point arguments.

K
Computes X ; X floating-point, K fixed-point.

Z
Computes Y ; floating-point arguments.

th
Numerical solution of a system of Norder

non-linear simultaneous ordinary differential

equations.

Natural logarithm, floating-point argument.

Generates a floating-point random number between

0.0 and 1.0 with normal, rectangular distribution.

Sine, cosine functions; floating-point radian

argument.

55

SQRT, SQR

TANH

TAN, C0T

XS lMEQ, XDETRM

.01300

.01301

• 01311

Square root; floating-paint argument.

Hyperbolic tangent; floating-point radian

argument.

Tangent, cotangent Iun~tions; floating-paint rad~

argument.

Solves matrix AX=B; computes value of determinan~t

Computes yZ; floating-paint arguments (used by

Mad) •

K
Computes X ; X floating-point, K fixed-point

(used by Mad).

J
Computes I ; fixed-point arguments (used by Mad) •

Library Versions of Fortran Built-in Fun·.:;tions (used by Madtran)

INT

XINT, XFIX

MAXO

MAXI

XMAXO

XMAXl

MINO

MINll

Truncation; floating-point argument.

Fixed-point truncation; floating-point argument.

Remaindering; floating-point.

Remaindering; fixed-point.

Maximum; fixed-point argument, floating-point

function.

Maximum; floating-point argument, floating-point

function.

Maximum; fixed-point argument, fixed-point function.

Maximum; floating-point argument, fixed-point

function.

Minimum; fixed-point argument, floating-point

function.

Minimum; floating-point argument, floating

point function.

56

:<M INO

:<MINI

SIGN

XS IGN

DIM

;{DIM

Input-Output Routines

Minimum; fixed-point argument, fixed-point function.

Minimum; floating-point argument, fixed-point

function.

Transfer of sign; floating-point arguments.

Transfer of sign; fixed-point arguments.

Positive difference; floating-point arguments.

Positive difference; fixed-point arguments.

Using the CTSS library the user may read and write files on the

disk. By subroutine calls he may: 1) use the disk-control subroutine

entries directly as described in Chapter 5 (see also "Supervisor Entry

Subroutine" below); 2) use a set of comparable routines suitable for

Fortran and Abd programs, which automatically take care of format,

buffering, and error conditions ("Reading and Writing the Disk,"

below); or 3) via Fortran or Mad Input-Output statements use routines

which simulate tape usage on the disk ("Simulated Tape Usage"). The

last method allows the convenience of the compiler I/O statements but

with some loss of flexibility. For reading and writing the typewriter

consoles the READ and PRINT statements should be used by Fortran and

Mad programmers.

A separate special library will be available for users who wish

to read and write tape in accordance with the attach command. When

this library is used, E'ortran and Mad I/O statements will reference

tape I/O subroutines; the usual set of I/O subroutines will be

available.

Reading and Writing the Disk. To create an output file on the

disk the user specifies a file name conSisting of two 6-character BCD

names. Since the master disk-control routine uses core buffering

(see Chapter 5), the user may, if he chooses, specify buffer space in

his own program. Buffering may be either single or dOUble, and for

large-volume input or output there is a considerable increase in speed

where double-buffering is provided for. Bach buffer used for input to

57

or output from a single file must be a block of 470 words; for double

buffering two 470-word blocks mus~ be provided. The user may specify

~wo, one, or no buffer areas; if he specifies none, a single buffer will

automatically be assigned for a maximum of three simultaneously active

files.

In calling the library subprogram ASSIGN, the user specifies the

name to be given to ~he outpu~ file, and buffer space as desired. The

file is placed in ac~ive write status. By calling DWRITE he may now

write variable-length BCD records into ~he specified file. Several

files may be active simultaneously (up to five, if adequate buffer

space is provided), so each call to DWRITE mus~ give the appropriate

file name among its arguments. Conversion to BCD is implicitly through

(I0H) and is controlled by a format specified as another argument in

the subroutine call. The format conforms to Fortran specifications

(see CC-186-6). After the file name and the format, subsequent arguments

in the call to DWRITE constitute the output lis~.

The length of an output record 1s determined by the format and the

output list. Each record is preceded by a one-word record mark con­

taining Its in bits 0-17 and the number of words to follow in bits 18-35

Successive calls to DWRITE will cause successive records to be

written in the specified file. The file remains in active write status.

The only limit on the size of a file is implicit in the user's track

quota.

To conclude writing, to close out the file, drop it from active

status, and add it to his file directory, the user calls the subroutine

FILE speCifying the appropriate file name as argument. When this is

done the buffers assigned to that file are freed, whether provided by

the user's program or automatically assigned for him. If the user

fails ~o call FILE, but calls EXIT at the end of his program, any files

still active will automatically be closed out for him. If he calls

neither FILE nor EXIT, output files which are still active will be lost.

To wriie a binary file, a call is given to ASSIGN just as for

BCD files; calls to BWRITE, specifying the file name and the output

list, cause binary output ~o be written. The output exactly follows the

argument list, and there are no record marks.

58

To read a file from the disk, the user first calls the subroutine

5EEK, which is essentially similar to ASSIGN but puts the specified

file in active read status. The same conventions apply to buffering.

TO read BCD records, DREAD is used, with argument requirements similar

to those of DWRIT£. Records are read according to the format specifica­

tions. Two types of record format are allowed; in addition to the

variable-length record described above, BCD files may be composed of

fixed-length 14-word records without record marks (suitable for off-line

~rd input or console input).

To close out a file in active read status, a call to ENDRD,

essentially similar to FILE,is given.

Binary files may be read by BREAD, which is the converse of BWRITE.

If it is desired to write additional records on an existing

(inactive) file, this may be done by a c~ll to the library subroutine

APPEND. The arguments provided should be the same as those for

lSSIGN; APPEND reopens the specified file and subsequent calls to

DWRITE or BWRlTE will cause additional records to be written following

those already in the file. The conventions for writing and closing out

the file are identical to those followed when writing a new file.

If an end-of-file condition is encountered while reading a file,

the subroutine EOFXIT is called. This routine prints a diagnostic on

the user's console and calls EXIT. If other action is desired, the

user may substitute his own version of EOFXIT.

To dump a continuous block of core onto the disk as a file. the

user may call the library subroutine DSKDMP, specifying the name to be

given to the file, the location of the first word to be dumped, and

the number of words to be dumped. To load a continuous block of core

from a file previously recorded on the disk, the routine DSKLOD is

called, with a set of arguments similar to those for DSKDMP.

To delete a file from his directory, the user may call the

library subroutine DELETE, specifying the name of the file.

To change the name of a file the subroutine RENAME is called,

specifying the old file name and the new one. To change the mode of a

file the subroutine CHMODE is called, specifying the file name and the

59

desired new mode. Files of mode "read-only, class 2" (see Chapter 5)

may not be changed in this manner, nor may they be renamed.

By way of illustration, a Mad call to DWRITE, for example, might

be:

EXECUTZ DWRITE. (NAMEl, FMTl, ,\ (1) ... A (N))

where ~\MEI and FMTI would be specified by

VECTOR VALUZS N.\MEI = $ FIRST DATA$

VECTOR VALUES Fi\iT! = $ (5F6 .3)$

In Fortran,where the VECTOR VALUES facility is not available, the

arguments might be specified as follows:

CALL DWRIT'..!: (12H FIRST DATA,7H(5F6.3), A(1), A(2), etc.

but for complicated formats, many calls, etc., this method is tedious.

Two routines are provided to simplify calls in Fortran; they are

SETNAM and SETFMT. An example of a set of statements utilizing these

could be:

DIMENSION NA~ml (2), FMTI (10), BUFRl(470) , BUFR2(470)

CALL SETN.~M (NAMEl, 12H FI~T DATA)

ClLL SETFMT (FMTl, 7H(5F6.3»

CALL ASSIGN (NAMEI, BUFRl, BUFR2)

CALL DWRITE (NAMEl, FMTI, list)

etc.

In addition to these subroutines, the master disk control subroutine

entries may be used directly for input-output. Entries to the disk

control subroutine may be made through the library (see below).

Summary of Disk Input-Output Subroutines

SEEK DSKDMP

DREAD DSKLOD

BREAD DELETE

ENDRD SETFMT

ASSIGN SETN.4.M

DWRITE APPEND

BWRITE EOFXIT

FILE

(FTB) and (BTB) , implicitly called by SEEK and ASSIGN, provide a

directory of active files and associated buffers.

60

Simula~ed Tape Usage. In order to allow the use of Fortran and

~d standard input-output statements a set of library routines has been

provided for simulation of tape usage. The major restrictions on the

pseudo-tape usage are:

1. only BCD routines are available;

2. at most three "tape units" may be active (Le., "positioned"

for reading or writing) at one time.

Legal Fortran statements are:

READ

READ INPUT TAPE i

PUNCH

PRINT

Legal Mad statements are:

READ FORMAT

READ BCD TAPE i

PUNCH FORMA. T

PRINT FORMA.T

WRITE BCD TAPE i

Fap programs may call:

(STH) , (SCH) , (SPH)

(TSH) (CSH)

(IOH) , (FIL) , (RTN)

(BST) (EFT), (RWT)

WRITE OUTPUT TAPE i

END FILE i

REWIND i

BACKSPACE i

REWIND TAPE i

END OF FILE ~PE i

BACKSPACE RECORD OF TAPE i

BACKSPACE FILE OF TAPE i

Usage. For simplicity we will refer to Fortran statements, but

Mad and Fap usage is essentially similar. The format of all the state­

ments and subroutines listed above is unchanged; they may all be used

in the traditional manner. For description of a record, see above

"Reading and Writing the Disk."

READ will read a record from the user's ~ypewriter console.

PRINT will type a record on the user's conso~e.

The first appearance of WRI1~ OUTPUT ~PE i will automatically

cause the assigning of a disk file to the user, the file to be named

". TAPE. i" and of permanent mode. If a f He of this name already

exists in the user's directory, a new one will not be created, but output

61

will be appended to whatever is already there. A variable-length record

will be written in accordance with the format specified, and subsequent

output statements designating this same logical unit will add records to

the file. Until either a RENIND or END FILE statement is encountered

or the program terminates in EXIT, the file ".TAPE.

ac'tive status.

PUNCH is identical with WRITE OUTPUT ~PE 3.

i" is in

The first appearance of R&~D INPUT TAPE i will cause thu disk

con'trol routine to seek a disk file, assigned to the user, named

" • TAPJi:. i" and of permanen t mode. If no such file is found, an

error condition will result. If it is found, a fixed- or variable­

length record will then be read and subsequent input statements

designating the same logical unit will read subsequent records from the

file. Un'til ei'ther a REWIND statemen't is encountered or 'the program

terminates in EXIT, 'the file" .TAPE. i" is in active status. If

an end-of-file condition is encoun'tered, EOFXIT will be called.

END FILE i will cause the file ". TAPE. itt to be dropped from

active write status. If the designated file is inactive or if i't is

in active read status, no ac'tion will resul't.

R£',VIND i will cause the file" .TAP.c;. i lt to be dropped from

ac'tive read or write status. If the designated file is inactive, no

action will result.

BACKSPACE i will have no effect, but a diagnostic will be printed

a t the console.

When EXIT is called, all files s'till in active status will be

closed out. If the program terminates without calling EXIT, any files

s'till in active sta'tus will be lost. END FILE and BEHIND are not

normally necessary, provided the program terminates in EXIT and no

more than three logical units are used. If more are required, or if a

file is wri'tten and the same file read later in the program, it will "be
,"

necessary to use REWIND or END FILE to drop a unit out of active

status.

62

Auxiliary Subprograms for Simulated Tape Usage.

(IOH) , (FIL) , (RTN)

. READ , . READL, • TAPRD,

. PRINT, .COMN'T, • TAFNR,

. PUNCH, • PNCm..

(SPH) , (STH) , (SCH) ,

(TSH) , (CSH)

(SLI)

(SLO)

(EFT)

(RWT)

(BST)

.BSF,

.EFT,

.BSR,

.RWT

General Utility Programs

. SETUP

MOVIE)

Handles transmission and conversion of BCD

data according to List and Format specifica­

tions. Implicitly called by Fortran READ,

PRINT, READ INPUT TAPE, and WRITE OUTPUT TAPE

Statements, by the analogous Mad statements,

and by all calls to DREAD AND DWRlTE.

Mad BCD input-output routines, implicitly

called by Mad I/O statements •

Fortran BCD input-output routines, implicitly

called by Fortran I/O statements.

Provide list indexing for non-subscripted

arrays in Fortran I/O statements; called

implicitly.

Tape manipulation routines, impliCitly called

by Fortran statements END FILE, REWIND,

BACKSPACE.

Tape manipulation routines implicitly called

by Mad statements REWIND, END OF FILE,

BACKSPACE.

Sets up floating-point trap to (FPT) •

Automatically compiled into Mad and Fortran

programs.

Contains the names, initial locations, entry

points, and transfer vector length of all

subprograms loaded into core by the load

and use commands.

63

STOMAP

(EXE)

RECOUP

(FPT)

BRROR

SAVMC

RSTMC

LDUMP

.'

Prints a storage map of all user subprograms

loaded into core by the load and ~ commands.

Decodes errors encountered in Fortran and Mad

input-output library subroutines. Types OUt

reason for error, saves machine conditions and

transfers to RECOUP.

Provides a skeleton subprogram to which (EXE)

transfers after an input-output error; calls

EXIT, with no restart permitted. The user may

write his own RECOUP to allow for recovery

procedures.

Processes underflow and overflow in execution

of floating-point operations. Underflows are

set to zero, while overflows halt execution by

a call to ERROR.

Called by some math library subroutines in case

of error. Prints diagnostic and trace of

logical path of program flow where standard

error procedure is provided. After printing.

control returns to calling program.

Saves user's machine conditions in a buffer

provided by the calling program.

Restores user's machine conditions from a

specified buffer, previously filled by SAVMC.

Called by some math library subroutines in case

of error. The library version of LDUMP calls

EXIT. The user may write his own LDUMP to al­

low for recovery procedures.

64

a.IT, CLKOUT,

.c;NDJ OB, DUMP,

PDUMP

EXITM

XLOC

. 03310, .03311

.MTX

LISTM

IOSET

Closes ou~ any active disk files. Preserves

machine conditions and goes to the supervisor

in "dormant" status. If a start command

follows, execution will be resumed at the

location following the call to EXIT.

Transfers control to the supervisor in "dead"

status. Upon issuance of a new command, any

active files not closed out prior to calling

~XITM will be deleted.

In compiled programs, finds the location

where a variable is stored .

In ~~d, used to compute linear subscripts for

two-dimensional arrays.

In Mad, used to compute linear subscripts for

arrays of more than two dimensions.

For ~~d list manipulation.

Calls to IOSET are compiled into the object

program during Madtran translations of

Fortran input-output statements involving

iterations.

Supervisor ~ntry Subroutine

The following subroutine from the library may be used in place

of direct calls to the supervisor. (e.g., the Pap instruction TSX

$DEAD,4 will effect a supervisor call to DEAD.) The entry names of

this subprogram are:

DEAD

DORMNT

.RESBT

.RENAM

.WRITE

• LOAD

• DUMP

.Al'END

65

.DLETE

.ENDRD

.FlLE

.SEEK

.ASIGN

.READK

SETFUL

SETBCD

WRFLX

WRFLXA

RDFLX

RDFLXA

There is no RDFLX in the supervisor. The routine RDFLXA reads a line

from the console in~o th~ buffer specified along with the break

character (usually carriage return); blanks are filled in to the right

of the break character. The address of the AC contains N where the

break character'is the Nth character. The library routine RDFLX by

using RDFLXA reads a line into the buffer specified with the break

character stripped and all subsequent characters filled out with blanks.

For both RDFLX and RDFLXA the maximum buffer length is 14 words.

66

CHAPTER 7

CONSOLE COMMANDS

The following index refers to brief summaries which are given of

the presen~ly available commands. The command programs normally enter

from ~he disk but in cer~ain instances (e.g. start) ~he command re­

sides in the supervisor section of core memory. A block count is given

to indicate ~he length of the commands. Each block is 256
10

words

long (128 blocks = 32,768 words), the increment for the protection and

relocation registers. If a command is con~ained in the supervisor

the block count is given as zero.

Command Name Page

attach 86

bkgrnd 86

brief 81

chball 82

chmode 78

comb in 79

(comment) 69

confrm 81

cpu 80

delete 78

ditto 82

edit 71

fap 72

file 71

input 70

listf 69

load 73

login 69

logout 69

mad 73

madtrn 73

67

memo 82

modify 82

oct;lk 81

octpat 81

pat;ch 76

pm 75

print;f 72

re1eas 86

rename 78

resume 75

ret;rve 86

rquest 79

save 74

split 78

start 74

st;atus 86

st;opat 77

time 81

tra 77

use 74

68

login a t3 -
block count = 0

a = user problem number

~ = user programmer number

Should be given at beginning of each user's session at a console.

Clears time accounting records and logs out any previous user of the

console. Prints out the contents of the supervisor message file, if any,

deleting the file after printing.

In the future an additional parameter may be required in order to

afford greater security for the user. This will probably be in the form

of a private cod~ given separately; explicit instructions will be given

by the login command if necessary.

logout

block count = 0

Should be given at end of each user's console session. Copies

user file directory to disk; prepares usage accounting records for the

system.

block count = 0

a = arbitrary text·treated as a comment.

block count = 4

a) II a, t3, r omitted, types out, in reverse chronological sequence,

the list of all file names in the user's file with date-Iast-used, num­

ber of tracks, and file mode.

69

b) If 0: = "rev," and t3, ., omitted, same as a) but in chronological

sequence.

c) If 0: = file name, t3 = file class name, ., omitted, types out a

summary of information concerning the single file.

d) If 0: = numeric month, t3 = numeric day, ., = last 2 digits of

numeric year, same as a) but only those files filed on or before given

date.

input

block count = 1

Initiates an automatic mode of input. The supervisor types out

line numbers which will be attached to the lines input by the user. The

user types a card image per line, according to a format appropriate to

the programming language (see ~ command). Each line is processed

by the input program. When in the automatic mode, a manual mode may

be entered by giving an initial carriage return (for the 1014 Selectric

console, the sequence: inquiry request, "11'," inquiry release). In

manual mode the supervisor types back the signal "MAN." instead of a

line number. The following conventions may be followed when in manual

mode:

a) A line number (all numeric) followed by space or tab,

followed by the desired line: this allows insertion and

correction of lines (cf. ~ command). If the line

number is followed by tab, the first field is blank

(cf. file).

b) DELETE, n
l

, n
2

where n l and n
2

are previous line numbers:

the lines from n through n will be deleted when the file
1 2

command is issued; if n
2

is omitted, only n
l

will be deleted.

c) Initial carriage return or the corresponding 1014 sequence ,

given above: the automatic mode will be resumed.

70

d) SEQUENCE, n
l

, n
2

where n
l

is a line number and n
2

is a

line-number increment: the au~oma~ic mode is resumed

starting at n
l

, with subsequent numbers incremen~ed by n
2

.

If n
2

is omitted the normal incremen~ of 10 is retained.

e) The command file a~: terminates the inpu~ mode and initia~es

~he file command.

If it is desired to leave the input mode without filing the input

lines, the normal quit signal is given; input lines will be lost.

edit a ~

block count = 1

a = ti~le of file

~ = class of file

The user is set in the automatic input mode with ~he designated

file treated as initial input

to the input command.

block count = 7

a = title to be given to file

The same conventions apply as

~ = class of language used during input

The created disk file will consist of the numbered input lines in

sequence; in the case of duplicate line numbers, the last version will

be used. The line numbers will be written as right-adjusted sequence

numbers in the corresponding card images of the file.

For convenience the following editing conventions apply to input

lines:

a) a delete-message signal signifies the deletion of the line;

b) a delete-character signal signifies the deletion of the

previous character in the line.

71

The following formats apply:

a) fap: symbol, tab, operation, tab, variable field and comment.

b) mad, madtrn: statement label, tab, statement. To place a

character in the continuation column: statement label, tab,

logical backspace, character, statement.

c} data: 72 characters.

If a file a, ~ already exists in the user's file directory this

older file will be deleted and replaced by the a. ~ just created; a

message is given to this effect.

printf a ~ r

block count = 5

Types out file a, ~ starting at line number r. If r is omitted,

the initial line is assumed. If r does not match any line number in

the file, printing commences at the first line number greater than r.
Even though the identification field of a card image contains alphabetic,

characters, r represents only the numeric portion.

If a, ~ is not in card-image form but written in the variable­

length format, no line numbers will be printed. Printf will, if

necessary, split a line which is too long for the console carriage.

block count = 61

Causes the file designated as a,fap to be translated by the Fap

translator (assembler). Files a,symtb and a,bss are added to the user's

private files giving the symbol table and the relocatable binary form

of the file, respectively.

If the user's file directory already includes files a,symtb and

a,bss these older files will be deleted and replaced by those created

by this assembly.

Reference: IBM Fap Reference Manual, Form J28-6098-l

72

Jll3.d a -
block count = 43

Causes file a, mad to be translated by the Mad translator (compiler).

Files a,bss and a,madtab are created giving the relocatable binary program

file and the translation summary file, respectively.

If th~ user's file directory already includes files a,bss and

a,madtab these older files will be deleted and replaced by those

created by this compilation.

References: Mad Reference Manual

Abbreviated Description, (forthcoming CC memo)

I/O Format Specifications, CC-186-6

madtrn a

block count = 59

Causes file a,madtrn (i.e., a pseudo-Fortran II language file)

to be edited into an equivalent file a,mad (added to the user's files);

translation of this file then occurs automatically as if the command

mad a had been given.

If the user's file directory already includes file a,mad this

older file will be deleted and replaced by the file created by this

translation.

Reference on Madtran:

Reference on Fortran:

block count = 9

CC-l88-l

IBM Reference Manual, form C-28-6054-2

Abbreviated Description, CC-164-5

I/O Format Specifications, CC-186-6

Causes the consecutive loading of files a. ,bss. An exception
1

occurs if a. = (libe), in which case a. l,bss is searched as a library
1 1+

73

file for all subprograms still missing. (There can be further library .

files.) If after all a. have been processed there are still missing
~

subprograms, the supervisor library file will be used in an attempt to

complete loading. The only exception occurs if a. = (nlib) in which
~

case the supervisor library is not used at the end of loading; if a

subsequent a. = (lib), the normal case is restored. If, after the
~

search of the supervisor library (where not suppressed), there are still

missing subprograms, a message will be typed of the form:

need PI •.• Pk

which may be followed by the use command.

block count = same as load

This command is used whenever a load or previous use command

notifies the user of an incomplete set of subprograms.

ventions as for load.

start

block count = 0

Same a con­
i

Starts the program set up by the load and use commands or restarts

a dormant program at th~ location just after the point where the program

entered the supervisor.

save a

block count = 0

Creates file "a,saved," consisting of the complete state of "the

user's last dormant program.

74

block coun1; = 0

File "Ct, saved" is restored as the user's program and is res1;arted

where it last left off. The parame1;ers

command directory. which now contains:

p. are entered in1;o the user's
~

0: P ••. P (i.e. J 0: replaces
1 n

resume and all arguments are shifted correspondingly).

block count = 0

Produces post-mortem of user's last dormant program (loaded by

the load command) according to the request specified by Ct. The

following requests are permit1;ed:

a)

b)

c)

d)

e)

f)

g)

pm ilc.

pm traps.

pm lights

pm stop

pm auto

pm stomap

pm name

Gives the stop location or ILC (1 line).

Gives contents of locations 0,2 and 8 (1 line).

Gives machine conditions and ILC (4 lines).

Gives ILC and conten1;s of two loca1;ions on either

side of the stop (5 lines).

Corresponds to "lights" plus "stop" (9 lines).

Gives the BSS loading table, with origin and

entry of all subprograms loaded.

Gives contents of the four initial locations of

subprogram " It name (5 lines).

h) pm name locI 10c
2

mode direction

Gives contents of all locations from relative

location locI through 10c
2

of subprogram "name,"

in the given mode and in the given direction.

"Name" is (z\1-\IN) for the main program. "LocI" is

assumed to be decimal; if the number is preceded

by a slash, "I," it is taken as octal. "Mode"

specifies the form of printed outpu1;, and may be:

fix, flo, dec, ~r bcd, or all. "Direction"

75

specifies the order of printing over the range

(locI' loc2) , and may be fwd or rev. If mode is

omitted, all is assumed; ~f direction is omitted,

fwd is assumed. LocI and loc
2

may be replaced by

the single argument entire to cause printing of

the entire subprogram.

i) pm lOCI loc
2

mode direction

patch a

Gives contents of locations from absolute loca-

tion loc 1 through loc
2

. This is normally used

for post-mortem of the common region.

Reference: CC-167-6

block count = 0

a = name of user subprogram loaded by load command

Sets up a mode for entering patches to relative locations within

a. If a is omitted, (MAIN) is assumed. In addition, three special

patching modes may be used, i.e.:

a) a = (abs) allows patches to absolute locations;

b) a = (com) allows patches to relative locations in

Common storage;

c) a = (pat) allows patches to be entered into locations above

the user's current memory bound; this "patch space" is

referenced by relative locations and is shared by all

subprograms.

After a response from the patch command, the user enters lines

of the form

l3,r,Q,E

where: ,"

13 = octal address to be patched. This octal number may be im­

mediately followed by a letter A, denoting an absolute location, C,

denoting a location in Common, or P, denoting a location in the patch

space.

76

., = type of field which follows, i.e. :

a) oct, octal word (used for instructions)

b) flo, fixed on floating-point number (E or F notation)

c) int, Fortran integer

d) dec, Mad integer

8 = number to be patched into ~, according to format .,.

E = relocation bits if ., = oct; two alphabetic characters, the

first for the decrement and the second for the address. The

characters are:

A: absolute

R: relocatable

c: common

P: patch space

If E is omitted, AR is assumed.

Successive 8 fields may be specified in any line, with the

following E fields where necessary.

Exit from the patch command is by the qUit signal.

tra a ~

block count = 0

Where a is the name of a relocatable program loaded by the load

command and ~ is a relative octal location in a, this command causes

the setting up of a transfer to~. The transfer will be executed upon

issuance of the start command. If a is omitted, the main program is

as::,;umed.

stopat a ~

block count = 0

Parameters a ~ as in tra. The instruction at ~ is replaced by a

transfer; when this transfer is executed the original contents of ~ will

be restored and the program will be placed in dormant status. The

77

start command may then be used to cause execution of the original

~ in a. If a is omitted, the main program is assumed.

rename a ~ "/ 8

block count = 1

Changes the name of file a,~ to ,,/,8. The mode of the file is

unchanged. If 8 is omitted, class ~ is preserved.

chmode a ~ m

block count = same as rename

Changes the mode of file a, ~ to that specified by m. The mode

may be given as:

T

P

Rl

H2

or

or

or

or

o
1

2

3

temporary

permanent

read-only class 1

read-only class 2

A file in class R2 may not be altered by this command, nor by the

rename command.

delete ~ ~l··· an ~n

block count = same as rename

Deletes files a .• ~. from user's file directfrry. Files of class
~ ~

Rl or R2 may not be deleted by this command. A file of class RI may be

deleted only after its mode has been changed by chmode.

split a ~ bl s;L

block count = 9

s b
n-l n

Splits the file a,~ into n new files b
l

, ~ .•• bn'~' Splitting

78

of a,~ is done after the record sequence numbers sl ••• sn_l' which

snould be in ascending numeric order. The new files are appended to

the user's file directory without resequencing. If any b. is "*."
~

the corresponding file is not added to the user's files. This provides

an easy way to extract subfiles from long master files.

be "*" it may be omitted.

If b is to
n

If any s. is "*," or cannot be matched with a sequence number in
~

the remaining portion of the original file, this is an error; the

remainder of file a.~ is included with the last b
i

processed, and an

error comment is given. If two of the si are the same, only the first

file is created. Matching of sequence numbers is performed on the

numeric portion only.

If file a,~ cannot be found, the "need-use" convention is

followed as in the load command.

block count = 9

Combines the files r.,~ into a single file a.~. The new file
1

is resequenced, starting with sequence number s x 10 and with numbers

incremented by 10. The file is then added to the user's file directory.

If s (a decimal number from 1-5 digits) is given as "*." no resequencing

is performed. If any of the r. cannot be found, a list of those missing
1

is typed out and the "use" convention is followed as in the load and use

commands. No new file is created unless the command is completed. If

a "use" reentry to the combin command specifies a file name as "*," it

is as if the original file name did not appear.

rquest c a /3

Permits creation of control cards for requests to the disk editor.

A file of special name and mode is created, conSisting of control

cards for those functions specified. At disk-edit time, this file will

be read by the editor which will process the requests and then delete

79

the file. If requests require special handling, the editor program

will not service these but will create control cards which will be

submitted to the Dispatcher. Requests will have the following para-

meters:

c = control word, e.g. Dpunch

0,13 = file name

Subsequent parameters where needed, as:

rquest delete 0 13 cards

To request that a file 0,13 be restored from the history tapes

next time the disk is loaded, the command has the form:

rquest reload 0 13

and the rqQest command will provide the necessary information

concerning the pertinent history tape.

The file created by this command (or added to by subsequent

issuance of the command) has the name:

REQUES T.FILE

and is added to the user file directory. If the user wishes to change

this file he must delete it and then reissue the desired commands.

cpu 0
1

•.• 0
-- n

block count = 0

Gives user's current machine conaitions as requested by 0i' As

many of the following arguments may be given as desired, and in any

order:

AC entire contents of AC

MQ contents of MQ

SI contents of sense indicators

IRS contents of index registers

SLTS. contents of sense lights

The requests are serviced one per line in the order given in the

command. This command may be used during execution of absolute programs,

command programs, etc. In the case of programs loaded by the load

command, it gives the same information as pm.

80

oc"tlk m n

block coun"t = 0

Prin"ts out conten"ts of n locations s"tarting at absolute location m.

If n exceeds the size, ~. of "the user's oU"tput buffer (internal to the

supervisor) only the first s locations will be printed. The size of s

is not fixed, but as a reasonable estimate n should not exceed 12.

block count = 0

a b
n n

Permits absolute patching into absolute locations beginning at

mo a and b are octal left and right half-words, respectively.
-' i i

brief 0:

block count = 0

If a is omitted, the brief mode of console input is entered. This

mode may be reset by repeating the command with 0: = OFF.

confrm a

block count = 0

If 0: is omitted, the confirmation mode of console input is entered.

This mode may be reset by repeating the command with 0: = OFF.

time a -
block count = 0

Causes the standard request for time-used messages to be changed

from "TIME" to the set of characters specified by 0:; 0: must be from

1 - 6 printing characters. Time messages may then be obtained by the

81

user's typing an input message of a followed by a carriage return. If

a = OFF, the time-used facility will be suspended until another time

command is given or until the user gives a logout command.

chball a

Allows for changing the type ball on the IBM 1014 or 1050 console.

The designation of the desired ball is given by a (designations will be

published later). The ball must be changed after "READY." is given.

memo a

modify a 13

ditto a p

block count = 37

Use of ~ generates a file a,memo; use of modify brings a user

file a,memo into core for modification and refiling as l3,memo; if 13 is

omitted, the old a,memo will be deleted and replaced by the modified

version. Use of ditto generates a memorandum from file a,memo,

beginning with page E; if E is omitted, the entire memorandum is

produced; use of the E parameter provides a restart procedure.

~, ditto, and modify are used with the t~pewriter to produce a

memorandum. Textual information can be written, edited and manipulated

by use of various control words.

The method of entering the textual matter is similar to the method

used by the input command. The ~ program types a line number on the

typewriter. The programmer then types the lines of text which he wishes

to enter and strikes a carriage return. Memo will then type the next

line number. If the programmer strikes an initial carriage return before

the line of te,t would have been given, he enters the manual mode.

This allows him to type his own line number followed by the text to be

entered in that line. An initial carriage return (or "11''' for the IBM

1014 or 1050) instead of a line number effects the re-entry to automatic

typing of sequential line numbers. While operating in the manual mode,

82

the programmer may cause a previous line ~o be replaced or a new line

to be inserted between previous lines, depending upon the line number

which was typed. In particular, control word lines may be inserted

among text lines.

The modify command, which is essentially a restart of a previous

memo command, brings the requested file into core memory. Line numbers

are then typed sequentially as described in ~, except tha~ the first

number given is the line that closed the previous memo. Typed control

words and line numbers are then accepted as in memo. If no ~ deSignation

was given, ~he file a,memo will be replaced by the modified file. This

new file will now be a,memo.

The ditto command loads ~he requested file into core memory, strips

the line numbers, and types a copy of the memo divided into pages. This

process is guided and controlled by the control words interspersed in

the text. The control words which may be used to alter the format or

facilitate correction are listed below; for ease in entering control

words there is a set of abbreviated control signals which may be used

as desired; these are listed also. A con~rol word is recognized by a

leading period.

.EDIT FROM LINE XX

.END EDIT

.END MEMO

.DELETE LINE XX

.RESEQUENCE LINE NUMBERS

• COMMENT

• END COMMENT

• H&ADER YYY •••

• BEGIN PAGE

.FOOTNOTE IN LINE XX AFTER,yyy ••• 1

• DOUBLE SPACE

.SINGLE SPACE

.SPACE XX

• CHANGE TYPE BALL TO XX

.END FOOTNOTE

.EDIT PREPRINT FROM LINE XX TO LINE YY

.83

.ED XX

.EE

.EM

.DE XX

.RE

.CO

.EC

.HE YYY •••

.BE

.FO xxi yyy ... 1

.00

.SI

.SP XX

.CR XX

.EF

• ED PREPRI XX YY

a) .HEADER YYY •••

The 48 characters Y¥Y ••• will be printed at the top of each page

of the memo. The statement "Page xx of yy" will automatically be

inserted to complete this header (or title) line appropriately for

each page. Pages will not be numbered unless this control word is

used. Normally this control word line should only occur once in a

memorandum.

b) .EDIT FROM LINE XX

This control word line is not entered into the memorandum file.

Memo and modify automa~ically switch to printing the line numbers which

have previously been entered, instead of the consecutively incremented

line numbers. This printing starts with line XX. The programmer can

thus replace a series of lines without worrying about omitting any.

The sequence will be interrupted by a new .EDIT FROM LINE XX contr.ol

word or by the .END EDIT control word.

c) .END EDIT

This control word line, which is not entered into the memo file,

causes the resumption of typing of new line numbers.

d) .END MEMO

The lines which have been entered will be filed in the user's file

with the title given by the initial request for memo or modify.

e) • DELETE LINE XX

The line XX will be deleted, and no line will be ente'red into the

memo file for this control word line.

f) • RESEQUENCE LINE NUMBERS

All the lines of the memorandum are assigned sequential line

numbers starting with 000100 and incrementing by 100's. A copy of the

text (with line numbers) is printed when this process is complete. This

control word facilitates additional correction and editing of texts

which tlay have had excessive corrections and insertions. The .END MEMO

contro~ word is ~hen assumed and the memorandum is filed as explained

under d).

g) • COMMENT

The lines of text which follow this control word line are considered

to be notes or comments to the programmer. The .COMMENT control word

84

line will not appear in the finished copy of the memorandum. The lines

of notes following it will be printed on an initial page of the finished

copy. These comments are extracted and printed at the beginning of the

memorandum in spite of the fact that they had line sequence numbers

inplying their position to be later. The signal to ~ and modify

that the comments are done is the .END CO~WENT control word line.

Other control word lines will not be recognized between .COMMENT and

. END Co.MMENT.

h) • END COMMENT

This control word is the only means of indicating the end of a

sequence of messages to the operator.

i} .BEGIN PAGE

The line following this control word will be positioned at the

beginning of a ~age, (after a heading line, if present). -----=--.

j} .FOOTNOTE IN LINE XX AFTER ryyy ••• 1

The lines following this control word are considered the body of

the footnote. The footnote is terminated by the .END FOOTNOTE control

word or another .FOOTNOTE control word. The exact sequence of characters

YYY .•• is found in line number XX and a footnote reference number is

inserted in parentheses immediately following. Three or four blanks

should be left in the correct position in line XX to permit this in­

sertion without any overlapping. The body of the footnote will appear

at the foot of the page containing line XX. Large footnotes may be

extended to the next page.

k} .DOUBLE SPACE

A blank line will be inserted after each subsequent line of the

memorandum.

l} .SINGLE SPACE

This control word causes a change in mode from double spacin3 to

single spacing.

m} .SPACE XX

xx blank lines will be skipped before the next line of text is

printed by the ditto program.

85

n) • CHANGE TYPE BALL TO XX

This control word, useful only for the IBAi Selectric typewriter,

implies the intention to print one or more characters of the preceding

line using a different type ball. When the finished form of the memo­

randum is to be typed by ditto, a set of instructions to the operator

will be printed on a preliminary page. A stop occurs after the

affected line. The carriage should then be manually rotated back 2 lines.

When the carriage return is struck, the printing of the line will continue

assuming the type ball has been changed. It can be seen that blanks

must be inserted carefully in the lines preceding the control word line

and following the con~rol word line to prevent over-printing.

\Vhcn ~yping with a non-BCD character set extra care must be taken

not to strike the period position on the keyboard at the beginning of

a line unless a control word line is intended.

The memo may be con~inued using the new type ball until a change

type ball control word is recognized.

0) .END FOOTNOTE

See the description of control word j).

p) .EDIT PREPRINT FROM LINE XX TO LINE YY

Lines XX to YY are printed after all pending editing, insertions.

and deletions have been performed.

Additional commands

The following commands have not yet been completely defined,

although their function has been described elsewhere in the text. A

more precise definition of their usage will be published later.

a) attach see page 31;

b) releas a command ordering the release of a logical unit

aSSigned by the attach ~ommand;

c) bkgrnd see page 33;

d) status see page 33; .
e) retrve see page 29;

86

f) a command requesting an estimate of how long a job will tal<::e

(see page 34) ;

g) a command allowing the loading of absolute programs;

h) command versions of three programs which have been run as

experimental user subroutines, described below.

The command plot is designed to give the user another means of

communication with the computer via the plotters or scope. Once the

user types plot, all further communication will be on a question-answer

basis with th0 computer asking the questions.

The user types two functions X and Y of a dependent variable t which

he wishes to see plotted over a closed interval for t, the maximum

magnitud~ attained by X and Y for a scaling option, and the desired

interval for t; otherwise, the ranges of X, Y, and t are assumed to be

-IS~l and O~tSl. He also specifies a delta t, a constant, which

controls the intervals at which the functions are evaluated (for a

straight line approximation). Finally, he has the option of putting

more than one plot on a single graph (perhaps for solving equations).

The notation for the functions is similar to a Fortran arithmetic

statement, with the following exceptions:

1) mixed expressions are allowed;

2) a**b has been replaced by pow (a,b).

Symbols (first character always alphabetic) may be used to specify

constants in these expressions; when their values are needed, they will

be asked for.

The plot program was written by Jay Martinson as a special project

in Course 6.68; a more complete description will be given in a forth­

coming CC memo.

fapdbg

This command will sent in operation a symbolic machine language

debugging and control program, FAP DEBUG (similar to DDT, Flit, and

87

o~hers), which will have been loaded au~oma~ically by ~he ~~~~ command.

The program, in i~s currently available form, is capable of reading a

SYMTB file and relocating the symbol values, in order to inform itself

of the program symbols and ~hereby permit symbolic reference to memory

locations. By typing requests to FAP DEBUG, the user can examine or

change instructions or data, insert "break pOints" which will transfer

back to FAP DEBUG when control reaches them, or begin execution of

subprograms at any desired location. A full explanation of the present

version of FAP DEBUG will be available in a forthcoming memo.

Before transferring control to a subprogram, FAP DEBUG will request

the supervisor (by a call to SETBRK) to transfer control back to PAP

DEBUG if a "qUit" signal is sent. After a "qUit" signal, FAP DEBUG

will set up ~o continue, if requested where execution was interrupted,

as it now does after a break point is encountered. Thus, even if the

program gets into a loop, it will be possible to return to FAP DEBUG.

The FAP DEBUG program was written by Robert Campbell asa part of

a bachelor's thesis.

sam

A symbolic algebraic manipulation program has been developed,

which will be put into command form. This program consists of a set

of operations that the user may initiate from his ~ypewriter. These

operations include: substitution of variables; numeric evaluation;

algebraic simplification; algebraic solution of equations; and certain

bookkeeping and error correcting aids for minimizing the typing of

large expressions. Further information may be obtained from the

bachelor's thesis entitled '~n Algebraic Manipulation Program for

Time-Shared Computer Consoles," by Stanley Dunten.

88

APPENDIX A

EXAMPLE OF A SESS ION AT A CONSOLE

The following is a reproduction of a short time-sharing session at

an IBM 1014 Selectric typewriter console. Ordinarily ~he user types in

black and the computer responds in red (or vice versa); in this illustra­

tion the user types in lower case and the computer responds in upper

case.

login m1416 1591
WAIT,

Ml4l6 1591 LOGGED IN
READY.

5/27 1112.9

l~tf 5 20 63
WAIT,

10 FILES 20 TRACKS USED
NAME

MAIN MAD
DATE
5/20/63
5/17/63
5/17/63
5/17/63

DPFA SYMTB

READY.
input
WAIT,
00010
00020 recoup
00030
00040
00050
00060
00070 'If

DPFA
DPFA

entry
tra
cal
sto
trs
end

MAN. 40 sta
MAN. file subr fap

WAIT,
READY.
fap subr
WAIT,

BSS
FAP

MODE
P
P
P
P

recoup
*+1
1,4
recoup
2,4

recoup

o 00005 .000 00 4 00002
00006 FIRST LOC~TION NOT USED
FAILED
READY.

89

NO. TRACKS
15

1
1
2

TRS 2,4 00000050

edit subr fap
WAIT,
00070 11'

MAN. 50 tra
MAN. file subr fap

WAIT,
OLD FILE DELBTED.
READY.
printf subr fap
WAIT,
00010 ENTRY
00020 RECOUP TR.A
00030
00040
00050
00060
READY.
fap subr
WAIT,

CAL
STA
TRA
END

2,4

RECOUP
*+1
1,4
RECOUP
2,4

00006 FIRST LOC~TION NOT USED
READY.
mad main
WAIT,
LENGTH 02076, T.V. SIZE 00020, ENTRY 00735
READY.
load main subr
WAIT,

NEED DPSUBR
READY.
use dpfa
WAIT,
READY.
start
WAIT,

FILE TEST DATA NOT FOUND.
NO ERROR RETURN SPECIFIED

READY.
pm lights
WAIT,

PROG SEEK STOP=
AC = 000014000000,

112 REL., 14273 ABS. TSX 007400414161
S =0, Q =0 MQ = 000010000000 SI = 400004000000

IX1 = 2 IX2 = 14 IX4 = 63505 SBNSE LIGHTS ON 4
FPT ON ,DCT OFF, ACOF OFF

READY.
save may27
WAIT,
READY.

90

listf
WAIT,

16 FILES
DATE

5/27/63
5/27/63
5/27/63

READY.
logout
WAIT,

66 TRACKS USED
MODE

MO\Y27 SAVED P
MAIN BSS P
MA IN MADTAB # QU IT ,

M1416 1591 LOGGED OUT 5/27 1140.3
TOTAL TIME USED= 01.6 MIN.

READY.

91

NO. TRACKS
31

5

APPENDIX B

CURRENT RESTRICTIONS

The list given below specifies those features described in the text

which at present writing are incompletely implemented. It was the in­

tent in writing this book to present as complete as possible a picture

of the scope of CTSS. During the programming of the system not all

features, of course, can be considered of equal importance. The

facilities listed here are being programmed as we go to pressj users

of CTSS can obtain from the Computation Center periodic notification

of their availability.

7320 drum (to be added August 1963) - p. 3.

Time-used messages - p. 15 and p. 81.

Simulation of interval timer clock - p. 15.

Setting of arbitrary console break characters - p. 16.

Character mode (!2-bit) sWitch - p. 17 and p. 43.

Brief and confirmation modes - p. 22 and p. 81.

Interconsole messages - p. 22.

Common files for programmers with same problem number - p. 24.

Automatic extension of track quota (available soon) - p. 25.

Generation from console of disk ed),tor control cards (available

soon) - p. 25-26 and p. 79.

History tape procedure - p.27-30 and p. 86.

Supervisor messages and automatic cutoff (available soon) - p. 30.

Attachment of input-outPUt units - p. 31 and p. 86.

Dataphone attachment - p. 32.

Modification of command parameter list (available soon) - p. 33.

Console-inititated background - p. 33 and p. 86.

Estimation of completion time - p. 34
s"

Link disk editor control function (available soon) - p. 54.

Library of subprograms for use of attached tapes - p. 57.

Library routines SAVMC and RSTMC (available soon) - p. 64.

92

Commands:

chball - p. 82.

cpu - p. 80.

memo, modify and di~~o (available-soon) - p. 82.

Macro facili~y in fap command - p. 72.

93

REFERENCES

The references given here are not intended as a bibliography of

literature in the field of time-sharing. Rather, they comprise a

selection of documents which are direct predecessors of this book.

The bulk of the reference material consists of internal technical

memoranda which set down, sometimes in greater detail than is given in

the text, the specifications for certain aspects of CTSS. These

documents are for limited distribution only, and are listed here

primarily for the benefit of those Center programmers directly in-

volved with CTSS; it should be noted that in many cases the specifications,

since they were preliminary ones, have become obsolete.

Earlier Published Report on CTSS

"An Experimental Time-Sharing System," F. J. Corbato, M. Merwin Daggett,

and R. C. Daley. Proceedings of the 1962 Spring Joint Computer

Conference, AFIPS, 1962, 335-344.

Reference ~~nuals for Source Languages

"FORTRAN Assembly Program (FAP) for the IBM 709/7090," bulletin, form

J28-6098-l, July, 1961.

IBM 709/7090 Programming Systems: FORTRAN Assembly Program (FAP) ,

form C28-6235, September 1962.

IBM Reference Manual 709/7090 FORTRAN, form C28-6054-2, January, 1961.

IBM 709/7090 Programming Systems: FORTRAN II Programming, form

C28-6054-3, February, 1963.

The Michigan Algorithm Decoder, University of Michigan, September,

1961. (unpublished)

Computation Center Memoranda (unpublished)

CC 164-5, "An Abbreviated Description of the Fortran Compiler Language,"
,

F. J. Corb~to, September, 1960.

CC 167-6, "Description of a Post-Mortem Subprogram (F2PM) for Use with
,

the Fortran-Fap Monitor System," L. Korn and F. J. Corbato, March,

1963.

94

CC 169, "Programming Details Concerning Use of the Direct Data F1exo­

writer," H. M. Teager, December, 1960.

CC 171-1, "Present Status of the MIT Time-Sharing System," M. D. Kud1ick

and H. M. Teager, December, 1961.

CC 172, "A Proposed System for Time-Sharing with two F1exowriters on

the 709," M. L. Merwin and F. J. Corbat~, January, 1961.

CC 177. "A Restricted, Potentially Time-Shareable Version of the FMS

" ' System, F. J. Corbato, M. L. Merwin, and R. C. Daley, June, 1961.

CC 179, "Description of the Modifications to the IBM 7090," F. J.
~

Corbato, July, 1961.

CC 183, "General Description and Instructions for the Use of the

Time-Sharing Console (TSC)," M. Kovarik and A. Rutchka, October,

1961.

CC 184, "Memory Protection and Relocation RPQ for the 7090." F. J.

Corbat~, November, 1961.

CC 185, "An Experimental Time-Sharing System for the 709 Computer,"
,

~ F. J. Corbato, M. L. Merwin, and R. C. Daley, November, 1961.

CC 186-6, "Fortran and Mad Format Specifications," J. Spall, May, 1963.

CC 188-1, "Madtran - A Fortran-to-Mad Language Translation," L. Korn,

December, 1961.

CC 189, "Latest Writeup on the MIT RPQ for Relocation and Protection

Modes," M. L. Merwin, December, 1961.

CC 192, "Time-Sharing System Notes," M. M. Daggett, February, 1962.

CC 193-1, "MITMR, an FMS SUbprogram for Using the IBM Interval Timer

Clock," M. M. Daggett, F. J. Corbat~, and J. R. Steinberg,

April, 1963.

CC 194, "Change of Input-Output Format; Correction of CC-171-l,"

A. Rutchka, April, 1962.

CC 196, "A Master Disk Control Subroutine," R. C. Daley and F. J.

Corbat~. July, 1962.

CC 199, "Abbreviated Instructions for the Use of the Mod 9 Time-Sharing

" ' System, F. J. Corbato, M. M. Daggett, and R. C. Daley, August, 1962.

CC 202-1, "Requirements for Background Systems Operating in the 7090/94

Compatible Time-Sharing System," R. J. Creasy, January, 1963.

95

CC 205, "Memo, Modify and Ditto Commands in "the Compatible Time­

Sharing System," M. J. L. Lowry, F. J. Corbato, and J. R. S"teinberg,

March, 1963.

CC 206, "Compatible Time-Sharing System Supervisor Console Inpu"t-Ou"tput:
,

Interface Specifications," R. J. Creasy, R. C. Daley, F. J. Corbato,

April, 1963.

CC 208, "LDEDT and DPEDT, the CTSS Disk Editors," R. H. Orenstein and

R. C. Daley, May, 1963.

CC 209, "Use of the Memory Protection and Relocation Mode within the
,

Mod. 10 Time-Sharing System," R. C. Daley and F. J. Corbato,

May, 1963.

CC 210, "Conventions for Information Transfer over the High-Speed

" ' Channels on the IBM 7750 etc., F. J. Corbato, R. J. Creasy. R. C.

Daley. May, 1963.

,.

96

	0000
	0001
	0002
	0005
	0006
	0007
	0009
	000a
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096

