
The Compatible Time-Sharing System
A Programmer's Guide

The Compatible Time-Sharing System
A Programmer's Guide

SECOND EDITION

TheM. 1. T. Computation Center

P. A. Crisman, Editor

TheM. I. T. Press
Massachusetts Institute of Technology

Cambridge, Massachusetts

Copyright© 1965
by

The Massachusetts Institute of Technology

All rights reserved. This book may not be reproduced, in whole
or in part, in any form (except by reviewers for the public press),

without written permission from the publishers.

Library of Congress Catalog Card Number: 65-25206
Printed in the United States of America

PREFACE TO rHE S!COND EDITION 2/66 1

This second editian represents a major revision and
extension of the first edition and is necessitated by the
=ontinuous evolution af the Compatible Time-Sharing system
(CTSS) over the past two years of operation. As C7SS has

bean improved in reliability and capacitJ, since the summer
~n1 fall of 1963, it has teen implemented at both the
Computation Center and Project MAC. Both installations
operate as a cammunity service, seven days a week,
twenty- four hours a day with the ftAC computer being
tim3-shared full time and the Computation Center computer
being time-s·hared about half of the time. At present, over
110 consoles are scattered throughout the MIT campus, at lev
England colleges, and in the homes of several Project MAC
p~rticipants. As a result, the two installations have had
extensive experience with a broad spectrum of users.
Therefore, it is no longer a question of the feasibility of
~ time-sharing system, but rather a question of how useful a
system can be produced.

During these two years of growth, there have been frequent
~h~nges of hardware c~nfiguration. over seven different
varieties of terminals have been attached to the system
{three are obsolete now) and several different drum and disk
configurations have been used. Because of the programainq
intarface design, most of these changes have been insulated
from the average system user. Despite the numerous hardware
changes it bas become increasingly obvious that the essence
of a useful ti~e-sharing system lies in the prograa•ing,
i.e., in the software, and not in the hardware.

The prograaming has grown from a skeletal form of perhaps
50,000 instructions t~ an estimated size of between 400,000
and 1,000,000 words of fUblicly-available system program.
From the few languages wn~cn were first available, the
system also has evolved to presently contain over a dozen
languages. Much of this growth in both words and in
languages is the work of many users rather than of system
programmers. In fact, it has been a goal to enhance and
simplify the process ~f sub-system writing by supplying a
framework that is highly modul~r and which encourages
iivision of responsibility and initiative.

M~ny of the ideas described in this manual were mentioned in
the first edition but at that time had not been implemented.
In addition, several key features have been introduced to
make a more complete system. A brief list of some of these
features, which are detailed more completely within this
m~nual, are: passw3rd logic, introduction of more elaborate
accounting procedures, inter-console message, public files,
~ni macro commands. Further details of the systea design
and implementation are given in Project MAC Technical Report
No. 16 by J. Saltzer. A summary of system operational

PREFACE iO THE SECOND EDITIOW 2/66 2

experience is given by R. Fano in Project MAC Technical
R~port No. 12 (At-609-296) and is also published as an
article in the January 1965 issue of the IEEE Spectrum.

Two major features have been introduced into the system
which deserve special comment. First, the entire secondary
storage mechanism bas been redesigned. This is considered
to be the most significant and far reaching change because
it improves the multi~programming capability of the system
and the controlled sharing of files on the part of user.
Tha design and implementation of this critical section has
been led by Robert Daley.

The second major new feature is the improved message
~oordination with the typewriter terminals. This feature,
while not obvious to users, has greatly improved the
organization and operation of the supervisor program. The
work in this iaportant and critical area bas been done by
stanley ounten who also has been instrumental in maintaining
aff~ctive system ~peration.

Tha present manual is considered a part of the system
because it is maintained on-line within the system, and it
r~presants an attempt to keep all system documentation
continuously Uf to date. As system users know,
1o::umantation difficulties have been severe, with over 80
bulletins and numer3us research memoranda prepared and
circulated as amendments to the first edition of the manual.

The effect of the present ma nu:tl is th.a t an active system
usar can keep his manual updated. To ·do this, he should
periodically insfect a Sfecial table ·of contents of the
m1nual, which is maintained on-li:ne>·w.ithin the system in
reverse c bronological order. ·of ,·c.-ban.~·e$,· .t·hat have been made
to the various sectio.ns·~··· _: · f;t.om · tbls special table of
::ontents, he can]Uickly .aet:~~~·mine· w:·b.·icit.·sections have been
revised since the last time· he u¢.a te~:' his copy, and then
obt1in on-line printouts of· thdse Sections he needs.
Needless to say, the procedures ·. of · ·rec]uesting appropriate
s~::tions by mail 3r in person will ~till te available. In
any case, the need for maintaining ~ massive mailing list
for amendments to the manual is eliminated.

!£~ll2~!~Qg~~~nt§

In ad1ition to the Freviously-mentioned. ·critical work of
preparing the present system b J Robert ·Daley and Stanley
Dunten, the system owes its present form. to an ever
increasing number of staff members ana contributors. Other
::ontributcrs t~ the system programming ~r~; ·~lphabetically:
Janet Allen, Michael Bailey, Robert Creasy, Patricia
Crisman, Marjorie Daggett, Daniel Edwards, Robert Fenichel,
Charles Garman, Robert ~raham, Thomas Hastings, Jessica
Hall wij, L yndalee Korn, Richard Orenstein, Louis Pouzin,

PREFACE 70 THE SE:OND EDITICfi 2/66 3

Glenda Schroeder and Mary Wagner. In addition,
:=ontributions of s:>me of the commands have been made by
Margaret Child, Leola Odland, Don Oppert, and Jerome
S~ltzer. Many of the subroutine write-ups which served as
r~f~rence documents f~r the present system were prepared by
Edith Kliman, Judith Spall, and susan Springer.

A great deal of the present system's impact upon users has
b~~n because of its reasonably continuous and reliable
service. To a large extend, this bas been due to the great
z~al and perserverence of the Computation Center's
operational staff, who have conscientiously dealt vith the
m~ny problems which have arisen.

W~ wish to thank the Computation Center and Project MAC
~1ministration for contributing the proper environment and
shouldering the many problems which have been generated.
Th~y have made possible the present system's high level of
development.

Thanks are also due to the maintenance personnel of the
Int~rnational Business Machines Corporation and of the New
England TeleFhone and relegraph Company for their diligent
~fforts in maintaining a high level of system performance.

A special acknov ledge ment goes to
Projects Agency of the Department of
of Naval Research, the Sfonsors of
N~tional Science Foundation, for the
special equifment at the :omfutation

the Advance Besearch
Defense, and the Office
Proje=t MAC, and the
support of some of the
Center.

F .J. Cor bato
l!ay 1965

Cambridge, ftassacbusetts

PBEF ACE TO r HE FIRST EDIT ION Page 1

This handbook is an attempt to document the techniques of
using a current version {model 13) of the compatible
tim~-sharin9-system (Crss) which has been developed at the
MIT Computation Center. It is primarily a manual of how to
us~ the system, in contrast to many of the research memos,
which have been more detailed in their documentation of the
techniques of imFlementation. Because CTSS is basically a
system which will allow an evolutionary develoFment of
time-sharing while continuing to allow more conventional
b~=kground systems to operate, it is expected that the
present •anual will of necessity be revised many times
b~fore it reaches a final form. A good deal of the
difficulty arises frcm, en the one hand, the rather drastic
:;hange in user :>per ating techniques w hie h time-sharing
permits, and on the other hand the immense amount of
pro~ramming required to fully implement the system.

The present work, although net highly polished, is being
pr~sented now to assi:;t in this evolutionary process. It is
expected to be a SUFplement to the Computation Center's
Pro=~1ures Handb0~k ~hirh explains many of the general
administrative details of the Center. Furthermore, a
knowl~jge of pr~gramming is assumed of the reader. It has
been our objective to present to an experienced programmer a
r~asonably complete manual which will allow him to use
wisely the present version of the time-sharing system.

B~=ause of the rapidity with which many of the features are
being impleaented, and the delays in distributing the
in~vitable revisi3ns, some features are described here which
a~e not yet accomplished. The reason for this is that it
w~s felt to be iap~rtant to indicate the intended sccpe and
objectives of the system so that individual users could plan
~head in their applications. The features which dL~ not
implemented will be found listed in an appendix which will
be revised periodically. In addition, each of the chapters
=an be expected t~ be periodically revised.

Sin=e the present w~rk is primarily a handbook, no attempt
has been made to aak.e any comparisons with the several other
tim~-sharing and rem3te-console efforts which are being
developed by groups else- where. The only other general
purpose time-sharing system known to be operating presently,
that of the Bolt, Beranek and Newman Corporation for the
PDP-1 computer, vas recently described by Professor John
K:;Carthy at the 1963 Spring Joint Computer Conference.
Other time-sharing developments are being made at the
C~rne~ie Institute ~f rechnology with a G20 computer, at the
Un iv ersi ty of California at Berkeley with a 7 090, at the
R~ni Corporation with Johnniac, and at MIT (by Professor
Dennis)with a PDP-1. Several systems resemble our own in
th~ir logical organization; they include the independently

PRE FA: E TO THE FIRST E DI TI 0 N

developed BBN system for the POP- 16 the recently
work at IB~ (by A. Kinslow) on the 7090 computer,
plans of the System Development Corporation with
computer.

Page 2

initiated
and the
the Q32

To establish the context of the present work, it is
informative to trace the development of time-sharing at ftiT.
Shortly after the first faper on time-shared computers, by
c. Strachey at the June 1959 UNESCO Information Processing
Conference, H.M. Teager and J. McC3.rthy at MIT delivered an
unpublished paper- "rime-Shared Program Testing" at the
August 195q ACM Meeting. Evolving from this start, much of
th~ time-sharing philJsophy embodied in the CTSS system has
been developed in conjunction with an MIT preliminary study
committee (initiated in 1960), and a subsequent working
::ommittee. The work :>f the former committee resulted, in
April 1961, in an unpublished (but widely circulated}
int~rnal report. Time-sharing was advocated by J. McCarthy
in his lecture, given at MIT, contained in "Management and
th~ Computer of the Future" ~IT, 1962). Further study of
the design and implementation of man-computer interaction
system is being continued by a recently organized
institute-wide Froject under the direction of Professor
Robart M. Fan:>. In November i961 an experimental
tim~-sharing systea, which was an early version of CTSS, was
demonstrated at MI~, and in May 1962 a paper describing it
w~s delivered at the Spring Joint Computer Conference.

As mi~ht be expected, the detailed design and implementation
of the present ClSS system is largely a team effort with the
m~jor portions of it being prepared by the following: Mrs.
Majorie M. Daggett, Mr. Robert Daley, Mr. Hobert Creasy,
~rs. Jessica Hellwig, Mr. Richard Orenstein, and Professor
F.J. Corbato. Important contributions to some of the
commands and the background system has been offered by
Professor Jack Dennis, Mr. J.R. Steinberg, and members of
the Computation Center Staff. Mrs. Leslie Lowry, Mr. Louis
Pouzin, and Mrs. Evelyn Dow have contributed to the
preparation cf the commands.

Special credit is given to Professor Herbert Teager for the
Jasign and development of his Flexowriter control subchannel
which allowed the criginal experimental version of the
pr~sent system to be developed, tested, and evaluated; only
with such an opport~nity was it possible to have the
confidence tc make the present pilot development of the CTSS
system.

W~ should also liKe t:> extend our thanks to the Computer
C~nt€r of the UniversitY of Michiqan where Professor Bernard
G:.iller, Mr. Eruce Arden~ and Mr. -Robert Graham have been
very helpful in advising us on the use of their Mad ComFiler
in our time-sharing system. In addition, Mr. Robert Rosin
kinlly made available the Madtran editing program for

FREFACE 10 THE FIRST EDITICN Page 3

pro=essing Fortran II subprograms to Mad subprograms.

w~ should further like to take this occasion to acknowledge
p~rtial support by the National Science Foundation, the
Office of Naval Research, and the Pori Foundation, of the
i~v~lopment of ~u~ p~esent system. We also add our
appreciation fo~ the support provided the Computation Center
by th~ IBM Corporation.

Fin~lly, we sh~uld like to encourage the readers cf this
handbook to examine the present system with a view toward
improvements and we shall welcome such criticisms.

P.J. Corbato
Cambridge, Massachusetts

"ay 1963

CTSS P .iHJG RAnii Eit= S GUIDE Section TABLE

r AEL E OF CONT EHTS (12/ 31;69)

(* denotes file system section)

Preface to the Second Edition
Preface to the First Edition

AA. Introduction to Time Sharing
.o Introduction
• 1 General description and usage techniques
• 2 "Time-Sharing Primer"

• 0 1 F i 1 e na me s

AB. Documentation
• 1 Conventions for this manual
.2 Glossary and conventions
.3 system d:>cumentation

AC. Hardware
.0 Equipment configuration
.1 Clocks
.2 consoles and character sets

.01 Character sets

AD.

• 02 Sfecia 1 cha rae ters
.3 Data phone extensions

Piles
• 1 Historic file system

•.2 A new lcok in the file system
.3 Library files
.4 Common files and Putlic
.5 Time acc~unting files

AE. File Editing (~ff-line)
.1 Bulk input and output
• 2 DAEft ON

• 01 Retrieval

AF. Background

File

.1 Restrictions for background programs

AG. Subroutines

AG.O supervisor entries: Reference list

AG.1 Console I/O
.01 BDPLX,BDFLXA,WRFLX,

WRFL XA ,RSS RB
.02 SETFUL,SEtBCC,SETMCV
• 0 3 PR H'r P, PRNTPA, PRNTPC
.04 WRMESS,RDMESS,ALLOW,

PO REID

General I/O

Character mode
Fenced output
Inter-program

communication

1,... .£ n 1
''/U-:7 I

02/66

12/69
12/69
12;69

12;69
12/69
05/66

12/69

12;69
12/69
12/69

09/65
12;69
11/65
12;69
12/69

12/69

12j69

12/69

12;69

12/69

06/69

CTSS PROGRAMMER'S GUIDE Section TABLE 12/69 2

• 05 A 1T:ON ,RELEAS ,SNDLI N I
S N DLN A, REDLIN, R DL IN A,
SLA VE , SE T6 , SET 1 2

• 0 6 (cs H) , • R E AD I • R E A DL,
• LOOK,. s: RDS

.07 (SPH) I (SPHM) ,.PRINT,
• COMNr,. S PRHT

.08 .PCOM!
• 09 • PRS LT,. PRBCD,. PROCT
• 1 0 • R DATA I • R PO TA
• 1 1 S .E r N B K, K I L N BK
• 1 2 p R ME s s I p R ME SA
.13 PR12, PR12A
.14 PRFULL,PRFULA

AG.2 Disk File I/0

Slave remote consoles

MAD, Fortran online
input compatibility

eAD, Fortran online
output comFatibility

~AD print comaent
MAD print results
~AD read data
No-break mode
frint message
Print message in 12-bit
Frint message in 12-bit

.01 • LOAD,. DUMP, DSKLOD, Unbuffered I/0
OSKDMP (old library)

.02 SEEK,.READK,ENDRD, Buffered input
B- D- VREAO (old librar f)

• 0 3 AS SIGN, • W R IT E, F IL E 1 B u f fer e d out F u t
APPEND,B-0-V-FWRITE (old library)

• 04 .R ELR W Bela ti ve read/write
(old library)

.OS SETVBF Set fixed record length
(old library)

.06 SR:H,BLK,FLK,ENDF, Library service
CLour (old library)

.07 .CLEAR Zero file (old library)
*.OB OPEN, BU PFER, RtFILE, File System disk I/0

RDWAIT, iRFILE,WRWAIT,
lRFILE,FCHECK,PWAIT,
CLOSE 1 SE TPRI

.09 LtPIL Load file into free core
*.10 BFOPEN,BFREAD,BFWRIT, Buffered input/output

BFCLOS ,BFCODE
*· 11 Old file system wr ite-arounds to new system

AG. 3 Pile Status

12/69

08/65

08/65

08/65
06/69
06j69
06/69
06;69

11/65

11/65

11/65

11/65

11/65

11;65
12/66

01/66

12/69

.01 CHMODE,RENAME Change mode cr name 11/65
• 02 DELETE, ERASE
.03 COMFIL,rSSFIL,USRFIL
• 0 4 F S TA T , • F S 'I A T
• 05 GT N AM
• 0 6 • R ESE 'I, R E SE TF

*. C 7 C HFILE ,DE LFI L ,UPDATE,
FSTArE,SrORGE

AG.4 Errors and Exits

De 1 e t e f i 1 e 1 1/ 6 5
Switch file directory 06/69
File status (old library)
Get file name in series
Drop files f~om active 11;65

status
Change mode or name, 12/66

delete, find status

.01 Hist~ric file system error- procedure
.02 SETERR,SNAP,RE:OUP Library disk error 09;65

procedure

CTSS PROGHAnHER:s GUIDE Section TABLE i 2/69 3

AG.S

AG.6

AG.7

.03 EOFXI'l,SETEOF,WRDCNT

.04 EXI'I,EXITM,CLKOUT,
ENDJOB,tUMP,PDUMP

.05 LDUMP

*.06 IODIAG,FEBRTN,PRNTER,
PRDIAG

Tapes and Pseudo tapes
.01 .PUN:H,.PN:HL,.TAPWR,

(S CB), (Sr H), (ST HM)
• C 2 • 'IA P R D , (T SH) , (T SH M)
• 03 (Sr B), (rS E), (WLR), (RLR)
• 0 4 .B SF, .B SR , • EF 'I,. R WT,

(BS T) , (l FT) , (RW T)
* . 0 5 M 0 UN T , U M 0 UN T , VE R IF Y ,

LABEL ,TA PFI L

Program Status
• 0 1 DEAD, tOBMRr, GET ILC,

FNR 'IN
.02 SLEEP,WAIT
.03 GETBRK,SElBRK,SAVBRK
.04 S'IOrllP
.05

.06

.07
*. 08

.09

.SETUP, (FPF), (EFTM),
(LF Tft)

G Er M .EM, S ET M EM, GM EM,
SMEft, E XME ft

FBEE, PR ER, FRET
TILO:K
GETB OF

supervisor
.01 GETLOC,GETARI,SETLOC,

GLOC,SLO:,SYPAR
.02 GETCF,~ETCFN

*. 0 3 U FDMFD, DELM FD, ATTACH,
ALLOr, MOV FIL, L IRK,
UNLIHK, SE TFI L ,RSFI LE

*· 04 ATrH Aft
.OS WBOlfti
.06 COMLOC,SHArCH,GAC,

ACOBE
.07 SETWRD,GETWRt
.08 SETBLP,GETBLP
• 09 IS IR

Library end-of-file
procedure

Terminal procedure

Error exit for math
routines

File system error
procedure

Write BCD with format

Bead B c D w i t h form at
Read/write binary
Backspace, rewind,

write end of file
I;c system tapes for

fore:Jround

Dead and dormant status

Alarm clock
Interrupt level
Storage map
Floating point trap

Memory bound

Free storage management
File-wait return
Get buffer from free

core

Supervisor parameters

Current comfil number
Privileged I/O system

calls

Attached directory
User information
Named items in

supervisor
User A- core word
Timing response
Line number of logged-

in user
AG.8 Commands and Subsystem Control

.CO General Discussion of Macro commands
.01 XECOM,NEXCOft,NCOft Single commands
.02 SCHAIN General Macro C3mmand
• 03 CHNCOft, {GET, G, SET, S) su perv is or command chain

09;65

12;69

08/65

09/65

12/69

12/69

12/69

09/65

05/66
12/69

12/69

12/69
12;69

12/69
12/69
06/69

12/69
12/69
12;69

CTSS PROGRAMMER'S GUIDE Sec;tion TABLE

: L S and : LC
.04 GErCOM,COMARG
• 0 5 SE TOp 'I I R sop T I LD 0 p T I

G Er o Pr , s Er s Y s , GETs Y s

AG.9 Debugging
.01 ERROR

AG.10 Convecsion
"1 .v•

.02
.03

.04

.05

.06
• 0 7
.08
.09
• 10

• 11
.12
• 13

DEFBC,DELEC,DERBC
OCAB:,OCDBC,OCLBC,

OCREC
BZEL,ZEL,LJUST,RJUST

(IO H) I (R TN) I (FI L) I

roHs rz, s r ou o
PAKR,PAKL,UNPAKR,UHPAKL
FINT I MINT
COM,ORA,ANA
DECO DE, ENCODE
DT BC, or BC, BT DC, BTOC

pAD I BZ L I NZ .L I z ELI N BL
ADJ,LJ,BJ
BZ57

::on trol
Command argument
Cptions and subsystem

control

subroutine trace

BCD or spread-octal
to binary

Binacy to BCD
Binary to spread-octal

Justification and
padding

Format conversion

Fack and unpack words
Fortran integers
complement, OR, AND
Format c onve rsi on
Binary to octal or BCD

conversion
Padding
Justification
Null zeroes, blanks

AG.11 Subroutine Linkage Processing
.01 COLT,SELAR,MDL Variable-length calling

.02
• 0 3
.04

GNAM
MOV E1, MOV !2, KOV E3
SErFMT,SETNAM

AG.12 Timers

sequence
Type of calling se~uence
Move argument list
Format and file name

12/69

09;65
03/66
12;69

12;69
12/69
12;69

• 01 GEr IME, GETrt1, GT DYTM
.02 TIMER,JOB'.tM,RSCLCK,

Current date and time 05;66

ST OPCL, K ILLTR, T IML FT,
R STR TN

.03 CLOCON,CLOCOF,UPCLOC

.04 RDYTIM

AG. 13 Miscellaneous

Alarm clock, stop watch

Simulated interval timer 12/69
Print time used 12;69

.oo List of miscellaneous library subcoutines 02/66
08;65 .01 (FPT) Floating point overflow

AH. Commands

A H. 1 T nrtrt;nrr ::;, ~ ... ~·:;,
.01 LOGIN
.02 LOGOU1,RNDLOG,OTOLO~

and underflow

Log in
Lo~ out, automatic

12;69
12;69

CTSS FRCGRAMMER'5 GUIDE Section TABLE 12;69 5

.03 FIB,OELFIB,PRFIB

• 0 4 'I 'IP E E K
.05 DIAL
.06 HELLO

AH.2 Languages and Subsystems
.01 AED

.02 BEFAP

.03 COG0-90

.04 COfiiiT

• 05 DYNAMO

• 0 6 E S L 0 is p la y S y s te II
.07 FAP
• 08 GPSS

• 09 LISP

.10 MAD

• 11 MADT BN

• 12 SNOBOL

• 15 OPS

.16 TIP

.17 POB4

• 18 PORMAC
• 19 • ,W BITE

AH.3 File Creation and Editing
.02 ED

• 03 SAVE ,ftYSA VE
• 04 S AV FIL, RERUN

*.05 LIHK,UNLINK,PERMIT,

*.06 MOUHT,UMOllNT,VERIFY,
LABEL ,rAPFIL

• 07 EDL

.08 EDB

logout
Foreground Initiated

Background
Time and disk quotas
Attach remote console
Dialup message

ALGOL Extended for
Design

Bell Laboratories 7094
Assembler

Coordinate Geometry
Language

String Processing
Language

!odel Siaulation
Language

ESL Display system
IBM 7094 Assembler
General Purpose System

Simulator
List Processing

Language
Michigan Algorithm

Decoder
Fortran II to MAD

translator
String Manipulation

Language
Online Proqraaming

System
Technical Inforaation

Program
Fortran IV to MAD

translator
Desk Calculator
Coamand Interface

12/69

12/69
12;69
12/69

02/66

09/66

12/69

02/66

08/65

05/66

01/66

12/69

03/66

03/66
12/69

Context editor for 12/69
card- image files

Save dormant program 12/69
Save and restore B URCOM

status and files
Link to files in other 12/69

U.F.D.'s
Tape-handling commands 05/66

Context editor for 03/66
1 ine- mar ked files

Context editor for 12/69
binary files

CTS S P BOGR AMM ER 1 S GUIDE Sect ion T A B L E 12/69 6

AH.4

AH. 5

AH.6

• 0 9 QED
.10 EDA

• 1 1 M OV E, A P N D
.12 EDC

File Compression
• 0 1 ABCHIV

.02 CBUNCB
• 0 3 S QO A 5 H, X PAN D
• 04 SQZB SS, PADB SS
• 05 AARCHV
.06 APENDA

Pile Printing
.01 LISrF
.02 PRINTF
.03 PBINr
.04 PRBIN
.05 PRBSS
• 06 SD UMP
• 07 PRINr A
.08 p

File Housek:eeFing
.01 COMBIN
• 02 SPLIT
• 0 3 C H M 0 D B, R EN AM E, DEL ET E

.04 COMFIL,COPY,UPDATE
• 0 5 EX r B S 5 , U PD BS S

• 06 RCU EST
.07 CALL
.08 ATrACH
.09 APEND
• 10 BQASCI

AH. 7 Program Execution
.01 LOAD,LOADGO,VLOAD,

NCLOAD, L, USE
.C2 LDABS
• 03 STARr, RSr ART, RESTOR,

R E:ALL ,RE SU~E ,R I

CONT IN
.04 LAED,USE

.05 DO

.12 PLOAD

• 07 BLIP

frogrammable editor
Context editor for

ASCII files
Copy files
Context editor for

card- image files

Archive seldom- used
files

Compress BCD files
Lin e-m ark files
Co~press BSS files
Archive ASCII files
Append to Archives

List file directory
Frint card-image file
Print BCD file
Erint binary file
Summary of BSS file
Print SAVED file
Print ASCII file
Hi~h-speed print

Combine files
Split files
Change mode or name,

delete file
common files
Library file house-

keeping
Off-line processing
File system call
Attach to other U.F.D.
Append to files
Off-line ASCII printing

06/69
12;69

12;69
12/69

06/69

12;69
12/69
06;69
12/69

06/69

01;66
06/69
11;65
01/66
06;69
06/69

12/69

08/65
11/65

12;69
09/66
06/69
12/69
12/69

Belocatable program 05/66
loading

Absolute program loading 05/66
Start or continue 05/66

program execution

Relocatable program 07/66
loading

Load private command 12;69
from common file

Simulate loading; cross- 12jo9
reference storage map

Set execution timing 12;69

CTSS PROGHAnnER~S GUIDE Section TABLE 12/69 7

.08 RUN

AH.8 Debugging
.00 General discussion of
.01 PAPDBG

• 02 MADB UG
• 03 PM
.04 PArCH,5lOPAT,TRA

.05 SPATCH
• 06 SD, SP

• 07 StRA:E
• 08 DEBUG
.09 STOMAP

AH. 9 Document
• 0 1 T Y PS ET, RU R 0 F P
• 03 REMARK

.05 MAIL
.06 ROFP
.07 PINFO

AH.lO Command Execution
• 0 1 B UN COM , C H l I .N
.02 GENCOPI
• 03 SUBS IS
• 04 OPT lOB

AH. 11 Miscellaneous
.01 PBH7EB
.02 WHO

.03 SPACE,BJECr
.04 ECHO
.o5 ocr,nBc
• 06 POR ,POFF
• 07 BED, BLACK
• 08 YES
• 09 WAIT
.10 TIME
• 11 PERROR

AI. Public File Subroutines

AI. 0 General

AI.2 Input/Output
• 0 1 M AD I 0 , R EA t , P R IN T

response
TIP utility dispatching 12;69

debu9ging tools
Symbolic PAP language

debugger
!AD language debugger
Post mortem dump
Relocatable program

pa tcbi ng
SAVED file patching
supervisor dumping and

patching
Subroutine trace
Symbolic debugging
Storage map

Memo editor, printer
Send message to systems

staff
Send message to users
Print ASCII memos
Cnline documentation

of new changes

l!a cro command
Octal arguments
subsystem control
User options

File error diagnostic
List current users of

CTSS
Listing control
Frint =ommand line
Octal/decimal conversion
Turn printer on and off
Change ribbon color
Comman1 chain checkpoint
pause between commands
Print date and time
Explain file error code

09/65
09/65

06/69
12;69

12/69
08/65

02/66
06/69
06/69

12/69
08;65
12/69
12/69

03/66
12/69

12/69
12/69
12/69
12j69
12/69
12/69
12/69
12;69
12/69

05/66

Compressed I/O routines 09/66

AJ •

AK.

CTSS PROGRAMMER'S GUIDE Section TABLE 12;69 8

Public File commands

AJ. C General

AJ.2 Langua·~es and Subsystems
.02 GPM

.03 EPS

AJ. 4 YeO.!, - C:>mpression .r.l..J.~

.01 SQZBCD, PAD BCD

AJ. 5 File Printing
.02 DIS PLY

.03 LS! LNK
.04 OCTLF
.05 TAPLF

AJ.6 File House keeFi ng
• 01 6 'IO 12
.02 APPEND

.03 ENCIPH,DECIPH
.04 CMPARE
.05 12ro6

AJ.8 Debugging
.02 sa:H
.03 DU MPEB

A J. 10 command Execution
• 01 QUES
.03 RU NPRT

AJ. 11 Miscellaneous
• 0 1 SLAVE

Sample Frog rams

AK. C General

General Purpose
Macrogenerator

Equilibrium Problem
Solver

Compress BCD files

Text display on ESL
scope

List links in U.F.D.
List u. F. D. in octal
List tape files

Convert 6-bit to 12-bit
Combine line- marked

files
Garble files
Compare two files
Convert 12-bit to 6-bit

search sAVED file
Dump SAVED file

Check success of RUHCOM
Identify R UNCOM para

meters

Slave remote consoles

AK.8 Com•ands and Subsystem Control
.01 Usage of s~bsJstem facility

INDEX to Subroutines and Commands

12/69

02/66

03/66

07/66

03/66

07/66
02/66
09;66

08/65
08/65

09/65
12/69
12/69

08/65
09/66

08/65
11j65

08/65

12/69

12;69

12;69

(EN D)

CTSS fF.CGBAMMER'S GUIDE Section INDEX 1?.1h0 1 . _, ~,

I NI:EX (12/31/69)

~Y~.B.Q!!I!.!]~

(BST) AG. 5.04 .RPDTA AG. 1 • 10 DECODE AG.10.09
(CSH) AG. 1. 06 • awr AG. 5.04 DEFBC AG.10.02
(EFT) AG. 5.04 • SCRDS AG • 1. 06 DELBC AG.10.02
(EFTM) AG. 6.05 • S !EK AG. 2. 02 DELETE AG. 3.02
(FIL) AG.10.05 • SETUP AG. 6.05 DELFIL AG. 3.07
(~· PT) AG. 6.05 • S Pr RNT AG. 1. 07 DELMFD AG. 7.03
(FP'£) AG.13.01 • TAPHD AG. 5.02 DERBC AG. 10.02
(I OH) AG.10.05 • r APW B AG • 5. 01 DORMNT AG. 6. 0 1
(L F'fM) AG. 6. 05 • NRilE AG. 2. 03 DBEAD AG. 2. 02
(RLR) AG. 5.03 ACORE AG .. 7. 06 OS KDMP AG. 2. 0 1
(R TN) AG.10.05 ADJ AG. 10. 12 DSKLOD AG. 2.01
(RWT) AG. 5.04 A LLO'I AG. 7.03 DTBC A G. 10. 10
(SCH) AG. 5. 0 1 ALLOW AG. 1. 04 DUMP AG. 4.04
(SP H) AG. 1. 07 ANA AG.10.08 DW RITE AG. 2. 0 3
(S PH M) AG. 1. 0 7 ASSIGN AG. 2.03 ENCODE AG.10.09
(STB) AG. 5.03 A 'I'IACH A:i. 7.03 END.P AG. 2. 06
(STH) AG. 5. 0 1 ATT CON AG. 1. 0 5 ENDJOB AG. 4.04
(STHM) AG. 5.01 A T'INA It AG. 7. 0 4 ENDRD AG. 2. 02
('rs B) AG. 5. 0 3 ECtEC AG.10.01 EOPXIT AG. 4.03
cr s H > AG. 5.02 a::ocr AG.10.01 ERASE AG.] .. 02
(TSH M) AG. 5.02 BFCLOS lG. 2.10 EBRCB AG. 9 .. 0 1
(W LR) AG. 5. 0 3 BPCODE AG. 2. 10 EXIT AG. 4. 04
• AS IGN AG. 2.03 BFOPEN AG • 2.10 EXITM AG. 4.04
• HSF AG • 5.04 BFRBAD AG. 2. 10 EXMEM AG. 6.06
• BSR AG • 5.04 BF liRI T AG. 2. 10 FCHECK .A G. 2.08
• CLEAR AG. 2.07 BLK AG • 2. 06 FEHR TN AG. 4.06
• COMN 1£ AG. 1. 07 BREAD lG • 2. 02 FILE AG. 2. 03
.DUMP AG. 2.01 BTtC AG.10.10 PINT AG. 10.07
• EFT AG. 5.04 s.ro: AG. 10. 10 FLK AG • 2.06
• ENDRD AG • 2.02 8 UPF'ER AG. 2.08 FNRTM AG. 6. 01
• FILE AG. 2. 03 BW Bll E AG • 2.03 FORBID AG. 1. 04
• P'STAT AG. 3.04 BZEL AG.10.04 FREE AG. 6.07
• LOAD AG. 2. 0 i BZL AG. 10.11 FRER AG • 6.07
• LOJK AG • 1.06 CHFI LB AG. 3.07 FRET .A G. 6.07
• PCOMT AG • 1. 08 CH!ODE AG. 3. 01 PSTAT AG. 3.04
• PN C HL AG • 5.01 CH 1:011 lG. 8.03 FSTATE AG. 3.07
• PRBCD AG. 1. 09 CLKOOr AG • 4.04 FWAIT AG. 2.08
• PR !NT AG • 1.07 CLOCOF'· AG.12.03 FWR ITE AG. 2.03
• PBOC'r AG. 1.09 CLOCOM AG.12.03 GAC AG. 7.06
• PBS LT AG. 1.09 CLOSE AG • 2.08 GCLC AG. 8.03
• PUNCH AG • 5.01 ~LOUT AG. 2. 06 GCLS AG .. 8. 0 3
• RDATA AG. 1. 10 COLl lG. 11. 0 1 GETARY AG. 7.01
• READ AG. 1.06 ~Oft AG.10.08 GET BLP AG • 7.08
• HEADK AG. 2.02 COftARG AG • 8.04 GETBRK AG. 6.03
• R EADL AG. 1. 06 COltFI L AG.] • 03 GETBUF AG. 6. 09
• RE L.RW AG. 2.04 COltLOC AG. 7. 06 GETCF Ar'" u. 7. 02
• RESET AG. 3. 06 DEAD AG. 6. 01 GETCFN AG. 7.02

r r':l s PF<CJ~RAMMER'S GCJ T r. E sect i0n INDEX 12;69 2

::;t;TC LC AG. 8. 0 J PDUMP AG .. 4. 04 SETS YS A:;. 8.05
GETCLS AG. 8.03 PR 12 AG. 1. 13 SETVBF AG. 2.05
3ETCOM AG. 8.04 PR I:IA G A G. 4.06 S ETW RD AG. 7.07
GET I LC AG. 6.0i PRFULL AG. 1. 14 SLAVE AG. 1. OS
GETIM E AG.12.01 PRME!SS AG. 1.12 S LEEF AG. 6.02
:;ETLOC AG. 7. 0 1 PR.Nr ER AG. 4.06 SLJC A~. 7.01
GETM EM AG. 6.06 PRNTP AG. 1. 03 Sl'JEM AG. 6.06
Gt:TOF:r AG. 8.05 P.CFILE AG.) ()A SNAP A~ IJ ()')

~ • v~ nu. ~. V L

GE'fSYS AG. 8.05 RDFLX AG. 1. 0 1 SN ATCR AG. 7.06
,... k' •J1rf' M Jl.r' 1') ~1 DJ"IT Ttol J\ .. ,.. 1 f\C:. C 1>.11'1 T T ~~ &r' 1 f"\C::
\.JILI4.J.ll nu • 1""' • v • U.&J4-I~L•A II \.lie I e VJ oJl•U&JJ..l1 .eu. '· v J

GETWRD AG. 7.07 RDMESS AG. 1. 04 SRCH AG. 2.06
::iL:lC AG. 7.01 R D WAIT AG. 2.08 STCMAP AG. 6.04
G ME M AG. 6.06 RDYriM AG.12.04 s·roPCL AG .12.02
GNAM AG.11.02 RECOUP AG. 4. 02 STORGE AG. 3.07
::; ·ro YT M AG.12.01 REI:L IN AG. 1. 0 5 STQ UO AG.10.05
Gl'NAM AG. 3.05 RE LEAS AG. 1. 05 SYPAR AG. 7.01
I ODI AG AG. 4.06 R EN AM E AG. 3. 01 TAP FIL AG. 5.05
IJ HS IZ AG.10.05 RE SE TF AG. 3. 06 TILOCK AG. 6.08
ISI N AG. 7. 0 9 RJ AG.10.12 TIMER AG. 12.02
JOBTM AG.12 .. 02 RJUSI A~. 10.04 TIL1l.FT AG.12.02
KI LLTR AG.12.02 R SCLC K 13.12.02 TBFILE AG. 2. 08
KILNBK AG. 1. 11 RS FILE AG. 1.03 TSSFIL AG. 3.03
LABEL AG. 5.05 R SOPT AG. 8.05 U t'lOU NT AG. 5. 05
LDFI L AG. 2.09 RSS RB AG. 1. 0 1 UNLINK AG. 7.03
L DJPT AG. 8.05 RS'IHTN AG.12.02 UNPAKL AG. 10.06
LDUMF AG. 4.05 S AV BRK AG. 6. 03 UNPAKR AG.10.06
LINK AG. 7.03 s:HAI N AG. 8. 02 U PCLOC AG.12.03
LJ AG.10.12 S CLC AG. ij. 03 UPDATE AG. 3.07
LJUST AG.1C.04 SCLS AG. 8.03 UPDM FD AG. 7.03
MDL AG • 1 1 • 0 1 SEEK AG. 2. 02 US RFI L AG. 3. 0 3
MINT AG. 10.07 SELAR AG.11.01 VERIFY AG. 5.05
MJUNT AG. 5.05 SE 'I 12 AG. 1 • 05 VREAD AG. 2. 0 2
MOVE1 AG. 11.03 S E~6 AG. 1. 0 5 VWR ITE AG. 2.03
:1JVE2 AG.11 .. 03 SE'IBCD AG .. 1. 02 WAIT AG. 6. 0 2
MOVEJ AG. 11. 0 3 SET BLP AG. 7.08 WH3AMI AG. 7.05
MJVFIL AG. 7.03 SR'IBRK AG. 6. 03 WBDCNT AG. 4.03
NBL AG. 10.11 SET CLC AG. 8. 03 WRFILE AG. 2.08
NCOM AG. 8. 0 1 SET:LS AG. 8.03 WRFLX AG. 1. 01
NEXCOM AG. 8.01 SE'IEOF AG. 4.03 W RMESS AG. 1. 0 4
NZL AG.10.11 SET ERR AG. 4.02 WRWAIT AG. 2.08
C>CABC AG.1C.03 SE 'IF I L AG. 7.03 XECOM AG. 8.01
OCDBC AG.10.03 SET FMr A G. 11. 0 4 ZBL AG.10.11
OCLBC AG.1C.03 SE TF UL A.~ • 1 • 02 ZEL AG.10.04
OCRBC AG. 10.03 S BTLOC AG. 7.01 BZ 57 AG.10.13
OPEN AG. 2.08 SE'IMEM AG. 6.06
ORA AG.10.08 SET N AM AG.11.04 .fy!2li£
orac AG.10.10 S ETN BK AG. 1 • , 1
PAD AG.10.11 SErNCV AG. 1. 02 MADIO AI. 2.01
PAK L AG • 1 0. 0 6 SE10PT AG. 8.05 F HI N'f A I. 2. 01
PAKR AG.10.06 SETPRI AG. 2. 08 READ AI. 2.01

crss ~~OGRAMMER 1 S GUIDE Sect ion INDEX 12/69 3

~~~!i!li.Q~ 

AH. 2.19 LABEL AH. 3. 06 BESTOR AH. 1.03 
AA RCH V AH. 4. 05 LA!D AH. 1. 04 RESUftE AH. 1. 0 3 
A ED AH. 2. 0 1 LDABS AH. 7.02 REVJKE A"' n • 3.05 
A PEND AH. 6.09 LINK AH. 3.05 BCPF AH. 9.06 
APENDA AH. 4.06 LISr F AH. 5. 01 RQA SCI AH. 6.10 
APND AH. 3 • 1 1 LI 'IH P AH. 2.09 • RQUEs·r AH. 6.06 
ARCHIV AH. 4.01 LOAD AH ... 7. 01 RS'fART AH. 7.03 
ATTACH AH. 6.08 .LOADGO AH. 7. 01 RUN .A H. 7.08 
BF.FAF AH. 2.02 LOGIN AH. 1. 0 1 RUN COM AH.10.01 
BLACK AH.11.07- LOGOU'I AH. 1. 0 2 RUNOFF AH. 9.01 
BLIP AH. 7.07 MAt AH. 2.10 SAVE AH. 3. 0 3 
CALL AH. 6 .07 MADBUG AH. 8.02 SAVPIL AH. 3.04 
CHAIN AH.10.01 MADTR N AH. 2.11 SD JH. 8.06 
CH MODE AH. 6.03 l1 AIL AH. 9.05 SDUftP AH. 5.06 
COGO AH. 2.03 MOUNT AH. 3. 06 SNOBOL I H. 2. , 2 
COMBI N AH. 6.01 MOVE AH. 3. 11 SP AH. 8.06 
CJM FIL AH. 6.04 M YSA VE AH. 3.03 SP AH.11.03 
CO MIT AH. 2.04 NCLOAt AH. 7. 01 SPATCH AH. 8.05 
C::>NTIN AH. 7.03 0~'1' AH.11.05 SPLIT AH. 6.02 
COPY AH. 6.04 OPS AH. 2.15 SQUASH AH. 4. 0 3 
CHUNCH AH. 4.02 OPTION AH. 10.04 SQZBSS AH. 4.04 
DEBUG AH. 8.0~ p AH. 5 .. 08 STABT AH. 7.03 
DEC AH.11.05 PAtBSS AH. 4.04 STlP!AP AH. 8.09 
DELETE AH. 6.03 i? A 'l'C H AH. B. 04 STOFAT AH. 8.04 
DELFIB AH. 1. 0 3 PERM IT AH. 3. 05 STRACE AH. 8.07 
DIAL AH. 1.05 PERROR AH.11.11 SU BSYS AH. 10.0 3 
DO AH. 7.05 PIHFO AH. 9.07 TAPFIL AH. 3.06 
DYNAMO AH. 2.05 PLOAD AH. 7 .. 06 TIME AH.11.10 
ECHO AH.11.04 PM AH. 8. 03 TIP AB. 2. 16 
ED AH. 3.02 POFF AH.11.06 TRA A H. 8. 04 
EDA AB. 3.10 PON AH. 11.06 TT PHEK AH. 1. 04 
EDB AH. 3.08 PRBIN AH. 5.04 TIP SET AH. 9.01 
EDC AH. 3.12 PRBSS AH. 5.05 UMOUNT AH. 3.06 
EDL AH. 3.07 PRFIB AH. 1. 03 UNLINK AH. 3.05 
EJECT AH.11.03 PRINT AH. 5. OJ U PDAT .E !H. 6 .. 04 
ESL AH. 2.06 PRINr A A H. 5. 07 UPDBSS AH. 6.05 
EX:TBSS AH. 6.05 PRI NTF AH. 5.02 USE AH. 7.01 
FAP AH. 2.07 PRNr ER AB.11.01 USE AH. 7.04 
FAPDBG AH. 8. 01 QED AH. 3.09 VERIFY AH. 3.06 
FIB AH. 1.03 R AH. 7.03 VLOAD AH. 7. 0 1 
FJR4 AH. 2. 17 RECALL AH. 7.03 WAIT AH. 11.09 
FOR MAC AH. 2.18 RED AH.11.07 WHO AH. 11.0 2 
:;g MCOM AH.10.02 HEM ARK AH. 9.03 WRITE AH. 2.19 
GPSS AH. 2.08 RENAME AH. b. 03 XPAND AH. 4. 0 3 
HE L"LO AH. 1. 06 RFBU N A H. J. 04 YES AH. 11.08 
L AH. 7.01 



C T S S t: B C G R A M M E R 1 5 GU I C E Sect ion INDEX 12;69 4 

£!1.121-.!f 

12 ·ro6 AJ. 6.05 
orJ 12 "' 1 l.. 01 nv • v.v. 

APPE NO AJ. 6.02 
C~I?ARE AJ • 6.04 
OECI PH AJ. 6.03 
DISPLY AJ • 5 .. 02 
OOMPER AJ. 8.03 
EN CIP H AJ. 6.03 
E PS AJ • 2.03 
GPM AJ. 2.02 
LSTLNK AJ • 5.03 
OC: T LF AJ. 5.04 
PADBCD AJ • 4.01 
QUES AJ.10.01 
RUNPRT AJ.10.03 
SLAVE AJ.11.0 1 
SQZBCO AJ • 4. 0 1 
SRCH AJ • 8.02 
TAPLF AJ. 5.05 

(E NO) 



CTSS PR OGRA ftME R' 5 GUIDE Section AA. 0 Page 1 

Introduction to Time-S baring 

Ii!~=2B~£i~~ is an ambiguous term. Some people use this 
term to describe concurrent operation of several parts of a 
sin~le computer. This. sort of operation, also called 
multiprograaming, generally is directed toward efficient 
utilization of hardware. 

Tb~ time-sharing system described in this manual seeks to 
allow a somewhat different sort of efficiency. Although 
h~rdware utilization is still considered, the primary goal 
is concurrent, effective utilization of a single comFuter by 
several users. 

The motivation for time-shared computer usage arises out of 
th~ slow man-computer interaction rate presently possible 
with the bigger, more advanced computers. This rate has 
=hanged little (and has becoae worse in some cases) in the 
last decade of widespread computer use. 

In part, this effect has been due to the fact that, as 
elementary probleas become mastered on the computer, m~re 
complex problems immediately becoae of interest. As a 
result, larger and more complicated programs are written to 
t~ke advantage of larger and faster computers. This process 
inevitably leads to aore programming errors and a longer 
p~rio3 of time required for debugging. Using current batch 
processing techniques, as is done on most lar1e computers, 
et=b program bug usually requires several hours to 
eliainate, if not a complete day. The only alternative 
~vailable has been for the programmer to attempt to debug 
directly at the coaputer, a process which is grossly 
w:tsteful of co11puter time and hampered seriously by the poor 
:=onso.1e communicati::;n usually available. Even if a 
typewriter is available at the console, there are usually 
l~=kin~ the sophisticated 1uery and response programs which 
are vitally necessary to allow effective interaction. Thus, 
what is desired is drastically to increase the rate of 
interaction between the frogr~mmer a.n1 the computer without 
l~r1e aconomic loss and also to make each interaction m~re 
meaningful by extensive and complex system programming to 
assist in the man-co•puter comaunication. 

In addition to allowing the development of usable and 
sophisticated debugging techniques, an efficient 
time-sharing system should make feasible a number of 

· r~ la ti vel y new computer applications which can be 
implemented only at great cost in a conventional system. 
Any problem re~uiring a high degree of intermixture of 
computation and communication on a. real-time basis should 
r~a1ily lend itself t~ time-sharing te=hniques. Examples of 
this type of afplication incl11de: 



CTSS PROGRAMMER'S GOlDE Section AA.O Page 2 

dacision-t~ee p~oblems; real-time management 
problems (airline reservations, hospital administration, 
etc.); ~aming problem:;; sociologi:::1l experiments; 
t~aching machines; language learning problems; 
library retrieval; text-editing; al~ebra manipulato~s; 
an1 many m::>re. 

Tn~ Compatible rille-Sharing System (CTSS) is a 
yene:ral-purpose frogramming system which allows a new f~rm 
of ~omputer operati~n to evolve and yet allow~ most older 
programming systems to ccntinue to be operated. CTSS is 
us~i from cons~les which may be of several varieties, but 
~hich in essence are electric typewriters. Each console 
usar controls the c~mpute~ (i.e. as seen by him) by issuing 
standard commands, 3De at a time. The commands allow 
convenient performance of most of the routine p~ogramming 
oparations such as input, translation, loading, execution, 
stopping, and inspection of programs. This command 
:onveniance, alth~ugh it has a fixed format, causes no loss 
of generality since a command can also be used to start an 
arbitrary pr::>gramming subsystem with its own control 
language. 

Tha consoles of crss communicate w itb the "foreground" 
system, ty which computation is performed for the active 
::onsol~ users in variable length bursts, on a rotation 
bas is, according to a scheduling algorithm. rhe 
"ba::kJround" system is a conventional programming system 
(slightly edited for the time-sharing version) which, at the 
l~ast, operates whenever the "foreground" system is 
inactive, but which may also be scheduled for a greater 
portion of the compute~ time. The entire operation of the 
computer is under the control of a supervisor program which 
remains permanently in the 32,768 word A-bank of c~re 
mamory. When a use~ p~og~am is scheduled to be run, it is 
brought into the 32768-wcrd B-bank of core memory (unless it 
is already the~e) from drum or disk memory. 

Not only are the d~um and disks used for swapping of act1ve 
use~ programs, but a 11 console users utilize the disk memory 
for sami-permanent st~rage of their active program and data 
files. Cards and magnetic tapes still serve in secondary 
rol~s as long-time and back-up storage devices. 

(E MD) 



CTSS PROGRAKKER'S GUIDE Section lA. 1 12/69 1 

:;~n~ral Descripti:>n and Usage Techniques 

The foreground system is organized around both "co•mands'', 
which are system programs accessible to all users, and the 
user's private program files. Both types of programs are 
stored on the disk, along with files of data, documentation, 
etc. For convenience, the disk files have titles with name 
ani class designators. Files can be entered from consoles 
or cards, and they may be punched out at disk editing time. 

The supervisor prograa remains in A-core at all times when 
CTSS is in Oferation. Its functions include: handling of 
all input and output; scheduling; handling of temporary 
storage and recovery of frograms during the scheduled 
swappin1; monitoring input and output performed by the 
background system; and performing the general role of 
monitor for all jobs. These tasks can be carried out by 
virtue of the supervisor's direct control of all trap 
interrupts, the most crucial of which is the one associated 
with the interval timer clock. 

The interval ti•er cl~ck is set for small bursts of time, 
currently 2COms. Every clock burst allows the supervisor to 
interrupt the prograa currently running in s-core in order 
to interpret input from the consoles or to issue output to 
th~ consoles. If the input froa a console is other than a 
break character, it is left in the supervisor's core 
buffers. When a break character is encountered, the 
supervisor deter•ines whether this is a line of input which 
has arrived early for one of the working programs or whether 
th~ status of one of the users should be changed; i.e., to 
working status or waiting command status. If the line was a 
=ommand line, the use~ is placed in waiting command status 
so that the next time his turn arrives, the supervisor can 
loa~ the command prograa as his working core image. 

Tha user programs are run for periods of time determined by 
tha scheduling algorithm. At the end of each program's 
allotted time or if it changes status, the supervisor 
i~t~rmines which user is to te run next. It must then 
determine whether the program or programs =urrently in co~e 
must be dumped (t:> disk or draa), in part or entirely, to 
leave room in cere for the next user. The next user program 
must then be retrieved fro• secondary storage together with 
the proper machine ccnditions. 

In addition to maintaining input and output buffers for each 
user console, the sufervisor keeps a record of the status of 
a~ch user. The status of a user may te: "working", where a 
program is ready to continue running whenever it is next 



C T S S F B C G RAM M E R ' S GU I C E section AA. 1 12;69 2 

brought in ; "waiting command", where the user has just 
completed a command line at his console; "input-wait" or 
"output-wait", where the program is temporarily held up 
waiting for either a console line or a free output buffer; 
"file-wait", where the program is temporarily delayed until 
another user has finished using the requested file; "IJO 
quaue wait", where a program is delayed because an I/O 
d ev ice ( t y pic a 11 y a ta pe} is busy or no t yet ready ; 
"timer-wait", where the program has requested that it be 
i ~lay ad for a specified time; "dormant", where the program 
has stopped running and returned control to the supervisor, 
but machine conditions and the status of memory are 
preserved for inspection, modification, or re-entry; and 
"iaad", where the program bas terminated, control has been 
returned to the supervisor, and machine conaitions and the 
status of memory have been scrapped. 

It should be noted that command programs are handled in 
exactly the same manner as the user's own programs, with 
raspect to status and scheduling. The background system is 
~lso considered another user; at present it bas a different 
place in the scheduling algorithm, with permanently lowest 
priority. In addition there is another type of background, 
consisting of background jobs initiated from consoles but 
l~ft to run without console interaction; these jobs are run 
with exactly the saae type of scheCiuling as normal 
foreground programs. 

Commands may be typed by dead or dormant users; they are 
interpreted by the time-sharing supervisor (not by the user 
programs). They can thus be initiated at any time, 
regardless of the particular program in memory. (It is for 
similar reasons of coordination, that the supervisor handles 
all input-output of the foreground system typewriters.) 
Commanas are composed of fields separated by blanks; the 
first field is the command name, and the rema~nLng fields 
~re parameters pertinent to the command. Each field consists 
of the last 6 characters tyfed most recently since the last 
blank (initially an implicit 6 blanks). A carriage return 
is the signal which initiates action on the command. 
Whenever a command is received by the supervisor, "W t" is 
typed back .. When the command is completed, "R t 1 + t2" is 
t y p e d back • " W" is the a b b re vi a ti on for w A IT ; "B" for 
READY; "t" is the current time of day; "t1" is seconds 
spent in executicn; and "t2" is seconds spent in swapping. 
A :::ommand may be abandoned at any stage, including during 
the typing of the command line or during command output, by 
Ji vi nq the "quit signal" peculiar to the console. 

A "command 1 in e" which has a dollar sign 
=haracter will be treated as a comment 
executed. 

IS} 
and 

as its first 
will not be 



CTSS FECGBAMMER'S GUIDE section AA. 1 12;69 3 

At the completion of a command line at a user's console, 
that user is placed in ~~!!i~~~~~!~ll~ status. He is then 
set at the end of a scheduling queue which is chosen 
a=cording to a rule assigning higher priority to shorter 
programs. When this user reaches the head of the 
highest-priority active queue, he will be placed into 
working status. 

When the user first reaches working status, the supervisor 
searches its £Q~!~~g gir~~!QX~ for an entry giving 
information about the command. There are three types of 
:;oamands: 

1. A-COBE-IJJ!~lJB - special supervisor functions, 
such as SAjj. A supervisor subroutine is executed 
in core A, and the user is restored to the state 
he was in before issuing the coamand. 

2. ]~~~]E-TBJJ~11j - cause the user's program to be 
started at a given location. These commands (USE, 
STARl, etc.) cause the message 

"ILLEGAL SEQUENCE OF COM!ANDS" 

to be typed if the user does not have a core image 
(i.e., if he is not in DORMANT status) • 

3. ~!SK:.~OA~!l! - these coamands are by far the most 
numerous. The program which is associated with 
("which performs") a given disk-loaded command 
resides in a disk file (of second name 'TSSDC.' 
for system commands, 'SAYED' for user coamands), 
in the system file directory or the user's own 
files (see AB.10.04 concerning private co1mands). 
When it is executed, a disk-loaded command becomes 
the user's core image. Some disk-loaded coamands 
are "PBIVILEG!t" and may make supervisor calls 
which users are forbidden to make. 

If the command name is fcund in the command directory, the 
supervisor either: 

1. Executes the indicated A-core subroutine, and 
returns; 

2. 

3. 

causes the user's location counter to be 
the correct value, and places the user in 
status; 

set to 
wcrki ng 

leads the indicated disk file as 
prcgram and starts the user at the 

the user's 
beginning of 



CTSS PROGRAMMER'S GUIDE sec ti on A A • 1 12;69 4 

his new core image. 

If the command name is not found in the directory, th~ 
suparvisor assumes that the command is an unprivileged 
disk-loaded command, and attempts to load a command file 
with first name the same as the command naae. If no such 
file exists, perhaps because the command name has been 
misspelled, the comment 

'name' NOT FOUNt. 

will be typed. In such a case, the user's core image and 
machine status are preserved. 

If the 200's bit in the user's restriction code is on, he is 
a "restricted user" and may not use any disk-loaded commands 
axcapt LCGIN and LOGOUT. That is, he may use only 

LOGIN, LOGOUT 
RESUME, RESTOR, CONTIB, BECA1L, B 
SAVE, MYSAVE 
STAR 7 ,B S'IAR T 
USE, PM, STOPAT, TRA, PATCH, STRACE, PAPDBG 

All other commands issued by a restricted user will be "NOT 
FOUND". 

(For all practical purposes, such a user may only resume 
SAVED files, and the particular SAVED files in his directory 
aatarmine comfletely what use he may make of the system.) 

If the 1000 bit in the user's restriction code is ~~! on, he 
is a "subsystem-restricted" user. such a user may net alter 
his standard o p t ions or s ub s J stem t ra p s ta t us ; his subsystem 
will have been initialized by LOGIN. His ability to use 
CTSS is determined by the subsJstem. 

A foreground program terminates its activity by one of two 
m~ans. It can re-enter the supervisor in a way which 
eliminates the cere image and places the user in a g~~g 
status; alternatively, by a different entry the program can 
b~ placed in a ~Q£~~~t status (or be manually placed there 
by the user giving a quit signal). The dormant status 
iiffers from the dead status in that a dormant user may 
still restart or exaaine his program. 

Usar input-output to each typewriter is via the 
and evan though the supervisor has a few lines 
space available, it is possible for a program 
input-output limited. Consequently there is an 

supervisor, 
of buffer 
to become 
.!..D~.!!!:..!~.i! 



CTSS FECGRAM11EB'S GUICE sect ion AA. 1 12;69 5 

status and an s~!]]t-~!i! status, into which the user 
program is automatically placed by the supervisor whenever 
input-output delays develop. When buffers become nearly 
empty on output cr nearly full on input, the user program is 
automatically returned to working status; thus waste of 
computer time is avoided. 

In order to optimize the response time to a user's command 
or program, the supervisee uses a multi-level scheduling 
algorithm. The basis of the algorithm is the assignaent of 
each program as it enters working or waiting command status 
to an nth level priority queue. Programs are initially 
~nt~red at a level which is a function of the program size 
(i.e., at present, programs of less than 4k words enter at 
1~ v~l 2 and longer ones enter at level 3). There are 
currently 9 levels (0- 8). The process starts with the 
sup~rvisor operating the program which is first in the queue 
at the lowest occupied level, L. The program executes for a 
tiae limit = 2.P.L ~uanta; a ~uantum of time is one half 
second. If the program bas not finished (left working 
status) by the end of the time limit, it is placed at the 
end of the next higher level queue. The program at the head 
of the lowest occupied level is then brought in. If a 
pro~ram F enters the system at a lower level than the 
program currently running, and if the current program P1 has 
run at least as long as P is allotted, then P1 will be 
returned to the head of its queue and P will be run. 

There are several different time limits whose current values 
m~y be of interest to the users. If a data phone is dialed 
into the computer and the user does not log in within 2 
minutes, there is an a utcma tic hang up. If a user stays in 
any non-working status for one hour, he is automatically 
logged out. The clock burst which enables the supervisor to 
housekeep the console input and output and to change program 
status is currently set to 200 ms. The quantum of time used 
in the scheduling alg3rithm is one-half second. 

To avoid fatal conflicts between the supervisor and multiple 
users, the CTSS IBM 7094 includes a special modification 
wni=h behaves as foll~vs: 

Core memory is divided into 256-word blocks. There are two 
7-bit protection registers which, when the computer is in 
its normal mode, can be set by program to any block numbers. 
Whenever a user program is run, the supervisor, as a final 
step just before transferring to the user pro~ram, switches 
the computer to a special mode such that if reference to any 
memory address outside the range of the protection register 
blo:k numbers is atte1pted, the normal mode is restcred and 



CTSS PROGRAMMER'S ~UIDE Section AA. 1 12/6 9 6 

a trap occurs to the supervisor. 

'£here is alsc a 7- bit r:eloca tion register which modifies 
~vary memory reference, during execution, by addition of the 
relocation register block number. Thus programs which have 
bean interrupted by the supervisor may te moved about in 
memory, if necessary, with cnly the proper readjustment of 
tna relocation register required. 

F i n all y, i f t he user p r og ra m , w hi 1 e i n the s p e ci a 1 m ode, 
snouli attempt to execute any instructions concerning 
input-output, changes in mode or core bank reference status, 
or resatting of the protection or relocation registers, the 
normal mode is restored and a trap oc=urs to the supervisor 
projram in core bank A. Errors in this class are known 
generically as protection mode violations. 

The supervisor perf~rms a number of control functions which 
may be directly requested by the user. These include: all 
input and output (e. g., disk, drum, consoles, tapes) ; 
requests for infcrmation about or extension of the user 
projram memory allocation; simulation of floating point 
trap; contrcl of each user's status, interrupt level, and 
input mode; and other functions which involve communication 
with, or control by, the supervisor. 

Since all protection violations cause a trap to the 
supervisor, users may conveniently =ommunicate with the 
suparvisor by means of such violations. Before rejecting a 
protection violation as a user error, the supervisor checks 
th~ possibility that it was caused hy a user-program of the 
form 

TSI NAME 1 ,4 

NAME1 riA =HNAME 

where NA~E is the BCt name of a legitimate supervisor entry 
point. The details of each supervisor entry are described 
in section AG. 1he 1IA instruction is described in IBM 
manual 122-6636; it may usefully (but inexactly) be read as 
Tr~p Into A core. 

(E NO) 



CTSS PROGRAMMER'S GUIDE Section A A. 2 12/69 1 

"7IME-SHARIMG PRI!ER" 

Be~innings are m~st difficult. This is far more true 
than trite in regard tc the use of the Compatible 
Tim~-Sbaring System (:TSS}, which involYes techniques that 
ir~ liable to seem rather obscure even to experienced 
programmers. This document vas designed, then, in order to 
facilitate the new CTSS user's transition from 
batch- processing orientations to a time-sharing orientation. 
It loas not pretend t3 offer "sophisticated" information. 
Rather, it is intended to relieve the reader of the 
n~=~ssity of having t~ worry about ferreting out -- usually 
by word of mouth -- the basic operational in formation which 
is prerequisite t~ sophistication. so, leaving only the 
details of beco~ing an accredited user through 
administrative channels, 1nd of turning on and dialing in 
his particular console (see Section AC.~ to the reader, we 
attempt to present here a "toehold", a gui3e (including an 
1nnotated ~script") t~ the new CTSS user for his first 
time-sharing console session. 

(The material herein is based upon "Some Introductory 
Not~s on Tiae-Sharing C3nsole Usage Techniques for the 
summer Programming Course," which was written as a reference 
for students taking the one week Basi= Programming and PAP 
Courses, offered annually by the ft. I.T. Computation Center; 
as such, it •ay have rather too pedantic a cast though 
one hopes that over-simplification is more informative than 
over- complication.) 

Time- sharing is a system which allows a number of users 
to mak~ use of a computer "at the same time" for independent 
t~sks. The techni~ue is possible because of the large 
mismatch between computer speeds and human reaction tiaes. 
Although the computer is actually sharing its attention 
among all of its users, it can be made to appear to each 
us~r as if he had c~ntrol of the machine in its entirety. 
The program which regulates the pro~ess of co-ordinating 
i:tivities (the CTSS Supervisor -- or •the system") resides 
in a separate bank of cote meaory, and actually causes the 
va~ious users' Ftograms to be brought into a second bank of 
m~mory from other storage devices. 

Each user really has fhysical ~ontrol 
r~mota input-output terminal, usually a 

only ove~ s~me 

typewriter-like 



CTSS PROGRAMMER'S GUIDE Section A A. 2 12/69 2 

device ("console"). He issues basic instructions, called 
"::ommands", to the sy3tem by typing the name of the command 
and the arquments associated with it; the system will then 
bring in t~e p~og~am which is associated with (i.e., "which 
pe~forms") the command and cause it to be executed. In 
~~n~ral, the user types in lower case and the system's 
~esponses are in upper case (except on teletype devices, 
wni~h operate only in upper case). When the system receives 
a ~ommand it ackn~wledges receipt by typing out on the 
user •s console a line comprising the letter "W" (for Wait) 
followed by a five-digit number expressing the time cf day. 
When the cowmand has finished working, the system informs 
tn~ user of this fact by typing a line comprising the letter 
"li" (for Ready) followed by two numbers separated by a plus 
si~n, the first number expressing the number of seconds 
eKpended in executing the command and the second number 
~xpressing the number of seconds expendei "swapping" the 
pro~ram (s) involved in and out of core. 

T~a user is said to be at "command level" after 
receiving an "R" (Ready) line. When at command level, he may 
issue any system c~mmand desired. During the execution of a 
program, however, co~rma nds are not accepted; in particular, 
as commands themselves are programs they can not be 
over-ridden by the typing of new commands. In order to 
r~turn to command level before the executin~ program has 
finished, then, the user must give a "quit signal" to the 
system. This quit signal is two pushes of the console's 
"br~ak 11 button. rhe al:ility to quit is quite useful, 
especially when, for example, a user's program misbehaves or 
a command has furnished enough information for one's 
purposes but would continue to ·operate "longer" if not 
in t~ rrupted • 

.f.i.!~§: 

Most often, the arguments of commands are the names of 
"filas" where a file is broadly defined as a logical set of 
in for mat ion • A f i 1 e ma .Y c on ta in ( " the in f or mat i on m a y 
r~presant") a source p~ogram, an object program, a set of 
data, text, lists, or almost anything 1efinable by the user 
wni=h is expressable in the sym~ols available. These files 
mdy be input from crs5 consoles or from punche1 cards (see 
s~~tion AE.1) and are normally stored on the compute~•s 
magnetic disk stcrage devices; however, their actual 
location is of nc importance to the programmer since he 
alw~ys refers to file5 by name. The system itself Fiovides 
for references to actual locations internally and maintains 
1 s~pardte "file directory" for each user so that no 
conflicts arise in the assigning of names. 

A master f i 1 e d i re c tor y · ( M • F • D • ) i s 
=ontainin~ inf~rmation about the location and 
the several user file directories (U.F.D.). 

maintained, 
contents of 
Each U.F.D. 



,... ___ .&..!-- •• '") 
;)t::~l..LVU AfteL. 

1'liC..O ., 
'""' v J J 

:ontains inforaation about the location and contents of the 
v:~.rious files which the user has created. The U.F.D. is 
associated with a problem number and a programmer number. 
Also asso=iated with certain problem numbers are "common 
files" -- file directories which contain files of comm~n 
int~rast and are directly accessible to all users on the 
problem number. 

Certain of the c~mmon files associated with the system 
programmers• problem number (a1416) contain information of 
~ ~ n~ ral utility and are accessible to a 11 users. (See 
Section AD fer further information about files.) 

Ea:;h file is required to have two names, a "primary" 
name and a "secondary" name, each of which :;onsists of six 
or fewer characters. rhe primary name is almost always 
arbitrary and shculd have some mnemonic importance. rhe 
s~=ondary name may 3r may not be arbitrary, depending on the 
contents of the file and the way in which they are to be 
usei. For example, a file containing a MAD (~ichigan 
!l~orithm Qecoder) sollrce program may have the arbitrary 
primary name PROG1, but must have the secondary (class) name 
"MAD". Cbject pr~graa files have the secondary name "BSS" 
(~inary ~yiDbclic ~ubroutine). 

Learning to use :tss is similar to learning to play the 
1 ui tar. Knowledge of a few basic chords enables the novice 
musician to Flay a rather large number of songs; knowledge 
of a few basic co•mands enables the novice CTSS user to 
write and execute an arbitrarily large number of prograiiS in 
1 rather large nuaber of programaing languages (Section 
AH.2). Beyond this basic area of application (which is the 
only one dealt with in detail here}, however, are at least 
two other large areas of special application. In the first 
place, there exists a large number of special-purpose 
:ommands for such purposes as file manipulation, debugging, 
documentation, and interactiYe problem-solvin~ (Section AH). 
In th~ second place, user programs may avail themselves of a 
wealth of library subroutines, both bat=b-processing and 
tim~-sharing in nature (Section AG). By takin~ advantage of 
these additional tcols, the CTSS user may expand his 
r~partoire of applications as necessary, and probably m:>re 
r :1 pi d 1 y than the g u it ar p 1 ay er ex p an ds b is r e per t c ire of 
songs. 

Further general inforaation of interest may be found in 
Sections AA.C and AA.1. Infor•ation ~bout the use of the 
m~nual may be found in Section AB. 



CTSS PHOGRAMMER'S JUIDE Se::: tion AA. 2 12/69 4 

1 • Typing errors in command lines and in input lines 
may be corrected by typing ~ commercial at sign 
( ~) to cause the system to ignore ("kill") the 
entire line thus far, or by typing one or m~re 
sharp signs (t) to cause the system to ign~re 
("erase") one or more immediately preceding 
characters. 

2. A conscle session is begun (after turning on and 
dialing in the console) by issuing the LOGIN 
command, identifying the user to the system and 
establishing that a line to the computer is 
available. 

3. source programs will be entered ~nd modified or 
corrected using the text editing command EDL. 
(Other available editing commands are covered in 
Section AH.3.) 

4. Comfilation will be accomplished by the ftAt 
command in this document although 
comFilers and assemblers are available in 
(Section AH. 2. ) 

other 
crss 

5. Cnce a pr:>gram has been successfully compiled (or 
assembled), execution is effected by the LOADGO 
command-again fot' put'poses of this docuaenta tion; 
loading of Frog rams is covered generally in 
Section AH.7.01. 

6. When a program has been satisfactorily run, it may 
be removed from the user's file directory by use 
of the DELETE command. Files not explicitly 
deleted will be left alone and will still reside 
in the disc stcrage units. 

7. At the end of a con sole session, the LOGOUT 
command is given to inform the system that the 
user's line to the =omputer is free to accomodate 
some:)ne else. 

After the cons~le ha5 been turned on and dialed in, 
type a line cf the fcllowing general form: 

"login ftobno name", 



CTSS t: RCGBAni'iE.tP 5 GUIDE 1 ') ,c.. 0 £;. 
I~, U ~ J 

wh~re probno is an argument of the LOGIN command specifying 
the user's assigned froblem number, and the second argument 
is the user's last name. Co~~!ng§ !D~ ~I~~~~nts ~~§i Qg 
~~E~!~!~~ ~~ at l~~§! ~~! ~!!B~ ("§E~~~"). The system will 
respond with a i(ait) line, and then will type out 
"PASSWORD". At this point, the user must type his assigned 
private password, during which time the console's printing 
will ba suppressed. Provided a line is available -- and the 
user has been allotted time and disk stora~e records on the 
system -- a message acknowledging the fact that the user has 
been "logged in" will follow. (Further details may be found 
in section AH .1. 01) • 

When there is no line av~ilable, the system will cause 
tha console to be "hung up" (disconnect at the system's end 
of the connection) , and the user should try to log in at a 
l~tar time. If , on the other hand, no response is typed 
after the login command was given, CTSS is not in operation; 
information about when it is expected to be back in 
operation may be gotten from data-phone ext. 1300 (recorded 
m~ssage), or if the recorded message has not yet been 
updated, fro• the computer operator at MIT ext. 4127. 
o=casionally the system will not recognize "login" as a 
:::ommand; this means that the name of the login command has 
been temporarily altered so that the system programming 
staff can hold a test session. 

1. EDL is a crss command which is used for input and 
for "context editing" of files. We will take 
advantage of its input facility, to create the 
files which will later be ed.i ted. "Context 
editing" re1uires the unique specification and 
locaticn of a line in terms of its contents by 
means of appropriate requests ("subcommands" of 
EDL) before the line can be edited. (This rather 
obscurely-stated point should be made clear by 
discussion belcw -- EDL for Editing, point 5 
and by the Appendix). Requests to EDL may be 
abbreviated by their first letter, with the 
exception cf the request "file" (see point 8), 
alth3ugh the full request name may also be used; 
the abbreviated forms will be used herein. 

2. A •ore complete de~cription of the EDL command 
aay be found in Sections AH.3.07 and AH.9.01. 

3. To begin input : t y p e , e. g. , "e d 1 a be 1 2 3 mad C R " 
or, in general, "edl name 1 name2CR", whe.:-e :R 
indicates Carriage Return. 

4. Response: FILE ABC123 MAD NOT FCUND. 



CTSS PROGRAMMER'S JUIDE Section AA.2 12;69 6 

Input 

"Input" is one mode of the EDl ::ommand; "Edit", 
the command's other mode, is discussed below. 

5. For all lines which do not begin with statement 
labels, strike the "Tab" key, then type the line. 
For 1 ines with labels: type the label, then 
strike rab and type the rest of the line. For MAD 
continua ticn card indic:t tors: tab, backspace, 
indicat::n:, line. when finished with a line, 
strike Carriage Return (CB). 

N .B. Wherever :R is indicated, strike the 
appropriate key on the console; do not type the 
letters "CR". 

6. To deal with t]ping errors while still 
working on the line in which they occur: The 
sharp sign (I) serves as an erase character and 
causes the ignoring of the immediately preceding 
character; more than one erase character may be 
used (e.g., IX111Y2 will be treated as XYZ by the 
computer). ro kill the entire current input line, 
strike the at-sign(~. N.B. This also deletes 
tabs, e. g., "/tab/x=a+bjyjtab;x=a1*b" causes 
"Y/tabJx=a1*b" to be treated as the input line. A 
kill character cannot be erased. 

7. For typing errors discovered in prior input lines: 
fellow the procedures discussed below under the 
EDL command for editing (beginning with point 4). 

8. To file a fJ:ogram: strike an extra CR (i.e., CR 
after last line plus CR for an "empty" line); this 
action causes entry to the Edit mode in which the 
request "file" may be used. Response will be a 
system R (eady) line, and the user will be at 
"command level" again -- which he was not while 
using EDL. (It is important to distinguish 
between gene~al system ::ommands, on the one hand, 
and requests to a specific command, on the other.) 
A file named, e.g., "abc123 mad" will have been 
established in the user's file directory. 

N. B. EDL WILL ACCEPT REQUESTS IN THE 
ONLY; in the Input mode, all material 
treated as input. 

EDIT MODE 
typed is 

9. To verify input (optional): type (general form) 
!~pr:int name1 name2!!. The PRINT command •ill 
the file to be typej back on the console. 



• 

GUIDE Sac tion .. 11. ""\ 

J\Ae~ 
1'"'1 ~.en 
·~/ v :;,1 

I 
I 

1. To cause the MAD (or the appropriate language's) 
compiler to operate on a program: the command is 
the name of the language and the argument is the 
primary name of the file; e.g ... , "mad abc123". 
The sec3ndary name of the source file must be 
"MAD". 

2. Response from successful attempt: 
beginning "LENGTH," followed by 
information. A file named , e.~., 
will have been created. 

A line 
various 

"abc 123 

J. Error messages: These indicate "syntactic" 

other 
bss" 

mistakes; the source program file must be 
appropriately corrected. 

4. Further details may be found in Section AH.2.10. 

Th~ ~Q1 ~Q~g~Q !Q~ ]gi!!Dg: 
(CR Indicates Strike :arriage Return) 

The following is excerpted froa Section AH.9.01: 

Editing is done line by line. We may envision a pointer 
wni=h at the beginning of editing is above the first line of 
the file. This pointer is moved down to different lines by 
some requests, while other requests specify some action to 
ba done to the line next to the pointer. All requests 
except FILE aay be abbre~iated by giving only the first 
l~tter. Illegal 3r aisspelled requests will be commented 
upon and ignored. 

The Appendix and the discussion below should clarify the 
importance of the "pointer•. Requests which take arguments 
must be separated fro• the arguments by a space • 

1. Type "edl name1 name2CR" (general for~. 

2. Response should be "Edit". 

3. The EDL command will type back lines ("verify" 
them} after certain requests. The requests which 
will cause verification are "locate" and "change" 
(discussed below); wait for the response before 
issuing another request when one of these two has 
been given. 

4. TyFe "t:R" ("t" is the abbreviation for "toptt). 
(This is not strictly necessary for beginning to 
edit, but is required when the Eiit mode has been 
entered from the Input mode, or when the pointer 



CTSS PHOGR~MMER'S JUIDE Sec ti on A A. 2 12;69 8 

must be moved 11 upwards".) The "pointer" is 
positioned "above" the first line of the file. 
Note that "top" is the Qllll request to EDL which 
moves the p:>inter "upwards". 

5. To p:>sition the pointer to a particular line, use 
"1" (for "locate") • The a rg uaen t of this request 
(typed after a space which must follow the "1") is 
a string of characters which uniquely specifies a 
line am3ngst the lines "below" the pointer. rhe 
pointer will be moved to the line which contains 
the !i.!.§! cccut:I"ence of the string. E.g., if the 
"tcp" request had just been issued and the first 
two lines of a file were 

A = B-+C 
D = A+X 

the request "1 aCR" would position the pointer at 
the first line, but "1 a+CR" would have positioned 
it at the second line. (Note also that in the 
lattet" case the first line is then "above" the 
pointer, and if it is to be opera ted upon, the "t" 
request - "1" request sequence must be given 
again.) 

6. To replace an entire line, the I"equest is "r" 
(for "retype"). The argument (typed after a space 
which must follow the 11I"") is the entire new line 
itself (with a ~propria te tabs ani terminal CR, as 
in Input). rhis request does not move the 
pcinter. 

7. To change a portion of a line, the request is "c" 
(for "change"). The argument (space as usual) is 
rather complex: Beqin with an arbiti"ary character 
which d~es not appear in either the original 
string of characters to be changed or the new 
string ("q" is frequently useful); this character 
serves as a delimiter of the two strings. Between 
the delimiters, type the old and the new character 
strings, in that order. The first occurrence of 
the old strinq ~i 11 be altered. For 
example, "c qatcqxyzqCR" will cause "abc" to be 
replaced by "xyz", and if the ori~inal line were 
"abcabc" the resulting line would be "xyzabc" • 
..§1~.!!~.§ ~i!l!!.n !h~ .§.!.f!ng§ !I~ §i.~!liti.£~!!.1: "a be •• 
is not the same as "abc". (This request does not 
move the pointer.) "Global" changes are possible, 
but w i 11 n c t be d ea 1 t wi th here • 

8. To insert one line after the line currently 
pointed at, type "i", followed by a space, 

fcllowed by the line to be inserted. To insert 



CTSS PBCGRAM"ER'S GUitE Sect ion AA. 2 12/69 9 

several lines, change mode from Edit to Input by 
giving an "extra" CR, or by typing "iCR". The 
response will be "Input". Type the line or lines, 
with appcopciate tabs. When done inserting, 
return to Ed i t mode b y g i vi n g an e x tr a cR. 

9. To delete a line or lines: position the pointec 
(with the "1" request) to the first line to be 
deleted, then type "d" (for "delete") followed by 
CB if only this one line is to te deleted, or by a 
space and a number (expressing the nulliber of 
~~~~!i~~ lines to be deleted) if more than one. 
then :a. (This request leaves the pointer
positioned at the last line deleted.)

10. To move the pointer "downward" one or more lines,
the request is "n" (for "ne:xt"); it takes a
numerical acgument, in the same fashion as "d".

11. To re-file undec the original file name, simply
type "fileCR" (!£~! !~~ ~g!~ ~~~~). This process
replaces the older version with the edited
version.

12. To file undec a new file name, type "file xxxx:xx:R"
where xxxxxx represents the new primary name.
This pr~cess preserves the older version, in the
event that a comparison of both versions is
desired f~r some reason (e.g., to determine which
of two methods takes longer) • Secondary names may
not be changed when filing.

1. After a successful compilation or assembly
syntactical errors) has been achieved, the
"loadgo na•el" will cause the object
("namel bss") to be loaded and executed.
search occurs during the loading process.

(no
co 11ma nd
program
Library

2. Sbcrtly after the =ustomary W(ait) response.
the word "EX ECUr lOll" will be typed by the system.
This will be fcllowei by the program's results, if
all has g~ne well with the program. Then,
prcv ided there were no exec uti on errors, an
end-of-run message and a systea R(eady) line will
be typed out.

3. Further details may be found in Section AH.7.01.

1 • Wrcng results imply errors in pro~ram lo~ic. (See

C T S S F R C G R A M M E R ' 5 GU I t .E Section AA.2 12;69 10

cc Memo 182 for a list of common programming
errors.)

2. When discovered, the errors can be corrected in
the source file (name1 !~g_, e.g.,) with the EDL
cou ma nd.

3. After editing, the program must be recompiled
with the appropriate language coamand (MAD).

4. The new program is executed with the LOADGO
co11 ma nd.

5. If the results :l re still wrong, back to 1 ••••

When a program is no longer desired, ~ll files relating
to it can be removed from the disk by typing (general form)
"delete name1 •CR". rhe asterisk indicates to the DELETE
::ommand that it is to operate on all files with primary name
"name1 "· Cf course, i ndi vidual files may be dealt with by
"delete name1 name2". (Further details may be found in
s~~tion AH.6.03).

At the end of a console session, give the ::ommand "logout".
Tha system will respond with the present time, the date, and
the total time used (in minutes). (Further details may be
found in Section AB.1.02.)

CTSS PROGRAMMER'S GUIDE Section AA. 2 12/69 11

Tha program created in this scr1pt is deliberateiy
simple-minded, so as not to distract from the basic point at
issue -- console usage. (For demonstration purposes, some
of the errors introduced are unique to the MAD language, but
should be reasonably clear to the reader Even if he is not
familiar with MAD). rhe program is intended merely to
compute and output the square root of the sum, and the
product, of two numbers input from the console. (Data can,
of course, be input to the program from files as well as
from the console. Indeed, batch processing tape techniques
are simulated on CTSS -see Section lG.S and numerous
subroutines are provided for direct disk file I/O see
sect ion AG. 2.)

1. Type the lines appearing in lower-case letters and
wait for the system responses if a line in
upper-case ~ccurs next in the "script".

2. Hit Carriage Return at the end of each lower-case
line.

3. Circled numbers to the left of the page refer to
tbe Notes, which follow the "script".

4. Lcng- band insertions are typing instructions
(usually involving the Tab key) e.g., Tab

5. The nuabers in w (ait) and R(eady) lines are
fictitious; ex~ec t diffe reo t ones.

6. Before issuing the DELETE command, the LISTF
coamand may be used to get a listing of the
contents of your file directory (Section AH.5.01),
and 7TPEEK aay be used to get a table of ycur time
and track usage for the current month (Section
AH.1.04). Neither command requires arguments.

~~i21=

login m 1416 padl ips ky
w 1315.1
Password

!iTA NDBY LINE HAS BEER ASS I Gil ED
M1416 3711 LJGGED IN 10/22;69 1315.6 PBCM 800289
LAST LOGOUT WAS 10/19/69 2247.1 FROM 800315

CTSS PROGRAMMER'S GUIDE

CTSS BEING USED IS MIT8A3
R 6.783+.000

edl simple mad
w 1316.4

FILE SIMPLE MAD NOT FOUND.
Input

Section A A. 2

~l normal mode is inteqer
~ floating point a

T~b print comment$numbers,pleeuhztlllase$
-r.;,h read data
-r.~b a=sqrt (b+c)
~~ d=bc

an:! ofi -r.a" end of program

~it
t

IIORPJAL r!OD! IS INTEGER 0--
1 mode

r .-,-~b not 11a 1 mode is integer

0-~ -Tab
a

~1 a=

CEJc qtqt.q

1 :i=

i
Input

lab
..,~b

0--Eiit
file
•

floating point a, d

FBI NT COM M !Mr SliU! B ERS, PLEASES

l=SOBT (B+C)

A = SQ R T • (B +C)

D=BC

print results a,d
execute exit.

R 5.833+4.250

~print si•ple. mad
w 1321. 3

SIMPLE ftAD 01/10 1321.4

NOB MAL MODE IS INTEGER
FLOATIIG POINT A,O
PRINT COMMENrSNUMBERS,PLEASES
READ DATA
A= S CRT. (B +C)
D=BC

12/69 12

c·rss FRCGRAMMER'5 GUIDE

R • 616+ 416

m:1 :1 simple
w 1321.9

PRINT RESULTS A ,D
EXECUTE EXIT.
END OF PR OG RA l1

s e ct ion A A • 2 12/69 13

THE FCLLOWING NAMES HAVE OCCURRED ONLY ONCE IN THIS PROGRAM.
THEY WILL ALL BE ASSIGNED 70 THE SA~E LCCATION, AND
COMFI LATION WILL CONr INU E.

BC
B
c

LENGTH OC072. TV SIZE 00006. ENTRY 00016
R 2.766+.533

edl simple mad
w 1322.8
Edit
1 b::

0- D=BC
,.. qbqb *q ..,

D= E*C
file
*
R 3.516+1.450

m:ti simple
w 1323.7
LENGTH 00071. TV SIZE 00006. ENTRY 00015
R 2.216+.750

loadgo simple
w 1324.1
EX ECUTIOlt.
HU MBERS, FLEAS E
b=7, c=2•

0- A = 2.707999E 26, D =
EXIT CALLED. PM MAY BE TAKEN.

R 6.166+1.050

edl simple mad
w 1325.5
Edit
1 mode

@-j NORMAL MODE IS INTEGER

1 read
READ DATA

14.000000

@-i -r.~.b

~xi t
whenever (b+c).l.O.,transfer tq tag

1

CTSS PROGRAMMER 1 5 GUIDE Section AA.2

EXEC U'IE EXIT.
::; ~q ta~ 2 q
TAG2 EXECU'IE EXIT.
i

print comment$negative argument$
transfer tc tag 2

fil~

•
R 2.950+3.150

mad simple
w 1523. 1
LENGTH 0 0 1 0 7.
R 2. 9 6 6+ • 9 C 0

loa1go simple
w 1523.7
EXEC UTI ON.

f/5\. N U!! BER S, PLEASE
\!._y- b =7. ,c= 2. •

~CALtE;.
R 6.566+1.083

loadgo simple
w 1524.7
EXECUTION.
NUMBERS, PLEASE

TV SIZE 00006. ENTRY 00020

3.000000, D = 14.000000
PPI MAY BE TAKEN.

0- b=-7. ,c=,2. •
NEGATIVE ARGUMEN'I

EXIT CALLE£. FM MAY BE TAKER.
R 6.216+.816

d~l~ ta simple •
w 1526.1
R 1. 716+366

logut

0)-w 1528.2
1 LOG u·r 1 NCT Fou No.

R • 0 00+. C 83

t:::\.- 1 o go u t m 1 4 1 6 t t t t t
\!V w 1528.4

~1416 3711 LOGGED OUT 10/22/69 1536.3 FBOM 800289
TOTAL TIME US ED = • 7 MIN.

12;69 14

CTSS PROGRAMMER'S GUIDE Section AA.2

1. We decide pleeuhz isn't funny and use
four erase characters.

2. The "empty line" takes us to Edit mode.

12/69 15

3. The line sh~uld have been tab'ed originally.

4. Same as 3, and we realize we want both answers
f loa tin g.

5. These two locates demonstrate "context editing".

6. We remember that ftAD subroutine calls require
periods.

7. This insertion allows us to see the answers after
executi:>n and terainates the program in standard
fashion.

8. The "empty line" again.

9. Verifying the typing.

10. The error message reminded us that we meant BC to
be a product, not a na•e.

1 1 • W h o oF s.' A i s • way wrong. W e have a bug •

12. We remember that the square root routine expects
floating point arguaen~s. and take the easiest
route cf getting thea to be floating deleting
the integer mode declaration.

13. We remeaber that the square root routine also
expects positive a rg u•en ts.

14. Still another "empty line•.

1 5. N • B • the dec i ma 1 points.

16. success.

17. And success again.

18. The misspelled command is not findable.

19. Erase characters apply in command lines toe.

(EN D)

CT S S F B C GRAMMER 1 5 GU IDE sect ion AA. 2. 0 1 12/69 1

Fixed File Names

Unexpected file names apFear in a user's file directcry from
time to time. 'Ihe following is a partial annotated list of
fila s genera ted:

1) by CTS5 in performing system duties;
2) by one of the commands which makes a new file

as part of its execution process; or
3) by another CTSS user.

Note, and be warned, that catastrophic conflicts will arise
if several users are performing a command which generates a
fixed file name at the same time in the same file directory
(usually a comm~n file). The obvious way to avoid such
conflicts is to avoid performing such commands while
attached to any directory other than one's "home directory".

C. O. D.
ft.T.l.

E. O. V.
0. V.f'.

AH.2 .10:
AH. 2. 10:

These files are used for intermediate data by the MAD
c ommancl.

(COMBI I PILE) AH.6.01:

This name is given to the intermediate file employed by the
COMBIN command. It aay be deleted if found.

MAIL BOX AH.9.05:

This file is created (or appended to) when a user gives the
command MAIL with the preble• nuaber and program number of
tha addressee's file directory. When the recipient
subsequently logs in the following message will appear on
his console:

YOU Hl VE ftAI L BOX

(rtO VIE TABLE) AH. 7. 0 1, AJ • 8. 0 1 :

Tha MOVIE TABLE is created by the standard loaders. It is a
temporary mode file and represents a map of the programs
loa:ied..

our PUT RQU lST AH. 6. 06:

CTSS PROGRAMMER'S GUIDE Section AA.2.01 12/69 2

The RQUEST command for bulk I;o creates or appends to a file
in the user's disk storage. When the file has been
processed by the disk editor, it is set to temporary mode.

PERMit FILE AH. 3. 05:

The PERMIT command establishes a line-marked file of private
protected mode in the user's directory; PER~IT FILE contains
information used in the linking process.

UR3 EN 'I
URGENT

MAIL
POST

AH. 1. 0 1 I
AH.1.01:

DAEMON can create this file in a user's directory
his subsequent LOGIN will remind him TO PRINT the
in order to get a message from the system.
message printed en his console is:

OSEB

YOU HAVE URGENT MAIL
or

YOU HAVE URGENT POST

PROFIL AH.2.19:

so
new

The

that
file

alert

This file is used bj the ' ' command to store the
abbreviations and lists cf SAVED files.

(BUG) SAVED AH. 8. 08:

This file is used by DEB u:; to save the current core image
when executing CTSS c:>mmands from within the program.

HAMEl ASCII AH.3.09, 18.3.10:

EDA or QED (with the •wa• instruction) creates a file
secondary name 'ASCII'. The ROFF command expects a
with the secondary name • ASCII'.

NAME1 BCD AH.2.07, AH.2.10,
AH. 2. 11:

with
file

A file of secondary name 'BC£ 1 is produced by several of the
l~nguage processors on request. Su~h files contain
~ssa mb ly /Com {il a tion listings; they are genera ted in
L-e!:ipon!:ie to the aryument :(LIST); in the l:iugud~e pL-ul;eS::;oL
::ommand.

CTSS PROGRAMMER'S GUIDE

NA!!E1 BSS

Section AA. 2. 01 12/69 3

e.g., 18.2.07, AH.2.10,
AH.2.11:

A 'BSS 1 file contains an object program, produced by one of
the language processors. 1 BSS' is a 7094 term, documented
alsa where.

NAf1.E1 (DU f1P) AJ. 8. 03:

For details, see the DO l1 PER S A V B D write-up.

NA!!E1 (MEMO) AH.9.01, AJ.6.01:

TYPSET creates a file with the secondary name 1 (MEMO)'·
RUNOFF expects a file with the secondary name '(MEMO) •.

NAME1 RU NCOM AH. 10. 0 1:

A file of secondary name 'RUNCOM' or 'BCD' may be used to
i~fina a procedure consisting of a number of CTSS commands.
These files may be executed at the console with the RUN:OM
command or- under FIB.

HAME1 R UIIOFF AH.9.01, AH.9.06:

This file is created when using the 'FBIHT' option with
ai tber the BU NOfF or BOFF commands. It contains the
formatted version of the (ME~O) or ASCII file as it would
normally appear on the console but it suitable form for
offline printing via the RQASCI command.

NAftEl SAVED

'SAVED' files contain machine
for subsequent execution.
w~:ite-up.

frog no S AV !D

AH.3.03:

conditions and core-images,
For details, see the SAVE

AH.3.09, AH.10.03:

(W h a r e p r og n c i s the us er • s pro gr am mer n u a b er •) This file
is created by serve~:al commands (including SAVE and CED) and
=ontains the user's machine conditions and core-image for
later RESUMEing cr CONriNeing.

ftOgL SAVED AH. 1. 0 2:

(The use~:•s f.tograsmer number followe1 by the letter "L".)
At any time an automatic LOGOUT may be initiated by the
system. The file may be RESUMEd at a later time.

C T S S f B C G RAM M E R 1 5 GO I DE sect ion A A • 2 • 0 1 12/69 4

N AriEl S QZ BSS AH.4.04:

'SQZBSS' files contain compressed-form BSS "decks". For
details, see the write- UJ: on PADBSS SAVED and SQZB SS SA YEO.

NAME 1 SYMTAB AH.2.10, AH.2.11:

This is an cpticnal file containing a symtol table, Froduced
by the MAD (and, of course, MADTRM) language processor in
r~sponse to the 1 (SYMB) 1 argument.

NAM!l SYMTB AH. 2. 07:

This is an autolllatically-generated file containing a symbol
table, produced by the PAP language processor.

FAPBCD
FAPBSS
FAP SYH
FAPTEM

progno
progno
progno
progno AH. 2. 07:

(whare "progno" is the user's programmer number) These files
are used by the FAP command in the assembling of the user's
prog ra.m.

(INPUT
(lNPr 1

progno
progno

AH.9.01 I

AH. 9. 0 1:

These two names are used for intermediate files by TYPSET,
ED, a.nd EDL. Following a quit sequence (or an automatic
LOGOUT) either one of these files may be found. It may be
renamed and used as a source file (in the automatic LOGOUT
=~sa, editing may, of course, be continued when the prognoL
SAVED file is resumed). When invoked, the editing commands
will announce the presence of one of the intermediate files
(if one i2 present); the user must either type 'yes' to the
question about deleting it, or type •no' and then RENAME it.
Th~ commands will not proceed unless the intermediate file
is 1isposed of, one way or another.

ptobno progno AH.4.01:

This is an intermediate file used ty the ARCHIV co•mand
(where prohnc, t:rogno are a user's problem number and
pr:o:Jrammer number). For details, see the ARCHIV write- up.

• TAPE. 3 AG.5.01:

Tn~ .PUNCH, .PNCHL and (SCH) subroutines create OL afpend to
a pseudo-tape line- marked file named .TAfE. 3.

CTSS PRCGRAl1MER'5 GUIDE section AA.2.0i

• TAP E. n AG.5.01:

Tn~ .TAPWR, (STH) and (STHM) subroutines create or at:pend to
a pseudo-tape line- marked file named • TA FE. n, where n is
spe=ified in the calling program.

• •. XXX 5 AV ED .,.. 0 ""1-au. o. v~;

This is an intermediate file used in chaining commands. For
details, see the SCHAI N llri te- up.

••• oon SAVED AH. 3. 04 :

This is an intermediate file used in ::haining COli II an ds. For
l~tails, see the RON COM write-up.

(END)

CTSS PROGRAMMER'S GUIDE section AB. 1 i2j69

Conventions of this manual

This CTSS Frogrammer•s Guide will be divided into sections
on a functional basis. The naming of the sections will be of
tha format MS.X.YY.

M is the manual designation. Since the CTSS ·
Programmer's Guide for the IBM 7094 is the
first manual in a series, its designation will
be 11 A"·

s is an alphabetic major section designation,
e. g., this is section "B".

X is the one or two digit subsection
designation. This first publication will have
subsections numbered from 1 to 13. Note that
they will ~~! be designated as 01 to 13.

YY is the minoc subsection designation. This is a
twc digit numeric desi9nation (00,01,02 ••••)

The manual was prepaxed by the CTSS commanis QED and HOFF
whare each section is a separate tile of the name MSXYY
ASCII. Note the deletion of ~erioi s vi thin the tile name.

Users may request COfies o£ complete manuals or any
thereof from the I nforaa tion Processin~
publications office. or, at the user's convenience
may be BOPPed on the user's 1050 or 2741 Selectric
or aodel 37 Teletype. All of the files are linkable
tile directory 81416 3212.

section
Center •s

copies
console
through

The table of contents will be •~intained in two forms.

1) TABLE AS:II which may be ROFFad to produce the
current table of contents in the form
distributed with the manual (i.e., in
sectional or functional order). The first line
of fABLE will te dated to indicate the date of
the latest change to the aan ual. Any revisions
of the aanual will be noted by date beside the
section which vas modified.

2) DATro: ASCII which may be ROFFed to produce a
table of contents in reverse chronological
order cf section modification. This will show
rapidly the latest chan~es to the manual by
section and date.

Within the text of the manual, areas of
modifications will be noted by an asterisk or

cr S S F R C G R AM M E R ' 5 GO I D E S e ct ion A B • 1 12;69 2

bar in the r-ight hand margin. This will be
done only on one level of revision, that is,
the flags of any earlier rev is ion will be
removed before the later modifications are
made.

B~cause the •anual will be done as much as possible with the
::urrent limited character set and as little hand work as
possible by the typist, the following conventions will be
use :l.

1) The symbols designating "less than", "greater
than", "less than or equal to", and "greater
than ~r e~ual to", will be replaced by the ftAD
conventicns of .L., .G., .LE., and .GE.

2) acta 1 notation is expressed as the acta 1
number- enclosed in parentheses, followed by an
8, e. g. (7777) 8.

3) Exp~nentiation is expressed in
notaticn of .P. {e.g., 2. P.9).

the MAD

4) Optional arguments in calling sequences to
subroutines will be enclosed within minus
signs (e.g., -P~E BUFF-). This applies also to
a r g u men t s to c om ma nd s { e • g • , -HAM E 2-) •

5) Indication for a literal within a subroutine
calling sequence will be typed in lower case
and be enclosed within single quotation marks
(e.g. • j') • This means that the actual value

should be used, rather than the location of
the va 1 ue.

6) some command arguments must be literal values
and these will be shown as uppercase
characters enclosed in single quotation marks
(e.g., 'REV'). This means that no
substitution is possible, but the actual
characters shown must be used.

{E NO)

C'r S S F R OG RAM M E R ' 5 GU IDE Section AB. 2 12/69 1

Glossary and Conventions

Within calling se~uences, arguments written in upper case
denote the location of a variable. Arguments in lover case
denote the value its elf. If literals are used, they are
notad as such by the conventions of the language or as lover
case letters enclosed in single quotation marks. Minus signs
~round an argument mean that argument is optional.

Tb~re are three passible kinds of calling sequences for
subroutines. The statement "as supervisor entry:" means that
th~ user must supply the TIA as noted beside the TSX. The
statement "as SUFervisor or library entry:" means that the
us~r may supply the 'IIA as noted, or be may use the external
library name noted in the rsx in which case the library will
supply the TIA. the statement "as library subroutine:" means
that the subroutine i~ an external library routine. A ftAD or
Fortran calling sequence will usually be given but the
routine may also be called by the equivalent PAP calling
sequence.

* in fr~nt of an entry in the table of contents,
indicates the new I/O system. An • in the
right-hand margin, indicates a modification to
the write- up.

AC 3 6- bit signed ace um ula tor.

b denotes a required blank in a character
string.

C.R. carriage return.

Console In general, the word console means a
tyFewriter console {e.g., 1050, 2741,
teletype) rather than a special display
console (e.g., ESL scope).

Current Pile Directory is the file directory tc which
the user is currently switched. It is usually
the user's file directory tut may be switched
to a comaon file directory by COMPIL or to
another user's file directory by ATTACH.

External Routines are subprograms (with entry points)
which are called by other subprograms. The
lib~ary entries and library subroutines are
external routines. The FAP calling sequences

CTSS F RCG RAMMER 1 S GUIDE Sect ion AB. 2 12/69 2

give the entry point name. The FAP convention
for calling external routines is: 1) EXTERN
pseudo-oF specifi~ation, or 2) preceding the
name by $, or 3) CALL pseudo-op. All the PAP
calling sequences in this documentation assume
EXTERN specification so that the CALL and $
are not shown.

Fence is a magic number used to designate the end of
a variable-length string of parameters. The
fence referred to in this documentation is a
word of all octal sevens.

FILNAM is used in calling sequences to indicate the
initial location of 2 BCD words containing the
name of a disk file (right justified and
blank padded). In Fortran programs, FILNAM may
be set by the subroutine SETRAM or it may be
the file name in H specification form. In MAD
programs PILNAft may be set in a Vector Values
statement.

FMT or FORMAT is used in calling sequences to
indicate the beginning location of a format or
a location containing a pointer to the
beginning of the format, if SETFMT is used.

Library Entry -The majority of the required TIA's for the
su~ervisor entries have been placed in the
library as library entries.

Line-Marked Files are files composed of variable length
records. Each logical record is preceded by a
word containing binary ones in bit positions
0 -17 an d the n u m b er of w or ds to f c 11 o v i n bits
18-35.

Line-Numbered Files are files composed of 14 word logical
records. Characters 73-80 are a sequence field
(the leftmost 3-6 may be alphabetic and the
righta~st 2-5 must be numeric).

LIST is used in calling sequences to provide a list
~f parameters to the subroutine beinq called.
It usually specifies parameters for input or
output. A list may consist of a co•bination of
single vari~bles, dimensioned or subscripted
variables, or block notation as described in
the MAt manuals. In Fortran, the imp lied DO
may be used only in I/O statements, not in
calls t~ subroutines.

In MAD, a LIST might .be: A, B (1) ••• B (10),
C(N) ••• : (1), G (J). The notation D(N) ••• N,

CT S S F B C G RAM~ E R '5 GU IDE section AB. 2 i2j69

E (1) ••• 10, is also available; this form in
general is acceptable only to I/O system
entries or associated library routines.

In FAP, a P~E prefix may te used with the
location of a single variable.

The FAP equivalent of the above .PJAD LIST is:

rxa A
TI X B- 1 , , B -1 0
T IX C- 1 n ' , , C-1
.r XH G- I j'

TI I D- 1 n 1 , , 1t
r II E-1, , L (10) i.e., location of a 10

Memory bound or allotment is the number of core
registers available to the program, counting
register 0. Therefore, the first unavailable
register is equal to the memory allotment,
except in the special c:tse of (77777)8 when
the entire 32,768 words of memory are meant.

eoDE With the previous file system, files cculd be
one of four modes:

NA~E1

o. 7RitPORlR 1 - words are deleted as they
are being read or skipped over.

1. PEBftAHERT can be read or altered
indefinitely.

2. BEAD-OILY (class 1) - can be read but
not altered until the mode is changed.

3. READ-OILY (class 2) - can be read but
not altered except by a control card
sobaitted to the dispatcher.

With the current file system there are seven
possible •odes and the mode of a single file
can be any coatination of the seven, some of
which are not meaning£ ul.

000.
001.
002.
ooq.
010.
020.
100.

PEBftA BENT
lEft PO BABY
SRCOMDAR Y
B!-AD-OHLY
W RirE-OHLY
PBI Vl TE
PBOr ECTED

NAftE2 are used in calling sequences to
indic:t te the actual n:tme of a disk file.
BAftE2 is the secondary (class) name. The

CTSS PROGRAMMER'S GUIDE Section AB. 2 12/69 4

actual names are right a:ljusted, blank
padded, ECD words.

String Piles files having no logical record
breaks. Processed as strings of words by
externally specified word =aunts.

supervisor Entry - supervisor routines which reside in
A c:>re can be entered only by a special
calling sequence convention.

'IS X R 0 UTI B , 4
ARGS

ROUTIR TIA =HROUTIN

If the name of the routine contains fever than
six characters, the BCD word referred to in
the riA must be left adjusted and blank
padded. The Til's for many of the entries have
been placed in the library as library entries
in order tc save the user the inconvenience of
supplying the TIA, and to allow for tracing
SUfervisor entries if the standard debugging
aids are used.

(EMD)

CTSS fBCGRAf'JMERiS GUIDE Section &B.3

System Documentation

"Do=umentation", in the sense of assembly/compilation
listings, of crss• supervisor, commands, and library
subroutines can be made available to users interested in the
fine details of system implementation. Prom the on-line
source language files maintained by the system programmers,
locument tapes for off-line printing are ~repared
periodically. Although system listings are internal
locumentation of work by the system's group, there is a
desire to make the system as widely understood as possible.
For this reason, system listings are normally made
available to those who indicate their interest. Users
lasiring to study large areas of the system ~.g., "the
library") may request printing of the relevant document
t~pa; the consultants will explain the details of the
raquesting procedure. Because these procedures are
expensive of both machine and system programmers• time,
=asual requests f~r listings should be avoided.

Usars desiring to study only a small area
(e.g., the SQRT subioutine) will probably
antira contents of document tape; to satisfy
need, the consultants will have listings of
library available for browsing.

of the system
not want the
this type of
at least the

(EHD)

CTSS E ROGR Ann ER; S GuiDE Sect ion

Equipment Configuration

.,. 1\
ll'-'eV

1'>1&..0
I,, V 7

1

'

The primary terminals used with CTSS are modified Model 35
T~l:! types, Model 37 Teletypes, and IBM 1050 and 2741
Selectric teletyfewriters (adaptations of t-hP "golfball"
office t_ypewriter) • lhese terminals are located mQstly, but
not exclusively, within the M.I.T. campus. Several
demonstrations have been conducted from such places as
Europa, California, and South America. In additicn, CTSS
supports up to three ARDS storage tube display terminals via
1200 bit/second phone connections. Access may also be gained
from the Telex or 'IWX' telegraph networks.

Although Teletypes and other typewriter-like ter11inals are
~iequate for most purposes, some applications demand a much
more flexible form of graphical communication. The CTSS
=onfiguration includes for this purpose a multiple-display
system developed by the M.I.T. Electronic Systems
Laboratory fer research in computer aided design. The
system includes two oscilloscope displays with character and
line genera tors and light pens, conne=tecl to a PDP-7
~omputer which maintains the display and perfor•s such
functions as rotation and translation. The PDP-7
~ommumnicates with the 7094 via the direct-jata channel. The
two displays can be operated independently of each other.
Communication with the computer can be achievei by aeans of
tha li~bt pen, and also through a variety of other devices
{knobs, swithces, push buttons), as well as the noraal
typawriter terainal. rhe meaning of a signal froa any of
these inputs is entirely under program control. Because of
=~ble len~th re~uirements, the display must be in a room
adjacent to the 7094 installation; remote operation would
r~quire improved data transaission facilities.

All of these terminals can operate simultaneously by
time-sharing the 7094 central processor. In order to assure
reasonably prompt response, the maximum number of users is
ganarally limited t~ about 30; however, this nuaber is under
control of the supervisory program, and is adjusted on the
b~sis of system l~ading: crss has on occasion serviced as
many as 38 normal users simultaneously.

The IBM 7094 central processor has been modified to operate
with two 32,768-w~rd banks of core memory and to provide
facilities for memory protection and relocation. These
f~atures, together with an interrupt clock and a special
operating mode (in which input-output operations and certain
other instructions result in traps), were necessary to
~ssure successful operation of independent Frograms
coexisting in core memory. One of the memory banks is
~vaildble to the user3' programs; the other is reserved for
the time-sharing system supervisory program. The second bank

C T S S E R C G R AM M E R ' 3 GU I C E section AC. 0 12/69 2

w~s added tG av~id imposing severe memory restrictions on
users because of the large supervisor program and to permit
usa of existing utility programs (compilers,etc.), many of
which require all or most of a memory bank.

The C3ntral processGr is eguipped with six data channels,
two of which are used as interfaces to conventional
p~ripheral equipment ~uch as magnetic tapes, printers, card
readers, and card punches. A third 3ata channel provides
iir~ct-data connection to terminals that require high-rate
transfer of data, such as the special display system.

The fourth data channel provides communication with two disk
units (IBl! 2302) and a low speed 3rum (IBM 7320). The
theoretical storage capacity of the disks is 76 million
computer words and the capacity of the drum is 186,400
woris. The time re1uired to transfer 32K words in or out of
core is approximately one second for both the disk and the
:1 cum.

The fifth data channel provides communication with two high
speed drums (IBM 7320A). rhe capacity of a 7320A is the same
~s that of the 7320 but the transmission time for 32K words
is one-quarter second.

The transmission control unit (IBft 1750) consists of a
stored-program ccmputer which serves as an interface between
the sixth data channel and up to 112 communication ter•inals
capable of telegraph-rate operation (up to 200 bits per
s~cond). An appropriate number of these terminals are
connected by trunk lines to the M.I.T. private branch
ax::ban~e and to the tWX' and Telex networks. Higher rate
terminals can be readily substituted for groups of these
low- rate terminals; for instance, to support lRDS terminals
at high speed (on output), three 1200 bit;second terminals
are installed. All cf these terminals are compatible with
Ball System data sets. Part of the core memory of the
transmission control unit is used as output buffer, because
tha supervisor progr aa and its necessary .buffer space have
grown in size to the point of occupying all of the A bank of
::ora memory.

(EBD)

Sec t.i on 4
.ft\..• I

Clocks

Page 4
1

Tha CTSS IBM 7094 has an interval timer clock available as
well as c hronolog clock. The interval timer clock is
=omplately under control of the supervisor; its acticn is as
follows: locaticn 5, memory A, is incremented in the units
position every 1/60 sec; whenever it overflows, an interrupt
occurs which, if the clock is enabled, causes a trap to
lo=ation 7 and the instLuction location counter to be stored
in location 6. The interval timer clock is more completely
ias=ribed in IBM Manual 122-6554.

The supervisor uses this clock both for interrupting
pro~ rams and for time account in g. Base- time and
day- of-the- month inforaa tion are obtained from the Chronolog
=lo=k which is attached as a pseudo tape unit. The
supervisor can also simulate the interrupt =lock behavior
for each user. Ey supecv is or calls, t be user can program
for nested interrupts and computation time readin~s.

(EHD)

CiSS PROGRinnEi:S GuiDE

CTSS Character Set

Sec tiou 1
I

Two character sets, one a subset of the other, are standard
on CTSS. The smaller set (the 6-bit or BCD set) is
basically the 7094 standard a:o set of 6-bit character codes
including 47 characters and tlank, and augmented with four
console contt:ol functions. (:arriage return, tabulate, form
fa~1, and colon, which is used by some programs as a logical
.. backspace" character.) rhe larger set (the 12-bit or Full
s~ t) consists of 111 graphic and control characters,
represented as 7-bit codes right-adjusted in a 12-bit field.
This larger set includes both upper and lower case letters
an1 a variety of special characters and console control
functions.

All input from consoles is treated initially as 12-bit codes
by the CTSS supervisor. rhese 12-bit codes will, howeYer,
normall.Y be mapped into the six-bit subset by the supervisor
unl~ss special action is taken by the user program to
p.revent the ma[.ping. Sufervisor calls (SETBCD and s ErFUL)
tr~ available for turning on and off the mapping.

In tba CTSS Character Set tatle below, the 6-bit subset is
contained in the upper half of the table. When a character
from the lover half of the table appears in an input stream,
it is mapped according to the following rules:

1. Characters in the table enclosed in parentheses
are discarded.

2. All other characters except commercial at, number
sign, question mark, and double quote are
truncated t:> six bits ty discarding the left six
bits.

3. lumber sign (I) is the "erase" character: the
previous character is discarded. Double quote (")
is also an •erase" =haracter.

4. Commercial at (il) is the "kill" character: the
entire line is discarded. Question mark (?) is
also a "kill" character.

To simplify the job of a program which wishes to do its own
12-to-6 tit sapping, the supervisor on input inserts a flag
bit (the fourth froa the left) on those codes which are to
be discarded upon mafping. For example, tha 12-bit code for
th~ parcent sign, acc:>rdinq to the table, is:

OOOC010001C1 (0105 octal)

CTSS PROGRA~MER'S GUIDE Sec ti on A c. 2 • 0 1 12;69 2

When using the RDFLXA supervisor =all, the code which will
b~ received by a user program will be:

000101000101 (0505 octa 1)

sin=a this character is discarded when mapping to six-bit
mo1a. The flag bit is optional on output characters. For
example, to type out a percent sign, either code 0105 or
0505 is acceptable.

No one device is capable of input or output of the complete
CTSS ::haracter set. For each device, a table is provided
which lists the exceptions. In most cases, these tables
iniicate one of two mapping rules for exceptional
characters. These rules are:

1. The character is discarded on output, or
2. The character prints as some graphic different

from stan dar d.

Tha fact that a different graphic is attached to a given
code does not of ccurse, imply that the code will be
intarpreted differently by the computer. This latter
comment must be kept in mind when us1ng a 1050 or 2741
::on sole, which may have any of sever~ 1 sligb tly different
sets of key caps and/or printing balls.

on tha Model 35 Teletype and the Telex, the upper and lower
case letters are mapped together as in the following
a xample:

1 • On input , a typed 1 et t er " A" w i 11 a 1 way s p 1: od uc e
the code f c r u F per c a se "A" , 0 0 2 1.

2. On output, the code for lower case "A", 0121, will
tyfe an up fer case A.

~~~£~~1~! ~£~2 l~R!~5 

Unassigned pcsitions in the CTSS character set table are 
r~served for future expansion. At present, these unassigned 
characters are discarded on output. In the individual 
iavic~ code tables, a lack of an entry implies that the 
corresponding entry in the CTSS character set table applies. 
Tbe entry "ig" 11eans that this character code is ignored on 
output tc this device. 

All codes are given in oc ta 1. 



CTSS I?BCG RAMMER' 5 GUICE s e ct ion A C • 2 • 0 i 

Abbreviations used in the character set tables: 

ig Ignored (see comment abov~ 
WRU - Who are you 
P-off - Printer ~ff 
P- on - Printer on 

Vertical tat 

i2j69 3 

V. T. 
N .L. 
L.F. 
F. F. 
tab 
hang 
sngl 
dbl 
L .K. 
U.K. 
back 
BBS 
BRS 
CB~1 

- Mew line (Carriage return and Line feed) 

A.M. 
HLF 
HLR 
ESC 
ACK 
NAK 

- Line feed 
- Form feed 
- Horizontal tabulation 
- data phone disconnect 
- Single space carriage on return 
- Double space carriage on return 
- Lock keyboard 
- Unlock keyboard 
- Back space 
- Elack ribbon shift 
- Red ribbon shift 
- Carriage return without line feed 
- Alternate mode 
- Half-line forward feed 
- Ha 1£- line reverse feed 
- Escape 
- Acknowledge 
- Negative acknowledge 



0000 

0010 

0020 

0030 

0040 

00 50 

0060 

0070 

0100 

0110 

0120 

0130 

0140 

0150 

0160 

0 170 

CTSS PROGRAMMER'S 3UIDE Section AC. 2. 01 12/69 4 

: T s s c ha ra c te r se t 

0 1 

0 1 

8 9 

+ A 

H I 

J 

Q B 

blank I 

y z 

(I) ( ]) 

( HLF) {HLR) 

& a 

h i 

(_) 

q r 

( L. K.) 

y z 

2 

2 

B 

K 

F.F. 

s 

tat 

b 

(BRS) 

k 

(<) 

s 

(V.'I.) 

3 

3 

= 

c 

L 

$ 

T 

, 

(; ) 

(bell) 

c 

(BRS) 

1 

(( ) 

t 

({ ) 

4 

4 

D 

) 

* 
u 

( 

(I) 

(! ) 

d 

m 

(ESC) 

u 

( } ) 

5 

5 

E 

. . 

ll. L. 

v 

(I) 

(WBO) 

e 

back 

D 

(>) 

v 

6 

6 

p 

w 

(hang) 

f 

( CB)J) 

0 

1 

w 

7 

7 

G 

p 

null 

X 

(L. F.) 

(P-o ff) 

9 

" 
p 

X 

(F-on) (U.K.) (A.M.) 

NOTES: 

1. Character c~des in parentheses are discarded on 
in~ut in 6-bit mode. In 12-bit mode these 

. characters have (400)8 added to them, as a flag 
hit. 

2. Character codes 0137 (double quote) and 0104 
(number sign) are the erase characters in 6- bit 

mode. 
3. Character codes 0156 (question mark) and 0106 (at 

sign) are the kill characters in 6-bit mode. 
4 • T he c ode s 0 0 17 ( In t err up t} , 0 0 51 (Quit) and 0 0 7 7 

(Hang- up) on input are intercepted by the 
supervisor and are never sent through to the 
prcgraD!. 



CTSS FROGRAPIPIER'S GU ID! section AC.2.0i i 2/6 9 5 

Model 37 Teletype Character Set 

Sam~ as CTSS Character Set except as noted below: 

0000 

00 10 

0020 

0030 

0040 

0050 

0060 

0070 

0100 

0110 

0120 

0130 

0140 

0150 

0160 

0170 

NOTES: 

1. 

2. 
3. 
4. 
5. 

6. 

0 1 2 3 4 5 6 7 

( MAK) 

(ACR) ig 

on early model 37's, codes 0107 (line feed), 0110 
(HLP) and 0111 (HLR) are ignored on output. 
Code 0107 (line feed) cannot be input. 
Code 0117 (Printer-off) cannot be input. 
Code_ 0175 (Printer-on) cannot be input. 
Code 0017 (IoterruFt) can be generated by one push 
of the "interrupt" button. 
Code 0057 (Quit) can be generated by two pushes of 
the "interrupt" button. 



CTSS PROGRAMMER'S GUIDE s e c ti on A C • 2 • 0 1 12;69 6 

1 0 50 ;2 7 4 1 c h a ra c te r Se t 

Same as CTSS Character Set except as noted below: 

0 1 2 3 5 6 7 

0000 

0010 

0020 

0030 

0040 

0050 ig 

0060 

0070 

0100 ig { t) 

0110 ig ig ig ig 

0120 

0130 ig ig 

0140 

0150 ig (prefix) 

0160 ig ig 

0170 ig ig ig ig ig 

NOTES: 

1. Interrupt and Quit signals are generated by the 
"Attn" key on 2741 •s and the "Beset Line" button 
on 1050's 

2 • c c de 0 1 0 1 ( 1 i ne feed) c a n not be in put from a 2 7 4 1 • 
3. Code 0154 (pcefix) ~annot be input from a 2741. 
4. Code 0117 (printer off) cannot te input. 
5. Cede 0132 (black ribbon shift) cannot be input. 
6 • Code 0 1 3 3 ( r e d c i b ton shift) cannot be input • 
7. Code Oi75 (printeL on; cctnnot be input. 



Section AC.2 .. 01 12;69 7 

Standard Model 35 Character Set 

Same as CTSS Character Set eJcept as noted below: 

0 1 2 3 4 5 6 7 

0000 

0010 

0020 

0030 

0040 

0050 

0060 

0070 

0100 

01 10 ig ig ig 

0120 A E c D E F G 

0130 H I ig ig ig ig 

0140 J K L M p 

0150 Q B ig 

0160 ig s T u v X 

0170 y z ig ig 

NOTES: 

1. Some outside (i.e. not new-style MIT-modified) 
model 35's will not respond to code 0176 (Keybcard 
unlock) • 

2. On outside model 35 •s, code 0055 (Carriage return) 
will cause a :arriage Return ~ll~ a Line Feed 3n 
output. ihe comFuter will type a line feed 
whenever a carriage return is detected on input. 

3. on outside model 35 •s, the tabulate character 
(007 2) prints as a back slash and will not cause 
tab motion of the carriage. 

4. Interrupt and Quit signals are generated by the 
"dreak" buttcn. 



C r S S F R C G R A M M E R ' S GU I C E Section AC.2.01 12/69 8 

Telex Character Set 

s~m3 as crss Character Set except as noted below: 

0000 

0010 

0020 

0030 

0040 

0050 

0060 

0070 

0100 

0 110 

0120 

0130 

0140 

01 50 

0160 

0170 

NJTE: 

0 1 2 

& 

ig 

ig iy ig 

ig iq ig 

A e 

H I ig 

ig J K 

Q R ig 

ig ig s 

y z ig 

3 

. . 

c 

ig 

L 

ig 

T 

ig 

t 

4 

ig 

D 

ig 

ig 

u 

ig 

5 6 

bell 

ig ig 

ig 

E F 

ig 

ig 

v 

ig ig 

1. code 011 5 (Who Are You) prints a Maltese cross. 

7 

ig 

G 

p 

X 

ig 

2. Either code 0035 or code 0113 will ring the Telex 
bell en output. On input, a bell produces code 
0035. 

3. Either code 0072 or ;;ode 0103 will print a 
semicolon ~n output. on input, a semicolon 
frcduces cede 0072. 

4. Either code 0020 or code 0120 will print an 
a m ~ e r sand c n cut put. o n input, a n a m pe r sa nd 
produces cede 0020. 

5. Either c~de 0054 or code 0104 will print a number 
sign on output. On input, ~ number sign produces 
code 0054. 

(E NO) 



C T S S F P. C G P. A~ M E R 1 3 GU I D ! s e ct i c n A c • 2. 0 2 1')~~a 
I'-/ V J 

Spa:ial console characters 

When working at the console, there are several significant 
signals or characters which the user finds necessary. rhe 
"braak character" is necessary to signal t be end of a line 
so that the supervisor knows that it is time to analyze the 
lin~ to determine whether or not action is required. The 
"interrupt signal" is useful for the user to signal his 
proJram that the pre-planned branching within the program 
should new be followed. This might be analogous to sense 
switch interrupti::>n during l:atch processing. The "Quit 
signal" signal is used to stop the current program (by 
pla:in~ it in dormant status) and return the user to the 
command level. The "erase character" is interpreted before 
the line is Frocessed by the supervisor ani it causes the 
irnmadiately preceding character to be erased by moving the 
character pcinter cr counter back one. The "line-kill 
:haractar" is als~ interpreted before the line is Frocessed 
by the supervisor and it causes the deletion of the current 
lin~. 

The break character is a carriage return. Whenever a user 
typ~s into his console, regardless of whether or not his 
program is running, the input character is received by the 
supervisor within 200 ms. The input =haracter is added to 
tha user's input message and if it is not a break character, 
no fucther action is taken. If the ~haracter is a break 
:h~racter, the message is called complete and one of several 
actions results. 

If the user was at ccmmand level (i.e., ~ne user was in dead 
or iormant status), he is placed in waiting command status. 
If the user's ft:ogram was in input-wait status, it is 
r~turnad to working status so that it may resume by reading 
tha input message. If the user's progratr was already in 
working status, the message is merely considered early and 
is left in the buffer for sul:sequent reading by his fiogram. 
(If early messages continue to arrive and the input buffer 
~~~~ becomes nearly filled, a message is typed out to the 
user requesting that he stop typing until his previous input
is read.)

Wh~n a program is ficst initiated or placed in working
stdtus it is said to be at interrupt level 0. This applies
to both commands and user programs. The program ccntinues

CTSS PROGRAMMER'S GUIDE Se:: tion AC. 2. 0 2 12/6 9 2

execution until it termin1tes by entering 1ea:J or
status or until the user transmits the CUIT signal
places the frogram in dormant status immediately.
minual JUIT signal all~ws the user to ::hanye his
::orrect mistakes, etc.

dormant
which
1his

mind,

Int~rrupt signals may be used by the user to externally
direct or central certain pre-planned phases of his programs
axa~ution. These interrupt treakpoints may be recursively
stacked to a maximum depth of 3. Whenever a console
intarrupt signal is received by the supervisor, control is
returned (by means cf a push down list) to the entry
praviously assigned. Interrupts are dealt with within a
user's program by means of subroutines SETBRK, GETBRK, and
SAVBRK (AG.6.03).

The interrupt signal is genera ted when the interrupt key is
push e :i on c a (AT r N on 2 7 4 1 , R ES ET L IN E on 1 0 5 0, B REA K on
mode 1 3 5 , IN 'IE H H UP 1 c n mode 1 3 7) • The q u i t sign a 1 is
g~narated by pushing the button twice within two seconds.

A ::onsole operating at command level is automatically set to
the norma 1 mode cr 6- bit BCD ~ode. (A program call to the
suparvisor is necessacy in order to change to the 12-bit
typing mode). While in fUt ting in the normal mode, two
sp~~ial characters are recognized before the message is sent
to the supervisor. The characters " (quote) and I (number
si~n) are interpreted as ~ single char~cter eraser. This is
~~~omplished by m~ving the character pointer back one SFace 
instead of forward, within the current line or message. 
Th~rafore, n quotes or number signs will erase n characters 
(not counting the quotes themselves as characters) back to, 
but not including, the previous carriage returo or break 
character. The ? (question mark) and the a (commercial at) 
~ra interpreted as a line-delete signal. The entire message 
back to the frev ious break cha rae te r is era sed. 

(E NO) 



CtSS PROGRAMMEH'S 3L!DE Sec:ticn AC. 3 1 ) /{... 0 I._, V .J 

Data phone extensions 

Consoles may be connected with the 7094 vi~ telephone lines 
throujh the data switch. Bec~use of the differences in 
t~ansmissicn rates between various types cf consoles, there 
are several classes cf lines: 

1050;2741 
35AS B/KS B 
37K SR 
A B DS d i sp 1 a y 

Dial '0 1 

Dia 1 1 9 1 

i) i~ 1 • 1 3 7 1 ' 
Dial • 160 1' 

All of these numbers are • hunt groups', i.e. they cause the 
telephone exchange tc search over a number of lines until 
ana is found which is not busy. 

Consolas have specific (although not ne::essarily unique) 
identificaticn cedes. rhese codes are to be used with the 
attached remote console supervisor entries; they are also 
=h~=k~d by LCGIN for unit group restricted users. The 
console ID wcrd consists of a type code (2 for 1050, 3 for 
TELEX, 4 for TWX', 5 for inktronic and 33KSR,. 6 for 
3"->ASR/KSR, 7 for 37KSR, 8 for 274 1, q for ABDS) , two to four 
B~D zaroes, and one to three BCD characters of 
identificaticn, for a tot~l ct six characters. 

Each data phcne used with a console has a unique extension 
number which may be u:>ed for voice transmission. A data 
phone may be called from another data phone by dialing the 
4-digit extension number, cr from ~n MIT extension by 
li~ling 818 followed by the data phone number. Note that 
data phone extensions are net regular MIT extensions. 

If your conscle or data (:hone needs service, call MIT £xt. 
412B, ~iving name, ro:>m numt:er, console type, and nature of 
the trout:le. r he d pfropria te re pa i rm~ n will be notified; 
th~ r~cord of the tro~ble is kept until the repair is made 
and reported back by the serviceman. 

A recor3ed message giving the current status of CTSS is 
available at data rhcne ext. 1300. If an abnormal system 
=om~down (cr-ash) :lccucs, and CTSS will te down for more than 
10 minutes, the operator will update the recording 
in1icatinJ expected comeup time and the nature of the 
trou tle. 

(EN D) 



CTSS fPCGRAMMER'S GUICE Sect. ion A D. 1 9/b5 1 

Historic file system 

The IBM 1301 disk served as the bulk storage for the time 
sharin·.j system so that users files, system files and 
sub-system files could be quickly and randomly dumped and 
read. It was extremely import~nt to h~ve a flexible but 
~tfici~nt and usable central module which would handle all 
the disk input and output for all users. The following 
il~~s were incorp~rated in the disk control subroutine which 
was used for about a year and a half. In August of 1965, 
th~ old disk contro 1 subroutine was replaced by a new module 
whi:;h incorporated many improvements, but also allowed for 
much upward comfatibility for the old system. The old 
system will, theref~re, te described here because of dll the 
routines and write-ufs which ~re still using the 
=ompatibility features. 

The following ccnsiderations went into the make-up of the 
til~ system and they might help in the ~derstanding of the 
system. 

1. The user should be able to write and ~aintain 

permanent frograms and data files on the disk. 
2. System and subsystem programs should be 

permanently recorded on the disk. 
3. The user sh~uld have only symbolic reference to 

his files. 
4. The user sh~uld be able to read and write many 

files simultaneously. 
5. The user sh~uld not be able to reference any files 

not authorized to him. 
6. The user sh~uld be able to initiate files in 

different m~des such as temporary, permanent, or 
read- only. 

7. In order to utilize the maximum storage capacity 
of the disk file the format of a sin~le record per 
track should be used. 

During time- sha riny, a 11 systems a n1 users make use of the 
sin]le standard input;output package. It a system dces not 
use the standard routines, it can be runty itself with the 
lisk inoperative ~r if it needs the disk, the contents of 
the disk can be dumped and later reloaded when time-sharing 
is restarted. During time-sharing, the standard package 
m~kds use of input/~utput trapping and memory protecticn to 
insure protection of user's frograms ~n~ files. rhe user 



C f S S F R C G R A M M E R ' 3 GU I t E Section AD.1 

his access only t3 files which are authorized to birr:. 

A further protection against loss of files is the 
operationdl frocedure of dUIDfing the ~ontents of the disk 
til~s p~riodically ~nto tape. These dump taFes can be used 
by a retrieval fiogram tc reload the disk completely or 
s~l~ctively. rhese history tapes are kept on file by 
operations according to a schedule which is a,pproximately: 
1iily tapes for a week. weekly tapes for 4 months and yearly 
tapes forever. In case cf a major unrecoverable catastrc~he 
the entire system may be backed-up 24 hours by reloading the 
most racent dump tape. The user may recover any of his 
individual files from any of the tapes whi=h =ontain them. 

El~h user is assigned one or more t4acks to serve as a 
directory of all his priv~te files currently stored on the 
iisk. A user does not have access to any other user's file 
directory. A group of users ~ho may be workin~ on the same 
probl~m may be assigned an extra set of file directories 
(called common files) to which all the users of the group 

h :i ve access. 

l'he old system had two,..severe limitations: first, only one 
us~r =ould be working in a file directory at any one time, 
and second, that a reference to a single file could exist 
only in a single file directory. These limitations meant 
that in order to share routines or dat~, users had to c~py 

fil~s into and out 3f common files, so that there were 
multiple copies cf the same file. Furthermore, whenever one 
usar was using a C3mmon file, no one else had access to it. 
Thase limitati3ns have been much alleviated with the new 
system. 

The file dix:ectories cont~in the two BCD word names, the 
number of tracks used, the starting track address FCinter, 
the date-last-used. and the mode of e~=h file. A master 
fila 1irectory is maintained which contains a pointer to the 
file directory of each user in the system. A track usage 
tibla is also maintained which tells the system which tracks 
are already used and which are free. All the tracks of a 
single file are chained together by virtue of the first word 
of ~ach track either pointing to the next track in this file 
or to the last wcrd cf this track if there are no m~re 

tr~:ks. Whenever possible, the tracks for one file are 
assigned consecutively, in order to reduce the time lost in 
sa~kin:J. When the disk. i::; reloaded from the dump tafes, the 
housekeeping is done to provide conse=utive tracks f~r 
fil~s which might previously have been scattered. 



s~~ ti on AD* 1 

All files are refeLred to ty a two word BCD name and nc 
absolute track lccations ~re known or neede1. All calling 
s~quencas to the disk routines provide the facility of 
allowing the user tc SFecify his own error procedure Jr 
1~~~pt the standard system error procedure. All of the 
calls and errcr frocedures are described in section A~ of 
this manual. Almost all of these =alls will have 
write-arcund routines for the new I/O system so that they 
will behave in much the s~me w:t y ~s they did before April 
1q65. Note that in the table of contents of this manual, 
the sections which refer to the new I/C s~stem are preceded 
by an *· 

(EN L) 



CTSS PHOGRAMMER'S ~LIDE se::tion AD.L 12/69 

Th~ naw file structure and Input/Output system 

The new file system was implemente1, 1) in order to continue 
tha basic philosophy of the previous file system and remove 
many of the weaknesses which had become evident in its yea~s 
oE ~x~rcise and 2) to provide and exercise a prototyfe of 
the file system which is proposed for the next time sharing 
system. 

Soma improvements to be found in the new system will be 
mentioned here, and it is assumed that the reader is 
f~miliar with the previous file system dis=ussed in section 
AD.l. The I/O system can accomodate any configuration of 
I/O channels and;or devices and thereby provi1e a standa~d 
int~rface to all users. rhe tack-up feature, of having 
files dumped ante taFes which =an be saved tor retrieval, 
will be accomplished by a DAEMON which is in constant 
operation during time sharing. In this way the amount of 
information which is dumped and the amount of time lest due 
to back-up will be greatly reduced. The I/J system can now 
deal with entries in file directories which are pointers 
(LINKs) to entries in other file directories rather than to 
the files themselves. This means that a user may perDit 
oth~r users to use any of his files without actually cofying 
the desired files into other directories. Thus, many users 
m~y be referencinq files within the same directery, 
simultaneously. Indeed, many users m~y be reaain~ the same 
fil~. A lock does exist 30 that no one may reference a file 
which anctber user is altering. A further improvement is an 
in=rease in the number of modes which files may have. 
Ai:litional entries have teen added to the I/O system to 
allow the administrators to update the master file direct~ry 
lurin~ time sharing operation so that new users can be 
placed in the system more quickly. The I/O system is 
mo:lular for all machine dependent sections. By reFlacement 
of certain modules, different strate~ies tor particular I/O 
l~vices, or I/O devices themselves, may te changed without 
affecting the overall I/O structure. 

The I/O system presents a standar1 machine independent 
int~rfetce to all users. All calls to the I/3 system are 
directed to the basic cont~cl module of the system called 
tha Fila Coordinator. The File Coordinator then requests 
service from the Buffer Control Module, which in turn may 
r~quest service from :1 pacticular strategy Mojule. Attach 
Str~te}y Mcdule is concerned only with a certain class of 
information storage. The Strategy Module may in tur-n 
r~quest service from an I/O Adapte~. The I/O Adapter is a 



CTSS PdOGRAMMER'S ~LIDE Se::tion AD.2 12/69 2 

module which frocesses in~ut ~nd output re~uests far 
s~~=iEic I/C d2vices. All cctlls tc the I/O system 
reque~ting inFut OL cutput must follow this path of control, 
ttL:! Fil~ Coordinat::>L'= the Buffer Control l'odule- a Strategy 
Module- an I/O Ada~ter. 

The File CoordinatoL: 

The File Coordinator provides the intarface between the file 
system and the useL·. It interprets the calling sequences, 
performs validity checking cf the ::alls, and calls the 
-lppropriate module. 

Tha Buffer Control Module: 

Tn~ Buffer Control ~odule is called ty the File Coordinator. 
Its functions are to maintain the user's a::tive file status 
t1bl~ parameters, to convert the user's calling sequences to 
appropriate I/O commands for the stateg y mo:lules, and to 
mov? the data words between the buffers and the user's data 
storage area. The Buffer Control Module in turn calls the 
appropriate Strategy Module when I/O is neede:l. 

Tha Strategy Modules: 

E~::h Strategy M~dule is responsitle for a particular storage 
device. This module determines the strategy to be used in 
j~alinJ with this stordge devi::e an:l its associated I/O 
A1apter. Requests are stacked in queues to be executed by 
the I/O adafter whenever the associated channel beco~es 

fr~~. In addition, the Strategy Module is responsible for 
keeping track of the number cf available units of secondary 
stora~~ for the device to which it is assigned. Requests 
a r e made to t he S t r a t e 9 y M od u 1 e s on 1 y th r o ugh t h e Eu f fer 
Control ~odule. 

T ha I/ a Ad a f tars: 

Th3 I/O Adapter is res~onsible for the operation of the 
hardware interface tc a farti::ular device or devices. The 
I/O a1aptar accepts re~uests for service from the Strategy 
Modules only. r he I/O adapters are responsible for 
pro~essin3 all traps associated with the devices to which 
they are assigned. rhe I/O adapters interrupt the 
appropriate Strate~y Modules upon completion of previous 
r~ qua sts. 

Th~ buffer control m:>dule (BCM) is called by the file 
coordinator and its function is twofold: 1) maintain the 
us~rs active file status tdble parameters of file length, 
reading and writing status and pointers, buffer status and 
p~n1ing I;o, and 2) convert the user's callin-J sequence into 



CTSS PHOGRA~MER'S ~UIDE Section AD. 2 12;69 3 

appropriate calls to the I/0 ~d~pter for physical records 
~ni move data between the buffers ~ni the user's data area 
on a word basis. 

WhanevaL possible, data is moved directly from the r;o 
device into tbe user's data a rea without going through a 
buffer. In the general case, however, a buffer must be 
supplied for intermediate stcra~e for thosa parts ~f the 
i~ta which do not c~mprise a complete physical record on the 
I/O device. scme users may wish to devise m~re 
sophisticated I/C control when the system efficiency is 
considered unsatisfactory, sc the followinJ conditions are 
notad where files may be dealt with without providing a 
buffer. Fer example, d multiple buffers system may be built 
in the user's prcgram without extra bufferiny by the system. 

R~~iinJ without a buffer: 

If blocks of integral number of physi=al records are 
read or if reading goes through the end of file, no 
buffer will be used even if one is assi~nad. 

If no buffer is assigned and partial records are called 
for, the physical record will be read for each call in 
order tc extract the logi=al or partial record from the 
physical • 

Wri tin:] without a buffer: 

A complete new file of any length can be written by a 
single call without a buffer bein~ assigned. 

A n ex is t in g f i 1 e ma y be w r i t ten i n to wi th :> u t a bu f fer 
only from the beginning of a physical record through 
the end of a physical record or through the end of a 
file. 

Appending tc a file or writing partial records requires 
a buffer. 

Truncation without a buffer: 

Truncation without a buffer can only be accomplished if 
the truncation word is beyonj the end of file or in 
front of the fir5t word (file made eapty). 

Th~ BCM selects an appropriate strategy depending on 
whether a buffer has been assignej or not and returns 
an error if a buffer is mdndatory where ncne was 
assigned. A user may s~itch a file from "no-buffer" 
:n::>de t::> "buffec" mode or vice-versa by calls to BUFFER. 



CTSS PHOGHAMMER'S ~UIDE s~~tion AD.2 12/69 4 

The smallest r:;iece of information whi::h can be manipulated 
by th~ I/O system is an element. A file is an ordered 
se·]uence of elements. The file is the l:trgest amount ::>f 
intormation which can be manipulated ty the I/C systems 

Ev~ry file will have d unique n~me which is used to identity 
th~t file to the user. An element in a file is referenced 
by specifying the tile name ~nd the linear index. For 
~x~mpl~, the element "i" in file "a" is referred to as a (i). 
Files may be created, modified or iestroyei by a CTSS 
pt:o~ r~m only through the use of the I/O system. 

A fil~ dppears to the user to te a block of contiguous 
storage which may be referenced through normal sequential 
:t1iressin~ conventi~ns. However, the physi:;al structure ::>f 
tha fil~ is independent of the logical structure which the 
user experiences. The user m~y refer to a file only throuyh 
th~ symbolic file name and should have no notion of where or 
how the file is stored. The number of elements which make 
up :1 file is arbitrary, and in fact a file may exist with no 
elements. 

There are four basic oper~ticns for manipulatinJ elements 
within files: opening, closing, reading ani writing. ro 
initiate a read and/cr ~rite operation, the file must first 
b?. opaned for reading and;or writing. To terminate the 
r?.aiin~ and/or ~riting of a file, the file must be closed. 

Modes: 

A characteristic of every file is its mode. The ~ode ::>f a 
til~ is specified by a 7-bit mask at the t~me it is created. 
(The mode may be changed later if desired.) Each bit in the 

misk indicates a different property of the file, and any 
combination of fCOferties may be specified. The prcferties 
1ni tha (octal) mask bit positions are shown below. 

000. PERMANENT- If ill bits in the moje mask are zero, 
the file can be read or written, and will be stcred 
indefinitely. 

0 0 1 • TEMP 0 R A R Y- s uc h a f i 1 e wi 11 ~ u tom at i c a 11 y be 
deleted the first time it is read. The deletion 
will not take place until the file is closed after 
reading. 

002. SECONDARY- This froperty appears in directory 

004. 

entries t::>r files which have been deleted by 
storage collection me=hanisms. The entry is 
~etained f~r purposes of identification. 

HEAD-ONLY- 1he file can only te read. An 
t c w r i t e i n to or de 1 e te a f i 1 e o f t his 
will cause an error condition. 

at temf t 
pt· c pert y 



CTSS PROGRAMMER'S GUIDE Section AD.2 12;69 5 

010. WRITE-ONLY- rhe file can only he appended tc. 
attempt to read from or delete a file with 
proFerty will cause an error condition. 

An 
this 

020. PRIVATE- rhe file can only be referenced 
AUTHOR i.e. the user who ere~ ted or last 
this file. An attempt to delete a file 
proFerty will cause an error condition. 

040. Unused mode bit. 

by the 
modified 
cf this 

10 0. PRO 'IEC 'IED- 'I he mode of the file may only be changed 
by the AUTHOR of the file. Any attempt by another 
user to change the mode of this file will result in 
an error c~ndition. A 'PROTECTED' file may not be 
renamed nor deleted, even by the AUTHJR. 

File Directcries: 

The File Coordinator may service requests from a fixed 
number of active user5. Requests from a specific user are 
in the form a (i), to reference the element "i" in the user •s 
fil~ "a". The .File Coordinator however, manipulates 
information by use cf an implicit address of the f3rm 
:: (b (a(i))). lhis addr:ess r:efer-ences the element "i" in the 
file "a", which is Sfecified by the file "b", which in turn 
is specified by the file "c". The file "c" in this case is 
3. specific Master File Directory and the file "b" is a 
specific user File Directory. After establishing a "c" and 
"b" pair, each successive call for a(i) will then be 
interpreted by the 110 system as c (b (a (i))), until another 
=~11 is given specifing a new "c" or "b". BY treating the 
user file directcries and the master file directories as 
normal information files, multiple us~ge cf sin~le files can 
be accomplished in a general manner. 

Tha formats of the "a3ter File Directory and the User File 
Directories are shown on the next page. The ~roups of words 
1-7 actually begin in the fourth word of the file and are 
~epeated in the groufS of seven for e~=h entry in the file. 

An entry in which both of the first two worjs are zero, 
m~ans that an entry has teen deleted. 

Th~ dates are of the format: bits 5,1-8 =ontain the year 
-~00 modulo 500, bits 9-12 contain the month, bits 13-17 
contain the day, and bits 18-35 contain the number af 
s~=onas elapsed since midnight. 

Th~ AUTHCR is the progr-ammer numter of the user who created 
or: last modified the file. ihe F is a 3-bit integer which 
sp~::ifi~s on which secondary storage device the file 
resides. If F is o, the entry refers to a linked file. F 
is us~:l by the Euffer Control Module to determine which 



CTSS PROGRAMMER'S GUIDE Section AD. 2 12/69 6 

strategy module shculd be called. 

RCOUNT specifies the number of elements contained in a 
physical record of the file. NOREC specifies the number of 
physical reccrds contained in the file. LCOUNT specifies 
tha number of elements contained in the last physical record 
of the tile. rhe highest element address in a file may be 
1afined as (NJRECS-1) * R:OURT + LCOUNT. The 3-bit integer 
P is normally :lne. H:>wever, P=O is equivalent to P=1. 

!LOCK is used to allow multiple users to access the same 
file simultaneously. If a file is in read status, ILOCK 
=ontains a count of the number of users currently reading 
from that file. When the number of users reading from the 
fila drops to zer:>, any user who wishes to modify that file 
will be allowed to proceed. When a file is opened for 
wri tin~, the hiyh order tit of I LOC R is set to 1. During 
the time that ILCCK indicates that a modification to a file 
is in prcgress, no new users will be allowed to reference 
that file. 

IE usar "A" wishes to reference a 
other user•s file directcry (user 
this by means of a "LINKED" file. 
in a user• s file dire~ tory as 
spacification of zero (F=O). 

file contained in some 
"B") , he can accomplish 

A LINKED file is defined 
a file with a device 

If a f i 1 e in a user 's file d i rec tory is a LI N RED f i 1 e ( F= 0) , 
R:OUN'r, NORECS and ILOCK are ignored. The problem and the 
programmer number of the user to which the link is made are 
in words 3 dnd 4. rhe name of the file teing linked to is 
in words 6 and 7. A file may be linked in this manner 
throu~h the file directories of several users. The depth of 
linkaye is currently restricted to 2. The last entry must 
b~ a normal file directory entry which defines the file in a 
normal manner. Once this linking operation is completed, 
th~ file will be treated as a normal file. This operation 
will be repeated every time a user attempts to open a LINKED 
file. 

The user may refer tc his file directory as a file of the 
n:tm~ "U. P. D. (FILE)" which is defined in his file directory 
as a normal file in READ-ONLY mode. The Master File 
Dir3ctory is defined as a User File Directory by the name 
"M.F.D. (FILE)" in the Master File Directory. This file is 
also referred to as "U.F.D. (FILE)" within the Master File 
Dir~ctory. T:l read the Master File Directory, first, 
ATTACH. ($M.F.D.$,$(FILE)$). The I/C system will never 
illow the Master File Directory or any User File Directory 
to be deleted. 



c·r S S F R C G R A~ M E R 1 5 GU I C E S e ct ion AD - 2 12;69 7 

.MAS rEB FILE DIRECT 0 RY, "M. F. D. (FILE)" 

WORD •••••••••••••••••••••••• CONTENTS . . . . . . . . . . . . . . . . . . . . . 
1. USER PBOELEM NUMEER (36 EITS) 
2. U!i ER PRO GRAMMER NUMBER (36 BITS) 
3. DATE AND TIME any file in U .F. D. LAST P!JDIFIED (36 BITS) 
4. DATE LAST USED (18 BITS), AU'rHOR ( 18 BITS) 
5 • --- ( 8 B I T S) , -- - ( 1 0 B I 'l S) , F ( 3 B ITS ) , B C 0 U NT ( 15 B IrS ) 
6. --- (3 BITS), NOBECS ( 15 BITS), P (3 BITS), LCOUNT (15 BITS) 
7. The next 11 P" wocds ccntain specific information foe a file 

of type 11 F". 

USER FILE DIRECTORY, "U.F.D. (FILE)" 

WJRD ••••••••••••••••••••••••••• CONTENTS ••••••••••••••••••••• 

1 • FILE NAME, PARr 1 ( 3 6 BITS) 
2. FILE NAME, PART 2 (36 BITS) . 
3. DATE AND TIME LAST MODIFIED (36 BITS) 
4. DATE LAST USED { 18 BITS), AUTHOR ( 18 BITS) 
5. MODE ( 8 BITS), I LOCK (1 0 BITS), F (3 BITS), BCOU NT ( 15 BITS) 
6. --- (3 BITS}, NORECS ( 15 BITS), P (3 BITS), L:OUNT {15 BITS) 
7. The next "P" words ccntain specifi:: information for a file 

of type "F". 



CT S S F R C GRAMMER'S GU It E s e ct ion AD • 2 12;69 8 

2302 Disk and 7320 Drum Sti:ategy 

T he! f i 1 e d i r e c to I y e n t c y f o c a 2 3 0 2 or 7 3 2 0 f i 1 e c o n ta i n s 
pointers to the first and last tracks. For a file of this 
typ~, RCCUNT will be the numte:r of data words in a single 
ttack. NJRECS will be the total number of tracks in the 
fil~ an3 LCCUNT will be the number of data words in the last 
tr-ack. 

Edch track in a file of this type will contain chain addr-ess 
pointers to the foll:>wing and preceding tr:~.cks. In addition 
each track will contain a latel in the following form: 

TRAKNO is a track seguence number. LCOUNT will be non-zero 
only in the last track of a file and will contain the count 
ot tha number of data words in that track. This count must 
match the value cf LCOUNT in the user file directcry for 
that file. 

Tcacks are assigned in a manner similar to that described in 
m~mo CC-196 (Disk Control Routine). All track usage tables 
will be files contained as entries in the Master File 
Dir~ctory. The file which defines the usage of disk tracks 
will be referred to as "DISKUT (FILE)"· The track usage 
fila for the 7320 drum will be referred to as "DRUMUT 
(FILE)". 

2302 Disk and 7320 Drum I/0 A:lapter 

The disk;drum strategy Modules provide calls to the 
lisk;dcum I;C adapter specifying only logical track 
addresses. The I/O adapter is responsible for deter-mining 
tha actual channels which must be used. The adapter places 
a.ll requests into a re~ uest queue and returns. The trap 
processor for the diskjdium I;o adapter empties the request 
queue on completion of pr-evious requests for that channel. 
If a request is made requiring a cha.nnel not already in 
oparation, a trap will be simulated for that channel. 

T~p~ Strategy Module 

MlJnetic tapes will be treated as secondary storage in the 
srlrue manner as disks or drums. Many files =an be recorded 
on 1 single tape, but a single file may not consist cf more 
than one tafe. lhe first ~hysical file of a tape file will 
b~ a. BCD headec label (see Section AG.5.05). 

In ~ file directocy entry for a tape file, RCCUNT will be 
432 and f will be one. The seventh word of the file 
:lit:~ctor:y entcy will contain a.n internal tape address known 
to tha I/O supecvis~ry systems only; this word contains a 



CTSS PP.CGBA~MER'S GUIDE S~ct ion AD. 2 12/69 9 

lojical unit numbe~ and a file number. Cther information in 
tha fila directory ent~y has the same meaning as described 
in the disk and drum Strategy Hod ules. 

Edch data record will contain 432 information words p~eceded 
by ~ control word in the following form. 

PZE RECNO,,LCOUNT 

RECNC will be the ~ec~~d sequence number. LCOUNT will be 
non-zero only in the last record of a file ani will be the 
:;ount of the number of wo~ds in that record. This word 
count must match the value of LCOUNT in the file directo~y 
antry for that file. 

Th~ I/O adapte~ f::>~ the tape Strategy Mod ula will operate on 
~~quest queues in the same manner as the disk and drum I/O 
adapters. 

To use Tape Strategy, a user must have 
~3ministratively-assigned tape record quota. Because 
use of tapes makes unusual dem~nds on both the system 
tha oparators, as3ignment of such quotas will be 
exception ~ather than the rule. 

an 
the 
and 
the 

Nota tbree things in pa~ticular about this I/O system. 
First, it is basically net a buffered system so that upon 
r~ turn from BDFILE :>~ WR FILE it is safe to assume that the 
I/O bas not actually been done yet. Before the Sfecified 
iata area may be referenced, a call to FCHECK and a 
"finished" return must be made. In other words, before a 
satisfactory delay has been made by FCHEC~, the input data 
is not really there o~ the output data has not yet been 
transmitted sc the use~ may not rewrite tha data area. The 
s~cond thing of note is that if an error return is 
specified, some errors are detected immediately and some a~e 
not detected until the next I/O call. Each RDFILE or WRFILE 
serves as an FCHE:K en the preceding RDFILE or WRFILE on the 
s~m~ file. the third thing to note is that all of the I/O 
is :;onsidered to be by relative locations so that all files 
can be considered to be similar to address~ble storage. 

C~llin~ Conventions: 

Following is a list of calls to the new file system. rhe 
detailed write-UfS cf these calls can be found in section AG 
~nd in the table ::>f c~ntents their se:=tions will be preceded 
by ~n *· ·rheir calling se:J:uences are given in MAD notation 
and the MAD compiler has been modified slightly to accept an 
int~Jar or an integer-vaLiatle specifying the nurrber of 
words in block nctation rather th~n the last address of a 



CT S S F R C GRAMMER'S GU IDE Section AD. 2 12;69 10 

blo~k. The new file system is consistent in expecting the 
number of words rather than the last address in block 
not:~tion. All ar-r-ays are stored forward so that the 
beginning address must be the lowest =ore location of the 
!rray. Also, all file names are specified by the locations 
of both ECD names rather than the location of the first name 
as FILNAM is used in the old file system. The file names 
iL~ ri~ht adjusted and blank padded. For example: 

MAD: FS rArE. ($ NAME1$, $ NAME 2$, A ( 81 ••• 8) 
FAP: TSX F S7A TP! ,4 

rx H = H NAME 1 
TXH =H NAME 2 
TIX A,, EIGHT or TXH A, ,8 

EIGHT PZE 8 
A BSS 8 

In all of the calls, if 
may te specified (FAP: 
two mora arguments than 
users' error return and 
th~ location into which 

an argument is not pertinent, a -0 
PTH = -0). All calls will accept 
shown. The first is the location of 
the second, if supplied, specifies 
the error code will be stored. 

Some of the argument~ and information items are of special 
forms which might be noted here. 

DEVICE = 1. is low speed drum 
2. is disk 
3. is tape 

File status = 1 • is inactive 
2. is open for reading 
3. is cpen for writing 
4. is open for reading and writing 



CTSS PROGRAMMER'S ~U!DE sa=tion AD .. 2 12!69 11 

SU~MARY 

Aiministrdtive and Privileged: 

U PD ~FD. ( $ FROB$, $ PROG$) 
DELMFD. ($ PROB$, $ PRO~$) 
ATTACH.($ FROB$, $ PROG$) 
MJVFIL. ($ NAME 1$,$ NAME2$, $ PROBS, S PROG.$) 
SETFIL.($ NAME1$,$ NAME2$,DAYTI~,DATELU,MODE,DEVICE) 
LI NI<. ($ NAME1$,$NAME2$, $PROBN$, $PROG!, $HMI$ , $HM2$ , MODE ) 
UNLINK.($ NAME1.$,$ NAME2$) 
ALLCT. (CEV ICE, ALLOT , US ED 
R SF IL E • ( $ NAME 1 $ , $ N A ME 2 $) 

R~~iin~ and Writing: 

OPEN.($S1AlUS$,S NAME1$,$ NAME2$,-MCDE-,-DEVICE-) 
BUFFER.($ NAME1$,$ NAME2$, BUFF(432) ••• 432) 
R D F I L E • ( $ N A M E 1 $ , $ N A ME 2 $ , R E 1 L OC , A ( lt ) • • • N , - E 0 F- , - E 0 F CT -) 
RDWAIT. ($ NAMEl$,$ NAME2$,RELLOC,A(N) ••• N,-EOF-,-EOF:T-) 
W R F IL E • ( $ NAME 1 $ , $ N A ME 2 $ , R E L L OC , A ( ti) • • • N , - E 0 F- , - E 0 F CT -) 
WRWAIT. ($ NAME1$. $ NAME2$, RELLOC, A (N) ••• N,-EDF- ,-EOF~T-) 
TRFILE. ($ NAME1$,$ NAME2$,RELLOC) 
FCHECK. ($ NAME1$, j; NAME2$ ,FINISH) 
FWAIT. ($ NAME1$,$ NAME2$) 
CLOSE.($ NAME1$,$ NAME2$) 

oth~rs: 

UPDATE. 
SET FRI. (PRIOR) 
R ESETF. 
CHFILE.($ NAME1$,$ NAME2.$, NMODE, $l'EWNM1$, $NEWNM2$) 
DELFIL. ($ NAME 1$,$ NAME2$) 
F S T A T E • ( $ N A ME 1 S , $ N A !!E 2 $ , A ( 8 ) ••• 8 ) 
STOBGE. (DEVICE, ALLOr , US ED ) 
MC>UNT.( CHAN ,UNIT,MESSAJ (20) ••• 20) 
U MOO NT. (UNIT NO, MESS AG ( 20) ••• 20) 
VERIFY • ( UN I 'IN 0 , LABEL ( 4) ••• 4) 
LABEL. (U Nil' NO, LABEL (4) ••• 4) 
TAPFIL. ($ NAME1$,$ NAl1E2$,UNITMO,FILENC) 
IODIAG.(A(7) ••• 7) 
TILOCK. (RETRN) 
F EH R TN • ( R E TR N) 
ATTtiAM (A (2) ••• 2) 

(END) 



C T S S F P. C G BAM M E R ' 5 GU I D "E s e ct inn A D ~ 3 11;6S 

Library files 

Library files are created by :oMBINing BSS files into files 
whi=h may then be searched for missing routines by the 
relocating leaders. Any user may create his own library 
fil~s and, by use ~f the special arguments, direct the 
loader to search his library files instead of (or in 
addition to) the C1SS system library files. Subsystems of 
c ·r s s (a • g • , A ED) m a y h a v e t heir ow n 1 i br ar i e s a n d their own 
loaders. However, the ones being discussej here are the 
CTSS system library and loaders. 

Tha system library is currently divided into files which 
reside in the system common file directory. TSLIB1 contains 
~11 of the standard routines described as library 
subroutines and library entries in this manual. The loader 
will normally search TSLIH1 for missing routines unless 
prohibited by special arguments. TSLIB2 contains the 
debugging subroutines and core-B transfer commands. The 
lo~ier will search rsLIB2 automatically only when a core-B 
transfer command has been given. If the debugginy routines 
1r~ to be loaded with the program before execution the 
loader should be informed by (SYS} TSLIB2 or, for example, 
mor~ completely by (NEED} FLEXPM (SYS) TSIIB2. A special 
library in the system file is KLULIB which contains 
subroutines for the "KLUDGE" (i.e., ESL scope console) and 
which mdJ be searched if special arguments are given to the 
loader. 

The library files may be improved b_y any user by following 
tha maintenance procedure described in section AB.3. The 
library is maintained by the programmin~ staff at the 
Computation Center. 

( ENt) 



CTSS PROGRAMMER'S GUIDE Section AD.4 12/69 1 

Common Files and the Public File 

and submission 
File "--a file 

This section describes the nature of, 
procedure for, programs in the "Public 
jir~ctory accessible to all users of CTSS. 
perspective, the evolution of common files and 
Fila is also discussed. 

To furnish 
the Public 

Within the former file system, a given file cculd be 
referenced from cnly one file directory anj only one user 
~ould be attached to a file di~ectory. In practice, a group 
of users could be working on one problem and, therefore, 
have need to access a common pool of programs and data. 
This conflict was partially resolved by implementing the 
concept of common files, where "common" implies some sort of 
"joint ownership". A (jr-oup of users working on the same 
problem was assigned a single problem number. Each pr-oblem 
number could then have associated with it as many as four 
common file directories. Any user could switch fr-om his own 
file directory to 3ne of the common file directories 
associated with his f£oblem number. With appropriate calls 
to the supervisor a user could copy any of his files into 
the common files 3r C3py files from any of the common files 
into his own directory. Some restrictions still existed, 
n1maly, only one user could operate in a commcn file 
directory at any one time; to ~void locking users out of a 
=ommon file, files had to be copied and, therefore, many 
copies of the same file existed; also, common files were 
ri~idly associated with a problem numter and therefore 
communication between prcblem numbers was impossible. (The 
~urrent treatment of common files is covered in Sections 
A3.3.03 and AH.6.04.) 

The four common files associated with the system 
programmers• problem number took on the special function of 
s~rvicing all users, r-egardless of protlem number. Their 
common file 4 became kno~n as the Public Pile and any user 
=ould put files there and copy files from there. In order 
to housekeep the system files, the Disk Editor, which was 
run at least once a day, deleted all files in the Public 
File which were in tempor~ry or permanent mode. Only a 
system programmer could change a file in fublic to the old 
file system's R1 or B2 mode (approximately Read-only and 
R~ai-only Protected). A further restriction was placed on 
th~ Fublic File, namely, only pr-ograms which were adequately 
documented cculd remain in Public. The documentation was 



CTSS PRCGRAMMER'S 3UIDE section AD. 4 12;69 2 

~vailable from the consultants. The system programmers• 
common file 2 became known as the system File, common file 
s, anJ dny user c~uld copy files from there. Common file s 
contained the binary files cf all the commands and the BSS 
fil~s of the libraries. rhe system programmers• comaon file 
1 contained the source and binary files of the supervisor 
1nJ common file 3 c~ntained listing files of the supervisor. 

T h a F u b 1 i c F i 1 e ( M 1 4 1 6 C M F L 0 4 ) is a f i 1 e d i r ec tory w i th a 
t~ack quota of zero, the contents of which are available to 
all users. It contains nothing but linkage pointers to 
fil~s which exist in ~ther file directories. There are 
several reasons why these FCinters must be placed in a 
Public File: 1) rhe Public File now also fulfills the role 
formerly played by the system Fi~e; hence, certain files 
must be made available through it to the programs which need 
them. For examfle, system libraries, TSLIBn BSS, are needed 
by the loaders. The actual BSS files reside in one of the 
other M1416 co~mon files (accessible by system programmers 
only) but loaders can read them through the links in the 
Public File. 2) Many commands and their data files are 
maintained by their authors rather than by the programming 
staff. These c~mmand and data files may reside in the 
authors• file directcries but are made available to all 
usa rs of the system through links in the Public File. 3) 
Users have progams which are of general interest and 
usafulness but which have not been given command status. 
These programs are made available to all users through the 
links in the Public File. 

A major advantage of a time-sharing system stems from the 
ability it offers for users to share software as well as 
n:1rd.ware. This "talent-sharing" can easily go far beyond 
the power offered by the range of compilers and library 
routines made available by batch-processing system programs; 
in some sense, e~ery progaram on the disk could be thought 
oE ~s a "system pr3gram". To facilitate exchange of users• 
p~ograms, be they subroutines (for the documentation of 
which Section AI is reserved) or "commands" (the SAVED files 
which are documented in Section AJ), the Public File was 
instituted. Inclusicn of a ~rogram in the Public File both 
~uarantees its acces3ibility to all users and, indeed, 
publicizes its existence to all (studious) readers of the 
Pro:}rammer's Guide. However, inclusion of a program in the 
Public File alsc implies a degree of sanction by the 
:1lministrators of the system. Because of this "sanction", 
then, proyrams which are submitted for inclusion in the 
Public File cannot automatically be accepted. Both the 
nitur~ of the program and its documentation must be 
evaluated. To this end, the following submission procedure 



Sec t:ion AD. 4 12/69 3 

has been developed. 

Whan a candidate for inclusion in the Putlic Files has been 
debugged, the author should send its documentation to the 
alitor of this manual. There are two parts to the 
iocumantation. First, a typed (or TYPSET) write- up is 
required, in the general format of a section of this manual, 
with the following additions: The section on Purpose should 
be as extensive as pcssible, with emphasis on the areas of 
~pplicability of the program. If the program is fully 
documented elsewhere (e.g., l1AC and;or cc memo), a full 
r~farance should be given. Examples of usage are extremely 
desirable. Second, information as to the 1irectory and 
n~ma(s) of the file(s) involved must be given, along with 
the names (and fhone numbers) of at least two users, other 
than the author, who have used the pro~ram and who recommend 
its inclusion in the Public File. After favorable 
evaluation, the implementation considerations below apply, 
~ni tha massage of the day and the next set of revisions to 
the manual will herald the new arrival. 

Ona of the system programmers will LINK to the file 
containing the new Public program trom his (M1416) common 
f i 1 a 4 • Th e aut h::> r must , of c o u r se , h a ve PERM I Ted the f i 1 e 
to M1416 *· The system programmer, in turn, will PERMIT the 
link to all users. 1he mode of the !in~ (the entry in the 
Public File) will normally be Read-only ani Protected (RP) 
unlass the author specifically requests a different aode. 

A rastriction on auth::>rs is implied ty the fact that, at 
present, links may only be nested to a maximum depth of 2. 
(This limitation was made to allow efficient searching and 
to keep the file control system f+ow executing an indefinite 
loop.) "Public" files, however, require two links to be 
r~3=had and theref::>re, may not link further themselves. 

Th2 author's file directory is the only one which is charged 
for the records cccu~ied by the filee There is no "free 
ri:l~" for files "in" the Public File (as they are not 
actually there), while at the s3me time there need be only 
on~ copy of a file in the entire file system. 

On~a tha Public program has teen "hooked up" as described 
above any user may then LINK to tha file entry in the Public 
Fil::! ( M1416 CMFLC4) after which he may use the file it 
Leferences as if it weLe one of his own files. 



CTSS FRCGRAMMER'S GUIDE s e ct ion A D • 4 12;69 4 

Throu~h the LINK facility, it is, of course, not necessary 
to COPY into one's o~n files. Further, it is requested that 
usars in ~eneral ~~~ copy files liste1 in the Public Pile. 
Th~ reasons fo~ this ce~uest are to avoid proliferation of 
:::opies of files (thus conse['ving disk space) and tc allow 
modifications made by the ~uthor to be~ome immediately 
~vailable to use['s of the file. Modifications are reflected 
immediately because the link~ge information is kept 
:::ompl~tely in symb~lic fo['m. The chain of links is searched 
each time the file is OFened or is referenced with the 
FSTATE supervisor entry. 

(END) 



CTSS PP.OGP.!~~EH 1 S GUIDE S~ction AD.5 12/69 1 

Time-accounting files 

Tha time-accounting files keep all crucial user information 
such as password, time allotments, party group numbers, etc. 
Thase files are read and written by the commands LOGIN and 
L3GOUT and they can be UFdate~ by a few persons with special 
r~ stric tion codes. 

Each person who is permitted to use the time sharing system 
is assigned a unique I!2~f~~m~~ n~~~~£ {4 digits). 
Depending on the number of jobs he undertakes, he will also 
b~ ~ssi~ned one or more problem numbers (1 alpha and 3 or 4 
numeric characters). Groups of people workin~ on the same 
problem may be assigned the saae protlem number. When a 
user logs in, he types his F£oblem number an1 last name. 
The combination of pr~blem number and last six characters of 
the last name is neither unique nor secret. A six character 
secret E~~.§~.Q!Q is therefore requeste.i by LCGIN so that a 
check can be made of the ~cccunting files to see if such a 
u n i c1 u~ :::; om hi n at ion exists. T he u n iq u e co • b ina t ion defines a 
single user and a single file dire=tory, with its associated 
time and space all~tments, etc. An administrator allots a 
~~rtain amount of c~mputer time each month and a g~ot~ of 
s~condary storage space to each user. In additicn, each 
user is Flaced in a ~~£!~ g£~~~· Ea=h party group contains 
some number of users and some different number of slots or 
lin~§ which give access to the ~omputer (see section 
AH.1.01). Each user is also assigned to a y~~1 ~£~YE- which 
specifies the consoles the user may or maJ not use. 

There ace five time-accounting files: 

UACCNT 
TIM USD 
PRTYGF 
GHP UN I 
rss FI L 

riMACC 
TIMACC 
T IMACC 
'II MA CC 
r IMACC 

~11 of which are kept in the system files. 



CTSS PROGRAMMER'S GUTDE Section AD. 5 12/6 9 2 

Th3 fila UACCNT c~ntains identifying information fer each 
user·~ LOGIN searches UAC:Nr for the user's problem number, 
n1m~, and password; this combination must be found before 
the person can be logged in. 

Three kinds cf entries are fcund: 

1 ) 

2) 

1. Group header entry 

wd 1 
2-28 

GRPXX 
blank 

This entry precedes ~n ajministrative group block, 
composed of one or more EI2~l~! n~!~~£ blo£~2· 

2. l?rcblem-n umber header entry 

3. 

word1 

NAME 

DRU ~ 

wd 1 
wd 2 
3-28 

This 

• 
probno, normalized, r igbt- justified 
blank 

entry heads a prol:lem-number block, 
consisting of cne or more user entries for this 

normalized problem number is problem num her. (A 
of the form LDDDD.) 

User entr-y 

2 car-d 

wcrd2 

FBOG 

DISK 

FLAGS 
RCODE 
NAME 

FABTY 
STBY 
UFt 
UN IT 
RCCDE 
FLAGS 

images: 

PARTY sr BY UFO UNIT RCODE FLAGS PASS 

TAPE r 1 T2 T3 

and UN IT have blank right 
has leading zeroes 
is left justified 

is faitJ line group numter 
allcw sta ndb_y if non-zero 
user's home file directory 
is unit group 
has leading zer-oes 
are binary indica tors: 
0 0 1 out o f fun ds 
002 account expired 

T4 T5 



c·r S S I= R C G R AM M E R 1 S GU I~ E Section AD. 5 

DRUM, DISK, etc. 
T's 

are quotas 
a re i n m i n u te s 

12_/69 3 

this entry corresponds to one authorized user or 
one c~mmon file. ihe following conventions are 
observed: 

a. 28 word entry 
b. each item in one word only 
c. S'IB Y always "S" 
d. items right-justified except: 

NAME left-justified 
FLAGs one blank on right 
UNir ~ne blank on right 

e. BCODE has leading zeroes 
f. unused fields must be blank 

A special entry tyfe is distinguished, the !l~~g~ 
y~~£ ~~1£Y· rhis entry follows a normal user 
entry f::>r.· a user authorized to use the ESL display 
sccre. It is identi~al to the preceding entry 
except in the following respects. The name has at 
least cne asterisk (*) on the right, and is filled 
with asterisks to make 6 characters. For example: 

SftiTH 
COE 
LIPSKI 

Sft I 'I B*, 
COE***, 
LIPSK*. 

The party group is ~lways "20" and the unit group 
always "2 "· 

Entries f::>r common files have only PRDG, NAME and 
record quotas; name and programmer· number-s ar-e 
both CMFLXX. 

Sort of U ACCNI' r IftACC: 

major key: group 

order is: 1, 2, 5, 3, 4, 6, 7, 8, 

intermediate: problem number 

numeric order 

minor: pr~gra•aer number 

nume~ic order, common files last. 



CTSS PROGRAMMER'S GUIDE Section AD.5 12;69 4 

ThG fila TIMUSD c~ntains the following information fer each 
user:: 

TUn 
DATE, liME 
UN IT 
'fL 

~ime used for each shift. 
tate and time of last logout. 
Console ID at last logout. 
l~tal time logged in since first of month. 

LJGIN reads the ~IMUSD file each time someone logs in. 
LOGOUT updates the time used information and re-writes that 
portion cf the file containing information on the user 
log1in:1 out. If the user was not previously in the TIMUSD 
file, a new entry is afpended to the end of the file. 

1 ) 
2) 

2 card illages: 

word 1 word2 

PROB 
DATE 

I? BOG 
'IIME 

DATE 
TIME 
UNIT 

T 1-5 

CTU 

NAME 
UNIT 

Last Logout 

T1 T2 T3 T4 T5 cru 

MMDDYY 
HHMII. T 
20000. 800273 etc. 

Time used , sbif ts 1 -5, in seconds 

:cnsole time used, in minutes 

Tha fila FRTYGP c~ntains the party group information and the 
maximum nuwber of users. The information contained is 
=opied into the supervisor at system initialization time; 
the tables thus generated are later examined by LOGIN. 
Rafar to section AH.1.01 for details about party groups. 

word 1 word2 

1) M X USR S 



C'fSS PRCGBA~MER 1 5 l,[J IDE Section AD. 5 12;69 5 

2) ••• n) GRP 

MXUS RS 
GRP 
MXG RP 

MXGRP 

Maximum numbec of users permitted on :TSS 
Party group numbec 
Maximum primary lines foe group 

All items are right-adjusted in 6-character fields. 

The file GRPUNI defines grouFs of consoles the user may or 
m~y not be allowed to use. 

1) 
2 ) 

wordl 

UGN 
FLAG 

Fixed field card images; one set for each unit 
gccup: 

word2 

NOME 
U NITIO U NI riD 

UGN 
NUME 
FLAG 

UNIT ID 

Unit group number 
14* numter of cacds follcwing 
Zero or blank indicates permitted consoles, 
~therwise indiGate1 forbidden consoles. 
Con~ole identification 

The file TSSFIL detines those user file directories which 
~r~ to be considered as •public•, and are to be made 
accessible via the supervisor entry TSSFIL. The information 
=ontained is c~pied into the supervisor at system 
initialization time. 

Fixed field card im~ges; one card per directory: 

word 1 word2 

PRO EN PRCGN 



CTSS PROGRAMMER'S GUIDE Section AD.S 12/69 6 

PROBN Problem number of this directory 
fBCGN Programmer number of this directory 

CMFL01) 

Both are riqht adjusted. 

(e.g. 

(EN C) 



rRCCP.~MMEP.'S GU!D! Sect ion AE ~ 1 12/69 

Bulk input and cutput 

Since the console is a relatively slow inFUt/output device, 
it is necessary and desirable to have a means of entering 
pro~rams and data int~ the disk files from card decks and 
conversely tc be able to outFut disk files onto cards or the 
hi~h speed printer. Files may be punched on cards in such a 
format that they may later be reentered into the system to 
iuplicate exactly the original file. In this way~ cards may 
serve as a permanent, inexpensive back-up. There exists a 
b3=kground program kn~wn as the "Disk Editor" to control 
these bulk in put/ cu tfU t tasks. 

Fil~s of PRIVA'lE m::>de may in no way be output. Files of 
PRIVATE cr fBOTECrtD mode may in no way te deleted by the 
Disk Editor; theret:>re, existing PRIVATE or EROTECrED files 
ot th~ same name as new files may not be replaced by INPUT. 
None of the disk editor requests will alter (delete or 
input) a file "through a link". 

A Disk Editor program is run several times a day by the 
operations staff. Request cards to the Disk Editor may be 
submitted to the disFatcher by the user, or the RQUEST 
::ommand (AH. 6. 06) may be used to create a card image file 
called OUTPUT RQUES7, which will automatically be processed 
by tha Disk Editor. (Each line wit bin the 0 UTP UT RQ UE ST 
file is the equivalent of a control c~rd and may, therefore, 
spa::ify any of the following requests except INPUT. The 
format of each line is the same as a control caLa except 
that FRCB FBCG nust n~t te specified. See Method, belcw.) 
Only the first 72 column~ of a request card will be read by 
tha Disk Editor. 

The control cards for the Disk Editor are of the format: 

XX PHOB PROG NAME 1 NA ME2 OP ••• NA~E1n NAME2n 

The fields are separated by cne or more blanks, or by a 
=omma, or by a comma and one or more blanks. 

XX is the type of I/O operation desired. (See 
below.) 

PROB is the user•s rroblem number. (It must not be 
specified in an OUTPUT RQUEST file.) 



CTSS PROGRAMMER'S GLIDE Section AE.1 12;69 2 

fRCG is the user's f.Iogrammer number. (It JIUst not 
be specified in an OUTPUT RCUEST file.) If a 
common file is specified, PROG is of the form 
CMFLOn~ 

NAME1 NAME2 is the file name. All requests except 
INFUr allow more than one file name per card 
with the restriction that the file name must 
be complete on one card, i.e., NAME2 may not 
be on a continuation card. 

OP specifies an option (accepted by particular 
requests) • 

XX='C' Continuation card 

XX='INPUT' This card must precede a card deck to be input 
to the disk as a single file, NAME1 NAME2. 
lhe deck may be in hollerith or column binary 
format. (The tisk Editor employs 28-wcrd card 
images for column binary.) The last card of 
the deck must have '*ECF*' beginning in column 
8 • 11 F 1 i p c a rd s" ma y be inc 1 u de d in t he deck , 
between the INPUT card an1 the first card to 
be input. Only one file name may affear on 
the ccn trol card and CF may specify the 
desired mode, in octal, for the file. If OP 
is not specified, a permanent file will be 
created. If a PRIVATE or PROTECTED file of 
the same name already exists, the deck will 
~Ql be input. Decks will not be input 
"through links". Any errors discovered within 
the deck will c~use the entire deck not to be 
input. The authorship of the file created is 
the frogrammer number of the directory into 
which the file is being placed. If this 
directo~y is a common file, the authorship 
will be zero unless an additional option 
foll~wing the mode is used to specify the 
author. Fer e~ample, the following card could 
be used to input a file into M1416 CMFL03 in 
PROrECTED/READ-ONLY mode with 1 3812' as the 
author: 

INPU1 111416 CMPL03 TAPE FAF 104 3812 

XX=' PRINT' The BC:D file NAME1 NAME2 is printed off -line. 
If the file is not line marked, a blank word 
is inserted at the beginning of the line to 
insure single spacing and the first 84 
characters of the record are printed. If the 
file is line-marked, the first character is 
the carriage central character and the rest of 
the 1 ine, up to 1 31 ~hara::ters, is printed. 



CTSS r11. r w. " re h • .... &Y l 1 e ~ 
r n u u n n n u '"' L\ J Section AE .. 1 

If the file is line-marked and the secondary 
name is FAP or MAD, the file will be 
effectively XPANDed to 80 columns for ~rioting 
with tabs replaced by the appropriate number 
of blanks and null characters deleted. A 
blank word will be inserted in front of each 
line t~ insure single spacing. Sequence 
numbers will be inserted in columns 75-80. 
The file itself remains unchanged. 

If the 5econdary name is other than FAP or 
MAD, the file will te XPANDed to 132 
characters by inserting suffi=ient blanks so 
that tab stops come out at positions 11, 21, 
31, (+10) ••• , 121. Also, if the secondary 
name is ALGOL, LISP, or LSPDUT, a blank 
character will be inserted in front of each 
line to insure single spacing. However, an 
ALGOL file will be XPANDed to 132 characters 
by interpreting tabs for cclu11ns 11, 16, 
(+5) ••• , 66. 

XX='SSPRN'£ 1 rhe ECI file NAME1 NAME2 is printed with a 
leading blank. en each line to insure single 
space printing. Line numbered files are 
always Frinted single sp~~ed. 

XX= 1 DPUNCH 1 The a:o file NA~El NAME2 is punched 
If the tile is line-marked, just the 
characters per line of data will be 
Line-marked files will be XFANDei in 
way as described under PRINT. 

off-line. 
first 80 
~u nched. 

the same 

XX='BPUl'CH' The binary card image file (28-word card 
images) NAMEl NAME2 will be punched off-line. 
The 7-9 punch and checksums should already be 
included in the card image file. 

XX='7PUNCH' rhe file NAME1 NAME2 (of any format) will be 
punched off-line in a spe::ial card format 
which may te reloaded by the Disk Editor to 
reproduce the file exactly. The file is not 
deleted from the user's directory. 

XX='PLCr' The file NAME1 NAME2 will te placed on 
plct output tape to be processed on 
CalComp plotter. {see APM-1) 

the 
the 

XX='DELETE' The file NAME1 NAME2 will te deleted from the 
current file directory. PRIVATE or PROTECTED 
files may not be deleted. Deletion "through a 
link" 111ill not occur. 



CTSS FBCGRAMMER'S GUIDE sect ion AE. 1 12/69 4 

l X= I p R N D E.L ' ' 'SSP RDL' , 
'FLODEL': 

'DPUDE L 1 , 'BEUDEL', 1 7 PU I: EL' , 

rhe file (s) will be PRINTed, SSPRNTed, 
DPUNCHed, HPUN:Hed, 7PUNCHed, oc PLOied, 
respectively, and then the mode will be 
changed to temt:orary. (PRIVATE or PROTECTED 
files will not be changed to temporary, nor 
will files be changed "through a link".) The 
next time the file is read or the user loys 

other request for the 
"D 1! L" r e::J u est w i 11 
deleted. 

deleted. Note that a. ny 
same file following a 
cause the file to be 

Tha Disk Editor is a background job which is run several 
times a day by the oper~ticns staff. The users' file 
1ir~ctories are searched for OUTPUT RQUEST files. When such 
a file is fcund, the editor ATTACHes to the user's file 
1iractory and pcocesses the requests found in OUTPUT RQOEsr. 
Because the editcr "knows" who the user is, PROB PROG need 
not ba specified in the OUTPUT RQUEST file. Due to the file 
system leeks, the user will not te atle to edit the OUTPUT 
RQUEST file while the Disk Editor is processing it. The 
OUTPUT RCUEST file will be changed to temporary mode by the 
Disk Editor after it is t:rocessed. After all OUTPUT RQU Es·rs 
h1va bean processed, the editor may read cards from the 
background input tape. As a result of the requests, the 
aliter may create three output tapes, namely punch tape, 
ptint tape and =arry tape. These are then the 
r~sponsibility of the operations staff. 



CTSS (_'-- .&...: -
,JCI, \..J..VU 

At:' 1 
nu • 1 

, ... .co 
1 '/ v J 

c:. 
J 

The 7PUNCH card format is peculiar to the CTSS system at 
M. I. T., so that it, per haps I deserves description. r he 
7PUNCH cards are column binary cards which have punches in 
rows 12- 11-0-7-9 ::>f column one. 

Word one in 3ctal = 7WW5WWTSSSSS 

Word two = full word logical checksum of all words on the 
card except the checksum itself (does not 
include columns 73-80). 

Ramaining words are data words. 

wwww is the word-count of the number of data words 
to be taken from the card. If wwww .LE. 
(26) 8, tltere are wwww wor:ls actually on the 
card (beginning with column 7). If wwww .G. 
(26) 8, there is only one :lata word on the card 
(columns 7,8,9) and it is to be repeated in 
c c re w w w w times. 

sssss is a binary sequence number beginning with 
zer :> • 

T is zero, except on the last card where it is a 
one. 

(END) 



CTSS ra. Y"!l. ,,.,_ ,.. n. a u u D n • ~ rnuuna nnt.:.n -J 

DAEMON: Disk Dump and Reload 
M. J. Bailey 

1 

For the pu~pose of user's file retrieval and catastrophe 
~eloading of the disk, the contents of the disk must be 
written onto tape at some specified intervals. With the 
fo~mer file system, the entire content of the disk was 
written onto two sets of tapes at least once each day. 

W.L th the new file system a new approa:: h is being taken to 
the problem cf back-up tapes. A program called the DAEMON 
~uns as a console-less foreground user =ontinuously, except 
wh~n a complete rel~ad is being performed. The operation of 
the DAEMON will be controlled by the operator from the 
=onsol~ keys under the guidance of on-line printer messages. 
The DAEMON can Ferform three separ:1te functions. It may be 
instructed to perfJ~m a complete dump, at which time the 
entire contents cf the disk will be written onto tape. This 
will normally be done once a week. The complete dump tapes 
will b~ divided int~ two sections, one for the system files 
(SDT) and another tor the users• files (UDT). The tAEfi10N 
will be instructed to do incremental dumping as its normal 
continuous Oferation. The incremental dumping will consist 
of writing onto tapes (NFr) only those files which were 
modified or created since the last in::remental dump tape was 
=losed. The files will normally be written onto ta~e only 
after a user legs cut. The volume of output to the 
in=remantal dump tapes should he considerably less than that 
of the complete dump tape. The third function of the DAEMON 
is to reload the system. An indepen~ent program will be 
us~i to reload the system files (including the DAEMON 
progra~ from the SD1 ta~es. As soon ~s the system files 
~ra loaded, the DAEMON will be called to complete the 
reloading from the remaining user dump tape (OtT) and 
i n=rem~n tal dump tapes (N Fr). This final reloading will 
also be performed during time-sharing. 

Retr-ieval of specific files can be requested 
tha date of the last complete dump tape or 
dtte and time of the desired version fro• 
dump tape. Details cf retrieval will be 
l1.tar time. 

by specifying 
specifying the 
an incrementa 1 

published at a 

(EN D) 



,... ~ -· ~ ~ - .. Cl ') (\ 1 
JC.._,l.~VU Aue£eV I 12/69 1 

Ra tria val 

Files which have been lest (e. g., inadvertently deleted} 
from the disk may usu~lly be retrieve2 fro~ history tapes. 
Uniar the DAEMON, there are two sorts-of h~story tape: the 
Complete DumF Tape (CD'I), whi::h includes both System and 
Usar Dump Tapes (S Dr, U CT); and the New File Tape (NFT), or 
the incremental dump tape. COTs :~.re ~reate:l weekly by the 
DAEMON at the request of the Operations staff. These tapes 
represent a dumpiny cf the entire disk at a given point in 
tim~; and, in particular, of a user's entire directory. 
Alternate (i.e. every twc weeks) COTs are saved for· one 
y~ar. NFTs, on the other hand, represent a dumping of files 
whi::h have been altered or- created (.!!.Q! merely used) during 
usars• console sessions. That is, ~h~n g Y§~f l~gE £~!, the 
DAEMON will determine whether any "new" files have appeared 
and will dumF any such files it finds. (This process is 
usually performed within an hour after a given user logs 
out; therefore, barriny unforseen circumstances, back-up is 
afforded to any user whc does not log out, log in very 
snortly thereafter, and lose a file created during the last 
session.) NF'Is are currently saved for only six weeks, due 
to tape library limitations. 

When the DAEMON ferfcrms dumping, it also produces listings 
of the files dumpad. rhese "dump maps" contain time dumFed, 
problem numberjfiOgrammer number, file names, and other 
information. Binders containing print-outs of the listings 
are kept in the tispatching Areas. The dump mafs also 
specify which set of reels (~ithin the dumping period) is 
involve3 in the right margin of the listing of files on the 
reels. For NF'Is, the time of dumping is sufficient; 
however, note that the NFr dump maps are ordered by time of 
dumping only, and if a file was altered durin~ several 
aift~f~rr! console ses5ions the dump map must be searched 
carefully to find not merely ~.!! instance of a file •s being 
dumped, but!!~ instance of the file's bein~ dumped which is 
specifically desired. 

IE several files are to be retrieved from a COT, it is 
possible that a request for "entire directory" retrieval 
would be a good idea. The retrieval process will not 
disturb existing files (exception: secondary mode files 
whi=h "axist" only as U.F.D. entries, but have been removed 
by tha storage collection mechanism), so that only missing 
files will be reflaced. This approa~h is 1esirable in that 



CTSS PRCGRA~MER'5 :;ur tE sec ti on A E. 2. 0 1 12;69 2 

C?.1uests for too ~dny individual files can over-fill the 
cetcieve coromand's intern~l t~bles and necessitate a second 
s~an of the tape. 

Both NFT and COT retcievals will accept an asterisk (*} as 
the first or seccnd name of ~ file; the result will be 
r?.tri~val of all files possessing the specified second or 
first name, resfectively. 

"Hetrieval Request Forms" are available in the Dispatching 
Ara~. They are to be filled out, time stamped, and rlaced 
in the appro(:riate tray. The retrieval will be run by the 
Oparations Staff as soon as possible. 

Progress (or failure) reForts on retrievals will be placed 
in the requestor's directory as files named 'URGENT MAIL' or 
'URGENT POST'. !hey are headed with a row of asterisks, the 
wor:is 'MAIL FROM DAEMON RETRIEVE', and the date the 
retrieval was run. 

(END) 



··--•.: ,..._ .. a.o 1 
Jll::::"''- .LVU nL e I 12/59 1 

Restrictions for Background systems 

.f.!!fEQ§~ 
Any programming system or prcgram under su=h a system that 
is to be run as background under CTSS must observe certain 
conventicns cr restrictions. These conventions arise due to 
two main system re~uirements: that the tackground program 
be interruptible and that changes of machine state {such as 
~nablament for traps) are a CTSS supervisor function illegal 
for the background tc perform. The main area of a program 
~ff~cted is its input and output which ~Y2! be timing 
ins~nsitive. (Of course, a backgroun:l system may and 
most probably will -- place restrictions of its own on 
programs under its ccntrcl. The MIT version of the Fortran 
Monitor system (FM5) is an interesting example of a 
back g r o u n d system , a nd is f re que n tl y used ; i t s intern a 1 
r~strictions can be found through CC-255, a Comfutation 
Center Memorandum.) 

Change of state: 
All changes of state are trapped by 
hardware but certain ones are 
supervisor and allolied, such 
floating-point •~de). 

the protection mode 
processed by the 
as EFT M (enter 

The following instructions are not allowed and, if 
used, will cause an on-line diagnosti~: 

ECTM 
ESNT 
ESTM 
ETM 

LPI 
LRI 
SEA 
SEB 

TIB 

The instruction ENB (enable) is also not allowed, but 
if used it will be tceated by CTSS (which processes the 
trap it causes) an an effective NCF (no operation) 
i.e., it will not be executed and control will be 
returned tc the next instruction. 

I/O timing: 
Input and OUtfUt must be programmed so that they are 
not timing dependent; thus the LCRX (load channel) 
instruction is prohibited. An RCHX (reset and load 
channel) instruct ion, if given, must immediately follow 
the select instruction. An exception is made for the 
on-line frinter and punch where up to 3 SPR's, SPU's 
~nd;or NCF's can come between the Select and R2HX 
instructions. If an RCHX is given th~t does not comply 
with these conventions, it will still be executed but 
its executicn may turn en the I/O che~k light if it wds 



C'r S S f B C G R A f'l M E R ' S GU I C E s e ct ion A F • 1 12;6 9 2 

not given "in time". 

I/O flag: 

All I;O commands {including TCH) must have a "1 11 in bit 
2 0 {tag of 1 to FA P) to in d i cat e t hat t he info r ma t i on 
is to be transferred to or from B core. A diagnostic 
will be given if this condition is not met. 

The FAP assemble[ accepts the pseduo-op, BCORE, which 
~utcmdtically includes this bit 20 in all I/O commands 
such as IOCD, IORI, TCH, etc., and flags any illegal 
instructions used. 

I/O units: 
Only the following I/O units are available for 
backgrcund systems: 

a. card reader, card punch, and printer 
b. tape units A1-A5, A10, B1-B5, B10 
c. A7, the chronolog clock 
Referencing cf other units will cause a 
diagnostic. 

Program stop: 
Any intentional tackground system stop should be 
effected by an ErR instruction rather than an HPR. The 
instruction counter is set differently on the two 
instructions and due to this difference the HPR if 
interruFted (e.g. by data channel trap) does does not 
cause a genuine program stop. Example: 

A 

B 

Hr R 

HPR 

Instruction counter set to A; 
resumption :1fter interrupt at A. 
Instruction counter set to 8+1. 
resumption :1fter interrupt at B+1. 

Any PAP program using the BCORE pseudo-op will 
automaticdlly have all the HPR's flagged. 

Con sole keys: 
Operating procedures have been modified to limit 
operator intervention or interaction with a background 
system from the 7094 control console in such a way that 
no foreground user or the CTSS supervisor is affected. 
The address portion of the console keys {or "Panel 
Input Switches") is used by the CTSS supervisor for 
this function and therefore cannot be used by a 
background system. Operators =an use the keys to 
simulate the following functions: 

a. initiating "a standard error" procedure. 
( 0 c ta 1 k e y c ode 1 ) 



,.. .... ~ ~ r n n,. n • M M on 8 C'" ,..n T I' 10 
\... ~;;:);;:) c .11 "'u n n n n .~.:o 1.1 J uu ,. u .... s e ct i c n A F _ 1 

b. depcessing the "Load Cards" button 
(Octal key code 2) 

12;69 3 

c. depces:;ing the "Clear & Load Cards" buttons, 
(Oc ta 1 key code 3) 

(The ectal key codes are introduced by placing 
appropriate keys down in positions 30-35, and are 
called to the attention of the CTSS supervisor by 
placing key 21 down). 

A "standard errcr" f raced ure is defined as: stor-ing 
tha instruction counter- in a prearranged location and 
transferring control to another prearranged location 
(normally a tran3fer to a post-mortem routine or to the 
background system itself). The background system 
specifies these two locations to the CTSS supervisor by 
the following call: 

'ISX DEFERR,4 
PZE ERRILC,, ERRTRA 

wh~r~ DFFERE C3ntains: TIA =HDEFERR. ERBILC is the 
locaticn where the instruction counter will be stcced 
anj ERHtRA is the location to which ~ontrol will be 
transferred. rhe point of this procedure is that it 
allows the cperator tc take effe=tive action in the 
avant of some s3rt of "hang-up" in the background 
system, placing that system b~ck into control if a 
program running under- it "runs away" from it. 

I nde pendent ope x:a tion: 
If the background system is to be desi~ne1 to operate 
independently ~f the CTSS supervisor, then the 
backqround system must be able to verify its mode of 
operation. A means of determining this so that a 
switch can be set is to execute the following 
instructions: 

TSX rESrss,4 
( 1. 4) return if running 

independently 
• ( 2, 4) return if running 

with crss 

TESTSS riA L 
L 'IRA 1 , 4 

If running under the CTSS supervisor, the TIA is 
interpreted as a regular supervisor call with a 2,4 
return. If running independently, there is no "other 
core" to tr: ap into and the TIA l is e xac uted as a r RA 
L; thUS the 1, 4 retur-n is the net r esu 1 t. 



CTSS FRCGBAMM~R'S GUIDE Section AF.l 12/69 4 

Tim~rs: 
The subroutines for determining the time operate 
properly whether the background system is running 
independently or not. lhe FMS subprogram GETTM can be 
used to read the date and time of day from the 
chronolcg clock. The FMS subprogr~m TIMR can be used 
to determine elapsed time from the interval timer 
clock, although when running with CTSS the operation of 
the interval timer clock is simulated and incrementing 
takes place only every 200 ms. (as opposed to every 
1/60 th of a second when running independently). 

The simulated cell 5 inter~! timer can also be used as 
an alarm clock; thi5 alarm clock is always enabled. 

(END) 



CTSS PBCGRAn5Ea~s 1'") ~~Q . ._, "'"" 1 

supecvis~r Entries Reference List 

A F. 1 CHECK 
AF.1 n~li'lf'DD 

Vu.&. u""''"' 
AF. 1 HST IME 
AF. 1 SELEC 1 
AF. 1 TRA 1, 4 

~f!!il~~~~-£Q~~~ng~-Q~!I 

none 6. 36AA 
none 6.36ZZ 
none 636CHK 
none CLOCIN 
none ENTLIN 
none FIND SB 
none HNGUS R 
none KILL 
none NCTIM 
none PRIN'I 
none PUNCH 
none RSSWB 
none SC HEDL 
none V ACUU l1 

~2~~ial f~iyil~gg 

AG.7.C1 SE 'ILOC 
AH.2.06 OS COFE 

!!L.Y~2 

AG. 6. 05 ( E F Tft) 
AG.6.05 (L Fr M) 
AG.8.03 CHNCOM 
AG.6.01 D.EAD 
AG.6.C1 DORMN T 
AG.4.06 FEBRT N 
AG.6.01 FN R TN 
AG.7.01 GET ARY 
AG. 8. 03 GE 'ICLC 
AG. E. C 3 GE'ICLS 
AG.8.04 GET COM 
AG.6.01 GE 'IILC 
AG.12.01 GET IME 
AG.7.01 GE'ILOC 
AG.6.06 GETMEM 
AG.8.05 GE 'lOP T 
AG.8.05 GETSYS 
A G. 7. 07 GE'IWRD 

• 
• • 

check tape 1/J 
1efine error procedure 
reset UTIM E 
does nothing 
does TRA 2, 4 

start tape write 
finish tape write 
check tape I/3 
read ::hronolo:J 
enter input line for user 
find standby user to kill 
hang up phone after LOGOUT 
kill user 
set user MOTIME code 
on-line print 
on-line punch 
reset user write buffer 
::all scheduler 
free all adopted consoles 

modify supervisor 
ESL scope 

enter flea ti 03 -trap mode 
leave floating-traF mode 
go to next command 
program exit, dead status 
program exit, dorm an status 
set file-error return 
go dormant, don't change ILC 
examine tlock of sufecvisor 
get ~omman1 location counter 
get command list 
get command parameter 
get I LC at last call to tORMNT 
get date, time 
e xa mine supervisor 
get memory bound 
get option status 
get subsystem status 
get A-~ore variable 



C T S S f B C G R A M M .E R 1 5 GU I C E 

AG.12.01 GTI:YTM 
A G. 7. 0 9 IS IN 
A G • 8 • 0 5 L DO P 'I 
AG.o.01 NEXCOll 
A G • 8 • 0 5 R SOP T 
A G • 8 • 0 3 S ET C L C 
A G • B. 0 3 SE '1: L S 
A G. 6 • 0 6 S ET M EM 
A G • S • 0 5 SE !O P T 
A G .. 8 • 0 5 S ET S Y S 
AG. 7. 07 SE'IWRD 
AG.6.08 TILOCK 
AG.3.03 TSSFIL 
AG. 1 2. 0 3 UPC LO: 
AG. 3. 03 US BFIL 
AG.7.05 WHOAMI 
AG.1.01 WBFLX 
A G • 1 • 0 1 WR F L XA 

none 
AG.12.03 
AG.12.03 
AG.3.03 
AG.1.04 
AG.6.03 
AG.7.02 
AG. 1. 11 
AG.12.04 
AG.1.C1 
AG.6.03 
AG.1.02 
AG.6.03 
AG.1.02 
AG.1.11 
AG.1.02 
none 

AG. 1. 04 
AG.1.05 
AG.7.08 
AG.1.01 
AG. 1. 0 5 
AG.1.04 
AG.1.05 
AG.1.05 
AG.1.05 
AG.1.05 
AG.7.C8 
AG. 1. 0 5 

CHEALL 
C LOCOF 
CLOCON 
COMFIL 
FORBID 
GET ERK 
GET:F 
KILN BK 
RDYri.M 
RSSRkl 
S AV BRK 
SE '!BCD 
SET BRK 
SE 'IF UL 
SET NBK 
SETNCV 
WSCOPE 

ALLOW 
A 'I '!CON 
GET BLP 
RDFLXA 
RDLINA 
RD MESS 
REDLIN 
RELEAS 
SE 'I 12 
S ET6 
SE 'lB LP 
SLAVE 

s 

s 

s 
s 

Section AG.O 12;69 2 

get file system date and time 
get line no. of logged-in user 
load opt ion bits 
load ne~ command 
turn off option bits 
set command location counter 
se t c om ma n d 1 i s t 
set memory bound 
turn on option bits 
set subsystem status 
set A-core variable 
set file interlock return 
at ta:::h to public directory 
update simulated interval timer 
return from TSSFIL 
get user identification parameters 
write on console with c.r. 
write on ::on sole 

does nothing 
turn off simulated interval timer 
turn on simulated interval timer 
attach to common file 
forbid inter-pro~ram messages 
get ILC at last interruft 
get common file last attached to 
kill no-treak mode 
type ready message 
reset accumulated unread input 
reset console interrupt handler 
put terminal in 6-bit mode 
set handler location for interrupt 
put terminal in 12-bit m~de 
do not wait for "break" char (c.r.) 
turn off typewriter code conversion 
send graphical characters to ARtS 

allow inter-program message 
a tta:::h remote console 
get "blip" 
read line from terminal 
read attached console 
read inter-program message 
read attached console 
release attached console 
set mode of attached console 
set mode of attached console 
se t "b 1 i p " 
attach remote console as a slave 



AG.6.02 SLEEP 
AG.1.05 SNDLIN 
AG.1.05 S N DLN A 
AG.6.02 WAIT 
none WRHIGH 
AG.1.04 WRMESS 

Fi.!~-~.1.2!~! 

AG.7.03 ALLO'r 
AG.7.03 A 'I 'IACH 
AG.7.04 ATTN AM 
AG.2 .. 08 BUFFER 
AG. 3. 0 7 CHFILE 
AG.2.0B CLOSE 
AG. 3. 0 7 DELFIL 
AG.7.03 DEL!'! PO 
AG.2.08 FCHECK 
AG.3.07 FST ArE 
AG.2.08 F WAI 'I 
AG.4.06 IOCIAG 
AG.5.05 LABEL 
AG.7.03 LINK 
A G. 5. 05 M 3 UN 'l 
AG. 7. 0 3 MOVFIL 
AG.2.08 OPEN 
AG.2.08 RDFILE 
AG.2.08 RDW Air 
AG.3.06 RESETF 
AG. 7. 03 RS PILE 
AG.7.03 SE'IFIL 
AG.2.08 SET PRI 
AG.3.07 STORGE 
AG. !:.05 TAPFIL 
AG.2.08 TRFILE 
AG. 5. 0 5 UMOUN T 
AG.7.03 UNLINK 
AG.3.07 UPDATE 
AG.7.03 U PtHFD 
AG.5.05 VERIFY 
AG.2.08 W BFILE 
AG.2.08 WR WAIT 

~--.a..: -- .,... I'\ 
JCI.... \.LVII ftU • V 

go dormant, restart automatically 
send line to attached console 
send line to attached console 
wait for timer or input 
write high- speed lines 
write inter-program message 

* set secondary storage allotment 
* atta~h to other directory 

find directory attached to 
provide file system with buffer 
change mode, name of file 
close file 
delete file 

* delete MFD entry 
check on I/C completion 
get file status 
wait for I/C completion 
find out what went wrong 

T label tape 
* establish link 
T ask for tape to be mounted 
* move file directory entry 

open a file 
read file 
read file, wait until done 
reset all open files 

• reset locked file 
* set file status 

set priority 
get storage allotment and usage 

T create tape entry in UFD 
truncate file 

T ask for tape to be unmounted 
* remove link 

update file 1irectory 
* add MFD entry 
T verify tape label 

write file 
write file, wait until done 

• Denotes privilege required 
T Denotes tape call 
s Denctes subsystem- restri= ted call 

(END) 



Section .. " 1 f'\ 1 
ftU • I e V I 

1 'l ~L G 
' '/ v" 

G~n~ral I/C without f~rmat specification 
RDFLXA, RDFLXB, RDFLX:, WRFLX, WRFLXA, RSSRB 

To read from or print on the console without format editing. 

As sup~rvisor or library entries: 

TSX RDPLX A, 4 
P a-E LOC , , 1 n 1 

optional(TIA =HRDFLXA) 
or PTW LOC,,N 

RDFLXA reads a line from the console and moves n 
words into core beginning at location LOC. On 
return, the AC will contain the value k, the 
number ~f (6~bit) characters read; that is, in 
6-bit 11o~e, the break ::haracter is the kth 
character; and in 12-hit mode, the break 
character is the k/2 ::hara::ter. The word 
containing the break character and subsequent 
words are f3dded with blanks. If the break 
chacdcter is not received before the 
SUfervisor's input buffer is full, bit 21 of 
the AC will be 1, inJ.ica.ting that another call 
to RDFLXA is required to continue reading the 
line. In this case, k will be a multiple of 
six. 

To type out in the current mode: 

TSX W RPLX A, 4 optional(TIA =HWRFLXA) 
P~E 10:,, 1 n 1 or PTW L OC,, N 

751 WRFLX,4 opt ion a 1 (TI A = HW RFLX) 
P~E LOC,, 1 n 1 or PTW LJC,, N 

To force 6-bit mode: 

TSX W RFLX A, 4 or TSX WRFLX ,4 
ft Z E LO:, , 'n ' 

To force 12-bit mode: 

! S X WR F LX A , 4 or TSX WRFLX,4 
PION LOC,,'n' 

WRFLXA will print n words beginning at location 
LOC (n.LE. 14 in 6-bit mode; n.LE.28 in 12-bit 
m::>de) • It does not add 3. carria:Je return at 
the end of the line and does not delete 



CTSS FRCGRAMMER'S GUitE Section AG.l.01 12/69 2 

trailing blanks. 

WBFLX will print through the last ncn- blank 
character within the n words be1inning at 
1 o cat ion L o c ( n • L E. 1 4 in 6 - t it mode; n. L E. 2 8 
in 12-bi t mode). Trailing blanks will be 
deleted and a c~rriage return inserted after 
the last non-blank character. 

As library subrcutines: 

R DFL X: 

rSX RtFLX,4 
P~E Lo:,, 1 n 1 

RDFLX will read a line from the console using 
RDFLXA. It will ·then strip the break 
character from the line, pad any remaining 
characters ~p to n words with blanks, and move 
the n words into core beginning at location 
LOC. If n is less than the number of words 
read, the chara=ters in excess will be lost 
(n.LE.14). 

RDFLXB, RDFLXC: 

MAD: 
FORTRAN: 

FAF: 

A= RtFLXB. (LOC,K) 
A= RDF LXB (LOC, K) 

T S X R D FI. X B, 4 
PiE LOC 
PSE K 
STs;J A 

A= RDF.LXC. (LOC ,K) 
A= BDFLXC (LCC,K) 

or TSX RDFLXC,4 

LOC is the beginning location of an array into 
which information is to te stored. If called 
by MAD or FORtRAN, information will be stored 
backwards from LOC. If called by FAP (i.e., 
PHE frefix), information will be stored 
forward frcm LOC. The array LCC must be at 
least (k +5) /6 words long. A line of more than 
14 words may be reaa with one call. 

K contains the value k which is the number of 
6-bit characters to be read. 

A w i 11 c on ta i n a rig h t a a j us tea in t e g er eq u al 
to the numter of 6-bit characters actually 
read. 

RUFLXB using RDFLXA, moves k characters including 
the bredk. character into LOC. Remaining 



CTSS ar 1 r\1 
nu- • • • u t 3 

characters up to k ~re blank padded. 

RDFL XC is the sa me as RDF LXB except that k and A 
do not include the break character. 

To reset read-ahead: 

£5 X RSS R B, 4 optional (TIA =HRSSRB) 
PAR =0 

RSSRH will reset all input waiting for the user in 
the supervisor's input tuffers. 

The argument is unused at present, but should 
be specified as 0. Return is made to 2,4. 

(EN D) 



CTSS GUIDE Section AG.1.02 1 

Set the conscle character mode switch. 
SETFUL, SETBCD, SETNCV 

To s-et the ccnsole character mode switch. 

As supervisor or library entry: 

TS X SE 'IF UL ,4 optional {TI A = HS ET FU L) 

Sets the console character mode switch to 
"full" 12-tit mode. 

TSX SE'IBCD ,4 opt ion a 1 (TI A = HS ET BCD} 

Restores the console character mode switch to 
the "normal" 6-bit BCD mode. 

r s x s ET N cv , 4 optional (riA =HSETNCV) 

sets the console character mode 
allow input to be transmitted to 
proqraa without code conversion. 

switch to 
the user 

Upon return from any entry, the AC is zero if 
the previous setting was 6-bit mode, 1 if the 
previous setting was 12-bit mode, or 2 if the 
previous setting was no-convert mode. 

All three library entries may be called by KAD 
or Fortran proqra ms. 

All input waiting in the sopecvisor•s buffers is reset 
(lost) if any of these calls are made. 

(E NO) 



GUIDE Sec ti o:u .. " 4 "~ au. 1.v.J Page j 

Console output 
PRNTP, PRNTPA, PRN1PC 

To print a fenced message on the console with a routine 
which may be called by FOR TRA lf a n:l ~AD. 

As library subroutine: 
~AD: 

EXECUTE PRNr P. (MESS) 

V ECTOB VALUES M ESS:$holler it h string$, 777777777777K 

FOR 'IRAN: 

CALL PR N 'rP ( nH h olle ri th string) 

PRNTP, the hollerith string up to the fence prints, 
on the user's console, 14 words per line. rhe 
string may be cf any length. If the fence is 
(377777777777)8, there will be no carriage 
return at the end of the message. The fence 
w hicb Port ran a utoma ticall y supplies is 

PRNTPA, 

PRNT PC, 

(777777777777) 8. 

instead of PRNTP, inserts 
every 14th word, with no 
the end of the message. 

a carriage return 
carriage return at 

instead of PRNtP, inserts no carriage 
at all. users must supply what they 
order t~ control the printing. 

returns 
wish in 

(END} 



Intar-user communication 
WRftESS, BDl1ESS, ALLOW, FORBit 

C" """-· ~ ,.. ..,. A ro 1 1\ II 
~C"''-.LVU nu.,.v-. 

To provide the facility for users to communicate with each 
other directly, several routines have been added to the 
sup~rvisor which allow the sending and receiving of messages 
by way of the console input tuffers. Privacy screens have 
been provided which "allow" or "forbid" the sending of 
m~ssaqas by specified users. 

1) Short messages ma_y be sent to another user •s 
console input buffer. 

2) Selectively, short messages may be received 
in one's own console input buffer from other 
users. 

3) The console input buffer may he read. 

To send a message: 
As superviscr entry: 

TS X 
PZE 
PZE 
PZE 

WRMESS, 4 
.;;flPROBN 
=HPROGN 
10: , , 'n 1 

(TIA =HWRM "ESS) 

PROBN is the problem number of the receiver (5 
character right adjusted with leading blank). 

FBOGN is the programmer number of the receiver (4 
digits right adjusted, leading blanks). 

LOC is the beginning location of the message to be 
sent (f:>rward). 

n is the numter of words in the 
beginning at LOC. If n is larger than 
value cf 12 will be used. 

message 
12, a 

Upon return, if the A: is non-zero, it contains an error 
=oi2 which indicates that the call was unsuccessful. The 
following error codes have been assigned. 

1 - The specified receiver is not a current user: 
of CTSS. (i.e. logged in). 

2- The receiver's input buffers are full. 



C'fS S F B C GRAMMER' 5 GU IDE s e ct ion A G • 1 • 04 Page 2 

3 - The receiver has not given fermission for the 
sender to send mess~ges to his input buffer. 

If the AC 1s zerc, the first woLd of the receiver's input 
bu f fer w i 11 t hen c on ta i n a n o= ta 1 7 7 in c h a r a c t e r 1 • an d the 
s~n1er's problem number in characters 2-6. The second word 
will contain the sender's programmer number, right adjusted 
~ni blank padded. rhe n words of the message will begin in 
the third word. If n is less than 12 the terminal words of 
the 14 word buffer will te blank padded. 

To read a message from the input buffer: 
As SUferviscr entry: 

rsx 
PZE 

ALPHA OPN 

RCM ESS, q 
LO:,,' n' 
EMPTY 

Norma 1 ret u In 

(TIA =HRDME SS) 

n words will be moved from the input buffer into 
locations teginning at LOC. 

If the llser•s input buffer 
time of this call and ALPHA 
the user is placed in input 
however, ALPEA does not 
con tr ::> l returns to AlPHA. 

is empty at the 
contains a zero, 
wait status. If, 
contain a zero, 

To be selective about who shall send messages to the user: 
As supervisor entry: 

rsx 
PZE 
PZE 

ALLOW, 4 
=HPROB H 
=HPROGH 

(TIA =BALLOW) 

PROBN is the problem number and PROGR is the 
prcgra•mer number of the programmer who may 
use WRMESS to send messages to the user's 
console inFut tuffer. Each call to ALLOW 
over rides a 11 previous calls. 

If PBOGN is zero, all programmers on problem 
number PBOEN may send messages. 
If PROBN is zero, programmer PROGN may send 
messages, whatever his problem number. 
If beth PROBN and PROGN are zero, any 
programmer may send messages. 



CTSS PROGR!~MER'S GUIDE Sec ti en !G. 1. 0 4 Pa;~ 3 

To lock everyone out: 
As supervisoc entcy: 

rsx FORBID, 4 tTIA =HFORBID) 

FOBBID pcevents any programs from sending lines to 
the user's console input buffer. 

(END) 



CTSS ...... -,.,. ... ~ ........ ~ft • ,... rttuuttannr.n · .:> A~ 1 nc; 
~""" ••• v _, 

1?/,:;.Q ._, -- 1 

Slave remote consoles 
AT T C 0 N, BEL E AS , S N D LIN, 5 N DL N A, R E DL IN, R DL IN A, SLAVE, SET 6 , SET 1 2 

To allow multiple remote consoles simultaneously to serve as 
l/0 devices for a single program. 

Tha console at which a user logs in is his ~~~~ £2~~1~· 
Othar consoles associated with a user have be~n ~1ta£~~g by 
him, and they remain attached until he I~!~~2~ them. 

A =onsole attached to one user may not simultaneously be 
attached to any ether user. An atta=hed console may not 
simultdneously be the home console of any user. 

An ~ttdcbed console which automatically transcribes into its 
output each character tyFed into the attacher•s home console 
i5 dO !Q ~l~Y~· SimilarlJ, an attached console which 
imitates the heme conscle's output is an QQ slave. An 
attached console whose typed input appears as input at the 
homa console is known as an !! ~1~!~· 

A5 described in AC.3, each console is permanently associated 
with a 6-character £2~22!~ !9~Dil!i~~1i2~ ~g~g. These 
=onsola I. D. •s are central to the present facilities. 

To attach a console, dial into the computer, and when the 
ready message is typed, issue the command 

DIAL pr::>bn pr og 

where • probn prcg' is the user a tta.cbing the console. For: 
~~tails, refer to section AH. 1.05. 

A quit siqnal issued from an attached console causes it to 
be detached; in addition, if the console remains inactive 
for two minutes after ~eing detached, it will be 
disconnected from the computer. 



C T S S P B C G R A l1 M E R ' 5 GU I t E 

To ~ttach a console: 
As supervisee entry: 

rsx 
PZE 

A TreoN, 4 
CON SOl 

s e ct ion A G. 1 • 0 5 12/69 2 

(TIA =HA 'liCON) 

CONSOL is the location containing the 6 character 
console identification of the console to be 
attached. 

Upon return, the A: will be zero if the designated 
console is '(HOME)', attachable, or already 
attached to this user. The AC will be non-zero 
and no attachment made, if the designated 
console is attached to another, the home 
console ~f any user, or otherwise inaccessible. 

To release a console: 
As supervisor entry: 

'IS X 
P~E 

RELEAS,4 
CONSOL 

(TIA =HREL EAS) 

Upon return, the AC will be zero if the designated 
console was attached (and therefore is now 
released) or was ' (HOME) •. In all other cases 
the AC will be non-2ero and no action taken. 

To send a line: 
As supervisor entry: 

TSX 
PZE 
PZE 

ALPHA OPN 

SNDLIN ,4 
CONS 01. 
LO:,, 'n' 
PULL 

norma 1 ret urn 

(TIA =HSNDLIN or =HSNDLNA) 

The line to be sent to the designated =onsole's output 
buffer is n words long and tegins at location 
LOC. 

SNDLIN eliminates trailing blanks and adds the carriage 
return at the end of the line. 

SNDLNA does not eliminate blanks and does not add the 
carriage return before sending the line. 

CONSOL If CON!:iOL is 1 (HOME) 1 , the line is sent to the 
user's heme con sole output buffer. If the 
designated console is not attached to the user, 
return is to the normal return with the AC 
non -zer::>. 



Section AG .. 1 .. 05 12/69 3 

ALPHA If the output buffers at the designated console 
are full and ALPHA is zero, the user is placed 
in OUrPUT WAIT status. If ALPHA does not 
contain zero, control is immediately returned to 
ALPHA. 

To read a line: 
As supervisor entry: 

rsx 
PZE 
PZE 

ALPHA OPN 

REDLIN, 4 
CON SOL 
LOC,, 1 n 1 

EMPTY 
normal return 

(TIA =HREDLIN) 

REDLIN will move n words from the designated console's 
input buffer to core beginning at location 10:. 
If the move was successful, the AC is zero. 

CON SOL If CON SOL is ' (HOME) ', the line will be moved 
from the nome input buffers. If the designated 
console is net attached, no action is taken and 
the n~rmal return is taken with the AC nco-zero. 

ALPHA If the designated console's input buffers are 
empty, and ALPHA is zero, the program is put 
into INPUT iAIT status. If the buffers are 
empty and ALPHA is not zero, control is returned 
il!media tely to ALPHA. 

Alta rna te form: 
As supervisee entry: 

rsx RtLINA, 4 (TIA =HRDLIRA) 
PZB CON SOL 
PZE LOC,, 1 n • or BLK LOC,,N 
PZE E riP T Y 
PZB ERROR 

N PZE •n' 

RDLINA will move n words from the input buffer to core 
storage beginning at LOC. The AC on return will 
contain a character count indicating the number 
of ~-bi~ characters read, including the break 
character. If the line was incomplete (no break 
character), tit 21 will te on (40000 bit in the 
address field), an:l the ch~racter count will be 
a multiple of 6. (The character count returned 
is identical in format to that returned by 
RDFLXA. See section AG.1.01). 

EMPTY Return will he made to location EMPTY if the 
input buffers do not contain a complete line. If 
EMP'IY is 0, the program will be placed in 



CTSS PROGRAMMER'S GUIDE Section AG.1.05 12;6 9 4 

input- wait s ta t us. 

ERROR If CON SOL is not :1 ttached, return is made to 
EB~OR. If ERROR is 0, normal return is made with 
the A: 0. 

To create a slave: 
As supervisor entry: 

rsx 
PZE 
PZE 

SLAVE,4 
CON SOl 
MODE 

norma 1 return 

(TIA =HSLA VE) 

CONSOL If the designated =onsole is attached, it is 
made a slave according to ~CDE and normal return 
is made with AC 2ero. If it is not attached, no 
acticn is taken and the normal return is taken 
with non-zero AC. If CON SOL is 1 (HOME)', this 
call is ignored and AC is zero. 

MODE There are three distinct slave modes (II,OO,IO) 
providing eight combinations for any single 
ccnscle. rhe word at MODE is interpreted as 
three pairs of letters. If any of the pairs is 
reccgnized, the console is made to slave 
accordingly. If MODE does not contain a 
recognizable pair, the console is unslaved. 

To set the character mode: 
As supervisor entry: 

'IS X 
PZE 

SET,4 
CONSOL 

( T I A = H S E T6 or = HS ET 1 2) 

SET6 sets the designdted console in 6-bit mode. 
SET12 sets the designated console in 12-bit mo~e. They 

both reset the input buffer unless the console is 
already in the specified mode. 

If the designated console is '(HCME) •, the 
console is mode-set. If the designated 
is not attached, return is made with 
AC; :>therwise, the AC is zero. 

user 1 s 
console 

non-zero 

(EN D) 



CTSS P RCG RA Hr1E R 1 S GU! Df Se cticn AG ... 1 ... 06 8;65 1 

M A 0, FOR 'IRAN on -1 in e i np u t c c m pa ti b i 1 i t y 
( C S H ) , • R E A D , • B ~ AD L, • L 0 0 K , • S C R DS 

MAD and FORTRAN on-line input statements compile as calling 
sequences to library subroutines. These subroutines use the 
=onsola as the input devi=e instead of the =ard reader. A 
i~t~ list and format statement are required. 

!!§~.9~ 

MAD: REA I: FOBM Ar FMT, LIST 
FAP: 'IS X .READ ,4 or TSX .BEADL,4 

s·r R PMT,, DIR or STR SYftTB,DIR,FMT 
OPS 
STR LIST,,!NDLST 
OPS 
STR 0 

FC RT RAN: BEAt FM 'I, LIST 
FAP: rsx (2SH),4 

P~E F M 'I , , S i I TC H 
OPS 
SIB 
S'IQ LIST, t 
OPS 
TSX (R7N) ,4 

MAD: LOOK AT PORftA T F MT, LIST 
FAP: rsx • LOOK, 4 

STR FM'I, ,DIR or STR SY~TB,DIR,FMT 
OPS 
STR LIST, ,END LST 
OPS 
STR 0 

FAP: TSX .SCRDS,4. 
P~ E BU F,, 'n • 

.READ and (C:SH) read lines from the console 
accor-ding to the form3.t FMT and LIST. 

SWITCH if n~n-zero indicates that the· format is 
encl~sed in parentheses and stored forward. 

CFS ~ay be indexing or other instructions. 

LIST is the ~eginning location of the LIST. 

ENDLST is the final location of the LIST. 



CTSS PROGRAMMER'S GUIDE Section AG. 1. 06 8/65 2 

DIR if zero the format is stored forwards. If 
1, the format is stored tackwards. 

SYM'IB in a i1At call .refers to the sta.rt (bottom) 
of the symbol table for this routine. 

EUF is the first (lowest) location of an array 
in to which data will be read§ 

n is an integer indicating the number of 
words to be read into the array BUF • 

• LCOK read5 one line from the console according 
to the format specified by FM T. The next 
time a read statement is encountered, the 
same inFut will he processed. If more than 
~ne line of input is requested by the 
f~rmat, the same line will be used. 

• S CB DS reads a line from the 
the number of words 
buffer. 

console and stores 
requested into the 

(EN D) 



CTSS s e ct i c n A G • 1 • 0 1 1 

MAD, FORTRAN on-line outFUt compatibility 
(SPH), (SPHM), .PRINT, .COMNT, .SPRNT 

~AD and FORTRAN on-line output statements =ompile as calling 
sequences to library subroutines. These subroutines use the 
console as the output device instead of the printer. 

fit AD: PRINT FOR~AT FMr, LIST FAF: TSX .PRINT,4 
PRINT CNLINE FORMA~ FM7, LIST TSX • COM liT, 4 

FA P: TSX • PRINT, 4 or TSX .CDMKT,4 
STR FMT,,DIR or STR SYMT B, DIR, FMT 
CPS 
STH LI S'l, ,E NO LST 
CPS 
STR 0 

FJRTRAN: PRINT FM T, LI S'I 
FAF: TSX (S PH) , 4 

PZE F M 1' , , S WI TC H 
CPS 
LDQ LIS'I,t 
srR 
OPS 
TSX (FIL),4 

FAF: TSI .SPRMT,4 
PZE B UF,, 1 n' 

(SPH) and (SPHM) are synonymous • 

• PRINT and .COMNT are synonymous • 

• PRINT and (SPR) type on the console the output as 
requested ty the format PMT and LIST. The 
maximum line length is 22 words. 

SWITCH if non zero indicates that the format is 
stored for- w ar d • 

SYMTB in a MAD call refers to the star-t (bottom) of 
the symbol table for this routine. 

OFS may be any indexing instructions. 

LIST (,t) is the beginning location of the list. 



CTSS FRCGRAMMER'S GUIDE Section AG.1.07 H/65 2 

ENDL::lT is the final location of the list. 

DIR if zero, the format is store:i forwards. If 1, 
the fJrmat is stored tackwards. If 
else, a symbol table is implied. 
manual foe details. 

anything 
See MAD 

BUF is the fir:st (lowest) location of an array 
containinJ BCD information. 

n is the number of words in the array BUP. 

(END) 



CTSS PROGRA~MER 1 5 3UIDE 

Print a comment 
.PCJMT 

s e = ti on ! G • 1 • 0 8 PitCJP - -~-

To print a comment ftom a MAt or PAP program on the user's 
=onsole without a f~rmat statement •. 

MAD: 
PAF: 

MESSAGE 

PRINT COMMENT $MESSAGES 
TSX S.PCOMT,4 
TXH 'n' 
BCI 'n',M!SSAGE 

is a string of no more than 132 
characters. The characters may not 
dollar signs. 

Hclleri th 
include 

n is the number of BCD words to be printed. 

(E NO) 



Sec ticn AI'! 1 no 
ll"a.._.. • •• "., 

Print variables without format 
.PRSLT, .PRBCD, .PROCT 

To print a list of variatles on the user's console from a 
MAD or FAP program without Sfecifying a format statement. 

MAD Manual, Chapter II, Section 2. 16 

MAD: PBI.Nr RESULTS list 

FAF: 

PRINT BCD RESULtS list 
PRINr ocr AL results list 

rsx 
TXH 
rxu 
TIX 
TXH 

$. PRSLT, 4 (or .PRBCD or .PROC'I) 
Slr!TB 
A 
LIsT 1 , I LIsT N 
0 

SYMTB refers to the start (bottom) of the symbol 
table for this routine. 

A refers to a single element. 

LIST1 refers to the block of data. 

LISTN refers to the end of a block of data. 

TXH o marks the end of the list. 

The values of the variables designated by the 
list are printed on the user's console 
preceded bJ the corresponding variable name 
and an equal sign, e.g., 

X= -12.4 
Blocks are labeled as such and are printed 
using a block format. Elements of three 
and higher dimensions will be labeled with 
the e1uivalent linear sutscript. If dummy 
variables a[e included, the specific values 
assigned to such variables and expressions 
during execution will be preceded by'···'· 



CTSS FFCGRAMMER'S GUIDE Section AG.1.09 Page 2 

P R IN 'I H E S U L 'I S ( • P R S L T) c a use s the output to be 
numeric (that is, integer or floating 
point). 

PRINT BCD RESUL!S (.PRBCD) causes the output to 
be printed as BCD informaticn. 

PRIN1 ~CTAL RESUL~S (.PROCT) causes the output to 
be rrinted as octal information. 

(EN D) 



CTSS FP.CGP.A!H'!EP.'S GU !DE s e ct i c n A G • 1 • 1 0 8;65 1 

R~ad without list o~ fo~mat 
• HDATA, • RPDTA 

To read data from the console without specifying a list or a 
format statement. The data items are identified by thei~ 

v~riable names as they are typed. The data may be read and 
printed with one statement. 

MAD Manual, Chapte~ II, Sect ion 2. 16 and 1. 1 

An input line is limited to 72 chara~ters. If character 72 
is used, an implied comma is interpreted as the 73rd 
character. If more than 72 :::haracters are input in one 
lin~, no arror message will be printed, but errors will 
result in the infut data. 

MAD: R:EID DATA 
FAP: TSl $.RDATA,4 

TX H SYMTB 

MAD: READ AND PRINT DATA 
FAP: TSJ $.RPDTA,4 

TX E SYMTB 

SYMTE is the start (bottom) of the symbol table for 
this rcutine 

BEAD DATA reads information from lines typed 
the use[' •s console. The values to be read 
the variable names are typed in a sequence 
fields of the following form 

v 1 = n 1, V 2 = n 2, •••••• , v k == n k • 
where the V are variable names and the ni 
the ~3rresponding values. Reading 
continued frcm line to line until 
terminating mark '*' is encountered. 

on 
and 

of 

a~e 

is 
the 

READ AND PRINT DA1A reads the data as explained 
abcve, and then immediately prints it cut. 

In case of an input error, a mesEage is 
printed on the user's console. Included in 
this message are the type of input errcr, the 
line in which the error occurred, the column 



CT S S f R C G RAM M E R ' 5 GU IDE s e ct ion A G • 1 • 1 0 8;65 2 

numbeL in which the error was found, and the 
recovery procedure. If the user wishes, he 
may retype the offending line and all 
succeeding vue~, in order to continue. 
Otherwise, he may terminate his program by the 
'QUIT' signal. He may then use the PM or any 
other debugging command. 

(E NO) 



No- break mode 
SETN BK, KILN EK 

Section .. ,. 4 4 .. 

liUe I • I I i 

As the CTSS supervisor receives input characters from a 
usar, it normally waits to accumulate a whole line before 
si9nalling the user that he bas input, so that the user 
pro~ram goes int~ input wait status until the break 
character (carriage return) is struck at the console. A 
special mode, l!.Q.:Q!~!.! J!!.Qf!g, is available for th~se 
applications where the user Frogram wishes to be informed of 
input as soon as it arrives. 

As a supervisor or library entry: 

'ISX SE'INBK,4 optiona 1 (TI A = HS ET N EK) 

SETNBK will cause the supervisor to set no-break mode 
for the us er: • s u bs eq u en t c a 11 s to R D F L XA w i 11 
return as soon as any character:s have been 
typed. 

r S X K IL N BK , 4 optional (TIA =HKILNBK) 

KILNBK will restore the normal mode. 

(E RD) 



CTSS GU I I; E 

Print a message on the console 
PH MESS, f Rl'JES A 

sect ion 6;69 

PRMESS provides a c~nvenient way for the ~AD programmer to 
type output en his ccnscle. 

FRMESS. ($ Lir ERAL$, V AR, V AR ( 0) ••• N, ••• ) 

PRMESS types the message which is the concatenation of 
all its arguments. Any number of arJuments may be 
supplied. Note that MAD compiles the right code 
if a literal string of more than six characters is 
supplied as a single argument (it produces several 
arguments, one for each six-character chunk). 
PRMESS calls WRFLXA for e~=h 14 words it 
accumulates dnd then calls WRFLX for the last 14 
or fewer words Sfecified. 

PRMESA works like PRMESS, but does not end the line with 
a carriage return. 

va:: tors may be specified in the form VAfi(O) ••• N 
out a vectcr of N ~ords running backwards 
or VA R .( N) ••• M I H USN (where ~I NUS ~ con t a ins 
type vectors stored forwards in core. 

V'S M1 = .irH! ANSWER ISS 

to type 
in cere, 

-N) to 

PRME.SS. (M1 ••• 3 ,B2EL. (DERBC. (I)),$ FURLCNGS$) 

Would type: 

THE ANSWER IS 15 FURLONGS 

If the value of I was 15. 
(EN D) 



CO~"""~ .; ~..... II f"" 1 1 ") 
J C'-' 11.. ~ v u n IJI • ' • ' J 

Full-mode output from MAD prcgrams 
PR12, PR12A 

f~!:EQ§~ 

PR12 provides the MAD programmer with a convenient method of 
projucing output in upper and lower case without sacrificing 
program readability. 

f R 1 2 • ( $ L I r E R AL $ , V A R, V E C ••• N , e t c) 

FR12 takes its ECD arguments and expands them according 
to the escape conventions described below. It 
calls WRFLXA for every 28 words it accumulates, 
and finishes with a call to WRFlX for the last 28 
or fewer words. 

PR12A works like PR12 except that it does not end the 
line with a carriage return. 

Arguments tc PR12 and PR12A may te specified like the 
ar gu men ts t c PR MEss: that is, ve~ tors running either 
forwards or backwards in core may be printed as well as 
single variables. PRMESS and PRMESA are secondary 
(n~~ative) entry points to the program to save core space 
for programs which call both. output is produced by calling 
WRFLX or WRFLXA with a prefix of MON, so that 12-bit mode is 
forced and the current character mode switch is unchanged. 

The cha~acter-escape conventions have been chosen to save 
sp~~a and to have some mnemmonic value. The character which 
signals an escape is the apostrophe ( 1). Any character not 
pra=adad by an apostrophe prints as itself, exce~t that 
letters are printed in lower case. The following table shows 
the mapping performed. 

i!!eYi e.~i!!.i~.Q 

A a 
I A A 
etc etc 

' ( $ 
') ? 
• • 
·= " 



CTSS PROGRAMMER'S ~UIDE section AG.1.13 

·- -
I+ & 
, 

! 1 red C""h; ~+ 
.;;:JU.LA.\.o 

'2 black shift 
I ] < 
'4 ) 

I Q null 
'5 ~ 
'I tab 
I* carriage return 

The following special operators are defined: 

16 
• 7 
'8 
I 9 

enter BCD mode 
return to full mode 
end cf a rg umen t 
end c f a 11 te x t 

6;69 2 

After '6 is recognized, no es=ape sequence except 1 7 and 1 8 
will ba active, and all letters will be upper case. When 1 8 
is seen, PR12 immediately goes to the next ar~ument. When 1 9 
is sean, PR12 dumps its tuffer and returns. 

V ' S M 2 = $ 1 7 N 0 T F 0 U ND • ' G 0 0 N 1 ) 1 8 $ 
FB12A. ($ 1 6 1 8$,N1,$ 1 8$,N2,M2 ••• 10) 

Might produce the follo~ing: 

ALPHA 0 U'IP U1 not found. ~ o on? 

With no carriage return at the end of the line. 

(EN D) 



c·rss FFCGRAMMFR 1 S 

Print 12-bit lines 
PHFULL,PHFULA,PR1:HR 

GU !DE s ecticn J\ -~ 1 1 II 
Q'...JI e I e I, 

To print a fenced ~r unfenced message containing 
characters on the console with ~ routine that may be 
by MAD. 

MAD: FRFULL. (A,E ••• N) 
PRFULA. (A,B,(; ••• N) 
F RT C H R • ( S U E R • ) 

FAP: TSX $FRFUL-L,4 or 
PZE A or A, rAG 
EFA E ~r B ,TAG 
FAR c 
PAR D,,N 
ELK E,,M 

TSX $PH 'I:HR ,4 
FAF SUER 

TSX $PRFULA ,4 

12- bit 
called 

PRTCHR.(SUBR.) causes each 12-bit output =haracter to be 
given to 'SUER. • (by 'EXECUTE SUBR. (CHAR)') instead of 
printing it. This mode may be terminated at any time by 

TSX 
PAR 

$PR TC HR, 4 
0 

or PBTCH R. (0) 

PRFULL adds a carriage return at the end of the output 
string, PRFOLA does not. 

The calling sequence is of indefinite length, all arguments 
~ra concatenated to f~rm one continuous character string. 
Blocks are normally frocessed backward from X(O) to X(H); if 
N is n~~ative the block will be processed forward. •x ••. o• 
is ignored. For 'PAR X,,N' arguments, if N>16383, it is 
=onsiaered negative and the count 3Ct~ally used is 32768-N. 
Any argument will be terminated if a fence (octal 77 ••• 77) 
is encountered within it. The setting of the fUL-mode 
switch (SETFUL, SETBCD) is not affected. 

To facilitate the use of 12-tit characters from MAD and FAP 
programs the character aFostrophe has been made to modify 
th~ character that follows it, usually into an otherwise 
inaccessable 12-bit character but sometimes into a control 
function. Upper case letters are norm~lly converted into 
low~r case. If an apostrophe is followed bJ a character 
that does not have a modification defined, th~ apostrophe is 



CTSS fECGRAl'lMER'S GUII:E Section AG.1. 14 6j69 2 

ignored. 

A complete list of modifications is: 

1 ddd where ddd is octal: the 12-bit character whose 
octal code is ddd is printed 

'd where d is 0 thr:u 7: the next d letters are pcinted 
in the case opposite from that in which they 
would otherwise have been printed 

1 8 ignore the J:emainder of the current word 
1 9 end of output string 
1.:: " 

I I 

'+ & 
I A il 
1 B black ribbon shift 
'F print-off 
• H hang- up 

! 
I ) ) 

•: backspace 
'-
IL 

I N 
•o 
If 
IQ 

'R 
•• 
•space 
'I 
•s 
IT 
•u 

I V 

print succeeding letters in lower case 
t 
print- on 
J 
1 
red ribbon shift 
carriage return 
null 
backslash or cent sign 
$ 
tab 
print succeeding letters in upper case 
I 

I X end this argument and print the next exactly as given 
, 

I ( ( 

(EN D) 



CTSS rn~,....,.a .. aaTJnet
rl1\..1...7 £\ttCJJ:JLL\ • .:J 

("' ~ -~ : ~- .. ,.. '1 " 1 
JC'-o\..4VU ftUeLeV I 

., 
I 

Unbuffered disk string read and write 
OS K D M P, • DU M F, • L 0 AD, DS K L 0 D 

To write or read a continuous block of core on 
disk as a file. rheEe routines are usually used 
blocks of core, cr short files. 

(frcm) the 
fer large 

rwo routines are available as supervisor entries and library 
antrias. An additi~nal routine is availatle in the library 
w hicb may be called by MAD and Fortran pro grams. 

To write a file en the disk: 
Core-E write around: 

OPN 

rsx • DUMP, 4 
OPN FI LRA M 
~E LOC,,'n' 

establishes the mode of the file{ ; 
temporacy, PON is permanent, PTW and 
read- only, pro tee te:i. 

PZE 
FTH 

is 
are 

FILNAM refers to the file name which will be placed 
in the current file directory, deleting any 
older file of the same name. 

LCC is the initial location from which n words 
will be written on the disk. 

To read a file: 
Core-B write a round: 

TSX .LOAD ,4 
PZ E FILN Art 
p ZE LOC • , I D • 

Sl.W M 

n is the number of words to be read. It may be 
larger than the actual file size with the 
fcllowing restriction: LCC+n-1 must be less 
than the memory bound. FSTATE may be used to 
estimate n. 

M will contain the number of words actually 
loaded, as a full woLd integer. 



CTSS PROGRAMMER'S GUIDE section AG.2.01 

Correspcnding libra [.f sub routine: 

MAD: EXECUTE DSKDMP. (FILNAM,FIRST,N) 
EXECUrE DSKLOD. (FILNAM,PIRST,N) 
M = DSKLOD. (FILNAM,FIRST,N) 

F C RT R AN : CALL DS K L 0 D ( F IL N AM , FIR S T, N ) 
CALL DSKDf'lP (FILNAM,FIRST,N) 
A = DSKLOI: (FILNAM,FIRST,N) 

11/65 2 

:ore w i 11 be 1 oa de d or d um pe d from FIRST -n + 1 
thr~ugh FIRST. If the number of words ,m, in 
the file is iess than n, the file will load 
int:J the tlock of core through FIRST- n+m. 
Both DSKDMP and DS~LOD =all the file system 
directly, i.e., they do not call the core-B 
write around s. 

(END) 



CTSS PROGRA5MER=s 3UIDE Sac tion 

Buffered disk inFut 
SEEK, .SEEK, .READK, ENDRD, .EMDRD, BREAD, VBEAD, DREAD 

To provide the facility to read fixed length, string or 
lin~-marked disk file5 in the buffered mode by calls from 
FAP, MAD or FORTRAN _I:rograms. Records may be ccnverted 
according to a format statement or may be transmitted 
without conversion. 

Disk files to be read must be located in the current file 
directory, the hardware must be set in motion to locate the 
first track of the file, a buffer must be assigned to the 
fil~ and the tracks must be read to fill up the buffers. 
All of this initial activity is accomplishej by the user's 
=~11 to SEEK in which he may specify buffEr locations. If, 
however, the user doesn't care to spe=ify a buffer, SEEK 
will assign available space ty extending the memory bound. 

R~a1inJ is accomplished by moving logical records out of the 
buffers into working core. When a buffer be comes empty, the 
supervisor fills it by reading the next tra~k of the file 
into it. After sufficient data has been read from a file, 
the user may release the buffer and put the file in inactive 
status by a call to ENDRD. 

The library subrcutines maintain a list of active files and 
~ssigned buffers. rhere may be no more than 10 active files 
and no more than 20 automatically assigned buffers. 

Reading by calls to the core-B 
library subroutines means that 
assigned, only one buffer 
execution of supervisor error 
library error procedures, and 
file system are used. 

write aroun:ls instead of the 
buffers are not automaticallJ 
can be used, errors cause 
procedures rather than the 

the write- arou nds to the new 



C T S S f B C G R AM M E R 1 S GU I DE 

To open a file: 
as core-B write arcund: 

TSX .S~EK,4 

P~ E FILNAM 
P~ E BU !1 

as library subroutine: 
FAP, MAD, cr FORrRlN, 

EX E C U r E S E EK • 

S e ct ion A G • 2 • 0 2 11;65 2 

( F IL N AM , - B U F 1- , - B UF 2-) 

BUF1, BUF2 are initial locations of 432 word blocks of 
core tc be used as buffers. If no buffer is 
specified to the library subroutine, one 
buffer will be assigned by extending the 
mem~ry bound if core space permits. If no 
buffer space is available, the library error 
procedure will be initiated. If two buffers 
are prcvided, reading will be more efficient, 
since I/O may l:e overlapped with processing. 

SEEK calls SRCH which assigns a buffer, if needed, 
by calling FRfE and maintains an active file 
table and buffer assignment table • 

• SEEK does net call SRCH. 

To read a record: 
as core- B wrote a round: 

n 

TSX .READK,4 
P% E FILN AM 
Pi,E LOC,t,n 
P% E ERlF 

EOF SLW WC 

words will be moved from the current buffer 
associated with FILNAM and stored in a block 
of core beginning at locaticn LOC. n may be 
larger than the actu~l file size but LOC+n-1 
must be less than the memory bound. 

t of non zero means skip n words without 
tra nsmissicn. 

ECF If an attempt is made to read beyond the last 
word of the file FilNAM, control is 



we 

Section AG.2.02 

transferred to location ECF. 

upcn end of file return, the AC will 
the number of words ~ctually rea1, as 
word integer. 

1 i j6 5 3 

contain 
a full 

as a library subroutine: 
FAF or MAD 

EX E C U T E B R ! AD. ( F I LN A M , I IS T) 
EXECUrE DREAD. (FILNAM, FJRI1AT, LIS'!) 
WC=VREAD. (FILNAM, LIST) 

LIST is any mixture of single variables and block 
notation vectors locating the variables to be 
read, if any. 

FJRMAT is the location of the format by which the 
variables in LIST will be edited by (IOH). 

BBEAD will read the n words specified by 
n may be any size. No attention is 
logical record breaks. If the input 
line-marked, the line-marks will be 
data wcrds. 

the LIST. 
paid to 
file is 

moved as 

DREAD reads logic~! records and edits them through 
(IOH). Each call to DREAD reads at least one 
logical record; however, the format raay 
require the reading of more than one logical 
record. If the file is line-marked, the line 
marks delineate the logical records. If the 
file is not line-marked, the logical records 
are 14 words. If fewer words are re~uested 
than are available in the record, the excess 
of the record is lost. The format may specify 
the reading of more than one record; however, 
if more words are requested from a specific 
rec~rd than are availatle within that reccrd, 
the library error procedure is initiated. 

VBEAD will read one logical record. A logical 
rec~rd is either delinea. ted by line-marks, set 
by s Erv BF, or assumed to be 14 words. The 
LIST may net exceed 22 words. If the LIST is 
longer than the logical record, the end of the 
list will be padded with blanks. If the LIST 
is shorter than the logical record, the 
rel!ainder of the record will be lost. If the 
record was fixed length, the sign of we will 
be minus. If the record was line-marked, we 
will be positive. we is a. pro~erly formatted 
integer but Fortran may have some difficulty 
because of the function naming conventions. 



C 'r S S F R C G R AM M f R 1 5 GU I D E Section AG.2.02 11;6 5 4 

To close dn input file: 
as core-E write around: 

rsx .ENDRD,4 
P ~E FI LNA M 

as library subroutine: 
FAP, MAD, or FORTRAN 

EXE:O'IE ENDRD. (FILNAM) 

ENDRD will delete the file from the active file 
table and release the tu f fer. 

(EN D) 



CTSS :PECGP. A!!!!! !R' S GU I D! s e ct. i c n A G • 2 • 0 3 11;65 1 

Buffered Disk output 
ASSIGN,.ASIGN,APPEND,. APEND, .WRI'rE, FILE, .FILE,B-D-V-FWRITE 

To provide the facility to write fixed length, string or 
line-marked disk files in the buffered mode. Records may be 
converted according t~ a format statement or they may be 
transmitted withcut conversion. 

The file must be defined and placed in an active file table 
and buffers must be assiqned. This initialization is 
~~complished by ASSIGN or APPEND. Writing then causes data 
to be moved from working core into the tuffers. When a 
buffer is full, it is written on a track of the disk by the 
supervisor. A file in write status must te closed by FILE 
in order to assure that the last buffer has been written on 
the disk and the file name is entered into the file 
directory. 

IE the library subr~utines are used, an active file table 
and assigned buffer table are maintained. There may be no 
mor~ than 10 active files and 20 automatically assigned 
buffers. If the prcg ram is terminated by any ter mina 1 
library routine, all files in write status will be properly 
close :I. Any disk err~rs will initiate t be library disk 
error procedures. 

If the core-B write arounds (.ASSIGI, .AfEliD and .WRilE) are 
usei and the program is terminated without going to .FILE or 
EXIT, the file will be lost. EXIT has been modified to 
include a CLCS E. (SALL$) • Any disk errors initiate I/O 
system error procedures. Only one buffer can be used with 
=~lls to the c3re-E write arounds • 

.For any given file, calls to the lib r3. ry subroutines may not 
b~ intermixed with calls to the core-B write arounds or r;o 
system entries. That is, buffers may not be assigned by 
.ASIGN with reading being done by BWRITE, etc. 



CTSS PROGRAMMER'S GUIDE 

To open a n e w f i 1 e: 
core-E write aro~nd: 

rsx .ASIGN, 4 
OPN FILNAM 
P~ E BU f 1 

as a library subroutine: 

Se~ ti on AG. 2. 0 3 11/65 2 

EXECUTE ASSIGN. (FILlA l'l, -BUPl- ,-BUP2 -,-EO F3-) 

JPN defines the mode: P~E is temporary, PON is 
permanent, P1W and PTH are read-only 
protected. rhe library sutroutine will define 
the mode as permanent. 

BUF1,BUF2,BUPJ are the initial locations of 432 word blocks 
of core to be used as tuffers. If no buffer 
is specified fer the library subroutine call, 
two buffers will be assigned by extending the 
memory bound, if core space permits. If no 
buffer space is available, the library error 
procedure will be initiated. Writing with 
only one buffer is extremely inefficient since 
it forces the use of WRWAIT. Two buffers 
greatly increase effi::ien::y because this 
allows use of the core-a buffering routine 
BFWRir. rhree buffers make it possible to 
overlap I/O with processing. 

ASSIGN calls SRCH which assigns two buffers if 
necessary ty calling FREE, and maintains an 
active file table and buffer assignment table. 
This allows terminal sutroutines tc close 
active files Froperl y • 

• A~IGM does net call SRCH. 

ASSIGN and .A SIGN If a file alread J exists named FILNAPI, it 
is deleted. 

To opan an old file in order to add information: 
core-B write arcund: 

TSX .APE liD ,4 
~B FILNAft 
P~ E BU F 1 



11 ~LC. '::» 
• '/ u J J 

as a library subroutine: 

FAP, MAD or FORTRAN 

EXECU'IE APPEND. (FILNAM,-BUF1-,-BUF2-,-EUF3-) 

APPEND is the same a.s ASSIGN except the file name is 
located in the file directory and data to be 
added to the file will be written at the end 
of the existing file. 

To write a file: 
core-B write arcund: 

TSX • WRITE ,4 
~E FILNAM 
P!E LOC,, 1 n• 

n is the number of words to be written into file 
FILNAM beginning at location LOC. 

as a library subroutine: 
FAP, MAD or FORTRAN 

EXECrJrE 
EXECUTE 
w c = 
we = 

8 W RITE • ( F I L N AM , L I S T) 
DWRITE. (FILNA~, FCRftAT, LIST) 

V W R IT E. ( F IL N AM , L IS T) 
F WRITE. (FI L NA M, LIST) 

LIST is any mixture of single variables and block 
notation vectors locating the variables to be 
output. 

FORMAT is the f ormd t by which the variables in LIST 
will be edited through (ICH). 

BWBITE will write the n words specified by the LIST 
as a record without line marks. LIST may be 
any length. 

DWRITE will write the n words specifiei by LIST as a 
line-macked record after they have been edited 
by (IOH). (3 .LE. n .LE. 22). If n .L. 3, 
blanks will he filled in until the record is 3 
words long. If the combination of FORI!AT and 
LIST specify a line longer than 22 words, 
(IOH) will type an error message and then call 

RECOUP. 

VWRITE will write the n words specifiej by LIST as a 
1 in e-m ar ked r e cor d. 3 • L E. n • L E • 2 2 (sa me 
convention as DWRITE). we will contain an 
integer e1ual to the number of words written 



CTSS PROGHAMMER'S GUIDE sec ti on A G • 2 • 0 3 

(net including the line-mark). 
rec~rd length is WC+1 •• 

11/65 4 

The actual 

FWBITE will write a fixed length record without 
line- marks. If the LIST is shorter than the 
fixed length, tlanks will te filled in. If 
the LISr is longer than the fixed length, only 
the first words are written and the excess is 
lost. rhe fixed length is assumed to be 14, 
unless set by SETVB(F}. WC will contain an 
integer e~ual to the number of words written, 
the sign will be minus. 

we when we is returned, it is the proper integer 
f~rmat for the language of the calling 
prcgra 111. Fortran, however may have some 
difficulty as a result of the mode of the 
function convention. Fortran users should 
equivalence we with an integer variable. 

To ~lose an output file: 
core-B write around: 

TSX .FILE ,4 
P~ E FILN AM 

as a library subroutine: 
FAF, MAD, or FOR·rRAN 

EXECOfE FILE. (FILNAM) 

FILE will cause any active buffers to be written on 
the disk, FILNAM will be entered into the 
current file directory, the buffers will be 
set free, and the file removed from active 
status. If the library sutroutines have been 
used tc write the file, a call to any terminal 
subr3utine (EXIT, DU~P, etc.) will cause the 
calling of FIL! for all active files • 

• FILE should be used only if the file was written by 
the • WRI 'IE write a round. 

(EMD) 



crss GUIDE 5 ect ion ._,. "'\ n Ia 

Jlu.~.v-+ i 

Aj1ressable disk files 
• RELRW 

To allow disk files t~ be treated as 
mamory. Relative locations within 
specified fer reading or writing. 

addressable secondary 
a disk file may be 

Q.§~l~ 
To open an addressable file: 

core-B write around: 

• RELRW 

TSX .RELR W ,4 
~E PILNAM 
~E BUF1 

w i 11 o fen a n add re ss able f il e 
read ~ r w r itt en • If w r i tin g , 
permanent. 

which may 
the mode 

be 
is 

EUF1 is the initial location of a buffer whose size 
shculd be at least 432 words. 

To read or write an addressable file: 
core-B write around: 

rsx 
P HE 
p i5E 
P!E 

• R!ADK, 4 
PILNAM,,reladr 
LOC,, 'n' 
EOF 

TSX • WRITE ,4 

r2ladr is the relative location within the disk file 
where the reading or writing will begin. The 
first w~rd is number 1. If reladr is outside 
the limit of the file, the nor•al end-of-file 
prccedure will be followed for reading or the 
supervisor error procedure will be followed if 
writing. 

LOC,,'~' n words of core beginning at location LOC will 
be read from or written in the disk file 
FILNAPI. 

ECF Locaticn tc which control will be transferred 
upon encountering an end of file. 



crss :t:BCGRAiiiiER~S 

Set the length of fixed length records 
SET V B F , S ET V S 

1 

Records which are read cr written by FWRITE or VREAt may be 
fixad length. The normal fixed length is 14 words. If a 
different length is desired, SETVBF m~y be used to specify 
the lang th. 

As a library subr~utine: 

MAt, F AP, or FORT BAN 

B = :i Er V B F. ( N ) 

sErVEF and s ETV E are s_ynonymous. 
prcv ided because of the 
naming convention. 

Both naJEes are 
Fortran function 

N is (location of) the number of words to be 
ccnsidered for fixed length records by FWRITE 
or VREA~ N may not be grEater than 22. If N 
.GE. 22, the record length is set to 22. 

B will ccntain the previous setting of the fixed 
rec:>l:" d length. 

(END) 



CTSS PHOGRAnnER~S ~UIDE 

s~rvica to library disk routines 
SRCH, BLK, FLK, ENDF, :LOUT 

,.... __ .L! -- .. ,. "'\ ,, £ 

.:»t:::\.... \...L vu ""'• "• v u 

Service rcutines are available to the library 
subroutines to assign buffers, find files, maintain 
~~tiva file and buffer tables, and close out files. 

To search active file tatle: 

rsx SRCH,4 
P~E FILNAM 

not found 
found 

disk 
the 

not found return means that FILNAM was not found in the 
active file table. 

fcund returns with the st:1tus of FILNAM in the 
address of the A: and a buffer number (1-20) 
in the decrement of the AC. If the file is not 
using an assigned buffer, the buffer number is 
zer~. Write status is 1; read status is 2. 
The sign is + if enough buffers are assigned 
to use core-E buffering routines (BFREAD, 
etc;). The sign is- if supervisor I/O must 
be used. 

To assign a buffer: 

TSX BLK,4 
error return 
notma 1 return 

BLK searches the tuffer assignment table. If 
there are no free buffers an1 there are fewer 
than 20 assigned buffers, an attempt is made 
to extend the me-mory bound by a call to FRER. 

error return is taken if there ara already 20 
buffers assigned or the attempt to extend the 
memory bound was unsuccessful. 

normal return is t:iken with the caddress of the buffer 
in the ~ddress of the AC ~nd the number ~f the 
buffer ( 1- 20) in t be decrement of the A:. 



CTSS PROGRAMMER'S GUIDE sect ion AG. 2. 06 

To antar a file in the active file table: 

rsx FLK, 4 
P~E FILNAM 
PF X status, ,PTR 1 
PZ E , ,PRT2 

error ret urn 
normal return 

11/65 2 

status is 1 if writing, 2 if reading. The status 
word is stored in the first free space in the 
active file table. 

PTR1,PTR2 is the buffer number. If number is non-zero, 
a pointer to the file in the active file table 
is placed in the assigned buffer table. 

PFX is P~E if enough buffers are assigned to use 
core-E routines ( BPR EAD, BFWR ITE) ; otherwise, 
it is M~E. 

arror return is taken if there are 10 active files 
already. 

To remove a file from the active tables: 

TSX ENJ:F,4 
~E FILNAM 

The buffer is freed, and the fila is 
from the active table. The file 
clcsed. 

To remove a tile fra m the active tables: 

rsx CLOUT,4 

removed 
is not 

All the files are closed by calls to CLOSE and 
BFCLOS !. All buffers are freed and returned 
to "free storage". 

(EN D) 



CTSS 

G~n~rate file of zeros 
• CLEAR 

To =reate a new file which contains n zeros. 

Cor~-B write around: 

rsX .CLEAB,4 
OPN FILNA~.,'n' 

11 ~~c. 
I .. , VJ 1 

.CLEAR will create a file of the name specified in 

OPN 

PILNAM which will contain n zeros. The 
Ofening and :::losing of th.e file at: e 
acc~mplished by • CLEAR so that .A SIGN and 
.FILE shculd net be called. 

Sfecifies the mode of the file: 
temporary, PON is permanent, PTW and 
~:ead-only and p~:otected. 

P~E is 
P TR are 

(END) 



S~c tion a ,... "11 n ll 
.MU • .LeVO 

1 
I 

Input and outFut 
OPEN,BUFFER,RDFILE,RDWAil,WRFILE,WRWAIT,T~PILE 

FCHECK,FWAIT, CLOS E,S Er PRI 

Filas may be opened on any I/O stocage devi=e foe reading, 
writin~ or reading and writing. A file which has been 
successfully OPENed is said to be "active". A buffer may be 
1ssigned if needed and priocities may be set for different 
files. 

It is assumed that the user is familiar with section AD.2 
and AG.4.06 of this mi:lntal. In order to read or write a 
fila, the file must first be opened and in most cases a 
buffer should be assigned. Calls to RDFILE or WRFILE 
initiate the I/C f~r a rel at iv e location wit bin the file. 
The actual data tran~mission is not completed upon retucn 
from the call. A subsequent RDFILE, WRFILE, FCHECK, or 
CLOSE is necessary tc complete the dat~ transmission and r;o 
3rror checking. All calling sequences will accept the two 
extra argu•ents for the errcr procedure. Any arguments 
whi::h are not pertinent m1.y be specified as -0. 

OPEN: 

OfEN.($StATUS$,$ NAME1S,S NAftE2S,eCDE,DEVICE) 

STATUS may be 'R' for read, •w• for write or 'Ri' for 
read-write. (justification is not 
s ignif ica n t) • 

MODE specifies the mode of a new file to be created 
and may be the inclusive logical or of any of 
the f o 11 owing oc ta 1 va 1 ue s. If M 0 DE is not 
specified, a permanent file will be created. 

000 - Permanent 
001- 'Iemporar_y 
00 2 - secondary 
00 4 - Read- on1 y 
010- Write-only 
020 - Private 
100 - Protected 

DEVICE is pertinent cnly when ~reating a new file and 
it specifies which I/O device is desired. If 
DEVICE is not specifie1, the system will 



C 'r S S F R C G RAM M E R 1 5 GU I D E s e ct ion A G • 2 • 0 8 12;66 2 

assign a device. 

1 - Low spee:i drum 
2 - disk 
3 - rape 

Errcr cedes: 

03. File is already in a::tive status 
0 4. Mo c e t han t en act i v e f i 1 es 
OS. $ STA 'IUS$ is illegal 
07. Linking depth exceeded 

08. File in • PRIVATE' mode (different author) 
09. AttemFt tc write a 'READ-ONLY' file 
10. Attempt to read a 'WRITE-ONLY' file 
11. Machine or system error 
12. File not found in U.F.D. 
13. Illegal device specified 
14. Nc space allotted for this :ievice 
15. Space exhausted for this device 
16. File currently being restored from tape 
17. Input/Output error, see AG.4.06 
18. Illegal use of M.F.D. 
19. u.F.D. not found (i.e., OFEN through a link). 
20. AttemFt tc reaa secondary mode file. 

Assign a buffer: 

BUFFER.($ NAME1$,$ NAME2S,BUF(ti) ••• N) 

BUFFER In general a buffer should be assigned to an 
open file for reading or writing. 

BUF The buffer space should be specified in block 
notation as the beginning location of the 
buffer and the size. The si2e must be large 
enough to accomadate a physical record from 
the I/O de vice. 

N is tbe buffer si 2e and 432 seems to be the 
going size. 

Error codes: 

s~t priority: 

03. Pile is net an active file 
04. Previous I/O out of bounds (aembnd changed) 
0 5. Buffer too small 
0 6 • I n p u ~/ o u t f u t e r r or , see A G. 4 • 0 6 

5 Er PR I. (PRIOR) 



1'l.1'£.L 'l ,,, vv .J 

SETPRI is used to assign priorities to certain tasks 
which w~uld otherwise be processed in the 
order in which they were received. When files 
are ~pened for reading and;or writing, they 
are assigned the priority set by the last call 
t~ SETPR I. If there was no previous call to 
SETPRI, all files will be treated with equal 
pt: iori ty. 

PRIOR is an integer from 1 to 7. The higher the 
value the lower the priority. 

Errcr cedes: 

standard error codes. See section AG.4.06 

R~il:l: RDFILE. ($ NAMEl$,$ NAME2S,RELLOC,A(N) ••• N,EOF,EOF::T) 

R D W A IT • ( $ N A M E 1 $, .$ N AM E 2 $, R ELL 0 C, A ( N ) ••• N , E 0 F , E 0 F: T) 

RDFILE initiates the I/O necessary to move N words of 
data into location A(N) throu;Jh A!1) from file 
NAME1 NAME2. 

RDWAIT is a single call which incorporates RDFILE and 
FCHECK so that upon return, the data has all 
been moved ~nd all of tha error checking has 
been done. 

RELLCC specifies the initial location within the file 
frcm which reading is to begin. If RELLOC is 
zer~, reading continues from the word 
fcllowing the last word ~g~g from the file. 
On the first =all to RDFILE either 0 or 1 
specifies the first word. late that in a file 
which is Ofen for reading and writing, there 
are two se~a rate pointers Ci.e., the last word 
read and the last word writte~ • 

EOF is the location to which control will be 
transferred if the end of the file is 
enc~untered before N words are available to 
transmit into l. If RDFilE was called the 
words have not actually been transmitted to A 
sc that F:HECK or CLOSE is na=assary if data 
from A is to te used. The file is not closed 
by enccuntering an end of file. 

ECFCT is an integer variable w~ich will contain the 
number of ~ordE to be transmitted by the call 
to RtFILE when the end of file was 
encountered. 



CT S S F B C GRAMM E R 1 5 GU I£ E sect ion A G. 2. 08 12;66 4 

Wt·i te: 

Errcr cedes: 

03. File is net an :tc ti ve file 
04. File i5 not in read status 
0 5. Nc buffer assigned to this file 
06. Previcus I/O out of boun:ls (membnd changed) 
07. Input;output error, see AG.4.06 
0 8 • U • F • D • ha s bee n de 1 e ted 

W RFI LE. ( $ NAME1 $, $ N AM E2$, RELLOC, A (N) ••• N, E~r ,EOFCT) 

w R w A I r • ( ! N A t1 E 1 s I $ N AM E 2 s I R E L L oc , A ( N ) • • • N , E oF , E o F CT > 

W RFIL E initiates the I/O ne~ess:try to move 
frcm the array A (N) thru A ( 1) into 
NAl1E1 NAME2. 

N words 
the file 

WRWAIT is a single call whi=h in~orporates ~RFILE and 
FCHECK so that upon return, the data has been 
moved and error ~he=king has been done. 

R ELLOC is the re la ti ve loc~ ti on with in the f i 1 e where 
writing is to begin. If RELLOC is zero, 
writing will begin after the last word ~~i!!~~ 
in the file. If RELLOC is z era on the first 
call, writing will begin at the location 
following the last ~ord of the file. RELLOC 
m a y n o t be la rge r th a n the c u r r en t 1 eng t h o f 
the file. 

ECF is the location to which control will be 
transferred if the N words to be written would 
have to be written through the end of file 
(i.e., if fdrt of the record ceuld be 
contained within the file and the other part 
would extend to outside the file) • This does 
not occur when appending to the file with a 
RELLOC ~f zero where entire records are Flaced 
at the end of the file. 

EOFCT is an integer variable into which the I;o 
system will store the number of words actually 
to be written ~hen control was transferred to 
EOF. An F:HECK is necessary as with any 
W BPILE. 

~. 

Errcr cedes: 

03. F ile")is not an active file 
04. File is not in write status 
05. Nc buffer assiSJned to this file 
06. Allotted space exbauste:l for this device 



r<om.r-r- nnnr-nliiiMC'ole ronTnP 
\..J.~.;) Cl\V~UftULJlJ .. \ -.I V U..LUU Se~ ti on !G. 2. 0 8 12;66 5 

Truncate: 

07. Previcus I/O out of bounds (membnd changed) 
08. Input/Output error, see AG.~.06 

09. Illegal use of write- only file ( ncn- zero 
1 RELLO:') 

10. Max tile length exceeded 

TRFILE. ($ NAME1 $,$ NA11E2$,RE1LOC) 

TR FILE 'I he tile NAME 1 HA ME 2, which was previous! y 
3pened for writing, will be truncated (i.e., 
cut-off) immediately £~1Q~~ the relative 
location R fLLOC. If R ELLOC is less than the 
read ot write Fointers, theJ will be reset to 
their original places, (i.e., the read to the 
first word of the file 1na the write to after 
the last word of the file). 

Errcr cedes: 

PC HECK 

FWAIT 

Pill ISH 

03. File i.s net an active file 
04. File is net in write status 
05. No buffer assigned to this file 
06. Previcus I/O out of bounis (membnd changed) 
07. RELLOC larger than file length 
08. Input/OUtFut error, see AG.4.06 
09. Illegal use of write- only file (ncn- zero 

'BELLO: 1 ) 

FCH!CK.($ NAMf1$,$ NAME2$,FitiiSH) 

FWA IT. ($ MA PIE 1.$ ,$ NA ME2$) 

is used to check to see if a previous read ot:" 
write of a specific file bas been ccmpleted 
and checked for errors. ~ate that RD"FILE, 
VBFILE , TRFILE, and CLOSE incorporate an 
automatic F:HECK at the beginnin~ so that if 
FCHECK is not called explicitly, any I/O 
errors a~e detected one =all later than the 
call that caused the error. 

is the 5ame as FCHECK except that control will 
not be returned to the user until all I;o has 
been ccmfleted and checked. 

~· 

is the location to which FCHECK will return 
contr~l if the I/O is completed and checked. 
If the r;o is not completed, FCHECK will take 
the n::>rmal ietut:"n. · 



CTSS PROGRAMMER'S ~UIDE section AG.2. 08 12/66 6 

Close: 

Error codes: 

03. File is not an active file 
04. Previcus I/O out of bounds (membnd changed) 
05. InputJOutput error, see AG.4.06 

C LOS E. ( $ N AM .£ 1 $, - $ N AM E 2 !- ) 

CLOSE is used to close an active file and return it 
to inactive status. CLOSE incorporates an 
FCHECK for the last I/O call and initiates and 
F:HECKs the I/O necessary to empty any waiting 
output buffer. 

NAME1 may be 'ALL' and NAftE2 not specified for all 
active files tc be closed. 

Errcr cedes: 

03. File is net an active file 
04. Previous I/O out of bounds (membnd changed) 
0 5 • I n p u t 1 o u t f u t e r r or , see A G • 4 • 0 6 
0 6. Machine or system error 

(E NO) 



section AG. 2. 09 

Loai d file into a free area of core 
LDFIL 

To load a file into a free area of core, and then pass 
control to a specified function, g1v1ng information as to 
wh~re the file has been loaded and how long it is. 

FAF: rsx 
PZE 
PZ E 
PZE 

- PZE 
- PZ E 

L I: F IL, 4 
=H NAME 1 
= H N AM E2 
FUNCr 
ARG1 -
ABG2 -

MAD: LDFIL. (l NAME1$ NAME2$,FURCT.,-ARG1-,-AR:i2-) 

LDFIL loads the file NAME1 NAME2 and calls FUNCT 
with the fcllowing ~all 

PAP: 'ISX 
PZE 

- PZE 
- PZ E 

F UNCT ,4 
LOCAt 
AR~l 

ARG2 -

MAD: FU NCr. (LODAt, -ARG 1-,-ARG2-) 

LCD AD contain:> the ex act word count cw:, as an 
integer) of the file NAMEl &A~E2. The file is 
loaded into locations LODAD+l, ••• ,LODAD+W:. 

ABG1 ABG2 are optional arguments which LDFIL will 
transmit, if present, to FUNCT. 

A return from FUNCT will automatically mean a 
return to the program which called LDFIL with 
all registers except index register 4 
{:reserved. 

LDFIL uses FRER, FBET and CCLT in addition 
the I/O system routines. 

If sufficient space is not available to 
NAME 1 NAME 2, LDFI L wi 11 C4l use a comment to 
printed (by FREH) and c~ll EXIT. 

to 

load 
be 

{END) 



1/66 1 

Buffered Input and output 
Bf'OPEN, BFREAD, EFW Rlr, EFCLOS, BFCODE 

Because entries to cere-A and the file system involve quite 
~ bit of overhead, it is advisable to provide for buffering 
and for all blocking ~nd unblocking of buffers in core-E 
routinas and to call the file system only to transmit full 
records. These ("BF-pa::kage") library routines are 
~vailable to provide 3ingle or double buffering in core-E. 
Double buffering is definitely advantageous to frcgrams 
whi::;h are "compute-! imited" because it allows overlapping of 
cPU time with I/ 0 time. 

The file system is used for all actual I/C. In order to 
read or write a file, the file must te opEned with one or 
two buffers specified. In the ::ase of writing a file, one 
~xtra buffer is alway5 needed to assiyn to the !ilg §Y§!~!; 
n~w files files opened by BPOPEN will be in the permanent 
mode. Calls to BFREAD and BFWRIT cause words to be moYed 
from (to) a buffer to (from) the user's work area. When a 
buffer is emfty (full) it is refilled (emptied) using RDPILE 
(WRFILE) with RELLO:=O. If a second buffer were assigned 
(third in the case of a write file) it will then be used, 
otherwise a call to F:HECK will be made in order to reuse 
th~ sin~le buffer. Actual data transmission to or from a 
file is initiated each time one of its buffers is empty 
(Eull). l/0 error checking is completed ty a call tc FCHECK 
in the case cf a single buffered file or on a subsequent 
:=:tll to RDFILE or wRFILE for double buffered files. 

Every call is a fixed length calling sequence so that 
~CJUm~nt must be specified, either explicitly or 
specifying -0. Only those arguments specifically stated 
optional, by the minus (-) convention, maJ be specified 
-0. 

each 
by 
as 
by 

All buffers must be 432 words long and the location 
specified in the calling sequence must spe.j:iff ·the lowest 
::or~ location of the block because the data are loaded into 
the buffers in the forwa .rd direction. 

A maximum of ten files may be open at any one time. 



crss FRCGRAMMER'S GUICE Section AG.2.10 1/66 2 

OPEN: 

MAD: BFOFEN. {STAT,NAME1,NAME2,BUF1 (~32),-BUF2 (~32)-,-BUF3(432) -,ERR) 

FAP: TSX 
TXH 
rXA 
TXH 
'lJH 
TXH 
TXH 
TXH 

BFOP EK, 4 
STAT 
NAKE1 
NAME 2 
B UF1 
-BUF2-
-BUF3-
ERR 

STAT may be 'R' for r:ead, • w• for write where 
'R' or 'W' is left justifieil in the word. 
( An y s t at us o t her t h a n • w • w i 11 be 
interpreted by BFOPEN to be the same as 'R' 
and passed to the file system as given in the 
c a 11. r h us, a s ta t us of • R W ' w i 11 en a b 1 e t he 
user: t ::> r: ead g!l.Q write t be file, using BFREA D 
foe ce:tding ani WRFI LE for writing. Because 
the BF-package considers the file open for 
reading only, c~lls to BFWEIT would result in 
an err::>r return. 

NAME1 ~AME2 are the two locations containing the BCD name 
of the file. 

BUFn is the beginning location of a 432 word 
buffer. Reading requires one buffer f::>r 
single buffering and two for double. Writing 
requires two buffers for single buffering and 
three for double. 

EBB is the location to which control will be 
transferred if an error is encountered either 
hy the file system or by the buffering 
rcu tines. 

READ - WRITE: 

MAD: BFREAD. (NAME 1, N'- ME2 ,A (M) ••• 1'1 ,ECF ,ECFCT, ERR) 

BFWRIT. (NAMEl.l.-NA ME2 ,A (li) ••• N ,ERR) 

FAP: 'l.S X SF READ ,4 TSX BFW RIT ,4 
rx H NAME 1 TXH N Aft E 1 
'IXH IAME2 TXH liAME2 
rxH A, , • n • T..l.J.1....~ , , ' n' 
'I XH E0F VH''"· ERB 
'I XH E~'I 



CTSS , 1"1TY"\·r-t 

1.2 U.LUC. ---- .&..!. --JC'~ \...l.Vll 
1 ~L £. 
1/ vv 

'I XH ERR 

B F H EA D ( B P W R I T) t r a n s m i t s N word s of d a ta f r om (to ) the 
c U[' r- en t bu f fer ass i g ned t o f i 1 e NAME 1 N A ME 2 
into (from) location A(N) throu:jh A(1). 

N(or 'n') is the ncmber of words to be transmitted. 

CLOSE: 

EOF is the location to which control is 
transfer-['ed if the end of the data in the 
file is rea=hed before N words can be 
transfer['ed to location A(N) through A(1). 
Fer writing this does not apply since RELLO: 
= o. 

EOFC'I is an integer variable into whi=h 
the numbe[' of words actually 
central was transferred to EOF. 

is placed 
read when 

MAD : B F C L CS • ( N AM E 1 , N A l1 E 2 , ERR ~ 

E RROBS: 

BFCLOS is used to close an active file. If NAME1 
NAME2 was a write file, the incomplete buffer 
will be added to the file before closing. If 
Nll'!l-;1 is 'ALL' and NAME2 is -0, all active 
files will be =lased. 

MAD: ERBCOD = BFCOD!. (0) 

FA P: TSX 
S'IO 

8FCODE,4 
ERRCOD 

BFCODE If called in the event of an error return, 
gives a non-zero code word (key below) if the 
error was de tee ted by the b ufferin:J routines. 
If the error was detected ty the file system, 
EBBCOD ~ill be zero, in which case the user 
may call PRNr!R or IODIAG to discover the 
nature of the error. 

1. 

2. 

reo many active flles - call to 
SFOPEH when ten files already were 
opened by BFOPEN. 

f"r 

Not enough buffers given - Call to 
BFOPEN to open a read (write) file 
pnd no (only one) buffers 
specified. 



C r S S P B C G RAM M E R ' 5 GU It E sect ion A G. 2. 10 1;66 4 

3. Attempt to (BF) read (write) a file 
not openei by BFCPEN. 

4. At tempt to ( BF) read (write) a file 
::>pened for wr itinSJ (reading). 

(END) 



Section i2j69 i 

Oli fila systew write-arounds to new file system 

In order to frcvide compatibility for programs (including 
m~ny commands) written for the old file system, a set of 
write-arounds has been written which map the old disk calls 
in to the new ~nes. 'Ihese are available as library 
subroutines, and OFerate in core B. Unfortunately, this 
m~ppin1 is necessarily imperfect. Following is a list of 
the more painful and obvicus discrepancies. 

1. There is no • FILDR. The U.F.D. (FILE) can be 

2. 

opened and read with the same calls as any other 
files. 

There is no double-buffering. 
.APPEND, and .ASIGN use only 
specified in the call (the one 
address). 

Calls to 
the first 
specified 

.SEEK, 
buffer 

in the 

3. It is not fOSsible to have more than one file with 
the same name. Therefore, a ::all to • ASIGN first 
deletes any file that already exists with the 
given name. 

4. It is ~ossib le to create a. file with a word 
of 0. No telling how this incompatibility 
show UF· 

count 
will 

5. Restrictions as to zero or non-zero 
relative addresses in C3.lls to • HEAtK/. WHITE 
fcllowing a .RELRW rather than .SEEK/.ASIGN have 
all been t:emoved. Anything is la~al. 

6. All files which are specifie1 to be written as Rl 
oL B2 will be written as read-only, prctected. 
Files which are created as rea:l-onl y, protected 
will be treated as R1. There are no files with 
the former restrictions of R2. 

A few conditions which fcrmerly caused errors and no longer 
do were considered important enough to simulata. WARRING 
sin:;e these err~r conditions are re<f,ognized by the 
wcite-arounds rather than by the file system, atte•pts to 
::1 ~in more inform at ion about t he er cor (e. g • v id P R N TE R ) w i 11 
be misleading and meaningless. 

1 • "R ELL DC too~.·· large" (;a uses a.n EO F return from 
WRFILE, but an erro~ return fro• .WRITE. 



CTSS PROGRAMMER'S GUIDE Section AG. 2. 11 12;69 2 

2 • A n F s r A r E c n a f i 1 e i n ~ :; t i ve ~ r i t e s t a t us g i v e s 
valid inf)rmation. For .FSTAT this results in an 
error return. 

Error returns and error codes constitute the area of 
greatest inequality. The Ftefix of an error return is no 
lon}er significant (i.e. if an error return is provided, the 
comment is always SUfpressed). Also error codes meaning 
"file not found 11 (5) , "too many active files" (2) , and 
"tr:ack quota exhausted" (6) are translated, but all other 
~rrors are mapped int:> the catch-all code 1 (illegal calling 
sequence). 

• APE ND 

• ASIG N 

.SEE I< 

• H ELR W 

.LOAD 

.DUMP 

• READK 

• WRITE 

• CLEAR 

.FSTAT 

• D LETE 
• ERASE: 

A Fproxima te Ma Ffing of Old Calls in to New 

FSrATE to check for existence of file 
OPEN for Writing 
EU F FER 

r: ELF IL previous copy 
OPEN for writing 
BUFFER 

OPEN for reading 
BUFFER 

OPEN for reading and writing 
BUFFER 

OPEN for reading 
RtFIL E 
CLOSE 

DEL FIL 
OPEN for writing 
WRF ILE 
CL~SE 

RtW AIT 

W RW AIT 

DEL FIL 
OPEN for writing 
W BFIL E n zeroes 
CLOSE 

F STATE 

DEL FIL 



CTSS fP.CGP.AMMER'S GUIDE S cct ion "(! "') 1 1 
n""•'••• 3 

• FILE CLOSE 
• EN DR D 

.RENAM CHFI LE 

• RESET RESETF 

.r~ILDR "Subroutine not found" 

Mapping of Modes 

Fila Craa tion (. AS IGN) 

Assigned ill~de Resulting mode 

Temporary Temporary 

Permanent Permanent 

Read-only, class 1 
Read -::ln 1 y, class 2 Re:1 d only, Pro tee ted 

Fila 'r~sting (. Fsr Ar) 

Actual m~de 

Temporary 

Read-Only 
Protected 

A 11 others 

Mode returned by .FSTAr 

Read only, class 1 

Permanent 

Nota that a write-~nly file will appear to a prograa 
.FSTAT to be permanent mode; the program may run 
jiffi=ulty if it then attempts to read the file. 

using 
into 

(END) 



CISS GuIDE sect ion .. ,. -. r\. .. 

ltu • ..leUI 

Change the mcde cr the name cf a disk file. 
CH MODE, BENAME, • RENAM 

To =hange the mode or the name of a disk file. 

To =hange mode: 
as library subrcutine: 

FAP: 

FCRT RAN: 
MAD: 

'IS X 
~E 

P-EE 

CHPIODE,4 
FILN AM 
MOtE 

A = CHMODE (FILNAM, MODE) 
A -= :HMODE. (FI LNA", MCDE) 

MODE is 0 fer temporary, 1 for permanent, 2 for 
cead only R 1, 3 for read only R2. (R 1 and R2 
are READ-ONLY, PROTECTED). 

A will be zero if successful or will contain the 
disk ercor code if the file cannot be found or 
changed. 

To changE name andjor mode: 
as core-B write around 

FAP: 15X • RINAM, 4 
0 P N F I L NA M , , NEWNAM 

To =han~e name: 
as library subroutine: 

MAD: A = RENAME. (FI LNA M, NEW ~AM) 
A= RENAME (FILNAM, NEWNAM) FCRTRAN: 

• REN AM replaces in the cucrent file jirectory 
file name specified by FILNA~ by the new 
located at ME WNA M by =alling CHFI LE. 
standard supervisor error procedure may 
followed. 

the 
name 
The 

be 

OPN specifies the mode of NEWNAM. ~ E is 
temforary, PON is permanent, PTW is R1, and 
PTH is R2. (R1 and R2 will be treated as 
READ-ONLY, PROTECTED files in the new system). 



CTSS FBCGRAMMER'S GUICE Section AG.3.01 11/65 2 

RENAME has two tcies at ~h~nging the name of FILNAM 
t::> NEWNAM. If the first try fails because a 
file by the name of NEWNAM alrea:l y exists, an 
attempt is made to delete this file with a 
call tc the library subroutine DELETE. (if 
the ficst try fails for any other reason, A: 
will contain the error code fro11 CHFILF). If 
the old version of NEWNAM cannot be deleted, 
A: will contain the error code from DELETE. 
When the old file NEWNAM bas been deleted, the 
second try at renaming FILNAPi is made. If 
this fails, AC will contain the error code 
from CliFILE. 

If BENAM! is successful the old file is 
the new name ani the mo:le is uncnanged{ 
return from RENAME, AC will contain zero. 
RENAME is unsuccessful, AC will contain 
err::>r code. 

given 
upon 

If 
the 

RENAME will not change the name of a linked 
file. If FILNAM is linked, an error code of 
octal 40(dec. 32) is returnei in the signed 
AC. 

(EN D) 



crss '1""1' n ,...,... n • u u '1:· 1"""'t. •-. 

r 11 \.i\., n tt n n c. n- ~ 
,..r, T~1':' 
\.JU .L U C. 

1 1 "t:.. c.. 
I'/ VJ 

1 
I 

D~lata file fr~m file directory 
DELETE, ERASE, .DLErE, .ERASE 

To delete d file from a directory. 

To delete a file: 
core-B write around: 

F A P : 'IS X • D L E TE , 4 
P~ E FILNAM 

as library subroutine: 

MAD: EXECU7E DELETE. (FI LIA,.) or A = DELETE. (PILNAM) 
FCRT RAN: CALL DELETE (FILNAM) or A= DELETE (FILNAM) 

.DLETE calls the supervisor entry DELFIL. The FILNAM 
is removed from the =urrent fil~ directory and 
the tracks are made availatle for other use. 
Prctected, read-only, write-only, or private 
files may not te deleted by this routine. Any 
error will invoke the supervisor error 
procedure. 

DELETE calls the supervisor entry DELFIL If the 
file is linked, a message will be typed asking 
if the file should really be :ieleted. If a 
'linked• file is deleted, tbe link and file 
name still exist in the =urrent file direct~ry 
but the file to which they point is deleted. 
If the file (whether linkea or not) is 
protected, read-only, write-only, or ~rivate, 
a message will be typed. Only tQe author ~ay 
delete a protected file. 

Upon return, if the file is not 1eleted the AC 
and A will contain an I/O error code, 
otherwise the AC and A will be zero. 



C T S S F B C G RAM M E R 1 3 GU I D F Section AG.3.02 11;65 2 

To erase just the name: 
as cor~-E write around: 

r S X • E R AS E, 4 
P~E FILNAM 

as library subroutine: 

MAD: EXEClJrE ERASE .. (FILNAM) or A = ERASE. {FILNAM) 
FOR Til AN: ::ALL ERASE (FI LNAM) or A :% EBAS E ( PILHAM) 

EBASE is now the same as DELETE (.ERASE = .DLETE). 
In the earlier version of CTSS, as a result of 
a call to ERASE, the tracks were net made 
available for ether use and the user's track 
count was not updated until the next time the 
disk was leaded. 

(E NO) 



CTSS PROGR!~MER'S GU!DE 

Switch current file directory 
COMFIL, CJMFL, 1SSFIL, USRFIL 

6/69 1 

To allow the user to swit=h between his home file directory, 
~ommon file directories associated with his problem number, 
or a public file directory. 

To switch t~ a common file directory: 
As supervisor or library entry: 

CAL N 
rs X COM FIL, 4 
P~E BUSY 

0 ptiona 1: 

COMFIL TI~ =HCOMFIL 

N contains the integer of 
directory desired. Zero is 
file directory. 

the comMon file 
the user's home 

BUSY It is no longer possible for a file directory 
to be "busyn but the =a lli n~ sequence is 
preserved for compatibility. Contrcl will 
always .return to 2,11. 

Unlike the old file system, a=tive files are 
now not reset when a directory switch occurs. 

As library subroutine: 

MAD: COMFL.(N) or EXECUTE CJMFL.(N) 
FORTRAN: CALL COMF L (N) 

To switch to a public file directory: 
As supervisor or library entry: 

rsx 
- PAR 
- PAR 
- PAR 

rssFIL,4 
PROB -
PROG -
LOC -

optional (TIA =HTSSFIL) 

TSSFIL switches the user to the file directory named 
by PHOB PRO~. 'Ihe user is parmi tted to switch 
into any of the following directories: 



CfSS fRCGRAMMER'S GUIDE S E ct ion A G. 3 • 0 3 6/69 2 

1) his horne file directory 
2) any public file dire::tory 
3) his cur-rent directory 
4) any common file on his problem number, 
he has common-file privilege 

Any other v~lues for FRCB ani FROG will result 
in an error-. If the third aLgument is 
SUfplied, a transfer will be made to LOC; 
otherwise, the supervisor will print an error 
message and pla:=e the user in DORM NT status. 

If the arguments PRCB ani PROG are not 
supplied, the user will be switched to the 
system public file clire:;tory, M 1416 CMFL04. 
This dicectory is composed of links to certain 
files in the system file director:y which are 
in read-only, p.rotecte:i mo:ie. rhe record 
:juota of the TSS FIL directory is 0, so that 
t he use r ma y n c t c rea. te f i 1 e s a f te r a c a 11 to 
rssFIL. 

r s x us R F IL, 4 optional (TIA =HUSRFIL) 

USBFIL restores the user to the directory he was in 
before the ca 11 to TSS F IL. If TSSFIL was not 
called, USRFIL does nothing. 

Note: the library entries, TSSFIL and USRFIL, 
may be called from MAD or Fortran programs. 

(END) 



CTSS PROGR~MMER'S GUIDE 

Query file status 
F STAT, • FS T A'r 

Section AG. 3. Of! 

To obtain the mod~ and word count of a spe=ified file. 

As suFerviscr or librar-y entry: 

T!:iX 
P~E 

.F STAT ,4 
FILN AM 

optional (TIA 

As library subrcutine: 

MAD: A = PS'IAT. (FILNAM) 
FCRT RAN: A = FST Ar ( FILN AM) 

=H.FS'IAT) 

.FsrAT If the file is not found, the superviscr disk 
error Ftocedure is initiated. 

Upon return from FSTA1, the AC or A will contain zero 
if the file was not found. Otherwise, it will 
contain a word of the form OPN WDCNT. 

OFN is the mode of the file, PiE is temporary, PON 
is permanent, PTW is Rl, PTH is R2. 

WDCNT (the addres5 and tag) is the word count of the 
file. 

(E RD) 



C ·r S S I= B CG RA M ME R' S G fJ T C E' S~ction AG~-3~~'1 

G~t tha name of next file 
GTNAM 

If i program creates an unknown numter 
t uem sequential Frimary n::t mes, and uses 
list, it is necessary to be able to 
available primary nan:e. 3TNAM performs 
n~xt available name. 

As library subroutine: 
FAP, MAD or FORrRAN 

A = GTNA~. ($bCLASS$) 

of files, assigns 
them in a push down 
determine the next 
tha search for the 

GTNAM searches fer the first file which does not 
exist in the series of prim:J r y names ••• 00 1 
thi:"u ••• 999 with secondary name CLASS; then 
tries to delete the following file, if any; 
and retur-ns in A the fii:"st BCD primary name 
available in the series. 

(END) 



c·rs S F B C G HAM M E R 'S GO I r! 

Drop files from active status 
• RESET, RESETF 

section AG.-3.06 11;65 1 

To remove all usee's files in active status from the 
supervisor's list of active files. 

Coce-B write around: 

TSX .RESET ,4 

.BESET will remove all the user's a::tive files from 
the active status. All files in active write 
status will be lost. All temporary files in 
active read status will be deleted. This call 
will not remove the user •s a=tive files from 
the library su troutines• list of active fi }es. 

A .s s n p ~ r vi so r o r 1 i br a r: y en t r y : 

TSX RESEr P, 4 optional (TIA =HRESETF) 

RESETF will reaove all the user's active files from 
the active status. All files in active writ~ 

status will be lost. All temporary files in 
active read status will be deleted. This call 
will not remove the user's a=tive files from 
the libcary subroutines' list of active files. 

(END) 



Sect.i on AG. 3 _ 0! 12/66 1 

File status, change name or mode, or delete 
CHFILE, DELFIL, FS'IA'IE, STORGE, UPDATE 

With the new I/O system, as with the old, it is possible to 
~nange the mode or name of a file, to delete a file, or 
query the system about the status of a file. If the entry 
in tha current file directory is a link, these routines 
r~f~r to the actual file not the link entry. 

Change: 

CHFILE. (iGLDNM1$,iOLDNM2$, NEWMOD , $NEWNM1$ , $NEWNH2.$ ) 

OLDNMl OLtNM2 is the name of the file which is to be 
changed (right adjusted, blank padded). This 
file may not te in active status at the time 
of the change. 

HEWMOD is the desired mode of the file. 

NEWNMl NEiNM2 is the desired name of the file. 
NEWNM1 NEWNM2 may not be the same as OLDNM1 
OLDNM2. ro change just the mode, tbe new name 
must be specified as -0. 

Error codes: 

Delete: 

03. Attempt to change M.F.D. or U.F.D. file 
0 4 • F i 1 e not f o u nd in U. F • D. 
05. 'LINKED' file not found 
06. Linking depth exceeded. 
C7. Attempt to change 'PRIVATE' file of another 

user 
08. Attempt to change 'PROTECTED' file of another 

user 
09. Record qucta overflow 
1 0 • Fi 1 e al r e cl d y ex is t s W it h D a me 1 N E W N M 1 N E WN M 2 1 

11. Machine or system error 
12. File in active stat us 

DELFIL. (S NAME 1$,$ NAME2!) 

DELFIL will delete the file NAME1 NAME2 from the file 
directory and the space is immediately 
available for use within the record quct~. 



CTSS FRCGRAMMER'S GUICE section AG.3.07 12/66 2 

Error codes: 

03. Pile n~t found in U.F.D. 
04. 'LINKED' file not founJ. 
05. Linking depth exceeded 
06. File is PROTECTED, PRIVATE, READ-ONLY, or 

W Bir E-ONLY. 
C 7 • Machine o I s 1 stem e r r or 
08. File in active status 

Status: 

FSTATE. ($ NAMEl$,$ NAME2$,A(8) ••• 8) 

Upon return, the array A will contain the fcllowing 
in formation as integers: 

A(8): length of file in number of woris 
A (7 )= MODE ::>f file: MODE is negative and the 'OR 1 

modes if the O.F.D. entry is a link. 
A (6 ) = S T A r U 5 ::> f f i 1 e ( 1- 4 ) 
A (5): DEVICE on ~hich file resi:led ( 1-3) 
A(4)= Address of next word to be read from file 
A (3)= Address of next word to be written into file 
A(2) = Date and time file was created cr last 

modified, format of u.F.D. 
A ( 1) = Date file w~s last referred to and 'AUTHOR' :>f 

f i 1 e , f ::> r m at o f 0 • F. D. 

STArus is 1 
2 
3 
4 

inactive 
open for reading 
open for writing 
open for readin~ and writing 

(N.B. "Open" means "opened by any user", !!2! merely "opened 
by a caller" • ) 

DE VICE is 1 
2 
3 

Low speed 3. rum 
tisk 
'Ia pe 

Error co des: 

Si za: 

03. Pile nat found in U.F.D. 
0 4 • ' LINK ED ' f i 1 e not f o un d 
CS. Lin king depth exceeded 

SrORG.E. (DEY ICE, ALLOT, USED) 

STORGE •ay be used to determine the number of records 
allotted and used on ~ parti=ular device_ by 
the files of the current file directory. 



CTSS AG.3.07 

ALLOt and USED are integer v:1riables 
return, will contain the number 
allot ted and used, re spe cti vel y. 

Error codes: 

C3. Illegal DEVICE specified 
04. Machine or System error 

current UFD: 

UPDATE. 

1?/~~ ..... , -..., 3 

which, upon 
of records 

UPDATE causes the I/O SJStem to replace the user's 
u. F.D. (FILE) and the track usage table on 
the disk with the up-to-aate versions which 
are maintained in core-A. The file system 
does this updating automatically and, 
therefore, UPDATE shouLl not be called by the 
user. 

03. Machine or System error 

(END) 



CTSS co~-~.;,...,. Jt.ro II f\1 
JC'"''-4VU nue ... ev• 

Historic File System Error Procedure 

The historic supervisor disk control routine 
standard error pr~ced~re as well as a handle by 
~ser may SUfflY his cwn frocedure. 

provided a 
which the 

Standard: 
If a disk error occurs and the 
specified an error return, the 
type: 

user ·has 
superviso·r 

not 
will 

ILLEGAL CALL TO XXXXXX. NO EBRCB RETURN SPECIFIED 

and then call OORMNT so that debugging tools may 
be used. 

User• s O{:tion: 
The user may add another argument to the calling 
sequence of any disk supervisor or library entry, 
in which he specifies the location of his error 
routine. If the prefix of this argument is P~E, a 
diagnostic will be printed and control will be 
transferred to the specified location with an 
error c~de in t be AC. If the prefix of the 
argument is M~E, the di~gnostic will not be 
Frinted but otherwise action will be the same as 
F-!E. The error codes are: 

Illegal calling sequence 
Too many active files (.G. 10) 
user not found in Kaster File Directory 
Available Sface on module exhausted 
File n~t found 
Allotted track quota exhausted 

P!E 1 
P~E 2 
P~E 3 
P!E 4 
PiE 5 
P~E 6 

The error code of 1, ~Illegal calling Sequence" may result 
from any of the fallowing error conditions: 

a. Illegal call to the .WRITE routine ; tbis occurs 
if the call to .WRITE references a file which is 
in active read status, or a file in relative 
read-write status where a relative address is not 
specified, or if a relative address is srecified 
for a file not in relative read-wri ta status or an 
R1 mode file in relative read-write status. 

b. Illegal call to the .CLEAR routine; 
if the call references a file in 
status ~r relative read-write status. 

this occurs 
active reacf 



CTSS PROGRAMMER'S GUIDE Saction AG.4.01 Page 2 

c. Illegal call to the .FILE routine; this occurs if 
the call cefecences a file in activa read status. 

d. Illegal call to the .READI< routine; this occur-s 
if the call r-eferences a file not in active read 
status, or if a relative adiress is specified for 
a f i 1 e n :> t i n r e 1 at i v e r e ad- w r it e s t a t us • 

a. Illegal call to the • ENDRD routine; this occurs 
if the call referen~es a file in neither active 
read nor relative read-write status. 

f. Relative address too lacge for file; this occurs 
if an attempt is made to write into a relative 
address gceater than the length of the file 
referred to. 

J• File w~rd count ze4o; this occurs on a call to 
• D U M P w i t h a w c rd co u n t of · ze r o , or a call to 
• FILE wher-e no words have been writ ten; the disk 
routine is so organized that a file with a zero 
word count may not exist. 

h. Tried to rename read-only class 2. 

i. Attempt to delete file in read-only mode. 

j. File NAME1 NAME2 is not an active file; this 
occurs if a call to .WRITE, .FILE, .READK, or 
.ENDRD references a file not in active status. 

(END) 



C'l'SS f RCG RA~M ER 1 5 GUIDE s e ct ion ! G = u ., 0 2 

Library disk error procedure 
SET E B R , S N A F , R E C OU P 

Th~ library disk subroutines provile ~ standard error 
pro~edure as well as handles by which the user may provide 
his own error prccedure. 

Tha library disk subr~utines use a com•on routine which 
maintains an active file table. If ~n unexpected error 
o~~urs, the offended routine calls SNAP which prints an 
error message and calls RECOUP which in turn calls EXIr. 
EXIT is able by means of the active file table to froperly 
CLOSE any active wx:i te files ~nd s:t ve ::ore so that the user 
m:t y th~n use debu·-J facilities. RECOUF and SETEBR are 
provided sc that the user m:ty supply his own error 
pt·o::ed ure. 

SETEBR: 
MAD: 

FCHTBAN: 
FAP: 

EXECOrE SETERR. (-RETURN-,-ERROR-) 
CALL SEtERR (-N-,-ERRCR-) 
rsx 5 Er ERR, 4 

- P HE R E 'I URN-
-P ~E ERROR-

SETERR m3difie5 SNAP so that if SNAP is called, control 
will be transferred :tccor1in1 to RETURN wi~hout 
disturbing any machine conditions. 

HETUBN is the error return location to which the 
librar_y disk routines should transfec for 
unexpected errocs. No message will be px:inted 
f rem 5 NAP. 

EBRCB is the location in which 
accumulator will be stored i.~., 
code fr~m the disk routine. 

the logical 
the error 

N Should be set by an ASSIGN stateaent in 
Fortran prcgrams in order to provide the error 
retuL·n. 

It only one argument is provided to SETERB, it will be used 
as the error return aryument. 

If no argument is provided to SEfERR, 
procedure will be reinstated. 

the standard error 

Every call tc SE'IEHR supercedes the pr-evious one. 



CTSS FRCGRAMMER'5 GUIDE s e ct ion A G • 4 • 0 2 9j65 2 

RECOUP: 

SNAP: 

CALL RE:OUP (ER:OOE, IR4 ,-IND-) 

RECOUP may be SUFplied by the user 
provide his own procedure. 
is provided, the library 
merely calls EXIT. 

if he wishes to 
If no user RECOUP 

version of RECOUP 

ERCJDE contdins the logical AC frcm the offended disk 
routine, or the error code from ( IOH) • 

E r tor codes: 
1 Illegal control character in format 

statement. 
2 Illegal character in data field. 
3 Illegal character encountered in octal input 

data. 

IR4 (decrement) contains the contents of index 
register 4 at the time of the call to SNAP. 
It should be used to reset index register 4 
bef~re returning to the I/O routine. 

IND contain5 the contents of th€ sense indicators 
at the time of the error in the disk routine. 
This argument is not present in the call from 
(IOH). 

Sense indicators contain (decrement) the return 
locaticn if processing is to be continued. 

The library disk subroutines normally supply SNAP 
as the error exit to the supervisor disk rcutines. 
The call is,therefore, a TRA instead of a TSX and 
the AC c~ntdins the disk error code. 

If SNAP has not been modified by SETEBB, it will 
call PRNTER to print the standard error message, 
t he n F r in t the f o 11 o win~ · me s sage and c a 11 B E C au P. 

XX CALLED SNAP FRO~ ABSO~UTE LOC NN. RECOUP 
CALLE[. 

XX is the name of the disk Loutine in which the 
error occurred. 

NN is the absolute octal location of the call to 
SNAP. 

(END) 



s e ct i c n A G • 4 • 0 3 

End-of-file Frocedure for library subroutines 
EOFXI'r, SETECF, WRDCNr 

EJFXIT provides a common end-of-file procedure 
lib~ary subroutines which read tape or disk files. 
is supFlied a handle whereby he maJ supply 
~nl-of-file pr3cedure if he wishes. 

for all 
'I he user 
his own 

Th~ standard 
~ n::= oun taring 
calls EXIT. 
thus modify 
rather than 

E3 FX IT: 

library procedure is to call ECFXIr upon 
an end-of-file. EOFXIT prints a message and 
!he user may call SETECF before reading and 

EOFXIr to return to the user's eof procedure 
c a 11 in g E XI T. 

Th2 library routines call EOF XIT by: 

r S I E 0 FX IT , 4 
PnE FILNAM 

EOPXIT prints the message "END OF FILE READING NAME1 
NAME2 11 • It then calls EXIT, unless it has been 
modified by SE'IEOF. 

SETEOF: 

FAP: rsx 
-P~E 

-P~E 

-P~E 

MAD: 

S E'r EO F, 4 
EOF
FILNlt1-
FILNM2-

F3RTRAN: 
!I E CUr E S Er EO F. (- EO F-, - F IL N M 1 - , - F I L lUt 2- ) 
C A L L SE TE 0 F (- N- , - F I 1 N M 1- , - F I L N PJ 2-) 

SE'fEO F will modify EOFXIT to return to location 
in the user's program if an end-of-file 
enc~untered. If thece are no arguments, 
standard ecf procedure is restored. Each 
to 5trEOF supercedes any previous call. 

EOF 
is 

the 
call 

ECF is the location of the user's end- of-file 
prcced ure. 

N must be set by ~n ASSIGN statement in Fortran 



C rs S f R C GRAMMER' 5 GU IDE s e ct ion A G • 4 • 0 3 Page 2 

i.e. ASSIGN 1 TON 
G 0 'IO N , ( 1 ,2) 
ASSIGN 2 ro N 

2 eof pr-ocedure 

FILNM 1,FILNM2 are the lo::ations in which NAr-!E1 and 

WH DC N'r: 

NAME2, respectively, will te stored by EOFXIT. 
If FI1NM2 is missing, the lo1ical tape number 
will be stor-ed in FILNM 1. If both FILNM 1 and 
FILNM2 are missing, ~ sin~le argument will be 
assumed to be EOF or N. 

FAP: 'IS X wRD: NT ,4 or TSX W RDC~T ,4 
~E LOC STf'J LOC 

M A D or F 0 R 1 R A N: C A L L W R DC NT ( l C C ) 

WRDCNT can be called cnly after an end of file was 
enc~unter-ed by BREAD or VREAD. 

LCC will contain the number of words transmitted by 
BREAD as a right adjusted integer. If WRDCNT is 
called by a FoBrRAN program, the integer will be 
in the decrement of LOC. 

(END) 



C'l'SS "'n~,...n•uu'r:"ne(" r-nvunnnnun·.:> r----~.:. -
... H::I., \.4VU 

a,-. II " It nu ..... v-. 1 
I 

Terminal procedure. 
EXIT, EXITM, CLKOU1, ENDJOB, DUMP, PDUMP 

To provide a co1mon routine for the normal logical 
t~rmination of all pr~grams. The option is provided for 
placing the frogram in DOBMNT status so that post mortem 
debugging may be used. 

EXIf, CLKOUT and ENDJOB are synonomous. 

EXEC UlE E XI 'I. 
EX ECUr B CLKOUT. 
EXECUTE ENDJOH. 
END OF PROGRAM 
END OF P UNC !I OM 

The message nr.xrr CALLED. FM MAY BE TAKEN" will be 
printed. EXIT calls CLOUT to close all active 
files. If no library routines calling the file 
system exist in the program, a dummy CLOUT will be 
loaded fr:>m the li~rary with EXIT. 

EX ECU :rE DO ft P. 
BXEC U'IE PO U"P. 

The exit message will be printel with the name 
DUMP or PDU!!P substitued for EXIT. 

Any of the above calls cause all active 
defined by library subroutines to be 
closed and then a transfer to DOR"IT. 

EX E CU r E EX IT M • 

files as 
properly 

The message "EXIrM CALLED. GOODBYE" will be 
printed; active files will not be closed; 
transfer will te to DEAD. 

(EN D) 



CTSS flHJCRA~~EP.'S GU It! .s e ct i c n A G • 4 • 0 5 

Eri'or Exit from Math Library Routines 
LD U MF 

LDUMP is a subprcgram to which some library math routines 
tr~nsfer upon enc~untering an error. The version of LDUMP 
which is in the library is a call to EXIT • but the user- may 
provi1e his own ver-sion of LtUMP to provide recovery action. 

The calling sequence to LDUMP which is used by the math 
routines is 

FAf: CLA ARG1 
LDQ ARG2 
rsx L tUMP, 4 
P-2E NAaE 
TRA IN TC REFEAT ROUTINE 
rRA OUT TO EXIT FROM ROUTINE 

IN LXD I R4, 4 
iRA 0,4 

our LX t !R4, 4 
'IRA 1 ,4 

ARG1 ccntains the first irgument to the math 
library subprogr-am. 

ARG2 contains the second ar-gument, if any, to the 
math library routine. 

N AM E c c n ta ins 
routine. 

the BCD name of the offending 

IN is the return of 2,4 which the proqrammer 
sh~uld use if he is writing his own LDUMP and 
wishes tc repeat the offended subprogram 
after he has corrected the error. 

cu·r is the return of 3, 4 which tbe progra mmec 
should use if he wishes to return tram the 
offended routine without repeating its 
calcula ticns. 

(E NO) 



CTSS nnn,..n' uuo"h•.~ rouuntl nn~.:~ o- J 
71 ~ ll () e:... 
"'_, • ....,. • ..., v 

, ") ~e:... a 
' ... , V' .I 

Current I/C system error procedures 
IJDIAG, FERRTN, PRNTER, PRDIAG 

Thare are three different ways that errors from the r;o 
system can be handled: First, if the user does nothing, the 
I/O system will print a standard message and call DORMNr. 
Second, the user may call FERRTN to establish a single 
g~naral error return for ~11 r;o system errors. Third, 
avary call to the I/O system will accept two additicnal 
arguments which specify an error return an1 a location into 
whi=h the error code will be stored. These arguments afply 
only to the call in which they appear; that is, if a general 
raturn has been specified, it will be overridden for and 
only for calls in which error return ~r~umants occur. The 
subroutines included in the I/O (or file) system are those 
listed in Secticn AD. 2. 

1. Standard: 

If an error is encountered by the I/O system 
and the user has not supplied an error return 
via FERRrN or via the optional additicnal 
arguments to the I/O system subroutine call, 
the I/O system will type a standard message 
and call DORMN1 so that debuggin1 tools may be 
used. rhe typed message will include the 
information available from IODIAG. Open files 
will not be closed. 

2. Single return: 

MAD: OL DERR = FERRTN. ( ERRLJC) 

FAP: rsx 
P-2E 
SLW 

FERRTN,4 
ERRLOC 
OLDER 

(nota FEE, not TXH) 

FERRTN sets the st~ndard I/O system error return to 
be l3cation ERRLOC. 

EBBLCC is the location to which control shculd be 
transferred if the I/O system detects an 
err~L. Upon entry to ERRLOC, index register 4 
will contain the value set by the call to the 
I;O system that caused the error to be 
detected. ro continue execution by ignoring 
t he I 10 c a 11 , t ra nsf e r to 1 , 4 • To con t in u e 
executi)n ty repeating the l/0 call, transfer 



CTSS PROGRAMMER'S ~UTDE S~c;tion AG.4.06 12/69 2 

CLDEBR 

to D, 4. 

If EBRLOC i5 zero, the standard I/C error 
Ftccedure will be reinst3.ted. 

U F c n re t urn f r c m F E R R TN , t he A c w i 11 c on ta in 
the p~evious setting of the system error 
retut:n. .Each call to FERRfN supercedes any 
previous ca 11. 

3. Individual returns: 

Each call to the I/C system entries will 
accept two additional arguments at the end of 
the call. The first is the location to which 
control is to te transferred if an error is 
encountered by the I/C system. The second, if 
specified, is the location into which the 
error code will be pla~ed by the I/O system. 

4. Diagnostic information: 

IOD IA G. (A (7) ••• 7 ) 

IODIAG may be called to obtain spe=ific information 
about the I/0 system error. Upon return, the 
array A will cont~in tha following 
inf:>rmation: 

A(7)= L:>cation of call causing the errcr 
A (6)= s:o D3.me of entry resultin~ in error 
A ( 5) = Ec r or co de 
A (4)= Input/Output error code ( 1-7) 
A(3) = NAME1 of file involved in error 
A (2)= NAME2 of file involved in error 
A(1) = L:>cation of file system where error was 

f:> und (of no use to user) 

5. Frinting of diagnostic: 

A. subrcutine: PRNTER. (-MASK-,-FCN.-) 

B. Command: I?RNTER -MASK-

PRNTER The subroutine PRNTER may be called attec an 
errJ~ in the I;O system in order to print the 
information that is availatla from IODIA~. In 
othec vJrds, PRNtER is a routine wbich calls 
IOtiAG and formats and prints the information. 
For usage cf the comman1, see AH.11.01. 

MASK If specified, bits in ~ASK 

p~inting of different parts 
::all for the 

of the OUtfUt 



c-",... ~.: -- AI' II (~t:._ 
,Jt:;.., \..L\..11& n~.-. • VV 

1').,£:() ., 
1£, V:7 J 

message. ~he mess~ge parts and their 
corresp~nding tits ace: 

200 the word 'ERROR' 
100 numeri~ error code 
040 diagnostic 
020 file name 
010 routine name 
004 location ~allad from 
002 file system location 
0 01 carriage ret urn 

If MASK equals zero or is not given, default 
MAS~ of 375 is used. 

FCN. If a function name is given, than instead of 
printing, PRNTER calls FCN. by 

EX ! CU r E F C N. ( BU f F, Z ) 

where Z is the highest subscript of the 
array BUFP, ~nd BUFF(Z)... EUFF(l) 
contains the (BCD) message which would 
other~ise h3ve been printel. The called 
function could then, for example, write 
the errcr mess~ge into a file and 
continue execution. 

For the benefit of FAF subroutines, the 
calling sequence is in fact 

rsx FCN, 4 
T XH B,, 1 z 1 

rxu =z 

where z = message size, B = BES location of 
me~sage buffer. 

C. Subroutine: PRDIAG. 

PRDIAG will format and print the information supplied 
by IO£IAG. No descriptive diagnostic is 
prcvided by PROIA~; it is offered mainly for 
those situations where core space iE at a 
premium. 

Standard error codes: 

rhere are a fe~ standard error codes which may 
be returned from any of the I/C system calls~ 



CTSS PHOGHAMMER'5 ~UIDE Section AG.4.06 12;69 4 

001. Illegal calling sequence or Protection 
violation 

002. Unduth~rized use of priveleged call 
100. Error r·eading or writing U.F.D. or M.F.D. 
1 0 1. U. F. c. or M • F. D. not f c u n d, Machine error 

Input;cutFut error codes: 

In many of the write-ups of the calls to the 
I;O system, one of the possible error codes is 
labeled Inp~t/Output error. For the most p~rt 

these errors ate de tee te:i only after the I/O 
has been completed and will, therefore, be 
refOLted one call late. The actual error may 
be diagnosed by the value of A(4} after a call 
to IODIAG. 

1. Parity errcr readiny or writing file 
2. Fatal error reading or writing file, cannot 

continue 
3. Available spa.ce exha.uste:i on this device 
4. rape file not mounted or not available 
5. Illegal operation on this device 
6. Physical end of tape sensed while writing 

or 
L3gical End of tape of tape passed trying to 
Ofen a file 

or 
End of tape file encountered unexpectedly. 

(E NO) 



~rn<-•c non~u"I.MMii'DtC ~rlTf\14' 
'-" .L J U L- L\. V UL\ C1. &.Ill ..... L\ -.1 '-"' U 4.&1 L.l Se~tion AG.5.01 

Write BCD pseudc tape with format ~on version 
.PUNCH, .PNCHL, .TAPWR, (S~H), (STH), (STH.l'l) 

3/65 1 

The MA 1> and FOH t·RA N s:o tape and punch statements are 
:ompiled as calling se1uences to litrary subroutines. rhese 
su brou tines then simulate the writing of tape files by 
:illing the library disk routines. 

MAD: PUNCH FOHMAT FMT, LI S'I FAP: TSX .PUNCH,4 
fU NCH ONLINE FORM A 'I FM T, LIST TSX • P NCH L, 4 
WRITE BCD TAPE N, FMT, LIST TSX .TAPWR,4 

F8 R 'fRAN: PUNCH FM.r, LIST TSX ( SC:H) , 4 
WRITE 0 UTP UT TAPE N, F MT, LIST TSX (STH), 4 

The FAP calling sequence GOmFiled for MAD pro1rams is ~f the 
form: 

TSX .PUNC:H ,4 or TSX .TAFWR,4 
STR N 

S'lR Fri'I, ,DIR or STR SYMTB,DIR,FMT 
OPS 
sra LISr,,ENDLST 
OP S 

sr R 0 

Tha PAP calling seguence compiled for FORTRAN programs is of 
the form: 

CAL N 
'ISX (S'IH) ,4 
PZ E Ff!T, , 5 i IT C B 
OPS 
LDQ LIS r 
STR S W'l 
OPS 
T~l (FIL) ,4 

.PUNCH, .PN:HL, and (SCH) create or ~ppend t'J a pseudo 
tape line-marked file named • TAPE. 3 

• T APW R, (ST H) , and (ST HM) create or append to a pseudo 
tafe line- m~ r:ked file named .TAPE. In I 

N contains the number of the pseujo tape to be 
used (deccement for FORTRAN) 

CFS may be indexing instructions. 



CTSS PROGRAMMER'S ~UIDE Se ~ ti on AG. 5. 0 1 B;65 2 

SWITCH is zero if the form~t is storel backwards and 
non-zer::> if the format is store::! fcrward. 

LIST.,., ENDL.s·r :t.re for stand:i r:l list processing (see 
!1 ov E 1 , 2 I 3) • 

DIR If zero, the format is stored forward. If 
one, the fcrma t is store:i ba::;k ward. 

SW'I if zerc with I format, the value is taken from 
the deccement of location liST. If ncn zero 
with I torm:tt, the value is taken from the 
address ~f location LIST. 

SYMTB in a MAD call, refers to the start (bottom) of 
symbol table foi:' this routine. 

(FIL) provides t:lank padding; 
c ha ra c te r s a nd with ( s TH) 

w it h ( SC H ) to 8 0 
to 132 characters. 

Disk errors will evoke the standard library 
disk error procedure and format errors call 
RECOUP. 

(E NO) 



CTSS PNOGRAMMER'S 3UIDE Se~ ti on £~G. 5. 02 

R~~j BCD pseud~ tdpe with format conversicn 
.TAPRD, (TSH), (fSHM) 

MAD and FORTRAN ECC tape cead statements comFile as calling 
sequences to libiary subroutines whi~h in turn call the 
library disk rJutines to cead pseudo tape files from disk. 

MAD: READ BCD TAPE N, F MT, LIST 
FAP: rsX .rAPRt,4 

S'IR N 
SfR FMT,,CIR or STR SYMTB,DIR,F~T 

OP S 
S r R LIS r,, EN DLST 
OPS 
S'lR 0 

FORTE AN: READ INPU r rAP~ N, FM T, LIST 
FAP: :AL N 

TSX (TSH) ,4 
P~E FM·r,, SWITCH 
OPS 
S'IR 
sro LISr 
OPS 
rsx (RTN),4 

(TSH) and (rSHM) are synonymous. 

(TSH), (TSHM), and .rAPRD read records from the disk 
file • il\ PE. n according to the format and 
list. The file may be line-marked or fixed 
length of 14 wcrds. 

N contains the tape numter (decrement for 
('ISH) ) • 

OPS may be indexing instructions. 

SWITCH of n~n-zero indicates the format is stored 
forward. 

DIR If zero, the format is stored forward. If 
one, the format is storad ba~kward. 

LIST,, ENDLST are st:tndard LIST processin:J (see MOVfl). 



C '1' S S F R C G R A M M E R ' :> GU I C .E S e ct ion A G • 5 • 0 2 9;65 2 

SY~r E in a MAD call r-efers to the start (bottom) of 
the symbol table for this routine. 

(EN D) 



C r S S f P. C G R A~ M 1:: P. ' 5 GU I .C E Section AG.-5.03 

R~a1 and w~ite binacy pseudo tape. 
(S'ftl), (TSB), (WLR), (RLR) 

Pt'lOP - - ~-

FORTRAN p~og~ams which use tina~y tape statements may be 
compiled as background and run ~s fore~round since the 
lib~ary subroutines will simulate the tapes as disk files. 

The sub~outine .RBIN called by binary t~pe statements in a 
MAD or MADTRAN translated progcam is not currently available 
in the library. 

F 0 RT R A N : W B I r E T A P E N , L IS T 
FAP: CAL M 

r S X ( S T B~\ , 4 
OPS 
LDQ LIS r 
STR 
OFS 
rsx (WLR),4 

FORTRAN: READ TAPE N, LIS'!' 
FAP: CAL N 

rsx (TSB),4 
OPS 
srR 
STQ LIST 
OPS 
'ISX (RLR) ,4 

N contains in the decrement the number of pseudo 
tape. 

CfS may be indexing instructions. 

(TSE) dnd (STB) read or write the number of vcrds 
Sfecified in the LIST from the pseudo tape 
file .'IAPE. 'n' t:y calling BREAD or BWBITE. 

(END) 



CTSS fRDG~AMM!:R 1 S GUIDE SP-ction AG.5.i.)4 

Pseudo tapes; backspace, wcite end of file, rewind 
.BSF, .BSR, .E!F'I, .RWT, (BST), (EFT), (RWT) 

Paye 

MAD and FORTRAN f~ograms which refer to tapes are assigned 
:iisk space which is used to simulate the tape. These pseudo 
tip~ files may then be ceferred to by the standard MAD and 
FORTRAN statements which comfile as =~llin1 se1uences to the 
~ppropciate libcacy subroutines. These library subroutines 
then simulate the functions as far as possible on the pseudo 
t-1 p~ files. 

The disk pseudo tape files may not be backspaced and 
th~r~foce the backspacing sutroutines do nothing but FLint a 
console message "BACKSPACE TAPE IGNORED". 

MAD: BACKSPACE FILE OF TAPE N 
BACKSPA:E RECORD OF TAPE N 
ENt OF FILE TAPE N 
REWIND TAPE N 

M ADT RN : BACKSPACE M 
ENVFILH N 
REWIND N 

FAP: TSX .BSF ,IJ or TSX • EFT ,4 or TS X • RWT, 4 
rxB N 

F 0 RT EA .N : E A C KS P A C E B 
END fiLE N 
REWIND N 

FAF: CAL 
'IS I 

H 
(BST) ,4 

CAL N 
TSX (EFT) ,4 

CAL 
TSX 

N 
( RWT) , 4 

.BSF and .BSR are ~yncnymous :ind simply transfer
to (EST). 

(EST) does n~tbinq tut print the console message 
"BA: KS PA~E rAPE I:i NORED" ~ nd re tucn • 

• EF'r and (RFr) close the pseudo tape file .TAPE. 
•n• by calling the libr~ry subroutine FILE. 



CTSS PROGRAMMEH'3 GUIDE Se~tion AG.5.04 Page 2 

• aw·r and (RWr) cloEe the pseudo tape file .TAPE. 
' n' if it is a c ti ve. 

(END) 



CT~S PROGRA~~ER'S GU!DE Section AG,'}.,OS 12/69 

Us~ of tapes in f~reground 
MJUNT, UMDUNT, VEI:{IFY, LABEL, TAPFIL 

T~p~s may be read and written by foreground users either 
with or withcut a ccnsole (FIB). The major diffe['ence 
b~twean the user-I/O 3ystem interface for disks and taFes is 
that messages must be rel~yed to the machine ope['ator to 
mount and unmount certain tape reels. Otherwise the calls 
a~e the same calls as deEcribed for the new I/G system. 

Usars wishing to use tapes must have an 
administrative-allotted ta Fe guot~. Unl2ss otherwise 

will be sp~=ified (by user messages to the operatcr) reels 
mounted with write rings. 

Mount: 

MOUNT.(-:HAN-, UNIT, MESSAG(N) ••• N) 

MOUNT must be used tc direct the I/O system to mount 
a r e e 1 :> f t a p e on t he u n it t o b e sub seq ue n tl y 
referred tc as UNIT. 

CHAN specifies which channel is desired. '1' 
Sfecifies channel A; '2' spe=ifies channel B; 
•o• or •-o• indicates "no preference". 

UNIT specifies a logical unit number (0 
32767) by which the user will refer 
reel in other calls. 

through 
to this 

MESSAG is the BCD message which will be printed for 
the Oferator in conjunction with the I;o 
system's mounting instru:=tions. The message 
should contain information about "file 
prctecticn" (write ring or no write ['in~n and 
t"eel identification. It should be stcred 
"fcrwards" in memory; th:tt is, the first word 
~f the message should be in the 
highest- subscripted loc~ tion of a MAD arcay. 
('Ibis i:; not the order w b ich MAD's VECTOR 
VALUE's statement normally furnishes, and it 
must be frcvided for.) 



CTSS PROGRAMM~R'S GUIDE Section A G. 5. 0 5 12;69 2 

N is the numl:er: of machine words in the message 
(N.LE.2C). 

~ r:Tor.- codes; 

U nmo un t: 

OJ. No tdpe unit available on Sfecified channel. 
04. Tafe file alr:ead y exists. 

UMOUNT. (UNIT,MESSAG (N) ••• N) 

UMOUNT is used tc direGt the I/O syste~ to dismount 
d tape and free the corresponding tdpe drive 
f c r o t he r: use • 

UNIT is the logical unit number as defined by 
MOU Nr. 

M E s s A G i s the E C t m es s age w hi c h w i 11 be p ri n ted f or 
the operator along with the I/O system 
unin::>unting message.. It should include 
informdtion atout what to do with the reel. 
(See discussicn under MOUNT.) 

N is the number of machine words of M!SSAG 
( N. L E. 20). 

error code: 

03. 1ape file in use. 

Labeling: LABEL. (U NI·r, LABL (N) ••• N) 

LABEL must be used to write ~ lahal on a new tape 
before it is opened for writing. 

UNI1 has previcusly been definei by a call to 
MOU Nr. 

LABL is the uni1ue label for 
provides identification and 
the user. (See dis cuss ion 
under MOUNr.) 

this reel which 
verification by 
of array order 

N is the length cf LABL (N.LE.4). 

Error co des: 

0 3 • 1 ape f i 1 e does not ex is t • 
04. Machine error or had status. 



C'r S S F F C G RAMMER'S GU I D .E. Sect ion AG. 5. 05 

C5. M~unt failed - illegal operation 
(key code 1 1) • 

12/69 3 

06. M~unt failed - oper~tions 1ifficulties 
(key code 12). 

Label verificaticn: 

VERIFY. {UNIT, LABl(N) ••• N) 

VERIFY must be called before opening a tape file for 
reading in o~der to check the lAtiL on the reel 
moun ted on u N I 'r • T h i s i n sur es t bat t he 
operatoc has mounted the correct reel. rhe 
file may not be opened until a correct 
verific~ticn has been mide. 

N is the length cf LABL (N.LE.4). 

Error codes: 

03. Tape file does not exist. 
04. Machine error or b~d st~tus. 

05. M:>unt failed - illegal operation 
(key cede 11) • 

C6. M:>unt failed - operations difficulties 
(Ke_y cede 12). 

C7. Ldbel:> do not match. 

TAPFIL.($ NAME1$,$ NAME2.$, UNIT, FILENO) 

TAPFIL must be called to create an entry for the file 
in the u. F. D. When a tape file is created, 
its name, unit number, and file number are 
entered in the u. F. D. The tile may then and 
later be OPENed for re~1ing on the same UNIT 
n umber wit ha u t a c a 11 t o T A J: F I L. I f a ta pe 
file was created under a different file 
directory, TAPFIL may be used to enter it in 
the current file directory. If a tafe file 
was created on one UNIT and is to be read on a 
diffecent unit, it must be DELPILed from the 
U.F.D. an.d then reentered with the new UNIT 
number by a call to TAPFIL. Any nut5ber: of 
files ma. y exist on one reel. There is a 
restciction of one ceel per file. 

FILENO is a :>e~uence number (integer or integer 
variable) used to specify which file on the 
c e e 1 w i 11 be ret e r re j to 3. s N A 1'1 E 1 N AM E 2. If a 
user wi5hes to append a file to a reel, FILENO 
mu!:t be "0" or "-0 11 • When the file is OPENed, 
the file system will assign the proper FILENO. 



CTSS PHOGRAMMER'S ;uiDE s~~tion AG.5.05 12/69 4 

~rror codes: 

03. File dl[eady exists. 
04. Machine cL ~yste~ error. 
05. User has no tape ~uota. 

While the calls to the file system for taFe usage may look 
like othe~ file system calls, there ~re some differences 
b~twe~n tape and disk/drum usage. The salient ones are 
listed here. 

Mount-tape requests are not gueued. Thus before any MOUNT 
r~yuest is considered, the tape operator must have complied 
w it h a n y pre v i o us M o UN 'I r e g ue s t. c a 11 s to M c U NT w i 11 r es u 1 t 
in "Tapa-wait" status if another mount is already pending. 
Calls to LABEL or VERIFY when the tape in question is not 
y~t mounted (mount pending) also result in tapa-wait status. 

It for some reason (e.g., no t:tpe drive available) a 
t~p~-mount cannot be performed, the user is informed via an 
error Leturn when he tries tc LABEL/VERIFY. Since certain 
t~bles dre initialized during the mount process, these must 
always be cleared - even when the MOUNT does not succeed. 
rha claaring occu~s the first time LABEL or VEHIFY, is 
called if the MOUNT did not succeed. If the user changes 
his mind and does not call LABEL or VERIFY after requesting 
~ MOUNT, he then ~~~1 call UMOUNT. UMOUNT is automatically 
~~lled during LOGOUT. 

Should ~ user Quit after a flOUNT request but before 
required call tc UMOUNT (a bad pr:tcti:::e), a tape drive 
b~ uselassly assigned. !he tape operator can remedy 
difficulty by deFressing ~ certain set of :::onsole keys. 
tip~ will then be dismounted autom~ti~~lly. 

the 
will 
this 

The 

A tap~ file must be opened either for reading or for 
writin), not for both; record numbers must be consecutive 
during reading or writing. Attempts to rewrite a tape file 
will result in an ecr~r. When the physical end of tape is 
reached, the file being ~ritten must be closed. Moreover, 
tb~ record being written is not retr~evatle from the tape. 
Consequently, the user must have the tapa unloaded (call 
U M o U N'r) and a fresh t a p e m o u n t e d (calls t c M c u NT a n d L A B EL) • 
The writing can then be resumed in a new file by TAPFILing, 
OPENin~ the new file and then writing that last record 
a~Jain. fhysical records on tape are in tinary mode and are 
4J3 (decimal) words long (except the l~st record of a file, 
whi:::h may be shorter). The first word contains the record 
number and, for the l:tst record, tha wori count of the 
L-~ cord. 



CTSS PROGRAMMER'S GUIDE section AG. 5. 0 5 12/69 5 

Once a tape label has been successfully created or verified, 
subse~uant calls t~ VERIFY or LABEL are ignored. rhis is an 
outgrowth of twc provisicns. First, it seemed a good idea 
to allow rapid successive calls to VERIFY in case the user 
w~nted to search a list of label candidates. Seccnd, to 
expedite file retriev~l Ferformed by the operations staff, 
it was necessary t~ allow superfluous calls to VERIFY, cnce 
a tape had been successfully verified. 

Tape usage is not multi-Frogr:immed. Thus :1 user spins tape 
While this 

(tape I/O is 
represents an 

to inccrpora te 

only wh~n his program is running in core B. 
situation is not as bad as it could be 
p~rformed with interrupts), it ot:viously 
inherent simrlification in our first effort 
t~p~s as foreground I/O devices. 

Format of Tapes 

HTL (header label) 

End of File mark 

D'lt:t File 1 

EnJ of File mack. 

EOFL (end of file label) 

End of File rrark 

Bl' L (h~ader) 

End of File 

Ddta File 2 

Data File n 

End of File roark 

EOF L 

End of File mark 

EJLTL (end cf lcgical tape label) 

End of File mark 



C ·r S S f E C G H A l'l M E R ' :5 GU I D E Section AG. 5.05 12;69 6 

F c rrna t of l!I.!: 

1 
2 
3 
4 

::iEbb60 
ObEr L t 
MI'IMA: 
000000 
XXX XXX 

Words 1-2 constitute 
Beginning of TaFe label 

5 

b 
7 

9-10 
11- 14 

000000 
X XXX XX 

XXXX X X 

xx ••• x 
X X •• • X 

File number on 
tape (in binary) 

Date file created 
( f i 1 e s y s t e m f or ma t) 

fiumbe~ of days file 
is to be retained 
(usually ••• 999) 

File name 
User supplied label 

The only infcrrndtion currently re:1a by Tape St~ate~y on a 
pr-~viously created tape file is words 1, 2 and 11-14. The 
rest mdy be dfFICpriated. 

1 
2- 14 

2 

3- 14 

F c r rna t of ~1I1 

bEOLI t 
0 0 ••• 0 

Fermat of ].Qll! 

bb EOF t 
Number of records in data file (bi11ary 
integer) 
ccoooo 

File i consists of 433-word records where 

word 1 

words 2-433 

(Address of first word) = 
number of the record within 
this file. 

(Decrement of first word) = 0 
unless this is the last record 
of the file. Then it eguals the 
number of woris in this last rec
ord excluding wor:l 1. 

User supplied data. 

(END) 



s~=tion AG.6 ... 01 12/69 

Program status 
DhAD, DOBMNT, GET Ii.C, FNRr N 

ro remove a program from active status and pla~e it in dead 
or 1orrnant status and to be able to know the locaticn of the 
ldst call to DORMNT. 

DEAD: as supervisor cr library entry: 

DJRMNT: 

TSX DEAD,4 optional ( TI A =HDEA D) 

DEAD return£ control to the supervisor and places 
the user in dead status. ~achine conditions 
are not saved and memory bound is set to zero. 

as s u per v i s c r or 1 i b ra r y e n tr y: 

fSX tOR!'1NT,4 optional (TIA -=HDORMNT) 

DOFMNT returns control to the supervisor and rlaces 
the user in dormant status. Machine 
conditi~ns, status, and memory bound are 
saved. If the START co•mand is issued, control 
returns to 1,4. If a new program is read in, 
the machine ccndi tions, status, and memory 
bound are overwritten. 

~~TILC: as supervisor entry: 

rsx GET ILC, 4 (T IA =HGETILC) 

Upon return, the AC will contain the value of 
the instruction location counter at the time 
when the user last entered dormant status. 

FNRTN: as supervisor entry: 

rsx: FNRrN, 4 (TIA =HFNRTN) 

FJRTN returns the user to dormant status and resets 
the user's instruction location counter to the 
value it had when he last entered dormant. 

DEAD, DORMNT and FNH~N result in an automatic logout if 
~:1lled from FIB. 



CTSS PROGRAMMER'S GUIDE Sec ti on AG. 6. 0 1 12/6Y 2 

Dt::AD, DDR~lNT and PNR'IN may result in the execution of a 
~omman1 (subsystem), dependiny on the settings of the user's 
subsystero status wcrds and options. Refer to sections 
A:; • 8 • 0 5 and A H • 1 0 • 0 3 for d et a i 1 s • 

(EN t) 



CTSS FRCGP.A~MEP.'3 GU IE! section AG.6_02 1) /f.. q 
. -, - -

Interrupt execution for specified time 
S L.C E F, WAIT 

Allow a user program to place itself in dormant status, 
input-w~it status, or timer-wait status, and be restarted 
automatically after a Sfecified time. 

P~riodic dormancy: 
As a suFervisoc :Jr.- libr-ary entry 

CAL 
TSX 

l'ha program 
restored to 
passed. 

,; -~ n ~ r ~ l f :) L m : 

=n 
SLEEP,4 (TIA 

is placed in 
working status 

=HSLEJ::P) 

dormant 
after 

status, and 
'n' seconds 

is 
have 

As a sufervisor or library entry 

N 

WAIT.(MODE, H) 

TSX 
EAR 
PAR 

PZE 

WAIT ,4 
MODE 
N 

I D I 

(TI A =HWAIT) 

The program is Flaced in~ waitinJ status as specified 
by MODE, and will be r-estarted after 'n' seconds have 
passed. (If 'n' is 0, it will not be restarted.) MODE 
is interpr-eted as follows: 

0 - Timer-wait st~tus: the program will be restarted 
aftet 'n' seconds. No commands are accepted. 
Input lines are saved; the program is not 
restar-ted when input lines arrive. 

1 - Input-wait status: the 
after •n• seconds hava 
line is completed. If 
will be rest art ed only 
COIDFleted. 

program will be restarted 
elapsed Qf when an input 
' n ' i s zero , the p Log r am 
when an input line is 



CTSS P l:fOGR AMM ER' S GUIDE section AG.6.02 12/6-l 2 

2 - Dormant status: the program will be restarted 
after 'n' seconds. An input line while dormant 
is interpreted as a commani. This mode is 
e1uivalent to SLEEP. 

(EN D) 



C T ~ S f .B CG R A~ ME R 'S GU ! r; E 

Int~Lrupt levels 
GETtlRK, SETBRK, SA VHRK 

In oriar to allow a program to be interrupted from the 
console but continue running in some other section, programs 
m1y ba organized to run on different interruft levels. 

Command level is o. Levels may be dropped to the maximum 
:l~pth ot 3. 

Command level and a program initially placed in working 
st~tus ar~ ~t interrupt level o. A program may drof the 
interrupt level and set the entry point for each level. 
Dur:in:J exacuti::>n, the level may be raised either by a 
proJrdrn call to the SUferviscr or by the user sending the 
int~rrupt signdl. rhe interrupt signal causes the interruFt 
level to be raised by 1 and control to be transferred to the 
~ntry point previJusly specified by the program. 

An int~rrupt at level 0 will be ignored, (i.e., an interrupt 
c:tnnot be used tc QUir). Each interrupt will cause the 
supervisor tc print INT.n. where n is the level to which 
~ontrol is to be transferred. 

SE'fBRK: 
as supervisor or library entry: 

TSX SE'lBRK,4 optional ('l'I A = HS ET ERK) 
P~ E 'lac' 

SE1BRK sets the interrupt entry point for the current 
level t~ the value of lee and drcfs the 
interrupt level by 1. 

SAVBRK: 
dS supervisor ~r litrary entry: 

rsx SAVBRK,4 optional (TIA =H SA VBR K) 

SAVBRK raises the interrupt level ty 1 and returns in 
the A: the entry point corresponding to the 
level just entered. If SAVBRK is called 
within level 0, the AC will be zero. 



C'l' S S f R C GRAMM 1: R 4 3 GU I D ~ s e ct ion A G • 6 • 0 3 Page L. 

GETBH K: 
~s supervisor Jr library entry: 

1SX GE1l:H{K,4 optional (TIA ~HGErERK) 

UFCn return, the AC will contain the value of 
the instruction location counter at the time 
t he use r la s t ,. i n te r r- up ted " • 

(END) 



CTSS PROGRAMMER'S GUIDE SC(: tion AG. 6. 04 Page 1 

Storage ~at: 

STOMAP 

To print a stcrage map giving the entry names and locations 
ot all subprograms in core B. 

As library subroutine: 

rsx sr~MAP,4 

The subprogram origin and the entry names and 
locations will be printed fer all subfrograms 
in core-E. 

(EN D) 



CTSS fP.CGP.A~~fP.'S GUIDE sect- i c n A G • 6 • 0 5 

Floating Point TraF 
.SETUP, (FPT), (EFrM), (LFTM) 

To provide a means of initializing 
r~covering from, ~r flushing the 
f 1 oat in g- poi n t over f 1 o w c r u nd e rf 1 o w. 

for, interpreting, 
program because of 

Wh~n tbe 7094 is operating in floating-point trap mode, a 
floating point operation which causes overflow or underflow 
will also cause a machine trap. The subroutine (FP1~ will 
interpret the trap and take appropriate action. some 
initialization must be done tefore the trap occurs to enable 
(FPT) to interpret the traps. • SETUP ~ nd (EFTM) are used in 
the ini tiali 2ation. 

Mdd and Fcrtran both automatically compile a calling 
S:!quence to .SETUP at the beginning of each main program. It 
nPed be executed only once per program. 

TSX • SETUP ,4 

the multiple tag mode (3 index mode) is 
entered. Location 8 is set to TTR (FPT). The 
fle-a ting- pci n t trap mode is established by a 
call to ( EFr M) • 

A fl~ating-point underflow will cause the 
execution cf the TTR (.FPT) which will then 
zero the offending register and return control 
to the instruction following the offending 
f 1 ca tin g p c i n t i n s t r uc ti on • 

A floating-point overflow will cause the 
executi:.n of the TTR (FPT) which will then 
print a me~sage on-line giving absolute and 
relative locations of the offending 
flcating-pcint instruction with the name of 
the subprogram and the machine spill cede. 
(FFr} then calls ERROR which prints a back 
trace of the subprograms previously called, if 
rossible, and then calls EXIT. 



CTSS FBCGRAMMER'S GUICE Section AG.6.05 

( t:.: F T M) and ( L FT M) : 
as SUferviscr or library entries: 

ISX (EFTM) ,4 
'ISX (LFTM) ,4 

..... '" ~ ~ ,... "".., 1 t •rT 11 
UtJ "-LV.UU.L \ .L.L n 

opt ion a 1 (TI A 

Page 2 

~H(EFTM) ) 
=H (1 Fr M) ) 

( r:FTM) enters floating-point trappiny mode with 
traFping mode simulated in core B 

{LF'rM) leaves the floating-point trapping mode. 

N. B. rhe LOAD command enters the multiple tag mode 
before comfletion. Consequently, a program 
loaded with the relocatable loader will be 
automatically initiated in 3 taJ mode. 

(E NO) 



CTSS PROGRAMMER'S SUIDE Se(: ti en 0 .~.::: c: 
-"/ l.J..J 

Memory allotll!ent 
GETMEM, SETMEM, Gl'lEL'l, SME.M, EXMEM 

To provide a way of determining or expanjing the current 
m~mory allotment. 

At load time the memory allotment is set by the number of 
wor1s raquired by the program. Memory protection, however, 
can only be set in blocks of 256 words and is therefore set 
to tha next highest block of 256. If, during executicn, the 
user wishes to change his memory all~tment and/or 
p~otection, SETMEM may be called. 

Since memory protect~on is set in blocks of 256 words, it is 
possible that a pr~gram m~y store information beyond the 
m~mory allotment bound without causing a prctection 
violation. Hcwever, swapping is done by memory allotment 
r~ther than mem~ry protection, so that information thus 
stored is lost during swafping. 

!!§!!~~ 
As supervisor or library entries: 

TSX 

CLA 
rsx 

GE'li1EM,4 

='n' 
S ETM EM, 4 

optional (TI A =HGETMEM) 

optional ( TIA =HSETftEit) 

GETMEM returns in the address portion of the AC the 
current memory allotment. 

SE'IMEM sets the memory allotment to the value of n 
( 1 ow or d er 1 5 tits ) • If n is ( 7 7 7 7 7) 8 , a 11 of 
memory i~ allotted, including location 
(77771) 8. 

As library subroutines: 
MAD cr FORTRAN: 

A = GMEM. (I) 
A = 5 MEM. (J) 

FAP: rsx :; ME M, 4 
P~E I 
S'lO A 

TSX SM EM, 4 
P-2E J 
STO A 



CTSS PROGRAMMgR'S GUIDE Section AG. 6. 0 6 9;65 2 

A and I Ufcn return, will contain an integer giving 
the current memory bound. 

J contains an integer giving the memory bound 
desired. 

GMEM returns to the caller the current value of the 
memory bound. 

SMEM sets the !Demory bound to the value desired. 

To extend roe~ory bound: 
As library subroutine: 

MAD, FOH 'IRA N a r FA P: 

A = E XME M. (INC) 

INC contains an integer which will be used as an 
increment to extend the memory bound. 

A Upon return, A will contain the new meaory 
bound which is the sum of the old memory bound 
and the increment in INC. If the sum is 
greater than (77777) 8 or if the prefix of the 
argumeDt is not P~E, TSX or TXH, return is 
made with A and the AC set to zero and the 
mem~ry bound is not extended. 

(END) 



CTS S F R C G R A fl rl H R 1 5 GU I DE Section AG.6.07 Page 1 

Fee~ or erasable storage management 
FH E E, FH ER , FRET 

ona tachnique of optimizing the amount of core SFace 
required by cne ~rogram is to have each subprogram within 
tha program take temp3rary storage from a common FCOl and 
put it back when it is nc longer needed. 

As a library subroutine: 

AED: X=FREE(N)$, 

FAF: TSX FREE, 4 
P~E N 
STA X 

X= FR ER (N) $, 

TSX FEtER, 4 
P-2E N 
STA X 

X=FRET(N,X)$, 

TSX FRET,4 
F-EE N 
STA X 

N contains an integer specifying the size of the 
block of storage. 

X contains (address) the address ot the start or 
lowest loca ticn of the block of storage. If X 
is returned as zero by FRER, no block could be 
obtained. 

FREE will find a block of storage either frcm free 
stcrage or by extending memory bound. If more 
space is re~uested than can be found, the 
following message will be printed., and EXIT is 
called: 
1 nnnnn LOCATIONS OF PBEE STORAGE ARE 
UNAVAILABLE 
( n n n n n is a n oc ta 1 n umber • ) 

FRER serves the same function as FREE exceft that 
if not enough space is available, return will 
be to the calling program with zero in the A:. 

FRET returns stocage to free storage. If a block of 
storage being returned overlaps memory bound 
or any block previously returned, the 
following message is printed and EXIT is 
called: 
** ILLEGAL CALL OF FRET, BLOCK rrrrr SIZE 
nnnnn' 
(rrrrr- is a pointer to the block, 
size; both in c~tal) 

nnnnn is 

(END) 



CTSS PROGRAMMER'S GUIDE Section AG.6.08 

Reset file-wait return 
TILOCK 

A field called ILO:K exists ~ithin the UFD entry for each 
fil~. This field c~ntains the number of users who currentlj 
have the file open fer reading. If a user tries to write a 
fila when its ILO:K is gre~ter than zero, he will 
~utomatically be placed in file-wait status until no more 
users are reading the file. If a user tries to open a file 
whi=h is open for writing, he will also be placed in 
file-wait status. 1I10CK is a routine which has been 
p~ovided to allow the user to avoid file-wait. A call to 
TILOCK in a frogram sets a general return which applies 
until altered or rem3ved to all l/C calls which wculd 
otherwise invclve going into file-wait status. All 
b~ckground programs which use the file system must provide 
this call since any attempt to place background in file-wait 
status causes the backg~cund job to stop. 

M A D : 0 L DR T N = r I LOCK • ( RET U RN) 

FAP: 'IS X 
PSE 
SLW 

TILO:K,4 
RETURN (note P~E rather than TXH) 
OL DRTN 

RETUR~ is the location to which control will be 
transferred if an I/O call would normally result 
in file-wait. If RETURN is zero, the norraal 
executi~n of file-wait will be reinstated. 

OLDRTN upon return, the AC will contain ~ne address of 
the previous return setting, if any. 

(EN D) 



CTSS PROGHA~MER'S GUIDE 

Get array frcm free storage 
GETBUF 

12/69 1 

To allow a MAD program tc obt~in buffer spa~e by extending 
m~mory bound, and ta address the storage area obtained as a 
subscripted array. this permits SAVED files of freshly 
loaied programs t~ be reduced in size, since the buffer area 
is not included in the SAVED file. 

To obtain a buffer: 

DIMENSION BUF (0) 
A = GET BU F. ( BU l, S IZ E) 

A black of C3re 5torage ot length SIZE+1 is obtained by 
extending the memory bound- The value of BUF is set to 
the absolute address of BUF less the absolute address 
o f t he 1 a s t add res sa b 1 e 1 oc a t i on of t h i s b 1 o c k ( i . e • 
old memory b:>und + SIZE), expressed in two's complement 
forir, mcdulc 2. P. 15. rhe old memory tound is returned 
in A. 

Ele~Fents of the array obtainad by GETBUF may be 
referenced by 

BUF (BDF + I) 

(for the Ith element), where I may have a value from 0 
to SIZE. ftu It iple subscripts may also be used. 
Dimension declarations will be of the form: 

DI!ENSION BUF (0, Btift) 
VECTOR VALUES BOil! = (dimension vector, see MAt manual) 

References are of the form: 

B U F (I • BU F + .J) 
or B U F (I , J , B UF + K) 

etc. 

Tbe ldst subscript (in the case of standard subscripts) 
is always the one tc whi~h the address contained in BUF 
is added. 

To return buffer to free storage: 

SMEM. (A) 



CTSS f BOG RAMMER'S GU ItE sect ion A G. 6 • 0 9 12/69 2 

where A is the old memory bound previously returned by 
GETEUF. 

N.B. Beware of the follcwing: 

A = G E 'IB UF • ( B 1 I s 1 ) 
E = G ET BU F. ( E 2 , S 2 ) 
SM EM. (A) 

This will release buffer B2 as well as 81, since the 
SMEM call resets the memory bound below both buffers. 

Example: 

Assign a buffer to a file 

DIMENSION B ( 0) 
c p E N. ( $ R $ I N AM ! 1 I N A {1 E2 ) 
GETBUF. (H, 432) 
BUFFER. (NAME1, NAME2 I B (8+432) ••• 432) 

lEND) 



Section AG. 7.01 

Quary or ~odify supervisor parameters 
GRTLOC, GLOC, GETARI, SETLOC, SLOC, SYPAR 

1?.1hQ . -, ~-

To anable a user to examine a supervisor parameter. To 
allow the system programmers to modify an A-core parameter. 

SLOC and SETLOC may be used only by M1416 programmers. 
GLOC, SLOC and SYPAR may not be called from FORTRAN programs 
unlass the locati~n is shifted to the address rather than 
the decrement of LOC (or CODE). 

Get the contents of a location: 
As superviscr ox library entry: 

FAP: TSI 
PlE 
SLW 

GE 'ILOC ,4 
LOC 
WORD 

As library subroutine: 

MAD: WORD = GLOC. (LOC) 

optional (TI A ::HG ETLOC) 

Upon return, WORD will contain the contents of 
the A-core location whose address is in LOC. 

Gat the contents of a block cf A-core: 
As supervisor or litrary entry: 

FAP: rsx GHTLOC, 4 optional (TIA =H~E TLOC) 
P~E LOC., 1 n' 
P~E BUF 

or 
TSX GE'IARY,4 
P:&E LOC 
P~E BU f,, 1 n • 

MAt : GET A R Y • (LO C , B UP ( N) ••• lt) 

As a library subroutine: 

MAD: GLOC. (LOC, EUF(N) ••• N) 

Upon return, the 1 n 1 word array beginning at 
BUF for a PAP call or BUF(~) for a MAD call 
will be set to the contents of the 'n' words 
cf supervisor core beginning at L~C. 



C T S S F B C G R AM 11 h R • S GU I D E Section AG.7.01 12;6 9 2 

Set th~ contents of a location: 
A s s u per v i so r c r 1 i b ra r y e n t r y : 

F· Af: CAL WORD 
r 5 X S E T 1 OC , 4 optional (TIA =HSE TLOC) 
P 25E LOC 

As library subroutine: 

MAD: EXECUTE SLOC. (WORD, LOC) 

Upcn return, the A-core location whose address 
is in LOC will be set equal to the contents of 
WORD. 

Get a supervisor para meter: 
As library subr~utine: 

FAP: rsx 
P~E 

ST9J 

SYPAR, 4 
CODE 
PARA f1 

M AD : PAR AM = S Y PAR. ( COD E) 

SYPAR returns a supervisor para•eter in the AC. 

COtE c~ntains a right adjusted integer which 
specifies which parameter is desired. 

0 nothing 
1 Last or lowest COMMON location used 
2 COftf'\ON length 
3 First location loaded 
4 Prcgram length (i.e., memory allocation) 
5 System name 
6-9 reserved 
10+ Contents of A-core location 

(E NO) 



Section AG. 7. 02 12/69 1 

Get common file number 
~ETCF, GETCFll 

GETCF will return the number of the common file directory to 
whi~h the user is curcently switched. 

As a supervisor entry: 

TSX GETCF ,4 (TIA :HGETCF) 

Upon return, the AC will be zero if the user is 
switched tc his own file directory. Otherwise, 
the A: will contain the number of the common 
file dicectory to which he is switched. 

As a library subroutine: 

FAP: TSX ~ETCFN ,4 
!>JtE CfN 
STO CFS 

FCRT BAN: CFS = GEr CPJI (CFN) 

MAD: CFS = GErCFN. (CFN) 

Eoth CFN and CFS will he set to the current common 
file directory number (0, 1,2 •• ). In Fortran, 
the file directory number is returned as a 
Fortran integer. This same value may be used 
later t~ call COMFL~PN}. 

If a user switches to a coaaon file, ~nd 

(~ommand or file system call) to switch 
:i i r 3 c tory , G ET C F w i 11 c et urn t he n u m t er 
to which he was switched, and give no 
~urrent attached dicectory. 

then uses ATTA:H 
to another user's 

of the commcn file 
inli~ation of his 

(EN D) 



C'!'SS FBCGHAJU!EB'S GTJ !D~ s ~ ct ion A G ~ 1 ~ o 3 12j69 1 

Privileged users• calls to the I/O system 
UPDMFD, DEL11FD, ArrACH, ALLOT, MOVFIL 
LINK, UNLINK, SE 1FIL, R SFI LE 

Alministrators and certain commands and utility programs are 
privileged tc alter the supervisor anj the accounting files. 
C~rtain calls to the I/O system may te invoked only by the 
privileged users cr ether users usin~ the privileged 
:;ommands. 

The accounting files contain the personal restriction codes 
for every user of the system. When a user logs in, his 
restriction codes are pla=ed in a vector within the 
sup~rvisor along with the other active users. When a user 
invokes a command, his personal rest~iction co1e is 'OR'ed 
togatber with the code of the command to make up the 
restriction cede which becomes part of his machine 
conditions. The LO~IN ccmmand sets the low-order 6 octal 
1iJits of the user restriction code. 

1 
2 

4 

10 

20 

40 
1CO 
200 

4CO 

1000 

2000 

1000000 
2COCCCC 
4000000 

10COCCCO 
20000000 

User may use common files 
User may use pri vilege:l calls to the I/O 
system. 
User may modify "PROtECTED'' files of other 
useJ:s. 
user may refeJ: to "PRI VAT!" files of other 
useJ:s. 
User may modify the supervisoJ: and I/0 
syste11. 
Usex: may use the ESL display routines. 
user may use the 6.36 supervisor entries. 
User may not use disk-loaded commands, except 
LOGIN and LOGOUT ("Restricted User", see 
Secti:>n A A. 1). 
user may not alter file directory (not yet 
implemente.rl) 
User may modify standard options, subsystem 
s t at us (see A G • 8 • 0 5 ) • 
User may remain logged in after system 
c:>med:>wn initiated (system operators only). 
User is tackground system. 
User is foreground. 
UseJ: is FIB. 
User is inc r:e menta 1 d um per. 
User is privileged command. 



CTSS PROGRAMMER'S GUIDE Section AG.7.03 12/69 2 

A p r i v i lege d c c m m a n d se t s the 1 , 2 , 4 , 1 0 , 2 0 and 1 0 0 0 bits 
on. 

A cowmdnd loaded while option tit 
sets the 1000 restricticn code 
"sub systena privileged" • 

4 0 is on (see 
bi t, m a k. in g t he 

AG .. 8. 05) 
command 

The bits which occupy the decrement may be moved left nine 
bit-positions to indicate the .not. condition, except in the 
case of the frivileged ccmmani bit. 

Uvdate MFD: 

Ul?DMFD. ($ PROBN$,$ PROG!) 

UPDMFD places a new user (problem number programmer 
number) in the master file directory. With 
this call it is possible to update the MFD 
during time sharing rather than having to wait 
for a disk. editor run. 

PROBN is the right adjusted problem number of the 
form ANNNN. A is an alpha character, and NNNM 
is a four diyit number. 

fROG is a one to four digit programmer number. 
Mete the right adjustment ani blank padding. 

Error: codes: 

03. User already in M.F.D. 
0 4 • Mach i ne o t s y s te m e r r or 
OS. Illegal PROBN (i.e., 0) 

D:!lata from MFD: 

DELMFD.(S PROBR$,$ PROG.$) 

DELMPD will remove a user from the master file 
directcry. The DEL"FD will not be permitted 
if the user's record count is not zero. 

Error codes: 

03. User not found in C1.F.D. 
04. U.F.D. still in use. 

Attach to UFt: 



CTSS PROGRAMMER'S GUIDE Section AG., 7 ~ o 3 12/69 3 

A 1TA:H. ($ PROBN$ ,$ PRCG!) 

ATTACH will attdch the user's program to the file 
directory of user PROBN PROG. The user now 
has full access to the files and file 
directory of PROBN PROG within the limits of 
his restriction code. Files which may have 
been opened while attached to PRCEN PROG 
remain open even if the attachment is changed 
to a different file directory. 

Error codes: 

03. Use~ not found in M.P.D. 
04. Machine or system error 

Quota allotment: 

ALLOr. (IEV ICE, QUOTA, USED) 

AlLCT may be used to allot a quota of records for 
each user, for each device by first ATTACHing 
to the users• file dire~tory and then calling 
ALLO·r. 

DEVICE is an integer or integer variable specifying 
the I/O device. 

1. Low-speed drum 
2. Disk 
3. Tape 

QUOTA is an integer or integer variable specifying 
the number of records to be allotted to the 
user on the specified device. A record is 
currently 432 words. 

USED is normally not specified and should be used 
only to correct an error in the nusber of 
records used. 

Error codes: 

03. Illegal device specified 

Move a file: 

~OVPIL. ($ NAP.IE1$, $ NAME2$, $ PROBN!, $ PROG$} 

MOVFIL is used to move the file NAftE1 HAftE2 from the 
cutrent file dire~tory to the file directory 
of PRO£N PROG. Upon return fro• this call, 
the file nc longer exists in the current file 
directory. 



CTSS PROGRAMMER'S 3UIDE Sec ti on A G. 7 • 0 3 12/69 4 

Error codes: 

03. File n~t found in current U.F.D. 
04. 
05. 
06. 
07. 
OB. 
09. 
10. 

Link to a file: 

File is 'PROTECTED' 
File already exists in 'PROGN ~RDG' 
Machine or System error 
F i 1 e a 1 r e ad y act i v e. 
Other U.F.D. not found 
Illegal use of H.F.D. 

LINK. ($NAME1$,$NAME2$,$PROBN$, SPROG$, $NAr! 3$, $NAM4$,MODE) 

liNK link in the current 
file in some other 

may be established to 
two, :lS specified by 

establishes a 
directcr·y to :l 

directory. Links 
maximum depth cf 
super-visor. 

file 
file 

the 
the 

NAME1 NAME2 is the name which will be used tc refer 
to the file in the =urrent file directory. 

PROBN PROG Sfecifies the file directory to which the 
link is being m:lde. This file directory may 
contain the actual file or it may contain a 
link tc some other directory. 

NAM3 NAM4 is the name by which the file is known in 
file directory PROBN PROG. If NAM3 NAM4 is 
not specified, it is assumed to be the same as 
NAl1E1 NAM.E2. 

MODE is an integer or integer variable which will 
be 'OR'ed •ith all the modes through all the 
links to the ~ctual file. The resulting 
1 0B'ed m~de will be used as the mode in the 
current file directory. 

Error codes: 

03. File already in O.F.D. 
04. Machine or system error 
05. 'PROBN PRO~' not found in P..F.D. 
0 6 • I 11 e gal use o f M • F. D. 



CTSS FFCGRA~MER'S GUIDE 12/69 5 

Ramo ve a link: 

UNLINK.($ NAME1$,$ NAME2$) 

UNLINK will remove the U. F. D. entry and the link 
associated with NAME 1 NAME2, which was 
establi:>hed by LINK. NAME1 NA ME2 is the name 
used to refer to the file in the current file 
directory, as it is in LIN I(. 

Error codes: 

03. File n::>t found in U.F.D. 
04. File is net a 'LINKED' file 
05. Machine or system error 

Date a file: 

SE'rFIL. ($ NAME1$,$ NAME2$,DAYTIM, DATELU,MODE,DEVICE) 

SETFIL is used Frimarily by the file lead and 
retcieval frograms to create an entry in a 
file directory with a specific date and time. 

DAYTI M is the date and tiae to be used as the 
and time last modified in the format of 
third w::>rd of a U.P.D •• (AD.2) 

date 
the 

DA TEL U is to he used as the fourth vord of a u. F. D. 
and contains the date last used and 'AUTHOR'. 

Error cedes: 

C3. Illegal device 
04. Machine or system error 
05. File is a link 

Unlock a file: 

BSFILE. ($ NAMH1$, $ HAME2$) 

RS PI L E is used to r es et t he IL 0 C K f i e 1 d in a f i 1 e 
entry when, due to machine or system error, a 
file has become interlo=ked while no user is 
using it. rhi5 entry may only be used by 
system piogrammers privileged to patch the 
supervisor, and only while key 22 is down on 
the ope~atcr•s ~onsole (to prevent accidental 
calls). 



CfSS PROGRAMMER'S GUIDE section AG.7.03 12/69 6 

Error codes: 

0 3 • Fi 1 e n :> t f o u n d 
04. Linked file net found 
05. Link depth exceeded 
0 6 • F i 1 e is a n a c t i ve f i 1 e 
07. System or machine error 

(EN D) 



CTSS PROGRAMMER'S GUIDE 

G~t diractory attached to 
A'rTN AM 

s e ct ion A c; ~ 1 ~ o 4 

ATTNAM returns the pLoblem number and programmer 
(PROBNO,PROGNO) cf the directory currently attached 
the fila system. Cf. WHOAMI 1 AG.7.05. 

number 
to by 

As a supervisor OL library entry: 

MAD: Al'T N AM. (A ( N) ••• N) (N.LE.4) 

FAP: I' s x AT r N AM I 4 
PAR A,,'n' or: PTW A, I M 

N PZE 'n • 

Optional: 

A'ITNAM TIA =HA'I7NAM 

On return, locati~ns in array A will have been set 
follows: 

r!!~ Co~~!!!!~§. rag 
A (N) PROBNO A 
A (N-1 ) FBOGNO A+1 
A (N- 2) A U'IHOR A+2 
A(N-3) FPRIOR A+3 

whare PRCBNO-PBOGNO is the user's turrently attached 
directory, FPRIOR is his file priority settin~ (set 
SE'rPRI) 1 and AUTHOR is his author number, in binary. 

Only tha standard err~r code 01 may te retu~ne~. 

as 

file 
by 

(END) 



C T S S F P. C G P. A~ M E R ' S GU I D :E 12;69 1 

Obt~in user stdtus infnrmation from supervisor. 
WH OAMI 

To provide commands and user programs with such fertinent 
system parameters as user identification, system name, and 
:onsole identification. The subroutine operates at the 
level of "w he is logged in and making the call," as opposed 
to "whose directory is the call comin~ from " for which 
l:t tter, see ATTNAM, AG. 7.04. 

As supervisor or library entry: 

MAD: 
WHOAfti. (A(N) ••• N) [N.LE.7] 

FAP: 
TSX 
CPN 

WHOA MI ,4 
A.,•n• (OPN =PZ E or TXH; n .LE. 7) 

Optional: 

W HOAM I TIA =H iROAMI 

on return, lccations in array A will have been set as 
follows: 

~!12 ~2n.l~!l.t.~ !:A.E 

A (N) PROBNO A 
A (N-1) FROG NO A+l 
A (N- 2) SYSNAM A+2 
A ( N-3) IDCOIE A+3 
A (N-4) LOGIN A+ q 
A ( N-5) UFDNM A+5 
A {N-6) UNA ME A+ 6 

where PRCBNO is froblem numbec, PROGNO is 
SY SN AM is the six- cha rae te r system name 
opara ting version of CTSS, IDCODE 
identification cede, LOGIN is the name of 
C=han~ed during test sessions), UFDNM is 
file directory, and UNAME is the user's 
~haracters only). 

programmer number, 
of the currently 

is the console 
the login command 
the user's home 

name (last six 

(EN D) 



C'r S S ; R C G B AM M E R ' 5 GU I t 'E 

Find named items in supetviscr 
COMLOC, SNATCH, GAC, ACORE 

Sect.ion AG.7.06 6/69 

A user program often wishes to know the location in core A 
of some supervisor data item. COeLOC returns the A-core 
location of any variable in CTSS common. SNATCH copies 
suparvisor common intJ core E for later examination by GA:. 
ACORE returns the location in core A of any supervisor entry 
point and the load origin of the module containing the 
entry. 

As library entries: 

LOC = :oMLO:. (SYMBOL, -EBB-) 

COMLOC is called with the left-adjusted BCD name of a 
symbol in CTSS common. It returns the integer 
value which is the lo:::ation of the symbol in core 
A. 

ERR is the location to which a transfer is to be made 
if SYMEOL i5 not found. If ERR is not supplied and 
SYMBOL is not found, COMLOC will print an error 
comment and return zero. 

The first time COMLOC is called, it switches to 
the system public file by a call to TSSFIL and 
reads in the current system common symbol table, 
extending the memory bound and packing the table 
intc cere. (The common symbol table is named 
"COMxOO SYMrB" where "x" is the fourth letter of 
the current system name returned by WHOAfti.) 
COMLOC then searches the tatle for a symbol 
matching its first argument. Subsequent calls to 
COMLOC do n~t require re-reading the symbol table. 

S MATCH. 
COM 'IS = GA:. (S YP!BOL, -OFFSET-) 

SNATCH on the first call, calls COMLOC to ietermine the 
size of crss common, extends the memory bound to 
make room for it in core B, and calls GETARY to 
move all of supervisor common to core B. 
Subsequent calls tc SNATCH just call GETARY to 
refresh the saved copy of supervisee common. 



CTSS PROGRAMMER'S GUIDE Section AG • 7. 0 6 6;69 2 

GAC retrieves the contents of SYMB3L+OFFSET at the 
time cf the last call to SNATCH by calling 
COMLOC. (SYMBOL), adding the integer OFFSET {if 
su~Flied), and looking in the saved copy of 
supervisor common. If SYMBOL is not fcund by 
COMLOC, an error message is printed and zero is 
returned. Since GAC does not call the SUfervisor 
or do I/O, it is very fa st. 

WORD = A:ORE. (NAME, -ERR-) 

ACORE is called with the left-adjusted na•e of a CTSS 
module entry point. It returns a word which has 
the location in core A of the entry in the 
decrement, and the lo~ation of the origin of the 
module containing the entry in the address. If 
ERR is SUFflied and NA!E is not found, a transfer 
will be made to the label ERR. If NA~E is not 
fcund and no error return is specified, an error 
message is printed and zero is returned. 

The first time ACORE is called, it switches to the 
system public file and reads the file " (LOAD 
FILE) 11 intc core, 1acking it and extending memory 
bound as necessary. This file is a complete 
descriftion of how the CTSS supervisor was loaded; 
it is written by the system loader every time the 
CTSS system is brought up. ACCBE then returns to 
the previ~us directory by a call to USRFIL, and 
searches the core copy of the loading information 
for an entry name matching its first argument. 
subsequent calls to ACORE do not require rereading 
of "(LOAD PILE)". 

To find the number of users logged in: 

HU = GLOC. (COPILOC. ($lOSERS$)) 

To print out the names of all logged-in users: 

SNATCH. 
T 1 H LL, FOR I = 1, 1, I • G. q 0 
W'R GAC. (SPROBR$, I) .E. 0, T' C LL 
PR MESS. (G AC. {$UN Aft ES. I)) 

11 C 1 E 

Nota that the UNAME and PROBI arrays will be consistent. 

(END) 



CTSS ?ROGR!!MEE'S GUIDE 

u~er A-core variable 
SETWBD, GETWBD 

Section AG .. 7.07 1?/f.Q . _, ---

Each logged-in user has one location in core A in the 
suparvisor common vector "UARRAY". The GETWRD and SETWRD 
entries are ~rovided so that the user maJ examine and set 
this location. 1he CTSS supervisor makes no use of this 
lo~~tion; it is provided for such applications as multi-pass 
compilers, which may wish to pass options or success and 
f~ilura indications from one pass to another. 

As a supeJ:"visor or library entry: 

rsx s Erw Rt, 4 optional (TIA =HSETWRD) 
PAR WORD 

This call will set the user's UARRAY location to 
the content5 of WORD. The previous value will be 
returned in the logical AC. 

TSX GJ!rW Rt, 4 optional (TIA =HGETWRD) 
-PAR USER NO-

This call will return the contents of the UlBRAY 
location beloging to USERNO in the logical A:. If 
USERNO is no~ specified, the current user's UABRAY 
contents will te returned. 

Both SETWRD and GETWRD can te called by MAD or FORTRAN 
pr-ograms. 

It is possible t:> use these entries for inter- user 
communication, since one user may look at another's UARRAY 
locCl tion. For exaaple, to ex: amine the UARRA Y location 
belonging to PROB PRO~, the following MAD code will work: 

~ 

INDEX = ISIN. (PRG8, i>B03) 
W ' B INDEX • E. 0, T 1 0 ROT IN 
HISWRD = :iLO:. (INDEX + COMlCC. ( $UABRAY$)) 

or 
HISWRD = 3ETWRD. (I lfDE X) 

The other user's UABRAY value will be returned in the 
Y~riable RISWBD. If the U5er PROB PRCG is not logged in, the 
program will transfer to the label NOTIN. 

(EN D) 



CTSS PROGRAM~ER'S GUIDE 

Blip character 
:iETBLP, SETBLP 

se= ti on AG .. 7 .. 0 8 12/69 1 

The CTSS supervisor has a feature which allows the user to 
r~quest that a se~uence of characters be typed every few 
seconds of execution. The SETBLP an1 GETBLP entries are 
provided to set the character sequence and time interval, 
and to find out their cutrent value. 

As a supervisor cr library entry: 

rsx 
PlR 
PAR 

S:ErELP,4 
:BARS 
N 

optional ( TIA =HSE'IBLP) 

This call will set the blip sequence to the three 
12-bit characters contained in CHARS. The blip 
will be typed every N seconds.. If N is zero, the 
blip feature is inhibited. (This is the state 
when th~ user first logs in.) 

TSX 
PAR 
PAR 

:iE TB LP ,4 
CHARS 
N 

optional (Til =HGET ELP) 

This call will return the current blip setting in 
CHARS and the current blip interval inN. 

(B liD) 



C T S S F R C G R A M M E R 1 3 GU I D E 

~~t line number of logged-in user 
IS IN 

s e ct ion A G • 7 • 0 9 12/69 1 

All p~r-user arrays in CTSS supervisor common are indexed by 
a "line number" or "logical unit number" which is assigned 
to a user when he dials up. The maximum value for this index 
is "N", an assembly Farameter for the supervisor. !SIN 
raturns the logical unit number for a user, given his 
problam and frogrammec number. 

As a supervisor oc libcary entry: 

IS I~ 

TSX 
PAR 
PAB 
SLW 

IS IN, 4 
PROB 
PROG 
L UN 

optional (TIA =HI SIN) 

returns the logical unit number of PROB 
the AC. If PROB PROG is not lo~ged in, 
returned. 

!SIN may be called by MAD or FORTRAN programs. 

PROG in 
zero is 

(END) 



CTSS PROGRAMMER'S ~UIDF. s~~tion AG-8.00 Page 1 

~~naral discussion of MACRO command programs 

It is sometimes desirable or 
initiate one c~mmand which 
execution of several commands. 
s~v~ral programming levels for 
chains of coamands. 

convenient to be able to 
results in the automatic 

Tools have been provided on 
initiating and controlling 

Th~re are at least thcee levels of user interest in chain or 
maceo coll'mand prcgrams: 1) writing comman3s which may be 
use1 within chains, 2) initiating chains from within a high 
level prcgranming language, 3) initiating chains at the 
m~=hine language and supervisory call level of programming. 

Commands may be thought of as being subroutines without the 
~onventional subr3utine l~nkage. A standard command linkage, 
however, has been prcvided within the supervisor so that 
~ommand arguments will always be available and retrievable 
from a standard flace. A 11 commands should terminate with a 
~~11 to CHNCOM rather than one of the conventional 
programming terminal routines. CHNCC" will continue a 
~ommand chain, if thece is one, or call DORM NT (or DEAD, 
depending on the memory bound) if there is no chain. 
Routines that will fetch the =ommand arguments are COMARG, 
w hi::h is callable by MAD oc FORTRAN programs, and GE TCOM, 
which is the supervisor entry. 

\ 

Two routines are available for executing sin~le commands 
from the program level: lEX COM is a limited-use sufervisor 
entry and XECOM is a more flexible subroutine which may be 
=~lled by MAD or FORT RAN programs. 

Ch~ins of commands may be constructed in a simple way as BCD 
line-marked or line-numbered disk files and executed by the 
KAD or FORTRAN callable subroutine SCHAll or by the c~mmand 
RU NCOM. s CHAIN and RU NCOlt do a lot of the housekeeping and 
set up calls tc the apprcprtate supervisor entries. 

On the more detailed level, chains may be =onstructed within 
tha supervisor, the C3mmand location counter may be set or 
interrogated, and the chains may be executed and chained by 
::~lls to supervis3r entries. on this programming level many 
of the housekeeping details must be h~ndle1 by the user. 

(E NO) 



CTSS PROGRAMMER'~ GUIDE Section AG. 8. 01 Page 1 

Single command 
XECJM, NEXCOM, NCOM 

To allow the user to execute a single command from the 
program level rather than the command level. 

NEXCOM: 
as superviscr entry: 

:AL CO~A NO 
LDQ ARG1 
TSX NE lCOl1 ,4 (TI A =HN EICOM) 

as library subroutine: 

X ECOM: 

NCOM. (COMAND,ARG1) 

CJMAND contains the BCD name, right justified, of the 
c:>mmand to be executed. 

ARG1 is stnred as the first argument in the current 
command buffer. If there is to be no argument 
to COM AH D, ARG1 should be the fence. If C OltA ND 
expects an argument list and ARG1 is not a 
fence, the p~evio~s contents of the current 
c :> m m and b\1 f fer w i 11 be used w it h A R G 1 as the 
first argument. 

REXCOM places the contents of the AC and MQ in 
current command buffer and flaces the user 
waiting-command status. Note that a fence 
not placed in the command buffer following 
argument. :ontrol is not returned to 
calling program except as may have 
pre-arranged by CHNCOM. 

the 
in 
is 

the 
the 

been 

as library subro~tioe: 

M AD , F 0 .RT R AN , F A P : 
K = XECOM. (COftAND,LIST) 
EXECUr E X ECOM. (COMAND,LIST) 

CO!AND contains the BCD name of the desired command. 
Right justification is not ne~essary. 

LIST is any legal list specifying locations which 
contain the BCD names of the arguments 



CTSS PROGRAMMER'S GUIDE Section AG.8.01 

a r rro p ria te to the command. 
justification is not necessary but the 
of items in the list must be .LE. 18. 

Page 2 

Right 
number 

K will be zero if execution was successful; non 
zer::> if failure. 

XECOM builds a ch~in of SAVE, CCMAND, BESUME and 
calls CHNCOM. Thus control will be returned to 
the calling program after execution of COMANt, 
if COMANt called CHNCOM. 

(EN D) 



MACRO command 
SCH AI N 

section AG.~.02 Page 1 

To allow the user ta build a m~cro ~ommand program as a BCC 
lisk file and call foe its execution from the program level 
rather than command level. A ma~ro command program is a 
~hain of commands which can te executed by issuing just one 
command, with or without arguments. 

SCHAIN is the subroutine call which is the equivalent of the 
HUNCOM command. For ~ complete explanation, see section 
AH.10.01 , RUNCOM. 

l1 AD , F 0 RT R AN o r F A P : 

A = 3 CHAIN .. 
EXECUrE 5CHAIN. 

(FILNAM,-ARG1,ARG2 •••• ARGN-) 
(PI LNAM, -ARG 1, ARG2 •••• ARGN-) 

FILNAM specifies the BCD file containing the 
chain of commands to be executed. rhe 
secondary name need not be BCD as is required 
for RUN: OM. 

ARG'S are locations of BCD names of specific 

A 

arguments to te substituted for the dummy 
arguments spe~ified by the CHAIN 
pseudo-command. They may te single cr list 
variables and the names need not be right 
justified. 

Upon return may contain a word of the 
form ••• XXX, which is not an error, but the 
primary na11e of a SAVED file representing the 
last dormant status yielded by the last 
cosmand in the ::hain~ 

SC HA IN w i 11 i n te r s Fe r se SAVE ' s an cl REST C R 's or 
BESUME 1 3 so that the chain specified in FILMA" 
may be of any length. Control is returned to 
the calling program upon completion of the 
chain. rhe chain may include any nuwber of 
RUN:OM Sfecifi~ations, since nesting and 
recursi~n are possible. 

(E NO) 



CTSS FP.CGRA!MER'S GO !D:E Sect ion A G = 8: o 3 

Chain control 
c H N coM ; t G E T , G , s E r , s > c LS ; ( G E T I G , s E T I s) c L c 

To allow a user t~ set up and control chains 
from the program level rather than command 
routinas are close to the supervisory level 
detailed control by the user. 

of commands 
level. These 

and require 

In order to build d chain of commands, the BCD name of each 
command and its arguments must first exist in a fenced 
v~=tor. The vector for each desired command is then moved 
into a command buffer within the supervisor and entered into 
its rala ti ve locati:>n within the command list (CLS} by the 
supervisor rcutine sErCLS. The relative location of the 
first command to be executed in the command list is entered 
into tha ccmmand location counter (CLC) and the length of 
the command chain is entered into the supervisor by SETCLC. 

Execution of the chain is initiated ani continued by calls 
to CHNCOP.. Commands can only be chained if each co•mand 
terminates by calling CRN:OM so th~t the next command in the 
=hain can be initiated. The calling sequence to CHN:OM 
specifies whether or not the calling program has a 
si~nificant core image which might be useful to the next 
command in the chain. CEMCOM does some housekeeping before 
calling the next command in the chain: 1) sets memory bound 
to 2ero if no core image was specified in the calling 
sequence, 2) sets the instruction location counter to be the 
wor1 following the calling se~uence to CHNCO!, 3} increments 
CLC by 1, and 4) moves the next =ommand buffer into the 
~urrent coaaand buffer or calls DEAD or DCEMNT if no co•mand 
remains in the chain. 

A =ommand list must be .LE. 5 commands. 
Each com•and buffer with fence must be .LE. 20 words. 



c·r S S F R C G RAM M E R ' 5 GU I D :E s e ct ion A G • 8 • 0 3 Page 2 

To enter a command in the command list or =ommand buffer: 
As supervisor ~r litrary entry: 

rsx SET CLS, 4 
P!E TAB,, 1 n 1 

TAB BCI 1, command 
BCI 1 - ~ ra 1 .. --;I . 

ocr 777777777777 

As library subrcutine: 
l! A £ or P 0 RT R AM : 

opt ion a 1 

EXECUrE SCLS. (TAB,M) 

(TIA =H SE TCLS) 

SETCLS moves 20 words from TAB into the Nth command 
buffer in the commanj list, or into the 
current command buffer if N is 0. A ca 11 to 
SE1CLS with R = 0, does not initiate a 
c:>mmand. A call to NEXC:>l! or XECOM is 
required tc initiate the command. 

SCLS interprets MAD ~nd FORTBAN calling se1uences 
which specify tackward arrays and moves the 
words from rAB only to and including the fence 
int~ the command list. 

TAB is the location of the fenced command table 
(. LE. 20 words) containing t be command and its 
arguments in BCD(right justified and blank 
padded). The fence is interpreted by the 
coromand and SCLS not by SETCLS. 

N & n specify the position within the command list 
( .LE. 5) • N = 0 spe=ifies the current command 
buffer. 

To :opy a command from the command list or command buffer: 
As supervisee or library entry: 

TSX GE1CLS,4 o p ti o na 1 ( T I A = HGET CLS) 
~ E BU f F, , ' n ' 

As library subrcutine: 
M A D o t: F 0 RT R AN : 

EX ECUr E GCLS. (BUFF, N) 

GETCLS m3ves 20 words from the nth coamand buffer of 
the command list into locations beginning at 
BUFF. 



CT.SS ,..,.. u n "1 
nvevevJ 3 

GCLS interprets MAD or FORTRAN callin~ sequences, 
calls GErCLS and stores the command buffer 
backwards in BUFF. Only the words to and 
including the fence are moved into BUFF. 

B U F F m us t be at 1 east 2 0 w o I ds 1 c n g for G ET C LS • 

To set tha command location counter: 
As a sufervisor or library entry: 

:LA A 
rsx SETCLC,4 opt ion a 1 ( TIA =H SE TCL::) 

As a library subroutine: 

MAD or FOB 'IRAN: 
EXEC[) r E S CL C. (M, N) 

A contains a word of the form P~E m,,n. Both 
SE'ICLC and SCLC set the command location 
counter to m and the number of the last 

M or m 

N cr n 

c~mmand in the =hain to n. 

is the number of the command in the 
list which is the next to te executed. 
t;\ 
J I • 

is the number 
command list. 

of the l~st 

(n .LE. 5). 
command 

To query the command location counter: 
As supervisor or librarJ entry: 

command 
( m • LE. 

in the 

rsX GET:LC,4 optional ( TIA =HGE TC L::) 
S7CZJ A 

As library subroutine: 
"AD or FORTRAN 

A = GCLC (ft, N) 

M will be set to the value of the command 
location counter i.e., the position within the 
co•mdnd list of the next command tc be 
executed. (m • LE. 5). 

N will be set to the position of the last 
commdnd in the command list. (n • LE. 5). 

A will be set to a word of the form P£E m,, n. 



CTSS PROGRAMMER'S GUIDE Section AG.H.03 

To initiate or continue a chain: 
As superviscr entry: 

fSX CHN:OM, 4 {TI A =HCHNC3M) 
P BE 1 j' 

As library subroutine: 
M A C or FORT R AN : 

EX E C(J r E C H N COM (J ) 

FAF: CAL 
'IS X 

= • j. 
CH N:OM ,4 

or TSX 
P-2E 

CHNCOl'J, 4 
• j • 

Page 4 

J or j j=O specifies to CHNCOM that no core image is 
available for the next ::ommand. j=1 means that 
a C3re image is available and may be used by 
the next command. 

CH NCCM determines whet her or not another command 
exists in the chain. If one exists, it is 
initiated. If no chain exists; DORMNT is 
called if j=1, DEAD is called if j=O. 

(END) 



CTSS PROGRAMMER'S 3D!DE 

F~t=h a current c~mmand a~gument 
GETCOM, COMARG 

Page 1 

To extract the Nth argument from the current command buffer. 

As supervisor or library entry: 

rs X GET COM, 4 opt ion a 1 ( TIA =HGB TCOM) 
PiE 'n 1 

GETCOM returns, in the logical AC, the Nth argument 
of the use.t • s latest command, i.e., of the 
current command buffer. The command itself is 
number 0. The arguments may be numbered 1-19, 
including the fence. 

As library subroutine: 
MAD, FORTRAN or FAP: 

A = COMARG. (N) 
A = COM AR G. ( N, B) 
EXECUTE COitABG. (N,B) 

The Mth argument of the current command buffer 
is transferred to A and/or B. 

(END) 



CTSS PROGP.1MM~P.'S GUIDE section AG.8.05 

Specify user cptions, subsystem status 
SETJPT, RSOPT, LDOPT, GE'IOPT, SETSYS, GE'rSYS 

1'">~t:...a 
I 4., V .I 

To allow a user cr his subsystem to modifJ the settings of 
his standard 3pti~ns, subsystem name, and subsystem 
condition mask. Also to allo" a user to e"Xamine his current 
options and subsystem status. 

Associated with each user, there 
m~intained in the supervisor 
options, his subsystem name, and 
code mask and last ccndi tion code. 

are three status words 
containing his standard 
his subsystem condition 

user standard options occupy a half-word (18 bits), and are 
intarpr~ted as follows: 

+-----------------+-----------------+ 
user options 

+-----------------+-----------------+ 
1 Search user UFt first for command 
2 Search user or system files (not both} for command 
4 RESET F if c~mm and resets dormant pro g. 

10 User subsystem trap enabled 
20 Inhibit ~uit signals for user 
40 Current user program is sutsyste• 

100 Automatic save before loading subsystem 
200 User is 'dialable' 

The two low order bits are taken together to specify 
four modes of co•mand file searching: 

0 Search system files then user files (normal mode) 
1 Search user files then system files 
2 Search system files only 
3 Search user files only 

The following disk-loaded commands are always taken fro• 
tha system files (pLovided that the user is allowed to 
use them) : 



CTSS FRCGRAMM.ER'S GUIDE 

LOGIN 
LCGOUr 

Section AG.8.05 

OTOLOG (user may net issue) 
DAEMON (inccemental dumper only) 
DSDUMP (incremental dumper only) 
DSLOAD (incremental dumper only) 
FIEMON (FIE user and FIBMON only) 
OPTION (subsystem-~rivileged user only) 

12;69 2 

The RESETF bit s~ecifies that if there is a dormant core 
imd~e left from the last command, and the command 
currently being frocessed does not preserve this core 
ima~e (i.e. not SAVE, MY SAVE, START, HSTART, SUBSYS, 
ENDLOG, RESETF, or any B-::ore transfer command: USE, 
DEBUG, PM, etc.), any :~ctive files will be reset by a 
call to BESETF in5tead of beiny closEd normally. This 
provides comfatibility with previous versions of CTSS. 

The subsystem trap enable bit causes all program calls 
going to DEAt or DORMNr (including errors) to simulate a 
call to NEXCOM fer the command SUBSYS, provided that the 
Cdll does not come from the user's su~system (option bit 
40 off), and causes all new commands issued from the 
terminal to pass through the subsystem processor (with 
the excefticn of exempt commands). 

Th~ quit-inhibit bit causes all quit signals to be 
ignored for the user. Program status ~ill be unaffected 
if the user attempts to quit and buffered outpot will 
not be reset. N.B. The only way to stop a non-quittable 
pro~ram that has gone into a loop is to force an 
automatic lcgout by hanging up tha data-phone (or 
turning off p~wer to the terminal). Use this feature at 
your own risk! 

The subsystem execution tit, if on at command load time, 
causes a new core image being loaded to have subsystem 
privileges if the user does not have the subsystem 
privilege himself. Program =alls going to dead or 
dormant status will execute normally if this bit is on, 
:regardless cf the setting of the subsJstem trap bit. 

The subsystem save bit if set causes the subsystem 
processor to simulate a 'MYSAVE progn T' before it loads 
the subsystem. 

The dial-permit bit allows remote terminals to attach to 
t"he user via the DIAL c omm~ nd. See section AH. 1. 0 5 for 
d~ tails. 

T~~ user's subsystem name is interpreted as a six-character 
command name, which may be any system command o~ a use~ 
:lisk-loaded c:>mmand (SAV!D file). 



CTSS PRCGRA~MEH'S 3UIDE Section AG.8.05 12;59 3 

+-----+-----+-----+-----+-----+-----+ 
subsystem name 

+-----+-----+-----+-----+-----+-----+ 
The subsystem condition code mask is a half-word quantity 
split into two 9-bit fields. The high order 9 bits are 
axaminad by the subsy5tem processor if the user bas a core 
image left; the low order 9 bits are examined if there is 
~urrently no core image. Within each 9-tit field, the bits 
are interpreted as follows: 

1 trap new command 
2 Trap direct program call ('DEAD', 1 DJRMNT') 
4 Trap CHNCOM if end of ch~in or no chain set up 

10 Trap error condition (file system, P~V, etc.) 

Tha subsystem conditi~n code occupies the high order 18 bits 
of the subsystem conditicn mask word. The low order 9 bits 
of thasa 1B indicate which of the possible subsystem trap 
conditions occurred to cause the subsystem processor to be 
antared (zero if the SUBSYS command w~s issued directly by 
the user or his ~rogram). rhe following 8 hits specify ao 
ar.·ror code if the subsystem condition code was 10 ('error'), 
in orl~r to indicate the type of error that occurred. This 
is not yet implemented, and the error code will be returned 
1s 0. The high order (sign) bit is on if there was a 
dormant core image left. 

++-------+--------+--------+--------+ 
1 1 err~~ 1 code 1 condition mask 1 
++-------~--------+--------+--------+ 

To set (turn on) bits in the option status word: 

As a library entry ••• 

FAP: rsx 
YFD 

SElOPT,4 or 
036/'bits• 

TSX 
PAR 

SETOP T, 4 
BITS 

BITS VFD 036/'bits' 

MAD: A= SEtOPT.(BITS) 

The bits specified as •bits' will be ORed with the 
current contents of the user's option word and the 
result will reflace bits 18-35 (right half) of the 
option word. rhe previous value will be returned in 
the accumulator. 

To reset (tur~ cff) bits in the ontion wor:i: 



CT S S F B C G BAM MER 1 3 GU ICE Sect ion A G. 8. 0 5 12;69 4 

As a library entry ••• 

FAP: TSX RSOPT,4 or TSX RSOP T, 4 
PAR BITS 

BITS VFD 036/ 1 bits' 

MAD : A = RS 0 P r. (BITS) 

Th~ specified bits will be masked out of the current 
contents of the O{:tion word, and the result will 
raplace bits 18-35 of the option word. The previous 
contents will be returned in the accumulator. 

To set the ccntents cf the OFtion worj: 

As a sufervisor or library entry ••• 

FAP: TSX LDOPT,4 or 
VFt 036; 1 l:its• 

TSX 
PAR 

LDOFT,4 
BITS 

BITS VFD 036/'bits• 

MAD : A = L D 0 P r • ( BITS ) 

The specified bit configuration will replace the 
current contents of bits 18-35 of the option word. The 
old value will be returned in the accumulator. 

To axamine current ~ption settings: 

As a supervisor :>c library entry 

FAP: T S X G Er 0 PT , 4 (optional TIA =HGETOPT) 
- SL W A -

MAD: A = G E 'lOP T. ( 0) 

Location A and the accumulator will contain the 
sattings of all available options in bits 18-35. In 
addition, the left half will contain status flags 
partaining t~ the user's current core image. In 
part i c u 1 a r , b i t s 1 2- 17 spec if } the c ur r en t t yp e w r it er 
input mode as follows: 

0 6-bit mode 
1 1 2- b i t mode 
2 No-convert mode 
4 Nc-break mode 

10 Graphic input mode 

Also, bit 11 will be on if the core-B simulated 
interval timer is running. 



CTSS PP.CGP.AMMER'S GUIDE sect i c n A G. 8 • 0 5 12/59 5 

To specify subsystem name and condition mask: 

As a supervisor ~r lib~ary entry ••• 

FAP: TSX 
PAR 
PAR 

S:ETSY S, 4 
COMMND 
MASK 

(optional TIA = HSETS YS) 

MAD: SETSYS. (COMMN£, MASK) 

The user's subsystem name will be replaced by COMMND; 
the subsystem condition word will be set to the 
contents of MASK. Option bit 10 (subsystem t~ap 
enable) is set b_y this call. 

To ex amine subsystem stat us: 

As a SUfervisor or library entry ••• 

FAP: TSX 
PAR 
PAR 

:iETSYS,4 
COMMNt 
MASK 

(optional TIA =HGETSYS) 

MAD: GE'ISYS. (COMMND, MASK) 

COMMND will contain the user's current subsystem name. 
MASK will be set to the contents of the subsystem 
conditicn word. Example: If the subsystem condition 
word contains 400004004016, this indicates that the 
subsystem is t~ be called in for any call to CHN:OM 
attempting to gc dead or dormant because there is no 
chain set up (604004 mask), for any error not leaving a 
core image (000010 m~sk) and for a program call to DEAD 
(00000 2 mask) ; the subsystem will not be called in for 
any new command from the terainal (except SUBSYS of 
course), for an er~or leaving a core image, or for a 
program call to DORftNT. The condition code of 400004 
indicates that the user's program called CHBCOM and 
fell out because no chain vas set up, and that the call 
to CHNCOM SFecified a core image ~00000 bit on). 

Only 1 GETOFT' and 1 GETSYS' 
subsysteJ-restricted user fro• 
other than his subsystem. 

may te 
any progra• 

called by a 
(or coma an d) 

(E NO) 



Tra=e of Subroutine Calls. 
ERROR 

Section AG .. 9.01 

ERROR is a subprcgram which may be called by FAP, 
FJRTRAN programs in order to tr~=e backwards to 
subpro~ram through the most recently executed 
subroutine calls. 

Page 1 

MAD, or 
the main 
chain of 

If FAP subprograms are used, they should include the linkage 
director and the instruction to save the contents of index 
r~~ist~r 4 must be included in the first twenty instructions 
of the subprcgram. 

Each subprogram executed must have at least one arguaent. 

If ERROR is unable tc ccmplete the trace, the following 
m~ssage is printed and contrcl is returned to the calling 
proJra m. 

TRACE FAILUR' IN •sub' 
EXIT FROM ERROR 

MAD, FORTRAN, or FAP: 

EB ROR. (MESS) 

MESS is a BCD fenced message of .LE. 132 characters 
which will be printed on the user 1 s console 
when ERROR is entere1. 

ERROR will trace back to the main program 
the last subroutine calls and print 
of the fcllowing type and then return 
to the calling program. 

C(l1ESS) 
EN !R Y ERROR CALLED BY 'sub1' 
E NT RY I s u b 11 CALLED BY 1 sub2 1 

ENTBY 
EXI'r 

1 su bn' CALL ED 
FROM ERROR 

BY (MAIN) 

through 
comments 
control 

(END) 



CTSS PROGRAM~ER 1 3 GUIDE Section AG.10.01 

BCD or spread-octal to binary 
BCDEC, BCOCT 

To convert the BCD or spread-octal representation of an 
integer to the eguivalent bina r:y inte~er. 

BCD to binary: 
As library subroutine: 

F CRT B A N : E Q U IV A L EN C .E ( X N U M , N U l1) 
XN Urt = B:DEC (X) 

MAD: N UM = BCDEC. (X) 

FAF: ·rsx 
P~E 

sro 

BCDEC,4 
X 
NOM 

X is the location of the BCD 
converted. X is assumed to be a 
integer and leading blanks and 
ignored. 

word 
BCD 

to be 
decimal 

signs are 

NUft and the AC will 
binary integer 
value cf X. 

Spread-octal to binary: 
As library subroatine: 

contain the 
equivalent 

FCBTBAH: EQU IV ALINCE (XNU!, NUM) 
XI Uft = s:oc T (X) 

ftAD: RUM = BCOCT. (X) 

FAP: rsx 
PZE 
S'IO 

BCOCT,4 
X 
N 0!! 

ri~ht-justified 
to the absolute 

I is the location of the spreai-octal word to be 

RU ft 

converted. X is assumed to be a BCD octa 1 
integer and leaaing blanks and siqn are 
ignored. 

and the AC will 
binary integer 
value of X. 

contain the 
equivalent 

right- justified 
to the absolute 

(EN D) 



C'rSS F RCG R!!I!~ER 1 S GO !DE 

Binary to BCD 
DEFBC, DELBC. DEBBC 

s e ct ion A G; 1 0 : 0 2 p i4 (lp -- ~-

To =onvart a binary integec to BCD with leading zeros. 

As library subroutine: 

MAC or FORTRAN: 

A = DEFBC. (K) 
A = DELBC. (K) 
A = DERBC. (K) 

A will contain a BCD decimal number (modulo 
9 9 9 9 9 9) , rig h t- j us ti f i e d a nd zero padded. 

DEFBC ccnverts the full 35 bit word (sign is 
ign:l["ed) K into a BCD decimal number. 

DELEC converts the left half of ~ (sign is ignored) 
into a decimal BCD number. 

DERBC converts the right half of K into a decimal 
BCD number. 

(E NO) 



Bin~ry to spread-~ctal 
OCABC1 OCDBC, OCLBCI o:RBC 

Section AG ~ 1 0 = 0 3 Page 1 

To convert binary fields to spread-octal which is suitable 
f or p r in t in g • 

As library subroutine: 

M A C or FOR 'IRAN: 

A : OCABC. (X) 
A = OCDBC.(X) 
A = OCL BC. (X) 
A = OCRBC. (X) 

X contains the bir~ry number to be converted 

A will contain the converted 
oc ta 1 1 i. e. 1 six bits for 
(0 -7). 

value in 
aach octal 

spread 
digit 

OCAEC converts the address field of X to 5 digits 
with leading blank. 

OCDHC converts the decrement field of X to 5 digits 
with leading blank. 

OCL BC converts the left half of I to 6 digits. 

OCRBC converts the right half of X to 6 diqits. 

(END) 



CTSS PRCGR~~~ER'S ~U!D! 

Justification and Fadding 
B~EL, ZEL, LJUSl, RJUST 

section AG .. 1 0 : 0 u 

To allow the user t~ left or right justify and/or to 
interchange blanks and zeros. 

Justification library sutroutines: 

FAP: rsx LJUST, 4 TSX RJUST,4 
PBE WORD PJZE WCBD 
ST0 X ST.t X 

MAD: X = LJUSr. (WORD) X = R J US T • ( WO R 0 ) 
FORTRAN: I = LJUST (WORD) I = RJUS'r ( W 0 R t} 

WORD contains the wcrd to b~ justified. Upon return 
the AC contains the adjusted word. 

LJUST by left shifting, leading blanks are 
by trailing blanks. Leading zeros 
replaced. If the word is all blanks, 
is returned. 

replaced 
are not 
"bbbbb*" 

RJUST by right shifting, trailing blanks are 
reFlaced by leading blanks. If the word is 
all blanks, "ttbtb*" is returned. 

Int~r=han~e leading zero and blanks, library subroutine: 

MAD, FORrRAN or FAP: 

A = BH EL (B) A : Z.EL (B) 

B contains the word to be modified. Upon 
return, the AC and A will contain the modified 
wcrd. 

B~EL reflaces leading zeros with blanks. If B is 
zero, "bbbtb0" will be returned. 

~EL replaces leading blanks with zeros. If B is 
all blanks, "00000b" will be returned. 

(END) 



crss ----P'Iro•uuon•""'"' 
rl1vunannr.n-~ Section A~~10.05 Page 

General purpcse inputjoutput conversion 
(IOR), (BTN), (FIL), IOHSIZ, STQUO 

~~n~ral purpose conversion of BCD to binary or binary to BCD 
for input or outFut, respectively, according to a format and 
data list. 

cc 186 FCRrRAN and ~AD Fermat Specifications Spa 11 

A standard 22 word buffer is assumed to be located at 
(77742) 8. Presetting of certain upper core locations 
injicates whether input or output conversion is desired. If 
input is indicated, the contents of the tuffer is converted 
~~coriing to the specified format and stored in the 
loc3.tions specified by the list. If output is indicated, 
Jdtd froffi tte list Sfecification is ~onverted according to 
the format and st~red in the buffer. 

Th~ actual I;O data transmission to or from the buffer must 
be performed by an I/O routine. Appropriate calling 
s~quences to the I/0 routines and (IOH) are compiled by MAD 
and FOBTBAI for any readtvrite statements which specify a 
format. Data or format et.rors cause (ICH) to call RECOUP • 

.Q§~.l~ 

Output, binary to BCD: 
Fortran: 

RTN 

USRSTH 

OUT 

TSX OSR STH ,4 
~E FOBMAr, • 5W ITCH 

LDQ SlftBOL,t 
STR 

TSX {FIL) ,4 

Set upper 
core locs 

T R A* ( I 0 H)(', · 

T RA 2, 4 

RTN 

MAD: 
TSX 
P~E 

US RSTH,4 
FJRMAT,,SWT 

STR FIRST,, LAST 

STR 0 

USRSTH Set upper 
core locs 

TRA* (IOH) 
oo·r 

TRA 2, 4 



C'r S S F B C GRAMMER 1 5 GU IDE s e ct ion A G. 1 0. 0 5 Page 2 

Input, BCD to binary: 

Fortran: MAD: 

HTN 

TSX 
F~E 

STR 

USR'ISH,4 
FORM Ar,, SWITCH 

STQ SYMEOL,t 

TSX (H TN) ,4 

TSX US RTS H,4 
P~E FJRMAT,,SWT 

RTN 

STR FIRST,, LAST 

STR 0 

USR TSH Set UfFet core USRTSH set upper core 
T RA* ( IO B) TRA* (IOH} 

IN IN 

TRA 1, 4 TBA 1 , 4 

F::>RMAT is the beginning loc3. tion of the desired 
format. 

SWITCH is zero if the format is enclosed in 
parentheses and stored back wards in core. 
SW Ir CH is non zero if the format is enclosed 
in parentheses and store~ forward in core 
(e.g. ECI) • 

SWT is zero if fol:'mat is forward. SWT is cne, if 
the format is stored backward. 

SYMBCL,t locates the variable to be converted. A loop 
may be included here for arrays or a series of 
LDC, STR. After each variat:le is converted by 
(IOH), return is made following the STR in 
order to find the next variable to be 
ccnverted. 

FIRST is the starting location of the list. 

LAST is the f ina 1 location of the list. LA S'I may be 
lowec in core th~n FIRST. If the list is of 
length one, LAST is zero. 

(FIL) is called t~ indicate that all the outFut data 
bas been converted and ~e current buffer 
should be truncated. 



CTSS PROGRAMMER'S GUIDE s~~tion AG.10a05 Page 3 

STR 0 terminates the list in a MAD :::all. 

(RTN) is called upon completion of the input 
list. It restores the original 
initialization (i.e., trap cells). 

data 
(I OH) 

USRSTH is the user's output transmission program. It 
must in it ia lize the appropriate upper core 
locations before calling ( IOH) • After each 
line im3.ge is completed in the buffer, (IOH) 
will return to our with index register 4 set 
in such a wa y t h a t "c LA 1 , 4" wi 11 put in to t he 
address of the AC the location of the buffer 
and in the decrement of the AC the number of 
words in the buffer. 

For MAD programs, USRSTH will be •• TAFWR and 
for FORfRAN Frograms it will be (STH) or 
( S 1:H M) • 

USRTSH is the user's input transmission program. It 
must initialize the appropr.iate upper core 
locaticns, read in the first buffer load and 
then call (IOH). Control is then returned to 
FIRSr and the first 1ata word is converted and 
placed in the MQ upon entry to (IOH) by way of 
the srR. successive words are converted into 
the MQ by s~bsequent STR's. 

An STR fcllowing depletion of the input buffer 
causes (IOB) to return control to IN in order 
to read the next record. 

For MAD Frcgrams, USRTSH will be .TAFRD and 
for FORrRAN it will be (TSH) or (TSHM). 

IOHSIZ: 

STQUO: 

KAD, FAP, cr FORTRAH 

N 

TSX IOH SI Z ,4 
PBE N 

containing non-zero 
the diagnostic that 
format has been 
suppressed. An N of 
aode ~f printing the 

MAD, FlP, cr FOR'I$11 

indicates 
"the field 

exceeded" 

to (IOH) 
width of 

should 

that 
the 
be 

zero rese-ts the normal 
diagnostic. 



CTSS PHOGRAMMER'3 GUIDE sec ti on A G • 1 0 • 0 5 Page 4 

TSX STQ UO ,4 

The next I/O statement ~ill be initiated 
wi th:lut r esett in g the buffer~ that is, the 
line pcinter is left where it was at the 
conclusion of the last I/C call. This is 
normally used in conjunction with the N 
modi t i e r • ( c c- 1 8 6 f or de sc r i p t ion of for m at s ) • 

The following locations must be set before (IOH) 
for conversion: 

is called 

(77737)8 address L~cation of subroutine that (IOH) calls 
for input or output. This address 
c~rresponds to INPUT or CUTPUT. 

Tag 0 
decre~ent +1 if format stored backwards -1 if 

format stored forwards 
Frefix !XL if FORTRAN type call TXH if MAD type 

call 

(77740)8 address location of first word of format 
statement. 

tag 0 
decrement user's index register 4 on initial entry 

t~ the input-output subroutine. 
Frefix TXL for on-line printer TXH for all 

other I;C 

( 77 741) E address scratch area for {IOH) to use for 
output. rhe number of words in the 
cutput record is storea here. 

(77742)8 

tag 
decrement 

prefix 

0 
maximum number of columns available in 
input or output record (may not exceed 
13 2). 
'IXL for output (binar_y to BCD). TXA for 
input (BCD to binary). 

The beginning of a 22 word buffer from 
which BCD data is convertej to binary or 
into which BCD data is placed after 
binary tc BCD conversion. 

(77771) 8 address location of symbol table (if any) 

0 address the address of RTII as RTN is the 
l3cation to which programs should return 
after, call iwq · ( IO H) • 

(E NO) 



CTSS 

Fortran integers to;from full word integers. 
FI NT, MI N'r 

Fortran II integers occupy the decrement portion 
:=omputa£ word. Most :>thee systems, including MAD, use 
word integers. rhese twc routines will convert 
1::!cremen t to full w::>rd or from full word to ·decrement. 

As a library subr::>utine: 

Fortran: EQUIVALENCE (A,J} 
A = FINr (I} I :: MINT (J) 

of a 
full 
fcom 

MAD: J= FINr. (I} 
INTEGER J, FINT., I 

I = MINT. (J) 
INTEGER I, MINT. , J 

FAF: tSX PINt,4 
F~E I 
sro J 

TSX MIN'r,4 
P~E J 
STO I 

I is a full ~ord (MAD) integer. 

J is a decrement (FORTRAN) integer. 

A is equivalent to J. 

PINT converts from full word to decrement integer. 
If the integer is too large, the fcllowing 
message will be printed and the integer will 
be taken modulo 32768. 

MAD INTEGER EXCEEDS 32767 

MINT convects from decrement integer to full word. 

(END) 



Complement, OR, and AND functions 
COM, ORA, ANA 

Section AG.10.08 9/65 1 

COM exacutes the machine instruction co~, CBA executes ORA, 
~n1 ANA executes ANA. 

FORT RAN: COM A = COM (A) 
ORABC = ORA (B,C) 
ANADE = ANA (D,E) 

,.At: COMA = CO!. (A) 
ORABC = ORA. (B,C) 
ANAD!= ANA.(D,E) 

On return from CCM, the arithmetic AC will contain the 
complement ('one's ccmflement') of A. 

On return from ORA, the arithmetic AC will contain the 
result of •oring' B and c. On return from ANA, the 
3-ri thm2tic AC will contain the result of • anding' D and E. 

(EN D) 



CTSS PROGRAMMER'S sc=t icn ~~ 1(1 ()Q 
"""". t v. v J 

Internal conve~sion cf stored data according to a format. 
DECODE, ENCODE 

1 
I 

To encode (tc a:o representation) or decode (from BCD 
r~presantation) data in m~chine representation, according to 
a MAD/FOETBAN format statement. 

As library subroutine: 

FCET BAN: A = DECODE ( Fr.T 1 TEXT, LIST) 
MAD: A = DECCDE. (FMT, TEXT, LIST) 
FAF: rsx $tECOtE, 4 

PZE 
PZE 
PZE 

PZE 
STO 

FMT 
r EXT 
AR~ 1 

ARGN 
A 

·rha FAF call may also simulate FORTRAN and MAD calls: 

rQ~lttl! 11!~ 

TSX $DE:oo.E,4 TSX $DECODE,4 
TSX FMT TXH FMT 
TSX lE :XT TXH TEXT 
TSX ARG1 TXH ARG1 

TSX ARGN TSX ARGK ( j) , ,ARGK (m) 
STO A TXH ARGN 

STO A 

wbere 

Pft 1: refers to the format st~ teman t to be used in 
converting the data. 

1) In a F ORTRA B (or PORT BAN siaul a ted} 
call, it may be a setting from a call to 
SETFMT. If SETFMT is not used it should 
he the F.-specification of the format 
s f'L·-te me n t , e.g • , 

" A = DECODE (5H (513) ,TEXT, list) 
The format is expected stored in reverse 
order ~th PMT pointing to the first 
location (normal FORTRAN compilation). 



C T S S f B C G R A 1'1 M E R ' 5 GU I t E Sect ion AG. 10. 09 3/66 2 

2) In a MAD (or MAD si mula ted) call, FMT 
should point to the first location of 
the format statement, tb.e format being 
stored 1n reverse order {normal MAD 
compilation). 

3) In a FAP call, where the prefixes are 
PZE's, FMT should point to the first 
lJcation of the format statement, the 
for rna t being storei for wards. 

TEXT i s a n a r ra y which c on t ai n s the BCD t o be 
decoded, or into which BCD information will 
be stored after encoding. If the call was 
ftom a FORTRAN or MAD program (or FORTRAN or 
MAD simulated program), the array is stored 
backwards. Otherwise the array is stored 
forwards. 
NOTE: In calls to DECODE, eacb new item of 
T EXr must start in a new machine location. 
Due tc the way records are transmitted, the 
mem:>ry bound should be at least 21 words past 
the start of the last record. !his is 
ensured with normal loading procedure. 

LIST is a list of arguments. It can be any length 
and may be single v ar ia.bles, subscripted or 
net, cr MAD lists _e.g. A(i) ••• A(n). 
Not allowed are FORTRAN implied •oo• loops, 
and FAP tagged variables. 

A is a integer giving either: 
1) F:>r ENCOtE, the length of the resultant 

text. 
2} F:>r- tECOtE, the number of words picked 

up from TEXT in order to fill the list. 
"A" will be zero if the calling sequence is 
not recognized by COLT or if no arguments are 
Sfecified in LIST. 

(END) 



S e ct ion A G .. 1 0 • 1 0 12/6 y 1 

HinaryjBCD Conversion 
D'rBC, OTBC, ET DC, i;jrOC 

Convert decimal ~r spread-octal BCD numbers to binary; 
convert binary tc decimal or spread-octal BCD. 

Thase routines are usable from FAP programs only. They may 
not be called directly from MAD or FORTRAN programs, since 
the calling sequences are incompatible. 

Decimal- to- binary conversion 

LD<; DEC 
TSX DTBC,4 
SLW BIN 

BIN will contain the bin~ry integer represented by the 
bed string contained in DEC. 

Octal- to- binary conversion 

LDQ OCT 
TSX OT BC, 4 
SL W BIN 

After the call, BIN will contain 
rapresented by the spread-octal 
oc·r. 

Binary-to-decimal conversion 

LDQ BIB 
TSX sr DC, 4 
SLW DEC 

the binary integer 
number contained in 

After the call to BTDC, DEC will contain the bed 
rapresentati~n of the binary integer found in BIN. 

Binary-to-octal conversion 

LDQ BIB 
TSX BTOCf4 
SL w ocr ·· 

After the call to BTOG, the spread-octal representation 
of the high ~£de~ 1~ ~!!§ of BIM will be returned. The 



CTSS P~OGRAMMER'S 3UIDE Section AG.10. 10 12/69 2 

low order 18 bit of BIN will be returned left-adjusted 
in the MQ, t:> be used for another call to Bl'OC. I.e. 
the following cede will store the spread-octal 
r~presentati3n f~r all ]6 tits of BIN in the locations 
OCT and 0 Cl' + 1 : 

LDQ BIN 
rsx Brae, 4 
SL W OCT 
TSX B'IOC,4 
SLW ocr+l 

(E NO) 



CTSS PHOGRA~MER'S ~U!DE se=tion AG.10.11 1?/~Q ..... , ..., ~ 

Padding 
PAD , B Z L , N Z L , Z E L , N BL 

Allow the user tc IJad a bed word with a rbi trar y 1 eadin g 
:::hara::tars. 

Arbit~ary padding: 

The 

CAL WORD 
TSX PAD,4 
PAR =HAAAAAA 
PAR =RBBBBBB 
S LW RESULT 

All leading A's will be replaced by B's, and the result 
returned in the logical AC. 

Ex a tr f le - tc convert ' 

TSX 
PAR 
PAR 

PAD, 4 
=H 
=H*•**** 

following entries make 

BZL - Replace leading 

NZL - Replace leading 

ZBL - Replace leading 

NBL - Replace leading 

XYZ' to '***XYZ': 

(blanks) 

internal calls to PAD: 

zeros by tlanks 

zeros by nulls 

blanks by zeros 

blanks by nulls 

Cillin~ sequences are all of the form 

CAL WORD 
TSI XXX,4 
SLW RESULr 

Thase routines may be used by FAP callin~ programs only; 
they may not be called directly t:y MAD or FORTRAN prcgrams. 

(ENC) 



Left and right justification 
ADJ, LJ, RJ 

Section AG.iO.i2 12/69 

Left or right justify a character string within an arbitrary 
fi~ld. 

G:!naral form: 

CAL WORt 
'J:SX ADJ,4 
EAB =HAJAAAA 
PAR SWI'I:H 
S LW RESULr 

If SWITCH is zer~, leading A's will tecome trailing A's 
(left-justificatiot); if SWITCH is non-zero, trailing 
A's will bec3me leading A's (right-justification). 

Example - to convert t IYZ' to 'XYZ t : 

;rsx ADJ,4 
PAR =H {blanks) 
PAR =0 (left- justify) 
SLW RESULT 

The following entries make internal calls to ADJ: 

RJ - Right-adjust, field of blanks 

LJ - Left-adjust, field of blanks 

Calling sequences for these entries are of the form 

CAL WORt 
TSI XX,4 
SLW RESULr 

These routines may be called froa PAP programs only; the 
=alling sequences ace incompatible with ftAD and FORTRAN 
forms. 

( FN D) 



~ rT1 C" C" r l"l n ~ D Jl U U ~ D a ~ ~Jt T f'l 'C' 
.._ .a. oJ oJ ,;; v v OJ ~~ n 11 1.1 w .1.1 J uu .1.. .a.; &.; 

Strip leading blanks or 2eroes 
BZ57 

e ,. ,.._ .; ,.,. r. 11 ,.. 1 f\ 1 "'l 
u,..;-....,..Lvu nve • v. t J 

1 ") ..1 c. Cl 
I C.., V .J 

To convert leading 2eroes or bl~nks to null characters 
(o=tal 57) for use in output formatting of BCD information. 

MAD : A = BZ 5 7 • ( B) 

PAP: rsx 
PAR 
sro 

BZ 57, 4 
B 
A 

Loc~tion B contains the word to be converted. On return, 
both A and the AC contain the converted result. 

(END) 



CTSS PROGRAMMER'S GUIDE section !G. 11. 0 1 

Viriable length calling seguence processor 
CQLT, SELAR, MDL 

To provide one routine which general purpose subroutines 
might call to interpret variable-length ~allin3 sequences 
~~nerated by MAD, F'ORrBAN or PAP. This routine will 
determine the ty~e of calling-pro~ram .and the number and 
typ~ of arguments in the calling-program. 

Local definitions: 
Program is the routine ~hich is ~alling C3LT. 
Calling-progcam is the routine which is Cdlling 
the prcgram. 

CJLT, as a library subroutine: 

IR 4 

TSX :OLT ,4 
P~ E IR4 

contains, in the decrement, the 
index register 4 at the time the 
called. 

contents of 
program vas 

AC upon return, will contain, in the decrement, 
the number of a~guments in the calling 
sequence tc the program and, in the address, a 
code specifying the type of the 
calling-program. The codes are: 

0 unknown, or no arguaents 
1 FAP 

.2 FOR'XRAN 
3 MAD 

Index register 4 will contain the tvo•s coaflement 
of the location in the calling-program to 
which the program should return, i.e., the 
locaticn fcllowing the calling sequence. 



CTSS FBCGRAMMER'S GUI~E S e ct ion A G • 1 1 • 0 1 Page 2 

S~LAR; what type ~f aryument: 

CAL* COLf 
SlA SE LA R 
CAL 
AXT 

SELAH rRA 

ARG 
RETURII,1 
** 

RETURN 

ARG is the aigument from the 
which is tc be examined. 

calling-program 

REIURN is the location to which SElAB is to return. 

SELAR will place a code in index register 1 
indicating the type of argument 

C unknown 
1 FAP 
2 FORr RAN 
3 MAD s in g 1 e a r gu me n t 
4 MAD list with TIX 
5 MAD list with STB 

AC UFOn return, will contain in the left half the 
significant part of the argument (TXH, TSX 
etc.) 

MDL, MAD list process~r: 

CAL* <:OLT 
ARS 18 
S7A fttL 
CAL ABG 

MDL TSX •• , 1 

ARG is the MAD list :1 rg umen t from the 
c a 11 in g -pro gr am t'O be ex amine a. 

AC UFCn return will contain: 
address - number of words in the list 

decrement - the increment to be used in 
i nd e xi ng ( + 1 o 1: -1 ) 

prefix - TXH (plus) if the list is 
forward or TXL (minus) if the 
list is backward. 

(EN D) 



section AG. 11. UL Page 1 

D~t~rmine type of calling program and Fil~AM 
GN AM 

To provide a routine which general purpose routines 
call to determine the tyfe of calling-program and a 
n~me if one be re1uested. 

Local definitions: 
Program is the routine which is calling GRAM. 
Calling-program is the routine which is calling 
the program. 

As library subroutine: 

TSX 
PnE 

-OPN 

G NA l1 ,4 
IR4 
FILN AM-

OFN may be PSE, TXB, or TSX. 

might 
file 

IR 4 contains, in the de~rement, the 
index register 4 at the ti•e the 
called. 

contents of 
program was 

FILNAM (OFtional) is the first of two consecutive 
locations in which the file name will be 
s t c red (for wa rd if P zt E, back war d i f T XH) • The 
file name is assumed to te located by the 
first arguaent in the =~llin~ sequence to the 
program. 

AC will contain a code, right-adjusted integer, 
SFecifying the type of the calling-program. 

0 unknown 
1 FAP 
2 PORTRAtf 
3 MAD 

(END) 



GUILE Se(;i:.i.on • ,.. 1 1 n-"' 
81.3.11eVJ ,..,. ----

ra.~c 

List transmission 
MDVE1, MOVE2, MOVEJ 

To tramsmit data specified by an argument list from the 
calling Frogram to the called program or transmit any list 
spa=ified data fr~m one place to another. The argument 
lists may be MAD, FORrBAN or FAP and the data arrays may be 
forward or backward. 

As library subroutine: 

rsx MOVE 1, 4 
OP BGDATA ,, -ENDATA-
OPN 
rsx MOVE 2, 4 
OP tlE GLS~, ,-E NO LST 

ALPHA O.PN 
S'IR DATOU'I, ,LSIOUT 

BET A OPN 
'IS X MOlE 3 ,4 

OP may be 'IS I, TXH, P-EE, TIX or STB. The 

BGDATA 

decrement argument may be usei only with TIX 
and S'lR. 
TSX and rxH signify a single argument or 
backwar& array base. 
P~E signifies a single argument or forward 
array base. 
TIX and STR signify an argument list whose 
beginning location is specified in the address 
and whcse ending location is specified in the 
decrement. Note that the list may be forward 
or backward deFending on whether the address 
is less than or greater than the decreaent. 

is the beqinning loc~tion of a block 
in the progcam in which the data 
stcred. 

of core 
will be 

ENDATA (specified only when CP is TIX or STR) is the 
ending location of the data block. 

BEGLST is the begining location of the list which 
specifies the data to te moved. 

ENDLST (sfecified onl-y when OP is TIX or STR) is the 
ending lccaticn of the ~rgument list. 



CTSS FRCGRAMMER'S GUI~E Section AG.11 .. 03 Page 2 

ALPHA is the return from MOVE2 at which time the A: 
contains the first ditl item as specified by 
BEGLS r. 

ST R causes the storing of the AC in the data block 
specified by BGDATA. If this fills the data 
block, return is made to DATOUT and the AC is 
meaningless. The next da t::t item from the list 
is then placed in the AC and return is made to 
BET A. If there is no next item in the list, 
return is m!lde to LSTOUT. 

If BE~LST w:is specifiei as an array base, 
successive STR's will cause the transmission 
of successive elements of the array. The 
number ~f elements thus transmitted must be 
con t r o 11 ed b y the use r. 

DA'rOU'r is the return lo=a tion if the data block is 
full. 'Ihe A:: is meaning less. MGVE1 may now be 
called again to initialize another data blcck. 

LSTOUT is the return location if the list is 
exhausted MOVE2 may be called to specify 
another list or another STR may be executed if 
moving a n a r ra y. 

OPN may be any programming to establish loops and 
use ~r modify the AC if desired. 

MOVE1 initializes ad de esses and indexing for the 
data block and also initiali2es the STB tea F 
cells to enteies to this routine. 

MOVE2 initializes addresses and indexin~ foe the 
list, initializes the trap cells if not 
aleeady done, and gets the first data item in 
the AC. 

MCVE3 restores the trap cells. 

(EN C) 



CTSS PROGHAMMEH•S JU!DE 

N~m~ a format or file name 
SETFM T, SETMAM 

Se:= tion .. ,.. 11 f\11 
nu • t • • """"' 1 

To simplify FOBTBAN calls to the library disk routines by 
providing formats and file names. with labels which then aay 
b~ used in calling se1uences to library routines. 

FOHTBAN: CALL SB!NArt (PILNAM, 12H NAME1 NAME2) 
c A L L s B r F M T (Po R MAT , nH { •••••• ) ) 

FILHA~ is the location which is to contain a pointer 
to the actu~l file name NA~E1 NAME2. 
HAMEl NAME2 are the actual primary and 
secondary n~ mes of the file, right-justified. 

FORMAT is the location which is to ~ontain a pointer 
to the actual format. 

pointer is a word which contains in the address 
portion the adiress of the first word of 
eithet:' the format or file name. The left half 
will ccntain a rsx if the call vas made by a 
Fortt:'an or FAP program or a TXH if the call 
vas made by a MAD program. Bit positions 
12-17 will contain (77)B. 

These two rcutines allow the library disk routines to 
be called with PILNAM and FORMAT as arguments instead 
of the actua 1 BCD information. 

i.e., CALL DWRITE (FILBAM, FCB!.lT, LIST) 
instead of CALL DWRITE (12H NAME1 NAP.E2, nH ( •••• ), LIST) 

(Ell D 



Get the date and time of day 
GETIME, GETTM, GiDYTM 

Section .,... "" n4 
ftU • I L • V I 

To provide the user with the current date and tiae of 
The formats in which information is returned differ; 
are described under Usage. 

1 
I 

day. 
they 

Th~ time is co•puted by using values from the interval timer 
to update the last reading of the chronolog clock (last time 
somaone logged in). rhe interval timer is incremented sixty 
times a second. 

1) GETIME 

As supervisor ()r library entry: 

TSX 
SLW 
STQ 

GE TIME ,4 
rIME 
DA 'IE 

optional (TI A = HGET IPI E) 

Upon return, the logical AC will contain 
the time of day as an integer in 60tbs of a 
seccnd. rhe MQ will contain the date in B:D 
as "rtftDD l Y". 

As library subroutine: 

MAD, FORTRAN or FAP 
CALL GETr H (DATE, TIME) 

DATE is the location in which the date will be 
stcred in the BCD form "~M/DDb". 

TIME is the location in which the time will be 
stored in the s:o form "HH!~.M". HB is the 
hour of the day (0-23) and MPI.M is the minutes 
after the hour to one tenth of a minute 
(0 -59. 9). 

3) GTDYTM 

As supervisor or library entry: 



C'rSS FRCGRAMM ER'S GUIDE s e ct ion A G • 1 2 • 0 1 5;66 2 

MAD 

FAP 

TIME 

TIME = G TO l'IM. ( 0) 

TSX 
SLW 

G TD YTM ,4 
TIKE 

optional (TIA = HGT DYrM) 

is the location in which the 
will be stored in (binary) 
format". see Section 
description of date and time 
U.F.D./M.F.D. items. 

date ~g time 
"file system 

10.2 for the 
last modified 

(END) 



CTSS PROGRAH~Ea=s ~UIDE Saction AG.i2.02 Page i 

Timer interrupt and stop watch 
TIMER, JCBTM, RSCLCK, STOPCL, KILLTR, TI~lFT, BSTRTN 

To provide the user with the ability to time parts of a 
pro~ram and/or set a time limit on parts of a prograa. 

The foreground supervisor normally runs with the clock 
fun::tion turned off. A call to any of these time routines 
will turn the clock on. the interval timer is then used to 
tima tha function as specified by the user. The interval 
time is incremented sixty times a second so that all integer 
tim~s will be in 60ths of a second. 

The simulated clock (core B interval timer ::ell) may cause 
1n intarrupt only every 200 milliseconds tecause that is how 
often it is UFdated by the supervisor, but it will be 
in::remanted every 60th of a second. The execution of any 
.:ommand (e.g., MACHO or CHAIN) will turn the clock function 
off. The job time is initiated to 73 minutes upon the first 
:~11 to the timer rather than at the actual beginning of the 
job. CLOCON and CLOCOF should not be used if the timer 
routines are being used. 

All of the entries may be called by ~AD, FAP or FORTRAN. If 
th~ prefix to the argument is non-zero (i.e., MAD or TXH in 
FAP) the inte9er varia.b le will be full word. integers. If 
th~ prefix is zer~, the integers will be in the decrement. 

To initialize or reset the stop watch to zero: 

EX ECUT! RSCLCK. 

To read the elapsed execution time since the last call to 
RSCLCK: 

EXEC UTE STOPCI.. (J) 

J is an integer variable which will contain the 
time used since the last call to RSCLCK in 
6 Oths cf a second. 

To read the elapsed exe~ution time since the first 
initiali7ation of the clock: 



CTSS PROGRAMMER'S GUIDE sec ti on A G • 1 2 • 0 2 Page 2 

E XE: UTE JOBTf1. ( J) 

J is an integer variable which will contain the 
elapsed execution time since the first call to 
one of the timer routines in 60ths of a 
sec:>n d. 

To initialize an elapsed time interrupt, i.e., an alarm 
::::lo:k: 

FORT R A N: ASS I:; N S T 0 H 
CAL 1 'II MER ( J , N) 

MAt: EXECUTE TIMER. (J,S) 

PAP: rsx 
P~E 

P~E 

rIMER, 4 
J 
s 

J is an integer variable specifying 
of time in 60ths of a second that 
may run before interrupting. 

the 
the 

length 
clock 

s is the statement (location) to which control 
should transfer when the time, to the nearest 
200 milleseconds, has elapsed. 

TIMER Only nine calls to TIMER may be stacked. Any 
m~re than nine will be ignorei. 

To =ontinue the instructions which were interrupted by the 
alarm clock: 

EX !CUTE RSTRTN. 

To void the last setting of the alarm clock: 

E XE: UTE lU LLTB. 

To provide foreground/background compatibility to job time 
r~maining: 

J 

BX E CU r E T IM L PT • (J ) 

is an integer variable which will contain 
amount of time in 60ths of a second which 
job has rem~ininq to run. The first call 
any of the timer routines will initialize 
job run time tc 72 hrs. The job run time 
backg~ound jobs is taken fro• 
iden t if ica ti on =a rd. 

the 
the 

to 
the 
for 
the 

(END) 



CTSS fBCGRAM~ER'3 GU ID~ 

Simulated interval timer 
CLOCON, CLOCCF, UPCLOC 

sect ion AG. 12. 03 12;69 1 

To :ausa the supecvis~r to simulate the interval timer for 
the user. 

Th~se routines sh~uld not be used if one of the following 
routines is to be used: 
TI K E R, JO BTM, R SCL: K, S'IOPC L, KI lLTR, TI ~IFT, RST BT N. 

If the clock function is on, the B core interval timer cell 
(lo:ation 00005) will be updated by the supervisor at each 
time burst (200 milliseccnds) or on a ::all to UPCLOC. It 
will ba updated by the elapsed time (running time, net real 
time) in 60ths cf a second. Any s-core interval timer 
ov~rflow trap will be interpreted ~t the time of the update. 
Tn~ status of the simulated interval timer is not affected 
by commands which preserve the ~urrent core image: START, 
SAVE, FM, DEBUG, etc. In addition, it is restored from a 
saved file by RESUME or :ON!I N. The clock function is 
normally off. 

Turn tha clock functi~n on: 
As superviscr or librarJ entry: 

rsx CLOCOI,4 optional (TIA =HCLOCON) 

Turn the clock function cff: 
As supervisor or lite ary entry: 

TSX CLOCOF ,4 optiona 1 (TI A =HCLOCOF) 

Upi:t ta the clock and check for trap: 
As superviscr or 1 ib ra r .Y entry: 

rsx UPCLOC, 4 optional (TIA =H UP:Lo:) 

(E NO) 



Print time used 
RDYTIM 

i"" - .... ~ .: -- a ro 1 '1 f\ It 
JC\..\.~VU ft\Jie l£.ev..,. 12;69 1 

To print a •ready 1essage• on the terminal indicating 
running time and swap time used si nee the last • ready 
m~ssa1a•. The ready message is identical to that printed by 
the supervisor on calls to DEAD and DOBMJT, and is of the 
form: 

R ttt.ttt+sss.sss 

wh3re •sss.sss• is the swap time used in seconds and 
•ttt.ttt' is the execution time used, also in seconds. 

The supervisor maintains inc£emental user charge time and 
running time to aid the user in judginq efficiency of his 
pro~rams. The RDYriM entry is a user interface into the same 
ptoyram used by the superviscr in printing reaiy lines~ 

As a supervisor cr library entry: 

TSX RD YTI P! ,4 ( optional TI A =H RDY 'II PI) 

(END) 



CTSS PROGRAMMER'S ~D!DE section AG .. 13.00 2,'66 1 

List of miscellaneous library subroutines: 

Tha following is a list of miscellaneoos TSLI81 subroutines. 
Further information or one page write- ups may be obtained 
from the consultants. 

DFAD DFSB DFMP CC !IIT DFDE SFDF 

IOSET IOFAF IOEND IOSCP IOITR 

(S LO) (S LI) 

.01300 .01301 .01311 • 0 3] 10 .03311 

MAXO MAXl XMA XO XMAI 1 

MIN 0 MIN 1 XMINO JMI tf1 

MOD XMOD 

XSIG N SIGN XLOC 

Dil1 XDI f1 INT XINT XFIX 

EXP EXP ( 1 EXP(2 EX: P ( 3 

ACJS ASIN ATAN ArN cos SIN 

LOG SQRT SQR TAN COT TANH 

SIMCS XSMEQ lSiftEQ XDETBft IDTRft DETCS 

FLIP RAN NO SE 'Ill INDY DPIV 

(END) 



CTSS 

Flodting-Point Overfl~w and Underflow 
( FPT) 

Ill"" 1"'] f'\1 
nu • • ..1• v t 

1 . 

To process the underflows and overflows which 11ay occur 
1uring the execution of floating-point operations. 
Underflows are set to zer:>, the lowest possible absolute 
number, and overflows ha 1 t exec uti on. · 

An underflow or cverflow automatically causes a transfer of 
=ontrol to locati~n 8 with the lo=~tion of the instruction 
following the offending instruction stored in the address of 
location 0. A sFill code is stored in the decrement of 0. 
IE ~n underflow c:>ndition exists, (FPT) places zero in the 
proper register and tr~nsfers back to the instruction 
following the floating-point instruction which caused the 
underflow. 

If an over flow condi ti en exists, (F PT) proceeds to do the 
fallowing: 

1. It prints on one line the com•ent: 

FLO-POINT OV-FLOW AT OCT ICC xxxxx ABS, 
or xxxxx REL, PROG name SPILL xxxxx 

2. It then calls the library subprogram ERROR, which 
prints an error traceback, if possible, enablinq 
the user to determine the control path leading to 
the erx:or. 

3. After this information is co11ple te, EXIT is 
called. 

Th~ spill codes are produced as follows: 

Opax:-a tion AC MQ Deer. Portion Spill code 
Bits in octal 

12 14 15 16 17 

Add, Subtract Underflow 0 0 0 0 1 01 

Multiply, and Underflow Underflow 0 0 0 1 1 03 
Round over flow 0 0 1 1 0 06 

Overflow Overflow 0 0 1 1 1 07 

Divide Underflow n 1 0 0 1 1 1 v 

Under flow 0 1 0 1 0 12 



CTSS PROGRAMMER'S GUIDE 

underflow 

Ef facti ve Address 
of a Doutle-Precision 
Instruction is Odd, 
(except DST) 

Section AG.13.01 8/65 2 

Underflow 
Overflow 

0 1 0 1 1 
0 1 1 0 1 

1 

A transfer tc (FPr) is placed in register 8 by .SETUP, a 
~~11 to which is automatically inserted into every POBTRAN 
~ni MAD main program compiled at the Computation Center. 

13 
15 

40 

(EB D) 



CTSS ~RCGRAMMER•S GUIDF: 

Log in 
LOGIN 

S ~ct. ion A H ~ 1 ~ 0 1 12;69 1 

Lo~ out any previ~us user of this console; identify the new 
user; initialize accounting information for the new user. 

--> login probn name 
W HHMM. l1 
Password 

--> private password 
STANDBY LINE Hl5 BEEN ASSIGN ED 
YOU HAVE XXXXXX 
PRCBN FROG LOGGED IN MM/DD/YY HHMM.~ PRJM UNITID 
LAST LOGO U'I WAS MM/DD I YY HH Mft. M FRCM U NITID 
HOME PILE tiRECrORY IS PROBN UFDliM 
-message of the day-
CTSS BEING OS Et IS SY SN AM 

R 4 • 1 83 + • 1 3 3 

PROBN is the user's problem number, ~ssigned to his project 
by tha IPC administrative office. 

NAME is the user's la.st name, of wich only the last six 
=naracters are used. 

PASSWORD is the user's private password, which must match 
that found in the accounting files before the user can be 
loggaj in. After typing 'Password•, the computer turns off 
the printing mechanism of the console, so that the password 
will not appear on the page. 

PBOG is the user's assigned proqrawaer nuaber which 
corresponds to the ccmbinaticn of PROBN, NAME, and PASSWORD. 

XXXXXX ~ay be any combination of the following files: 

l1A I L BOX 
URGENT MAIL 
PROGL SAVED 

- ftail from other users 
- Mail froa the system 
- Saved file from auto•atic logout. See 

section AH.1.02 con=erning automatic 
logout. 

U~ITID is the console identification code -

UFDN" is t~e usee's home file directory, if not the same as 
his progra•mer number. rhis line omitted if UPDN~ is same as 
PROG. 



CTSS PROGRAMMER'S GUIDE Section AH. 1. 0 1 

11 E S SAGE 0 F THE D A Y i s the c on te n t s, i f a n y, of 
1 MESSAG TODAY' in the putlic file directory M1416 
and contains infcrmaticn of interest to the user. 

SYSNAM is the name cf the current version of CTSS. 

ALREADY LOGGED IN 

12/6 9 2 

the file 
CMFL04, 

The user is already logged in from the same console. No 
further acti~n is taken. 

PROBN IS NCT A PBOBL!M NUMBER 
A problem number consists of a letter (usually 'C', 
• M • , • N • , o r • r • ) , f o 11 ow e d by on e t o f o u r d i g i t s • The 
problem number SUfplied on the command line does not 
satisfy this re~uirement. 

PROBN NA~E NCT FOUND IN tiRECTORY 
The combination of Froblem number and name is not in 
the accounting files. 

PASSWORD NOT FOUND II DIRECTORY 
The password SUfplied is incorrect for the user PROBN 
NAME. 

NO TIME ALLOTTED FOR lHIS SHIFT 
The user has zero time allotment for the current shift. 
See T T P E E K , A H. 1. 0 4 .. 

Y:JUR ACCCUNT IS our OF FUNDS 
The user's account is overdrawn. He should make 
arrangements with the IPC administrative office, e.g. 
submit a new requisition. 

YJUR ACCOUNT HAS REA:RED ITS TERMINATION DATE 
The user's account has expired. He should make 
arrangeroents with the administrative offi=e. 

USER f'1 A Y N 0 T USE THIS :0 N SOLE 
Tha user's unit group restricts him to specific 
consoles, of which the current console is not one. 

UNIT GROUP n NO'I FOUND 
System error, the user's unit qroup as specified in the 
primary accounting file does not apraar in the unit 
gt·oup f .. ile. Notify the systems staff. 

IF YOU LCG IN, YOUR FIB JOB WILL BE DELETED 
OJ YOU WISH TO LOG IN, 

Tha user is currently logged in on FIB. If he 
'yes•, the fib job will be loggej out, ani he 
logged in; otherwise the fit jot will continue 

replies 
will be 
to run. 



CTSS PROGRAMMER'S 3Q!DE Section AH.1.01 12/69 3 

PROBN PROG ALREADY LOGGED IN FROM UNITID 
Tne user is already logged in from a different console. 
Notify the administt~tive staff in case of unauthorized 
use. 

PARTY GRF NUMBER n IS WRONG 
System error, illegal party aroup specified in the 
accounting files. Notify the systems staff. 

CTSS IS BEING BROUGHT DOWN 
Tha system is in the process of being shut down for 
scheduled routine maintenance or system difficulties. 

ALLOTTED TIMB EXCEEDED FOR THIS SHIFT 
Tne user's time allotment for the currant shift is 
exhausted. See rrPEEK, section AH. 1.04. 

I 0 U R DATA P HOME IS HUNG UP 
Machine or system error; notify systems or operations 
staff. 

DISK ERROR IN AC:CO UM ll NG FILES 
Machine ar systea error; notify systems staff. 

TIME ACCOUNTING FILE IS LOCKED 
one of the accounting files c~nnot be op~ned. 
or system err~r; notify systems staff. 

PBOBB UFDNM NOT IN a. F. D. 

Machine 

The user's home file directory c~nnot be found. Notify 
systems or administrative staff. 

SYSTEM FULL, TRY AGAIN LArER 
The system is currently filled to capacity, and the 
usar trying to log in does not have a priority line. 
Wait a few minutes and try again. The HELLO command may 
be used t~ determine if a login will be permitted: the 
number of users currently logged in must be less than 
the maximum allowed on. see AH.l.O&. 

LOGIN CO~MAND INCOBBECr 
Error in command format or accounting files, or other 
arcor encountered during login process. The user is not 
logged in. 

NO LOG! N 
Login refused for whatever reason specif--ied, -e.g. 
account overdrawn, allotted time excee3e~, etc. 

Th~ party group all~tment specifies the nuaber of users in 
!!~~ p~rty group wh~ may log in regardless of current system 
loai, maximum number ~f users, etc. Such users are said to 



CTSS PROGRAM~F.R'S 30IDE Section AH.1.01 12/69 4 

have priority lines. ~t fresent, only system administrators 
an1 projrammers, ESL display scope users, and users involved 
in prescheduled de111onstrations using CTSS are assigned 
priority lines; they are no longer assigned to user groups: 
All other users are assigned standby lines, and are subject 
to bein1 automatically logged out by the system in the event 
of excessive overload due to too manJ users logged in, or to 
b~ing refused access for this reason. 

P~rty Jroup 0 is always standby except that FIB and the 
DAEMON (incremental dumper) are always priority lines. 

(E NO 



CTSS PROGRA~MER'S GU!DE Section AH.1.02 12/69 1 

Log out 
LOGOUT, Automatic log~ut 

Allow the user tc terminate his console session, update any 
~==ountin~ information, inform the user of his total time 
used, and in the event the system was full, allow another 
usar to login. In addition, ~utomatic logout allows the 
system to initiate the logout procedure; in this case, the 
user's current frogram if any is save~ in a disk file from 
whi=h axecution may be continued at a later date. 

Usar-initiated logout: 

LOGOUT 

Logout will unmount any file system tapes currently 
mounted by the user, update the accounting files with 
the u~er•s time used during this console session, 
delete all temporary files in the user's home file 
lirectory Jf which he is the author, release any 
attached remote consoles, hang up the user's home 
console, and exit to the CTSS supervisor to reset all 
switches and status words associ~ted with the user. 

System-initiated logout: 

(response) 
WAIT 
AUTOMATIC LOGOUT 

Automatic logout is a chain of two commands, neither of 
which is directly issuable by the user: 

END LOG - 5 imula tes 'MYSAV E progL T 1 

0 TO LOG - Special entry to lo;, out, does not delete • 
tern porary files 

ENDLOG cceates a SAVED file of the user's current 
program, if he is net in 'dead' status. The file name 
usad is 'prog.L', where 'prog' is the user• s prcgrammer 
number. This file is created in !~!~QI~I~ mode and may 
be restarted by 

RESUME progL 
or CCNT IN pr~gL 

(END) 



CTSS PROGRA~MEP.'S GUIDE sec ti on A H = 1 , o 3 12,169 1 

Foreground Initiated "Background" 
FIB, DELFIB, PRFIB 

Tha RUNCOM facility (A~ 10.01) allows predescribed sequences 
of commands to be executed. The user of RU RCOM, however, 
must ramain logged in and may not make any other use of his 
console until the completion of the sequen=a. 

The FIB facility allows the user to specify files which are 
to be axecuted by RUN:OM when and only when the user is not 
logge1 in from a foreground console. The SUfervisor 
schedules a FIB job in the sa me scheduling queues as regular 
foraground jobs. (lhe FIB !fonitor - a ficticious user 
actually logs the FIB user in "over itself"; that is, on the 
lin a FI EMON had.) 

The user must have a time quct~ allotted for FIB jobs (shift 
5 ) • A use r • s F I E j :> h cannot be run w hi 1 e its dona t in g use r 
is logged in. A user whc logs in during execution of one of 
his FIB jobs will cause that jo~ to te automatically legged 
out. A user may have only one FIB job scheduled to run in 
3.n y given two-h~ur period--but see "B:J. t::hing ", below. As 
ona mi~ht exfect, thece is no way for FIB jobs to receive 
console input. 

To initiate a FIB job: 

NAME 1 

LIMIT 

TIME 

FIB NAME 1 - LI fti T- - TI ME- -DAY-

is the pri•:t ry naae of a file NAME1 RUNCOM 
which is a list of the commands to be executed 
by R UMCOft as a "backg rouna" job. 

is the a3. xi11um exec uti on tiile limU,, in 
•~nutes, which the user wishes to place~ the 
job. If LIBIT is not specifie1, a time limit 
will be set by FIB. No FIB job will be allowed 
to exceed a certain maximum time, which is 
currently set at 10 minutes {this is also . the 
value used when no limit is specified). A FIB 
job which exceeds its time limit will be 
aut3matically logged out; it may be restarted 
by the user. 

a n d DAY s Fee if y a d ~ te and time ( up 
month away) QefQ£~ ~h!£h the job will 

to one 
!lQ.~ be 

• 



CfSS PROGRAMMER'S 3UIDE section AH. 1. 03 12/69 2 

run. TIME is expressed in "military 
time"(.GE. 0 .AND. .LE. 2359); DAY, of 
course, is .GE. 1 .AND •• LE. N, where N is the 
date 3f the last day of the month in which the 
command is issued. If a time earlier than 
"now" is specified , the co 1 ma nd w i 11 assume 
that the next da.:y (if TIME is less) or the 
next month (if DAY is less} is meant. A LIMIT 
must be given if a TIME is to be; a LIKIT and 
a 1IME must be given if a DAY is to be; 
~rder ing of these arguments is fixed. If no 
pre-scheduling is specified, the current time 
will be used. 

To 1elete a waiting PIB job: 

DEL FIB If AM E 1 

To ~et~rmine what FIB jobs the user has pending, 
they are scheduled, and ~hat time limit has been 
them: 

PRFI B 

for when 
placed on 

'FIDJOB FILE' will be searched for the user's jobs and the 
relevant in for mat ion will be printed on the user •s console. 

FIB jobs are run one at a time on a first-=o•e-first-served 
btsis. A FIE job is run in the same sche:iuling queues as 
foreground jobs but as the result of no console interaction, 
it moves to the l:>wer priority queues. The donating user is 
lo~jed in; the commands listed in the RUNCO~ file previously 
specified by the FIB comm~nd are exe=uted by BUNCCM; and 
wh3n tbe list is exhausted or the time limit is exceeded, 
the job (i.e., the donating user) is logge:l out and PIBMON 
lo~1ea ba~k in. Calls to WRFLX(A) ~hich normally cause 
typing at the user's con~ole) cause writing into a file, 
$$$FIB OUTPUT, in the user's file directory. 

!£..i. This file is in 12-bit mode ~nd must 
acfl>rdingly. 

be PRINTed 

Calls to DEAD or DORMNT will result in ~n automatic logout. 
Ctlls to the foll~wing subroutines will result in a 
Protection Mcde Violation followed by ~n automatic loyout: 

AlLOW, A~rr CON, FORBID, G.ETBLP, RDFLXA, RDLiliA, 
RDMESS, REDLIN, RELBAS, SET6, SET12, SETELP, 
SLAVE, SLEEP, SNtLIN, SHDLNA, WAIT, WRHIGH, and 
WRI1!SS. 



CTSS t::bl''t'!D A 111111 "DDt:: 
~••~tJ&.•n....,a.•.w&.• J 

C" ,._.,...a.. :. """'"- 'A f_.J 1 """') 
oJC ..... \.4VU ftl.le leV.J 

If ~ FIB job is logged out for any reason, it must be 
restarted ~ !h~ ]~~~· rhe FIB job running at system 
shutdown time will b~ run to completion or until it exceeds 
its tima limit. If a FIB job is logged out because it 
exceeded its time limit it is logged out ry ENDLOG so that 
as much as possible is saved. 

The user cannot be logged in while his FIB job is running. 
If he is logged in when his FIB job's turn to run comes, the 
FIB job is passed over and the next FIB job is tried. rhe 
job that was passed over retains its relative position in 
the list of FIB jobs until it can be successfully logged in 
or until the user who initiated it deletes it. If the 
user's FIB jcb is running when he tries to log in, he will 
J~t this message: 

IF YOU LOG IN YOUR FIB JOB WILL BE DELETED. 
DO YOU W IS R TO LOG IN, 

If tha user types •yes•, his FIB job will be automatically 
1 o g g e d out , a n d L D G I N w i 11 c on tin ue to 1 og hi 11 in. If he 
typ~s •no', he will n:>t be logged in, and his FIB jcb will 
continue to run. 

It is not desirable t~ allow any one user to monopolize FIB 
time by requesting several long jobs at on=e. -However, if 
oth~r jobs are not waiting it is not desirable to prchibit a 
user's running successive jobs. Therefore, tha FIE command 
his bean implemented as follows: a user may have only one 
job 2£~-§~~~gyl~g t~ run in any given two-hour period in the 
system's FIBJOB FILE (which is written by the FIB command); 
but when FIBMJN logs the user in for runnin~ a job, the 
antry corressponding to the job in FIBJOB FILE is removed 
before the jcb begins. If the job itself contains a 
non-pra-scheduled FIE command, then, that command would be 
acceptable, and, indeed, woul1 be entered in FIBJOB FILE to 
b~ run after any pending jobs previously requested by other 
users. (Pre-scheduled jcbs whose TIMEs have not yet arrived 
are skipped when the FIB Mcnitor looks for work.) 04 
=ours~, if there are no other requests, the job would~e run 
as soon as the current (c~lling) job terminates. The effect 
of all this is analogous the Background "express-run" 
batches, where only cne job fer user per b~tch is permitted; 
in FIB's case, however, the "next batch" is always starting. 

(E NO) 



c·rss FP.CGPJlMMER'S GU!£! 

Examine time and st~rage ~uotas 
T'rPEEK 

Section A H .. 1 .. 0 4 

Allow the user to list his administratively allotted :PU 
time and secondary storage quot~s and his current time and 
stora~:! used. 

TT PEEK 

Tna us~r•s total time used since login is printed, followed 
by his time alloted and used for each shift, and his drum, 
iisk, and tape qu~ta if any and current usage. 

Sh.ifts are as follows: 

Shift 1 Pion. -Fe i. 08:00 to 18:00 
Shift 2 Mon.-Fri. 18:00 to 24:00 
Sh.ift 3 Ddily 00:00 to 08:00 
shift 4 sat. -sun. 08:00 to 24:00 
Shift 5 FIE usage 

( ERD) 



CTSS FBCGR~~~ER 1 S GU ID! 

Attach remote terminals 
DIAL 

Sect ion A !:L 1_ 05 12/69 1 

To ::onnect a dialed-in ter:minal to a user as an attached 
r~mota console. 

From a dialed up but not logged-in console, issue the 
command: 

DIAL Frob prog 

where 'prob prog' is the logged-in user expecting to attach 
tna tarminal. If 'pr:ob pr:og' is loyged in and has option bit 
200 set (see oFriON command, section AH.10.04), the terminal 
is mada an attached remote console of 'prob prog•. 

A call to A11CON by 'prob prcg' is no longer necessary with 
this pr-ocedure (although not harmful) .. 

R:t ving once attached the console, 1 prot prog' 
su perv is or entries SLA YR, SND LI I, REDLIN, etc. , or 
tha public command SLAVE SAVED, as desired, just 
previous CTSS systems. 

may ca 11 
may use 
as with 

To disconnect the terminal, a 'quit' signal may be issued 
from the terminal itself, or it may be released by the 
3.ttachar ('prob pr:og') with a call to RELEAS. All attached 
remote consoles are automatically released by logout. 

CTSS commands are not accepted from an attached remote 
console; any input typed is either saved for the attacher to 
r~~~ via BEDLIN oc is sent to the attacher•s input buffer, 
in the case of an II sla~e. 

The DIAL com•and may not be used when logged in. 

(END 



Dialup message 
HELLO 

12/69 1 

Print a message giving system name, number of users, maximum 
number of users, and the date and time when a user dials 
into CTSS. In additicn, allow this information to be gotten 
(vi~ the same mechanism) at any other time. 

With the CTSS system numbered MIT8A2, the supervisor 
=or~-resident module which printed the dialup message was 
removed, and replaced by a B-core =ommand program to print 
tba saae message, together with a means whereby it is 
initiated for the user when he dials up to the computer. 
This was done primarily to free up supervisor core space, 
but in addition gives the added benefit of being expandable 
to provide more information, e.g. system response. 

Dial intc the 7094 installation at the Information 
Pro=essing Center (see sect. AC.3), or issue the command 

HfLLO 

Response is cf the form 

rtlT8A2: 10 USERS Ar 10/03/69 1242.7, MAX = 30 

In addition, if the card image file 'DIALUP MESSG' exists in 
th~ public file dil."ectory P!1416 Cl!FL04, it is printed. 

This command may be used ~t any time, whether logged in or 
not. 

(E NO) 



C'l" S S f B C G R A ii ii E ii : 5 GU I t E 

AED - ALGOL Extended fo~ Design 
D. T. ROSS - X5880 

A genaral purpose p~og~amming system including a compiler, 
source language debugging f~cilities, and a library of 
subroutines. The compile~ is especially suited to system 
p~ogramming, but includes algebraic statements, recurs1ve 
fun=tions, and ~ixed algebraic expressions for general 
purpose programming as well. The compiler language is an 
extended form of ALGOL-60, minus multi-dimensional arrays. 
Soma of the syntactic forms of ALGOL are m.odified, such as 
procedure definition. Additional features include plex 
structure processing (a generalization of list processing), 
packing of data storage, and an input-strin~ macro and 
synonym faature which includes conditional compilaticn. rhe 
subroutine library includes packages of routines for 
Eraa-format input-output, for building of symbol tables for 
language processing, for plex dump and relocation, fer "free 
storage" storage allocation 1 for use with the ES L display 
=onsol~, dnd fo[ the "AEt Jr." system, an experimental 
ldngua~e processor. The ABO command is the stable, tested 
v~rsion of the coMpilec. TAED is the experimental ccmpiler, 
including new features in the checkout pro=ess. LAEt is the 
sp~=ial, extended version of the CTSS loader which contains 
additional featu£es, such as lo~ding a remote list of 
pro~rams. The A!D command contains additional options for 
source file conversion into extremely compressed or expanded 
blo=k structu~ed f3rmats foe ease of understandin~. 

R~{~f~!!£~2 

ltlC 146 AED-0 Programmer's Guide Fe ld mann, Ross 
ftAC 154 Warnings & Restrictions in AED-0 Peldmann 
!AC 169 "LOADEB: A New Version of the Wolman 

B s s L oa de r" 
ftAC 198 P LEX - DU It P & Relocation in AED-0 Fox 
!AC 199 Stack 11aniFulation in AED-C Coe 
ftlC 207 "Internal Memos for AED Users" Feldmann 
ftAC 2 08 "Plash No. 10 - New CTEST 2 Feldmann 

C:>mman d" 
ftAC 213 "Flash No. 1 1 - A EDBU G Usage" Fox 
fiAC 225 Argument Checking for AED Walsh 
ltAC 226 Availability of AED Jr. Systems Ross 
ftAC 278 AED B ibliogra FhJ Ross 

(EN D) 



CTS S P R C G RAM M B R' S c.;u I D F. S P- ct. i_ on 4 H ... 2 ... 0 2 

BEFAP - Bell Laboratories• 7094 assembly language 
o.c. Wright 

BEFAP is a version of PAP with a more powerful macro 
=ompilar and with the ability to handle compressed source 
decks directly (see CRUNCH}. Its advantages are the 
~bilitias to edit larger files (via the alter feature with 
CRUNCH decks) and to produce more readable listing files. 
An immadiate benefit is the ability to use and modify 
langua~es unde~ crss which were developed an1 written in 
BEFAP. (e.y., BLODI,ALWAC, SNOBOL) 

IBM C28-6235 FORTRAN II Assembly Program{PAF) 

MAC 17 9 BE FA P com rna nd •i th i n C T S s R. u. Bayles 

EEFAE NAl'lE1 -' (CRUN) 1 - - 1 (LIST) 1 -

NAl'll1 FAP is the name of the source file to be 
translated. Files lAME 1 BSS and NAPJE1 SYMTB 
will be created and any old versions will be 
deleted. 

(CRUN) specifies that the crunched file, 
CRUNCH, should be translated instead of 
FAP. 

NAME 1 
NAf!E1 

(LIST) specifies that a listing file, NAME1 B:D, 
should also be created. It will be a 
line-aa~ked BCD listing file which may be 
printed en-line by tha PBINT command or 
off-line by RQUEST PBifiT or PBIRT control 
card. 

If both (CRO N) and (LIST) are specified, they 
must be in that order. 

(END) 



,...--~! --
,;:)C' i- '-.L VU 

-a.u 'l 1\"l nn.,.v.J n---ra'jc 
1 
I 

COG0-90 - Coordinate Geometry Language 
D. Hoos 

COGO is a language and programming SJstem for solving 
~~ometric problems in civil engineering. 

Research Hepcrts: 
B64-12 CCGC-90: Engineering User• s Manual 
R64-18 COG0-90: Tille Sb~ring Version 
R64-5 Tbe Internal Structure of COG0-90 

Boos, Miller 
Roos, Miller: 
Roos, Miller 

Tha system is activated by typing the time sharin~ command, 
COGO. Data may be read from the disk or typed in via the 
remote console. 7he sa me options are a vailabla for output. 

Th3 format of seveLal COGO commands has teen changed since 
the publicaticn cf the above manuals. The revised formats 
~r~ 

READ/ tiSK NAME 1 N AM E2 

suc::eading CCGO c:>mmands ace cead from the disk file NAME1 
N A ftE2. 

DELAY/PRINT N 

succeeding output is written on the disk in file .TAPE • N, 
whare N is any number from 0 to 9. 

(END 



CTSS PRCGR~M~E~'S GUIDE Section AH. 2 .. 04 9!66 1 

COMIT - Symbol manipulating and string processing 
Bob Fabry, University of :hicago 

COMIT is one of several available string processing 
languages. It is very powerful for performing string 
m~nipulation, such as substitution, rearrangement and 
duplication, on strings of alphanumeric characters e.g. 
n~tural language text. It is not so powerful on arithmetic 
facilities ncr ccmplex structures. 

1. Tne command COMir ALPHA accepts any input file named 
ALPHA COMI'I as a COMIT II program. 

2. Compiler and interpreter error comments appear on the 
typewriter. 

3. Some interpreter errors put COMIT into BREAK status 
instead of term in at in g the run. 

4. Pushing break button once puts COM IT into BREAK status. 

5. In BBEAK status, tJF·ing: 

T or TERMIMArE 
C or CONTINUE 

R or RESTAR i 

D or DUMP 
numl:er 

terminates the run. 
continues the program from the next 
rule. 

restarts program at second rule, 
immune to further treaks until end of 
prcgram is reached, then continues 
program from the point at which the 
bre~k occurred. 
gives a COfiDUr!P. 
exe=utes that number of rules, then 
gives "OVERRULE" stop. 

6. Channel L is f~r output on the typewriter, and channel 
R is for reading from the typewriter keyboard. 

7. Other CCMIT channels refer to files with names of the 
form ALPHA CHANEL, unless other names are provided by a 
CO!SET. 

8. Writing in COMir on channel ALPHA will create or 
append tc a disk file named ALPHA CHAMEL. 



9. 

c·rss EBCGRAMMER 1 5 GUIDE s e ct ion A H • 2 • 0 4 9;66 2 

Reading in COMI'l from channel AlPHA 
disk file named ALPHA CHANEL, 
beJinning of the file. 

will read from a 
starting with the 

10. A channel being written or re~d is open. Only 3 files 
may be open at a time. *FW , *RW , *XF , readin9 an 
end-of- file, or program teraina tion will close a file. 
Writa after rewind deletes any older file. 

11. Tha SAVE and LOAD comsets are used for creating and 
resuming C'ISS SAVED files. 

12. Do not use //*RlS, *RSS, •as. 

Introduction to COMIT p~ogramming, MIT Press, 1962. 
CJ~IT Prograumer•s Reference Manual, l1IT Fress, 1962. 
(New manuals for COMir II to be published shortly. Those 
contemplating iromediate use can obtain preliminary namuals 
from v. H. Yngve, Graduate Librarr school, University of 
chicago, c hicagc, I lli no is 60 6 37.) 



CTSS 3 

1. ~2~!~~Q_~1l 

The CTSS command COMIT ALPHA makes the COftiT 
progra1ming language available to CTSS users. The 
COM IT system provided is compatible with the sHARE 
distributed COMir II except for certain input-output 
functions. It is pcssible for a foreground user to 
write, compile, debug, and run a COMIT program directly 
from a conscle type~riter. 

The COMIT input source program may be composed at 
the typewriter using an edit command, or it may be 
loaded on the disk from cards, or it may be ~roduced 
directly as the outfut cf another CCMIT program. In 
dOJ case it ~ust be named or renamed ALPHA CJMIT. 

When the command h~s been issued, compilation 
ba~ins. rhe title card may be omitted, but if present 
will be typed out as a check. There is a comment at 
tna and of c~mpilation. The compiled program then 
begins to run under the COMIT interpreter. 

Any compiler error comments are printed on the 
typewriter during compilation. You Ray push the break 
button twice at any time to quit and make corrections 
bafore recompiling. 

Interpreter errors may occur at any time after 
compilation is finished. In this case, too, the error 
coaments appear :>n the typevr iter. Some interpreter 
errors cause the run to terminate, tut others that are 
less serious halt the program temporarily after typing 
the word BREAK. rhe program is now in BREAK status, 
and various actions may be taken as in1icated below 
under 5. 

Pressing the interrupt button once during 
=ompilation will have no effect except that the 
supervisor will destLoy any information in the 
supet:visor input- output buffer, then it will type INT. 
NO ACTION. But during interpretation, the supervisor 
will destroy the information in the buffars and then 



CTSS fRCGRAMMEB'5 GUIDE Section AH.2.04 9;66 4 

raturn control to the COMIT system, which will 
eventually type BREAK, enter BREAK status, in which 
interpretati~n i3 temporarily halted, and await further 
i n s t r u c t i on s f r c m the k e yb oa rcl • I f a n EX E CUT IV E com s et 
is used, a restart will be given instead of the break. 
(See below for: descriFtion of restart.) 

When CCMIT is in EREA~ status, it expects one of 
the fcllowing instructions from the keyboard: 
TERMINA'IE, CONTINUE, RESTART, DOMP or a decimal number. 
TEH~INATE, CONriNUE, RESTART, and DUMP may be 
abbreviated to their first letter. These instructions 
are explained below. 

TERMINATE Typing TfRMINATE when COMiir is in the 
BREAK status will cause tbe COMIT 
program to terminate normally. Any 
accumulated format A partial lines of 
output being held in the COMIT buffers 
will be written out. 

CONTINO E 

REST ART 

DUMP 

Typing CONTINUE when 
BREAK stat us will 
program to continue in 
from where it was when 
entered. 

COMIT is in the 
~ause the COMIT 
a nor•al fashion 
BREAK status was 

Typing RESTART when CO!IT is in BBEAK 
stat us will cause the COM IT progr all to 
g~ back to the second rule and continue 
from there in immune status, in which it 
is immune to the manual BREAK signal 
until the COM!'! EMD card is reached. At 
this point the CO!IT program does not 
terminate, but instead it leaves immune 
status and continues normally from the 
p~int where it vas when it entered BREAK 
stat us. 

This facility allows one to stop a :oMIT 
program at any time to provide it "ith 
input, change the flow of control, enter 
cr le3.ve a tr3.ce mode, take a dump, etc. 
Section 13 gives programming suggested 
for ftocessing breaks. 

1yping DUftP when CCMIT is in the BREAK 
status will cause a special built-in 
format-s differential dump called a 
COMDUMP on the output unit, normally the 
conscle. 



CT S S F R C G R A M M E R 1 S GU I D :E sect ion AU 'J f\IJ 
6. ........... v.,. Cl IC. £. 

~, vu c 
J 

number 

6. 

lyping a decimal number between 1 and 
(2**35 - 1) will cause an overrule stoF 
to occur ~fter th~t number of rules have 
been executed, allowing dumps to be 
taken, e t:::. 

OutFut on the console typewriter 
can te produced by the COMIT routing 
ins t r uc t ion * WA L or * W S L • 

In F ut from the typewriter keyboard 
can l:e obtained by *BCS, *BAR, *RTR, or 
* RS R. When the COM IT program reaches 
one of these instructions it will read 
from the supervisor typewriter input 
buffer. If the buffer is empty, the 
COMIT program will wait until the next 
carri~ge return, which enters material 
into the buffer. Because of this wait, 
it is a good plan to have the COMIT 
progrdm type a comment just before 
entering the rule containing the read 
in s t r u ct ion so t hat t he u se r w i 11 be 
alerted to the need fer providing input. 

All other COMIT channels refer to 
the disk. It is here that most of the 
incompatibility with the standard 
SHARE-distributed COMIT is to be found. 
The disk routines provijej by CTSS do 
n:>t completely simulate tapes. File 
names are normally of form ALPHA :HANEL, 
but arbitrary names may be provided by 
COMSEr cards on which the tvc words 
which normally ba ve the form rAPE A6 or 
ONLINE PUNCH are treated as a file name. 
1he spe=ial name /CN LINE/ is used for 
the remote console. 

Material can be written on the disk 
by using *WAX, *WSX, *WBX, where X is 
any letter except L orR. The saterial 
written cut appears in a file on the 
disk named X CHAN EL. If there is no 
such file in the user's file directory, 
such a file is created and named 
au tom~ tic~lly. If there dlready is a 



C T S S I: B C G BAM MER' 3 GU I .DE Section AH.2.Qij Y/66 6 

file by this name, the material written 
cut is added to the en1 of that file. 

Material can be read from the disk 
by using *RCX, *RAX, *RSX, *RBX, or *RTX 
where X is a n y 1 e t te r e xc e p t L , R , or s • 
1he material to be read should exist in 
a file named X CHANEL. The first read 
instruction starts reading from the 
beginning of the file. There is normal 
COMI1 behavior on reading the 
end-of-file except that the next read 
instruction after an end -of -file has 
been read starts reading from the 
beginning of the file again. Note that 
channel ~ is no longer the input tape 
unless the input file has been Sflit 
in to :1 pr og ram file n:i med ALPHA CCM IT 
and a data file named CHANF.L K. 

A disk file is either open for 
reading, open for writing, or closed. 
Only three files may be open at any 
time. A file can be close:l out at any 
time by the COM IT instruct ion *R w, h y 
*FW after writing, or by *XF after 
read in g. Reading an end- of-file closes 
the file. At the en:l of the COM IT 
program, all open files are closed out. 
The first read after a file has been 
closed is from the beginnin~. i[iting 
is always at the end of a file, except 
that the first write after a rewind will 
fi~st delete the old file. Since there 
may be only one file with a given name, 
end-of-file marks cannot be used for 
data se Fa ra tors. 

If }OU want to stop a program which 
is writing a file and preserve the file, 
do net use QUIT, but press the break 
buttcn on=e to get BREAK, then type 
TERMINATF. In this way the file will be 
c lased. 

rhe SAVE ~nd LCAD comsets may be 
used to create SAVED files containing 
CO MIT FIC<J rams a n:i to restore any SAVED 



C ·r S S f P. C G .P. A M M E R ' 5 GU ! D ! 9/66 7 

file. 

The :OMIT instructions *BS, *RSS, 
•RAS may not be used. 

To program an automatic BREAK, use 
a co11ma as a dump request. The dump is 
n~t autom~tically given, but rather the 
frogram enters BREAK status so the dump, 
cr scme ether ~ction can be requested. 

Make liberal use of periods before 
rule names when left-halves are not 
expected to fail. If one 1oes, a BRFAK 
will occur, allowing for a dump. 

To process the RESTART after BREAK, 
use the following organi2ation: 

COM 
* sr ART 
* RE STAR 'I 
STAR'I * 

BBSr ARr 

EMD • 
END 

END 

(E NO) 



DYNA~O - Model Simulation Language 
A. L. Pugh III 

n-,...,.., 1 
CCI.'j'C I 

DYNAMO is a computer program for translating mathematical 
models from an easy-to-underst~nd notation into tabulated 
~n1 plotted results. rhe models may be modeled on any 
dynamic feedback system such as arises in business, 
a:onomics, or engineering. The pcincipal limitation on the 
model is that it be a continuous represent~tion of the real 
world. As DYNAMO does not recognize individual items or 
events, models of job shcps and the like cannot be tested. 
P~rsons familiar with both digital and analoJUe computers 
will find that DYNAMO in many ways behaves more like an 
analogue than a digital computer. 

Q~~!~Q Q~~[~§ ~~~~~l A. L. Pugh III, M. I. T. Press 

Industrial Dynamics Memo D-805 "Time Sharing DYNAMO User's 
~~nual", A. L. Pugh III 

0 YNA MO NA ME1 p R 

where NAME1 is the n~me of the model to be 
s~condacy name MADrRN), and P and R are optional 
also optional). The effect of these letters is 
b~ low. 

run (with 
(order is 
described 

If the particular console being used h~s been adjusted so 
th~t tna perforations are three lines above where the paper 
stops following a vertical form feed, this letter can be 
usaj to cause DYNAao to skip to the top of a page rather 
than leaving four blank lines between pages. 

Tnis latter cause DYNAMO to skip immediately to the rerun, 
even though tbere is a SPEC card included in the model. 

Aft~r all the runs and reruns have been processed by DYNAMO, 
the console operator is given the opportunity to specify 
~ijitional reruns by typing the normal rerun information, 
with one exceFticn. The RUN card, instead of preceding the 
r~run, follows the recun information and signals DYNAMO to 
start to process that rerun. 



cr S S F R C G RAM M E R 1 5 GU I DE Section AH.2.05 Page 2 

W h ~ n D Y N A M 0 i s e x p e c t i n g t h is r- er- u n i n for m a t i o n i t w i 11 t y pe 
out 

PL?.ASE TYPE CHANGES IF RERUN DESIRED 

The user types the cards for- a rerun just ~she would for a 
r?.run with the r-e~ular- version of DYRAMO. He does not have 
to specify the car-d number of the card he is changing. Nor 
io~s ha have to Wdit for the computer to type a card number 
or M as he does when using the INPUT and EDIT commands. The 
tab signifies a skip to Column 7. 

A feature of time sharing simplifies =orrecting typing 
~rrors. Should the user wish to delete a long line with 
several errors he may tyfe a ? followed by a carriage return 
to start hi~ at the beginning of a nev line. 

If tha user does not wish to rerun his model he should type 

QUIT 

If while DYNAMO is either printing or plotting the 
of a run the user decides that he does not want any 
output but would like to 3kip on to the next rerun, 
press the break buttcn cnce and DYNA~O will 
immediately to the rerun. 

results 
further 
he may 
proceed 

B~sically the input to the time Sharing DYNA~O is the same 
as the regular DYNAMO. rbere ~re several minor restrictions 
whi~h are introduced by the time-sharing system while other 
restrictions have been removed. 

1. As ~ne has access to this model only through 
the console, the option to number the cards of 
a model no~ becomes a requirement. 

2. A continuation card has a different card 
number rather than having the same number as 
the card it continues. 

3. 'the contents of the identifi=ation card (the 
first card) are entirely optional. Columns 7 
through 36 of this card are copied into the 
page heading. 

4. The RUN card which is normally the second card 
is now o p t i o na 1 • 

5. The RUN number should be restricted tc 5 
instead 6 cha ra: ters. 

6. Because of the narrower page only nine columns 
are available for tabulating results instead 
of the former fourteen. 

(EN D) 



CTSS PROGRAM~ER'S GUIDE Section AH .. 2 .. 06 

ESL display system {n:>t a comiBand) 
c. Garman 

PrtnP 
- -;I --

To provide a g~aphical input and output facility with a 
limited real-time capability. Two 1B inch CRT'S a~e 
proviled for :>utput. Input is from light pens, 
pushbuttcns,, toggle switch banks, and other forms of 
~nctlogue input. Real time rotation, translaticn, and 
magnificaticn cf appropriately constructed pictures is 
possibla under p~:>gram control. 

MAC 122 

MAC 125 
l'lAC 166 
MAC 201 
MAC 202 
MAC 217 

DEMON: ESL Display Console Demonstration 
PL :>gram 

ESL Display console rime studies 
B-ccre system fer programmin~ ESl in CTSS 
ESL Display console system manual 
Proposal to improve rotation matrix of ESL 
Operating Manual for the ESL Display Console 

Polansky 

Polansky 
Lang 
Bayles 
Stotz 
Stotz, 

Ward 

(END) 



CTSS PP.OGRA~MEH'S GUIDE 

FAP - IBM 7094 machine language 
Programming Staff 

Section AH.2 .. 07 12/69 1 

FAP is the IEM MACRO-FAP a~semtly program for the 7094 
machine language cede, slightly modified for increased 
utility. It accepts all 7094 operation ·codes and the 
standard data-defining pseudo-operations, as well as macro 
l~finitions. Input files may be line marked (tabs are 
a$SUmed set at columns 8, 16, 30, ani all columns 
th~t·eafter i lines are truncated after column 7 2) or 
line- nu mtered. 

IBM C2 8-62 35 Fortcan II Assembly, Program (FAP) 

FAP name1 -name2- -list-

•name1 name2' is the name of the file to be assembled 
•name2' is assumed 'FAP' if not specifie3 
'list• consists ~f any of 

'(DATE) -NO-' print date :tnd time of assembly in page 
headings 

' (MACB) -No-• macro nesting level will be listed and 
multiply defined macros will be flagged 

' (LIS'£) -NO-' create • name 1 BCD', the listing file 
' (FLAG) -NO- 1 list non fa tal flags on the user •s 

console 
'(REFS) -NO-' terce symbolic reference listing 
'(LCNG)' t set page length to I; default value is 

56, minimu11 is 4. the maximum number 
~f referen~es per line in the symbolic 
refe~ence listing is reduced bJ three. 
this is intended for pro1ucing listings 
that will be reduced to 8 1;2" by 11". 

1 BCD - N 0- ' sa me a s ' ( LI 5 T} ' 
'NO' inverts the meaning of the argument it is 
a~plied tc 
The default mode is (tATE) (MACR) (LIST) NC (FLAG) 

CTSS FAP is completely ~c•Fatible with FAil as described in 
IBM C28-6235 except tbat, since it is not useful in the crss 
environment, the UPDATE f:tcili ty h:t s be~n removed. These 
psaudo-operations will be listed with a non-fatal 'F' flag 
but will have no other effect. It 3c=epts the standard 7094 
BCD character set plu::; the ch:tr:1~t2rs • ~ olon' (octal 35) and 



CTSS PROGRAMMER•s GUIDE sec ti on A H • 2 • 0 7 12;6 9 2 

'tab' (octal 72). C:clon is an alphabetic character; tabs 
~r~ converted int~ strings of spaces by the preprocessor. 
Tab settings are at columns 8, 16, 30, and every column 
thereafter. 

CTSS FAP uses tempordry files with first names 'FAPTEM', 
'FAPSYM', 'FAPBSS', and (if a listing is requested) 
'FAPBCD'. The sec3nd name of any of these files is the 
user's prograrrmer nuwber. A symbol t3.ble file 'name1 SYMTB' 
is =raated which c3ntains all defined symbols with their 
definitions and relocaticn information. The format is a:o 
:ar1-image with f~uc fields of three words each and two 
~oc1s of trailing blanks per card. Each field bas the 
format VVVVVV bRbSSS SSSbbb. VVVVVV is the symbol value 
with one 1 eadin g blank if < 3 27 68, SSSSSS is the 
left-adjusted symbol name, and R is 0 if absolute, 1 if 
r~loca.table, 2 if c:>mm:>n, and 4 (actually 5) if in the 
transfer vector. This file is used by debugging aids such 
=ts DEBUG (Sect. AH.8.08). 

If no page t~tle card apFears in the first card group, a 
j~fault header of 

FAP ASSEMHLY LISliNG FILE name1 name2 

w i 11 be used • 'I he d a te a nd t i me of a sse m b 1 y are norm ally 
listed to the left 3f the page number at the top cf each 
page. Two new non- fa ta 1 errcr conditions have been defined 
to flag common err~rs: 'L' if the location field is numeric 
w hen a s y m b o 1 is ex p ec ted , a nd • 7 • if co 1 u m n 7 is non - bl an k • 

A na w farm of literal has been defined: =V adds the 
versatility cf the VFD pseudo-operation to literals. The 
string following =V is processed like the variable field of 
an OPVFD (only previously defined at:solute symbols may be 
r~f::!r~nced, the result may net be more than 36 bits long). 
No ta~ or decrement is allowed in an instruction containing 
a VFD literal. 

Six new extended nachine operations have teen defined, three 
for use in calling sequences and three for use in r;o lists: 

mnemonic meaning assembles ~s retJ ui res 

PAR ~arameter TXH Address 
EFA effective address NOP Tag 
BL I< block TIX Ad dress, Decrement 
IOP I/0 Pt· ~ ceed TI X Address, Deer em en t 
ION I/0 N en - t ran sm it TX I Decrement 
IDD I;o D isccnnec t PZE 



C T S S F R CG R A H ME R ' 5 GU I D E Section A H ~ 2 ~ 0 7 12/~9 3 

Som~ n~w machine ~perations relating to special time-sharing 
hdrdware have been defined: 

mnemonic function op. code 

LR I Lead R e loca ticn I ncl i::a tors 0562 X I 
SRI Store Relocation Indicators -0601 X I 
LP I Lead Protect Indica tors -0564 X I 
SPI Store Pr :>teet Indicators -0604 X I 
'fiA set ins true ticn references to 0101 X I 

A-core and transfer 
TIB set instructicn references to -0101 X I 

B-ccre and transfer 
SEA set data references to A-core -0761 0041 X 
SEB set data references to B-core -0761 0042 X 
IFT skip if ins t r u ct ion references -0761 0043 X 

are in A-core 
EFT skip if data references -0761 0044 X 

are in A-core 
SSLx Store Sense Lines - channel X ,:!:0660 ,!0661 X I 

,:!:0662 ,!0663 
I?SL X Present Sense Lines - ::::hannel ]( _:!:0664 ,!0665 X I 

,:!:0666 _!0667 
SCDx Store :bannel Diagnostic _:!:0644 +0645 X I 

- channel X :!:0 646 :!:0 64 7 

~l!~QJ-def1~1~~-f§~~~2=QI~!~!~2B§ 

SETB: This pseudo-aperation is provided to give a symbol a 
boolean definition and yet permit redefinition. It sets 
th~ symbol in the location field to the value of the 
boolean expression in the variable field. If the symbol 
had been rreviously definei by a SET or SETB it will be 
re1efined; if it was pceviously defined in any other 
manner it will be redefinei but a warning flag will be 
Jen~rated. All sym bol5 used in the v ar iab le field must 
have been previously defined. 

COftBSS and CCKHES have been provided to allow more 
int:!lligible use :>f c:>mmcn. 

C3MBSS: ihe co•mcn counter is decremented by the value of 
th~ ~xpression in the location field; then the symbol, if 
any, in the lccation field is jefined as the value of the 
=ommon counter plu3 one. This is analogous to the BSS 
pseudo- Ofera tion. 

C3MBES: The symbcl, if any, in the lo=ation field is defined 
~s the value of the common =ounter plus one; then the 
common ccunter is decremented by the value of the 
expression in the variable field. This is analogous to 
th~ BES pseudo-npecation. 



CTSS PROGRAMMER'S GUIDE s ec t i on A H • 2 • 0 7 12/69 4 

BCI and BCD have been modified an:i 12BIT (to generate 
full-mode text inf::>I:mation) has been added. As used herein, 
"quoted text string" ~reanE "/text/" where "I" is any 
:naracter except blank. Any character except "!" may aFpear 
within the string. 

BCI: The variable field m~y contain ~ quoted text string 
be~inning in c~lumns 12 through 16 and followed 
immediately by a blank or column 73. The characters in 
the string are c~nverted to BCD ani stored ~ix to a word 
in ~onsecutive memory locations. If the nusber of 
character·s is not ~ multi Fle of six, the last word is 
padded to six characters with nulls (octal 57). rbe 
algorithm for deciding whether the variable field is a 
qouted text string or a word count plus data is: 

1) the first two ch~racters are 1-9 followed by a 
comma -- C3Unt and data 

2} there is a comma in column 12 -- count and data 
3) the first and last non-blank characters are the 

same -- JUOted text string 
4) t he first c ha ra c te r is 1 - 9 -- co u n t and data (gives 

non-fatal • F' flag) 
5) o t be r w i se -- g i v e s fa ta 1 'E ' f 1 a g ( one word o f 

blanks is assembled) 

BCD: is like BCI except that the quoted text string must 
start in column 12. 

12sr·r: This fSeudo-oferation is used to generate full-mode 
text information in a Frogr:am. A symbol in the location 
fi~ld will be defined as the next location to be assigned 
when the 12BI'I pseudo-operation 1s en::ounter-ed. The 
variable field c~ntains a ~uoted text string beginning in 
columns 12 through 16 and immediately followed by a blank 
or ~olumn 73. rhe characters in the string are ccnverted 
to their ectal values in the CTSS chara::ter set (Sect. 
A C • 2 • 0 1) , p a c k. e d t h r e e to a w or d , a nd s t c red in 
consecutive memory locations. If the length of the 
striny is not a multiple of three, the last word will be 
padaed to three character·s with nulls (octal 0057). 
Letters are normally lower case. The ::haracter "*" is 
special: its C3de is not assembled but the 100(base 8) 
bit of the code fer the next chara=ter in the string is 
:omplemented; this creates upper case letters from lower 
case ones and some E pe~ ia 1 ::ha rae ters from numbers and 
BCD spacial charact-ars. All 6-bit ~har~~ters except ••• 
and most 12-bit characters can be produced. 



CTSS FECGP.!MMER'S GU!r! section AH .. 2 .. 07 12/69 5 

LINK and NOLNK are provided to =ontrol the existence of 
t ha 1 in ka ~ e di re c to r. 

LINK: The variable field must contain either 'JN' or 'OFF'. 
'ON' will cause the linkage dire=tor to be included in 
this subprogram, 'OFF' will delete it. 

NOLNK: This is an obs~lete form retained for compatibility. 
It is equivalent to 'LINK OFF'. 

These pseudo-cperations affect the listing (if any) and 
tha tarminal output hut have no effect on the binary outFut. 

FLAG: The variable field must contain •c~· or 'OFF'. 
=auses non-fatal error flags to te listed 
terminal, 'OFF' causes these flags to appear only 
listing. 'OR' is the default mode. If ' (FLAG)' 
in the coiPmand line, this operation does nothin:J. 

• ON I 

on the 
in the 
afpea rs 

LSTNG: Alternate occurrences of this pseudo-operation cause 
initiation and ter~ination of printing the listing on the 
tJser• s ter•inal. 

MLEVEL: The variable field must contain 10M' or 'OFF'. This 
pseudo-operation c~ntrols the appearan=e of the macro 
nestin~ depth to the right of a macro expansion. If 
'(KACR) • afpears in the command line, this operation has 
no effect. 

MHACBO: The variable field must contain 'ON' or 1 0PF 1 • This 
pseudo-operation controls the flagging of macro 
re-a~finitions (in the listing and at the ter~inal). rhe 
mode is i ni tiall y ~n. If • (MACR) • appears in the command 
line, this operation has no effect. 

RI::F: ·rbe pseudo-cp has been modified to accept a variable 
fiald. rhe variable field may he hlank or may be any FAP 
expressicn (blank = 0). 1he variable field is evaluated, 
ani its value is interpreted as follows: 

0 All symbolic referen=e listin3s are deleted (except 
multiply defined symbols) 

1 Listing of unreferenced symbols is suspended 
2 Listing 3f unreferen=ed nonrelocatabla symbols is 

suspended 
3 or sore (e.g. -1) Normal mode of symb3lic reference 

listings 
If '(REPS)' is specified on the comman1 line, this 
pseudoop has n~ effect. 



CTSS PHOGRAMMER'S 3UIDE Section AH. 2. 0 7 12/69 6 

SYMREF: The variable field may be 
This pseud~-op controls the 
references. Nor rna 1 mcde is 
inverts the mode; 

'CN', 'OFF', or blank. 
accumulation of symbclic 

ON; blank variable field 

SP.Q: Tha variable field must :::ont:1in 'CN' or 'OFF'. 
:ontrols seguence checking of card-image input. 
is initially on. 

This 
Checking 

NJSEQ: This is an obsolete form retained for :::ompatibility. 
It is equivalent t:1 'SEQ OFF'. 

MACRON: This pseudo-operation is identical to 'L'lACRO' except 
that unspecified trailing arguments will never be 
replaced by created symbols. 

SAVCRS: The current created symbol count and character are 
saved. 

RESCRS: The created symbol count and character are restored 
to what they were ~hen the most recent SAYCRS was 
~ncountered. N.E. SAlCRS/RESCRS pairs can ~~! be 
nasted. 

BCORE: This ~seudo-oteration indicates that this program is 
to be run as background to CTSS. It will be checked for 
illagal instructions and the B-core flag will be set in 
all I;O CC[mands. 

ACORE: Counteracts a pcevious 'BCORE'. 

INSEBT: The variable field contains one or two file names 
separated by a comma. The entire contents of the named 
file replace this pseudo-operation. If name2 of the file 
is not Sfecified, it will be taken to be the same as the 
second name fr~m the command line. IbSERTs may not be 
nested. The INSERred file need not te the same type 
(line-marked or· card-image) as the ~urrent soucce file. 

ABBREV: The variable field may c::ontain 'CECCDE' or 'SYMBOL'. 
'OPCODE' will cause over 400 operations not generally 
useful in foreground Ftogr~ms to be leleted from the 
:ombined operati~n5 table. This more than doubles the 
number of available slot~. 'SYMBCL' is intended to 
remove all created symbols from the symbol table. It 
w i 11 de 1 e t e a n y f i v e c h a r a: te r s y m b o 1 beg inn in g w it h a 
•.•. This 3perati~n i3 effective only iuring pass 1. 

SAVE: The variable field cont~ins one or two file names 
s~parated by a c:>mma. rhis operation is intended to 
create private versicns of FAP that have been initialized 
with macro and symbol definitions, etc. When enccuntered 



,.... 'f'tTr\.'rt 
J U J. LJ IJ 12/69 7 

ducing pass 1, this causes loss of all ganecated code 
th~n saves itself as the ficst file name specified. When 
cesumed, this saved file ~ill ~ct like PAP except that it 
will cetain all symbol ~nd macr-o :lefini tions, mode 
settings, and unexpanded remote sequences. Preset modes 
may be cvertidden by arguments when resumed or by 
op~rations in the file to be assembled. The assumed 
second name of input files will be set to the second name 
specified by the SAVE, or, if none, to the first. 

(E NO) 



CTSS ERCGR~MMER 1 S GUIC~ Section AH.2.08 

GPSS - General PUrfoSe System Simulator 
M. M. Jones 

Page 1 

GPSS is a siaulation language that is easy to learn, use and 
i~bug. It auto~atically collects and prints many useful 
statistics. GPSS is particulary well suitei for simulation 
of tr~ffic flow m~dels, such as communication nets, circuit 
models, computer systems, and queuing models. 

MAC 140 On-line Vecsion of GPSS II M.M. Jones 
IBM 820-6346 General Purpose System Simulator II 

(END) 



C'I'SS FBCGBAi~ii ER~ S Section AR.2 .. 09 

LISP- List Processing Language 
J. Mosas 

LISP is a high-level list p.rc=essing langu~ge, mathematical 
in :haracter. Pr:>grams specify computation by recursive 
functions. The time-sharing version contains functions which 
p~rmit smooth interaction between LISP and the time-sharing 
environment. The language is used extensively in artificial 
intalligence work. 

MIT Press LISP Progammer•s Manual 
Information The Pr~gramming Language 

International 'LISP' 
MAC 134 LISP Exercises 
MAC 153 rime Sharing LISP 
MAC 206 ClSS LISP NOTI:E 
MAC 29b A New iersion of CTSS LISP 

LISP -NAME 1-

Levin 
Bobrow, 

Berkeley 
Hart 
Martin, Hart 
Hart 
Fenichel, Moses 

NAME1 LISP is a ECD file containing pairs of 
s-expressicns which will be initially read and 
executed by the LISP evalquote operator. If 
NAME1 is net Sfe=ified. LISTEN NIL will be 
executed. 

LISTEN NIL -- If the doublet LISTEN NIL is executed, 
subsequent s-expressions will be read from the 
console. When the atomic symbol SlOP is 
typed, the system will normally enter the 
DORMAN 'I state. 

(END) 



CTSS FPCGRA~MEP.'S GV!D~ Section AH.2.10 B/65 1 

t1AD - Michigan Algorithm Decoder 
Univer!:iity of Michigan; E. Arden, B. Galler, and R. Graham 
Programming Staff 

MAD translates algebraic statements describing algorithms 
into the equivalent machine instructions. The MAD language 
w~s ori~inally based ~n ALGOL 58 with certain extensions and 
adaptations. It allows scme more powerful logical operati~ns 
than Fortran II. 

cc 
cc: 

186 
213 

MAD Ncvember 1963 (Reference ~nual) 
MAD Decem bec 1 964 (Reference M a nua 1) 
Fcctran & MAD format Specifications 
Abbreviated MAD 

Spall 
Co rba to •• etc. 

The extended features in the appendix of the December 1964 
m~nual have not been implemented. 

Th~ current compiler implements the language as described in 
the MAD Manual of November 1963. However, a few additions 
anl modifications have been made. 

M A r; N AM E 1 - 1 ( L IS T ) ' - - ' ( S Y M B ) 1 -

NAMEl is the primary name of the source file NAME1 
MAD which is to be translated. 

(LIST) requests that MAD create 
listing file called NAME1 BCD 
PRINred on-line or RQUEST PRINT 
printing. 

a line-marked 
which may be 
for off-line 

( SYM B) requests that MAD produce a special symbol 
table named NA"E1 SYMTAB which is used by 
MADB UG. (SYMB) also suppcesses the normal 
~n -line pr-inting of length, entry point and 
transfer vector length. 

CHANGES: 

1 • A new statement 
INSERT PILE ALPHA 

will cause file ALPHA HAD to be inserted in 
co fll f i 1 a t i c n ci f t e r the INS ER T F 11 E stat em en t • 

the 
Only 



C T S S F F C G R AM M E R ' S GU I r: E s e ct ion A H • 2 • 1 0 

one level of nesting depth of inserted 
allowed, although any number of INSERT 
may appear in the higher level program. 

8/65 2 

files is 
stat em en ts 

2. An addition has been made to the block 
not at ion in M A r. For mer 1 y on 1 y t he f or m 

A ••• B or A, ••• , B 
wds allowed, where A and B are variables. Bow the 
second exp~ession may be a constant, e.g., 

A • • • 7. 
See MAD Manual, November, 1963, page 16. 

3. A chanye has been made in ~AD for defined 
operators. (See MAD Manual, November 1963, pages 
100-112.) This was needed due to the added feature 
cf saving and restoring index registers 1,2 and 4 
in functions. The change was made to the •• RTN. 
cperatcr. 1his is now a unary operator, i.e. only 
a E operand. rhe function of the B operand remains 
the same, that is, the address of the value to be 
returned to the calling program. The A operand is 
internally set to the address of the index 
restoring code. This address is 1-esignated "FF". 
Note the example on pages 110-111 of the November 
1963 manual. This should be changed to the 
following: 

•• RrN. rhis symbol, which is obviously 
invalid in a st~tement, stands for the 
operation of placing the appropriate value(s) 
in the arithmetic register(s) and then 
returning from a function to its calling 
ftogram. It is analogous to the right hand 
side ~f a sabstitution statement (the B 
Oferand) and then a transfer to a given 
address (there is no designation for this 
add~ess ~!~h!U ~~~ ~£1~1~). As such, there 
is no result. As an example, if the result of 
a function were a double precision number, 
say mode 5, the following would be a 
reasonable definition. 

r'JODE 
JMP 
CLA 
LDQ 
TRA 
OUT 
END 

5T RU CTU RE 
•+3,BT,*+1 
E 
B+ 1 
FF 
A:Q 

4 •• RTN. 5 

The add~ess FF is the address of the index 
rest or i n g code. 



c·rss fP.CGRAMMEP.'S GUICE sect ion A H -= 2 -= 1 0 

4. The input phase of MAD has been rewritten to use 
the new file system and accept line-marked 
(SQUASHed} files as well as car:i-image files as 
i n put. An y m i x t u r e of 1 in e- mar ked or card- i mage 
files may be used, e.g. INSERT FILE statement may 
insert the ~pposite kind of file from the main 
file~ 

5. 0 n a line-marked file, the tab and logical 
backspace will be interpreted as fellows: 

a. A l~yical backspace (colon) will imply a 
backspace to column 11 ~~lY if the colon 
occurs in column 12. (See b. below). All 
other colons will be treated as legal 
characters ty the input routine. 

b. The first occurrence of a tab effectively 
indicates that the following characters must 
star t at 1 east in co 1 u m n 1 2 • s h o u 1 d the 
first tab occur after column 12, one blank 
will be inserted. 

c. Further occurrencas of tabs are interpreted 
to mean that the following characters are to 
be at least 5 :: ol umns away from the column 
reached by the last tab. This allows one to 
indent WHENE YER 1 s, etc. 

6. The infut Fhase will construct a sequence number 
for internally generated card-images constructed 
for line-marked records. This number: will be 
incremented by 1 for each line-marked record read. 
The sequence numbers should provide an aid to 
error checking and correction using EDL. 

(END) 



CTSS 

MADTRN - Fortran II t3 MAD translator 
Programming staff. 

AU ') 11 
n lJ. • &.. • , • 

o~no ....... ~ ..... 

Fortran II has not been implemented to operate with the 
time-sharing system. In ceder to allow users to operate with 
Fortran II programs, the M ADT RN translator is provided. A 
Fortran II scurce language program may be translated to MAD 
inJ th~n translated t3 the equivalent machine instructions 
by the MAD ccmpiler. MADTRN does not ~lways produce perfect 
r~sults and, therefore, should not te used unless absolutely 
necessary. MADTBN assumes a working Fortran program and 
th~refore MAD1RN diagnostics are minimal. 

IdM Fortran Reference Manual 
CC 18H 
cc 186 

MAtTRN, A F3rtran-To-Mad Language Trans1atcr 
Fortran and MAD Format Specifcations 

Kern 
Spall 

M. A DT R N N AM E 1 0 P 

NAME1 is the primary name of the source language 
file named NAME1 MADTRN or ~AME1 CP if OP is a 
class name. 

OF= (LIST) 

OP = ( SYf!B) 

The argument (LIST) will be passed on 
f!AD compiler and the listing file named 
BCD will be created by MAD. 

to the 
NAl1E1 

'Ihe argument (SYMB) will be passed on to the 
MAD compiler and the file NA~E1 SYMTAB will be 
prcduced tc be used by MADBUG. 

(E NO) 



CTSS PROGNA~MER'S GUIDE section A!L .. 2 .. 12 

SNOBOL - A String Manipulation Language 
D. she a 

SNOBOL is a programming language for the manipulation of 
strings cf symbols. A statement in the SNOBOL language 
:onsists of a rule which operates on symbolically named 
strings. '!he basic cperations are: string formation, 
plttern matching, and replacements. Facilities for integer 
arithmetic, indirect referencing, input-output, debugging, 
inJ SNCBCL-coded and SNOtlOL system functicns are included. 

SNOBOL NAME1 - 1 0NLINE 1 -

will initiate action (ccmpilition and execution) by the 
SNOHCL compiler on the line-marked file NA~E1 SNOBOL. The 
SNOBOL program listing, and ether ~ompiler output, will be 
put in rt file named NAME1 ECr. 

ONLINE is an opti~nal argument which causes all output to be 
printed cut en the user'~ console. It may be abbreviated 
t 0 I • 

J our n a 1 c f t he A C M , J 3 n ua r y 1 q 6 4 , p p. 2 1 -3 0 • 
CC 235, MAC-M-307, CTSS SNOBOL User's Manual, Shea. 

(END) 



CTSS PROGRAMMER'S GUIDE 

OP s - 0 n- line Frcgra 111mi ng system 
M. Jon~s, J. Morris, D. Ness 

section AH,2~1') 1/n6 1 

DPS is a sub-system intended to fa=ilitate on-line 
int::!raction between a computer and the general user. It 
allows leading, execution, and deletion of BSS subroutines 
by nama and constcuction of FORTRAN-like procedures. A 
lar ye repertoire of sta ndar:d operators (subroutines) is 
~vailable for data manipulation and simulation. 

M. Greenberger, et. al., Q~-~iB~ ~2mEY!~!iQ~ ~~~ ~imQl2liQ~i 
Ib§ £R~-1 ~!§!~!, !he Mil Press, December 1965. 

MAC- M- 2 7 7. CPS- 3 G::> es Pu bl i c. 
Morris. 

Greenberger, Jones, Ness, 

Th~ sub-system is enteced by typing (at command level) 

OPS 

CTSS will respond with a system W ( ait) line; then OPS will 
respond with a line beginning "O~". Thereafter, typing the 
n:1ma of a subr::>utine causes its execution. In particular, 
typing 

GUIDE INFORM 

will introduce the new user to the guide files and their use 
in obtaining information about the system. 

(END) 



CTSS fP.CGRAMMER'S GU!Df Sect ion A H - 2 - 1 6 12/69 1 

Information Retrieval and Text Management 
TIP 
W. D. Mathews, Project riP, Rm. 145-310, X5687 

TIP is a flexible and powerful information handling system 
developed by the Technical Information Erogram to provide 
=~pabilities for information retrieval and text manipulation 
in a wide variety of on-line applications. The command and 
the many asscciated subsystems are iescribed in the 
]o~umants listed below. These publications and additional 
information are available from: 

TTP-TM-104 
TI P-T M-1 05 
TIP- Tr1- 1 C 6 

TIP-TM-1 C7 
TI P-T M-111 

P t:ojec t 'II P Document Room 
Room 145-310 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

The liP Reference Manual 
The Edit Reference Manual 
The Reduce, Expand, Sort 
and fte~ge Reference Manual 
A TIP Sampler 
'Ihe Bun Reference Manual 

w. 
L. 

E. 
J. 
w. 

D. Mathews 
H. Morton 

M. Mattison 
R. Ebright 
I. Nissen, Jr. 

(END) 



CTSS FRCGRAMMER':> GU ItE 

FJHTRAN IV Translator FOR4 
T. Burhoe, 868-9840 

s e ct ion A n. 2 • 1 7 3/66 1 

To translate source programs written in the FORTRAN IV 
l~nguage tc MAD and c~mpile them; to provide source-level 
compatibility between CTSS ana background FCBTHAN IV; and to 
provida useful diagno5tics on the source program. 

FOR~ is an author-maintained CTSS command. offered on an 
experimental basis. As such, all inquiries, suggestions, or 
~omplaints should be addressed to Mr. Tom Burhce, IBM 
.Scientific Center, 545 rechnology Square (4th floor), 
C~mbrid~e, Mass. Telephone (617) -868-984 0. 

FOR 4 NAME - 'NOCOMP '- -'MADFIL'-

NAME is the Frimary name of file NAME MADTRN, the 
usar•s FCRTRAN IV s:>urce program. It must be a line-numbered 
disk file. All scurce proyrams should be written in 
~~cor1~nce with the FORTRAN IV language specifications as 
described in IBM Form C28-6390-2, availatle at the :cop. 
These are the specifications foe FORTRAN IV as implemented 
un:lac IBSYS, Version 13. 

NOCCMP is an ~ptional parameter indicating that the 
user does not wish the translated MAD program to be compiled 
in to object code. (Foe instance, he may wish only to find 
the syntactic errors in his FORTRAN programs prior to 
submittinq them f3r background runs.) 

MADFIL is an ~ptional parameter inlicating that the 
generated MAD prcg ram she ul d be left in permanent (C) mode 
in the user •s directory, rather than in temporary mode as in 
tha normal case. Als:>, detection of source errors will 
normally suspend the generation of further MAD code; the 
MADFIL option will create a MAD program regardless of errors 
in the source prcgram. 

In normal operation, FOR4 will 1enerate an e~uivalent MAD 
pco]ram in temparacy mode, compile it via ~AD, and exit to 
CHNCCM. If source errors are detected, they are printed out 
along with the offending statements, ::1n;i the final exit is 
to DEAD. If translati3n is interrupted via the BREAK key, an 
immediate exit tc CHN:OM will oc~ur. 



crss fBCGRAMM.tR':l GU II:E Section AH.2.17 3;66 2 

There dt:'e nearly :>ne hund['ed explicit one-line diagnostics 
in FOR 4, thus permit tin g much f le xi b i 1 i t j and specificity in 
h~lpin~ the uset:' debug his progt:"ams. The diagnostics closely 
resemble these of IBSYS FORTRAN IV~ One important objective 
ot FOR4 is to permit an exact correspondence between 
pLograms which will compile and run unier CTSS, and those 
whi=h are run under batch processing. Thus, all IESYS 
FORTRAN IV errors are diagnosed in FOR4, even though some 
may be "tt:"anslatable"- e.g., mixed modes in arithmetic 
expressions. 

The so-called "built-in functions" of FORTRAN IV may be used 
in FOR4 in external function form by includinq file 'F4LIBE 
BSS' at load time. 1h~ program contains entries for all 
the built-in functions which do not process "comflex" or 
"iouble-precisi:>n" data exclusively. To link to this • (1-track) library, do: LINK P'4LIBE BSS M1416 CMFL04 

Because of dependence on the IBJOB system, or lack of a MAD 
=ounterpart, the foll~wing FORTRAN IV facilities may not be 
used in FOR 4: 

'BLOCK DATA' subprcgcams 
'DOUBLE PRECISION' and 'DOUBLE PRECISION FUNCTION' 
'COMPLEX' and •:OftPLEX FUNCTICI'' 
'N AM ELIS r' 
Mamed-common ccnventions in 'CClMCJ' declarations 
'E NT BY' 
'RETURN i' (ncn-st:indard return) 

Attempts to use these facilities will cause a special 
~iagnostic to the user reminding him that they are legal in 
IBSYS FOBrRAN IV, but cannct be processed by FOR4. In 
addition, the user should note the inconsistency in array 
storaq~ between FORrRAN and MAD, the former storing by 
columns and the latter by rows. Thus, an attempt to 
~quivalence a vecto~ to a column of a matrix would be 
acceptable in FORTRAN, but the resulting ~AD program would 
h~ve the vector e~uivalenced to all or part of one cr more 
£OW~ of the matrix. :are is urged in this usa~e of FOR4. 

All facilities of FORTRAN IV excepting those noted above are 
avdilable to users in their full generality. 

(E NO 



CTSS PROGRAMMER'S GUIDE Section AH. 2. 1 8 

An Al3ebraic Desk Calculator version of the Formula 
Manipulation Comfiler develo~ed by the IB~ Boston 
Pro~ramming Center. 
FJRM AC 
R • Ke n n e y , 4 S 1 - 0 3 2 1 

3/66 1 

To allow the user to m~nipulate a class of formal 
expressions and compute the values of arithmetic 
express1ons. Included among the capabilities of the program 
~ra formal differentiation, substitution for one or more 
variables in an expression and expansion of expressions. 
Aftar the expression has been manipulated in a way reguested 
by the user, the results are simplified; like terms (i.e., 
terms which differ only by a constant factor) are combined, 
z~ro tarms and unit factocs are eliminated, etc. The result 
of the computaticn or manipul~tion is then available for 
furthac manipulation ~r for printing on the user's ccnsole. 

FORMAC is an auth~r-maintained CTSS command offered 
experimental basis. Inquiries, sug:Jestions or 
should be addressed to Mr. Robert Kenney, IBM 
Proyramming Center, 545 Technology Square (3rd 
C:tmbridge, Massachusetts, telephone (617) 491-0321. 

CC-257. Description of time-Shared FORMAC. 

on an 
comments 

Boston 
F locr) , 

Th~ Dask Calculat~r statements are executed immediately, as 
they are typed in through the user's console. No provision 
is ma~e for a stored program. That is. although results are 
saved and are usable from one computation to the next, the 
st~temants which caused the computations to take place are 
not saved. Thus, it is not possible to establish loop 
=ontrols and vari~us paths of program flow in the classical 
stored program sense. 

Tha Dask Calculat~c accepts lines of up to 84 characters and 
prints 84 characters per line. The •s• is used as the end 
of statament marker. A statement may extend over any number 
of lines. FORMAC will respond 'READY' initially and between 
stdtements; do not type a new statement until the respcnse 
has appeared. (Edi tcr• s note: If the response seems unduly 
l::!l~yall, check to see if you've forgotten to terminate the 
statement with a '$'.) Standard CTSS erase and kill 
::haracters apply during the typiny of a line. However, 
there is no "context editing"; if an already typed line is 
found to be incctrect, the entire line must be retyped. 



C T S S F B C G R A~ M E R ' 3 GU I C E Section AH.2.18 3;66 2 

FOR MAC 

summary (see cc- 257 for details): 

Variables: 

A variable name refresents a fixed point variable if its 
initial character is ::>ne of the letters I-N. A variable is 
made either atomic or assigned from context , "upon its 
first appearance" in a PORMAC statement. It is considered 
"assigned" if its first afpearance is on the left-hand side 
ot :in = sign. It is "atomic" (i.e., it sta.nds for itself) 
if its first affearance is on the right hand side of an = 
sign. An atomic variable may not have an exfression 
assigned to it. 

Operators and Functions: 

Expressions may be ccmfosed of the following operators and 
f u n::: ti on s : 

*,+,-,••,;, DERIV,SIN,COS,ATN,HTN,FAC,EXPCN,LOG,DFC,COME. 

DERIV (A,B,N) 

SIN (A) 
CC S (A) 
AT N (A) 
H TN (A) 

LOG (A) 
EXEON (A) 
FAC (A) 
DFC (A) 

COMB (A, E) 

is the nth jeri va ti ve of A with 
respect to B. 
is the SINE of expression A. 
is the COSINE of expression A. 
is the ARC TANGENT of expression A. 
is the HYPERBOLIC TANGENT of ex
pression A. 
i s the NATURA L l C G of e x pression A. 
is i** A. 
is the FACTORIAl of A. 
is the DOUBLE FACTORIAL of A 
( n ( n- 2) ( n- 4) ••• ) • 
is the COMBINATCBIAl of A things 
ta. k e n B a t a ti me • 

Executable :om m3. nd s: 

The assignment statement ~ssigns the variable name on the 
l~ft of the equal sign as the name of the expression on the 
riyht. The expression may be ::omposed of any of the 
op~rators and functions above. 

SUIJST 

Example: 
Besult: 

A = E+C+tER IV (X**2 ,X, 1) $ 
the variable A names the expression, 
B+C+X*2. 

substituticn fer- variables in the expression. rhe 
list of parameters may te written explicitly or a 



CTSS PRO~RAMM~R'S GUIDE s~ction AH .. 2.18 3/66 3 

EXPAND 

PRINT 

DUMP 

ERASE 

CLEAR 

label of a 'PARAM' statement may be used. 
Substitution proceeds from left to right. 

Example 1: D = SUBS r A, (X, 0) $ 
ABC = PARAM (X,O)$ 
D = SU es·r A, ABC$ 

Example 2: 

Result: Eoth examples result in D naming the 
expression B+C. 
(Assume A was the expression B+C+X*2 
from the example above.) 

Performs multinomial expansion and the distribu
ive law on the expression. The 'COOEM' option 
causes the result to he placed over a common 
denominator. 

Example 1: 
Result: 

Example 2: 
Result: 

F = E XPA MD D**2$ 
F names the expression B**2+B*C2+C**\ 
(Assume D was the expression B+C from 
above.) 

F = EXPAND H/ B +C, COD EM~ 
F na me s the e x pre s s i on : 
( E*C+H) * B** (- 1) 

Prints ~n the U3er•s console the variables and 
their expressions which are specified. 

Example: 
Be salt: 

PRI N7 A ,D$ 
Besults in the following print-out on 
the console, 
A = B+C$ 
D = B**2+B*C*2+C**2$ 

Prints on the user's console all assigned 
variabl~s and their expressions. 

Exa•ple: 
Result: 

tUMPS 
All assigned variables printed in the 
same format as the 'PRINT' command 
above. 

Erase the expressions specified an3 retu["n the 
storage they re]nire to the storage pool. 

Example: 
Result: 

EB AS E A, I:$ 
The expressions which A anj D names 
ar-e er-ased. 

Clears the symbol table and reinitializes the 
stcrage fCCl. It has the sdme effect as reloading 
the De.Ek Calculator. 



CTSS PROGRAMMER'S GUIDE S e ~ ti on A H • 2 • 1 8 3;66 4 

STOP 

DE PE NO 

PARAM 

Example: 
Besul t: 

CLEAR$ 
All symbols removed from the symbol 
table and the storage pool 
rein it ialized. 

Places the Desk Calculator in dead status and 
returns to the CTSS supervisor. 

Example: STOP$ 
Result: R 'XXX.X+:XXX.X 

Declarative Statements: 

Declares dependence relationships 
variables for use with the 
operator. 

Example: tEP!ND (M,B/l,Y)$ 
Result: M depend s on X and Y, B 

X and Y. 

between a tom i c 
differentiation 

also depends on 

(NOT I: M does not depend on B ncr X or 
y or y on M or b.) 

Example: DEPEND (l/Y) 
A = D I R IV ( X * * 2, Y , 1) $ 

Result: A names the expression: 
2*X*tERIV (X, (Y, 1)) 

Sets up parameter pairs for use with the 'SUBST' 
command. 

Example: 
Result: 

AB: ::: PARAM (B,2), (C,X+Y} $ 
When the label ABC is referenced in the 
• sUB ST • comma na, the number 2 will be 
substituted for every occurrence of B 
likewise X+Y will be substituted for c. 

Interrupt Level: 

The Desk Calculator has one interrupt level which returns to 
tha input routine. When the Desk Calculator types 'READY', 
the next statement may be typed in. If the Desk Calculator 
is interrupted during execution of any command except 
• PRINT' cr • DUMP' there can te no guarantee that further 
axecution will give correct results. "USER BEWARE". 

Error messages are tabulated in CC-257. 

(END) 



C'!'S S F ~ C r: RAMMER 1 S GU IDE s e ct ion A H • 2 • 1 9 12/69 1 

Interface between user and CiSS. 

N. I. Morris 

The "·" coolfmand (read "dot" - or "point") serves as an 
interface between the user and C7SS, allowing the user to 
ia=rease bis typing l3ad by giving him vide latitude in the 
a bbrev ia tion of command and fa ra meter names. It also allows 
tha chaining of cJmmands, and offers the ability to 
communicate between conscles. Other convenient features 
1vailable through ''·" are the ability to concatenate 
commands with the same arguments, automatic resumption of 
SAVED files (the a command need not be given), automatic 
fil~ system CALLs, 3ptional suppression of printing of 
W(ait) and R (eady) lines, :tnd the ability to initiate 
axe=ution of a SLEEPING program. 

Sin::e " .. " allows many user modified options, it must 
m1intain a file containing these option settings in the 
user's own tracks. 1his file is name1 "USER PROFIL" and is 
one record long. The first time "·" is used, a standard 
copy of "USER PROFIL" will be copieCl from public file. 

1. Initiation: 

--> • 

Respon5e is the character "R" followed by two 
carriage returns. 

a. A normal command line may be typed, with 
spaces delimiting the parameters as usual. 
Hcwever, additional commands may be typed on 
a given line separated by commas, with a 
maximum of five commands comprising a single 
chain. These commands will be executed 
se1uentially with "·" attending to necessary 
linkages and restarting i tsalf at the end of 
the chain. For ex ample: 

FAF ALFHA (LIS'r) , LOAt ALPHA GAMMA , SAVE DELTA , STARr 

Note that the commas are parameters and 
therefore m~§j be set off ty bldnks. 

b. There is no restri~tion on the number of 
cha~acters used in a given corrmand line. 
Mere than one ~onsole line may be employed by 



CTSS FRCGRAMtl.ER'S GUIDE Section AH.2. 19 12;69 2 

making the last parameter on a line be 
'(E'I:) 1 followed by the continuation on the 
next c~nsole line. The only restriction on 
command line length (not to be confused with 
command chain length as measured in links) is 
that the total number of parameters 
(including co11mas, parentheses, and slashes) 
must be less than 50. 

c. To prevent the restarting of "·" at the end 
of a command ch~in, terminate the line with 
the parameter "slash" (" /"). Mote that this 
tactic will allow the chaining of six 
commands. Commands which leave a desired 
cere-image (e.g. RESTOR, LCAD, etc.) and are 
the last link of a command chain should be 
fell owed by the slash to prevent destruction 
of t he cor e- i m a g e b f t he ". ". 

d. Commands and Farameters may be iterated by 
the use of parentheses. For example, the 
command line 

( BE.PA P NC LOAD SAVE ) PRCG 

'Will generate 

EEFAP PROG 
N: LOAD PROG 
SAVE PROG 

and the command line 

FAP (ALPHA BETA GAMMA) (LIST) 

will generate 

2. Abbreviations: 

P A P ALP H A ( L IS T) 
FA P BE TA ( LI S T) 
FAP GAMK A (LIST) 

a. Often-used commands and parameters may be 
abbreviated in "· "· The abbreviation 
definitions are stored in the user• s "USER 
PROfiL". rhey may be determined through the 
use of the internal commands 

ABBR!V COM 
ABBREV PAR 

Ncte that "USER PROFIL" cannot be 
successfully. The "ABBREV" command 
used t~ examine its contents. 

PRINTed 
must be 



CTSS FFC~RAMMER'S GUICE Section AH.2.19 12/69 3 

b. To define abbreviations, the 
commands are "DC" (for commands) 
(for parameters). General form is 

internal 
and "DP" 

D: abl ccml ab2 com2 
t P a t:: 1 p ar 1 a b 2 par 2 

abn comn 
abn pa rn 

For example: DC LO LOGOUT 

c. .ro remove abbreviations, the internal 
commands are "RC" and "RP". General form is 
as follows: 

RC abl at2 abn 
RP ab1 ab2 abn 

Example: RC LO 

d. The abbreviation tables can each contain a 
maximum of 75 definitions. A parameter 
definition ~ill take precedence over a 
command abbreviation, where "command" is 
understood to be the first item in a "command 
line". 

e. Tw~ types of parameter abbrevidticns are 
permanently defined; they are automatically 
frovided for and do not appear in the 
pat·ameter abbreviation tatle: 

"0 x" is the abbr ev iat ion for "CMFLO x". 
".x" is the abbreviation for "(CFLx) "· 

3 • P r iva t e c o m a a n d s: 
"S AV Et" files may he resu11ed wit bout explicit 
use of the "RESUME" command. "·"maintains a 
list of the primary names of "SAVED" files in 
•• USER PROP! 1". This list is consulted 
whenever a command is issued to determine if 
a "SAVED" version exists and a "RESUME" 
command should be qenerated. For example, if 
the user issues the command "ZILCH" and 
n ZILCH SA V ED" ex is t s in his f i 1 e s , then ". " 
will automatically generate a "RESUrtE ZIL:H" 
command. This priv~te command list may be 
updated through the use of the internal 
command "UPDPBI" which searches the user's 
file die ectory for "SAVED" files. Note that 
if "ZILC:R SAVED" is created and "UPDPRI" not 
issued, "·" will not "know" that "ZILCH" 
refers to a private "SAVED" fila. 

rhe private command list checking feature may 
be turned off by issuin3 the internal command 



CTSS PROGdAMMER'S JUIDE Section AH.2.19 12;69 4 

"S v l.. IS r o F F" • In t h is m o d e , " • " w i 11 Fe r f or m 
an FSlA1E for ea~h =ommand it generates in 
order- to check for a private "SAVED" version. 
This m~de is ~Qn§ig~£~£1~ §lQ~~~ than the 
"SV LISr ON" mode. When "·" is used for the 
first time, it will be in the "SVLISf OFF" 
mode. Issuing the "UPDPRI" command will 
Ufdate the user's "SAVED" files into "USER 
PROFIL" and turn "SVLIST ON" automatically. 

Note that it is also possible to run with 
OFtion bit 2 set, anj let the supervisor 
check the existence of the SAVED file if 
neces.sary (see AB. 10. 04, OPTION command). 

4. File system calls: 
In a similar manner to the treatment of 
RESUMEs ("priv~te commands"), "·" will also 
automatically furnish the "CALL" command (see 
AH.6.07) for file system subroutine calls. 
ihe following subroutines can be CALLed by 
typing the name of the entry followed by the 
neces.sa ry a rg ume n ts: 

ALLO'I FSTATE OPEN 
Ar r N AM IODIAG SE!PRI 
CHFILE MOVFI l TRFILE 
tELFIL 

For example, "STORGE 2" will generate the 
command "CALL S TOR GE 2". 

5. Inter console communications: 
When a user is in "·" either in waiting input 
or sleeping st~tus, an interconsole message 
may be received. (Whenever the user enters a 
command line and "·" is left, all 
communication is forbidden). This will 
prevent the user from receiving intetconsole 
messages in his input buffer while editing, 
typsetting, etc.) 

Interc~nsole messages are sent using the 
revised ASCII c:ha racter set. This permits 
the user to communicate using upper and lower 
case and all special characters. As in 
" 'IYP SET" , " I" is the erase ::=ha racter, and "al" 
is the kill character. 

a. ro send an interconsole message, use the 
intern:J.l comm~nd "WRITE" followed by the 
pc~blem and programmer numter of the user to 
whcm the message is being sent. For example, 
"WRirE 1234 3187" would initiate the 



{.,. 
v. 

7. 

CTSS PP.OGRAM~ER'S GUIDE s~c ti on A H: 2 ~ 1 q 

transmission of a message to T234 3187. 
Subseq~ent input lines would be received by 
T234 3187 if he desired to communicate. T234 
3 1 8 7 c~ u 1 d c e p 1 y .ty typing b is a n s we r. 

b. To prohibit the reception of all interconsole 
co11munications, use the internal command 
"FORBID". 

c. 'Ic fet:mit ~ particular user to c~mmunicate, 
use the internal command "ALLOW PROB PROG". 
If PRO~ iE omitted, all users with problem 
number "PROB" will be allowed to communicate. 
If "PROB" is "*", all users with programmer 
number "PBOG" will be allowed. If both 
"EBOE" and "PROG" are omitted, everybody will 
be a !lowed. 

d. The interconsole se::: tion of "·" may be left 
by giving a single "break" signal. This will 
cause the inter=onsole communications 
routines to exit to a fresh version ot "·"· 

Sleeping: 

Response 

The internal comaand "RS" will initiate a 
sleepinq program which will wake up every ten 
minutes and print a comment. Monopolization 
of lines to the computer in this fashion is 
rather anti-so=ia.l, anj should not be done 
unless absolutely necessary. Interconsole 
messages a3y be received and replied to while 
sleeping. Aftec communications are 
ccilpleted, a single "break" will return the 
user to sleep. 

supr-ession: 
Successive usages 
"V .• (verify) will 
fermi t J:rin ting 
cha£acters "R" ~nd 
comment. 

of tne internal command 
alternately suppress and 
of the acknowledgement 

"W" and of the sleeping 

8. Termination: 
The intecnal command 'Q' will return the user 
to dead status. (Logginq out may, of course, 
be acc:»aplished while in "· "). "C" will 
f:tohibit further interconsole communication 
before going DEAD. It is wise never to quit 
out :» f ". ", but to a 1 way s use " Q" • 
Otherwise, the user may receive interconsole 
messages unexpectedly. 

(E NO 



CTSS PROGR~MMER'S ~UIDE Sec ti on A H • 3 • 0 2 

Context editor for card image files 
ED 

12;69 

ED is a command f~r editing 14-word BCD card image files 
within CTSS. The command is ba sei on TIP SET (CC- 244, 
MAC-M-193 by J. H. Saltzer) and m~ny of the conventions of 
TYPSET are used by Et. Tabs are automatically interpreted 
for FAP, MAD, MADTRN, GPSS, COMIT, and ALGCL(i.e., AED) 
pro3rams. Tabs may also be set by the user for other 
purposes. Although line numbers m~y be generated by the ED 
~ommand, editing is done entirely by context. 

The ED command is initiated with the following CTSS c:>mmand. 

E 0 - N A ME 1 - N A ~E 2 - N A l1 E3 -

NAME2 is the seccndary name of the file to be edited or 
=ra~ted and !Y~1 be provided. MAME1 is the primary name of 
the fil~ to be edited. If NAME1 NAME2 is not specified, ED 
will assume that a new file is to be created and will start 
in the hijh-speed INPU1 mode. If NAME1 is provided, the 
command will look for the file HAMEl NAME2. If the file is 
not found, the high-speed INPUT mode will be entered. If 
t he f i la is f c u nd , the E tIT mo de w i 11 t: e e n t ere d • 

If NAME3 is specified and the file NAME1 NAME2 is found, the 
subsequent FILE will c I:"ea te a file NAME3 ttAME2 and MAM E1 
NAME2 will remain unaltered. Any arguments to the FILE 
request, however, will take frecedence. 

New files will be created only on the disk (device 2) and 
ol3 copies resident on the drum will disafpear if modified. 
The original file to be edited may te a linked file, 
howaver, any attempt to replace a linked file by the edited 
varsion will be rebuffed. The modified version eust be 
filed under a different n~me. Linked files of the name 
• (INPUT prog • and ' ( INPr 1 prog' where ' prog• is the user's 
pcogrammer number may not exist in the file directory or Et 
will not function. 



CtSS PROGRAMMER'S ~UIDE Sec ti on AH. 3. 0 2 12/0 9 2 

HIGH-SPEED !JRY! MODE: 

Whan tha user ente~s this mode, the ED command will type 
"INPUT:" on the user's ccnscle. While the user is operating 
in this mode, the tD command ~ill accept input lines from 
the user's ccnsole. rabs will be interpreted automatically 
for e~ch input line. Backspace characters may also be used 
to move back one character position in the input line. No 
r~sponse is typed for infut lines and as a result, the user 
IDlY type successive lines as fast as he wishes. When the 
us~r types a line ccnsisting only of a single carriage 
r~turn, the ED command will place the user's console in the 
EDIT mode. 

~Q!.I M :>DE: 

When tha user enters this mode the response "EDIT:" will be 
typed on the user's conscle. At this time the user aay type 
r~quests to the ED command. All changes made to a file 
become effective immediately and ilS a result, the user is 
ibl~ to make recursive modifications to his file. We may 
think of a pointer which is fOSitioned at a line in the 
eiite1 file. When the user enters the EDIT mode from the 
INPUT mode, this pointer will be positioned at the last 
input line typed by the user. When the user starts the ED 
=ommand in the EDIT m~de, the pointer is positioned before 
the first line in the old file. If the end of file is 
r~a=hed by an EDir re]uest, the comment "END OF PILE REACHED 
Bl:" is typed on the user's console follo~ej by the request 
whi=h caused the end :>f file to be reached. At this time 
the pointer will be positioned after the last line in the 
f i 1 ~ • When in the ED I 'I m o de , any 1 i ne w hi c h i s no t a 
legitimate EDIT request will cause the comment "NOT A 
REQUEST:" to be typed on the user•s console followed by the 
lina which caused the ecror. In many cases it is J::Ossible 
for the user to stack EDIT requests. If one of the requests 
= 1. uses an error mess age to be typed, any stacked requests 
will be ignored. This is done in =ase one of the stacked 
r~quests depended on the successful completion of the 
request in error. 

Any numbec of initial tabs or spaces (including 0) may occur 
in :1 r~quast line. Ar-guments and the request must be 
separated by at least one space or any number of tabs or 
spaces. Wherever the argument is line image, however, tabs 
~nl spaces retain their normal significance. 

Some errcrs from the file system will result 
typ~ ~rror messdge followed ty a ~uestion to 

in a PRNTER 
the user of 



CTSS PRO~RAMMER 1 S GUIDE section AH. 3 .. 02 12/69 3 

whether or net he wishes to continue. An answer of 
will rasult in a call to DOBMNT so that the user may 
the command, fix the problem, and RESUME the command. 

EDIT ,gg.Qy~~I§.: 

REQUEST: 
ABBREVIATION: 
RESPONSE: 
ERRORS: 

FINt line 
F 
none 
END OF FILE 

'NO' 
SAVE 

The FIND request is used to move the pointer forward from 
its pr-esent position to the line specified by 11 line". 
"Line" is a normal input line and may contain tabs and 
b~:::kspaces. 'Ihis line is used as a mask for selecting the 
j~sired line in the edited file. Matchin9 is done only on 
the non-blank characters specifie~ in LI.tiE. For example, 
th ~ re q ue s t , 

F (tab)-(tab)-ALPBA, 1 

might be used to find the line, 

LOOP TIX ALPHA,1,~ 

REQUEST: LO:ATE string 
ABBBEVI ATICN: L 
RESPONSE: none 
E RBORS: END OF fiLE 

Th~ LOCATE request is used to move the pointer forward from 
its present fCsition to the first line which contains the 
antir~ character string specified by "string". The full 
line of 84 characters is scanned, so that "string" may 
spa:=ify line numbers. It is recommended ·that 11 string" 
include the leading 2e£cs of the line numters to avcid any 
undesired match with program constants. 

REQUEST: 
ABBREVIATION: 
RESPONSE: 
ERRORS: 

REX 'I I 
N 
none 
END OF FILE 

This request is used to move the pointer forward from its 
present position in the file. "I" specifies the number of 
linas to be skipped over-. If I is "0" or not specified, it 
is assumed tc be "1" and the pointer will be moved to the 
n~xt line in the file. If the NEXT request is given after 
the end of file has been reached, the pointer will be reset 
to th~ be]inning ~f the file and moved "I" lines from there. 



CTSS PROGRAMMER'S 3UIDE Section AH. 3. 0 2 12/6 9 4 

H EQ UEST: DELETE I 
ABBREVIATICN: D 
n ESP ON S E: none 
t; RRORS: END OF FILE 

The DELETE request will delete "!" linEs from the file 
starting with the line at which the pointer is currently 
positioned. If I is "0" or left unspecified, cnly the 
=urrent line will be deleted. I~g 22int§& is ~!1 ~! !n~ 
EQ§~1i~~ !~£!i~~ QI !h~ !~~t lirr~ !~let~~ ~I thi§ ~g~]~~l· 

HEQUEST: 
ABBREVIATION: 
RESPONSE: 
ERRORS: 

PRINT I - L
p 

fLinted lines 
END OF PILE 

The PRIN'I request will print "I" lines from the file 
starting with the line at which the pointer is currently 
positioned. Upcn completion of this request, the pointer 
will be left pointing to the last line printed. If I is "011 

or left unspecified, one line will be printei. Normally 
lin~s are printed without line numbers. If the character 
"L" is present in the PRINT request, line numbers will be 
printed to the xight ~f the printed lines. 

REQUEST: 
ABBREVIATION: 
RESPONSE: 
ERRORS: 

RErYPE LINE 
R 
none 
none 

This request will cause the line at which the pointer is 
:::urrently positioned to be replaced by LINE. LINF is a 
normal input line and may contain tats and backspaces. Ih~ 

E21n!~£ 12 ~~! ~~~gg Ql !h~§ !~g~~~!-

REQUEST: roP 
ABBREVIATION: T 

This request will cause the pointer to be reset and 
positioned before the first line in the file. In addition, 
an automatic TOP is fer:fcrmed by the FIND, LCCATE and NEXT 
it th~ pointer was positioned at the end of the file. 

REQUEST: 
ABBREVIATION: 
RESPONSE: 
ERRORS: 

BOrTOM 
B 
IN PUr: 
none 

This request will cause the Fointer to be positioned after 
th~ l~st line in the file. Upon completicn of this request 



CTSS PROGRAMMER'S ~UIDE se:: ti on AH. 3. 0 2 12/69 5 

the user's ccnsole will be placed in 
mo1a. All subsequent lines will be 
added to the end of the file. 

the high -speed INPUT 
treated as input and 

HEQUEST: 
ABBREVIATICN: 
RESPONSE: 
ERRORS: 

IN SE R T or (C. R.) 
I 
INPOr: 
none 

This request will cause the user's console to be placed in 
the high -speed INPUr m~de. All subsequent lines will be 
treated as input and inserted ~!!~~ the line at which the 
pointer is currently positioned. If the INSERT request is 
~ivan immediatly following a TOP request, the inserted lines 
will be placed at the beginninq of the file. 

REQUEST: 
ABBBEVIATICN: 
Response 
Errors: 

IN SER 'I line 
I 
none 
n~ne 

Tha INSERT r-equest may be used to insert a single line 
without changing tn the high-speed input mode. Line is a 
normal input line. It i~ inserted following the line at the 
p~esent pointer position. 

REQUEST: 
ABBREVIATION: 
RESPONSE: 
ERRORS: 

CHANGE Qstring1Qstring2Q I G ... 
..... 

n~ne 

END OF FILE 

This request will examine nrn lines starting at the line at 
which the pointer is currently positioned. Upon completion, 
the pointer will be left positioned at the last line 
axamined by this re~uest. If I is "0" or left unspecified, 
it is assumed to be "1" and only the current line will be 
ex:amined. The character "Q" is taken to be the delineator 
or "Quote character" and may be any character in the 6-bi t 
BCD set. "string1" and "string2" are arbitrary BCD 
=haractar strings and may be of different lengths. If the 
character "G" (GLOBAL} is present, ~~£.! occurrence of 
stringl will be reflaced by string2. If "G" is not present. 
only the first occurence of strin~l will be replaced by 
stcinJ2 in each examined line. EXAMPLES: 

line: 
request: 
new line: 
request: 
new line: 

ALPHA= ALPBl+ALPHA 
C *ALPHA*BElA* 

B!TA= ALPHA+ALPBA 
C *ALPHA*DELlA* 1 G 

BET A= [ELT A +DELTA 



CTSS PROGRAMMER'S GUIDE Section AH. 3. 0 2 12/69 6 

C *DE.L'IA+ ** rag uest: 
new line: EETA= tELTA 

REQUEST: 
ABBREVIATION 
RESPONSE: 
ERRORS: 

BLANK line 
EL 
none 
n:> ne 

The BLANK request will put blanks in the current line 
wh~rev~r non-blank characters appear in "line". For example 
'BL ******' will clear the label fieli of a line in a FAP 
fil~. 

REQUEST: 
ABBREVIATION: 
RESPONSE: 
ERRORS: 

OVRLAY line 
0 
none 
none 

Tha CVRLAY request will place the non-blank characters of 
"line" into the corresponding position of the current line. 
Notica that only non-blank characters of "line" replace what 
w as in t he cur rent 1 i ne • F or e xa m p 1 e i n a FA P f i 1 e , i f t he 
:urrent line is 

than 
0 E:JF(tab) 

wi 11 produce 
FOF 

REQUEST: 
ABBREVIATION: 

VERIFY 
VE 
none 
none 

R ESP ON S E: 
ERRORS: 

TXI *+ 1 

bbH (tab) (tab) comment 

TXH *+1 comment 

The VERIFY request sets the verify mode. In the verify 
mo1a, completion ~f any of the requests FIND, NEXT, LO:ATE, 
OVRLAY, BLANK and CHANGE will cause the printing of the 
:urrent-pointer line. In addition, CHANGE will cause the 
pr·inting of all changed lines. Requests may not be stacked 
while in the verify m~de. 

REQUEST: 
ABBREVIATION: 
HES PONS E: 
ERRORS: 

BRIEF 
BR 
none 
ncne 



CTSS FBCGRAMMER'5 GUIDE s e ct ion A H • 3. 0 2 12/69 7 

Th~ BRIEF request sets the brief or normal mode. Within the 
b~ief mode, the FIND, NEXr, LOCATE, OVRLAY, BLANK, CHANGE 
r~quests will not give the responses expected in the verify 
mode. 

REQUEST: 
ABBREVIATION: 
RESPONSE: 
ERRORS: 

CLIP 'ON' or 'OFF' 
CL 
none 
ILLEGAL ARGUMENT: 

The request CLIP ON sets a mode such that any input line 
whi~h exceeds column 72 will cause the message "TRUNCATED:" 
followed by the faulty line image. Any waiting input lines 
will have been deleted. Requests on which this may occur 
are FIND, INSERT, RETYPE, OV RLAY, BLANK and high- speed 
INPUT. The request CLIP OFF resets the moje • The normal 
moie is CLIP ON f~r: all files except PAP files which are 
no~mally CLIP OFF. 

RE QU ES'r: 
ABBREV I ATICN: 
RESPONSE: 
ERRORS: 

SERIAL N 
s 
none 
none 

This request is used to change the increment between line 
numbers of successive lines to the increment specified by 
th ~ dec i m a 1 in t e geL. nN ". In it i a 11 y, t his inc r e me n t is se t 
to 10 by the ED command. If N is "0" or not specified, it 
is assumed to be "10". Lines inserted after a line with the 
line number "L" will be sequenced L+N, L+2N, L+3N, etc. If 
tha lines following the inserted lines have line numbers 
which are less than cr equal to the line number of the last 
inserted line, as many lines as necessary will be 
r~saquanced to insure that all line numbers are unique and 
in ascending order. For example, assume that "N" is 2 and 
tha user wishes t~ insert 9 lines after line 25 in a file 
that was previously sequenced by fives. The inserted lines 
would be numbered, 27, 29, 31 ••• 43. The lines previously 
numbered, 30, 35, 40, 45 and 50 would be renumbered to, 45, 
47, 49, 51 and 53 respectively. The remaining lines in the 
fil~ would be unchanged. 

REQUEST: 
ABBREVIATION: 
HESPONSE: 
ERRORS: 

COLON a 
co 
none 
ILLEGA 1 ARGUMENT 



CTSS PHOGRAMMER 1 5 ~UIDE Section AH.3.02 12t69 8 

A colon (or backspace on 1050) is a logical backspace 
anywhere, eg., 'AB: ::: Db (C.R.) is interpreted as 'tbC'. 
Th~ colon moves the cha~acter pointer tack one but dces not 
eras€ the characters over whi::h it has moved .. One should be 
:::~raful in using this convention that the total number of 
characters dces not exceed 84, as any extras will be added 
to the next line during INPUl, or result in a request during 
EDIT. 

The COLON request allows the colon character to be inserted 
:ts text. (They may also be 'CHANGE'd in as desired.) If •a• 
is T or TEXT, all ':' will be treated as text except for the 
• · • as the first character after a tab. If •a • is B or 
BACKUP tha normal mode will te reinstated and all •:' will 
be backspaces. 

REQUEST: 
ABBBEVI ATION: 
R ESP ON SE: 
ERRORS: 

TABSE7 T1 T2 ••• TN 
:rA 
none 
ILLEGAL rAB SETTING 

Ti specify the columns at which tabs are to be set. Tabs 
must be set in ascending order and may not exceed column 72. 

REQUEST: 
ABBREVIATION: 
RESPONSE: 
EBBORS: 

cr 

FILE -NAME4-
FL 
• 
NO PILE NAME GIVEN 
FILE WORD COUNT ZERO 
N 0 TH I N G I N F I LE 
IN PUr: 

This request is used to terminate the editing process and 
write the new edited file on the disk. ~Ar1E4 specifies that 
tha new file will be created as NAME4 NAME2. If NAME4 NAME2 
is not specified, the old file will be replaced by the 
alitei file or a new file NAME) NAME2 will be created. If 
no name was given by the initial ED command or by the FILE 
request, an errcr message will be printed and the FILE 
r~quest will be ign3red. 

IE ::i file to be deleted is either RBAD-ONLY or PROTECTED. 
confirmation of deletion will be requested. If confirmation 
is ienied or if file is LINKed, the EDIT mode will be 
ceentered with the pcinter at the top of the file. Any 
molas associated with the previous copy of the file will be 
transferred to the new ccpy. 

(E NO) 



CTSS PROGRAftMER 1 S GUIDE 

S a v e p r: e sent d or a a n t p r: og r:a m. 
SAVE, MYSAVE 

Section AH.3.0J 12/69 1 

The user may preserve a cuxrently-dormant program {e.g., 
just loaded, interrupted by the quit button, file system 
errors for which no error return was specified, or called 
DORMNT) and its machine conditions via the commands SAVE or 
MYSAVE. Execution may be either begun or continued at some 
l1tar time by use of RESUME or CONTIR; the core image, et 
al., may be reinstated at some later time by use of RECALL 
o 1: R E S TOR ( s e e A H • 7 • 0 3 ) • 

SAVE -NAME1- - 1 T 1 -

MYS AV E -It AM E 1- - 1 T •-

SAVE In addition to the cor:e image and machine 
conditions, SAVE will save the status of any 
active files so that they may be repositioned 
by RESUME and BESTOR. It will also save any 
comaand chain present. 

MYSAVE In addition to the core image and machine 
conoiti~ns, MYSAYE will save the status of any 
active files in the current file directory, 
but will then switch to the user's file 
d i rec tcr y before c rea ti ng the SA VEt file. 
This is the version used by automatic logout. 
Resumption of the SAVED file from the user's 
file directory by RECAll or CONTIN will 
perform the necessary svitcb of directories. 

NAME1 The created file is given the name BlME1 
SAVED. 

T The SAVED file will be created in temporary 
mode. 

IE no arguaents are furni~hed, the file created representing 
the current state of the user's program will be given the 
first name 'PROGN', the user's programmer number, and the 
gen~ric second name •s AV ED'. 

If a file already exists which has the same name as will 
result from a SAVE cr M YSA VE, the old version will be 
truncated; the old version's mode is, then, preserved. 



CTSS PROGRAMMER'S ~UIDE section AH.3.03 12/69 2 

r"ILE NAf'.IE1 SAVE[ IS LOCKED, SAVE NO'! EXECUTED. 

Another user was referencing file NAME1 SAVED; the SAVE or 
~YSAVE must be repeated. 

ERROR n FOUND AT loc IN CALL TO en tr .Y FOR 8 Ar1E 1 SAVED 
SAVE NOT EXECUTED. 

A fila system error involving the file HAMEl SAVED has 
o==urrad. The SAVE mllst be repeated, protably with a new 
NAME 1. 

If tha user's memory bound is zero (i.e. no core image 
left), the SAVED file will contain only command buffers and 
3iractory switchiny infocmation. such a file cannot be 
restarted by RESUME cr CONTIN. It =an, however, be restored 
by RECALl, in order t~ load command buffers and restore 
directory attach•ent. 

(E MD) 



CTSS PROGRAMMER'S GUIDE Section AH.3.04 Page 1 

Saving and renawing tempcrary file generated by RUNCOM 
SAVFIL, RERUN 

In order to Freserve the user's co~e image and machine 
=on~itions as needed during a chain of commands, RUNCOM 
generates a series of temporary mode SAVED files with 
primary names of the special form ••• con when n=1,2,3 1 etc. 
The problem arises of preserving these files when a a R UN:OM 
is SAVED in midstream, and desired to be CCNTINued at a 
l~t~r tima - eithe~ in a subsequent LOGIH session, or after 
another RUNCOM. SA VFIL and RERUN are desi3ned to preserve 
these files. 

SAVFIL 

RERUN NAME 1 

SAVFIL works on the unbroken chain of SAVED files 
with primary names of the form ••• OOi, 
i =n , n - 1 , • • • , 2 , 1 w her e ••• 0 0 ( n + 1 ) s A V E D d oe s 
not exist. Working in decreasing value of n, 
it renames the file ••• oon SAVED to an unused 
name of the form S$$00j and makes it permanent 
mode. Finally, it appends the list of new 
names $$$00j to the file HAME1 SAVED. 

BEFUN resto~es these files to their original names 
and mode fcLm the inform~tion continued in the 
f i 1 e N AM E 1 S A V 1! D • N AM E 1 SAVED is u nc ha n g e d. 

The cecommended (and probably ONLY) way to use these 
commands is as fellows: 

MYS AJ E 
SA VFI L 

HER ON 
CONT IN 

NAMf 1 
NA MEl 

MA MEl 
N AM E1 

to save a RUCOK jcb. 

to ~ontinue the RUNCOM at 
any future time 

As automatic lagout perfo[ms the MYSAVE but not the SAVFIL, 
a good practice would be to issue a SAVFIL progL (where 
'prog' is the user's p~og~ammer number, used as the saved 
file name) immediately at one's next LOGIN, if it is desired 
to CONTINue the job at a later time. 



C ·r S S P R C G R A M ME R ' 5 G U I DE Se~tion AH.3.04 Page 2 

Both SAVFIL and RERUN operate only in the user's file 
directory. 

{END) 



CTSS PROGRAMMER'S GUIDE 

Link to files in other U.F.D'S 
LINK, UNLINK. PERMIT, RE10KE 

Section AH. 3. 0 5 12;69 1 

A user may allow files in his directory tc be accessed by 
other users by means of a mechanism known as "linking". rhe 
usars who have been allowed to form "links" or "link 
pointers" (U.F.D. entries which point to other u. F. D. 
entries instead of to the file itself) to a file need not, 
then, have a copy of the file in their own 1irectories. It 
is ~lso possible to estatlish links which have names other 
than those of the actual file. When he grants permission to 
link, tbe ''owner" of a file specifies wbo will be permitted 
access and what apfarent mode the accessors will have to 
treat the file in. 

If any of these commands is typed without arguments, the 
r~sponse will indicate the proper format. 

1) Grant permission: 

PERMIT NAMEl NAME2 MODE PROB PRaG 

NAMEl NAKE2 is the name of the file in the current 
file directory to which the author is granting 
linking permission. The file NAME1 NAME2 need 
not exist, may exist in any mode, or may be a 
link pointe[' in the current file directory to 
a file or link pointer in some other 
directory. Linking permission, therefore, may 
be granted to any file to which the current 
file directory has access or may have access 
in the future. PERMIT does not actually 
establish a link. If NAME1 is *, all primary 
names are implied. If NAME2 is •, all 
secondary n~mes ~re implied. 

MODE is the mode ~hich the author wishes to permit 
for the file. During the linking process, 
this mode will he •or•ed vith any other modes 
in the chain of links to determine the final 
mode. rhe mode may te octal or alfhabetic 
with the fcllowing ~orresponience: 



CTS S F F C GRAMMER' 5 GU ICE s e ct ion A H • 3 • 0 5 12;69 2 

PROB PROG 

0 
0 '1 

2 
s 

4 
R 

10 
w 

20 
v 

100 
f 

SFecifies the problem number and 
number ~f the user to whow the 
NAME2 is being permitted. If PRJB 
problem numbers ~re implied. If 
all programmer numters are implied. 

program mer 
file NAr1E1 
is * a 11 

PBOG is * 

2) Withdraw Fermissicn: 

R E VO K E NAME 1 NAME 2 P R CB P BCG 

REVOKE withdraws the linking permission for file 
NAME1 NAME2 of the current file directory from 
the user FROB PROG. Note that REVOKE does not 
rem:>ve any links that h~ ve already been made. 

3) Form a link: 

LINK NAME1 NAME2 PROB PROG -NAME3- -NAME4-

LINK establishes a link in the current file 
directcry to the file NAME1 NAME2 in the file 
directory of PROB PROG. 

When MAME3 NAME4 is specified, NAME1 NAME2 is 
the name given to the file in the current 
directcry and NAME3 NAME4 is the name of the 
file in the directory PROB PRQG. If NAME4 is 
not specified, NAME2 will be used as the class 
name. 

If permission has not teen granted, the link 
cannot be established. LinKs may be 
established through a depth of file 
directcries ~hich is currently set by the file 
system to two. 

4) Remove a 1 ink. : 

UNLINK NAPIE1 NAME2 ... NAMEln NAME2n 

UNLINK will relove links to files so specified. If 
'*' is used as a primary name all files with 
given secondary name will be unlinked. If '*' 
is used as secondary name, all files with 
Sfecified Frimary name will be unlinked. If 
U NLI.NK * * is typed, all links are removed. 
If either ndme :;ontains imbedded *'s, the 
"LISI'F * convention" will te applied. that 
is, the* ~ill mitch any character including 



CTSS F BCG RAM~ EB' S GUIrE Sect_ ion A H. 3. 0 5 12;69 3 

blank. 

This command in no way affects permission. 

NAMEl NAME2 must be the name by which the file is 
kncwn in the cu·rx:ent file directory. 

The FERMir command establishes a file named PERMIT FILE (VP 
moia) in the direct~ry of the user giving permission. This 
fila is line-marked, and may be printed out with the PRINT 
command. In the case of problem numbers which have common 
fila directories, a PEBMir FILE in a common file should 
probably be maintained by a designated member of the group. 

(END) 



C T S S F R C G R A MM E R t S GU I D E s ~ ct ion A H ~ 3 ~ 0 n 5;66 1 

T~pe-handling commands 
MOUNT, Uf'CUNT, VERIFY, LABEL, TAP.FIL 

These commands have been added to CTSS to facilitate reading 
and w~iting cf tape files using the standard file system 
::alls. 'Io use a tape, the Tape Strategy module must be told 
to mount it, its standard file header must be read and 
checked, o~ written, and the file system must be told that 
it is a tape file. (5ee also Section AG.5.05 for additional 
information about tafe usage in foreground.) 

To use foregr~und tapes, a 
administratively-assigned taFe record 
use of tapes makes unusual demands on 
the operators, assignment of such 
~x~~ption rather than the rule. 

1) Mount a tape: 

user must have 
quota.. Because 
both the syste• 
quotas will be 

MOUNT NAME LOGUNr -RING- -CRAN- -MESS-

a 
the 
and 
the 

lAME is the name or reel number of the reel to be 
IIOUDted. 

LOGUNT is a logical unit number ty which the user 
wishes to refer to this tape. Any number 
(L. E. 2. P. 18) will do, providing it is one 
that the user has not already used. 

RING •ay be either 'RING' or 'NORING'. It 
specifies whether or not the reel should be 
file- protected. 1 MORING • will be assumed, if 
not specified (i.e., file-protected). 

CHAN •ay be '1' or 1 2 1 in the current system for 
channels A or B, respectively. If not 
SFecified, the supervisor will pick a channel. 

MESS if present, must be either the characters 
1 ftESS 1 or '(MESS)'. If the former, the 
SUfer-visor will then type 'TYPE'. Up to 12 
words of message to the operating staff will 
be accepted. If the latter, it must be 
foll~wed by NAME1 HAME2, which refeL tc a card 
image (line-numbered) file containing the 
desired message. 



CTSS PROGRAMMER'S GUIDE sec ti on A H • 3. 0 6 5;66 2 

The optional parameters may appear in any order. 

The message sent to the operators is of the form: 

F:)R TAPE REFEERED TO IN FOLLOWING MESSAGE, ASSIGNMENT IS A8 
US E R P R 0 B N 0 = M 1 4 1 6 USB R P R OG N 0= 3 
MOUNT TAfE 199 WirH lORING ••• user comment 

2} Dismount a tape: 

U M 0 UN 'I 10 ~ UN l - ME S S- - B I NG-

where LOGUNr, MEss. BING are as above. 

3} Verify the label on a previously-written tape: 
(This must be done tefore opening the file.) 

V E R I FY L 0 GUN T -FILE-

LOGUNT is a logical unit previously referred to by a 
• M au N r • c om man d. 

The program will say 'TYPE LABEL'. The 24 
characters typed next must correspond to the 
label on the tape. If the tape cannot be 
mounted or the label does not match, a message 
will be printed. 

F I L E ref e 1:' s to N AM E 1 N AM "E2 of a c a r d i ma g e 
(line-numbered} file, from which the first 24 
characters will be taken as the label. This 
Oftion overrides the console typing just 
described. 

4) Write a label on a tape: 

LABEL LOGUNT -FILE-

LOGUNT is a logical unit number referred to by a 
previous 'MOUNT 1 request. 

The prcgram will ask for a 24-character label, 
which will be written on the tape to provide 
the label which will be VERIFYed if the tape 
is to be read again. If the tape is bad or 
cannot be mounted, a comment will be printed. 

FILE is the same as under the V!RIFY descriFtion. 

5) D~clare a file t:> be on tape: 

TAPFIL NAME1 NAME2 LOGUNT -FILENO-



CTSS PROG~AMMER 1 S GUIDE Section AH.3.06 5/66 3 

NAME1, NAME2 is the name of tha file. 

LOGUNT is a lcyical unit number, as in 'MOUNT', etc. 

FILENO if specified, is the number of the file on the 
reel specified by LOGUNT. A FILENO cf zero 
specifies the end of a set of files on a reel, 
so that this may te used to add to the end of 
a reel. FILENO is assumed zero if not 
specified. 

(EN D) 



CTSS PROGRAMMER'S GUIDE Section AH:: 3" 0 7 3/66 

Context ed i tcr f cr 6-bi t mode 
EDL 
J. H. Salt zer 

EDL is a context edit~r for line-marked, 6-bit BCD files. 
SQUASH SAVED is available in the public files to change 
currently-existing card-image (line-numbered) files to the 
!ina-marked format, which is currently acceptable to EDL, 
MAD, and FAP. (Files created by ED L itself are, of course, 
!ina-marked.) A significant saving of both space and time 
will be effected by the use of EDL instead of ED. 

EDL NAME l NAME2 

NAME1 NAME2 is the name of the file to be edited. 

Editing conventions are identica 1 to those of 
the TYP SF. 'I c omm:1 nd (Section AH. 9. 0 1) , except 
that only the 6-bit character set may be 
used. In addition to the TYPSET erase (t) 
and kill (~) characters, EDL also accepts the 
standard CTSS erase (") and kill (?) 
characters. A backspace character will be 
set in the file as a colon. Tab characters 
will be inserted in the file wherever typed. 

'INPUT FILE HAS IMPROPER FORMAT. 1 will be printed if EDL is 
being used on a file which is not correctly line-marked. In 
p~rticular, this condition wiil occur if tne file is of 
card-image format. 'Io prevent damage to the file, guit out 
of tha command (d~ ~~~use the 'file' request) and either 
SQUASH the file 0[ use ED. 

(E RD) 



C T S S I= R C G R A M M E R ' 5 GU I I: E 

Bin~ry file editing pcogr~m 
EDB 
J. H. Saltzer 

s e ct ion A H .. 3 • 0 8 12;69 

EDH is a reincarnaticn of the TYPSET and EDL editing 
::ommands for use with arbitrary binary files. 

EDB name 1 name2 

will allow creati~n or editing of the file "name1 name2". 
Tha ejiting conventions of EtB are identical to those of EDL 
and TYPSET, as described in se::tion AH.9.01. Each 36 bit 
wori of the file being edited is a distinct line in the 
sense of the TYPSRT descriFtion, anj is represented for 
~iitinJ purposes as a 12-digit octal numter. Care should be 
taken to insure that after input or editin~, there are 
axa=tly 12 octal digits in a line. If there are more than 
12 octal digits, the last 12 will be used; if fewer, leading 
z~ros will be appended. Non-o::tal chara=ters will be 
converted to octal by truncation of the high order bits. 

(E HD) 



CTSS PRCGHA~MER 1 5 GUICF S 2 c ti on A H • 3 • 0 9 6_/69 1 

QED taxt editor 
Ken ThomfSOD 

QED is a command for editing symtolic text. 
output are either console, 6-bit, 12-bit, or 
~ =ombination of these. QED keeps all text 
the ASCII character set. extensive 
ins~rting, deleting and changing lines of 
feature, a macro feature and ~ large number 
buffers. 

Its inFut and 
ASCII files, or 
internally in 

facilities for 
text, a search 
of possible text 

QED, like most editors, performs operations on text in a 
workspace. In QED the wockspace is called a 'buffer•. A 
buffer consists cf from zero to ( ideallJ) any nuaber of 
lines of normal text. Each line mY21 be terminated in an 
end-of-line (carriaye return) character. Not counting the 
~n1-of-line character, a line consists of from zero to 
(ideally) any nutllber of cha ra:: ters. 

QED, unlike 111ost editors, has another level of hierarchy. 
Tha text in CEO's w~rkspace is broken up into from one to 
(ideally) any number of buffers. Each buffer is identified 

by a name of from one to five characters. There is Qll~ 
current buffer and all of the other buffers are auxiliary 
buffers. The auxiliary buffers allow temporary workspace to 
store text. Any cf the auxiliary buffers can become the 
=urrent buffer; at which time the old current buffer becomes 
an auxiliary buffer. 

QED accepts commands and text from a stream of characters. 
This stream nocmally comes from the console. Special 
characters in the stream can divert the stream to a text 
buffer. In this way, predefined commands can be placed in a 
buffer ana then executed by diverting thE command stream to 
this buffer. this buffer in turn may divert the stream to 
1nothar buffer or (recursively) to the same buffer. At any 
time, the stream can be diverted to the console for one line 
of text. 

QED has a very unif~rm command format. Each command acts on 
text in the current buffer and possibly on an entire 
auxiliary buffer. The text in the current buffer is 
sp2::ifi~d by a series of from zero to (ideally) any number 
of line addresses. Two adjacent line addresses are separated 
by ~ither a comma ~r a semicolon. Only the last two 
addresses are •remembered' althouyh one address may affect 
the a valuation of su bse]uent addresses. The command is 
represented by a single chara=ter. This character is usually 



C T S S f B C G R A M M E R ' 5 GU I D .E s e ct ion A H • 3 • 0 9 6;69 2 

mn~monic of the action of the command. 
command, qualifying data may be needed 
=haractar. 

Depending Ufon the 
after the command 

A:tual details on c~mmands and addresses follow. 

REGULAR EXPRESSIONS 

R~~ular expressions can best be described by example. In the 
following examples, the chara::ters 1 / 1 , 'I', '*', '(' and 
1 ) • are operators in the expressions. 

/3./ will match the letter 'a• anywhere on a line. 
;abed/ will match the wo~d 'abed' anywhere on a line. 
/lb*c/ will match the words •ac•, 'abc', •abbe ', •abbbc' 
/ib::tdaf/ will match the words •abc' or 'def' 
/(ito) nto; will match the words 'into' or •onto• 

The operators ' { ' .and '} • have the same meaning as the 
oparators '('and ') •. When traces rather than parentheses 
are used to bracket sub-regular expressions, the regular 
~xpression in braces is named by the character immediately 
following the right brace. (See SUBSTITUTE and VERIFY 
::ommands .) 

In addition, the characters •-•, '·' and '$' are special. 
Th3y are not operators, ~at just special characters. The 
character •-• will match the Oth character on a line. rhe 
:: ha rae tar • $ • will match the character after the last 
character on a line. rhe character '·' will match any 
:haracter on a line. 

;.•; will match an entire line regardless of length. 
;-beginJend$/ will match a line beginning with 'begin' or 
ending with 'end'. 
/in.•to/ will match a line containing 'in' and •to• in that 
order. 
/""ba~. *end$/ will 11atch a line starting with 'beg' and 
ending with •end'. 
;-s; will •atch a blank line. 
;$-;will also match a blank line. 
/$.-; will match nothing. 

A null regular expression is identical to the last regular 
expressicn. (UFcn initial entry, after a syntax errcr in a 
regular expression, and after a ~ead, ~rite, or bist 
command, a null regular expression is an error.) 

BUFFER NAMES 

Buffers are na111ed with a one to five :!haracter name. rhe 
n:tma is enclosed in parentheses. If the name is one 
character long (not •cr' or ' ( ') the parentheses may be 
omittad. rhe buffer name can be any length, bot only the 



Section AH.3 .. 09 6/69 3 

last 5 characters are significant. The buffer names 'X' and 
• (X ) ' a r e i den t i cal • 

r EXr AIDRESS ING 

Linas in the current buffer may he addressed in the 
following ways: 

1) By relative line numbers. 
A decimal nunber is interpreted as a relative line 
numter. The first line is numbered 1, the second 2, 
ate. The relative number of a line is its current 
position in the text buffer. This number may change 
during editing. 

2) By absolute line numbers. 
The character • immediatly followed by a deci•al number 
is interpreted a3 an atsolute line number. After a 
successful read command, every line in the current 
buffer is assigned an atsolute line number that is the 
same as the relative line number at that time. The 
absolute line number does not =hange during editing 
axcept after a read. Ne~ lines created during editing 
have undefined absolute line numberse 

3) By'·'· 
The value of '·' is the current line. This value is 
changed by most editor commands. 

4) By 1 $'. 
The value of '$' is the last line in the text buffer. 
This number may change during editing. 

5) By context. 
The structure '/regular expression/' causes a search 
for a text pattern that matches the regular expression. 
The search begins at the line after the current line 
and cycles to the current line. If the search is 
successful, the value of •;regular expression'/ is the 
first line f~und containing the text pattern. 

6) By additive ccmbinaticns of 1-5. 
An address followed by 1 +' or •-• followed by another 
address is al sc. an address. The value is cbvicus. 
Evaluation is done left to right. At no time during 
avaluation may an address exceed t~e bounds of the 
number of lines in the text buffer. In all unambiguous 
ct~ses, the '+' may be omitted. ('. +4' is the same as 
' • 4 • , b u t ' 5 + 2 ' i s n o t the sa me a s ' 5 2 • • ) 

In subsequent discussicn, 
address. 

'!' will indicate any legal 



C 'r S S F R C G R A M M E R ' 5 GU I D E Section AH.3.09 6/69 4 

EDifOR INPUT 

Th~ input to CED is a stream of characters. Depending upon 
the context cf the stre~m, some of the ~haracte~s are 
in~~rprated as commands to the editor, and some of the 
characters are interpreted as literal text. In either case, 
the following characters are recognized by the editor as 
1i~3ctives to the character stream and not as any editing 
fu net ion: 

\BX 
These character are removed from the character stream 
dnj are replaced by all of the characters (in sequence) 
in tuffer x (where x is the name of a text buffer.) 
R~cursion is all~wed to a depth of 500. The special 
case where the characters 1 \Bx' are the last two 
characters in a text buffer is treated specially and 
loas not cause an increment of the recursion count. 

This character is removed from the character stream and 
is replaced by the next complete line fro~ the console. 
Any partial line remaining from the console is skifped. 
In the line that reFlaces the \R character, the 
characters ''R' and '\B' ~ause no spe=ial action. 

During console input, corrections may be made with the 
following control characters: 

Delete the preceding character. (The default alternate 
to 'E is • t•. See •e• option in the OPTION command.) 

Delete the preceding characters up to, but not 
including, the first blank followed by a non-blank 
~haracter. In ~ther ~ords, delete the preceding word. 

Delete the entire line. (The default alternate to \K 
is ' m ' • See t he ' k 1 o p t i on in th e C t T I c N co 11m an d • ) 

TE X 'I INPUT 

T her e a r e three QED com ma nd s tha t e x pe c t to be f o 11 o wed by 
lit~ral text input. rhis text must te preceeded by a space 
o~ a carriage return. The text itself consists of an 
~rbitrary string of characters that terminates in the 
sequence ' (cr) \F •. The '\ F • character is not part of the 
literal text, but only serves to show the end of the text • 

. In subsequent discussicn, 
t~ xt input. 

•-text- 1 will indicate literal 



CTSS PROGR!MMRR'S GUIDE se=tion AH.3.09 6/69 5 

EDITOR :OMMANDS 

1) APPEND command. 
a) A A- text-

The editor accepts text whi=h is inserted ~t~~£ 
t be 1 i n e add r e s sed • The va 1 ue of ' ' is set to 
the last line inputted. 

b) A-text-
is ide nt i c a 1 t c ' $A- te x t- ' • 

2) BUFFEB command. 
a) Bx 

The current buffer will become an auxiliary buffer 
and buffer x will become the current buffer. 
Initially the editor has buffer 0 as the current 
buffer. 

3~ CHANGE coamand. 
a) !1,!2 C-text-

Lines in the current buffer A1 through !2 are 
deleted. The editor accepts text which is 
substituted in place of the deleted lines. The 
val u e o f ' • ' is se t to the 1 as t 1 in e inputted. 
The line number of ~1 must be less than or egual 
to the line number of !2. 

h) !1 c-text-
is identical to '!1,!1C-text- 1 • 

c) c-te xt-
is ide n tic a 1 t c 1 • c- te x t- ' • 

4) DELETE coall!and. 
a) A1,A2 D 

- Lines !1 through !2 are deleted. The value of •. 1 

is set to the line after the last line deleted. 
The line number of }1 must be less than or equal 
to the line number of !2-

b) J 1 D 
is identical tc '!1,!1D'. 

c) D 
is identical tc •.o•. 

5) EXECUTE command. 
a) Ex 

The editor will execute CTSS commands out of 
buffer x. The execution is done four at a time. 
The current state of the editor is saved during 
the executi~n of a command in a temporary file 
PROGN SAVED, where PHOGN is the users programme~ 
number. The CTSS commands are taken one per line. 
Blank lines are ignorej. No abbreviations are 
allowed. 1he core image left by every fourth 
cotFmand executed iE destroyed l:y the ~estor-ation 

of PROGN SAVED. The value of '.' in the current 
buffer and in tuffec x is not changed. 



CTSS FBCGRAMMER'S GUIDE sect ion A H • 3 • 0 9 6/69 6 

6) FACTS command. 
a) Fx 

The contents (if any) of buffer x will be replaced 
by the following six lines: date, time, pcoblem 
number-, progcammec number, system name, and 
console id. rhe value of '. • in the current 
buffer is n~t changed. The value of •.• in buffer 
x is set tc 0. 

7) GLOBAL command. 
a) !1,!2 Gc/cegular expression/ 

Lines !1 through !2 are searched for text matching 
the regular expression. For every line found 
containing the regular expression, the QED co 11ma nd 
c will be executed. (c may only be 'P'• 'd', •zo•, 
'zl', 'z2', '=',or •:•.) The character •;• need 
not be used to delimit the regular expression. rhe 
first character after the command character will 
be used as the delimiting character. The value of 
'. ' will be set to the last line searched. 

b) j1 Gcjregular exfression; 
is identical tc '!1,A1G=/re/' 

c) Gc/regular expression/ 
is identical to 1 1 ,SGc/re/ 1 • 

8) INSERT command. 
a) A I- text-

The editor accepts text whi=h is 
the line addressed. The value of 

b) !-text-

inserted Q~fO£~ 
• • • is set t c J • 

is identical tc • .I-text-•. 

9~ SORT comlDand. 
a) j 1, _A2 K 

Lines j1 through !2 in the current buffer are 
sorted acccrding tc their assending ASCII colating 
order. The sorting time is 20• (!2-!1)**2 micro 
seconds. '!he v~lue of '·' is unchanged. The line 
number ~f A1 mu5t te less than or equal to the 
line number of ~2. 

b) ! 1 K 
is identical to '!1,!1K'. 

c) 1< 
is identical tc '1,$K'. 

10) LIST co••and. 
a) l x n 1 n 2 (cr) 

The editcc will read file type x (x="a" for ASCII, 
"s" for line mar: ked six-bit, "t" for line- marked 
1 2- b i t f i 1 e s) • i th ~ ·r s s na me • n 1 n 2 ' and print it • 
If n1 oc n2 ace missing, ASCII files have the 
default name 'ASCII', 6-bit files have the default 
name 'FAP', and 12-bit files have the default name 
1 (MEMO) •. rhe value of •. 1 is unchanged. 



CTSS PRCGRAMMER'S GUIDE sect. ion A H ~ 1 ~ 0 q 6/69 7 

11) MOVE command. 

1 2) 

a) A 1, !2 M x 
Lines j1 through j2 will be moved to buffer x. The 
old contents of buffer x will be deleted. The 
lines mlved will no longer te in the current 
buffer. lhe value cf '·' in the current buffer 
will be set to the line after the last line moved. 
The value of '·' in buffer x will be set to 0. 
Absolute line numbers of lines moved will also be 
moved. If x is the current buffer, this command 
is treated the same ~s '1,!1-1D !2+1,$D'. The line 
number of jl must be less than or equal to the 
line number of !2. 

b) Jl Mx 
is identical tc 'l1,!1Mx'. 

C) ~X 

is identical tc '.Mx'. 

OPTI CN command. 
a) 0- list- (cr) 

The opti~n command is used to set internal 
or modes of the editor. The list consists 
number ~f the following: 

opti ens 
of any 

i) 'S' sets the editor input mode to convert all 
lower case letters in the command stream tc Ufper 
case. other cha rae te rs are not affected. This 
option is automatically set when a type •s• file 
is mentioned in 'L', 'R', or 'W' commands. (Note 
that ~11 characters in the command stream are 
affected, n~t just the characters typed at the 
ccnsole.) 

ii) 'T' will set the editor input mode back to 
normal. This cption is automatically set when a 
type •a• :>r 't' file is mentioned in 'L', 'R', or 
1 W' commands. 

iii) •o• will remove the special meaning of the 
characters'(', ')', '*', 'I', '{', '}', •.•, '$', 
and •-• in regular expressions. The special 
meaning is restored locally by preceding the 
characters by 1 \C'. 

iv) 'I' will restore the special meaning of the 
nine ccntrcl characters in regular expressions. 
The special meaning of the characters is locally 
removed by preceding the characters by '\C'. 

v) 'Bx' will give the character x the same meaning 
as 1 \B'. If x is a blank or a carriaye return, any 
previcus use of 'Bx' is removed. 



CTSS FBCGRAMMER'S GUIDE Section AH.3.09 6;69 8 

vi) 'ex' will give the character x the sa me 
meaning as 1 \C'. 

vii) 'Fx' ... '\F' .. 

viii) 'Ex' •• 1 \E'. This option is preset to the 
numbet· sign. (I) 

i X) 1 W X 1 • • 1 \W t • 

x) 'Kx' •• '\K'. This option is preset to the 
commercial at sign. (a) 

xi) 'R x 1 • • • \R • • 

xii) 'Fl' will set :1 printing option to preceed 
all lines printed with their atsolute line number. 

xiii} 'pa' will set a printing option to preceed 
all lines frinted that have undefined line numbers 
with an asterisk. When two lines are printed with 
defined, ncn- seq ue ntia 1 absolute line numbers, an 
asterisk is inserted between the lines. 

xiv) 'pn' will set the printing option back to 
normal. 

xv) •v• (verbose) will cause QED to print any 
unexecuted comm:1nds ~fter detection of an error 
while expanding a tuffer. This is a useful mode to 
use while debugging QED programs. 

xvi) 'q' (guick) will set the •v• option back to 
normal. 

xvii) 'd' (for tig) will cause (;ED to reject any 
incomming inter-console messages. The PBEN/PBOBN 
of any~ne sending an interccnsole message is 
printed, but the comman1 'WRITE' is not called. 

xv iii) 'a' (~llow) will cause normal acceptance of 
inter- console messages. 

xix) 'ntd* • (_!!ode) 
files in mode d*. 
digits.) 'Om104' 

,.ill =a use CED to create any 
(where d • is an .Y number of octal 

will set the file mode to 
and 'Oml' will set tbe file FRCTECT ED/ READ-ONLY 

mode tc IEMPORARY. 

13) FRINT command. 
a) ,!1 ,,!2 P 

Lines ~ 1 through !2 will be printed. All 
characters that have no yraphic representation on 
the printing console are printed according to 



CTSS PROGaAMMER'S GUIDE 6J69 9 

MU LTICS escape conventions. Two or more spaces 
that land on a tab stop will be printed as a tab. 
·rhis convention is used to speed printing. (Tabs 
are assumed set at columns 11, 21, 31, ••• ) The 
value of •.• is set to the last line printed. 

b) ! 1 p 
is identical to '!1,!1P 1

• 

c) p 
is identical to ' • P' • 

d) j1 (cr) 
is identical tc I!_ 1P I • 

a) (c r) 
is identical tc •• + 1 p •• 

14) CUIT command. 
a) Q 

15) 

The editor will return to CTSS command level 
through the use of the CTSS routine 'CHNCOM'. 

READ COl! roa nd. 
a ) A B x n 1 n 2 ( cr ) 

- The editor will read file type x 
CTSS name 'nl n2' and insert it 
addressed. r he value of •.' is 
line read. 

b) Fx n1 n2 (cr) 
is identical tc '$Rx n1 n2 (~r) '· 

(x=a, s, t) 
~ti~ the 

set to the 

with 
line 
last 

16) SUBSTITUTE command. 
a) j1 ,j2 S/regular expression/string; 

Lines ~1 through !2 are searched for all 
occurrences of the regular expression. In general, 
the string is substituted for each occurrence. 
The value of '·' is set to the last line searched. 
The line numbet of !1 must be less than or equal 
to the line number of !2. 

The specific action of the substitute command is 
best described as follows: 

i) The next line is searched and all sequences of 
characters that match the regular expression are 
noted. If the search is done, stop. There are N 1 
such sequences where N1 is 3reater than or equal 
to zero. 

ii) If Nl is zero then go to i). 

iii) Of the N1 sequences, pick the sequences that 
end farthest to the ciqh t on the line. There ar-e 
N2 such sequences where N2 is greater than or 
equal to one and less than or equal to N1. 



CTSS PBCGRAMMER'S GUIDE s e ct ion A H. 3 • 0 9 6/69 10 

iv) Of the N2 sequences, pick the sequence 
starts farthest to the left. This sequence 
unique. This unique sequence is replaced by 
string to be substituted as described below. 

v) Of the original M1 sequences, remove 
sequences that end farther to the right in 
line than the unique sequence tegins. This 
g i v e a n e w N 1 t ha t i s a t 1 e a s t li 2 sequences 
in numbec. 

vi ) Go to i i) • 

that 
is 

the 

all 
the 

will 
less 

During each sub~titution (step iY) the following 
characters in the string to be substituted are 
recognized and treated specially. 

i) •&• is replaced by the unique sequence to be 
substituted. 

ii) '!'is ceplaced by a character of the unique 
sequence as fellows: If the unique sequence is N 
characters long, the string to te substituted for 
the unique sequence is scanned ~ times. en each 
scan, each character '! • is replaced by each 
character in the unique sequence in turn. 

iii) A character that has been used to name a 
sub-regular expression in the regular expression 
( w it h b race s) is tr eat e d as f o 11 ow s: The 
character is replaced by the sub-sequence of the 
unique se~uence that matched the regular 
expression. If the sub-regular expression vas not 
ma-tched, the character will be replaced by a null 
sequence. 

examples: 

command 
s/a/b/ 
s;cat;&&; 
s;·. *S/!_/ 
s;- · *$/ll/ 
S/Cat;!&/ 
s/ca t/~/ 
S/ C { a } X t/ X/ 

S/{ { C} w( a} X[ t} y} Z/ 7 y X W/ 

text 
abcdabcd 
cat 
abc de 
abc de 
cat 
cat 
cat 
cat 

b) j1 s;regular expression;strinJ/ 

result 
bbcdbbcd 
catcat 
~be~~ 
ggbb£Cdd~ 
cca taca t teat 
ca! 
a 
cattac 

is identic~l to '!1,!15/regular 
exfressicn;strinq;'. 

c) 5/regular expression/string/ 
is identical tc '.S/regular expression;string;•. 



s c ct i c n A H • 3 • 0 9 6j69 11 

17) TRAP command. 
a) Tnx 

The editor sets up buffer x to te expanded when an 
error of type n is detected. (Error numbers are at 
the end ~f this paper.) A subsequent 1 T' command 
for a Farticular error number will override all 
previous settings for that error number. After the 
ex~ansion cf a buffer for an error, any errors of 
the same type will not cause buffer expansion. rhe 
exfanded buffer c~n, of course, contain another 
'T 1 c~mm and to allow buffer expanding on a nether 
error. A trap can be •unset' with pr-ogram contr-ol 
by setting the trap to expand buffer- octal zero. 
(Example to 'unset • trap four: 1 T4\000 1 .) Buffers 
•carriage return• (o::: t 012) and •octal zero' (oct 
000) cann~t be used as trap buffers. This command 
is meant mainly for QED programs and not for 
normal editing. 

13) AUDIT co~mand. 

a) Ux 
will replace the contents of buffer x with a QED 
edit that will reproduce all editin~ done on the 
current buffer since the last read on the current 
buffer. The value cf •. • in the current buffer is 
not c h a.n g e d. r he v a 1 u e o f • • • in buffer x is se t 
to 0. Buffer x becomes the current buffer. 

19) VERIFY/SUBSTITUTE command. 
a) !1,!2 V/regular expression/string; 

is the same as the substitute command exce~t that 
before each substitution, the line is printed with 
the found regular expression in red case. If 
substitution is to t~ke place, an •s• must be 
typed at the console. Anything else will be taken 
as an indication that substitution is not to take 
place. No erase, kill, word erase, or escape 
processing is done on the response line to this 
coamand. 

b) !1 v;regular expression/string/ 
is identical to '!1,!1V/regular 
expressiontstring;•. 

c) V/regular exfression;string/ 
is identical to •.v;regular expression/string/'. 

20) WRITE command. 
a) ~1,_!2 Wx n1 n2 (cr) 

Lines !1 through A2 will be written on file type x 
(x=a, s, t) with CTSS name •n 1 n2•. If no file 
exists with that name, one is created in permanent 
mode. (Alternate modes are possible with the 'm' 
option of the OPTION ~ommand.) If a file exists 
in a writable mode, it is first truncated to zero 
length and then re~ritten. The contents of the 



C 'r S S F F C G R A M M E R 1 3 GU t D .E Section AH.3.09 6/6 9 12 

buffer are not changed. The value of 
changed. 'lhe line number of A1 must 
or equal tc the line number of !2. 

b) ,!1 wx n1 n2 (cr) 
is identical tc '!1,!1Wx n1 n2(cr) •. 

c ) w x n 1 n2 ( c r) 
is identical to '1 ,$Wx n1 n2 (cr)'. 

21) BUFFER LISr c:>m•and. 
a) X 

•.' is 
be less 

not 
than 

The editor will list the name and length (in 
lines) of every buffer previously mentioned by the 
user in B, E, F, M, or U commands or in buffer 
exfansion .-ith the '\B' character. The first 
buffer listed is the current buffer. The value of 
'·' is not changed. 

22) CANONICALIZE command. 
a) A 1,A2 ZO 

- All overstruck characters on lines !1 through ~2 
are recrdered according to their ASCII colating 
sequence. Trailing blanks and tabs are removed. 
This Oferaticn is automaticalll aone to every line 
read fr~m the console. The value of '·' is set to 
j2. rhe line number of !1 must be less than or 
equal to the line number of A2. 

b) ! 1 zo 
i s i den tical to • ! 1, ! 1 Z 0 • • 

c) zo 
is identical tc '· zo•. 

d)- A 1 , !2 z 1 
the ZO transform 

land on a tab 
(Tab stops are 

3 1 , ••• ) The line 
or equal to the 

Lines !1 through !2 will undergc 
and then tv~ or more spaces that 
mark are ccnverted into a tab. 
assumed set at columns 11, 21, 
nu~ber of !1 must te less than 
line number of ~2. 

~) !1 Z1 
is identical to 'l1,!1Z1 1 • 

f) z 1 
is identical tc •.z1•. 

j) a ,,!2 z2 
Lines !1 through ~2 will undergo the ZO transform 
and then all tabs will be converted to the •right' 
number of spaces. (Tab stops are assumed set at 
columns 11, 21, 31, ••• ) The line number of A_ 1 
must be less than or equal to the line number of 
!2. 

h) ! 1 Z2 
is identical to '!1,~1Z2'. 

i) Z2 
is identical to •.z2•. 



s ~ ct ion 1\ R • 3 • 0 Q 6/69 13 

23} RELATIVE LINE NUMBER command. 
a) j : 

b) = 

The editor will print out the relative line number 
of the addressed line. The value of '· • will be 
set tc _A. 

is identical to '$= 1 • 

24) ABSOlUTE LINE M UMBER com man d. 
a) j1 : 

b) 

The editor will Frint out the atsolute line number 
of the addressed line. The value of '·' will be 

-~set to !.· 

is identical tc •s: •. 

25) COMMENT command. 
a) " 

The editor will skip all ~haracters up to and 
including the next carriage return. 

NCrES 

The characters ' {', ' } ', '\ • and •- • are idealized versions 
of the ASCII left brace (oct 173), right brace (oct 175), 
bl~k slant (oct 134) and circumflex (oct 136) respectively. 
To input these characters from different devices, normal 
MOLTICS escape conventions apply. (See Multics Systems 
Programmers• Manual Section BC.2.04.) 

If a semicolcn is used tc sef~rate addresses instead of a 
=omma, the value ~f '·' is set to the address immediately 
p~eceding the semicolon. rhis makes '/RE/,/RE/+10' identical 
to '/RE/;.+10 1 • 1he second example is more efficient. 

If more addresses are preceding a =ommand than are reJuired, 
only the last addresses are used. 

All l~tters recognized by the editor are recognized in both 
upper and lower case. 

While the editor is acceFting comm~nds, blanks that are not 
in ra~ular expressi~ns or strings are ignored. Note that the 
bu f fer n a me i 11 me d ia t e 1 y f o 11 o w i n g • T • , ' B • , ' E ' , • F ' , 1 M ' , 
'U', or ''E' is a string. 

In most cases, preceding ~ Sfe=ial =haractar by 1 \C' will 
r~mov~ the special meaning from the character. 'Ihe one 
exception to this rule is that one =annot search for a 
=~rria~e return in a regular expression. 

Hittin~ the interrupt button once will 
recursion to 0. rhe editor will then be 
=Jmmands fr~m the c~nsole. 

immediately drop 
ready to accept 



CTSS PROGRAMMER'S ~UIDE Sec ti on A H • 3 • 0 9 6;69 14 

An address search for a regul3.r expression that fails will 
1rop buffe~ recursi~n by one. If ~ecu~sion is at level 0 
(:::om rna nd s being taken from the console) , an er~or is noted. 

An 3.bsolute line address for which there is no absolute line 
is treated as an errcr. 

There is no safeguard to keeF the edito~ from editing a 
buffer that it is using for edit commands. If this is ever 
done, havoc can be expected. 

QED can be called with any number of parameters. If it is 
=3.lled with no parameters, the editor ~ill take c~mmands 
from the console. If it is called with parameters (say P1 P2 

Pn) then the fcllowing edit will appear in buffer •. ': 
bO 
ra P 1 QED 
\bO 
P2 

Pn 
The editor then simulates 1 \B.' typed at the console. This 
~llows a bootstrap edit to be executed out of buffer 0. 

QED will set inter-ccnsole communications permission from 
th~ file 'USER PBOFIL'. If an inter-console message arrives, 
QED will save its current status in a temporary file PROGN 
SAVED and call the CTSS command WRITE. When WRITE returns, 
PHOGN SAVED will autcmatically be restored with no changes 
in QED. 

All ta xt is ltept in c~r- e. Core storage limits the maxim u11 
size of text that can be around. This maximum is about 20 
:l i sk track s o f t ext • I n 1 i ne s , i t i s be t ween 2 0 0 0 and 3 0 0 0 
d~pending upon density. 

COMMENTS 

The ideas for QEI have ccme from a variety of sources. The most 
notable are 'IYPSET at MAC, and QED at u. of Calif. 



CT S S P B C G R A,. MER ' 5 GU It E S e ct ion A H • 3 • 0 9 6/6 9 15 

SUMMARY 

QED COMMANDS 

CoD'mand 

( $) A text 
Bx 

(., • ) C text 
(.,.) D 

(1 , $ ) 
( . ) 
( 1 , $ ) 

Ex 
Fx 
Gc/re/ 
I text 
K 
L x n 1 n2 

(.,.) Mx 
0- list

(. , • ) p 
Q 

( $) Rx n 1 n 2 
(.,.) S/re/st/ 

Tn X 

( . , . ) 
( 1 , $ ) 

(. , . ) 
{ . , . ) 
(. , . ) 
($) 
( $) 

Ux 
v;r:e;stj 
Wx n 1 n2 
X 
zo 
z 1 
Z2 . . 
= 
" 

Function 

append 
buffer 
change 
delete 
execute 
facts 
9lobal 
insert 
sort 
list 
m:>ve 
cption 
print 
quit 
read 
substitute 
trap 
audit 
verify 
WI:' it e 
status 
canonicalize 
ca nonica li ze 
canonicalize 
absolute line 
relative line 
coament 

SPECIAL CHARACTERS 

,ax 2xpand buffer x (=o030) 

Value of •. • 

last line input 
previous • .• for this buffer 
last line input 
line after last line deleted 
unchanged 
'·' of buffer x set to 0 
set by last c executed 
unchanged 
remains on same line. 
unchanged 
after last line moved, in x to 0 
unchanged 
last line printed 
unch~ nged 
last line read 
last line searched 
unchanged 
unchanged, in x to C 
last line searched 
unchanged 
unch~ nged 
last line canonicalized 
last line canonicalized 
last line canonicalized 
addressed line 
addressed line 
unchanged 

,c ascape next character (=oO 31) 
\F end of text (=cOJ4) 'E character erase (=o032) 
\W word erase (=o037) 
'K line erase (=~035) 
\R expand console line (=c036) 

ERROR MESSAGES 

?0 CED intecnal table overflow 
?1 address search tyfed at console that fails 
? 2· ill ega 1 ccm•a nd or add :cess 
?3 illegal syntax in regulae expressicn 
?4 interrupt 



C r S S P F C G R AM M E R ' 5 GU I D E Section AH.3.09 

?5 aadress reference out of buffer 
?6 ~, D, S, V, 3r : command with addresses that 

cross line 0. (ie 5, 21:) 
?7 maximum recu~sicn level rea~hed 

6;6 9 16 

?8 file cannot be opened. This includes reading a 
non- ex is ta n t f i 1 e , w r i t i n g a f te r track quota 
is ceached, writing a protected file, etc 

?9 illegal format for a command. This includes an 
illegal file type (not a, s, t), unrecognizable 
option in option command, etc. 

(E liD) 



CTSS PROGRAMMER'S GUTDE 

Edit ASCII files 
EDA 

12!69 1 

EDA is a context-editing program for ASCII character stream 
filas. Almost all of the FDA command's operation is 
identical to that of the TYPSET command (see AH.9.01). 

EDA name 1 na me2 

EDA will edit the ASCII file "name1 name2". Editing 
conventions are identical to those of the TIPSET 
command, except that input and output is in the 
ASCII Character set with the normal Multics 
conventions, and the "break" line used to transfer 
between input and edit modes is a line consisting 
of a single period instead of an empty line. The 
'break' request is not implemented. 

(END) 



CTSS PROGR!MMER'S ~UTOR S2c tion AH .. ] .. 11 12/69 1 

Mova a file; Append one file to another 
MOVE; APND 
N. I. Morris 

MOVE may be used to copy a file from disk onto file 
tlpa or to read a file from file system tape onto the 
In addition, MOVE can be used in the same manner as 
SAVED to move a file thcough a link. APND is used tc 
one file to another. 

MOVE 
APND 

N ALII E 1 
NAME1 

NAf!E2 
NAftE2 

NAME3 
Nl PJE3 

-N AM E4-
-lfAf'lE4-

systea 
disk. 

TBNSMT 
append 

NAME 1 NAM E2 is the name of the file to be MCV Ed or 
AFNDed. 

NAME) .tiAME4 is the name of the file to be written. If 
NAME4 is emitted, NAME2 is assumed. If NAME] 
is ' * ' , N A ME 1 is ass u m ed • 

NAME1 NAME2 is opened for reading and NAME3 NAME4 is opened 
for writing. (If MOVE is being used, NAME3 NAME4 is 
truncated to zerc-leng th.) r hen, the contents of HAftE 1 
NAME2 are copied into (or appended to) ~AME3 NAME4 by a 
hi~h-speed file copying routine. This copying routine is 
triple- buffered so that tape to disk and disk to tape 
=opyinq can actually run two data channels simultaneously. 
Note that the file NAME1 NAME2 is unaffected by ftOVEing or 
A PNDing. 

A file may be MOVEd from disk to 
s~quence of commands. (Assume that 
been MOU~Ted and LABELed.) 

tape 
the 

by the following 
tape has already 

TAPFIL HA!!EJ NA!!E4 UNIT 0 
MOVE NlBE1 NAft£2 MAffB3 ~AMEll 

Tne first time a fceshly rAPFILed tape file is read, seYeral 
words of garbage may be aFpended to the last record of the 
fil~. ·rhis is caused hy a paradox in the file systea. (rhe 
first tiroe a taFe file is read, the file system doesn't know 
the correct length of the file. After the ~!l~i£~ file is 



CT~S FRCGRAMMER'S GUitf s e ct ion A H. 3 • 1 1 12/69 2 

c~ad once, the correct length will be updated into the file 
system.) MOVE will c:»mpensate for this file-system problem 
by determining the correct length of the file and ignoring 
tha garba3e words. Thus, MOVE should always be userl to read 
a tape file for the first time. To MOVE a file from tape to 
jisk, use the follJwing sequence: 

AG.5.05 
AH.3.06 

rAPFIL NAME1 8AME2 UNIT 
MOVE NAME1 NAME2 NAr!E3 

FILE 
liAME4 

use of t:t.pes in foreground 
rape-handling commands 

(END) 



CTSS PROGRAM~ER 1 S GU!OE Section AH. 3. 12 

Context editor foe cacd-image files 
EDC 

12/69 

To ~llow editing of fixed-length-record (14 word card image) 
files with EDL;TYPSET editing =onventions, and provide 
sli1htly greater flexibility than is offered by ED. 

Editing conventions are identical to those of EDL, with the 
following exceptions and additions: 

Tha 'break' request is not implemented. 

Whan aditing a file with name2 .e. MAD (or MADTRNj, a colon 
(":") in column 12 (or 7 with MADTRN) imme:iiately following 
~ tab is treated as a logical backspa=e, i.e. the next 
character dffears in column 11 (6) on the card. All other 
colons are treated as ordinary text. 

NCOLS n {a b br ev • N C) 

sets the n um bee :> f card columns available to text. All 
co 1 u m n s a f te r • n ' a re bl an k e d, ex c ep t t hat ca rd 
s~riali zation may occupy ~olumns 7& to 80. •n • is 
initially set to 72, and may be changed to any value 
between 1 and 84. Setting NC to any numbar but 72 will 
reset serialization to OFF; to restore serialization, 
use 'SERIAL ON' (see below). 

TABSET n 1 n2 n3 ••• (abbrev. TB) 

Informs EDC that ta.bs are to be interpreted as skips to 
tha columns specified. For MAD files, tabs are 
i n it i a 11 y set a t 1 2 , 1 7 , 2 2 , 2 1 , e tc. ; f o c FA P f i 1 es , 
tabs are initially set at 8, 16, 30, and every 4 
columns thereafter; for MADTRN files tabs are initially 
sat at 7 and every 5 columns thereafter. For all other 
files, tabs are set ~ t every :::olumn (i.e. a tab becomes 
one space) • 

Tabs inserted into the current line will print as tabs; 
tabs in any ~ther lines will print as the dff£OFriate 
numter of sraces. 



C T S S f R C G .R A M M E R ' 5 GU I D E S e ct ion A H • 3 • 1 2 12;69 2 

SERIAL m n 
SERIAL OFF 
SERIAL 0~ 

(:ibbrev. SR) 

Th~ file will be rese1uenced in card col. 76-80, 
starting at 'm•, incrementing by 'n', be:jinning at the 
::urrent line. Resequencing is repeated on every pass 
t h r o u g h t he f i 1 e ( i . e • a f te r ::1 ' t ' re q ue s t) • If ' o P F ' 
is specified, se1uencing is discontinued; the 
sequencing field will be blanked (or will contain data 
if NC .G. 76), teginning with the current line; 
sequence numbers will be removed on successive passes 
tbrough the file. If 'ON' is specified, sequencing 
will be resumed from where it was discontinued; the 
entire file will again be resequenced on successive 
pdsses after •t• reqaests. This opticn is initially set 
to 1 SERIAL 0 1 0'. 

Do ~QI usa EDC if it is desired to preserve existing 
s:!quanca numbers in a file, except with 'NC 84', being 
careful that substitutions de not push col. 73-80 off the 
e n1 of the line. 

EDC is somewhat inefficient, :1ni is 
editing very large files (i.e. several 
more) • 

not recommended for 
hundred records or 

(EN D) 



GU !D! sect ion A H ~ 4- 0 1 6j69 1 

Combine seldom-used files 
ARCH IV 

To ::ombine files which a~e not frequently used so that the 
single archive file cccufies fewer records tnan the many 
smallar files. The average saving is half a record per 
file. Individual files may be coabined, listed, printed, 
i~l~ted and recreated. 

An archive file llay contain tiles of ~ny name, but unless 
th~ sacondary name of the archive file is "SOUBCE" or 
"ARCHIV", files in the archive whose secondary name is 
iifferant from the archive file•s secondary name cannot be 
r~faranced. For example, if the archive "ALL MAD" contained 
"XXX FAP", XXX cculd not be e~tracted without renaming the 
~r::hive. 

IE th~ second nawe :>f an archive file is "SOURCE" or 
11 ARCHIV", the arguments FIL 1 :1re taken in pairs to 
r~presant primary and 5econdary names of files to be 
operated on. Otherwise, the arguments are taken singly, and 
represent primary names cf files ~hich have secondary name 
tha sama as the archive. 

Filas to be deleted a~e deleted by the library subroutine 
DELETE. Its conventions are restated under t-te,!:!!_Q.g_.!.. 

A.BCHIV KEY NAMEl NAME2 FIL 1 ••• FILn 

KEY=C: Combine files FIL 1 NAME2 ••• .FILn NAME2 into 
an archive file NAME1 NAME2. Any old files 
NAMEl NAME2 will be deleted, if possible. 
FIL' s are not deleted from the user •s file 
directory. 

KEY =P: 

KEY=T: 

KEY=TCFF: 

Print file(s) FILl ••• Filn which is 
contained in archive file NAME1 NAME2. 
image and standard line-marked files 
printed. 

(are) 
Card 

may be 

Print a table of contents of 
NAliEl NlME2. If FILl ••• FILn 
only these will be listed. 

archive file 
are specified 

Like "l ", t:u t w r- it es , t he tab 1 e 
into the file ~AHCHIV OUTPUT", a 
six-bit file. 

of contents 
line-marked 



CTSS PROGRAMMER'S ~UIDE section AH.4.01 6;69 2 

KEY=D: Delete FIL 1 ••• FILn from the archive file 
NAME1 NAME2. lhis involves creating a new 
archive file and deleting the old one with the 
standard hccus po:::us of deleting. 

K E Y =X: E x t r a c t a nd c oF y F I L 1 • • • F I Ln f rom a r chive 
file NAMEl NAM!2. The copy is named FILi RAME2 
and an_y cld cofies are delete:i. 

KEY=Xt: same as X exceFt th~t the file is extracted in 
•te~p~rary' mode. 

KEY=H: Replace each FILi in the archive tile NAME1 
NAME2 with a copy of the file FILi NAME2. This 
involves creating a new archive file and 
delating the old one. If no FILi exists 
within the archive file, a message is printed 
and the command is executed as ARCHIV C RAME1 
NAPIE2 HAMEl FILi. 

KEY=RD: Same as R except that after the new archive 
file bas been success£ ull y ere a ted and filed, 
all the files which were placed into the 
archive are deleted. 

KEY=U: The files SFecified are replaced in NAME1 
NAME2 if the copy of the file in the user's 
directory has 'date and time last modified' 
greater than the date and tile the 
corresponding entries were placed in NAME1 
RAME2. If no PILi's are specified, all the 
entries in NAftE1 HAME2 are updated in this 
•a nner. 

Whenever no PIL's are specified in the commani call, 
KEY=D, the coaaand is taken to be universal, i.e., 
the call had included every entry in the archive. 

unless 
as if 

E~=h antry in the archive file consists of a 
which file name, date and time last update, and 
of words in the file are indicated, followed by 
the file. lhe word count in the header makes it 
to pa1 the file, s~ that the file can be 
absolutely faithfully. 

header, in 
the number 
a COFJ of 
unnecessa['y 

re[:rod uced 

The header is 14 words lcng, consisting of four words of 
( 777777CC0000) 8, one word of (777777000011) 8, and nine words 
of self-explanatcry ECD inforaation about the file. Thus a 
program which does net recognize line marks can still read 
th:! archive. file (since ~ ~e·, .. ~ader is 1 4. words long), but 
pr-ograms wb1ch de recogn1.~e .l"~ne-_pl:trks w1ll see the header 
!S four null records (carr~age reiurns) plus the file entry 



CTSS PROGRAMMER'S ~UtDE section AR.4.01 6/69 3 

information. If card image files are ABCHIVed, the header 
r~cord will cause s~me programs to abort tecause of illegal 
file format since there ~ill be a mixture of line marks and 
=~r~ images (e.g. disk editor). 

Whanever ARCHIV creates a new file, it is first named 'prob 
pro1', where prob is the user's problem number and frog is 
the user's programmer number and pro1 is the user's 
pro:~ rammer number. After this file is created, the file 
r1 hich it replaces, if any, is deleted and file 'prob prog' 
is rendmed and the mode changed to permanent or to the mode 
of the old file if it existed. 

Files to be deleted are handled in the standard DELETE 
mlnner, i.e., verification is requestei for protected, 
privata, read-only, etc., files. If a file cannot be 
deleted, the new file rna y be found under the name 'pr:ob 
prog •. 

(END) 



CTSS PROt,RAMMER'S ~UIDE S~ction AH.4.02 Page 1 

Compress BCD files 
CRUNCH 

To compress a a::n file in such a way that it 
lisk space and, incidentally. is in a form 
input to BEFAP. 

occupies less 
acceptable as 

CLunch: 

CRUNCH 'CR' NAME1 -NAfifE2- -'PUNCH'- -'72COLM'-

CR directs the crunching of file NAME1 NA!E2 into 
a file N A ME 1 C BUN: H • I f N A ~ E 2 i s om i t ted i t is 
assumed to be FAP. 

PUNCH directs the crunching of file NAME1 NAftE2 into 
a file NAME1 PUN:H whicb is in a form suitable 
f 3 r B PU N C H w it h R Q U EST • 

72CCLM directs the crunching of only columns 1-72 of 
the source file. This results in additional 
space saving and the sequence numbers may be 
reconstructed during uncrunching. 

Un::runch: 

rhe order and fresence of PUNCH and 72COLM are 
optional. 

CRUNCH 'UN' NAME1 -NAl!E2- -'PUNCH'- -'NUMBER'- -MAJ- -SEQ-

UN directs the reconstruction of the source file 
NAMEl NAME2 from the crunche] file NAME1 
:HUNCH. If NAME2 is omitted, it is dSSU!Bed to 
be F AP. 

PUNCH directs the uncrunching of NA"E1 PUNCH rather 
than HAMEl ::RUN~H. 

NUMBER directs the resequencin:J of the source file 
NAftE1 NAME2. In the atsence of MAJ and/or SEQ, 
the first three non blank ch~ra~ters of NAME1 
will be used in cols 71-75 and sequencing will 
begin with zerc with increments of ten. The 
order of 1 PUN~H· and 1 KU~BEF' is optional. 

MAJ if srecified in ::;onjun~tion with 'NUMEER', the 
firs~ three nbn blank characters are placed in 



CTSS PHOGRA~MER'S GUIDE Section AH.4.02 Page 2 

Print: 

columns 73-75 of tha source file NAMEl NAME2. 

SEQ if Sfecified in conjunction with 'NUMBER', 
causes 5e~uencing to tegin with SEQ. The fixed 
increment is ten. 

CRUNCH 'PH' NAME1 -'PUNCH'- -'NUMBER'- -lABEL- -SEQ-

PR directs the pcintin'J of NA~E1 CRUNCH 

PUNCH directs the ft:intinj of l'AME1 PUNCH ['ather 
than NAME1 CRUNCH. 

SEQ is numecic to specify tegin printing with card 
of sequence number SEQ. 

N u tHi ER SEQ begins the printing with alter n umbe[' SEQ 

LABEL is alphanumeric to specify begin pointing with 
card ccntaining LABEL in columns 1-6. rhe 
sequence numbers will appear on the left of 
the listing. 

NUMBER LABEL begins the printin~ with the card 
with LABEL in cols. 1-6. The alter numbecs 
will be frinted on the left of the listing. 

(E NO) 



CTSS PROGRAMMER'S GUIDE 

File comfression and expansicn 
S~UASH, XPAND 

Sec t:i on AH. 4. 0 3 12/69 1 

S~UASH ccnverts a card-im~ge file to a 
fil~. XPAND convects a linem~rkej file 
file. 

6-bi t linemarked 
to a card-image 

SCUASH NAME1 NAME2 NAME] -NAME4-

XPAND NAMEl NAMF.2 NAME] -NAME4-

At least three arguments must be given to SQUASH or XPAND. 

MA!El NAME2 is the name of the file to be converted. 

MAME3 is the primacy name of the file to be 
created. NAftE3 may be the same as NAME1, if 
desi~ed, but it must te explicitly tyfed. 

N AM E4 is an :>ptiona 1 secondary name f o£ the cr-eated 
f i le. If N Aft ! 4 is o mitt e d, N A t1 E 2 w i 11 be 
used as the second~ry n~me. 

SQUASH converts 6-bi t =a rd-ima~e files to linemarked 
format. 

If NAME2 i5 "FAP", a tab will replace one or 
mere blanks immedi~tely ahead of columns 8, 
16, and 3 G. 

If NAME2 is "MAD", ~ tib will replace blanks 
afpearing immediately before column 11 or 12: 
a ch:1 rae te r a ppea ring in =ol um n 11 is 
praceded ty a colon (logical backspace). 

If NAME2 is not "MAD" or "FAP" no tabs are 
inserted. In ~11 cases, trailing blanks are 
stripped off and columns 73-80 are discarded. 

Ex p e c i en c e w it h a v ar i et y of FA P a n d M AD 
rrograms indicates that a sa vin1 of from 60i 
to 751 of 5torage space is typical. 

XPAND C3nvects linemarked files to card image 
format. 

Tab intecpre!at ion is based on the 
n a m,z- c f the f i 1 e to be c r a a t ~ d • 

seconda. ry 
If the 



C T S S F B C G RAM t1 E R ' S GU I I: E S e ct ion A H • 4 • 0 3 12;69 2 

sec~ndary name is not FAP or MAD, tabs in the 
file are left uninterpreted. 

If the secondary name is "FAP", tab stops at"e 
assumed at columns ti, 16, 30, and every four 
c c 1 u m n s the rea f te r. 

If the secondary name is "MAD", a tab stop is 
assumed at column 12 and every five columns 
thereafter. If a colon apfears in cclumn 12, 
it is disc~rded ani the next character moved 
back to column 1 1 of the resulting card. 
Serializa ticn by "ones" is pla~ed in columns 
7 5-8 0. 

If tab interpretation results in a card image 
greater th~n 72 columns, the card will be 
tr un cat ed, and printed out with an 
afpr~priate comment. 

(E NO) 



CTSS PROGRAMMER~S GUIDE 

Compress and expand ass files 
PADBSS and SQZBSS 

Section AH.'-! .. 0'-! 12/69 1 

To compact uss files by a factor of 2 in order to save disk 
spa:e. 

SQZBSS ALPHA -BETA
PAtBSS ALPRA -BETA-

SQZESS will create a file named BETA SQZBSS. All zero 
words and card sequencing will be stripped off 
the card images. 

PADBSS will ~ead file 'ALPHA SQZBSS' and recreate file 
• BE'rA ass •. 

If BErA is omitted, ALPHA will be used. 

Checksums are computed and compared against the 
checksums on the c~ris. If 1 discrepancy is 
found, an error comment will be printed. 

SQZBSS decks may be l~aded using the LAED loader by typing: 

LAED LOAC (S QZ) MAttE 1 ••• NAME 1n 

wh::!re NAMEl NAME1n are the primary names of n SQZBSS 
files. To load SQ ZB SS and B ss decks intermixed use: 

LAED LOAD (SQZ) NAPIEl (BSS) NAMB12 NAME13 

(The commands LOADGO, NCLOAD, and VLOAD may be used in place 
of LCAD.) See also AH. 7. 04. 

(END) 



CTS S f R C G R A~ M! R 1 5 GU ! DE 

Ar=hiV3 ASCII files 
AARC HV 

s e ct ion A H .. 4 .. 0 5 h ./h Q -, --

AARCHV is a version ~f the ARCHIV command (see section 
A H. 4. 01) for: files in the ASCI I character set. The reason 
for hdvin;, a separate command is so that archives of ASCII 
fil~s ~an be frinted ~ff-line. The ARCHIV command scatters 
header information in BCD through the archive file, which 
prints as garbage in ASCII. In addition, since ASCII files 
usually End with the chat3.=ter- ETX (o~tal 003) to indicate 
tha enj of the file, only the first file in a regular 
archive of ASCII files will t:rint off-line. 

AABCHV KEY N A.ME 1 NAM E2 FIL 1 ••• FIL n 

AARCHV is an adaptation of the regular ARCHIV command. 
See section AH .4. 01 for de tails on its use. Only 
the differences between AARCHV and ARCRIV are 
described below. 

KEY The keys "P" and "'!OFF" are not implemented. 

PILi The secondary names "SOURCE" :1nd 11 ARCHIV" are not 
treated specially ty AARCHV. All names F!Li refer 
to a file "PILi NAME2". 

Tha inta r nal format of an ASCI I ar-chive file is somewhat 
different frc11 a regular archive. All name and date 
information is kept in ASCII, and the length of the file is 
given in characters. Since the AARCHV heaier contains a NP 
(o=tal 014) character, each file in an ASCII archive file 
will begin printing on a new page if the file is printed 
offlina. 

(END) 



c·rss fP.CGP.A~MER'S GU !DE s e ct ion A H = u = 0 6 

Craa te or append te> ARCH! V format files 
APENDA 

To allow more efficient addition of new subfiles to existing 
~r=nivas, and t3 allow somewhat more efficient creation of 
archives. To allow creation of achives on CTSS foreground 
t~pas without creating an intermediate disk file. 

APENDA Nl N2 f1 f2 fJ f4 ••• 

F i 1 ~ s 1 f 1 f 2 ' , 1 f 3 f 4 ' , e t c • ar e a p p end ed t o f i 1 e 1 N 1 N 2 1 , 

preceded by archiv headers. 

A PE ~DA N 1 N 2 I. I f 1 f 2 f 3 ••• 

Files 1 f1 N2', 'f2 N2', 'f3 N2', etc. are appended to file 
'N1 N2', preceded by ~rchiv headers. 

File 'N 1 N2 • is initially opened for writing. Each file to 
be ~ppanded is then in turn opened, copied onto the end of 
'N1 N2', and closed. In the event of any file errors, all 
filas are closed and a di~gncstic is printed. Note that if a 
fila-not-found error is received while in the middle of a 
long series cf append operations, all previously appended 
filas will have been processed properly, and the operation 
can be continued later. 

IE AFENDA is used t~ dppend a file which is itself an 
archive to a not her archive ( • supe r-:t rchi ve ') , the entice 
fila appended is treated as a single subtile. Performing the 
same operation with the 1 ARCHIV C' opt1on results in 
axtra=ting all the subfiles from the file to be added, and 
including these in the archive as distinct subfiles. 
Furth~rmore, using the 'AR:HIV U' option to update such a 
'super-archive' will cause all embedded archive subfiles to 
appear as distinct subfiles of the main archive. 

(EN D) 



CTS S P !HJG P. A!!!'! E P.' S G!J I D! 

List contents of file directcry 
LISTF 

s e ct i c n A H • 5 • 0 1 

To provide a command which lists the contents of a file 
iir~ctory, with nu~er~us selectivity features if desired. 

LISTF enables the user tc selectively list the contents of a 
fil~ directory by permitting him to specify the 

1. file directcry 
2 • f i 1 e n am es 
3. authors 
4. modes 
5. range of dates last used 
6. range of dates last modified 
7. sorting pr~cess 
8. outrut form 

to be ::!mployed. 

The user has the option to supress the search for linked 
fil~s or to search ~nly for linked files. 

A. Basic 

The basic call LISTF will first prcduce a 
one-line summ~ry of the number of nonlinked files 
and the number of records in the user's current 
directory. 1his is followel by a table of nonlinked 
files in the form 

NAME1 NAMf2 MODE NREC DATE(last used) 

sorted according to the date last used with the most 
recent date first. This is followed by a one-line 
summary of the number of linkej files and a table of 
linked files in the form 

NAME1 NA~E2 MODE(in user 1 3 directory) PROBN PRJGN LNAMEl LNAME2 

alphabetically sorted with respect to the 
f i l e n a me, w he re the la s t f our i te m s refer 
"other end of the link." 

B. Cpti ens 

primary 
to the 



CTSS fRCGRAMMER'S GUitE Sect ion A H. 5 • 0 1 6/69 2 

The selectivity features and their usage are 
described on the pages which follow. 

1. Arguments are divided into four classes. 

2. 

a. ~~!~=~~~~gll!~ (defined indu~tively from the 
S~ecifica tions Tables below) 

b. ~~~iti~£2 (defined inductively from the 
Specificati~ns rables below) 

c. fi~~-~~~~~ all arguments which cannot be 
identified as meta-arguments or modifiers 

d. 

1 ) 
2) 
3) 
4) 

carriage return 

' ( and ) 
• 

A I!gY~~! is a string cf 
s i n g 1 e q u o t a t i on rna r k ( ') 

ar~uments terminated by 
or by a carriage return. 

a 

3. A fgll is the command LISTF followed by a string of 
r~quests and terminated by a carriage return. 

4. Tne order of the arguments is unimportant, aside from 
the following ccnsiderations: 

a. modifiers must imme~iately follow the 
meta-argument which they mcdify 

b. when s~r tin g ty dates, the list will begin 
with the first date specified 

c. two primary file names must be separated by a 
secondary name or by a meta-argument 

5. Up to 19 arguments m1y be specified in one call to 
LIST F. 

6. One interrupt level is set to enable the user 
terminate the request being pro=essej and begin 
na xt. (WARNING: some output may be lost.) 

to 
the 

7. If the user ~ ui ts when he is 1 ist ing linked files in a 
com1on file in the long form, his directory switching 
will probably not be restored. (This (:on:lition can, of 
course, be c~rrected hy issuing a coeFIL 0 command.) 



CTSS PROGRAMMER'S ~UIOF. S~ction AH~'i~01 6/69 3 

An astarisk. (*) embedded in a file name specification refers 
to any and all characters in that position. A single * as a 
til~ name means any and all naaes. 

EXAMPLES: 

CTEST* means any name with "CTEST" as the first five 
characters, i.e •• .£;I.l~I1, .fi.!~IS, but not b~II~.I, where "b" 
denotes tlank. 

*'fEST* means any name with "TEST" ~ s the 2-5 characters, 
i.e., C!~~I1, b!!~rs, but not bbi~§I or 1]~!12. 

** means any 1 or 2 character oaae. 

If tha secondary file name is omitted, * will be assumed. 

It no fila names are specified, • * will be assumed. 



C 'f S S f R CG RAM M E R ' 3 GU I D E Section AH.5.01 6;69 4 

~~~~1f1£!I1Qli_1~~1~~ 

SEARCH SPE:IPICATIONS

(FILE) N cne ignores links

------------------------------~-~~~-~-----~-~--~---------(LINK) None links only
-------------------------------------IIsts-aii _____________ _

files

--------------------------------------~~~~-----------~-~ (UFO) name of file searches U.F.D. (FILE)
linked to the linked
ether U.F.D. directory
(FILE)

~----------~-----------~-------~~~~---~~~------------------(s YS) None searches the

(CF Ln) None

~ ub 1 ic file s

searches the
user's common
file !!

-(Aur8) ___ aut'har-Iias:---£IIes-ci;;a-t;;Ci--an1-aut~or----------

(LWJODE) 1 cr mere
arguments,
each having
1-4 of: 0,'1,
S,R,W,L,P,*,
enclosed in
parentheses

by specified
author only

files with
specified
modes only

any mode (RP) = 104,
(RP*) = at
least 1 04,
(B) (F) =
100 cr 004

-(usEn) ___ up-to-t;;-----!Ifes-;Ith ___ (iEw)-(c1o) ___________ _
dates MMDDYY date used (NEW) is the
or '(OLD) • between p~esent date
oc '(NEW) • the dates (OLD) is the

specified oldest date

------~-~---~---~-----~~---~----~~----~~~-~---------------~ (r1ADE) see (USED) files with (NEW) (CLD)
date modified see (USED)
between
dates given

(SDIR) None

(SN A 1) None

(S NA2) None

(SMO D) None

(SR EC) None

{ S USE) None

(SM AD) None

s e ct i c n ~ H. 5. 0 1

5 ORr ING SPECIFICATIONS

file dire::tory
or-der

sort on NAME1

soct on NAME2

sort on o~tal
file mode, in
descending
order

sort on file
size, largest
first

sort by date
used

sort by date
modified

6/69 5

no links*

no 1 i nks•

no links*

(SUS E) for
files, (SNA 1)
for links

------------------------~---~------~~----~~------~~----~--~

(REV) None reverses sorting
crder

* Listin~ of linked files will be suppressed in
requests with these meta-arguments.

CT S S f F C G RAMMER 1 5 GU IDE s e ct ion A H • 5 • 0 1

(LS U M) None

(L N A l1) None

(LON G) None

None

(OFF) None

(H DR) None

OUrPUT SPECIFICATIONS

summary lines
onl:y

NAME 1-N AM E2
cnly listed

norma 1 form
plus date/time
modified, a uth.
device, lock
for files; mode,
date/time used
and modified,
auth., norecs,
device for links

output printe1
en terminal
(norma 1 mode)

output written
into file
LIST f OUTPUT
for off line
printing via
'RQUESr'

listing prefixed
by date/time,
file directory
name

6/69 6

if (U Ft) was
requested,
links listed
in normal
form

(HDR) is
assumed

--------~--~-------------~---------------~--~------~~~-~~---

(NH DR) None suppresses the
header when
(0 F F) re que s ted
(normal mode)

(8)

C T S S F B C G F A fit M E R 1 5 h(J I D F!

(1) (2)
L ISTF * BSS

(3)
~AMMA

(4)
(AUTH)

(1 1) (12)

(5) (6) (7)
1 2 (LONG)

(14) (1 5)
(M ()DE)

(9)
(RP)

(10)
C w•) (A U1H) 99999

(13)
(CF L2) (USED} 090165

(16)
(S D IR)

(1 7) (1 8) (1 9)
(M A 0 E) 0 B 0 16 5 ~ H 0 16 5

(7)
would produce a table in the long form, in the order

(1 6)
of the file directory, of all files with the following
properties

(4), (11) ,(14), (17)
1. non-linked

(1) , (2)
2. secondary name "ESS" and;or primary

(3)
name "GAMMA (any character)"

(5) , (6) , (1 2)
3. written by user no.s 1, 2 or 99~99

4. in read-~nly, protected mode
(10)

bit set

(13)
5. in common file 2

6. last used on or before 9/1/65

(9)
or ha s w r i te -on 1 y

(15)

(1 8), (1 9)
7. last modified on 811/65

where the superscripts are, cf =curse, for reference ~nly.

If present date is 12/31/65 and all files in the
directory were last used between 1/31;65 and 12/31;65,
in~lusive, then the following requests would produce
identical tables (consisting of all the non-linked files
use 1 f rom 1 1 3 1 1 6 5 t ::> 1 21 3 1/6 5 , inc 1 us i v e , i n t n e no rm a 1 for m
beginning with the file last used).

CTSS FECGRAMMER'S GUitE Section AH. 5. 01 6/69 8

1. (USED)
2. (USED) (N E W)
3. (US ED) 123165
4. (USED} {NEW) (OLD)
=>. (USED) (OLt) (REV)
b. (USED) 013165 ,23165 (REV)
7. (USED) 123165 013165
8. (USED) (NEW) 013165
9. (USED) 013165 (NEW) (REV)

10. (FILE)
11 • (A UTH}
12. (MADE)
13. (REV) {REV) (USED)
14. (SUS E)

(EN D)

CTSS FP.CGP.~!~ER'S GU!D! section AH.-5.02 Page 1

Print BCD card image files
PRI NTF

To print the contents of BCD card
(line-numbered) either from the beginning of
from some sfecified line number.

image files
the file or

PHINTF prints the contents of file NAME1 NAME2 by
printing first characters 73-80 and then
characters 1-72 so that the line numbers will
appear ~n the left.

SEQ specifies the numeric portion
73-80 of the initial line to
SEQ is omitted, the beginning
assumed. If S F.Q does not
number, the next higher line
file will te used.

of the columns
be printed. If
of the file is
match any line
number in the

(Ell D)

CTSS AU ~ f\"1
na.1eIa V-'

Pr-int a BCD file
PRINT

To print the contents of a BCD file, which can be either
lin3-numbered or line-marked, and either 6- or 12-bit mode.
Specific lines and special format may be requested.
Furthar, the command will function if the user is ATTACHed
to another dir-ectory.

Th~re is d limit ~f 2~ words per record for
files, and a limit of 132 words per record for
fil~s.

6-bi t
12- bit

mode
mode

PRINT NAMEl NAME2 -LINES- -FIELDS- -'TAB'- ••• -'TAB 1 - -'(FULL)'-

PRINT will ncrmally rrint line-numbered files in the
format: characters 73-80, blank, then
char-acters 1-72. Line-marked files will be
printed frcm character 1 through the last
character, with 132 characters per line of
tyre.

LINES (option3.l) may specit y which lines or records
should be printed if other than the initial
line is desired. The specifi=ation may be one
of thcee focms:

1) s from s thru the end of file
2) s •to• e from s thru e
)) s • r H BU • e tr om s t h r u e

where s and e are decimal digits which are
interpreted as line-numbers or record numbers.
Line-numbers are matched against the
right-most numeric field of card ima~e files.
Bec3rd numters identify variable-length
records by their numeric order, beginning with
1 •

Line-numbers ar~ assumed for car1 image files.
The m~de is switched to record number upon
encounterin~ any line-marked record. Usinq
THBU in5tead of TO causes setting to the
record number mode.

FIELDS may be Sfecifie:l only if LINES is not void (it
may be 0 or 1). FIELDS =omprises any number

CTSS PROGRAMMF.R'S GUIDE Section AH.5.03 1;66 2

cf pairs of decimal numbers from 1 to 132, of
general form a1 bl a2 b2 •••• an bn. rhe
PRINTed line will be a concatenation of every
field specified by the position in the ~ecord
read fr~rn the file, as from the ai character
through the bi =hara=ter.

Ai and bi m~J be in any order, and the fields
are independent of each other. A field may be
partly or entirely repeated and also printed
in reverse order:. If 3. specification field
exceeds the length of a record, the outside
char a c t e r s w i 11 be se t b 1 a n k • If the 1 as t bn
is :>mitted, 'lt is assumed equal to an,
defining a single chara::ter field.

TAB will cause tabular spacing to occur between
each of the fields specified in the FIELDS
list; each ~dditional appearance of 'TAB' will
cause additional "tab" to te inserted. On
1050 consoles, the left-hand margin should be
set at 0 or 1, and the tab settin~s should be
at every fifteenth position (i.e., 0, 14,
29 ••• cr 1, 15, 30 •••).

(FULL)

Title:

causes the comm~nd to operate on files in
12-bit mode (e.g., '(l1EMO)'-class files).

A line of information will be printed to
prcvide file name, date, and time if and only
if the printing is to begin with the first
record of the tile and TO or THR U is not
Sfecified.

Break: An interruFt signal will stop the printing and
ter~inate the command. The command terminates
by calling :H NCOM.

(E NO)

CTSS FP.OGP.!MeER'S GUIDE

Print contents of a file in o:: tal
PRBI N

Section AH-5-04 6/69 1

Print on the user's conscle (or in a file for later disk
aiitor printing) the contents of a file in octal. It may be
used to examine SAVED or BSS files or BCD files which might
=ontain illegal characters.

PRBIN NAMEl NAftE2 -st~rt- -"THRU"/"TO"/"•••" end- -nwords
-dalta- -blksize- -"OFF"/"OFFON"/"DNOFF"- -name)- -name4-

start (optiGnal) indicates the location of the first
wcrd in the file tc be printed. If it is not
specified oc is "*", it is assumed to be "1". A
starting lcca tion of "0" will te turned int c a
.. 1" •

end (oft i o na 1 but c n 1 y when '-':;~om pan i ad by "T H RU ",
"T C", or "· •• ") specifies the last location to be
rrinted. If omitted or "*", tbe remainder of the
file will be printed.

nwords (optional) indicates the number of words to be
printed in a block. These blocks ara printed in
groups :>f 'n' woe ds per line where 'n' is either
'nwords' or the number of words which can be typed
on the cons:> le (''8" on a 2741 or 1050, "5" on an
ARDS, "9" in the offline file, or "6" otherwise)
wbicbeve.r is the smaller. If omitted or "*",
•nwords' is assumed to be "5", "6", "t:P' or "9"
depending upon which ~onsole the usee is at and
whether ~r not he is creating an offline file. If
'nwords' is used, the •start' lo::ation must also
be pr-esent. "'

delta (optional) :~llcw s the "skipping" through the file
printing every 'delta• words. If this argument is
used beth the 'start • location an:l •n words • must
be specified. If it is not present or is"*", it
is assumed to be "1".

blksize (optional) is the nuaber of words to be printed
startin~ at every delta'th location in the file.
It must net be greater than delta. If not
specified or is "*", it is ~ssuma:l to be "1".

"JFF" (cf:ticnal) will~£!:~!!~ to a file •name] name4' the
octal (:rint of the file •nama 1 name2'. If "OFFON"

CT S S f B C G BAM MER' 3 GU It: E sect ion A H. 5. 0 4 6/69 2

or "ONCF F" is U3 ed, the printing will also a t=Fea r
online. If •name3' is omitted, it is assumed to
be the salDe as 'n ame1 •. If name4 is missing, it
is assumed to be " BIN",

11 0" (ctticnal) may be used to indicate any of the
above c~unt3 dre spe~ifiei in octal. It appears
as a ~g£~£~i~ argument preceeding the count
(either 'start', 'end', 'nwords' or 'delta'). If
missing the c c un ts 3. re :1 ssumed to be decimal. If
the start l~cation is specified in octal using the
"0" argument, the loc:ttion printed at the
beginning of each tlock will also be expre£sed in
ccta 1.

(E NO)

section • rY ~ I\.~
an.J.VJ

4 4 1-L" r
I 1/' 0 J i

Print summary of BS5 files.
PRBSS

To print a summary of information about the program in a BSS
fila or about the programs if the file is a library file.

PEBSS

PRESS LIBE -ENTRY-

prints a summary of information
progratr (s) contained in file LIBE
least three lines are printed
prcgra 'r:

about the
ESS. At
fer each

1st line: Entry names and their relative locations
2nd line: C~mmon break, program break, and

transfer vector length
3rd line: Subroutine names in transfer vector (if

any).

If L I B.E is preceded by the para meter • (SQ Z) ' ,
a summary cf the file LIBE SCZBSS will be
printed. (See Sect ion A J. 4. 04 for a
descriition of SQZBSS files.)

ENTRY (Oftional) specifies the program entry name at
which pc int ing should begin. If ENT BY is
omitted, printing begins with the first
prcgram in the file.

BREAK A single interrupt signal will terminate the
command by calling CHNCOM.

(EN D)

c·r::>s f i1CG t; Anii Eii ~ S 1 Jf..f... ., -- 1

Print SAVED file
SDUMF

To print the machine conditions and/or locations within a
SAVED file.

Ecrors:

SDUPiP NA MEl

The ~achine conditions of file ~AME1 SAVED will be
printed on the user's console.

S DU M P N AM E 1 L 0 C - .N -

The ccntents of N consecutive locations (decimal)
beginniny at octal lo=ation LOC, of the core image
contained in file RlME1 SAVED will be printed on
the user's console. All re1isters are typed in
octal with mnemonics.

'-----• will be typed to indicate that one or more
lines cf all zero have been omitted. If N is not
specified or is greater than 1000, 1000 locations
will be dumped. Single break level is set to
terminate printing and exit via CHNCOM.

MA ME 1 SAVED MOT FOUM D.
SAYED PILE BAS IMPROPER FORMAT.
LOCA·riON NOr IN SAVED FILE.
File system diagno.stics from 1 filiTEB'.

(END)

Print an ASCII file
PR INTA

section .. rt r (\,
an • .JeVI

PRINTA will type the contents of an ASCII file.

P R IN 'I A name 1 name 2

PRINTA will type the file name in red, followed
same line by the current date and time,
blank line, followed by the file contents.

1

'

on the
then a

Lin~s lon;Jer than 480 characters will be truncated. rhece
is no provision f3c special action such as printing facts of
lines oc beginning in the miidle of the file. The only
~rJum~nts to the C3mmand ace the file's names.

(E NO)

6/69 1

Print a file as rapidly as possible
p

To print t be contents of :1 file, whi=h may be 6-bit
lin3mark.ed or card-image or 12-bit linemark.ed or ASCII.
Sequences of st:acing characters are chosen to talte the
minimum possible time for the particular console being used.

P NAME 1 NA ME2 -opti~ns-

If no options are specified, P will look at the first part
of the file to determine whether it is 6- or 12-bit or
ASCII. If the file is 6-bit and linemarked and every line
of the sample begins with a v:1lid carriage-control
~haracter, carriage c~ntrol will be interpretej. Tabs in
the input tile and at the console are assumed to be set at
~very 10 colut11ns (11,21, •••). An interrupt will cause P to
:JO to CHNCCM.

Options are:

6:
9 :

12:
CC:

NCC:
WR:

fS:

HDB:

DATE:

HELP:

r·rAB t:

OTAB t:

LL #:

fcrces 6-bit mode
forces ASCII mode
fcrces 12-bit mode
forces interpreting carriage control
fcrces not interpretin3 carria~e control
if a line in the file is teo long for one
output line, it will be continued on the next
line. Normally the excess will be ignored.
two lines will be skipped at the beginning
and end of each page
a header giving file name, date and time, and
Fage number will be printed at the top of
each page; two lines will be skipped at the
end of each page
a header giving file name, date, and time
will be printed at the top of the first page;
two lines will be skipped at the beginning
and end of each page
a list of valid a r~ umen ts to I? will be
printed
tabs in the file are interpratei as set at
every I columns
tabs at the console are assumed set at every
I c~lumns

the maximum number of =haracters per output
line is set to I

CTSS PROGRAMMER'S GUIDE Se::tion AH. 5. 08 b/69 2

PGL #: the number of lines per paga is set to t
FILE name4: an ASCII file called name1 nallle~ is written

instead of console output teing produced
Any of the dbove a~guments m~y ba enclosed in parentheses

BLKSIZ t: linemarks, if any, are ignored dDd a carriage
return is inserted ~fter evary t words of
input

ITABS or O'IABS list: input cr output t:t.bs are assumed to be
at the locations specified by 'list•.
'list• may be :t.ny ::ombination of:
I: a tat is set at column I

crss: tabs :t. re set at 15, 30, 45, •••
FAP: tdbs ar-e set at 8,16,35,40,45, •••
MAt: tabs are set at 12, 17, 22, 27, •••

Also, :t. colon in =olumn 12 is taken to
be a backspace

(E NO)

Sec ti un
• •• ,... • ' 4
Rn.o.v r Page 1

t

Combine files
:OMBI N

The CJMBIN command ::ombines several files of
s~:;ondar y name into a new file, also of the sa me
name. The format of the files is not significant.

the same
secondary

COMBIN SEQ NAME 1 NAME2 FIL 1 ••• FILn

COMBIN will combine files FIL1 through FILn of
secondary name NAME 2 in to one file N AM !1 N Al1 E2
within the current file directory. If any FIL
cannot be found, the NEED-USE convention will
be foll:>wed (see Section AH. 7. 01). Within the
USE precess, an * for a corresponding FIL
means that FIL should be ignored. The
combining will not begin until all FIL's are
dccounteJ for. FIL•s are not delated.

EX AM PL ES:

sEQ is a dec i ma 1 n u m be r of 1- 4 d i g i t s • The n u mer i c
sequence field begins with SEQ x 10 with
leading zeros to complete the numeric field or
with the mo5t significant digits lost if SEQ x
10 exceeds the numeric field width. Sequencing
is done by incrementing the numeric field by
1 0 • If 5 f Q = ' • ' or i f N AM 8 2 is 1 SA V ED 1

,
1 B S S 1

or ' c R u M c H ' , n c se q ue nc i ng wi 11 take place.

The sequence field (characters 73-80) may be
comp3sed of 2-5 numeric characters and 3-6
alphabetic :;haracters. The numeric field width
is determined ty a scdn of the first line of
FILl from right to left, b~]inning vith
character 78, looking for tha first nonnumeric
character (blanks are treated as numeric
zer~s). The numeric fielj width and the
alphabetic field width will remain fixed
through the remainder of the command. rhe
alphabetic information is attained from each~
line of the FIL's. Note that the numeric field
width will be at least 2 and not mo~e than 5
characters wide.

If cha rae ters 73-8 0 of the first lin a ot FIL 1 are
AEC123GH and s .eo = 1, the new sEquence for NAME 1
NAME2 will begin with ABC00010.

CTSS PROGRAMMER'S GUICE sect ion A H. 6. 0 1 Page 2

If the first line contains Atbtbbbb and SEQ = 1,
the new sequence will begin with Abb00010.

If the numeric fiell overflows, ~ messa~e will be
printed, "SEUUENCE FIELD CVERFICW", and sequencing
will ccntinue from 0.

Line-warked files composed of 14-word lines may be
sequenced. If a line of more than or fever than 14
wQrds is encountered, sequencing is stOffed and
not resumed during execution of the rest of the
CQmmand. A message is printed, "SEQUENCING STOPPED
A 'I X XX XX 11 •

(E NO)

CTSS PROGRAMMEH=s GUIDE

Sllbdivide files
SPLIT

The SPLIT command divides or splits a specified file into
on a or more separate files of the s:t me class. Either BC r: or
binary files may be SPLIT.

SPLIT NAME1 NA~E2 PlODr A1 51 A2 52 ••• AN SN

~JOE:

NAME1 NAME2 is the file to be SPliT. In case NAME1
NAME2 cannot te found, the NEED-USE convention
if follo111ed as in the LCAD :ommand (Section
A H. 7. 0 1) •

Ai are the new files to be created, with the
secondary name NAME 2. All previous copies of
new files ar-e deleted, if possible. Any Ai may
be x:eplaced by if the file delimited by
S(i-1) and Si is not wanted. Any Ai may be
NAME1. As the original file will not be
deleted until all splitting is completed.

Si are the numerical divi1ers of the file in
ordeL of appearance as the file is scanned
only once and are interpreted, depending on
the mode, as line number, record number, or
number of ~ords. The si (th) record (or words)
belongs to file Ai unless Si falls between 2
sequence numbers, in which c~se the file is
split between them.

e. g. If Nj .LE. Si .L. NCj+1) where N is
sequence number in N A! E 1.

then f i 1 e A i ends w it h N j and f i 1 e A (i + 1)
begins with N(j+l)

Sn may be omitted if An is to go through the
of NAME1.

end

There are three kinds of files which may be SPLIT:

1) Line-numbered - BCD card images (14 words)
with numeri~ sequence number in column 76-80.

,.

CTSS F8CGRAMMER 1 5 GUILE Section AH.6 .. 02 Page 2

2) Line-mar-ked or variable length records
preceded by an extra word which contains the
word count of the record.

3) String no obvious record d i visicns.
Records may be treated as 1q wrird r-ecords or
by external word count.

MODE is an optional argument which may be inserted en either
side of NAME1 NAME2.

Record number mode assumes 14 word records, unless they are
line-marked, and numbers them sequentially startin9 with 1.
This mode may be re1uested by the MODE argument (R:NC).

Wori count mode split3 str-ictly by a count of the words,
including any line marks present. This mode may be requested
by tha MCDE argument (WI:Cr).

It no mode is specified, it is assumed to be line numbered.

If, at any time, a record is encountered which does not
appear tc be a regular BCD card image (e.g. not 14 words
lonj or non-numeric in columns 76-HO) a change is attempted.
IE search is still being made for S1 (no splitting bas taken
place), the mode is changed to record number, if possible
lnl tha saarch continues. Otherwise, splitting is stopped,
the rest of NAME1 is placed in a temporary file, and an
~ppropciate C3mment i~ made. No other changes of mode can
occur.

(END)

CTSS PROGRhMMER'S GUIDE Section AH ~ 6 = 0 J 12/69 1

Cbang~ the mode or the name or delete a file
CHMDDE, RENAME, DELE'lE

Commands to change the mode cr the name of a file or to
i ~ 1 a ta a fi 1 e •

D~lata:

D.ELE'IE NAf!IE1 NAME2 ••••• NAME1n NAME2n

DELETE calls the file system entry DELFIL to delete
file NAME1i NAME2i from the current file
directcry. If for any reason a file cannot be
deleted, a message is printed:

NAME1i NAME2i NOT DELETED

NAME1i is the primary name of a file to be deleted.
If NAME1i is *, ~11 files of secondary name
N Afi! E2i will be deleted.. If NAl1E2 is also *,
no files will te deleted and the message "* *
N 0 '1 F 0 UN D" w i 11 be p ri n ted • If the n am e
contains imbedded *'s, the "LISTF *
c c n v e n t i on" lll i 11 b a use :l • T h a t i s , the * w i 11
match any character including bldnk.

NAME2i is the secondary name of a file to be deleted.

Ch~nga mode:

If MAME2i is *• ~11 files of primary name
NAME1i ~ill be deleted. If the name contains
imbedded *'s, the "LISTF * conventionw will be
used.

CH~ODE NAME1 NAME2 l10tf1 ••• NAME1n NAME2n t\ODBn

Modes may be expressed in combinations of octal or
alfhabetic mode designations (see below) and the
special chacdcters * (taken to te the present mode
of the file} and "/" (to mean "remove the
foll:lwin\j m:>de bits" from the mo1e bein1 created).
An initial 11/" implies a preceding *·

CTSS FRCGRAMMER'S GUIBE Section AH.6.03 12/69 2

letter·
0
1
!:)

R
w
v
L
p
M

octal
0
1
2
4

10
20
40

100
200

meaning
pe rma nen t
temporary
x:e moved { n se con ddr y")
read-only
write-only
pri v~ te
reserved for system use
pro tee te:l
"being r:estored from tape"

Up t3 six of the letters or octal numbers can be
concatenated to form combination modes; for
example:

P B = 1 04
*V
4P20 = 124
IT = *I 1

pcotected;read-only
ad 1 private to previous mode
pLotected/private/read-only
remove temporary mode bit

NAMEli NAME2i - rhe same * conventions are used as in the
DELETE command.

R~nama:

R R N A ME N A ME 1 N AM E 2 N AM E 3 N AM E4 MAME1n NA!E2n NAeE3n HAME4n

RENAME chanyes the file name NAMEl NAl1E2 to the name
NAME3 NAME4 by calling the supervisor entry
: H F I L E • A 11 o the r f i 1 e s N A ~ E 3 N AM E4 w i 11 be
del~ted tefore renaming NAMEl NAME2. The
deleting of NA~E3 NAME4 bas the same options
and messages as DELETE. If NAME3 NAME4 cannot
be dele ted , no n:t. me s are cha n:jed. If the file
cann~t be renamed, a message is printed:

F I L E N Art E 1 i N A e E2 i NOT RE I AM E t

NAME1i NAME2i - The same* conventicns ace used as in
the DELE£ E command.

NAME3i NA.ME4i - If eithet: MAME3i or NAME4i contain
imbedded *'s, the ••s will ba replaced by the
appropiate character from HA~E1i and SAftE2i.
If NAME4i is missing, it is assumed to be
NAME2i.

(E NO)

Section !H.6.04 8/65 1

Common files
COM.FIL, COfY, UPDArE

A group of "common 11 file directories (:::urrantly up to five
in number) is fre1uently assigned to programmers working on
the same problem number. ("Common" is use:t in tne sense of
":~.::::essible to all''·) rhe COMFIL command allows the user to
cause the currently atached to file directory to be one of
the common file directo~ies or to switch tack to his own.
The UPDATE command allc~s the user to transfer a file from
the current file directory into one of the commcn file
directories. rhe COPY ccmmand allows the user to copy a
fila from a common file directory into his current file
directory.

Both COPY and UPDATE create intermediate files whose names
are a functicn of the current time of day. This method of
JanardtinJ uni]ue names allows sever~l users to be working
in the same file directory without adverse interacticn with
each other.

If COPY or UPDATE is used to move OUTPUT BQUEST files, the
r~sulting file will be an appended file rather than a
replaced-by-deletion file, as is the stand~rd procedure. If
thare is a temp~cary version ot OUTPUT R~UEST in the
receiving directcry, it ~ill be deleted before the COPY or
UPDATE is performed.

N~ither COPY nor UPDATE resets the current tile directnry
switch, i.e., u~cn ccmpletion of the coamand the current
file directory is the same as it was at the bejinning of the
::ommand.

Comfil:

COMFI L - N-

N Sfecifies the file dire::: tory desired as 0, 1,
2, 3, 4, 5. 0 signifies the user's file
di rec tcry. If N is omit ted, it is assumed
zero.

CJMFIL switches the current file directory to N so
that all subsequent commands will refer to
direc tcr:y N. Unlike the old file system,
act i v e f i 1 es ar e now not re se t w he n a

CTSS PROGRAMMER'S 3UIDE Sa:: tion AH. 6. 0 4 8;65 2

Copy:

Update:

d i rec tc t: y switch occurs.

C 0 FY N NAME 1 N AM E2 •••• NAME 1 n N A!'! E2 n

COFY t~ansfers files NAME1 ••••• NAME2n from common
file directory N into the current file
diractor y. Any files of the sa me name in the
current directory will te deleted by the
DEL~~E ccnventions ~fter tne successful
copying of the new files. Files keep the same
names but ~re always created in permanent
mode.

N may be 0, 1, 2, 3, 4, 5, S or P.
synonymous ~nd allow copying from
OL system file directory.

s and P are
the public

UFDArE N NAME1 NAftE2 •••• 1A!E1n NAME2n

N is the user's common file number 0, 1, 2, 3,
4, or 5.

UPDATE transfers files NAME1 ••• NAME2n from the
current directory to the specified common
file. Files keep their same nase and mode.
All previous versions in tbe receiving file
di rec tcry are dele ted by the DELETE
conventions only after suc::essful UFdating.
rhe files in the current directcry are
unchanged.

(EN D)

CTSS PBCGBAiinER~S AO £.. (\£:.
ftlleVeV-'

1 1 ~.:. c;.
I I, V J

L ibr ar y file
EXT BSS, U PDBSS

A library file may be cr-eated by combining proyrams in BSS
for-m. 'rhe program loaders can search this kind of file to
find missing rrcgrams. The housekeeping of these files can
b ~ :i on a b y EXT BS S an d U P t BS S •

Extr-act:

EX'rBSS LIEE FILE1 ENTRY 1 • • • F IL .En ENTRY n

EXTBSS will extr-act from the library file LIB~ BSS
the first ass routines with the en tcies ENTRY 1
• • • EN r RY n an d cr eat e f i 1 es FILE 1 F I LE n
BSS. Older files of FilEi BSS ar~ deleted, if
possible. LIBE BSS is unchanged.

ENTRYi If an ENTRYi has the same name as FILEi, 1 = 1

m<.1y be used in place of ENTRYi. ENTR Yn (the
last pacameter on the line) may be omitted if
it is identical to FILEn. If ENlRYi is
'(MAIN)', the first m~in pro~ram will be
extr-acted fr-3m LIBE BSS.

FI LEi If PIL~i is preceded hy the para meter • (SQ Z) ' ,
the extracted file will be created in sqzbss
f~r~at (See section AJ.4.04). In this case,
the na 1re of the file will be PILEi s~ ZB ss. If
the pac amet er • (SQZ) • precedes LIBE,
extracticn will take place from the file LIBE
SQZB SS.

C T S S F B C G R A M ME R ' 5 GU I D E section AH.6.05 11;65 2

Update:

UP DB S S LIB E FILe 1 E N I R Yi • • • • • • FI LEn E NT RY n

UPDHSS searches the library file liBE BSS for the
first BSS routines v ith entries E NT BY 1 •••
ENTRYn and reflaces each routine with the
correspondiny file FILEi ass. This is
acc~mplished by creating a new file LISE BSS
and deleting the old, if possible. If LIBE
BSS can not be deleted, no u pda ti ng is
accomplished. If an ENTRYi is not found in
LIEE, UPDBSS will print the following message:
"EHlRYi MOT FOUND. DC YOO WISH TJ APPEND IT,"
If tbe r-esponse is "YES", FILEi will be
a f ~ended tc L I EE.

ENTRYi rhe same conventions in EXTBSS with regard to
the use of •=• and omission of the last
parameter, ENrBYn, apply also to UPDBSS. If
FILEi is •••, the first routina with entry
name ENrRYi will be deleted from LIBE BSS.

FILEi If any fiLEi is preceded by 1 (SQZ) 1 , the file
FILEi SQZBSS will be insertei. Preceding LIBE
by '(SQZ) 1 will cause LIBE SQZBSS to be
Ufdated.

If any FIL Ei cannot he found, the message
"FILEi BSS NOT FOUND." will be printed, and
UPCBSS will exit to DORr1NT. The user may then
tyfe 11 USE NE WFLi" to use a differ-ent FILEi,
"USE *" to delete the entr-y from LIBE, or
"S1AR T" to igncre the update of ENTRYi.

(E NO)

CTSS ,.. ttT n'C'
I.JI \,14V._. Se~ticn 12/69

Dff-line processing
RQUEST

Requests may be submitted to the dispatcher to print or
pun=h current files, ~r send a current file to the other
machine (MAC or Center) for reloading 3.Dd updating. These
r~quests may be submitted as punched control cards (see
Section AE.l) or via the RQUFST command from the console,
which will prepare a file called OUTPUT BCUEST in the usel:''s
1it·~ctory. The CQntr~l cards and the OUTPUT RQUEST files
are processed several times a day by 3. background job called
tha disk editor.

R~UEST XX NAMEl NAME2 -OP- ••• NA!!E1n NAI1E2n -CPn-

XX='PRINT': 'Ihe H:D file RAMEl !IAME2 is printed off-line.
If the file is not line marked, a blank word
is inserted at the beJinning of the line to
insure single spacing and the first B4
c h a r a c t e r s of the re c o rd 3 re p r i n ted • If t he
file is line-marked, the first character is
the carriage control ~h3racter and the next
131 characters are printed.

If the file is line-marked and the secondary
name is FAP or !AD, the file will be
effectively XPAHDed to 80 columns for printing
with tabs replaced by the appropriate number
of blanks and null ch:tracte~s deleted. A
blank w~cd will be inserted in front cf each
line to insure single sp:t=in:J. Sequence
numbers will be inserted in columns 75-80.
rhe tile itself remains unchanged. If the
sec~ndary name is other than FAP or MAt, the
file will te XPANDed to 132 characters by
inserting suffi::ient bl:tnks so that tab st:Jps
come out at positions 11, 21, 31, (+lC) ••• ,
12C. Also, if the secondary name is ALGOL,
LISP, or LSPOUT, a blank character will be
inserted in fcont of each line to insu~e
single spacing. However, an ALGOL file will
be XPANDed to 132 chara::ters by interpceting
tabs for column5 11, 16, (+5) ••• , 66.

XX='SSPRNT': 'Ihe U:D file NArtE1 NA.ftE2 will be printed with
a leading tlank on each linE to insure single
SFace pLintinq. Line numbered files are
always pcinted single spaced.

CTSS PROGRAMMER'S ;uiDE S~~tion AH.6.06 12/69 2

XX='DPUNCH': The B:D file NAME1 NAeE2 is punched off-line.
If the file is 1 ine- mac ked, just the first 80
characters per line of :!:tta will be punched ..
Line-marked files will be XFANDed in the same
way a s de sc c i be :l u n de r P R I M T •

XX=' BPUNCH': rhe binac y Cdrd imcage file NAME1 NAME2 will be
punched off-line. The 7-9 punch and checksums
should already be included in the card image
file.

XX=' 7PUNCH 1 : The file NAME 1 NAME 2 (of an_y format) will be
punched :> f f -1 in e in a spec i a 1 card f or ma t
which may be reloaded by the disk editor to
reproduce the file exactly. The file is not
deleted frcm the user's directory.

X X= ' D E LET E • : r he f i 1 e N AM F. 1 N AM E 2 w i 11 1: e d e 1 e ted f r om the
current file direc tot:y. PBIVATE or PROT ECr ED
files may not te deleted. Deletion will not
occur "thrcugh a link".

XX='PL0£ 1 : ·r he f i le N AM E 1 N AM E 2 wi 11 t e
plot 3Utput tape for plotting
plotter. (see APM-1)

placed
on the

on the
Cal Comp

xx= • PRNDEL', •ss PRI:L', ' tPU DEL' , I BP UDEL' I
1 7PUDEL',

'PLDDEL':

The file (s) will be tRINTed, SSPBNTed,
DPUNCHed, EPUNCHed, 7PUNCHed, or PLOTted and
then the mode will be ~hanged to temporary.
PRIVATE oc PR01ECTED files will not be changed
to temporary, nor will files be changed
" t ht: ~ u g h a 1 i n k" • The n e x t ti me the f i 1 e is
cead or the user logs out, the file will be
deleted. Note thii t any other request for the
same file following a "DEL" request will cause
the tile tc be Jeleted.

OP refers to the cptions av~ilable for the CARRY
request.

The RQUEST ccmmand crecttes or appends to a file in
usac•s file directocy called OUXPUT RQUEST. This
contains ccntrcl card images which will be processed by
:lisk ~ditor program. If either of the nall'es contains a
the RQUEST co~mand will sedrch the file directory for
fil3 ndmes corresp~nding to the re~uested name according
the Lrs·rp "*" ccnven tions. Warning: words 13 and 14

the
file
the ... ",
all
to
of

l"' - -.t.. .;. - - A fl /£ (\ L
.J~\...'-.LVU An.u.vu

~i~h ~ard image are used for the requesting user
identificaticn. If .ED is used to modify the OUTPUT RQUEST
file, these identifying words are destroyed. After
pro~essin~, the disk editor program will change the mode of
~UTPUT RQUEST tc temporary. This ~hange to temporary allows
the op~rations staff to rerun the disk editor if any
difficulty was encountered in the first run. Note that
OUTPUT RQUEST contain5 only the control cards which fOint to
the actual files to be processed. The disk editor frcgram,
upon processing the request files, will Jenerate three
jiffer~nt tapes: printer, punch, and carry. These tapes are
then the respcnsibility cf the operations staff.

(E NO)

CT S S ~ PC G R A!'! M E R • 3 GU t ~ "E

~~n~ral file system call
CALL

c "" ,...,. ; ""' " u t:. " .,
~"'~"..Lvu nuevev'

CALL provides a single unprivileged command which
used tc call any one of various r;n ;;;ystem
(subroutines) froiD com wand level.

CALL ENTRY ARG1 ARG2 ••• ARGn

may be
entries ·

ENTRY may be dny of the file system entries. Note
that privileged calls may be made cnly by
users with aFFropri~te privile~es.

If tafe lab?.ls ~annat be specified in BCD as
expected by VERIFY and LABEL, they may be
Sfecified in octal by

CALLing BV ERFY or BLABEL.

ARGs dre the drguments rejuired ty ENTRY.
Optional ar-yuments may be specified as *·
Tr-ailing optional arguments may simply be
omitted.

TLe ENTRY IODIAG will furnish the same information that the
subroutine dces, on cne line. (See AG.4.06)

1. CALL UPDMPD PROB PRO~

2. CALL DELMFt PRO B PROG

3. CALL ATrACH PROB PROG

4. CALL MOVFIL Nl N2 PROB PROG

5. CALL S Er FIL N 1 N 2 MM CDYY HHMM MM DDYY A U'lHNO -MODE
-DEV-

6. CALL LINK Nl N2 PRCB PR03 -P1- -P2- -MODE-

7. :ALL ALL01 DEVICP. -ALLOTTED- -USED-

8. CALL UPDATE

CTSS PROGRAMMER'S GUIDE Sec: tion AH. 6. 07 9;66 2

9. CALL OPEN SrArUS N1 N2 -MODE- -DEVICE-

1 0. CALL B UF r~ E R H 1 N 2 - LENGTH-

a. Only one active file c~n be buffered at any
one time.

b. If 'LENGrH• is not given, it is set tc ~~fQ•

11. CALL RCFILE N1 N2 -RELLOC- -CCUJT-

a • If 1 : o u N 'I ' is n o t g i v en , it i s se t t o 1 •
b. ' COUNT' • L E. 20; if 'COUNT' • G. 2 0, then it is

taken as 20.
c. If 'RELLOC' is not given, it is taken as 0.
d. 'COUN'I' wcrds are printed out. If the EOF is

reached or passed, the word 'EOF' t:recedes
the output.

12. CALL ROWAil N1 N2 -RELLOC- -CCU~T-

a • See r e ma r k s a-d I te m 1 1 •

13. CALL WRFILE N1 N2 -RELLOC- -CCTlH- -OCTRH-

a. •o:'ILH' dDd •o:TRH' are converted to octal
and treated as one word. Default value for
'OS'ILH' and •o:rRH' is 0.

b. Cefault value for 'RElLCC' is 0.
c. I f ' R E L 1 oc ' 1 i e s be yond the en d o f f i 1 e , t he

word 'EOF' is pr-inted 3.n:l no writing is done.

14. CALL WRWAI'I N1 N2 -RELLOC- -CCTlH- -OCTRH-

a. see r-emar-ks a-c Item 13.

15. CALL 1RFIL! N1 N2 -HElLOC-

16 •

a. tefdult value tor • RElLCC' is 0.
b. If this i~ the fir§! usage of the •:ALL'

command, the following lines are generated.

OPEN. ($W $, N 1, N 2)

EOFFEH. (N1,N2, BUFF(432) ••• 432)

TRFI LE. (N 1, N 2, RELLOC)

CLos·E. (N1 ,N2)

Other~ise, the stan:larJ. call to 'TRFILE' is
gene['ated •

.>
. C·Al·L -FC:H.bCK N 1 N2

17.

18 ..

19.

20.

2 1 •

22.

2 3.

a. If the I/0 is ::omple teJ. for I Nl N2 I, the wor-d
1 FINISH' is printed, otherwise nothing is
F I: in ted.

CALL CLOSE N 1 N2 {cc CALL CLCSE ALL)

CALL FWAIT N1 N2

CALL S Er PRI -PRIOR-

CALL RESEr F

CALL CHPILl N1 N2 -MODE- -N EWN 1- -NEWN2-

CALL DELFIL R 1 N2

CALL F STATE N1 N2

a. Response is: LENGTH MODE STATUS DEVICE
N EX T- H E AD N E X T- W R IT E
DLM TLM DLU AUTHNJ

b. If file is a link, 'MODE' will at:pear as 'L'
M MM.

24. CALL UNLINK N1 N2

25. CALL S'IJR3E DE VICE

a. Response is: A LLO'ITED USED

26. CALL ATfNAM

a. Response is: ATTlCHED-PROB A'lTACHED-PROG
AUTBMO PRIORITY

27. CALL IODIAG

28. CALL EXIT

a. Returns vi3. a call to CHNCCM. If any
was opened during this usage of 'CALL',
will leave c: ore i ma~e, other wise, no
image is left.

file
EXIT
core

1. (GO) - Inclusion of this arl_)ument anywhere in a
call command line •ill c~use the ::ommand to type
the word 'CALL' and then wait for further file
cdll instead of exitin4 after processing the
indicated call. S:tmple uses of this argument
might be:

CTS S F R C GRAMM£. R' S GU ICE Section AH.6.07 <J/66 4

CALL OPEN R A B (GO)
~~11 RD WAIT A B 1 5
~..A!d~ CLOSE ALL
f.!h1 EXIr

2. (FNS) - Inclusion cf this ~rgument indicates to
'CALL' that d fence (Octal 777717777777K) is tc be
placed in this position and that scanning of the
command line is to continue.

3. •- ·rhis acgument specifies that an optional
rarameter h~s not been supplied. 'CALL' will pass
a null pdcameter to the file system.

4. (STAR) - Inclusion of this ~rgument indicates that
an asterisk is to te placed in this position and
scanning of the c emma nd line is to continue Mote
that this is ll2! equivalent to the special
argument, • *'·

(E NO)

CTSS GUIDE Section 6/69 1

Att~ch to another usee's file directory
ATTACH

To allow a user tc attach to another user's
iir~ctory for the purpose of examining and/or modifying
f i 1~ s.

ATTACH Pl:'ob Pr:) g

file
his

If th~ command usel:' is explicitly pel:'mitted to LINK to the
file "U.F.D. (FILE)~' in the directol:'y "prob prog" in mode 0,
ATTACH will change the command usel:''s working directory to
be "prob prcg".

If "prob prcg" are omitted, AtTACH will reattach the user to
his home file directory. A user may ~lso return to his home
:iir::!ctory by usinJ the COMFIL command, or by executing a
program which calls COMFIL.

If a user's frogr'im ~alls TS.SFIL (saa AG. 3.03), the
sup~rvisor will save the name of his current attached
directory, and will restore it when USRFIL is called.

To give another user permission to attach to your directol:'y,
typ~ "PERMIT U.F.D. (FILE) 0 probn progn", whel:'e "probn" and
"progn" identify the user or set of users to whom ycu wish
to give pecmissicn. Note that you must nama "U. F. D. (FILE)"
~xplicitly: "* *" will not do.

(END)

c·rss FR CG.RA ~ME B'S GU! D!

App~nd files
AP END

Sec t.i on A H. 6. 0 9 12;69 1

To ~llow files tc be comtined together; tc allow new files
to be appended tc existing files; to allow files to be
:::ombinad int~ a c.rss tape file without creating an
intermediate disk file.

APEND N1 N2 f1 f2 f3 f4 •.••

Files 'f1 f2', 'f3 f4', etc. a.re :1ppended to file 'N1 N2 1 •

APEND N1 N2 '*' f1 f2 f3 •••

Files 'f1 N2', 'f2 N2', 'f3 N2', etc. :1re appended to file
'N1 N2'.

File 'N1 N2' is initially opened for writin:J. Each file to
b~ :1pp~nded is then in turn opened, copied onto the end of
'Nl N2', and closed. In the event of any fil~ errors, all
files are closed and a. di~gncstic is printed. Note that if a
fil~-not-found error is received while in the middle of a
lony series cf afpend operations, all previously appended
fil~s will have been processed properly, and the oreration
can be continued later.

(EN D)

CT5S

0 ff-line ASCII Frin ting
RQASCI

,.. flT n. 'C'
J UL&.Iu Sec ticn 12/69 1

Allow the user tc request printing of ASCII character stream
fil~s with the ASCII chain on the Center's Sfecially
modified 1401.

RQASCI NAME1 NAME2 NAME3 MAME4 •••

T h a f i 1 a s 1 N A M E 1 N AM :E 2 ' , 1 N AM E 3 N AM E 4' , e t c • w i 11 be p r i n ted
during the next run cf the ASCII editor. currently, the
ASCII ~ditor is run twice daily, at 0400 and 2200.

If: NAME2 of a file to be printed is RUNOFF (See AH.9.01,
AH.9.06: 'print• option on RUNOFF ani ROFF :::ommands), the
fil~ is printed exactly at it appears. If NAME2 is ~Ql
RUNJFF, form-feed characters (ASCII 014) are inserted at the
bottom of each page, to skip over the perforations on the
paper.

~~!!!Qi

R~ASCI writes (through a link) into the file ASCII RQUEST
m~intained in the directory M1416 2962. This file is read by
tn~ ASCII edit~r. The file is in private mode, and is
accessible only via the RQASCI :::ommani. Tne link made to
ASCII BQUEST is left in the current file directory.

A request made with RQASCI £~Y~9! be ieleted, as is possible
~ith the standard disk editor and RQUEST commands.

(EN D)

CTSS PHOGRAM~ea•s ~U!DE Section AH-1-01 5/66 1

R~locatable prog~am l~ading
LJAO, LOADGO, VLOAD, NCLOAD, L, USE

There are five different ty~es of loading available for
r~locatable programs i.e., BSS files. The first (LOAD) will
loa:l a program into c::>re without destroying the loader or
MJVIE) table, place the program in dormant status and
r!turn to the user foe the next command. The second (LOAD30)
is the result of the chain of =ommands LCAD an1 START. The
thicd (VLOA~ will load the program; move all of the program
and COMMON dcwn in core to destroy the loader and MOVIE)
t~bla (thareby making the available core larger); place the
program in dormant status and return to the user for the
n~xt co!ftmand. The f::>urth (NCLOAD) is the same as VLOAD
except that erasable COMMON is also destroyed so that no
library routines which use er~ sable CO~MC~ may be used. rhe
fifth (L) is a separate command which allows any one of the
pceviously mentioned four to be used with larger loading
t1bles (see Bestricti~ns).

ProJrams or files may be loaded (or searched as library
files} from the user's file directory, from his common files
~ni from several system files.

IE ne~:led routines cannot be found by the loa1er,
command may be used to s~ecify which routines may
instead.

the usE
be used

Normal maximum table sizes are: 80VI~ tatle is 500 words
and the table of missing entries is 100.

The tables for the L comad.nd ~re: rtOVIE) table of 1200 words
~ni missing entries of 250 words.

Wh~n saveral programs are loaded, the one using the most
common should be loaded first.

Any of the load com11ands (LOAD, LOADGO, VLQAD, NCLOAD} may
be used in place of LOAD; all spe=ial arguments are optional
~n1 ord~r is significant by meaning or where SFecified.
Special arguments are those beginning and ending with
p~r~nthesas as sh~wn. They cause the loader to behave in a
sp~=i~l manner. The n~n-special arguments are either file
names or entry Feints, depending upon the preceding special
l rg ume n ts.

CTSS PHOGRAMMER'S GUIDE se~tion AH.7.01 5/66 2

Upon comfleticn cf loading, the current file directory is
switched to its initial status.

LOAD (CRG) (CFLn) (LISE) (SYS) (NEED) (NLIB) NAMES (MORE)

(CRG) The pce5ence of (ORG) instructs the leader to
set the starting address to the entry name
specified ty the next non-spe~ial aLgument
following (ORG).

(CCN'r) as the first argument, may be used for
programs calling the loader through the
command buffers in order to retain control in
the event of a 1 oa ti i n g e r ro r. The n ext
non-special argument is the name of the file
which should be resumed in case of an error.

e.g., SAVE
LOAD
SAVE
RES UL"' E

X
(CONT)
y

X

X A B ...

After this sequence, X can determine
whether or not the load was successful
by the existence of Y SAVED.

(NEED) The presence of (NEED) instructs the loader to
treat the next non-special argument as a
program entry {Oint as though it had been an
entry in a transfer vector.

(MORE) may be the last argument before the carriage
return (tecause only one line can be
interpreted by the command) to indicate that
more arguments will be specified. In this
case the leader will not print the NEEt list;
will restore the common file switching to the
initial setting; and return to the user (by
way 3f CHNCOM) so that the USE command may be
used.

(CFLn) directs the loader to switch the current file
directocy to common file directory n which may
be O, 1, 2, 3, 4, or P. The current file
directcry is initially the user's file
directocy or a directory set by a COMFIL
co11mand. There ~~~ y be any number of these
switches in the argument list and each one
su~ercedes the previous one.

(LIBE) directs the loader to use the next non-special
argument as a file within the current file
directcry to be searched as a library file to

5/66 3

find any missing routines.

(S YS) directs the loader to use the f cllowi ng
non- s pe:: ia 1 a rg u me n t a s a f i 1 e f rom the s y s t em
file directory to be se~rched as a library for
any missing routines.

(NLIE) directs the loader not to search the system
library (i.e., TSLIB1) for missing routines
aftec the argument list has been processed.

(LIB) supercedes (NLIB).

NAMES may be the primary names of BSS files to be
loaded or BSS files to be searched as
libraries following certain special arguments
or NA"ES may be routine entry points as
required by other special arguments.

NEED Foll3wing the processing of the argument list,
the system library TSLIB1 will be searched for
any missing routines (unless prohibited by
(MLIE)) • If routines are still missing, the
current file directory is switched to th@
user's directory, a list of needed routines
(by entry n3.mes) is type1 by the loader and
DOBMNr is called so that the user may type the
USE co•mand. U~on completion of loading, the
current file directory is switched to its
initial status.

USE will reinstate the last coaaon file switching
and go back to the loader. All of the
arguments available to the loader are
therefore available to USE.

LOAD sets the origin of tbe first program at
(5200)8. rhe MOVIE) table and the loader are
left inviclate below this origin. COMMON
addresses a~e relocated with the same parity
as on the assembly listing. PAP coded
subpr~g~ams, which =ont~in the EVER pseudo op,
will be loaded with relative location 0 in an
even cere location. Upon completion, all
loaders call CHNCOK with an available core
image specified.

LOADGO is equivalent to the sequence of commands LOAD
and START.

VLOAD After the entire program and library
subr3utines have been LOADed the program is
moved down so that the origin is (30)8,
cov~cing the loader and the MJVIE) table. The

C T!) S P R 0 G R A M M E R 1 S G Ul DE Section AH. 7.01

{316) 8 words of eras3.bla CC~MCN are
with the program. The MOVIE) table
freserved if MOVIE) occurs in the
vectJC Jf any routine loaded.

5/66 4

included
will be
transfer

N c L 0 AD is t h e s am e as VL 0 AD ex c e p t t hat the { 3 16) 8
w"ords cf erasable COMMON are not included and,
therefore, if library subroutines which use
erasable common are included, a COftMON
assignment error message will be printed.

L The L command may be used if larger loading
tables are needed (see Restrictions). The L
precedes any one of the LOAD commands as: L
LOAD ARGUMENTS. If the loader name is
omitted, it is 3.ssumed to be LOAD. All of the
regular loader arguments are available. The
program loading by LOAD starts at (7000) 8
instead of (5200)8. There may be more than
250 mi~sing entry names if this does net occur
d u ring a 1 i b r a ry sea rc h • L a 1 w a ys c a 11 s
CHNCOM, regardless of the outcome of the
loading. Nc core image is kept if loading
failed.

MOVIE) table i5 created by the loader to prcvide a
stcrage mat: of ~11 entry points of routines as
they are lo3.ded. It is 3.lways written as a
file (MOVIE T AEL E) in the user• s directory in
temporary mode. If the entry MCVIE) appears in
the transfer vector of any routine loaded, by
VLOAD or NCLOAD, the MOVIE) table will be
preserved by moving it to the top of the load.
The M o VI E) en t r y poi n t s to 1 o cation (2 7) 8
which contains the MOYIE keyword which
contains the number of words in the movie
table in the decrement ~nd the location of the
lowest word in the movie tatle in the address.
The format of the MOVIE) table, starting with
the lowest location, is:

1. fe nee
2. Low est common break (address)
3. SV N t:refix
4. Memory bound (address)
5. E CD entry n am e
6. Entry point for previous name

(address)
P~irs of words 5 and 6 for each
entry to the subprogram.

7. SVN frefix or PSE O,,n, where there
are n word. s in the transfer vector
of this subprogram.

!:)ec ti on AH. 7. 0 i

8. Or-igin of this subpr-ogram (address)
Repeat groups 5 thru 8 for each
su bpro gram loa de d.

0-7
10-23
24-26
27

30

4661

5200

Md 1

C r S S F R C G R A M M e R ' 5 GU I I; E s e ct i o n A H • 7 • 0 1 5;66 6

~Q!!~_rl!f
(A 11 n u m t er s oct a 1)

ZERO
BOOlSTRAP fer NCLOAD and VlCAD or TSX LCAD,4
l'SX (ORG), 4 for NCLOAD and VLOAD or TSX LOAD ,4
MOVIE} Keywcrd

LOAD, LOADGO VLOAD N CLOAD

LOADER ERASABLE PROGRAM
COMMON COMMON

346

PROGRAM
COMMON

-- ---------

EFASAELE PROGRAM PBOGRAM
C OMMCN

PROGRAM MB3
COMMON

----------- f'llB2

PROGRAM

M:! mo r:y Bounds:

MB3= 30 + 77461 - COMMON BREAK +PROGRAM LENGTH
Mti2 = 316 + MB3
MBl = 4632 + MB2

(E NO)

1

Absolute Prcgram loading
LDABS

To !odd a program from a file containing absolute column
b in~ r y card i m ages. A s A 1/ It f i 1 e m ay be c r eat e d d ire c t 1 y b y
LDABS, if desired.

Unlike the cthe.t: loaders, LDA1:3S will create the SAVED file
rapresantinq the pr3gram it has loaded in seven-tag mode.

A NAME

LDABS ANAME -SNAME-

is the prim:1r:y name of the file
which c~ntains absolute column
images with full word checksum.

A NAME
binary

'ABS'
card

SNAME is the px:im:1ry n:lme of SNAME SAVED which is
(opti~ndlly) to be the SAVED file created by
LDABS. Previous versions of SNAME SAVED are
deleted using the DELETE conventions.

LDABS will lead a prc~ram into core with an upper
limit of (77777) 8 and a lower limit of 0. The
me•ory bound is set, upon completion of the
load, t3 the highest location loaded. Loading
terminates with a transfer card and execution
may be 5tarted at the transter-locaticn by
issuing the srART command.

Error Cooditicns:

a) If a check sum error occurs, the C3mment:

b)

CHECK SilM ERROR IN CARD XXXXX is Frinted,
where XXXIX is the location in which the first
word ~n the card is to be stored. After this
coament is printed the card is ignored and
loading continues.

If an attempt is ma~e to store in d location
greater than (77777) 8, the comment: CARD
llYYY OUT OF BCUND is printa1, the card is
ign~red, and loading continues.

c) If a transfer card is missing, i .. e., an end of
file i5 reached, the comment: TRANSFER CARt
MI~SING, T}PE CCTAL STARTI~G LCC, is frinted.

CTSS PROGRAMMER'S ~UIDE Section AH. 7. 0 2 5/66 2

The characters typed are converted to an octal
location and the transfer location for
s ta r tin g i s se t u p.

d) An y car d w it h o t her t han a 7- 9 p u n c h i n c o l u m n
1 cr a word count .GE. 23 will result in the
message: CARD YYYYY ILLEGAL BINARY CARD. fhe
card is then ignore3 and loading continues.

(E NO)

CTSS PROGRAMMER'S 3UIDE Section .. ~H.7.03 5/66 1

Start or continue execution
START, RSTART, RES'fOR, R!CALL, RESUME, R, CCNTIN

Programs may have their execution interrupted (e.g., through
use of the -1 ui t but ton or call to DORM NT) or delayed (e. g. ,
LOAD as cpposed to LOAD:; a, or the sequence LCAD, SAVE) • The
~ommands covered in this section give the ability tc cause
the execution of such prcg rams.

S r ART - A R G 1 A R G 2 • • • A R G n-
R S'IAR T

The STAR! co~mand may be used to begin a program which has
b2an loaded by one of the LOAD commands, or it may be used
to continue a dormant prcgram from the place of the last
int~rruption. The ARGi represent optional arguments, which
will be placed in the command buffers; this techn i:jue is
us~ful for programs which c~ll DORMNT in anticipation of
another "pass"·

RSTART is equivalent to srART, except that it is transparent
to (i.e., does net alter) the current command buffer: and
~ommand location counter. It should be used when restarting
a chain of commands.

RESTOR
BE CALL

NA MEl
NA" El

Th3 RESTCR and BECALL comaands will restore the core image
tram NAME 1 SAVED complete with active files, if any. The
pr:-o~rdm is placed in d~rmant status so that ~t may be
(H)STARTed in order to continue from its last interruption.

In ~ddition, RECALL resto~es the command list
file switching from NAaE1 SAVED, and preserves
loc~tion counter and current command buffer in
subsequent RSTAR'I.

and
the
case

common
command

of a

RESUftE HAMEl -ARG 1 ABG2 ••• ARGn-

(HESUME w.ay be abbreviated by the letter R.) The RESUME
~omman1 is effectively the same as RESTOR and START. rhe
arguments are placed in the current comman1 cuffer so that
it =ontains HAMEl AR~1 ARG2 ••• ARGn. This is a techni~ue
for writing and checking out a new command.

CONTIN NAME 1

CTSS fRCGRAMMER'3 GUIDE Section AH.7.03 5;66 2

Th~ CONTIN command should te used to resume a program
involving a chain of commands. It restores the progra!R and
m1~hine conditions from NAME1 SAVED, together with any
act i v e f i 1 e s , the c o o: m on f i 1 e s ;; itch in g, a n d t he con t e n t s of
the command list, command location counter, and current
~ommand buffer. In other words, it is exactly equivalent to
the chain of RE~ALL and RSTART.

RECALL
RST ART
CON TIN

1. Restores command
buffers.

2. Restores chain,
if any.

3. Restores directory
switching.

4. Will not over
write cottmand
b uf fer s and com -
mand list.

RESTO~

START
RESUME

1. Does not restore
command l:uffers.

2. roes not restore
chain.

3. Does not restore
directory switching.

4. Will over-write
command buffers.

(END)

R?.locat~ble program l~ading
LAED, USE

LAED (~oad !~~) is a loader originally developed by the
Ela::tronic Systems Laborator-y group for use with AED (see
AH.2.01). It has sever-al featur-es which the standard loader
(AH. 7. 0 1) does not •

There are tour different tyfes of loading available for
r~locatable programs in either BSS or SQZBSS format. All
four types are contained in the single LAED command. The
typ~ of loading desired is selectej by typing one of four
options following LAED. rhe first loading option LOAD will
load a prograro into core without 1estroying the loader or
MOVIE) table, place the program in dormant status and return
to the user fer the next comm~nd. The second option LOADGO
is tha result ~f d LOAD followed by the command START. The
t i1ird opticn VLOAD will load the pro] ram, move all of th~

pL03ram and COMMON down in core to destroy the loader and
MJVIE) table (thereby making the av:1ilable ~ore larger),
pl~=a the program in d~rmant status and return to the user
for the next comaand. rhe tcurth option NCLDAD is the same
~s VLOAD except that eras~ble COMMON is also destroyed so
th~t no library r~utines which use erasable CJMM~N may be
used.

Programs or files may be loaded (or
filas) from the user 1 5 file directory,
and from several system files.

searched as library
frcm his commcn files

If needed routines cannot be found by the loader,
=ammand may be used to specify which routines may
instead.

the USE
be used

Th~ list of files t~ be loaded, intermixed with the various
loading options, may be ~laced into a separate disk file
(sa~ond name LOAt). rhis LOAD file may then be referenced
in the LAED command line, and the effect is the same as if
the file contents had been typed by the user.

Two forms of MOVIE) t~ble may be produced, the standard
format or the format suitable fer use with the
LGADER/UNLOADER system (MA:-M-286). The latter CJntains all
of the standard in form at ion, plus program size data.
R e gar d 1 e s s w h i c h of the t w o t y pe s of M c vI E) tab 1 e or which
of th:! four loading types is requested, a file named (MOVIE
TABLE) is written (in temporary mo:le 00 1) and added to the
us~t-•s directory, which contains the MOVIE) information.

CTSS ~ROGHAMMER'S GUIDE Section AH.7.04

This file is in a biniiry format which
printable, but may be used by any of the
programs.

is not
available

7/66 2

directly
utility

The loader may be used as a subroutine during execution of
in objact program tor the purpose of resuming the loading
pro=ess. The LOAD ~r LOADGO options cause the loader to
insert the subroutine entry (LOAD) in the MOVIE) table for
this purpose. Since the entry point (LOAD) is part of the
loader itself, (LOAD) is not put in the I!OVIE) table when
VLOAD or NCLCAD is used.

M ax i m u m tab 1 e s i z e s a re: M o VI E) tab 1 e i s 10 80 words , t h e
t~ble of ~issing entries is 100, and the maximum size of a
LJAD file is 44 lines. The "missing entry" table is not
=ontinua.lly maintained, tut is generated when needed (just
before a library search or at the conclusion of loading).
Tharefore, it is possible during loading to temporarily
build up more than 100 missing entry points without causing
a fatal loadiny error.

The type of loading desited (LOAD, LOADGO, VLOAD, or N:LOAD)
is typed immediately following LAED. If no option is typed,
LOAD is assumed. rhe ~emainder of the command line is a
series of special and nonspecial arguments. Special
~~gumants are those beginning and ending with parentheses as
shown below. Nonspecial arguments are either file names or
antry points, depending upon the preceding special
ac yu ments.

Upon completicn cf loading, the user is left in the file
~ir~ctory he was in immediately prece3ing the LAED command.

The following paragraphs describe each of the special
~rgumants reco~nized by LAED.

(ORG) The presence of the ~RG) option instructs the
loadeL to set the starting address to the entry
name specified ty the next nonspecial argument
following (ORG).

(NEED) ·rhe presence of (NEED) instructs the loader to
treat the next nonspe=ial argument as a program
entry point as though it bad been an entry in a
transfer vector of one of the binary files
already loa de d.

(MORE) may be the last argument tefore the carriage
return (because only one line can be
interpreted by the command) to indicate that

ro "" P co n l:l n r" 0 II. M 1111 r." D I C' ~ f~ T f\ 1f"
I_. .I. oJ ~ 1:" 1.\ V U L\ n l~ Ll .._. LO. oJ v u .L .., ..,. Sec ti on A H • 7 .. 0 4 7/66 J

more arguments will be specified. In this case
the loader will not print the NEED list; will
restore the common file swit~hing to the
initial setting; and return to tha user (by way
of CHNCOM) so that the USE command may be used.

(CFLn) directs the loader to switch the current file
directory tc common file dire=tory n which may
be ~ through 9 or P. The current file
directory is initially the user's file
direct~ry or a directory set by a 20MFIL
command. rhere may be any number of switches
in an aryument list and each one supersedes the
previous one.

(LIBE) directs the loader to use the next ncnsFecial
argument as 3. file within the current file
directory to be searched as a library file to
find any misEing routines. The file is
searched repeatedly until one complete Fass
through the library is ma1e in which no
additi~ndl needed routines are found, or until
all needed routines are loaded.

(S R C H) h a s the sa me e f f e c t as { L I BE) except t hat on 1 y
~ne pass is m~de through the library. rhe
ar9ument (SRCH) thus assumes that the library
is frcperly o~dered so that no program
references any program which occurs before it
in the library, thus saving load time.

(s Y s) d i r ec t s the 1 c:t de r to use the nons p e c i a 1
argument following (SYS) as a file from the
system file directory to be searched as an
ordered library for any missinq routines. rhe
aryument (SYS) is exactly equivalent to the
argument setjuence (CFLP) (SBCH). The loader
autoJtdtically perfor-ms a (SYS) TSLIB1 at the
end of a LAED commana whether or not any other
libraries have l:een searched, and withcut any
specific request by the user, if there are any
missing entry points.

{ NLIB) directs the loader not to search the system
library rsLIB1 for missing routines after the
argument list has bean processed.

(LIB) SUfersedes (NLIB), thus restoring the automatic
(SYS) rsLIB1 search at the conclusion of
loading.

(SQZ) 1'he argument (SQZ) instructs LAED that all
indicated binary files following (SQZ) on the
ccrrmand line :tre in tha S~ZBSS format.

CTSS FRCGRAMMER'3 GUIDE s e ct ion A H • 7 • 0 4 7;66 4

(A EDP)

(UN L D)

(GET)
(NG ET)

Similarly, (BSS) l·eturns LAED to the BSS mode.
I f n e i the r :t r g u me n t i s s pe:: i f i e d , (B S S) is
assumed. The est ablis bed mode also applies to
all load files. LAED automatically switches to
(BSS) mode whenever a new comman:l line is typed
(i.e. a usE or a START command after: a NEED
messa ye) •

This command searches the system library AEtLB1
for missing routines. The argument (AEDP) is
exactly equivalent to the sequence (CFLP)
(SRCH) AEtLE1.

causes LAED to produce the ~CVIE) table and the
file (MD\' IE r ABLE) in the proper format for the
LOADER/ UNLOADER system. The argument (UNLD)
must appear before any tinary file names on the
comlldnd line.

instructs LAED th~t succeedin~ nonspecial
argument file names are LOAD files, rather than
BS S or 5 QZ BS 5 f i 1 e s. (N GET) r e turns LA ED to
the no[' roa 1 mode (suc::eed.ing file names ace of
type ess). A LOAD file consists of a sequence
of standard 14--..or(l card images, with the name
of a BSS file, SQZBSS file or special loader
argument dff:earing in columns 1-6 (one argument
per line). rhe argument may appear anywhere
within these six columns, and LAEC will
right-justify the word. Columns 7-72 are
igncred, and ma J be used for comments. LAED
also ign~res any line containing blanks in
columns 1-6 or an * in column 1.

The above is an exhaustive list of the LAED special
arguments. If any word is typed in the LAED command line or
LOAD file which is not one of the above, it is considered to
be the primary name cf a BSS, SQZBSS, or lOAD file, or an
antry point, dependin~ upon the special arguments preceding
it.

The following is a list of the various on-line user and
system typed statements used to communicate with LAEt.

NEED Following the fro~essing of the argument list,
the system library TSLIB1 will be searched for
any missing rcutines (unless prohibited by
(N L I B)) • If r out in es ar e s t i 11 miss i n g the
current file directory is switched to the
initial directory, a list of needed routines
(by entry names) is typed by the loader and

DORMN1 is called so that the user may type the
USE command. Upon completion of loading, the
culrent file directory is switched to its

USE

CTSS PROGRAMMER'S GUIDE Section AH.7.04

i n i t ia 1 s ta t us •

When USE is tyfed by the user, LAED reinstates
the last common file switching and restarts the
loading process. All of the arguments
available to the loader are therefore available
to USE. us~ may be used to satisfy a NEED
statement, or to load adjition~l routines in an
existing file originally created by LOAD or
LOADGO types of loading.

LAED LOAD sets the origin of the first program at
(7000) 8. rhe MOVIE) table and the loader are
left inviolate below this oriJiD. COeMON
addresses are relocated with the same parity as
on the assembly listing. FAP coded subfrograms
which contain the B VE N pse ujo op, will be
loaded with relative location 0 in an even core
location. Upon ~ompletion, all loaders call
CHNCOM with an available core image specified.

LAED LOADGC is e~uivalent to the sequence of a LAED LOAD
followed by the command START.

LAED VLOAD After the entire progr~m and library
subr~utines hdve been lCADed thP program is
moved down so that the origin is (30) 8,
covering the loader: and the ~CVIE) table. rhe
(316)8 w~cds of erasable COMMON are included
with the prcgram. The MOVIE) table will be
preserved if MOVIE) occurs in the transfer
vector cf any routine loaded.

LAED NCLOAD is the same ~s VLOAD except that the (316) 8
words of erasable ~OMMCN are not included and,
therefore, if library sutroutines which use
erasable common :'!J:e includei, a COftftON
assignment error message will be printed.

Aftar the user has typed any of the atove LAED or USE
commands, LAED attempts to ~erform the indicated loading
operations, and prints on-line alarms to report error
conditions. These alarms are caused by three conditions:

1. overflow of LAED tables or core memory (fatal).
2. Missing file:; or entr:y points (ncn-fatal).
3. More than 1 entry fOint with the same name

(non-fa tal) •

If the loading is successful, the final operation performed
by LAED is to produce the (MOVIE rABLE) file.

rrh~ MOVIE) table is created by
storage ~af cf all entry points

the loader to provide a
ot routines as they are

C r S S F 8 C G R AM MER 1 S GU I I:: E Section AH.7.04 7;66 6

loa:led. It is always wr:-itten as a file (MOVIE TABLE} in the
user's directory in tempcrarJ mode. If the entry MOVIE)
~ppaar:-s in the transfer vector of any routine loaded, by
VLOAD or NCLOAD, the MOVIE) table will be preserved by
movinJ it to the t::>p :>f the load. The f'!CVIE) entry points
to location (27B) which contains the MOVIE keyword which
:ontains the number of wcrds in the movie table in the
j~~r:-em~nt and the location of the lowest word in the movie
table in the address. 'Ihe format of the MOVIE) table,
stattinJ with the l::>west location, is:

1. fence
2. Lowest common bxeak (address)
3. SVN pcefix
4. Memory bound (address)
5. BCD entry name
6. Entry feint for pt·evious name (address)

Pairs of w::>cd 5 and 6 for each
entry tc the subprogr~m.

7 • s v N p r:- e fix or P Z E 0 , , n , w here t be r e are
n wcrds in this program's transfer vector.

e. origin o f t his subprogram (address)
Repeat groups 5 through 8 for each
subfrcgram loaded.

The format of the MOVIE) table ~reatej in conjunction with
~n (UNLD) loadinq dCgllment is identical to the above format,
except that item 7 is:

7. SVN prefix cr- PZE m, o, n, where there are m words
in this pr3gcam and n words in its transfer vector.

as a Provision has been made to allow the use of LAEt
subroutine during execution of an otject program. The
or LOADGO entries tc LAED cause the loader to insert
subroutine entry (LOAD) in the MOVIE) table. Since
entry (LOAD) is part of the loader itself, {LOAD) is not
in the MOVIE) table when VLOAD or NCLOAD is used. For
same reason, a VLOAD or NCLOAD may not be initiated from
objact program during execution.

LOAD
the
the
put
the

an

Th~ usar calls the loader by issuing the instructions

TSX (LCAD) ,4

*** LIST, ,N
(art:or return)
(normal return)

LIST is the start of an array containing the file names to
b~ loaded either right-justified or lett-justified stored
forwards in memory. N is the length of the list.

*** controls the printing of missing sutrcutines~
PlP. these will be listed by LAED. The messa~e

If *** is
will be

CTSS PROGRAMMER'S GUIDE Se~tion AH.7.04 7j66 7

supressed if MZE is used.

Whether or net the on-line printout of missing subroutine
n~mas is requested, the e~ror return is taken when one or
more routines or files are missing. When this happens, the
AC =ontains a pointer to the list of missing subprograms so
that the user may use the information as he desires. The
list tarminates with a wor-d cf all zeroes. If only files
~ra missing, the AC is zero.

LIST may contain any desired loader commands such as (LIB),
(NLIB), etc. If the sequence (GET) BETA is used it should
b~ :tt the end of the list. If it occurs elsewhere, the r·est
of the list will be ignored.

CTSS PROGRAMMER'S GUIDE Se::;t ion AH. 7. 04 7/66 8

(LOCATIOM)8

0-7
10-23
24
25
26
27

30

6431

i

rooo

CONTENTS

ZERO
EOOTSrRAP for NCLOAD and VLOAD or TSX LOAD,4
1 S X (0 R G) , ij
TSX (OHG2),4
'ISX (DRG3) ,4
MOVIE) Keyword

LOADER VLOAD: NCLOAD:

FOB PROGRAt1 PROGRAM
LOAD, COM ~ON COMMCN
LCADGO TO TO

(77461)8 (77461)8

ERASABLE
COMMON
ro PROGRAM
(77777) 8

fliOGRAM MB3

COMMON PROGRAM

ERA SABLE l1B2

COMMON

FFOGRAM

MB1

MB3 = 30 + 77461 - COMMON BR!AK + PRCGRA~ LENGTH
MB2 = 316 + MB3
MH1 = 6431 + MB2

(E NO)

CTSS c---.&...:. _...._
JC.., \..&.VU

Exa~ut~ saved programs from common files
OJ

AU , f\C:.
n&leleV-.1

1 'l "!C. G
I'-' V ..1 1

DO enables the u~er tc execute saved programs from his
=ommon files or from the public file 1irectory without using
links.

Do n NAME ar 9 1 ar g 2 •••

DO will switch t::. the directory specified, lead the
saved file "NAME SAVED" into ~ore, and start it at location
2 4 (8) • No machine con d it ions ar e r est ore d • 11 N AM E" w i 11
have its arguments available to it just as if it had been
RESUMEd.

Tha parameter "n" specifies the location of
f i 1 e. I f "n " is "* ", the E a v e d f i 1 e is 1 cad e d

the saved
from the

:.:urr2nt direct;:}ry. If "n" is "P", the savej file is loaded
from the system public file (M 1416 CMFL04). If "n 11 has any
other value, the saved file is loaded from the user's common
fila "n "·

(END)

CTSS PP.CGP.!!!MER'S GU !D.E

Simulation of the loading commands
PLOAD

12/69 ,

PLOAD simulates the l~ading of a system through the use of a
load file. It will fr.-oduce a list of missing files and/or
subroutines, if any, as well ~s a ~ross referenced storage
map.

PLCAD NAME -type- -'COMB'- -'NOLIST'-

NAME The primary name of the LOAD file from which the
list cf files is tc be taken. The secondary name
is "LOAD" and the file raust be line numbered.

type may be used to specify the type of loading
desir-ed. If a type of "NCLOAD" is used loading
will be simulated st:1rting :1t 30(8); if the type
is "VLOAC" the loading will t:e simulnted ~tarting

from lcca tion 346 (8) ; otherwise 7000 (8) is used
when preparing the cr-oss reference stordge mdp.

COMB is used when one or more of the files is a library
(i.e. contains more than one program) •

NOLIST is used t3 suppress the creation of the cross
reference storage m-:1 p (NAME STC,AF).

Un1ar the present implementation of PLOAD it is net FOssible
to use the special Oftions re~ognized by the LAED loaders
(~.~. "(LIBE)", 11 (SRCH)", "(CFLn)" etc.).

Not~ also that PLOAD does not relocate program common, as is
done by the relocatable loaders. Therefore, if any common is
usaj, the loading addr-esses shown in the storaqe map will be
incorrect by the amount cf common in use.

(EN D)

C 'I' S S P R 0 G R A l'l M R ~ t S ~ (j T 0 F.

Set executicn timing resfonse
BLIP

12/69 1

To allow a user to set his 'blip' switch from command level.

To set the 'blip':

BLIP -n-

If 'n• is not srecified, it is assume:l 2. If n • NE. 0, the
~Qmmand responds with •rype: •. The following characters, up
to but net including the carriage return, and to a maximum
of threa (12-bit character:s) will thereafter be typed on the
user's terminal every •n• seconds of execution time.

To r e.s e t (turn off) 'b 1 iF ' :

B II P 0

The switch indicating that the user h~s his 1 blip' option on
is resat, and the c~mmand exits.

The character sequence 'space backspace' is useful, since it
]oes not cause any printing, but gives evidence of execution
timing by the carriage mction.

Note: Swap time and disk-comm~nd loal time are not included
in •execution time• f~~ this application.

(E NO)

!> e ct ion A H • 7 • 0 8 12/69 1

Dispatching to and Accessing TIP Utility Erograms and other
O~ta-manipulation Programs
RUN

Tha RUN system pr~vides a uniform method cf obtaining access
to programs associated with the use of the TIP
llta-manipulation system.

TIP usars have occdsi3n to employ many different programs in
the process cf e5tdblishing data bases, manipulating data,
and forrnating useful out~ut. Some programs are of command
status (e. g., CEt), s::>me are public commands (e.g., TAPLF),
some are m a i n t a i ned in TI P c om m on f i 1 e s (e. g • , S 0 RT) , so m e
~ra acc~ssible exclusively through the RUN system (e.g.,
PUTOUT), and some are EDIT, FAP, and MAD pro~rams written
1n1 m~intained by individual users for their own FUrposes.
The RUN system makes ~ccessible in a uniform manner programs
ot 1ll five types. 'Ihis simplifies the maze of links, saved
f i l e s , c a ll .i n y ,:) e y u e n c e s, e tc • , 111 h i ch con f r on t s t he : I S S
us~r. Tha system insulates the user from ~hanges in system
OLJ:ini Zc1tion, ~tc. and celieves him from maintaining many
links to many saved files.

The RUN system permits a number of pro~rams to be loaded in
1 singl~ saved file. If these programs call many of the
same subroutines, then by eliminating the duplication of
th~se subroutines oveL many saved files disk storage is
conserved, at the cost of a very slight increase in
ax~::ution time.

The calling sequence for RON is:

RUN COMAND -ARG1- ••• -ARG17-

COMAND is any frogram listed in the file, BUN SYSTEM,
which is descLihed below; or any TIP co•aand, or
any saved file in the user's current file
directory, or any public command or any crss
cotr ma nd.

-ARG1- ••• -ARGn- are the arguments to COMAND. if any.

C T::; S F B C G RAM M r; R' 3 GU It E Section AH.7.08 12/69 2

RUN reads an interna 1 table to J.e termine if COM AND is a RUN
:Jmrnana, dnd it s::>, which saved file contains it. RUN theu
attaches to TIPFIL, M4959 CMFL02, ~here the RUN saved files
inj TIP commands are tound and attempts to resume the proper
s;1ved file. If the desired S3.Ve:i file cannot be found
thare, RUN will lo~k in the user's own directory. If this
is unsuccessful, RUN attaches to the public file, M1416
C['1FL04, and makes ancther ~ttempt. If the saved file is
still not found, COMANC is assumed to te a CTSS command and
NEXCOt1 is called. If COMAND is found in a saved file, RUN
r~sumas the pr::>per saved file, transferring control to the
Cdlled pro~ram, exce~t when the progr~m is contained in a
RUN s~ved file, in which case an intermediate program
returns to free storage all subroutines not used by the
;::tll~J COMAN£ before tr-ansfering :::ontrol to the entry point
of COMAND.

Tha 6-bit line-marked file, RUN SYSTEM, in M4959 CMFL02
contains a list cf all av1ilable RUN programs and the saved
fil~s in which they are found. It may be LINKed to by any
user and PRINTed:

run lirk run system m4959 cmfl02
run print run system

A user wishes tc ccnvert some personal information to IIP
format. He miyht use the followiny se~uence of commands:

run eda my field
FILE MY FIE LD N 0 ·r F 0 U NO.

Input
*! name!aJdress!fhone

Edit
file
•
run reduce my field my fl1 052 041
1 items in, 1 out.

, ... rn ro ~ n no,., ron a M u on • e ,.. fl T T\ 1:11
\... .J.JJ ri."\V~L,ftUliJ..IL\ ~ ~ U.&.IJJ.J

run eda my input

Se:::ticn AH.7.08

FILE MY IN PUT NOT FOUND.
IDfUt
•
! name John D. Smith
!address 2 High Road
! p h one 8 6 4 -6 9 0 0

Ed it
file
•

12;69 3

run reduce illY input my data 052 041 (tabl) my fld
1 items in, 1 cut.

The file MY DATA now ccntains riP-searchable information
i~tailing the personal situation of John D. Smith.

Supposa that a user had a large file named CIG DATA
containing data about newsfaper articlEs on cigarettes,
including the authors• last names in field 3 of each item.
Then,

run sort cig datd ciq sorted 3

will cr2ate the file CIG SORTED with items sorted
alphabetically by author's last name.

If a user wants to put all files with first name LASER into
~ tape (or disk) file LASEH FILE, and to delete the Eeparate
files, he might ~roceed as fcllo•s:

run listof (off) laser direct laser * (lnall')
run putout laser direct laser file
run deldir 1 aser direct

If he later wanted to know just which files were in the file
LASER FILE, he cculd:

run p laser direct

:1n:i to ~et the separate files h3.:::k, ha could:

run pullin laser direct laser file

These examples illustrate the uniformity which is dVailable
to the occasional user of CTSS, when he is using frograms
related to data- maniFula tion. PUTOUT, DELDIB, REDUCE and
PULLIN ~an be reached only through the RUN system; SORT and
LlSTOF are indefendent saved files kept in TIP common files;
=tn1 EDA and fare CTS5 commands. However, the user need net
know or reroember these facts. He can reference the programs

CTSS FBCGRAMMER 1 3 GUICE s e ct ion A R • 7 • 0 8 12;69 4

h~ ne~js ~uite eff~cicntly using the single vehicle cf RUN.

Tt1e RUN cornirands presently available are these:

ADDJN, APPND, ASC:HK, ASEMBL, BLIP, BSSEDT, CARDMK,
cur, DEL.CIR, DDUELE, EXPAND, FIBCHK, FPRI5T, FRECUE,
INTERM, IFATCH, MAKCOt, MAKLOD, MAKTIA, NOTE,
Pu·rJUT, Qt:DII', ttEDO, REDU:E, REJOIN, REMAI<E, RENUME,
SAMPLt~, SE<:;UEN, SPREAC, SQUASH, TALLYB, 'IALLYT,
TSTOCK, UPSORT.

rhe TIP corrmands presently available include:

CALC, CJMPIL, :VFILE, DCALC, DISPIC, DISFlY,
FORMAT, FREI, LAEEL, LISTOF, MERGE, RNAME,
SIZE, SORT, TAP, riP, VERIFY.

EDIT,
SETFIB,

CHKPIK,
INtBX,

PULLIN,
REV NAM,
TRIPLE,

ENTCNT,
SHARE,

Wh~nev~r a ndme c~nflict exists between, e.g., a public
~omman1 and a RUN c3mmand, then only one program can be
r· e fer en c e d t h r o u g h the R UN s y s te m • For t h i s purpose, RU N
~omman1s take pr~cedence over TIP commands which take
pcecedence over ~rivate commands which take precedence over
publi~ commdnds which take precedence over CTSS conmands.
An up-to-date listing of the BUN comm~nds is kept in the
fil~ RUN SYSTEM.

(END)

e ,. •.: ~~ 11 u u f\ f\
oJIW""\..LVU nueu.vv

G~n~ral discussion of detugging commands.

Thare are three different kinds of commands within CTSS, one
of whi~h is of nc imfortance in this discussion. The first
kind is often referred tc as ~ "disk-loaded" command. rhe
iistinctive pr~perty is that the supervisor leads the
command from a cere image SAVEd file and thereby eliminates
1ny previous core image the user might have had. The second
kind is often refeLred tc as a "core-B transfer" command.
H~r~ tha distinctive property is that the superviscr does
not load the command, but instead, transfers to the
r~locatin1 loader which is already in core-B. The loader
then determines which command is specified and proceeds to
loai the command fr:>m a stand:trd BSS library file (1'SLIB2)
into tha area ot c~re above the current core image. If the
command bas already been loaded, the loader merely transfers
to the desired entry point.

Sam~ ot the present debugging commands are core-B transfer
commands. The earliest routine available to C!SS was
~~lled FlEXFM which includes the commands FM, PATCH, STOPAT,
and TRA. More scphisticated comm:1nds have been written more
recently, such as FAPDBG and STRACE. These routines are-
ihla to make use ~f the tables created ty the translators
and the loader, such as the MOVIE) table and symbol table
fil?.s. The use of these commands imposes some restrictions
on the user, namely that the vanishing and absolute loaders
not ba used and that the symbol tatle files from the
translators be available and of the proper format.

Programs which extend the memory tound during execution
~raate some problems in connection with the debugging
routin~s. Note that the cor-e-B transfer- commands are
r-elocatatle BSS subroutines ~ith normal entry points. If
the dabug~ing routine is loaded after the program has
started execution, there may be a conflict about the space
:l:quired by expanding ~emory bound. Therefore. the solution
is to force the debugging subroutines to be loaded with the
pro~ram before execution. This may be accomplished either
by placing one of the entry points in a tr:lnsfer vector of
ona of the loaded programs or by use of the special
a~guments to the LOAt command.

Th~ SF command is a disk-loaded command which may
on l y by t he system p r o g ra m s f o r pa tc hi n g core -A.
~~mman1 may generally be used for examination of
in core-A.

be used
The s r;

locations

The MADbUG cc~mand is d disk loajej command which serves as
:tn intermediate supervise~ between the user and the crss

CT~S PROGRAMMEd'S GUIDE Se8tion AH.H.OO

s u per v is o L- • MAD B UG a 11 o ~ s t he use r to s pe:; i f y a M A r sour c e
Eil~ rather than BSS file. ~ADBUG manages all the calls to
the MAD translatcr and the aF~ro~riate loader so that the
Lestriction~ imflied by
~s ~vi1ent to the user.

the core-J tr~nsfer routines are

(END)

CTSS F BGGRAiiii EB~S GUIDE ,. - _.._ .: -- • n o f\ 1
;:>~\..\..LUll nn.u. v'

FAPDBG - A symbolic debugging aid for PAP program
R. H. Campbell

FAPDBG, as a symbolic debugging aid for FAP programs, was
pro:iuc~d as an experiment with typing conventicns and
formats. FAPDBG acts upcn requests typed by the user on the
=onsol~ and performs 3Uch functions as examining and typing
or changing the contents of specified registers and allowing
~ subprogram t~ be run in controlled segments.

CC-216 FAPDBG, a symbolic debugging aid

LOAD
FAPDBG
requests

NAME 1
ALPHA

ARGUMENTS

R. H. Campbell

Th~ FAPDEG command can be issued anytime a program is
dormant and the loader is available, i.e., may not have been
lo:1:ied by a self-erasiny loader. If the program extends
memory bcund or damages the lo~der, FAPDBG should be called
b~fore execution. 1he FAPDEG coMmand calls the loader to
lodd the FA PDBG subprogram from the de bug 1 ibrar y, "'I SLIB 2".
FAPDBG uses the l~ader•s symbol and loading tables to build
its own symbol table (BOO symbols maximum) for the
subprograms which the user wishes to :lebuJ. FAFDBG is
ipproximately (12400)8 locations in length.

If tha line-numbered file ALPHA DEBUG can be found, requests
are taken frcm there. When ALPHA DEBUG is exhausted, not
found, or not specified, requests will te taken from the
console.

Convent ions:

1) A request is a single letter request name followed
by arguments, all separated by tlanks.

2) A blank is a string of any number (not zero) of
spaces ~r tabulations.

3) Any number of requests may be concatenated on one
line by typing an apostrophe or an equal sign
between successi1e requests. Concatenation is
recommended since PAPDB~ will be brought into core
less often and will generate less output.

4) If a request cannot be accomplished, FAPDEG will
so inform the user and ~eturn tc process the next
request.

C r S S f R C GRAM Pl.E R '5 GU ICE Section AH.8.01 Page 2

5) syntax- rhe location, address, tag, and decrement
farts cf a reguost :tr.:Jument may ~onsist of strings
of symb3ls and ~£t2l numters separated by ~lus and
minus signs to denote the desired algebraic
manipulation. ·rhe indicated operations ar.-e car.-ried
out, any negative result is converted to two's
comFlem8nt fcrm and the r.ight fifteen bits saved
(in the case of the tag field, only the r.- ight
three bits ace :;aved). syml:ols, which must be
defined, may ccnsist of ~ny number of characters,
at 1 east :> n e :> f w hi c h must be non- n u mer i c (i .. e. ,
not 0 thr.-ou':lh 7) , and none of whi=h may be one of
tha special chacdcters plus, minus , comma, space,
or tabulate. If the number of ~haracters is
greater than :;ix, only the l~st six will be used.
Any string consisting only of the digits 0 through
7 will be considered an octal number of five
digits, with left zeros if necessary. If more than
five digits are tyfed, only the last five will be
used. rhe line typed in is scanned from the left
and each field is eva 1 ua ted when encountered. If
an undefined symbol is discovered, or a deviation
from an underst~ndable form~t is :iiscovered, an
appr::>pciate comment is typed and processing of the
request is terminated. If one or more requests
cannot be interpreted, any ~o or £roceed re~uests

fcllowing them on the same line will be ignored.

c·rss FBOGP.AMMEP.'S GUIDE C a,..+ ..; ,... ft ll U Q (\ 1
.._, "-" "" \... 4. '-'.&A R .&.A • V e V I

Thare are four classes of requests: set up, register
examination and modification, subprogram control, and FAPDB;
control.

Tha sat up requests ace necessary to tell FAPDBG which
subprograms are to be debugged and allow FAPDBG to build the
n~::assary symbol tables. These requests are ~oad address,
symbol Iable, ~ork, and jquals.

LOAD ADDRESS: L EN'l'RY

ENTRY is an entry point of the subprogram to be
debu~ged. 1he origin of the subprogram will be
tyred cut and will be used as the relocation
constant for all symbols within that
subpcogr am.

SYMBOL TABLE: r - NAftE 1-

All the symbols from the file NAME1 SYMTB will
be relocated by the origin printed from the
last L re1uest and placed in the FAPDBG symbol
table. Note th~ t this means absolute symbols
and COMMON (except for the first-loaded) will
be inccrrec t.

Successful comfletion is signalei by "SYMBOLS
LOADED". If the FAPDBG symbol table becomes
full, the last symbol entered will be typed
out. Rote that the symbols in the SYMTE file
are in alphebetic order.

If NAME1 is omitted, all of the symbols will
be deleted from the FAPDBG symbol table.

WJRK: W ENTRY -NAME1-

W is the ::ombina tion of L and T requests.

N A l1 E 1 need n c t be s pe~ if i e d if E ~TRY and N AM E 1 ar e
the same.

EQ U A LS : E FE F S

FS is the syml:ol to be entered in the symbol
table with the va 1 ue of the expression FE.

FE is a FAP expression involving constants and/or
symbols dlready entered in the symbcl table
(see ccnvention 6.)

cr .S S f B C G RAMMER ' 3 GU I I: E section AH.8.01 Page 4

Th~ r~1ister examination and modific3ticn requests fermit
the user tc examine and change the contents of core
locations as well as the live registers. They are look
(floating point, Hollerith, full word integex:, decrement
integer-, octal, symbolic), deposit, compare, signed and
logical accurnulat~r, and storage map.

L 0 0 K : - r e -j u e s t - - L 0 C l- - L 0 C 2-

r~quest sets the output conversion mode and if an
argument is spe~ifiej, prints the specified
locdtions. Request may be one of the
fcllowin(_J:

F F loa ti ng point
H H:>ll er it h
I Full word in teye r
J recrement inte<:Jer (Fortran)
o Oc ta 1
S Symbolic

LOC1 LOC2 dLe FAP symboli= expressions specifying a
block of core from LOC1 through LOC2.

DEPQ SIT:

LOC1 Sfecifies a single location.

The contents of a single location in the
current output mode may be obtained by typing
just the location expression without the look
request with the restriction that the first
symb:>l in the expression may not be a single
letter. rhe contents of "* + 1" may be
obtained by an empty request (just a carriage
retur:n or concatenation character).

D LOC F W

FW is the FAP ~ora to replace the pr-evious
contents of location LOC.

This ce1uest may be abbreviated by omitting
the request name, provided that the location
exrressicn does not be~in with a single-letter
symb~l. rhe FAP word may be a symbolic machine
in~truction such as CAL ALFRA-10,4 or one of
the data generating pseudo instructions o:r,
BCD, FLO, TNT (full word decimal integer), or
JNT (decrement integer) followed by a blank
and cne word of data.

C" ~ 4. .: ~ ~ • u 0 "1
~<t:;""\...LVU AUeUeVJ

A symbolic machine instruction consists of a
symbolic Oferation code, an optional asterisk
to indicate indirect addressing, and an
opti~nal variatle field in the same format as
accepted by FAP, except that all numbers are
interpreted as ~£~!! and that multiplication
and division are not allowed. No blank may
intervene between the operation code and the
indirect flag; a blank must, however, precede
the variable field. Note that since the
address field is t ru nca ted to fifteen bits,
the left three bits of the address fart of
tyfe D instructions (left and right half
indicat3r operations) will be considered by
FAPDBG as the tag field, both for input and
for 3Utput. Thus to insert the instruction

RFT 300105

it is necessary to type

RFT 105,3

rhe OCT fSeudo instruction dccepts d siJned or
unsigned octal integer of magnitude less than
:Jr: e:.~ual to 177777777777 .. Thus, to insert the
traditional fence, it is necessary to type

o:T -377777777777

The FLO pseudo instruction accepts a. siyned or
unsigned floating point numter with cpticnal
decimal ~oint ~nd optional E modifier to
den3te ~ultiplication ty the indicated pcwer
of ten. rhe B modifier is not allowed.

The INT and JNr pseudo instructions accept
signed or unsignej decimal integers of
sufficiently small magnitude to fit into the
number of bits avail3ble (34359738367 foe !NT
and 131071 for JNT).

The net pseudo instruction accepts any string
of characters freceding the request terminator
and dssembles the last six into one wcrd. If
fewer than six characters are typed, spaces
will be inserted on the left. ~ote that this
FSeud~ instruction uses the input line image
a f te t FA PDB:J has edited :1 nd "nor mali zed" it.
Therefore a string of spaces and tabulations
will be inter{:reted as a sin3le blank..

COMPAHE and VERIFY: C ENTHY -NA~E1-

CT S S F B C G R AM M E R ' 3 GU I C E Section AH.B.01 Page 6

E~TRY is the entry point of a subprogram already
leaded in core.

NAME 1 ass .i.s the name of the file which is to be
ce>mpared with the core image of ENTRY. NAME1
need net be Sfe~ified if it is the same as
EN 'IR Y. •

c by using the origin value of the ENTRY
subpr~gcam, it will read and relocate each
word in NAME1 BSS and compare it with the
corresp~nding word in core. If a discrepency
is found, FAPDB3 will type in the current mode
the l~cation, the word frcm NAME1, and the
contents of the memory lo~ation for which
ther-e is d discrepancy. "EXAMINATION
CONCLUDED" will signal the completion of the
request. The reyuest may be terminated by a
single interrupt; FAPDBG will close the BSS
file and return to process the next request.

ACCUM ULATOH: A -F W- or K -FW-

A places the FAP word 'FW' in
accumulator and clears the P and Q

the signed
bits.

K places the FAP word 'FW' in the logical
accumulator and ~le~rs the sign and Q bits.

A (or K) without :1 rg omen t types out, in the current
me>de, the contents of the signed (logical)
accumulatot followed by the P and Q (sign and
Q) bits.

S ·r 0 RAG E ~ A P :

requests the typing of the storage map
sub pro g r a rn s 1 i s ted i n or d e r o f 1 o ad in g •
map include~ the origin and entry points
thei I 1 oca tions.

The requests which have to de with subprogram control
tha user to run his subprogram in controlled segments.
ir~ Qreak, ~o, and ~r~ceed.

BREAK: E -LOC-

with
The

with

allow
rhey

Condi ti.>ns FAPDB G to insert a "breakpoint" at
location LOC. FAPDBG will save the location

CTSS t:RC£;RAMM r:R 1 S GUIDE Sect ion 1\ u Q (\ 1 a:• a.•. V e V I

,
I

GO:

PROCEED:

and set an indicator to signal that a
breakpcint instruction, specifically a
transfer into FAPDBG, is to be inserted into
that location. No subprogram modification
occurs at this time. An examination of the
breakpoint location will reveal its original
contents and ch~nging the contents (!~~ a
deposit request) will not remove the
breakpoint. The breakpoint must not be placed
at a subprcgram-modified instruction or where
it would be used for indirect addressing.
Only one breakpoint at a time may be inserted.

The omission of LOC in the request causes the
breakpcint to be removed.

G LOC

Allows the user to start execution of the
subprogram at location, LOC. FAPDBG will
exam1ne the breakpoint flag and, if a
breakpoint exists, will save the contents of
the bre~k location and insert the necessary
transfec instruction. It will then restore the
machine conditions, and transfer to the
specified location.

F

AllJws the user to continue executing his
subprogram from the state it was in just
before control last entered FAPDBG. Upon
encountering the breakpoint t~ansfer
instruction, control will te transferred to
FAPDBG, which will s:t ve the machine conditions
and restore the temporarily-removed
inEtruction at the break location. FAPDBG will
then type "BREAK." and wait for reg uests.

Rrcceed will cause FAPDBG to perform all the
steps performed by qo, except that after
restoring the machine conditions, FAPDEG will
execute the atove-mentioned instruction and
transfer tc the appropriate location fcllowing
its !Jcation as governei by any skipping which
might occur. If the instruction is
locaticn-dependent, namely TSX, STR, STL, or
XEC, FAPDBG will interpret it as if it were
being executed from its normal location. Thus
a breakpoint may be inserted at a subroutine
call. A chain of XEC instructions will be
int~rpreted to a maximum depth of ten. A
sub p r og ra m i n c pe ra t i on m a y be i n t err up t e d a t

C T S S F F C G R A M M E R ' 5 GU I C E sect ion A H. 8. 01 Page 8

dny time by pressing the interrupt button.

Tha request which controls the internal operation allows the
user to return tc c 'ISS. It is gui t.

QUIT:

stat us.

Returns control to the Time Sharing Sufervisor
in such a wa 1 that ::t START co11mand will
transfer control to the place in the user's
subrrogrdm where it last entered dormant

The following symbols are permanently defined in FAfDEG as
lo~::ttions where the machine conditions are stored.

$MQ The multiplier-quotient register.
$A 1he signed accumulatcr
$K The logical accumulator
$SI The sense indicator register.
$X1 Index register one.
$X2 Index register t•o.
$X3 Index register three.
$X4 Index register four.
$X5 Index register five.
$X6 Index register six.
$X7 Index register seven.
* The current !~cation.

This symbol is defined as the last location
referred to by either the user or FAPtBG. It
is redefined as the location of the next
insttuction tc be executed in the user's
subpc ~gram by encountering a br-eakpoint or- by
a manual restart.

:SLS Lights and switches.

rhis location contains the state of the
machine conditions in the ri~ht-most eight
octal digits as listed below; the off status
is represented by zero, on status by one.
Reading from left to right:

DIGIT

5
6
7
8
9

10
11
12

C' ,..,.. + .; .-....,. AU 0 (\ 1
>J ~~;;;~o~ ... 4 'VI u n '' • u • v •

CONDITION

Floating point trap mode.
Divide check light.
overflow light.
Multiple ta9ging light.
Sense li~h t one~

Sense light two.
sense light three.
Sense light four.

$IC The instruction location counter.

rhis location contains the address of the next
instruction tc be executed in the user's
subprogram. It is set ty encountering a
brea kpci n t or by a manual restart. It is
examined by the Eroceed request in order to
deter- mine the loc3. tion to which to transfer
control.

CTSS PHOGRAMMER'S GUIDE section AH.8.01

!!~~_1!g,.§1

A FW
A
B LOC
B
c EP FN

c EP
D LOC FW
E FE FS
t'
F L3C
F LDC1 LOC2
G LOC
H
H LOC
H L:>C1 LOC2
I
I L:>C
I LOC 1 LCC2
J
J LOC
J LOC1 LCC2
K FW
K
L EP
M
0
0 LOC
0 LOCl LOC2
p

Q
s
s LGC
s LOC1 LCC2
T FN

T
w EP FN

w EP

CLA =Fw
Type cut ~igned AC with P and Q
Insert bre~kfcint at LOC
Remove breakpoint
Ccmpare and type discrepancies of subprogram
EF and FN BSS.
C EP EP i.e., EP and FN ~re identical.
Deposit =FW in LOC
Define symbol FS equal to expression FE
Set output mode to floating point
Set floating point and type C(LOC)
Set fl)ating point and type C(LOC1 thru LOC2)
Go to LOC
Set output mode to Hollerith
Set Hollerith and type C(LOC)
Set Hcllerith :1nd type C(LCC1 thru LOC2)
Set ~utput mode to decimal integer
Set integer and type C (LOC)
Set integer and type C (LOC1 tbru LOC2)
Set output mode to decrement integer
Set decc em en t integer and type C (LOC)
Set decrement integer and type C(LOC1 thru LOC2)
CAL =F W
Type l:>yical AC with s and Q.
Find and type origin of subprogram EP
'r ype stoc age map
Set outF ut mode to octal
Set octal and type C(LOC)
Set octal ~nd type C(LCC1 thru LOC2)
Proceed (location in SIC) or interrupt
after break
Quit and return to CTSS
s e t c u t p u t to s y m bo 1 i c
Set symbolic and type C (LCC)
Set symbolic and type C(LOC1 thru LOC2)
Add symbols from FN SYMTB to symbol table
(relocated by last origin typed out)

R em o v e a 11 s y mb ol s f rom s ym b o 1 tab 1 e
L E P ' 'X P N ; w or k s u b pro gr a 11 E f w it h
symbols from FN SYMTB
L EP 1 T EP: F N is identical to EP

(END)

C T S S r P. C G R A~~ E P. ' 5 GU I t !

MADBUG - A MA£ Debugging System
Robert s. Fabry

S e ct ion A H .. 8 .. 0 2 Page 1

MADBUG is a system under which the user can create and debug
programs written in the ~AD Frogramming langua~e. MACBOG
~llows the usee t~ input and edit symbolic programs and to
execute in a controlled way and interrogate the derived
m~=hine language pLograms. The most important consideration
in tha design of ~ADEUG ~as ease in learning and using, both
foe the t:eyi11ner and for the advanced programmer. M.ADBUG is
unusual in that it utilizes information which has been
pr·eviously ignor:ed. This information comes from: (1) the
s~quenca in which the user types his requests, (2) the files
available in the user's file directory, (3) the expanded
information content ~f the new MAD symbol table files
developed tor MADBUG, and (4) the information inherent in
the vary limited, stylized set of coding sequences generated
by a comriler. rhe use of this additional information
manifests itself in two ways: (1) the user need provide very
littl~ information to accomplish a given task, and (2} the
user does net have to understand assembly languages,
m1~hin~ languages, :>ctal nllmhers, relative or absolute
addresses, symbol tables, ma=hine representations of
~ on stan t s , o c an y of a host of s im i 1 ar it ems. T he M At BU G
requests of CHANGE, DELETE, INSERT, and APPEND demonstrate
tha inf 1 uence of the "Expensive Typewriter" program written
for the FDF-1 by Steve Piner. The "DDT" program written for
the PDP-1 by Robert saunders ~nd the "FLI'r" program written
for th~ rx-o by Jack Dennis and Thomas Stockham have
influenced the OPEN, VERIFY, BREAK, and KILL r·equests.

CC-247 and Mac-M-205
Fabry

M A D BU G : A M AD DEBUG GIN G S Y STEM R • S •

C r S S F B C GRAMM E R 1 3 GU I C f Section AH.8.02 Page 2

A [ES C R I PT ION 0 P M AD BUG

MADHUG is instructed by requests, typed one per line. A
request line is made Uf cf the name of the request follo~ed

by its dr~urnents, with one or more tlanks for separation.
Request names may be abbreviate1 by their first letter. In
r~quest lines, tabulation characters are equivalent to
blanks. There may be blanks before the request name and
1tt~r the last aryument; bldnk request lines are ignored.
Since blanks are used as delimiters, the arguments, which
m:t.y ba as complicdted a:; "~ (1)+1 ••• b-3 11 , must be typed
without internal blanks. A request which operates on
variables will Oferate on single vari~bles or on blocks of
v1riablas, specitied in the usual MAD manner as
11 dlpha ••• beta"; a request which operates on cards will
op~rat~ on single cards or on blocks of cards. For example,
"verify alpha beta(1) ••• beta(3) k(1,1,1)" would verify, in a
s~nse described later, the variables ALPHA, EETA(1),
BETA (2) , 8 ETA (3) , and K (1, 1, 1) •

MAD BUG r e q u e s t s can be c 1 ass i f i e d into f o u r g r o ups: the e d i t
requests which are PRIN'I, DELETE, INSERT, CHANGE, APPEND,
MANI FULATE, and TRANSLAr:E; the core requests which are GO,
JPEN, VERIFY, LINKA3E, BREAK, KILL, SAVE, and RESTORE; the
r~quests for returning to CTSS which are CUIT and EXECUrE;
and the declarations which are WORK, USE, and FORCE. These
r~quests will be discussed in the next few sections.

Tha Work Re 1.JUest:

Th~ MADBUG requests are carried out in the context of a
single MAD subfrcgram. !he WORK request allows the user to
je~lar~ which subpr~gram is of interest. For examfle:
"work prcg" sets ur MADsu; tc work on the program in file
PROG MAD. The file PROG MAD does not have to exist. As
illustrated in the samfle session, if the user adds lines to
a non-existant file, MADBUG will create the file. Thus, if
th~ user is working in the context of a subprogram PROG, and
wishes to print a subprogram ROOT, he must first request
"work rootu and then may request "print".

Edit Requests:

MADBUG uses a different technique for editing than the CTSS
EDIT command. Neither the user nor MADHUG supplies a line
nllmber fer a card image. Instead of indicating a card image
by giving its associated line number, the user has three
options: (1) the statement ldbel on the ca.rd, if any; (2)
the card's position relative to another c3rd which has a
st~ternent label (the third card t:efore ALPHA is ALPHA-3; and
(J) the number of the card in the deck. (the 17th card in the
l~::k is simply 17). In counting for (2) or (3), the user
must count all fhysicdl c~rd images inclu1in~ Lemark and
:ontinuation cards. MADHUG interprets the ar~uments of a

CTSS PRCGRA~MEB'S GUIDE Page l

~~quest before executing the ~equest; thus, if a deck
consisted of three cards, "delete 1 2" would leave the third
Ci~J, but "delete 1" followed on anothe~ line by "delete 2"
would leave the second card.

In unusual situdtions there m~y be a long section of p~ogram
with no statement labels. The user is free to insert remark
ca~ds with statement labels in su=h a case. MADBUG, but not
tha MAD t~anslat~r, will allow references to statement
labels on remark cards.

Thr~~ special conventions exist for specifying statement
labels: (1} the"*" is always taken to mean the previous
::1r:l ~eferred t:> by the user, so that a "print ••3" after a
"print 6" would print the 9th car:l, and so that a "print
::1 l ph a .. • • * + 2 " w o u 1 d p r in t t h r e e car ds s t art in g w it h ALPHA •
(2) the "I" is always taken to mean the last ca~d in the
j~=k., so that, in a five card pro9ram, "print 1 3 5" is
identical to "print 1 3 I". (3) Requests which operate on
::i~ls will operate on every ca~d in the subprogram if no
cards are specified, so that "print'' is identical to "Frint
l ... I".

~ADBUG cbse~v~s thP stindarj ~onventions of horizontal
sp~~in}: the characters after a tab will te moved to column
12 and the characters after a t~b-backspace will be moved to
:::olumn 11.

Th~ dascription of several of the editing requests will
refer to input line blocks. An input line block consists of
::111 th~ lines the user types before typing a blank line.
The editing requests are defined as follows:

FRI NT will print all cards mentioned as arguments.

DELETE

Thus, "print~ (1)+1 ••• b-3" would print a block
of ca~d5 sta~ting with the card after the card
labeled A (1) and enJing with the third card
bef3~e the ca~d labeled B.

will delete all cards mentioned as
Thus, "delete" would delete all of
of the subprogram being worke:l, and
3 ••• 6" would delete the first and
through sixth cards.

a~guments.

the cards
"delete 1
the third

INSERT will insert successive input line blocks
bef~re successive cards mentioned as
arguments. rhus, one might see the following
sequence:

u:print
M:ONE
M:
U: insert

C T S S F R C G R AM ME R ' S GU I C E

U:zero
u :
U: print
M:ZERO
M:ONE
M:
U:insert 1 one
U: a
u :
U: b
u :
u: print
M:A
M:ZERO
M:B
M:ONE
M:

Section AH.8.02 Page 4

CHANGE will replace sucGessive cards or blocks of
cards, given as arguments, ty successive input
line blocks. A block containing any number of
cards may he replaced ty an input line block
of any length.

APPEND with nc arguments will append the input line
block which follows the request line to the
subprogram being worked. On the other hand,
if the request has arguments, they are taken
to refer to MAD subprograms which will be
iifpended, in order, to the program being
worked.

APPEND is also useful for creating a modified
version of a subprogram while keeping the
origin al • ·ro do t his , w c B K the n e w n am e,
A P P EN D the o 1 d n am e, and then ma k e
modifica ticns.

MANIPULATE is d request fer chara~ter manipulation within
a card image. rhe first argument Sfecifies
the ma ni t:ula ticn. Ar<J umen ts after the first
specify cards within which the maniFulation
will be performed. The first ar1ument has the
for~: 1***1***1 where the slash stands for any
sefaration or delimiter character which must
occur exactly three times, ani the strings of
astet:"isks stand for any pair of character
strings. the manipulation consists of
replacing all occurances of the first string
by the second string. Any character except a
tab or space may te used as the delimiter; it
is reccgnized by its bein~ the first character
of the argument. The two character strings
may include any ch~racters except the

C '! S S f B 0 G R A!! .M E H ' 5 c;u l 0 E sect ion A R. 8. 02 Page 5

delimiter and the carriage return, and they
may be of different len~ths. If the first
string is empty, it will be taken to match a
null string before column one on the card,
thus allowing a simple way of inserting a
statement label on a card. As a confirmation
to the user, MADBUG will print a list of cards
on which the manipulation is performed. If
the manipulation is performed more than once
on a card, the card will be included in the
list cnce for each time the manipulation
occurs. MADDUG does not consider replacing a
string by itself to change the symbolic
prcgram. thus the user can replace a string
by itself to locate all occurences of the
string.

TRANSLATE has no arguments, and causes the subprogram
being w~cked to be translated into machine
language by the MAD compiler. From the user's
point of view MADBUG is performing the
translation. It is not necessary to translate
any subprogram before using it. MADEUG will
request any translations that are needed at
load time. The TRANSlATE request is a
convenience to the user who is changing
several subprogr~ms at one time, and who would
like to catch any syntactic errors in one
before turning his tbOUJhts to another.

Th~ Use Request:

The core requests, which will be discussed in the next
s~=tion, operate in the context of a core image. MADBOG
must have soroe way of kncwing what subprograms to load when
=ca~tin1 a core iMage. The arguments of the USE request are
the subfcograms to be used. Thus a user writing a
subroutine BOOT and a test program MAIN might "use main
root". There are provisions for using FAP programs, special
libraries, and special loader p~r~meters; these provisions
~ra dascribed later.

Core Image Requests:

Some core requests require cards for arguments, and their
~r~umants observe the same conventions as those of the edit
requests. A core request which refers to a declaration or
remark card will operate on the first exe=utable statement
following the referenc~d card. Other core requests require
variables for arguments. A variable is given as an argument
in standard MAD n::>tation, including multi-dimensional arrays
and COftMON and ERASABLE v~riables, but not the dummy
~~~um~nts of functions. rhree special conventions exist 
for variables: (1) the "*" is always taken to mean the 



CTSS fFCGRAMMER 1 3 GUICE Section AH.8.02 Page 6 

pravious variable refered to by the user; (2) if no 
variables are SFecified, the request will operate on every 
v::~riabl~ in the pr-~gram; and (3) the block notation can be 
used to include several arrays or variables at once. 
V :l r i. a b l a s are taken t :» be or d ere d a 1 ph abe tic a 11 y ( w i t h a 
blank coming after· R, alas.) and then by linear subscript. 

Tha first time the user gives a core request, a core image 
must be created by MADBUG. This is accomplished by 
tr~nslatiug each ~f the needed subprograms into machine 
ldnguage, if necessary, loading the subprograms into core, 
in:l finally modifying .:iome of the subprograms in order to 
intercept illegal references to an array. If an error is 
:l~t~cted in this pr~cess, the core image will not be formed, 
and the core request will be terminated. The user should 
correct the error and try the core request again. The core 
im::t~e will be destroyed when the user issues the quit 
reyuest or edits a prog~:am oc::= uring in the core image. rhe 
~or~ r~quests are defined as follows: 

GO will start the user program. A single card 
given as an argument for GO will cause the 
uset· pr:» gr-am to be started at the named card. 
If no ar:yument is given, the user program will 
be started wherever it stoppe~ last. A fresh 
core image will start at the beginning of the 
main p rog ram. 

The user- f£oyram will remdin in control until 
(1) it terminates by calling DEAD, DORMNr, 
F.NDJOB, ERROR, or EXIT; (EXIT can be 
implicitly called by letting control reach an 
END OF PROGRAM or END OF FUNCTION card.) (2) 
a "breakpoint" is encountered by the user 
prcgrall; (3) the user interrupts by pushing 
the break buttcn once; or (!J) an array is 
referenced with subscripts pointing outside of 
the dimensioned array. (Some array dimension 
violdti~ns are not caught; this is discussed 
in a later .section.) en any of these 
occasions, control returns to MADBUG, and the 
user is informed of the reason. 

Infrequently, the user program may have an 
err~r which causes control to return to CTSS. 
In this caEe, the user should type tvo CTSS 
coremands, fit·st "save (user)'' to save his own 
core image and second "resume (mdbg)" to 
return control to the ::=ore ima~e on which 
MAtBUG saved itself. Even if the first of 
these commands results in an er~or c~mment 

from ClSS, the user should type the second. 
rhis rrocedure is called a manual restart. 



(""•]H . .,:: C t:: D ("\(""DAM M '&' D I CO £"11 T f"\ ~ 
........ o..~ o..~ .. L' v v u n .u L~ ~ .L\ J ~v ..L u .a;. 

r- __ .... .: ___ ....... lJI """' 

~c\wL~vu .ttn.o.uL 

CPEN will print the contents of variables mentioned 
as arguments, one by one, and after each, wait 
for the user to type a new value for the 
variable. If the user wishes the old va 1 ue to 
remain, he just types a carriage return. In 
typing 3Ut the value of a variable, MADBUG 
makes use of the de=lared mode of the variable 
and ~f the current value to decide whether the 
value should be presented to the user in 
integer, alphatet ic, floating-point, Eo olean, 
statement l:1bel, or fun~ tion mode. The user 
must type a constant for the new values in a 
form ccmpatible with the declared mode of the 
variable. It is possible to change the 
input/output form associated with a declared 
mode permanently or to override the normal 
ass~ciations for a single request. lhis is 
discussed later. 

One special note: because of the way the MAD 
c~mpiler works, one may change the effect of a 
transfer st3.tement by changing the value the 
variable which has the s~me name as the 
stat~ment latel to which the statement 
transfers. One may not, however, change the 
srop~ of a rHROUGH loop in this fashion, even 
by chanqing the value of the variable with the 
same na~e as the THROUGH scope. 

VEEIFY will cause the values of variables mentioned 
as arguments tc be compared with the values of 
the same variables in a fresh, unexecuted 
version of core. Each variable whose value 
has changed ~ill be printed with its present 
value. Its value in the fresh version of core 
will also be printed if it is non-zero. 

An Of tion is a va ilab le with verify; the user 
may specify any core image saved with the SAVE 
request to be used instead of the fresh copy 
~f c~ce discussed above. This is done by 
giving the name of the saved image fclloving 
the ce]uest n~me and before the list of 
variables to be varified. As the user will 
discover below, this name must begin with an 
asterisk, and can thus be recogni7ed by 
MADB UG. 

The discussion of output forms used for the 
values ~f variables, which was given under the 
OPEN request, also holds for the VERIFY 
request. 



CTSS PROGRAMMER'S ~UIDE Section AH.8.02 Page 8 

LINKAGE causes MADBU~ to tell the user which statement 
made the most recent call to the external 
function subprogram currently being worked. 

BREAK will modify the machine language program in 
the current user core image so that control 
will return to ~ADBUG if one of the cards 
given as arguments is to be executed. When 
MAtBUG regains control from the user frogram, 
the name of the statement which is about to be 
executed will be printed for the user. At 
this time the user will usually examine 
variables in his program to determine what his 
pro:jram is doing. "Breakpoints", as these 
points in the user core ~re called, belong to 
a given core image, and can vary from one 
saved core image to another. {See the SAVE 
request.) 

~ILL will ren3ve any treakpoints at cards mentioned 
a s a r: g u me n t s. I t i s not an error t o ins e r t a 
breakpoint where one already exists nor to 
rem3ve )De which does not exist. For example, 
to kill all the breakpoints in the subprogram 
being W3tked, "kill". 

SAVE has a single name as its argument and causes a 
COfY of the current user core image to be 
saved as a CTSS file with the primary name 
given as an argument :1n~ the secondary name 
SAVED. The name given by the user must begin 
with an asterisk. The current user core image 
was prcduced by loa~ing, and has been modified 
by execution and by MADBUG requests. One may 
save the current core image under a name which 
has dlready been used for a save request. In 
this case, the current core image will replace 
the previous core image. All the core images 
saved using the SAVE request will be destroyed 
when the user's current core image is 
destroyed. This is because the saved files 
created by MADBUG are not normal CTSS saved 
files, and are useless out of the context of 
MADB UG. 

RESTORE will re~lace the current user core image with 
a c~py ~f the image whose name is given as an 
drgument. rhe core image name must be a name 
under which the user has saved a core image 
using the SAVE request, or it must be *FRESH. 
*FRRSH is a byproduct of the loa1ing process. 
It is a completely unexecuted version of core 
with nc bre3.kFoints :ind with all variables at 
their initial values. Except for the Sfecial 



CTSS PROGHAl1MEa~s section AH.8.02 9 

way in which it is created, *FBESH is like any 
normal core image saved by the SAVE request. 

Getting Back to crss: 

~hen the usex is finished with MADBUG, and desires tc return 
to CTSS, he should use the QUIT request. The QUIT request 
will dastroy all the files created during the session, 
except for the modified MAD frograms and their associated 
BSS an3 SYMTAB files. 

Th~ EXECUTE re1uest allows the user to return to CTSS for a 
single command, withcut ending his session with MADEUG. For 
~xarnple, the user could effect the CTSS com11and "listf aa 
m:~d 11 by requesting "execute listf aa mad". These commands 
are executed usir.g the ccmmand chaining technique with the 
s~quenca: "save (mdbg) ", the user:• s command, and "resume 
( mdbg) ". No frovisicn is made for saving a core image which 
mi~ht rasult from the user's command. 



CTSS PROGRAMMER'~ ~UIDE Se::tion AH.8.02 Page 10 

SPE:IALIZED FEArDRES AND TECHNIQUES 

T~o error coarrents that the user may get from MADBUG have 
spe::ial significance. one is "THY AGAI!i.", which always 
m~~ns that the cucr-ent r:e1uest has t:een terminated. The 
other is "CONSUL'I LISTINGS." which can only occur as a 
r~ sul t of a bug in P1 ADEU G. Any user getting this comment 
will please retain as much information in the way of output, 
filas, ate. as he can and call Bob Fabry, x2524, so the bug 
can be removed promptly. The user can often continue with 
mor~ r:a1uests in spite of a "CONSULT LISTINGS." error. 

Two types of improper ar:ray references are not caught. 
First, references with a constant linear subscript are not 
checked. For example, one might DI~ENSION A(10) and 
A (20 )=100. Second, references to arrays which are given as 
aryuments to functions are net checke1. For example, one 
::.:ould have called f::>r- ROOr. (A (K)) wher-e K is 20. This 
situation can sometimes be avoide1 by placing arrays in 
20MMCN, and not passing them back and forth as arguments. 

In unusual casas, the use~ core image may "blow-up" in such 
a way that the information ~bout control and about the 
v:tlues of variables is gone or meanin:Jless. In this case 
the user will still find MAtBUG a useful tool, and may 
approach the problem by an exponential sear~h throuqh time 
for the point at which the blow-up occurs. Stated another 
way, this amcunts to performing a series of tests in which 
21=h test is designed to cut by a half the uncertainty about 
when the blow- up occurs. When the user knows the exact 
point of the bl3w-up, he can then step through very 
cdutious1y, leaking for clues. such an approach relies 
h~a vil y on BREAK, KILL, SAVE 3. nd RESTORE. At the start, the 
us~r moves a core image as close to the tlow-up as he knows 
he can, SAVEs the core im~<je, and JUesses the half-way mark, 
in terms of opportunities for bugs, to a place by which the 
blow-up roust have occured. He then uses BREAK and KILL to 
stap his current core image to the half-way fCint be 
yuessed. (1) If the core image blows-up in this process, he 
~uessas a new half-way point, half way tetween his saved 
image and his old half-way mark, RESTOREs his saved core 
ima3e, and trys his new guess. (2) If the core image 
doesn't blow-Uf in the process, he SAVEs his current core 
image for a new starting point, guesses a new half-way mark 
b~twe~n his new c3r:e image and the blow-up, and trys this 
new guess. This process is f~irly simple to carry out using 
MADBUG, and most bl::>w-ups can te readily solved this way. 

W h a n 1 odd i n g is per f ::> r m e d, M A DB U G w i 11 nor m a 11 y 1 oa d a 
pr-oyram named (l"lDB:i), which MADBUG provides, immediately 
following the files specified by the USE request. Then 
MADBUG will frccess the core images of all programs loaded 
into core before (MOB}) and insert patches, usin:j an area 
r~s~rved in (MDEG), t:> attempt to catch any user subprogram 



CTSS PROGRAMMER'S GUIDE 

when it accesses an array ~ith an illegal subscript. If the 
usar wishes to load programs which were written in FAP, MAD 
programs for which the symbolic programs are not available, 
i~buggea MAD programs which he does not wish to protect, or 
library files, he ma_y specify the position of (fttBG) by 
typin} (~DEG} in place of a file name in the USE request. 
All the files before this pdrameter will be treated 
normally, and all things ~fter it will be ignored by MADBUG 
.1n:l just passed on to the loader. Any loader parameters, 
such as (CFLP) or (LIBE) , can also be used after (MDEG). If 
tha user needs more than eighty characters for his USE 
request, he may type a hypen as an argument of use. When 
the hyphen is enc~untered, MADBUG will immediately read the 
next input line for sore arguments for the USE request. 
This may be done f~r several successive lines. 

Tbe FORCE request f~rces certain internal 
MADBUG tc new values, picked by the user. 

re;Ji sters in 
To FORCE a 

the first 
required 

p 3 ram e t e r , gi v e t he n a me of t he pa r a mete r as 
1r~umant of FORCE, and give remaining arguments as 
by the parameter being forced: 

FORCE PA1:H will set the amount of patch space 
available in the user core images to the 
decimal number given as the argument. 
Initially PATCE is set to 500. The patch 
SFace is used during loading and whenever 
breakpoints are insertel. FOBCP. PATCH does 
not change the availatle patch space 
iamediately, since the internal register is 
examined only during loading. A user would 
reduce the patch space if he was squee~ed for 
core space. He would increase it if ftADBOG 
complains, during loadin~, that there is not 
enouyh patch space, or if he exhausted the 
patch space inserting breakpoints. If the 
patch space is exhausted by breakpoints, 
however, it is usually sufficient to KILL some 
of the less neccessa ry breakpoints to get 
space f~r new ones. 

FCBCE FORMAr will set the normal input;output form 
associated with each of the possible modes for 
variables. After the word FOR MAr, the 
arguments are taken in pairs, the first item 
~f the pair indicates a mode and the second 
indicates a form. The modes are indicated by 
a digit frcm 0 to 7, standing for 
floating-point, integer, Boolean, function, 
statement label, mode 5, aoda 6, and aode 7, 
in that order. The form designation is cne of 
the following: 11 ::7 n" for floating point vi th n 
significant figures on output, "I" for 
i n t e g e r , " A •• f or a 1 ph :1 be tic , " P" for e it her 



C T S S F B C G RAM M E R ' 3 GU I D f Section AH.8.02 Page 12 

integer or alphabetic with MADBUG picking for 
c u t p u t • " ~" f o I oc ta 1 , " B " f o r Boo 1 e an , " s" 
for statement l~bel, and "F" for function. 
Initially, FORL'1AT is set to: 0 G3 1 P 2 E 3 F 
4 S 5 ~ 6 ~ 7 ~- (In this section, "Ji'" is 
used to denote the letter "O".) 

FCRCE MOtE alows the user to predetermine whether 
MADB u~ saves itself :t s a permanan t mode file 
::>r as a temporary mode file. The values of 
MODE are, corresponding! y, "P" and "T". Mode 
is ::>riginally set to "P". The user will want 
to FORCE MODE to temporary if he is not 
interested in extreme reliability as much as 
in conserving his track allotment. 

It is also possible t::> override all the ncrmal I/O forms for 
the duration of cne OPEN or VERIFY request. To do this, use 
ana of the fora designations listed above, but preceded by a 
s 1 as h • I n s e [ t i t a f te r VERI F Y (a n d the sa v e d f i 1 e n am e , i f 
pr~sent) or CFEN and before the arguments. For example, 
"open ;o alpha". 

MADBUG observes the convention that the first statement of a 
m~in pr·ogram starts after the ca 11 to • s ETO P which the 
compiler always inserts as the first executable machine 
instruction. Another convention at this level is imposed by 
th~ compiler. A breakpoint on an ENTRY TO statement will 
not be encountered when the entry is called. but will be 
an:=ountared if control is transfered to the state1ent or 
falls to the statement. 

KADBUG creates and destroys epe=ial files as it processes 
th~ user's requests. They are destroyed during the 
processing of the same request for which they are created. 
Normally, the user will not h~ve to worry about them, but 
occasionally he may be made aware of their existance. 
(MDBG) SAVED is the name under which MADBUG saves itself 
wn3n it chains to ::>ther commands. This file will vary in 
length during a session, but will be on the order of 30 
tra:=ks long. Its m::>de depends on -the value of MODE, as 
described earlier. (rEMP) (MOB~) is used during file 
mojificdtion. When a word in a file must be modified, the 
m o d if i e d f i 1 e is f irs t c I e a ted as ('r EM P) Ut DB G) , a n d the n 
thE! original file is deleted and (TEMP) (~DBG) is renamed. 
The lenJth of this file depends on the length of the file 
being modified. The file has permanent moje. (~DBG) ESS is 
:::r3dted bJ MADEUG whenever loadiny is required. Its 
position in the new core image was discussed earlier. It 
:=ontains the bo::>tstrap for MADBUG and the patch area. It is 
one track lcng dnd has tempotary mode. (~BGI) SAVEr is a 
v~ry short progra~ which processes the inFut line blocks the 
u s e r: t y p e s • h i 1 e e d i t i n g • I t p roc e sse s a 11 the in p u t 1 in e 
blo::ks dssociated with one edit request and reads in the 



CTSS ,... nTn'C' 
l..:lJ U.LLIU Sec ticn 

following request before chaining ba=k to MADBUG. 
usually one track long and is perm~nent mode. 

1 l 

It is 

A user core image may use the command buffers. A call to 
CHNCOM will not return control to MADBUG. MADBUG saves the 
command buffers and counter initially and restores them when 
the user gives the QUir request. MADBUG also treats the 
command buffers and counter as psuedo-machine conditions 
1ssociated with each core image. The buffers are only lost 
on manual restart. A fresh core image has empty buffers. 

By editing, the user modifies the MAD subprogram on which he 
is workin~. By inserting and removin~ breakpoints and by 
changing the values of variables, the user modifies the 
current user core image, ( USEH) SAVED. MAD BUG does not 
=hange external files until the changes are logically 
needed. If the user uses EXECUTE to ask CTSS to process 
thase files, he 1ay want to insure that these logical 
modifications are made fhysic~lly. To insure that the MAD 
subprogram being w~rked is modified physically, give a 
redundant WCBK request using the name of the subprogram 
alraady l:eing worked. Whenever a WCRI< request is given, the 
lojical modifications associated with the subprogram 
iJr ev iously beiny worked are madP ph ysi~:t 11 y. To insure that 
th~ current user c~re image is modified physically, use a 
SAVE request. A user whc cannot 3fford the added tracks can 
;,iva an "execute delete" on the created SAVED file. This 
variation between the physical and logi=al modifications 
provi1es some degree ~f safety to the user who carele~sly 

makes gross incorrect modific~tions to one of his programs. 
If the user should accidently type a "d" as a re1uest line 
for example, he should ~uit by hitting the break button 
twice in succession. This will prevent '-ADBUG from actually 
1alatin~ the file in 1uestion. 



CTSS PROGR~MMER'S JOIDE Se::;tion AH.B.02 Fage 14 

SUMMARY OF MADBUJ REQUESTS 
~~~~~gB!~ ![!i!i2U!!_!ill~~ (J) 

work. subpr:>gram name none

pt:'int car-d names (1) car-d images by "ADBUG

delete car-d names (1) none

insert card names (1} car-d images by user

::h3nga card names (1) card images by user

~ pp~ nd none car-d images by user

(or) subprogram names none

m~nipulata special, then cards card names by 11A DB UG

translate none comments by MADBUG

use sub FIOg ram names none

JO card name or none co IB men t s by ~A 0 B UG (4)

opan

v a ri f y

linkage

braak

kill

save

rest ore

qll it

execute

force

variables (1, 2)

variables (1,2,5)

none

card na!lles (1)

card names (1)

save-name

save-name

values by both (4)

values by MAOBUG (4)

linkage by MADB UG (4)

none (4)

none (4)

none (4)

none (4)

ncne none

command and arguments depends on command

Fara~eter, SFecial none

notes: (1) If none, all are implie:i.
(2) Optional form f:>ccing first argument.
(3) Any request can get error comments from MADB UG.
(4) Comments by ~ADBUG if core ima~e is created.
(5} There is an optional save-name argument.

{END

CTSS f BCGRAMM ER' S GU! C!

Post Mortem Debugging
PM

s e ct i c n A H • 8 • 0 3

Pro1u~~ post-mortem information about the user's last
dormant fiogram (loaded by the relo~atable pro1ram loader).

Tha pro~ram sh3uld be loaded by LOAD or lCADGC so that the
loader and movie table are av~ilable.

Tha FM comrndnd may be followed by one of several requests.

P~ 'I lC. 1 Gives the stop location or ILC (1 line).

PM 'LIGHTS' Gives machine conditions and ILC (4 lines).

PM 'THAFS. 1 Gives c:>ntents of trap location (l line)

PM 'S'IOP 1 Gives I LC and contents of two locations on
either side of the stop (5 lines)

P ~ 'AUT 0' Corcesp:>n ds to LIGHTS plus STOP (9 lines.)

PM 'STOMAF' Gives origin and entry of all subfrograms
loaded.

PM NAME 'STOMAP' ~ives the origin and entry of all
subpr:>gr ams loaded beginning with NAME.

PM NAME Gives c3ntents of four initial locations of
subpr::>gr am NAME (5 lines) •

PM NAME LCC1 LCC2 -MODE- -tiBECTION-
Gives C3ntents of all lo=ations fcom relative
location LOC1 through LOC2 of subprogram NA~E
in the specified mode and direction. NAME is
1 (MAIN) 1 for the main pr-ogram. LOC is assumed
to be decim~l; if the number is preceded by a
slash, 'I', it is taken as octal. MODE
Sfecifies the form of printei output and may
be 'FIX', 'FL0', 1 DEC' , • jaC'£', • BCD', or
'ALL'. DIREC'IION specifies the order of
printinq and may be 'FWD' or 'REV'. If ftODE is
:> m m itt ed ' A L L' i s ~ s s urn e d ; if D I RECTI 0 N is
o rn itt e d, ' F W D ' is ass u me d. L 0 C 1 a n d L 0 C 2 ma y
be replaced by 'ENTIRE' to c~use printing of
the entire program.

CfSS PHOGRAMMER'S GUIDE Section AH.8.03 9/65 2

PM LOC1 LOC2 -MODE- -DlRECliCN-
Gives the contents of absolute locations 10:1
thru 10:2.

References to COMMON must be the high core
locations which appear in the assembly
listing, net the lower core area actually used
for COMMON. (Caution: illegal requests,
either outside the program range or improper
requests for CO~MON, cannot be interpreted
correctly.)

(EN D)

CTSS P.RCGHAMM~R'5 GU ItF Section AH-8.04

R~locatable program patching
PATCH. STOPAT, TRA

To allow break points to be set in a program after it has
been loaded, to allow transfer of control to a specified
lo=ation, and to allow modification of the loaded program.

These service routines are normally loaded after the program
is loadad and so the loader must te available in core.
Therefore LOAD or LOAOGO should be used for loading the
pro~ ram.

s~t a break point:

S r OPAr ENTRY R ELLOC

ENTRY is an entry point in the desired sub~rcgram.

R ELLOC

If EMlRY is omitted, the main program is
assumed.

is the rel:ttive o=tal location in
specified subprogram at which the break
step is to occur.

the
pcint

STOPlT reFlaces the instru~tion at BELLOC with a
transfer. When the transfer is executed, the
original ccntents of RELLOC is restored and
the program is placed in dormant status. rhe
START command may then be used to cont~nue
with the execution of the original contents of
BELLO C.

Transfer:

'IRA E It 'fR l RE 1 LOC

Sage argument specifications as STOPAT. The
issuance of the START command will cause a
transfer to RELLOC. This may be used to
restdrt the pcogram from different locations
during debugging sessions.

Modify the program:

PATCH ARG

c·rss FRCGRAMMER 1 5 GUILE Section A H. 8. 0 4 9;65 2

ARG=antry: ARG way be the entry point of a subprogram
which is to be patched by referring to
relative locations within the subprogram. If
ARG is omitted, (MAIN) is assume:i.

AB G=' (AB S) • allows pa tc he E to absolute locations.

AR G=' (CO PI) • allows pa tc he s to ra la ti ve locations within
the COMMON region.

ARG= 1 (PAT) 1 allows patches to be entered in to locations
above the user's cucrent 11emory bound. This
patch space is ceferenced by relative
locations and is shared by all subprograms.

After a response from the PATCH command, the
user enters lines of the form:

LOC, TYPE, VALUE, RELOC

LOC is the octal address to be patched. This octal
number may te immediately followed by a
special letter if it is desirable to overiide
ARG for this response. The special letter may
be A fer atsolute location, C for relative
locaticn in common, or ~ for a relative
location in the patch space.

TYPE is the type of value to follow i.e.,
'OCT', oct~l word (used for instructions)
'FLO', fixed or floating-point number

(E or F notation)
'INT', fortran integer
1 DEc • , M AD in te g e r

VALUE is the number to be patched into LOC.

RELCC is the relocation specification for VALUE
TYPE is 'OCT'. It consists of two letters,
tirst f~r the decrement and the second for

A: absolute
R: relocat able
C: common
P: Patch space

if
the

If RELOC is omitted, AR is assumed. Successive
VALUEs and ~ fpropria te R ELOCs may be specified
in any line •
.Exit fr:Jm PATCH by typing 1 END 1 •

(END)

CISS ----~- ~ ,.... t'tlUuttat"Jru:.n • .;;;J

Absolute prcgra m patching
SPATCH

AH.8.05 1

Programs leaded with LDABS, NCLOAD, or VlCAD may be patched
using some supervis~r routines which do not require special
loading and movie tables. This is accomplished by patching
th~ir SAVED file, rather than the core B program directly.

SPATCH NlMEl LOC A1 81 A3 82 ••• An Bn

S P AT C H N A l1 E2 I LC L

SPATCH patches the file NAME1 SAVED beginning at
absolute octal location LOC for n locations.
If LOC is 'ILC', only the IIC of BAME1 SAVED
will be patched, causing a transfer of control
t c a b s c 1 u t e 1 oc l. t i on 1 w h e n N A M E 1 i s R E S U M ED •

Ai Bi are the c::-tal left and right balf words
respectively.

L is the location at which control should be
RESO M EC.

(END)

ro <1" C" C" n D f'\ I"" D A Ill Ill ~ 0 I C" ,.. r1 T n 'C' S~ction AH.8.06 Page 1 '- &. oJ oJ &. U U \JI L\ R L~ U .I.IL\ oJ U U .&. 1J &..I

Supervisor debugging
SD, S P

To allow for Frinting and patching the supervisor (core A).

The printing routine has several options:

Patching:

SD ENTRY RE LOC N

N consecutive locations starting at relative
octal l~cation RELOC in subprogram ENTRY in
the sufervisor will be typea on the user's
cons:>le in unr elocat ed (i.e. , relative) octa 1
with Oferaticn code mnemoni~s. If N is
omitted, it is dSsumed to be 1. If ENTRY is
omitted, the request is taken to be absolute.
Lines cf zero are not supressed.

SO ENTRY 'TRACE'

The name of the calling subprogram and the
relative location from which subprogram ENTRY
was last called ~ill be printed on the user's
console. rhe user ~y continue tracing back by
tyfing a carriage return. The trace may be
terminated by the QUIT signal.

SD 1 STOMAP 1

A storage map of all subprograas
the supervisor's core <=ore
printed.

S D ENTRY

loaded into
A) will be

The c~ntents of the specified entry will be
printed on the user's console in apfropriate
for m (BCD for LD N A rtE , a 11 others in 5 oct al
digits).

SP EN 'IR Y R E LOC A 1 B 1 C 1 A 2 tl2 C 2 • • • AN B N C N

Patching will begin in relative octal location
RELOC within the subprogram EN'r BY. AI BI are
the relocatable octal left and right
half-words, respe~tively. The Ci contain two

CTSS PROGRAMMER'S GUIDE S ~ c ti on A H • 8 • 0 6 Page 2

characters indic:tting how the left and right
half-words are to be relocated. The characters
may be A for aksolute or R for relocatable. If
a Ci is ou.~itted, it is assumed to be AR. If
ENTRY and Ci are omitted, the patching is
absolute.

(END)

:; OIDE s~c ti on

STRACE - A trace debugging routine
B. L. Wolman

~.9!1!2.2§!

AH.8.07 Page 1

STRACE (Subroutine TRAC!) is a debugging proqra1 which
allows the user to mcnitor the calls of selected
subroutines. A set of conditions may be specified fer each
subroutine tc be traced. At each call of the subroutine,
STRACE cbacks to see if all the conditions are met. If they
are, STRACE frints a message identifyin~ the subprogram
:~llad, how many times it has been called, the absolute
location of the call, the program in which the call
o:=urred, and the relative location within the program
makin~ the call.

Tha usar may re~uest STRACE to STCf execution ~!IQI~
exa~uting a subroutine or to HALT !t!~r the subroutine has
been called. If either cf these options are used, srBAC!
will print an identifying message before going to dormant
status. PM cr OCTLK may be used to inspect the machine
:an1itions. Issuing the STARr command will cause execution
to continue.

The user may alsc specify a debugging subroutine which is to
b~ =alled before executing a sutroutine. This debugging
subroutine may perform any function the user desires; the
=all issued by S1RACE is of the form

DEEUG(lOC, ARG)

wnare DEBUG is the debugging subroutine name, LOC is the
location of the call to the subroutine being traced, and AR~
is a parameter previcusly specifiel by the user.

Options are also available which allow the user to obtain
o~t~l snapshot duaps of the machine registers, the
subroutine calling sequence, and the value returned by the
subroutine in the accumulator.

STRACE may be entered by issuing the CTSS command STRACE.
B~~~use of the meth~d of implementation, the loader sust be
present in •emory. the STRACE command may be issued
imm3diately after l~ading, after a QUIT signal, or after a
tcace stop. (In general, STRACK may be entered any time the
us3r 1 s program is in dormant status). At the end of the
input phase, STRACE will return to dormant in such a manner
that the START command will cause executicn to be resumed at
the point where it was interrupted.

CTSS FFCGRAMMEB'S GUIDE Section AH.8. 07 Page 2

TRACE is an alternate entry which may be called as a
subroutine. In th~s case, TRACE returns to 1,4 in the
calling sequence. The calls ~re of the following form

AED
MAD
FORTRAN
FAP

TR A:: E () $,
EXECUTE TRACE.
CALL 'IRACE
rsx $TRACE, 4

Whan STRACE is ready for input or more input, it prints the
word TYPE. and waits. After receiving this response, the
usar may enter a series of commands. Each command consists
of a subroutine name fcllo~ed by one or more requests.
Within a command, blanks are used to separate requests and
their parameters. Since a carriage return is coapletely
e'JUiVdlent tc a blank, commands may be split across one or
mora lines of input. Each command is terminated by a comma.
The ldst command is terminatei by an asterisk which
signifies the end of the input phase.

The following requests are currently recognized by STRA:E (N
and M. are positive decimal integers less than 32768, DEBUG
is the name of a subr:>lltine).

AFTER N ~ Begin tracing after the Nth call of the
subroutine.

EVE BY N - rrace every Nth call. N should be
ncn- zero.

UNTIL N - 'Ir=tce until the Nth call. The AFTER
condition s boul d be less than the UNriL
ccnd i tion.

STCP N - Go to dormant R~!Q£~ every Nth call. If
N is zero, the STOP condition will be
removed.

HALT N - Gc tc dormant !t!~£ every Nth call.
Execution will be interrupted ~!!~f the
Sfecified subroutine has teen executed and
~~!~~! it has returned to the program Making
the call. rhis request should ~Q1 be used if
the subroutine being traced has an error
return or does not always return to the same
point in the calling sequence. If N is zero,
the HALt condition will be removed.

ARGS N - Every N times it is called, print the
arguments of the subroutine. Each word in
the calling sequence is assumed to specify a
single variable. The absolute and relative
addresses of these variables and their
contents will Le printed in octal. rhe

CTSS PROGRAMMER'S ~U!DE Section A H _ s_ 0 7 Page 3

relative location will be "••••" whenever the
specified location is in CC8MON or is in turn
an argument of the subroutine making the
ca 11. Whenever N is zero, the ARGS condition
will be cemoved.

VALUE N Print the value of the SFecified
subroutine. the value of the subroutine will
be 3btained by interrupting execution in the
same manner as the HALT request; the same
restciction applies. The VALUE condition
will be removed whenever N is zero.

FM N W1 W2 ••• Wn- Every N times the Sfecified
subroutine is =alled, print an octal snapshot
dump of the machine registers specified by
the parameters W1 to Wn. The Wi •s may be any
of the following wocds.

AC Accumul atoc, Q and P bits
MQ Multi flier-quotient register
SI Sense indicatocs
MB Memocy bound
Xl Index cegister- 1
X2 Index register 2
13 Index register- 3
X4 Index register 4
X5 Index register 5
X6 Index register 6
X7 Index register 7
Ll Ficst location in subroutine calling sequence
12 Second location in calling sequence
L3 I'hird location in calling sequence
C1 First a rg umen t of subroutine
C2 Second ac guaent of subroutine
CJ Third argument of subroutine
xs Equivalent to the sequence X1 X2 X] VII xs X6 A~

ALL Equivalent to the sequence AC MQ SI MB xs

IE ~ny of the above w~cds appears with an initial minus sign
in the request, the PM of the corresponding register(s) will
b:! removed. Because the PM request has a variable number of
parameters, it must be the last request of any command. rhe
PM print occurs after any call of a detugging subroutine and
before any stop. The request PM 0 will suspend all PM
r~quests for the particular subroutine.

CALL N DEsu; M - Before every Nth call, execute
the debugging subroutine DEBUG with parameter
M. If N is zero, the CALl condition will be
removed; in this case the debugging
subroutine name and the parameter M should
not appear. If M is zero, the parameter used
in the call of DEBUG will be the number of

X.7

CTSS FFCGRAMMER'S GUIDE s e ct ion A H • 8 • 0 7 Page 4

times the subroutine being traced has been
executed. If both the STOP condition and the
CALL CJndition are simultaneously satisfied,
the CALL cf the debugging subroutine will
occur befcre the STOP.

COUNT N Reset the execution count of the
sub~Jutine to N. This request may be used to
continue tracing after the U .NT I L limit has
been reached.

REMOVE - Remove the subroutine from the internal
trace tdble. After this request has been
given, STRACE will have no record of or
centre! over calls to the subroutine.

OFF -Turn off tracing of this subt·outine. All
succeeding calls will be ignored until
tracing is restored via the ON request.

ON - Restore tracing of this subroutine.

FIND - Print the entry point of the subroutine.
Any requests after the FI!iD will be ignored.
FIND should only te used if no tracing is
desired, since entry points are automatically
printed the first time a subroutine name is
encountered during the input phase.

IE no request is given following the sutroutine name, the
standard requests

AFTER 0 E VERY 1 UNTIL 3 2 7 b 7 S T 0 F 0
CALL 0 HALr 0 ARGS 0 VALUE 0 PM 0

are assumed. Any req11ests given by the user override the
corresponding standard value. Any of the tracing parameters
of a subroutine may he changed by the user in a later entry
to STRACE.

Whan STRACE is asked to tcace a subroutine, it saves the
name of the subroutine in an internal table. STRA:E
s:!archas the MOVIE) table for the named subroutine. If it
is found, srBACE obtains the entry point. STRACE then uses
the MOVIE) table t::> find the origins of all programs in
=or~. Whan it finds a program that has a transfer vector,
it ~edrches this transfer vector for a TTB to the subroutine
antry point. If a TTR is found, it is changed to a TXL
TRAP,,fABLE where TRAP is the address of the trace
pro=assinj section ::>f srRACE and TABLE is the index of the
subroutine being traced in the internal tra=e table.

C T S S F P. 0 G P.! M M E P. ' S GU ! D E S e ~t_ ion A H .. 8 ... 0 7 Page 5

Tna REMOVE request causes essentially the inverse operation
to be performed. All rxL TRAP,,TABLE instructions are
=~angad to TTR ENTRY and the subroutine is removed from the
internal table.

During execution of the user's program a call to a traced
subroutine will result in a TSX to the TXL instruction in
th3 transfer vect~r. rhe TXL instruction will transfer to
the appropriate section cf SiRACB. Using the contents of
inl~x register 4, STRACE obtains the TXL instruction and
checks to see if it is leyal (i.e., does the table position
iniicated by the decrement actually correspond to a
subroutine name?). If the TXL is legal, STRACE retrieves
th~ tracing conditi:>ns for this subroutine and checks them.
Depending on the conditions and the numter of executions of
th~ subroutine, STRACE may print the trace message before
transferring to the subroutine.

Wh~n tha HALT or VALUE re~uests have been specified, STRA:E
examines the subroutine calling sec:1uence to determine where
th~ subroutine will return. It then saves the instruction
at the return pcint and the instruction immediately
following in the trace tabla and repla~es them with a
transfer back tc STRACE. When STRACE obtains control
following the execution cf the subroutine it restores the
two instructions. If the subroutine does not return
correctly the breakpoint will not be removed and the two
instructions which were saved will te destroyed the next
time the HALT or VALUE ccndition(s) are satisfied.

The call of the debugging subroutine ani the execution stop
o=cur just befot:e the transfer to the tt:aced subroutine. In
both cases the user's machine conditions (with the exception
or injex register 4) are restored.

Only 20 subroutines may be trdced at one time. This limit
is somewhat arbitrary and may be increased in the future.

STRACE will correctly handle any subroutine that is called
by an instruction of the form TSX SUB,4. A subroutine such
as (IOH) which is entered by the instx:-u::tion TRA• (IOH)
~!ll~Q! be traced. A 3Ubt:outine should not be traced if
th~re is ~ll~ indirect reference to it tht:ough the transfer
v~ ctor.

The following error messages are currently implemented

TRACE TABLE FULL - No more subroutines can be traced
u n t i 1 t he REM 0 VE request i s use 1 •

C T S S f F 0 G R A M M E R ' S GU I D E section AH.8.07 Page 6

N A ME IS Nor I N T R ACE T A EL E - T he us e r has a t t e m pte d to
use the ON, OFF, or REMOVE requests for subroutine NAME
whi~h is not in the internal trace table.

NAME IS NOT USEt- Subroutine NAME has been loaded but
this is not called by any ftcgram. All requests fer

subroutine are ignored.

NAl1E IS N01 IN MOVIE TABLE - Subroutine NAME
b ~ ~ n loaded. All t· eq uests per-t a in ing to this
will be ignored.

has not
subroutine

NAME IS NOT A REQUEST - STRACE does not r-ecognize the
r~quest MAME. This w:>cd and the next word of input (most
requests have a parameter) will be ignored. If the command
lina saams to be f~uled up, the user ~an re~over by typing a
comma to terminate the command and then retype the entire
command.

NAME PARAME'IER MISSING, HEQUEST IGNCBED. -The user has
typed a saquence such as AFT!R, or UNTIL,. The parameter
for the request NAME is missing, since the comaand was
t~rminated by the c~mma, the user must enter another
command. Note that the command

SIN A P 'IE R U NTI L 2 •

will result in the comment 2 IS NOT A RECUEST.

BAD CALL OF TRACE FROM LOC - There has been a spurious
transfer into STBACE ~~ else location LOC (the word pointed
to by t he instruct ion a t 0 , 4) :: on ta ins a T XL ins t r u c t ion
whi::h has an illegal decrement. The decrement of a legal
TXL instructicn should be less than 201 (for the current
limit of 20 entries) and a 11u 1 tiple of 10. The user •s
m~::hina conditions will be restored, and STRACE will go to
dormant.

NAME IS NOI A LE;AL PM - STRACE ioes not recognize the
worl NAME as a legal PM parameter, it will be ignored.

NO DEBUGGING SUEROU'IINE, CALL IGNORED.- The user has
forgotten tc SUfFlY the name of the iebugging subroutine.
Th~ CALL condition will te removed.

(EN D)

CTSS fP.CGR!!H!EB'S GU !DE Section !!!.8 .. 08 {,_/f.Q -, --

DEBUG - Symbolic debugging aid for CTSS.
L~ wis Morton, M4959 47 10. Room 145-330, X5692.

DEBUG is an extensi3n of PAPDBG, described in the crss
Programmer's Guide, section AH.8.01. DEBUG may be used with
any compiler or assemblet generated code which is loadable
by tha standacd crss loaders (see sect ion A H. 7). DEB OG acts
as an execution monitor by allowing register examination and
moiification, and c~nditional execution of program sections.
Core locations may be refered to by their symbolic names, if
:t FA P sty 1 e s ym bo 1 t able is a v a i 1 at 1 e on the disk.
Interaction with DEBU~ may be from the console or a disk
fil~.

For a general discussion of ~ore-B transfer commands and
1~bugJing tools, see section AH.8.00 of the crss
Progra111mer• s Guide. At any time the user is at command
1 ~ v:! 1 w i t h the 1 o ad e r i n cor t? ,, o: ,1 f t € r 0 E B U (; h a s bA e n
explicitly leaded, the user enters tha monitor by giving the
~~mmrtn'i-

tEBUG -FILE-

if ~ line-numbered file of the name "FILE" DEBUG exists, it
will be used as the source of requests. If not, o~ when this
fil~ is exhausted, re1uests will be read from the console.
IE not already loaded, the loader will read DEBUG into core
from a system library. DEBUG is exactly (15000)8 wor:ds
loni•

All r~quests dLe single letteL$ followed UJ arguments,
separated by blanks. Requests may be concatenated on a line
by usin~ the equal siqn or: apostrophe tetween them. If a
request fails for any reason, other requests on the same
lin~, with the exception of " .. " "G" and "P", will still be
executed.

CTSS FRCGRAMMER'S GUICf sect ion A H • 8 • 0 8 6/69 2

DEBUG maintains an internal t~ble for user defined symbols.
Cur~ently there is Sface for 800 symtols. Each symbcl must
be six or fewer character, at least one character of which
must not be an octal numter. The symbol table is created
from a FAP style SYMiB file by the "T" ani "L" requests,
l~s~ribed below. rhece i5 available a conversion prcgram to
create FAP style files from those produced by MAD. Notice
that as of July, 1968, FAP puts into the SYMTB file
indication of whether the symbol is absolute, relocatable or
:ommon. This information is maintained in DEtlUG. However,
SYMTB files produced before this date will appear tc DEBUG
to =ontain only relJcatable symbols.

The "L" request locates a subroutine origin and entry point.
Its usa~e is

L !N'r RY

~~there "r:NTRY" is a subroutine name, as found in the movie
table. The ectal origin and entry point of this routine will
b~ typed on the console.

The "T" request reads in a symbol table and relocates all
relocatable symbcls using the last origin found by an "L"
r~quest. Its usage is-

r -HAM E 1-

added
llill

to
be

"NAME1" SYMTE is cead from the disk. symtols are
those already in the table, and any dupli=ates
r~i3fined. If "NAME1" is omitted, the symtol table is
to contain only DEBUG's predefined symbols.

reset

The "W" request is a concatenation of "L" and "I". Its
format is-

W fNTR1 -NAftE1-

:t. n i i s a q ui v a 1 en t to " L E NT R l' T N A PJE 1 ". If " M A PJ E 1 " is
omitted, it is assumed to be the same as "ENTRY".

Tha "E" request defines a single symbol. Its usage i~

! EX FR ESS ION SYMBOL

whara "EXPRESSION" is a sequence of constants or defined
locations seFarated by plus or minus signs. A defined
lo=~tion is an octdl numter or symbol, possibly followed by
.a comma and a second number or symbol. If the comma is
present, the symbol following is interpreted to be a number
between zero and seven, and the s:tved contents of the
l~propriate index register subtracted frc~ the value of the

CTSS PROGR!!M!R'S ~U!DE

first symbol. The resulting v~lue will be assigned as the
V:ll ue of 11 SY M BOL".

Th3 predefined sy~bol~ in DEBUG are mostly locations whece
current active registers are stored. These symbcls are
listed in appendix 1, and maj not be redefined. In addition,
for r~locatable mode (see below), the origins of all
subprograms may be defined in the symbol table as the value
of tha subprogram's name.

Th~re are three other special symbols: "*", "·" and "**"·
"*"is tbe last location referenced by the user in any DEBUG
r~quest. "·" is e~uivalent to the last symbol typed to
DEBUG by the user. "**" is egual to zero.

Cor~ locations and active registers may be examined in
several modes. Every register is printed out with the
loc~tion of the w~rd teing dumped in the left margin
followed by the contents of the word. The address may be
printed in any of f~ur modes, while the contents may be
printed in any of twelve modes.

The four basic modes a["e "R 11 , 11 N 11 , 11 S 11 and "U 11 • In all of
these modes, FAP operation mnemonics are used, followed by
tha address, tag and decrement fields of the word. Note,
however, that all values are octal, even for FAP prefix
mnamonics. Instructions with eighteen tit address fields
will be printed with a fifteen bit adjress and a tag.

In "R" mode, address and decrement fields are printed in the
format "ORG+reloc". "ORG" is the n~me of the first entry
point of the subr~utine in which the address is located,
"r·eloc" is the octal distince from the loal point. Fields
~bove the initial mem~ry bound are not relocated, they are
rat her printed in absolute oc t3.l notation. En taring "R" m:>de
will add the names :>f all subroutines to the symbol table.
However, programs with the same name as a symbol already in
th~ table will not pecmanently redefine the symbol. The old
definitions will be restored on entering "If", "S", or n U"
mol a.

In "N" mode address and decrerttent fields are printed in
o=ta.l.

"S" mode attempts t~ simulate FAP assembly listings. Fields
are printed in one of the following forms- "SYMBCL+offset",
"~bsolute octal" :>r "*+n". Here"*" has the standard FAP
meaning. Notice that this mode is derive1 fr-om PAPDEG's
symbolic aode, but ha~ 5everal additional features that make
it more readable.

/

C r S S F B C G R A M M E R ' 5 GU t C .E Section AH.8.08 6/69 4

"U" mCJ:l~ is the original symtolic IDode of FAfDBG. All fields
are printed in the fermat "SYMBOL+offset". This mode,
therefore, allJWS the user to find the nearest defined
symbol tc a given lJcation.

In ~djition to these ~~des, the contents may be
any of eight other modes. The location field of
will b~ printed in whichever of the four modes
above was last entered.

t:rinted in
this word
described

"0 11 mode causes ~rinting as a signed octal number. For
~onvenience, twelve digits will be typed in the format
" N _ N N N N N _ N _ N 1' N lHt 11 wit h n u m b er s q t· eat er t h a n 3 7 7 7 7 7 7 7 7 7 7 7
printing as ne~Jative quantities.

"H" prints the wcrd as six bed ::!hara::ters.

"I" prints as a full word integer, "J" as a fortran
j~~remant integer.

" F " p r i n t s a f 1 C> a t i n g p o in t n u m b er •

uxu, "Y" and nzn m::>de::; interpret the word as a TIP style
pointer. The pointer is frinted in octal, followed by the
t~xt it points to. "X" is for six-tit pointers, uyu for
nine-bit and "Z" for twelve bit. If the pointer is longer
than 84 characters, only the first 84 will be printed. If
any part of the pointer is above memory bound, "***" will be
pri n ta:l instead of the contents of the pointer. In order to
use these modes, the riP subroutine TRITE must be loaded
with DEBUG. For more information, ::ontact the TIP
programming staff.

Th~sa modes are all entered in the same manner. The format
is-

MODE -10:1- -LOC2- -SKIF-

If "MJDE" is given alone, the output mode is set to this
style for future print-outs. "LOC1" will be dum~ed, if
s p e c if i e d , a n d t he b 1 oc k be t wee n " L oc 1 " an :1 11 L c c 2 " i f t w o
:lLJUm~nts are given. If "LOC2" is a smaller number than
"LOC1", the array will be printed back ~ards. If the "SKIP"
ir1um~nt is given, every "SKIP"th location batween "LOC1"
and "LOC2" will be frinted. If a sequence of locations
contain the same value, the wor:l REPEAT will be typed,
instea:l of the value. "LOC1" and "LJC2" may be any
eKpression as defined in the "E" request.

C T S S f R C G R A :1 ~ E P. ' 3 GU ! I; f Section AH .. tL08

"R" mode is automatically entered on initializing DEBUG, if
possible. If the movie table is missing or dama~ed, "S" m~de
is antared. "S" m:>de is also entered aftEr a "W" or uru
request.

The contents of a single location or block may be printed in
the current output mode by typing just the location
axpressions and skip expression. Of course, the first
location must not be a single letter recognizej by DfBUG as
~ raquast. The c:>ntents of "*+1 11 may be printed by an empty
request (carriage return or concatenation ::haracter).

In soma cases it is desirable to trace a chain through core.
The asterisk request allcws this by =ausing chains to be
printad to any desired depth when the initial entry is
printed out by one of the register examination requests. The
raquest format is-

* tEPT H

whara "DEPTH" is a decimal integer giving the required
dept h. I f t he n u m be r i s F o s i t i ve , the i n d i r e c t ion w i 11 be
tlkan from the addr-es:; and tag. If it is negative, the next
location tc be dumred will te taken from the decrement. If
~ n y word in t h e c ha in p o i nt s t o i t se 1 f , the word REF E A·r is
typ~d ~nd the chain terminated. Any word which is above
memory hcund will bre3.k the chain and cause "***" to be
print:!1 in the locati:>n field. "*" ty itself is equivalent
to "* 0", meaning that only the word requested, and no words
pointad to by it, will be typed.

I n " F " , "H " , " I " , "J " , •• l" , " Y " an d " Z" m o d e s ,
level printed will be given in the specified
othar levels will be pr-inted in octal.

only the last
format. A 11

Th~ "D" request may be used to alter a core location or
active register. Its for rna t is-

D LOC OP1,ADD1,1AG1,DEC1 -OP2,ADD2,TAG2,DEC2- . . .
"JP1 ••• ", "OP2 ••• ", etc, will be deposited in sequence
startin;, at "LOC". "LOC" may be any expression as defined
above, and the "OP"s may be any valid FAP instructicn or
DEBUG psuedo-op. However, all except th~ last deposited
instruction must have at least an address field. 1he FAP
op-code may be sepdrated from the ~ddress field by a blank
or a ::omma. Again, all nJ.m bet's must be octal in a symbclic
PAP inst~uction, and only tyfe D and A instruction formats
~ r-a recogni 2ed.

CTSS PROGRAMMER'S ~UIDE Section AH.8.08

The DEBUG t:seudo-O{IS :ire OCT, BCD, FLO, IIIT, DEC, INT, and
JNT.

Th~ OCI ~seud~ instruction accepts a signed or unsigned
octal integer of absclute magnitude 777777177777 or less.

The FLO instruction acceftS a signed or unsigned floating
point number with optional decimal point ani optional F
moiifiar to denote ~ultiplication by a power of ten. The B
modification is not allo~ed.

The DEC, INT, and JN1 pseudo instructions accept signed or
unsijned decimal integers. CIC and INT are equivalent, and
cause assembly of full word integers with maximum value of
34359738367. JNl creates a fortran decrement integer of
maximum value 131071.

T he B c D i n s t r u c ti on i s f o 11 o wed t y a s in g 1 e b 1 a n k or c om rna •
The next six characters (including blanks) are converted to
Hollerith, and dep~sited. If the request terminator
(carriage return, a pcstrc phe or eq ua 1 sign) appears before
tha sixth character, the word will be right justified and
blank padded.

Depositing into DEBUG's special locations wil alter macn1ne
::onJ.itions. Changing $MEM will cause the mem~ry bound to
:: h a. n g a at the next "P" or "G •• r eq u est •

The request formats are-

A - P !l P WORD- K -FAPWCRD-

11 FA P W J R D" is a seq u e n c e c f o F- c ode , a l 1 res s f i e 1 d , tag fie 1 d
tni dec~:ement field a5 de:;cribed in the "D" request. rhe
"A" request Flaces "F~PWORD" in the signed accumulator and
:la:~rs th~ F and C bits. It is equivalent to "D $A
FAPWORD".

Tha "K" ~:~quest place:i "FAPWORD" in the logical accumulator
and clears the sign and Q bits. It is equivalent to "D $K
FAPWORD".

"A" 01: "I<" without the argument types out, in the
mode, the signed or logical accumulator, followed by
:tn:l For sign and C bits.

current
the Q

6/59 7

Core locaticns satisfying a given requirement may be found
~n:l dumped. F::>rmat is-

I -LOC1- -LOC2- -.BEL.- -VALUE- -MASK-

All locations between "LOC1" and "LOC2" will be examined to
see if they contain "VALUE". The locations may be any
axpression, and "VALUE" may te any operation or pseudo-op
r-ecognized by DEBUG. Note that this instruction must
:;ontain at least an addcess field, if 11 MASK" is cmi tted.
".BEL." is a MAD type ccmparative (.E., .L., .G., .ME.,
.LE., .GE.) indicating the relation the core location must
b~~r to "VALUE". If specified, "MASK" will be anded with the
core location and value before the comparison is made.
"MASK" is a. octal number of twelve or fewer digits.

IE tha "LOC2", ". REL." or "VALUE" arguments are missing, the
ldst value used will be assumed. If "MASK" alone is missing,
777777777777 is assumed. If "I" alone is typel, the search
will be started at the lccation following the last one fcund
by the "I" request, using "LOC2", ".B!L.", "VALUE" and
"MASK" as previously set.

If a word is found meeting the requirereent, it will be
printed in the current mode. If one is not found, an
~ppropriate message will be printed.

The format is-

::: ENTRY -NAME 1-

"ENTRY" is the name of ~n entry point of a subprogr-am
~lraaiy loaded into c~re. "NAME1" BSS is the name of the
file which is to be compared with the core imag-e of "ENTRY".
"IA~E1" need n~t be specified if it is the same as "ENTRY".

The "C" request will relccate e~ch word in the bss file and
=ompara it to the corresponding word in core. If a
discrepancy is fcund, DEBUG will type in the current mode
th~ location, the w~rd from the filE, and the memory
location. The phrase :OMPARISON DONE will signal the end of
tba co•parison.

CTSS PHOGRAMM~R'S GUIDE Section AH.8.08 6/69 8

If the user wishes tc execute ~ sinile machine instruction,
h ~ may type

: FAPWORD

"FAPWORD" will be interpreted and executed. Machine
conditions may be altered by this request. The instruction
must cause no skips. If it is a transfer, it must return to
the next instruction.

Typin~ "~" with n~ arguments causes a storage map
printed. Subprograms, including origins and all
points, are listed in the order of their loading.

to be
entry

Tha projram being debugged may be run in seg•ents, or
stopped when a given criterion is met. Five conditional
br~akpoints may ba set. If the required condition is not
met at the time execution reaches a breakpoint, DEBUG
automatically restarts the program. An option is provided to
~iuse printing of a l~cation at that time, whether or not
the condition is met (see "V" request). Format of the break
r~ quest is-

B -N- -LOC1- -LOC2- -.REL.- -VALUE- -~ASK-

"N" is a number: batween one and five, indicating the number
of the break FCi n t to be reset. "LOC 1" is the location d t
whi~h the breaK will be placed. When control passes to this
location, a break will occur if and only if "LOC2" bears the
r~lation 11 .REL." t3 uvALUE". The last four ar-guments ar:e
intarprated as they ace in the "/" request, and emitting
them creates an unconditional breakpoint. "LOC1" and "LOC2"
m:t y b~ ctn y valid express ion as defined in the •• E" request,
except that if the expression for "LCC2" contains an index
ra~istaL wodificati~n, the expression must be a single term.

A:tive ce:1isters !lay be used as the break condition. In
addition tc the standard registers, the spe~ial DEBUG symbol
$C3UNT is a location which contains the number of times the
bLeakpoint has been rassed without breaking. More than one
hLeakpoint may be using s:oUNT as the test register without
:::onflict.

co..,.,.. to.: JlU Q (\U
~C\, """'- V.U ft~&e VIe V V 6/69 9

When a break is finally reached, DEBUG informs the user
wni~h break caused return to the monitor. It will also print
out the number of times each breakpoint was passed without
:tusin~ a break. At any treak, all counts ace reset to zero.

A breakpoint may be removed ty typing "B ~". All breakpoints
will be removed by typing "B" alone. T~o breakfoints may
not be set at the same lc~ation.

Tha "G" and "F" re~uests will trasfer control to the user's
pcogram. "F" has no arguments. and returns to the last
br;!akpoint, interrupt or entry into DEBUG. The "G" re~uest

format is-

G LOC

and causes execution to begin at "LOC". N cte that if "Lo:n
is at a treakpoint location, and the break ::onjition is met,
tna bc~ak will be taken immediately.

IE a r~quest fails for any reason, "G" and "P" requests on
the same line will be ignored.

A CTSS break level is set before control is]iven to the
usar'•s subroutine. The~efore, during execution, an
interrupt will ~etu~n control to DEBUG. The location at
whi=h the interrupt occurred will be printed in the cu~rent
mode.

Any block of locations ox active registers may be dumped in
tha current mode whenever a breakpoint is reached, whether
or not the condition for the breakpoint is met. The request
format is-

V - 1- - 10: 1- - LOC2-

All locations between "LO:l• ~nd "LOC2" will be dumped in
tha current mode whenever break "N" is reached. This is
independent of the "B" t:equest, that is, changing a
br~akpoint will n~t change the verify locations associated
with that breakfcint. If •N• is an asterisk, all verify
lo=~tions for all breakpoints will be set to the same.

"LJC1" and "L0:2" are exfressions as defined in
ra<}Uest, except that if they contain index
modifications, they eust be a single term.

the "E"
register

C r S S F R C G R A M l1 E R ' S GU I D E S e ct ion A H • 8 • 0 8 6;69 10

To shut off this featur:e for a specific i:r:eakpoint, type "V
N". "V" alone, or uv *" will turn off all verification at
:tll bt:::!ctltpoints.

Any CTSS com~rand may be executed from within DEBUG. Format
of tha request is-

• COMAND -AR~l- -ARG2- •••• -ARGN-

r he current core image is saved in the file (BUG} S AV Et, and
tha command 11 CO~AND ARGl ARG2 •••• ARGN" executed. Command
buffers are saved during the execution of the command.
R~turn to DEEUG is indicated by the message DEBUG RESUaED.

Tha "Q" reguest may be used to return to
core image is retained which may be
r~ started.

command
pa tchecl,

I eve 1.
saved

A
or

An :tdiitional entr:y p~int to DEBUG is provided, called FBUG.
It is pr:ovided tc allow a subroutine to call DEBUG directly,
but is otherwise e]uivalent to the command. Reque~ts a~e

r e ad f r oro t b e c c n s o 1 e , a s u s u:t 1 • The 11 $ " r e q u e s t , w i t h no
:t r:~ uman ts, rna y be used to return control to "1 ,4" in the
calling subrcutine.

$MEM
$ ILC
$K
$A

$~Q

$ X1
$X 2
$ X3
$X 4
$X5
$){ 6
$X7
$!:>I

crss

.$ LS
£COUNI

i?BCGRAMMER~S sect ion AH. 8. 08

The Current Memory Bound
The ILC at the Last Entry into DEBUG
The Logical Accumulator
The Signed tlccumulator
The MQ
Index Beqister 1
Index Register 2
Index Register 3
Index Register 4
Index Begister 5
Index Regi~ter 6
Index Begistec 7
The Sense Indicators
Lights and Switches (see below)
Count cf rimes this Breakpoint was Passed

6!69 1 1

These lac a ti ens are stored in this order, and may therefore
be dumped in block nctation by the output requests.

The meaning cf each ectal digit in the $LS register is-

1-3
4
5
b
7
8
9
10
1 1
12

Unassigned
Console in Twelve-tit Mode if on
Flcating-pcint rrap Mode Indicator
Divide Check Light
AC Overfl~w Light
ftultiFle tag Mcde Indicator
Sense Light 1
Sense Light 2
Sense Light 3
Sense Liyht 4

If the diqit is ''1", the indi~ator or light is on.

C 1' s S F B C G R A M M E B 1 S GU I C E Section AH.8 .. 08

RE ''UES 1' --~----

A
B
c
D
E
F

H
I
J
K
L
M
N
J
p

~
R
s
T
u
v
w
X
y

z

$

*
I

Manipulate signed AC
Breakpoint cequest
Compare memory with disk BSS file
Defcsit into cere
Define symb~l for CEBUG symbol table
Set output mode for floa tin~ point
Go to c~re location and start execution
Hollerith cutpct mode
Integer output mode
FORTRAN decrement integer mode
~anipulate logical A:
Locate subroutine in core
Print storage m~p cf core
" N I C E " :> u t p u t m o de (o ct a 1 fie 1 ds)
Octal cutput mode
Proceed from breakpoint or interrupt
Q u it a n d r e t urn to : T s s c om m :1 n d 1 e ve 1
Belocatable output mode
Symbolic output mode

. Set up symbol table
"UGLY" output mode
set verification criteria
Concatenation of "L" and "T" requests
TIP 6-bit ~ointer cutput mode
TIP 9-bit pointer output mode
TIP 12-bit pointer output mode
Execute a crss request
Execute a single ma=hine instruction
Return to calling subroutine
Set indirection level
Search f3r a given word in core

6i6~ 12

CTSS • r1 o "n ttn.o.vo

Linas typed by the usee ace numbered in the
left column, and commented on after the session.

(1) :l e b u;,
w 1341.4
DEBUG Ell TER ED. MEMORY BOUND IS 24220.

(2) 1 zot
'ZOT• IS LOADED AT 7000, ENTRY PCI NT IS 7004.

(J) t zot
SYMBOLS LOADED.

(tl) 7000 7032
WRFLX/ 'I 'IR 22033
CH NCOM; 'I'IR 24044
CHNCOM + 1/ HTR 0
ZOT- 1; TXL 6060,6,14663
ZOT/ L rtr M 0
ZOT+ 1/ LDI INDEX+2
LCOf/ PXD 0
CYCLE/ ADO INDE X ... l
CYCLEt-1/ T IF S HIFr
INCREII- 1/ AXT 5,1
I NCBElV A£D INDEX +1
INCREM + 1/ SXA IHDEX,1
I NCREM+ 2/ 7IF SHIFT
SHIFT-2/ Til I ICBEft, 1, 1
SHIFT- 1/ TRA : Y:LE
SHIFT/ PIA 0
SHIFT+l; ARS 1
SHIPT+2/ &xr 0
SHIFT+3/ TRA LOOP
MESS-4/ TSI W RFLX, 4
MESS- 3/ PZE MESS,0,1
MESS-2/ tSI CHNCOM,4
M ESS-1/ HTR 0
KESS/ TII 53360,2,44645
INDEX/ HTR 0
IN DEI+ 1; H 'IR 1
I NDEX+2/ HTR 77

(5) h mess
MESS/ DCNE.

(6) r 7COO==
ZOT/ TTR WBFLX
ZQT+l/ TTR :HNCOM+ 3
Z OT+ 2/ H'IR 0

6;69 i 3

CTSS PROGRAMMER'S 3UIDE

("I) *+4 *+1C 2
ZOT+6/ PXD 0
ZOT+10; TIF ZOT+ 17
ZOT+ 12/ A[D z or + 3 1

(H) o zct+6==
ZOT+6/ -0
ZO T + 7 I 0
ZOT+ 1 0; 0

(9) n *
7010/ 'I IF

(1 0) • 1' r zct+22
ZOT+22/

(11) *
(12) p

• zcr+6/
'IRA
PXD

75400
4 0000
04600

7017

ZOT+6
0

l?RnGRAl1 R E S'lAR TED.
EXECUTICN.

(13) INT. 0
ZOT+14/ tiF *+3

0
0
0

00000
07031
07 017

(14) d shitt+2 pai,O tnz,loof
(1 5) b 1 mass- 4' g z:> t + 4

PROGRAM ST AEr ED.
B R E A K 1 A 'I ZO 'I+ 2 3 •

(16) o $a
$A/ 0 00000 0 00000

Se(; ti on AH. 8. 08

(17) b 1 loop $count • e. oct, 7 • b 2 mess- 2
(18) v 1 $si'g zct+4

PROGRAM STABTED.
MONITOR 1 AT ZOT+b.
$SI/ 0 00000 0 00077
$SI/ 0 00000 0 00037
$SIJ 0 00000 0 00017
$SI/ 0 00000 0 00007
$5!/ 0 ocooo 0 00003
$5!/ 0 00000 0 00001
DON E.
BREAK 2 AT zor +25.

LOC 1 AT ZOr+o PASSED 6 TIMES.
(19) 1 zo t zo t + 4 0 • e • t s x , 0 7 7 7 7 0 0 0 0 0 0 0 0

ZOT+23/ 0 07400 4 07000
(2 0) s 'I

MESS -2/ TSX CHN COM, 4
(21) I

NO WORD SATISFIF5 RBQUIREMINT.
(2 2) o $ mq • $a • : xca • $ m g • S:~

$MQ/ -3 77777 7 77777
$A/ 0 OCOOO 0 00000
$MQ/ C 00000 C 00000
$A/ -3 77777 7 77777

6;69 14

CTSS f8CGRAl111ER'S GUIDE s e ct ion A rL 8 ~ oR

{23) • ttpeek

08/10 1529.7 TIME USED = 2.0

SHIFT MINUTES
ALLOTT El: US ED

1 85 24.6
2 20 8.0
3 10 3. 2
4 30 3.2
5 30 .o

S'IORA GE
DEVICE QU cr A
DISK 200

DEBUG RESUMED.

US ~D
79

(2 4) b 1 w c f l x $ c () u n t • e. o ct , - 1
(2 5) v 1 1, 4
(2 6) * 1
(27) h
(2 8) -J zot +4

PRJGRAM STAR TED.
MONITCB 1 AI WRFLX.
ZOT+24/ 0 00001 0 07027

*ZOT+ 211 DONE.
DONE.
BREAK 2 AT ZO 'I+ 25.

LOC 1 AT WBFLX PASSED 1 TIME.
(29t q

GOOD BYB.
~ 4.012+.416

6/69 15

C T S S F R C G R A M M t: R ' S GU I D E Section AH.8.08 6/69 16

Explanation of the DEBUG session.

(1) A t comma n d 1 eve 1 , t he m on ito r is entered w it h the D F BU G
command.

(~) Locate the subroutine we will be using,
(3) a nd c rea t e the s y rn bo 1 t a b 1 e from Z 0 T S Y ~ TB •
(4) L o o k a t 1 oc a t ions 7 C 0 0 t h r: o ug-h 7 0 3 2 in t be cur rent

mode.
(5) Look at location MESS in Hollerith.
(6) En te r: r e 1 o cat a b 1 e out put mode an d 1 o o k at 1 oca t ion

700C. The empty requests (concatenation characters)
cause the next !~cations to be printed also.

(7) L o o k at ever y o the r word be t wee n *+ 4 and *+ 1 0 • ·Not e
that* is the last location printed by the Ftevious
request, and that all numbers used in the request are
octal.

(~) S~t octal mode and look at ZOT+6.
(g) Go to "N" mode and look ~ t the current location.
(10) Sat indirection level to 1, and look at ZO'I+22 in

relocatab1e mode.
(11) Restore indirection level to zero.
(12) P~oceed from last entry into DEBUG. In this case, since

there had been n~ execution before DEBUG was entered,
start at the beginning.

(13) We decide there is an infinite loop, and give an
interrupt. DEbUG responds with the location of the
inter.ru,tt.

(14) D~posit the c:>rrect instructions. Note the address
field on the PAI in~truction.

(15) Sat a breakpoint at MESS-4 and start execution at
Z:>T+4. Note that we are in relocatable mode, therefore
the symbol Z01 refers to the program origin, rather
than the value cf the location ZOT in the subroutine.

(16) Look at the accumulator.
(1 7) sa t a con d i t i o n a 1 br e a k po in t at L 0 0 P • The b rea k w i 11 be

taken at the seventh time execution reaches this point.
S~t a second unc:>nditional breakpoint at MESS-2.

(18) Verify the sense indicators at breakpoint 1, and start
f rom z O'r + 4 •

(19) Look for a TSX instruction between ZCT anl ZOT+40. The
octal mask insures that any TSX will be found.

(20) Switch to symbolic mode, and try to find another TSX.
(21) ·rry for one ID:H~e 1SJ.
(22) Look at the MQ and AC. Then execute an XCA instruction,

and look at them again.
(2 3) E xa cute the cr s s com m an d T T P E EK f r o 111 w it h i n DEB UG •

~me~ 001'\f'"OaMMD'DIC' "'fiTT'\1:0'
'- 4 ._, ._, It" u v \JIJ.\ a a:.11.1 u u. -..~ ~ ""4 u ...,

co,.,.,...+.;,. au Q nu .._,...,....,._.4...,&1 na..a•'-'•vu 6/69 17

(24) Put a break{oint at WRFLX. Note that .SCCUNT will never
rgacb -1, hence the break will never be taken.

(25) However, we may vet:ify a register whenever control
r~aches that point. Here we wish to look at 1,4, which
will be the argument to the subroutine WRFLX.

(26) Set indirection level, so that we can see what the
argument points to,

(27) and go to Hclleri th mode, since the argument is BCD
text.

{ 28) Begin execution at 20'!+4.
(2 9) We are all finished. Ex it back to CTSS command level.

(END)

CTSS

PLint storage maF
STOMAF

'-, ...-. ~ .; "' Jl u o n a
..., ...:;; v '- ~ v aa n ~.a • ..., • v J

1')/~Q , "' ""' 1

To print the storage map from the (MOVIE TABLE) file created
by th~ standard loaders (i.e., every loader not using the
1 (0 L D) ' c p t i c n) •

STOMAP
P r in t s t h a f i 1 e • (M OV IE T A BL B) • on t be user • s cons o 1 e •

STOMAP ALPHA
:r~~tas a file 'ALPHA MAP' containing a numeric and an
alphabetic storage map of the file • (MOVIE TABLE) '

STOMAP ALPHA BE!A GAftMA
Cra~tas a file 'ALPHA MAP' from the file 'BETA GAMMA'. If
GAMMA is omitted, 1 (TABLE)' is assumed. If ALPHA IS
' { o N L) ' , t h e s tor a g e m a p w i 11 be p r in t e d o n- 1 i n e.

(E NO)

CTSS GUIDE

Manuscript typing and editing
TYPSET, RU NCFF
J. Saltzer, X6039

sect ion a Yt n I\ 1
llfie::7eVf

1
I

Th3 command TYPSEr is used to create and edit 12-bit s:o
line-marked files. lhis coamand permits editing and
r~visin:.J by context, rather than by line number. The
command RUNOFF will print cut {in a format subject to
:ontrol words placed in the file via TYPSET) a 12-bit s:o
line-marked file in manuscript format. BUNOFF contains
s~varal special c~ntr~l features which wEre not available
., ith the DITTO command, including type-justification.

This work represents :>ne more iteration in the arduous task
oE ::: r~a ti ng an "ultimate" editing scheme. As such, it is
primarily a synthesis of techniques wbich have been proven
v~luable in several separate protlem areas. It is felt that
this particular synthesis brings to bear on the editing
prohl3m an easy to use package of techniques, and might
provide a model fer an editor on a "next Jeneration"
tim~-sbaring system. Here is a list of some of the sources
of ideas for these commands:

J. McCarthy (Colossal typewriter)
s. Piner (Expensive Ty pew rite r)
P. Samson (Justify)
Comp. Center staff (Input, Edit, and File)
M. .L. Lowry {fi emo, Modify, and Ditto)
a • p. Barnett (Photon)
v. H. Yngve (Com it, Vedit)
R. s. Fabry (Ma :1 bug)
A. L. Samuels (Edits)
F. J. Corba to (Be vise)

C T S S F F C G R A M M E R ' S GU I D E Sect ion A H. 9. 0 1 12/69 2

An Edit-ty-Context Program

TYPSET is a command prog~am used to type in and edit
memorandum files of English text. TYPSET, along with the
::ommand BUNCFF, is a replacement for the (old system)
commands MEMO, MODIFY, and DITTO. Editing is specified by
:ontext, rather than line number, ~nd input is accomplished
at high speed since the frogram does not respond between
1 in es.

'IYPSET name

"name" specifies the prim:t ry name of :t fila to be edited, or
of ~ file to be created; it may te absent, in which case a
file is to be created, and must be named later by the "FILE"
r~ quest.

When TYPSET is ready for typing to be3in, the word
or "Edit" is typed, and the user may tegin. If
creating a file, he begins in high-speed input mode;
is aditinj a file, he begins in edit mode.

"lnputtt
he is
if he

In high speed inrut mode, the user may type lines of up to
360 characters in length (e.g., 120 underlined characters)
separated by carriage returns. He does not wait for
response from the Frcgram or the supervisor b~tween lines,
but may type as rapidly as desired. The full character set
of his keyboard may be used.

The user leaves hiyh-speed input mode and enters edit mode
by typing an extra carriage return. When switching modes,
the program ackncwledges the switch by typing the name of
tlla naw mode, "Input" or "Edit".

In Edit mode, the ~:rc~.Jram recognizes "requestsn of the form
~iv~n below. All requests take effect immediately on a £Q£l
of th~ file being edited. Ex~ept where a request is
axp3cta3 to cause a response, such as "PRINT," successive
requests mdy be entered immediately on successive lines
without waiting fJr a response from the program. Each
separate request must begin en a separate line. Program
r~sponsas are typed in red, if you use a two-color ribbon.

ro.,. ,_. co n ,_,. n,... n a u w L' n • ..,. ,... Yt -r n o
""",.....,...., ~ avuunuuuu - ...> ~ UL v.~:o section n. n ..

an.~. v • 12/69 3

Th~ standard 12-bit chacacter set is available. (See
Section AC.2.01.) 'Ihe preset erase character is t and the
pr~set kill chacacter is ~ •

Editing is dcne line by line. We may envision a pointer
wni=h at the beginning of editing is ahove the first line of
the file. This fainter is moved down to different lines by
som~ r~guests, while 3ther requests specify some action to
be done to the line next to the pointer. All requests
ax=~pt FILE may be abbreviated by giving only the first
l~tter. Illegal ~r misspelled requests will be co~mented
upon and ignored.

For purposes of description, the requests have been
into two categ~cies, those necessary for effective
the command, and special-purpose requests which are
J~n~rally useful. The first category includes
requests:

L3CATE character string

divided
use of
not so

eight

This request moves the FOinter down to the first line
which contains the given character string. Only enough
of the line need be specified to identify it uni~uely.

Sinca the pointec only moves ~Q~ through the file the
sacond occurrance of a line containing a given
=haracter string may be located by giving the LOCATE
request twice. The line which has been found is
printed in its entirety.

It is not necessary to count blank characters exactly.
If one blank character appears at some point in the
request string, any namber of blank characters cr tabs
at the corresponding point in the file will be deemed
to satisfy the re:juest. If 2 blank characters appear
together in the request string, there must be at least
two blank characters or tabs at the corresponding point
in the file, etc.

If the LOCATE re1uest fails to find a line containing
the given character string, a message is printed, and
tbe pointer is set to point after tbe last line in the
file. Any requests which were typed in bet ween the
LOCATE which failed ~nd the message from the program
about the failure are ignored. Another LJ:ATE request
will move the pointer ba:k to the top of the file to
be~in another scan down through the file.

CTSS PROGRAMMER'S GUIDE Se(;tion AH.9.01 12/69 4

PRINT n

Starting at the pointer, n lines are printed on the
typew.riteL console. The pointer is left at the last
line printed. If n is absent, 1 line is printed and
the pointer is not moved. If the pointer is not at a
line (e.g., above or below the file, or at a line just
deleted) only a carridge return is typed.

NF.XT n

'rhis request moves the fOinter down "n" lines. If "n"
is absent, the p~inter is moved to the next line.

DELETE n

This request deletes "n" lines, starting with the line
currently being pointed at. The pointer is left at the
last deleted line. If "n" is absent, the current line
is deleted and the fainter not moved.

INSERT new line

The line "new line" will be inserted after the line by
the painter. rhe first blank following the request
wor-d is par-t of the request word, and not part of the
naw line. The p~inter is set to the new line. to
insert more than one line, give saver-a! INSERT
requests, or just type a carriage return to switch to
high-sFeed iniJut mode. All lines typed ar-e inserted
after the line being pointed at. When the user returns
to edit mode by typing an extra return, the pointer is
s~t to the last inserted line. If the very first edit
request given is an INSERT, the inserted lines are
placed at the beginning of the file. If an INSERT is
Jiven after- the pointer has run off the bottom of the
file, the inser-ted lines are pla~ed at the end of the
file.

CHANGE /string 1/ string 2/ n G

In the line being pointed at, the string of characters
"string 1" is replaced by the stri n~ of char-acters
"string 2". If "string 1" is void, "string 2" will be
inserted at the beginniny of the line. Any character
not appearing within either- character str-ing may be
used in flace of the "slash" chara(;ter. If a number,
"n", is pr-esent, the change request will affect "n"
lines, starting with the one being pointed at. All
lines in which a change was m:1de are printed. The last
line scanned is pLinted whether a change was ~ade or
not • T he F c i n te r is le f t a t the la s t 1 i n ~ scan n e d. If
the letter- "G" is atsent, only the first occurr-ence of

.t "string 1" within a line will be (;hanged. If "G" is

s c ct i c n A H • 9 • 0 1 12;69 5

present, all :>ccuccences of "string 1" within
will be changed. If "string 1" is void, "G"

a line
has no

must be affect. Elanks in Cf.ANGE-request strings
counted exactly.

Example:
line:
request:
new line:
request:
nawline:
request:
new line:
request:
new line:
request:
request:
request:
new line:

It is a nice day in Boston.
:HA NGE /iS/WaS/
It was a nice day in Baston.
CHANGE xwasxisx
It is a nice day in Boston.
: H A NG E 1 1 • ' g
It.is.a.nice.day. in. Boston.
CHANGE 1

• ''

Itis.~.nice.day.in.Boston.
CHANGE "tis" t is"
~ H A NG E ' • ' 1 G
C HAN G E ' on ' on • '
It is a nice day in Eoston.

FILE name

TlP

This request is used to terminate the editing process
and to write the edited file on the disk. The edited
file is filed as "name (MEMO)"· If "n3.me•• is absent,
th2 original na111e will te used, and the older file
deleted. If no name was originally given, the re~uest
is ignored and a co11ment made. If "name" is given and
a file of that name already exists, the user will be
asked if he wishes to delete the old file. When this
request is finished, the user returns to c:>mmand level,
and the supervis~r will respond by typing "R" and the
time used.

-
This request moves the rointer b~ck to above the first
line in a file.

Tha following seven re~uests are handy for special purposes,
but will probably not he used as often as the ones
pra vio usl y aescr ibed.

BJT'rOM

This request mo¥es the fainter to the end of the
and switches to input mcde. All lines which are
typed are placed at the end of the file.

file
then

ERASE c

The character "c 8 becomes the erase
normally, the character- "I" is the erase
(The erase character is used to crelete the

ch ac acter.
character.
previously -~.

C'r S S f B C GRAMM t R 1 ::; GO ICE. section AH.9.01 12/69 6

typed chardcter ~r characters.)

KILL c

The character "c" becomes the kill character.
Nor~ally, the character "~" is the kill character.
(The kill character is used to delete the enti~e line
curx:entl y being typed.)

APPEND character string

Tba string of characters "character string" is aFpended
t o t he 1 in e be in g p c i n ted a t.

VERIFY p

If the fararoeter, "IJ" is "OFF", the following program
rasponses are not automatically typed:

"INPUT" or "EtiT" when the mode is changed.
Lines found b} the FIND or LOCATE requests.
Lines changed by a CHANGE request.

If the parametec "P" is "ON", the responses are
restored. The command tegins in "ON" mode.

RETYPE new line

'f he line "new line" re pl:tce s the line being pointed at.
The first blank following the request word is Fart of
the reguest word and therefore is not part of the new
line.

FIND =haracter string

This request m~ves the pointer down to the first line
which§!~!!~ ~!~h the given =haracte~ string.

SPLIT name

All the lines ah~ve the pointer are split into a file
called "name (MEMO)". Any old ~opy of "name (MEMO) tt is
daleted. The remainder of the file may still be
edited, and filed under another name. The SPLIT
r~1uast may be used several times during a single edit,
if desired. Unless ~t least one "TOP" request has been
given, "name" rnu::;t te different from the original name
of the file being Sfli t.

BREAK c

The character "c" becomes the break character, i.e. to
switch from input to edit mode or fcom edit tc inFut
mode , t y p e "c " f o 11 owed by a carriage ret u r n. I f "c"

QUIT

CTSS GUIDE S€ct ion "n f'\ A 1
t\Oe7.Vt

1'1~£(\
• 4, u 7

..,
I

is not specified on the BREAK request, the normal mode
(carriage return only) is restored.

This reguest is used to terminate the editin~ p~ocess
without makin~ any changes to the original file, and
without creating a new file. All intermediate files
are deleted, and the user returns to command level.

The backspace key may be used to create overstuck or
uni~rlined characters. All overstruck characters are stored
in a standard format, independent of the way they were typed
in. CHANGE-, LOCATE- and FIND-request strings are also
converted to this standard format, so it is not necessary to
remember the order in which an overstruck ::haracter was
typ~d in order to identify it. For example, supfCSe the
line:

rhe N~RMAL M~tf statement of ~AD

hdd teen tyFed in by typing the letters NCRMAL, five
b~=kspaces, a slash, and four forward spaces. The slashed p
in N,eRMAl can -be changed to a standard c ty typing

c f{ A NG E 'Ja I 0 I

Two special names are used f cr in te rmedia te files by ·ry PS Er.
Th~y are:

(INPU'I prog
(I N PT 1 p t· o g

whare 'prog' is the usec 1 5 programmer numter. Following a
QUIT sequence (or a crss system break1own) one or both of
thase files may be found. (Whenever a c;UIT sequence bas
been given, a SAVE command should be issued to save the
status of all files.) Because the (INFT1 prog generally
=ontains a complete c~py of the file since the last TOP
command, it may be renamed and used as a source file, and
m3y pec~it rec~very of l~st requests. The (IBPUT prog
contains only that part cf the file ~QQ~~ the pointer, and
tberefoce contains only a partial record of the original
fil~. The original file is never 1eleted until the new,
edited file has been successfully written and closed.

Th~ int~rmediate files are normally written in permanent
mode. If the user's track quota be~omes exhausted while
aiiting, TYFSEr will switch to temporary mode intermediate
files. If it is necessary to le~ve the edited file in

CTSS FBCGRA~MER 1 5 GUICE Section AH.9.01 12;69 8

temporary mode, a comment will be made.

If a n~w file name is to be created (including these
intermediate files) and the user alre~dy h~s a file of the
s~ma name in his directory, he is first asked if he wishes
to delete the old tile.

CTSS PROGRA55EH:S ~uiDE SeGtion AH.9.0i i2j69 9

B:t sic

1

D

N

I

p

c

T'O;'TUa.C+-c • ... '- ':1 \,&

Summary of TlPSET requests.

LOCArE string

DEL!r E n

NEXT n

INS ERr line

PRINr n

:HAN;E QxxQyyQ n G

TOP

PILE name

Spa=ial-purpose requests:

8 BOrTOf1

v VERIFY ON (or OPP)

s S PLir name

R RErYPE new line

E ERASE X

K KILL x

A APPHN D string

F FIND string

Q QUIT

line found *
end- of-file

end- of-file

end- of-file

none

printed lines,

end- of- file

changed lines •

none

Ready message

"Input" *
none

no na 11e given

none

none

none

none

line found *
end- of- file

Ready message

* Th~se responses will not occur if VERIFY mode is cff.

CTSS PROGRAMMER'S ~UIDE section AH.9.01 12/69 10

A Right-Justifyiny Type Cut Erogram

HUNJFF is a command used to type out memorandum files of
En3lisb tdxt, in ~anu5c~ipt format. Control words scattered
in the text may be used to provide detailed control ever the
format. Input files may be frepared by the context editor,
TYPSET.

NAME 1

P1,P2,

STOF

RUNOFF NAME1 -P1- -P2- ••• -Pn-

is the frimary name of a file "NAME 1 (MEMO)"
to be typed out.

etc., are any number of the
f o 11 ::>wing par am et er s, in any order:

Pause bet~een pages.

NCWAIT suppress the initial pause to load paper and
the pause between pages.

PAGE n Begin printing llli th the page nut~bered "n "·

B A 1.. L n r y pe w I i te r i s using p r i n tin 3 ball " n" • I f
this pat:'ameter is omitted, Runoff assumes
that the tall in use will properly print all
C'ISS chara:::ters in the file. The number "n"
is engraved on top of the printing ball.
C1SS characters not appearing on the ball
being used will be printed as blanks, so that
they may be d ri wn in.

Input]ena~ally c~nsi5ts of English text, 360 or fewer
characters tc a line. Ccntrol woris must begin a new line,
:t.n1 they begin with a period so that they may be
distinguished from other text. RUNOFF does not print the
:::on trol words •

• line lan-Jth n

S::! t the 1 in e l eng t h to "n " • T he 1 in e 1 eng t h is pre se t
to 60.

CTSS .,....,,..ren&Muone:
rt'l\.iUl'ftl"lOt;.D-~ sect ion A H. 9 ... 0 1 1?./~Q 1 1 . _, --

.indent n

set the number of s~a~es
beginning of each line to "n" •

to be inserted at the
I ncle nt is preset to 0.

• un:ient n

In an indented region, this control word causes a
break, and the next line only will be indented n spaces
(~~~£ than usual. 1his control word is useful for
typing indented numbered paragraphs •

• pEt per length n

This control w~rd is used for running off a meworandum
f i 1 e on non- s ta nd a rd pa Fe r • The n um be r "n " is a 1 in e
count, figured at 6 lines per inch. If this control
word is not given, "n" is assumed to be 66, for 11-inch
paper •

• si ngl~ space

Copy is t~ be sinqle spaced. This mode takes
after the next line. {The normal moje is
space.)

effect
single

.double space

Copy is to be dcuble spaced. This mode takes effect
after the next line •

• be:Jin page

Print out this page, start next line on a new page •

• adjust

Right adjust lines to the right margin by
blanks in the line. The next line is the
affected. (This is the normal mode.)

-ne 4
• noj ust

• fill

Do not right-adjust lines •

Lengthen shcrt lines by moving words from the
line; trim l3ng lines by moving words to tbe
line. (This is the norma 1 mode.) A line
with one ~r m~ce blanks is taken to te a new
and is net run into the previous line.

ins er ti ng
first one

following
fcllowing
beginning

paragraph,

CT S S f B C GRAMMER' 3 GU IDE Sect ion A H. 9. 0 1 12/69 12

.nofill

Print all lines exactly as they appear without right
adjustment OL filling out •

• pa. ~ e -n-

Print page numbers. ('the first page is not given a
page number. It has instead a two-inch top margin.
sa~ also "Manuscript Conventions", below.) If "n" is
present, insert a page treak and number the next page
"n". Note that RUNOFF does not print (;ompletely empty
pages •

• space-n-

Insert "n" vertical spaces (carriage returns) in the
(;opy. If "n" carries spacing to the bottom of a page,
spacing is stoFped. If "n" is absent or 0, one space
is inserted •

• haader xxxxxxxxxxxxxxxx

All of the line after the first blank is used as a
header line, and aFfears at the top of each page, along
with the page number, if specified •

• br~ak

The lines before and after the ".break" contrcl word
w i 11 n c t be r u n tog e the r b y the "f i 11 " mode o f
operation •

• center

The following line is to be centered between the left
and right margins •

• literal

The following line is not a control word, desFite the
fact that it begins with a period •

• heading mode P

This ccntrcl sequence alters the mode of the
head to that specified ty the parameter "P".
the followin~ pard meters are allowed:

r-unning
Any of

CENTER the header will be centered on the page.

MARGIN The header will be adjusted against the r-ight
margin of the page.

s~c t.i un • •• n n 4 an • ":1. v t
1 ..,.
IJ

FACING On even-numbered pages, the header
adjusted against the left margin,
numbered FageE against the right.

will be
on odd

OFEOSEC The header will be adjusted against the
OFposite margin from the page number.

In the absence of a .HEADING MODE control
sequence, the default option is OPPOSED •

• odd page

This control word causes the current page to be printed
out, and the next page to be n umbere:i with the next
higher odd page number •

• paging mode P 1 P2 • • • Pn

This control sequence alters the mode cf
numbering to that specified by the parameter P1,
etc. The Pi's may te in any order, and selected
the following list:

page
P2,

from

MARGIN Page numbers will be adjusted a~ainst the
right m ac gin •

FACING Odd page numbers are adjusted against the
right margin, even page numbers are adjusted
against the left margin.

CENTER Page numbers are centered between the right
and left ma1·gin.

TOP Page numbers are placed on the fourth line
from the top of the page.

BOTTO~ Page numbers are placed on the fourth line
from the bottom of the page.

OFF Page numbecs are discontinued..

PREFIX "string" The string of characters between
g u~tation marks is prefixed to the paqe
numhe£. The quotation marks may be next to
each other, in which case no prefix is used.

RCMANU Page numbers will be printed in upper case
R cma n numerals.

BOMANL Page numbers ~ill be p~inte~ in lover case
Rom an numerals.

ARABIC Page numbecs will be p~inted in Arabic.
(This is the normal mode.)

CTSS FROGHAMMEH'S GUICE Section AH.9.01 12/&9 14

SET n Set the next page number to be ttn".

SI<IF n Skip "n" page numbers.

If in a single use of .PAGING ~ODE several pi's specify
competing functions, the last one specified takes
precedence. \ollhen the .PA:iiM:J ~OD.E sequence appeacs in
t~xt at point A6 all text up to A (and probably some
text after A) will appear on a page controlled by the
previous paging mode. The new pagin9 mode will take
effect en the next ~~ge. Then there is no danger of
~etting page numbers both at the top and bottom of the
same page.

Use of the TOP para meter may c onf lie t with the heading
mode. If a heading and a page number should be printed
in tbe sa~e column, the page number will take
precedence.

In the absence cf a .PAGIN3 MODE control sequence, the
1afault opti~ns are: TOP MARGIN PREFIX "PAGE "

• append A

Take as the next input line the first line of A (MEMO).
Note that the whole of A is appended, and that the
appending is an icr:eversible process - that is, once
RUNOFF encounters the .APPEND ~ontrol word it will
switch to file A (MEMO) and continue from its first
line. Other text in the original fila (which contained
th2 control word) will not be processed by RUNOFF. rbe
file A (MEMO) may, cf c curse, itself call for appending
of still another file, and so on.

All control words ~ay be type~ in eitber upper case or lower
:1s~. Illegal ccntrol ~or:ds are ignored by the RUNOFF
command. A comment may aFFear to the right of a control
wor1, as long as it i3 on the same line.

All control words 11ay be abbreviated if desire:i. A list of
~bbreviations is given in the summary. In most cases, a
single word is abbreviated bJ giving its first two letters;
two words are abbreviated by giving the first letter: of each
word.

The RUNOFF program assumes a page length of 11 inches, with
6 v~rtical lines per: inch. The top and tottom margins are 1
inch, except for the first ~aye which has a 2-inch top
m1rJin. If a header: is U3ed, it will be placed 1/2 inch

CTSS PROGRAMMEH•s GUIDE Section AH ~ 9 ~ 0 1 12!69 15

from the top of the Fage. The first pa~e is
nor is it given the header line, unless the
". header" and "· fage 1 n appear before the
text.

not numbered,
contrcl words

first line of

Customary margins are 1-1;2 in=hes on the left and 1 inch on
tha ri3h t. i11ol Yin a a 60 -character 1 ine. This is the
~~an~~~~ iineL l~ngih in the absence of mar~in control words.

Unless restrained from doing so by NOWAIT, the program stops
b~for~ the first page for loading of paper. The STOP
par a meter w i 11 cause a stop be tween all pages. The paper
should be loaded so that after the first carriage return
typing would take place en line 1 of tbe paper. The left
margin stoF cf the typewriter should be pl~ced at the point
typin~ will begin, and the right margin mcved as far right
as possible. Now, when you type the first carria~e return,
tha pro~ram will start typing and fQBi~~~~ to the end of the
fila.

When pecforroing riyht-adjustment, the RU~OFF c~mmand does
not take special account of the tatulate characters.
Therefore, tabs should net be used unless 11fill" mode is
off. If tabs on a 1 OS 0 are not set at the CTSS standard
settings of 11, 21, 31, etc., the supervisor may mistime
=haracters or inse~t extra carriage returns. For this
reason, use cf tab characters is not recoamended.

If a mamo does use tabs in a section where "fill" is off,
the mechanical tab stoFs on the typewriter must be set
properly. rhe following conventions should be used in any
memo which uses tabs: The first t~o lines of the memo
should contain tw~ comments, beginning with the words ".SET
TABS AT", fcllowed by a stcing of blanks an3 x's, with the
x•s positioned at the desired tab stop positions. The
second comment should be ".TABS SET AT" followed by a string
of tabs and x's. If the typewriter is =orrectly set up, the
typset request "PRINT 3" will cause the two lines to be
printed out with the x•s lined up. Since the supervisor
~ssumes that tab stops are at 11, 21, 31, etc., a line with
too many tab characters m~y appear to overflow the carriage
siza, and the supervisor may insert extra returns.

Underlining cr overtyping may be accomplished with the aid
of th~ backspace key, even in a line that is subject to
right adjust•ent.

C r S S F B C G R A l1 M E R ' 3 GU I I: E s e ct ion A H • 9 • 0 1 12/69 16

Sumnary of RUNOFF Control Words

~Q.QI.~!· £.f.!Lt1.f1 ~.ffg ~.Y1:2J!!!!!:l£ !!!~~!

.ap .append A no

.11 .line length n no

.pl .paper length n no

.in • in dent n no

• un • undent n yes

• ss .single space yes

• j s .d::>uble space yes

.bp • begin page yes

.ad • adjust Jes

.. fi • fill yes

.nf • nofill yes

• pa • fage (n) yes, if n

.sp • space (n) yes

• he • header xxxx no

• br • break yes

.ce .center yes

• li .litera 1 np

.hm • heading mode p no

.op • cdd page yes

.pm • faying mcde p no

If "automatic break" is yes, the lines before and after the
:ontrol word will never he run together, and the previous
line will be Frinted out in its entir~ty before the control
worj takes effect.

(EN D)

Users talk to GOD
REM ARK

C' ~:,..~ 11u n n'l
JC""" \..LVIJ ftUe ~- V.J

Us~rs may address the~selves to "whom it •ay concern". The
users• remarks file is printed off-line each day and the
op~rations staff directs the printed copy to the apfropriate
members cf the systems programming st~ff.

REMARK lAME 1 WAME2

rhe 6-bit a:o file NAME1 NAME2 which contains
the user's remarks is a ppen:led to a PO BL IC
file called USER REMARK. This file is printed
each day by the operations staff and delivered
to the addressees. If NAME2 is omitted, it is
assumed to be BCD. If NA~E1 and NAME2 are
omitted, instructions for using the command
are t:rinted.

(FN D)

CTSS PROGRAMMER'S GUIDE section AH.9.o~ 2!66 i

Mail com aa nd
MAIL

To place a file containing a message to another user in his
fil~ directory, whether he is logged in or not.

MAIL
f'AI L

NA,.E1
NAME1

NAME2 PROB1 PROG1 ••• -FROBn- -PROGn-
N AM E 2 ' (L IS T) ' L N AM E 1 L N A 1'! E 2

N A M.E 1 ~ AM R2 is the n am e o f t he f i 1 e to t e lila i 1 e d. I t m us t
be 1 i n e- rna r ked , a nd no more t han 1 ~ ec or d i n
length.

PR3Bi PROGi are the users to which mail will be sent.

(LIST) I f t be ' (LI S T) ' o p t i on
LNAME1 LNAME2 will be
list", and mail will be
PRCGi pairs in the file.

is 1iven, the file
used as a "mailing
sent to all PROBi

The file may be
it!;; format is

separated by
card- image ot line-marked i
free, except that items must be
st:aces.

Hail will be Flaced in a file named MAIL BOX in the records
of usee PHOB i PROG i. If the file already exists, it will be
3.pp~nd~d to. Each piece of mail is prefaced with a message
of the form "FROM OSRPB llSRPG DATE TIME" where USRPE is the
s~nier•s problem numbeL, USRPG is the sender's programmer
number, and DA'IE and TIME have the usual meanings. (To
~s=~rtdin whether he has received mail, the user should
perioically- daily, perhaps- issue the command 'PRINT !tAIL
BOX'. Because of the appending feature of the MAILing
process, the co111mand • CELET E MAIL BOX' should be issued
3.ft~r a massage has been PRINTed, to avoid havin~ to run
throu~h previous mesages to get to the latest one.)

Any PROBi Q.£ FBOGi may be '*', meaning "all"; the command
will s~arch the MFD and send mail to all users {but not to
common files) satisfying the =riterion. However, '* *' will
llQ! cause mail to be 5ent to all users.

Typing the colllmand 'MAIL' without arguments is equivalent to
iSkin] for instructions on how the command is to be used.

To avoid ~etting mail, one may pl~=e in his tracks a file of
n1.m~ !tAil BOX with PRIVATE mode.

CTSS PROGRAMMER'S GUIDE sec ti on A H • 9 • 0 5 2/66 2

I f an a d d r e s see is o ve r h i s re c o rd q uo ta , ' M A I L B 0 X • will be
written in tempora~y mode.

I f t he L e c e i v e r ' s M A I L B 0 X i s P RI V AT E , P R GT E C T ED or
READ-ONLY, mail cannot be delivered.

(EN D)

CTSS

Run off ASCII mem~randum files
RJFF

ROFF is a program used to type out memorandum files of
English text, in mdnuscript format. Control words within
th~ ASCII source file may be used to provide detailed
control of the fermat of the 1o~ument produced. ROFF is an
ajptation of the RUNOFF command (see AH.9.01) for ASCII file
input. Since ASCII files contain no line-maLks and have four
characters per wcrd instead of three, a user :::an obtain a
si~nificant saving in file space by using EDA and HOFF
instead cf TYPSE'I and RUNOFF.

ROFF name1 -F1- -F2-

RDPF will read the tile "name 1 ASCII" and pr-oduce
output in manuscr.-ipt form. The cpticna 1
farameters p 1, F 2, e t~. rna y :ippe:!.r in any order- ..
They may be any of the following:

s·roP will cause a pause between pages so that the paper
may be changed. ryping will resume when carriage
return is struck.

NOWAIT will cause the initial pause to load
paper to be suppressed. Typing
imB'ediately.

and position
will begin

PAGE n will begin outfut ~dth the page numbered "n". If
pages are n~t numbered, no output will result.

BALL n will cause ROFF to ~ssume that the console used
for typed output has a typing element of type 11 n".
ROFF assumes th~t all characters in the file can
be typed with the typing element. CTSS characters
in the file "name 1 ASCII" which do not appear on
the ball will print as blanks, so that they can be
drawn in by hand.

PRINT will cause ROFF to produce
stream file .. name1 RUNOFF" 3.S

typing 3n the console.

an ASCII
output

character
instead of

The control words tor ROFF are the same as those for- RUNOFF,
with the following exceptions:

CTSS PROGRAMMER'S JLtDE Section AH.9.06 6/6<-J 2

NEED control word: ".need n"

Start a new page of output if there ar-e not "n"
lines remaining to be printed on the present page.
This centre! wcrd is useful for keeping tables and
figur-es fr-o:n being split across a page. (This
central word must follow ~ control word which
causes an automatic br-eak.)

INSERT control word: ".inser-t file name3"

The input st~eam will be diverted to file NAME3
ASCII. When all input from NAME3 is exhausted,
ROFF will revert to taking input from NAME 1 ASCII.
".inseit file" contiol words may not be nested.
This control word causes an automatic break.

Tha abbreviation for ".insert file" is ".if" and the
:ibbrevia tion for- "·need" is "· ne".

(END)

CTSS PROGRAMMER'S

Print files in public file directory
PIN FO

au 0 r\""7
nue .~.v,

To :illow users tc print files (INFO files in particular)
accessible through the public file directory M1416 CMFL04.

PINFG MAME1 -NAME2-

1
I

PINFO will switch to the public files via a call to TSSFIL,
op~n .NAME1 NAME2 for reading, return to the user• s file
directory via a call to USRFIL, and print the file on the
t~rminal. The file may be either line-marked or card-image.
If • N AM E2 ' is om it ted, • I N F 0 ' i s a ss um e d •

Th~re are short descriptions of most system
M 1416 CMFL G4 as files of seccnJ name 'I NFC •. T:)
to us~ a command, for example 'APEND', type:

FINFO APENt

commands in
find :)Ut how

If tha appcopriate INFO file exists, it will be printed. To
obtain a summary of changes to INFO files, print the file
'NEWS INFO':

FI NFO NEWS

To obtain a list of all available INFO files, type:

LIS'lF (SYS) * INFO

To print the message of the day (printed also by LOGIN),
typa:

FINPO MESS AG rOtAY

(E NO)

CTSS ""',...,.. n a u u J;· n t ~ r t'l ~u n nun'"'"' J S e c ti on A H • 1 0 = 0 1 12;69 1

Micro Command
RUN C0[1, CHl IN

Public and private c::>mmands may be linked or chained
together in crder that the chain may be executed by merely
issuinJ one command. rhis is convenient if the same series
of commands is tc be executed more than once and the user
lo~s not wish t3 ~etype the series each time. Arguments to
the commands may be specified at execution time.

s~~tion AG.8 gives fucthec information atout macro command
programs.

Command Chain:

The command chair., or rn~cro-command, must first be prepared
~s ~ BCD line-marked ~~ line-numbered file, with one command
per line. Blank lines are ignored. Command argu11ents are
s~parated by one o~ more spaces; if an argument is more than
six characters long, it will be truncated from the left.
Arguments may be command names, actual argument values or
lummy symbols. If dummy symtols are used, there must be a
list of the dummy symbol~ Sfecifiai by the pseudo-command
CHAIN somewhece befo~e the first executatle command.

Example
CHAIN
E:D
PRINTF
'IRA MSL
LOAD
etc.

of a
lLPH
Al.PH
ALPH
lLPH
ALPH

11 aero- co1111a nd:
BET TBAHSL
'IRANSL
TRAMSL

BET (LIBE) nWNLIB

Comments rna y be inc! uded in the ~ommand chain
as lines which have as the first character an
••• or a '$'.Comments intro1ucei by ••• will
be ignored during execution. Co•ments
introduced by '$' will be printed on the
use~•s con5ole at the point of execution
corresfonding to their position in the chain.

C T S S F R C G R AM M E R ' 5 GU It E s e ct ion A H • 1 0 • 0 1 12/6~ 2

r; xa:; uti on of Command Chain:

RUNCOM NAME1 ARG1 ARG2 ARGn

NAME1 is the pcimary name of the HCD command chain
file NAME1 HUNCOM (or NA~E1 HCD).

AHGi are the acguments to be substituted for the
dummy symbols (if any) in the same order as
s~ecified in the pseudo-comaand CHAIN. If any
A H G i i s • (NI L) 1 , the correspond i n g dum m y
argument will te ignored; if it is substituted
for a command name, the whole command is
ign::>r-ed. If any ARGi is ' (END) 1 , it will be
r e F laced b y a f e nc e (a 11 7 's) • An y ad di t ion al
arguments will be ignored ty commands in which
t h is s ub s t i t uti on i s perf o rm e d • If (END) is
substituted as a command name, the chain is
terminated at this point. If there are fewer
ARGi than dummy symbols in the CHAIN
specification, the rightmost dummies will
retain their literal values.

RUNCOM will interpret tba file NAME1 RUNCOM,
substitute the explicit arguments for dummy
arguments, if any, and perform the execution
of the specified commands ty appropriate use
of the supervisor command chain buffers and
subrGutines. RUN:OM =ontains a list of public
commands indicating whether or net each
command assumes~ current cora image; RUliiCOM
can then properly intersperse the SAVE and
RESUME commands. Nesting and recursion are
possible.

Core image management:

Some more details may be necessary to
mechanism whereby RUNCOM takes care
between c~mmands.

understand the
of core images

As a general rule, a core image is kept over two
consecutive commands if, and only if, the fir-st one is
supposed to leave a core image, and the second one is
supposed to expect a core imaye.

e. g. L 0 AD - SA VE - FA PD B G
Use the same core image created by the LOAD co1mand.

Whereas LOAt - SAVE - LISTF does not keep
image frcm SAVE to LISrE. Commands which are
to leave a c~re image are:

the core
su ppcsed

C'-. : ,.....,.. AU 11". n1
~c \....LVU nu. •v•v•

C 'lE S'l1 to : TE ST9
LOAD VLOAt NCLOAD LOADGO LDABS USE START
PM TRA STOPAT PATCH
FAEDBG StBACE L
SAVE RESUME B RESTOR
l1YSAVE RECALL CONTIN BSTART
RU NCOM

Commands which ace supposed to expect a core image are:

PM r RA STOP AT PATCH
USE S'IAH T
SAVE KYSAVE
FAPDBG STRACE

(NIL) arguments as comman:l n~mes, and $headed lines do
not alter the saving of a core image.

As one may n::.tice, RUNCOM itself may yield a core
image, if the la~t comman3 in the chain does. e.g.,

LOAD ALPHA BETA
SAVE ZETA
LI.STF ZE'IA SAVED
RESTOR ZE'IA

may be used as a macro-command, and followed by a START
co11mand.

Common file switching:

The only commands which are allowei to begin and
t2rminate in different file directories are:

COMFIL COPY UPDATE REMAB~ ATTACH

Indeed, COMFIL switches to whatever
specified, and the ethers switch to the
directory when completed.

directory is
user's file

Any other command must be initiated and terminated in
tba same file dicectory. on the other hand, there is
no restriction en the various switching which may be
p~rf3rmed during the execution of the commands, as long
as the initial setting is restorei tefore the end.

RUNCO~ may be initiated in anJ
RUNCOH command will swit~h ba~k
directory whenever it needs to
co•aands fer execution.

common file, but
to its initial

load a new set

the
file

of

It should be noted that~ $ he~ded line pLoduces a
major break in the RUNCOM command. The fcllowing
commands in the ~hain will then be lo~ded together in

C r S S f B C G RAM M E R' 5 GU I D .E Section AH.10.01 12;69 4

th~ supervis~r•s buffers, up to a maximum of 3 at a
time.

some ex a 1t p 1 e s of md c I o- c om ma nd s:

We shall assume here that the name of the BCD file
containing the chain is MACRO RUMCOM.

1 .. : HA IN FILE (NIL) (E NO)
ED FILE MAD

2.

MAD FILE {NIL)
(EM D) FILE • • • (LI HE)

may be called in the followin~ ways:
RUNCOM MACRO FILE
W he nee: ED FILE MAD

MAD FILE

BUNCO~ MACRO FILE (LIST)
Whence: ED FILE MAD

MAD FILE (LIST)

RU NCOM M ACBO FILE (SYM B) VLDAD
Whence: ED FILE MAD

MAD FILE (SYMTB)
VLOAD FILE (LI BE)

CHAIN FILE BCD FIL1 N1 N2

* THIS MACRO INSERTS THE FILE FILE BCD

* I~ TO 'I HE FILE FI L1 BCD I AFTER LINE NUMBER N1

* AND DEL Er ES r HE INITIAL PART JF FIL 1 BCD

* UN TIL AFrF.R N 2.
SPLI'I FIL1 BCD (A) N1 * N2 (E)
CHMODE (A) BCD T (B) BCD T
COMB IN * FI L 1 BCD (A) FILE (B)

May be called ty:

RUNCOM MACRO ALPA FAP BETA 1030 1040
inserts ALPA PAP after line 1C30, and deletes
until after 104 0

RUNCOM MACRO ALFA FAP BETA 1030 1030
same thing, but does not delete anything from
HE1A PAP

RUN:OM MA:RO * FAP BETA 1030 1050
deletes in BErA PAP lines after 1030 until
a f tee 1 050

3 • * TH I !:> C B A I N A L l 0 W S S T A C Kl NG C 0 ~ M A N DS T Y P E D 0 N T H E
*CONSOLE, ANt THEN STARTS THE EXECUTION
SPLI1 M~:BO RUN:OM MACRO N
* N IS THE NUMEEB OF THE LI~E CCNTAINING 'EXECUfiON'

CTSS PROGRAMMER'S ~U!DE

EDIT "A:Ro RUNCOM
FILE "ACRO RUNCOM
$ EXE:UTION

s~c tion !H: 10~ 01

(E NO)

CTSS ,. .. - ---'- .: - - • •~ 1 n n 'l
.:>-.:::::\...\..J.VU ,r,n. tv.v"'

s u p p 1 y a r g u men t s i n o= ta 1 to :1 n y = o 11 ma n d
GE NCOM

1
I

If for some reason, the desired arguments for any command
~:1nnot be expressed in BCD, the command may be used with the
arguments exfressed as pairs of six-di~it octal ar~uments.

GENCOM COMAND ARGU1 ARGU2 ARGUn

CO~AND is the BCD name of the desired command.

ARGUi are either the actual BCD arguments of COMAND
or pairs of arguments, OCTLHi CCTRHi (left and
right half, respectively), which specify the
octal equivalent of the desired argument.
Leading zeros in the octal arguments may be
omitted. Any argument which is pure numeric
:> f d i g its 0 t c 7 m u s t be e x p r e sse d as 0 CT L H
OCTRH. If an OCTLH is not fallowed by its
o:'IRH, :tn error :;omment is printe:l.

GENCOK will combine the pairs qf six-digit octal
arguments, OCTLHi OCTRHi, into single twelve
digit octal arguments, ARGi,:1nd will initiate
the c:>mm and.

COriAND ARG1 ARG2 ••• ARGn

(EN D)

CTSS PROGRAMMER'S ~UIDE

user subsystem central
SUBSYS

Sec ti on A H ~ 1 0 ~ 0 3 1

To allow a user pregram (•subsystem ') to have reliable
=ontrol over the manner in which a console user may interact
with CTSS.

Durin3 recent years there has evolved on CTSS a class of
specialized interactive fi:ograms test thought of as
subsystams under :!SS which, with few exceptions, are
intendad to be usable by persQns having little or no
experience with CTSS as a general-purpose computing
f~=ility. Examples of such programs are the various
information retrieval systems, teachin~ aids, and the
=ommand interface program •.• •

In many cases it is desirable (or necessary) that such a
s 11 bs y s t e 111 he t he on 1 y a c c e s s ~ use r h a s to C T S S, i . e • t b at
h~ =an•t ~UI1 and then go do something else. This means that
tha tima-sharing supervisor must provide a means whereby the
subsyster may regain central in situations which would
oriinarily all~w the user to issue commands directly to the
system (e.g. program termination, pushing the QOir button,
arror ~onditions, etc.).

Tha following c~nsiderations led to
implementation of the subsystem facility:

the current

i. Frovide fer subsyste•-restricted users, i.e. users whose
subsystems are initialized at LCGI N and who may not
accass CTSS eicept as allowed by the subsystem. (This
was the FrinciFal reason for the implementation of the
subsystem feature, and is intended to provide better
control over ~ user's ~ctivities than tbe ~ld
'disk-restricted user• facility.)

2. Allow a subsyste~ to load and execute programs or
execute CTSS com11ands (e.g. .EDL) by usin~ command
chaining, dod rec~ver control when exe=ution terminates.
In the case cf restricted users, such programs must ~~!
ba able to aodify the supervisor sutsystew status words;
however, the subsystem need not be so restricted.

l. Allow a subsystem to inter~ept a new command typed while
at command level. Since the QUIT button is the cnly
real safety valve dVailable when ~ projram has entered

CTSS PBCGRAMMER'S GUIDE Section AH.10. 03 12;69 2

an endless lo:Jp, and even well-coded subsystems ace not
immmune to proyram bu~s, it was decided that the best
way to give c~ntrol to the subsystem after a quit is to
wait for a new ccmmand tc be issued from the terminal,
and then load the subsystem instaad of executing the
command typed. Ey making the command typed at the
ter~inal available in the current command buffer, it is
possible for the 3ubsystem to execute the coamand via
CHNCOM or NEX:OM.

4. Allow the subsystem to Sfecify conditions under which it
should be load~d (program call to DEAD or DORMMT, call
to CHNCOM with nc ccmmand chainin1, intercepting new
command, error condition), and allow the subsystem to
datarmine which of these conditions caused it to be
loaded.

~. Allow the subsystem to SFecify that a SAVED file of a
possible d~rmant core image is to be automatically
produced befcre loading the subsystem.

Six spacial TIA's have been provided which allow a frogram
to specify and examine the conditions under which a
subsystem is t~ be loaded. These may only be used by a
subsystem or by a subsystem- fri vileq·e:l (i.e. not restricted)
us~r. Refer to secti:>n AG.8.05 for details.

Associd.tea. with each user, there
maintained in the supervisor
options, his subsystem name, a n:i
:o1~ mask and last condition code.

~re three status words
containing his standard
his subsystem condition

Us~r standard ~pti~ns occupy a half-word (18 bits), and are
interpreted as fellows:

+-----------------+-----------------+
user options

+-----------------+-----------------+
1 Search user UFO first for command
2 Search user or system files (not both) for command
4 R E S E TF if com ma nd re se t s d or ma n t pro g •

10 User subsystem trap enabled
20 Inhibit quit signal~ for user
40 Current user program is subsystem

100 Automatic save before loading subsystem
200 User is • d ia lab le'

The two lew crder bits are taken together to specify
four modes of c~mmand file searching:

CTSS PROGRAMMER'S ~UIDE S~r!tion AH~10~01

0 Search system files then user files (normal mode)
1 Search user files then system files
2 Search system files only
3 Search user files only

The following disk-loaded commands are always taken from
the system files (Frcvided that the user is allowed to
usa them) :

LOGIN
LOGO U'l
OT CLOG
DAEMON
CStUMF
OS LOAD
FIBMJN
OFT ION

(user may not issue)
(incremental dumper only)
(incremental dumper only)
(incremental dumper only)
(FIB user and PIBMCN only)
(subsystem-privileged usEr only)

The BESETF bit specifies that if there is a dormant core
imagE left from the last command, and the command
currently being processed does not preserve this core
i m a y e (i . e • n o t S fl V E , M Y SA VE , S T A R T 1 R S T A R T , S U B S Y S ,
ENDLCG, BESETF, or any E-core transfer command: USE,
DEBUG, PM, etc.), any active files will be reset by a
call to BESE1F in5tead of being closed normally. This
provides comratibility with previous versions of CTSS.

Th~ subsystem t~ap enable hit causes all program calls
going to DEAD or DORftNl (inclulinj errors) to simulate a
call to NEXCCft for the command SDBSYS, provided that the
call does not come from the user's subsystem (option bit
40 off), and causes all new commands issued from the
terminal to fass through the subsystem processor (with
the exception of exempt commands).

Tha.quit-inhibit bit causes all quit si~nals to be
ignored for the user. Prcgram status will be unaffected
if the user attempts to quit and buffered output will
not be reset. N.E. rhe only way to step a non-quittable
program that has gone into a loop is to force an
automatic logout by hanging up the data-phcne (or
turning off power to the terminal). Use this feature at
your own risk!

The subsystem execution tit, if on at co•mand load time,
causes a new core image being loaded to hdve subsystem
privileges if the user does not have the subsystem
pcivileye himself. Program calls going to dead or
dormant status will execute normally if this bit is ~n,
r~1ardless ~f the setting of the subsystem trap bit.

Tha subsystem save tit
processor tc simulate ~

th ~ subs y stem •

if set causes the subsystem
'MYSAVE progn T' before it loads

CTSS PROGRAMMER'S ~UIDE Se ~ ti on AH. 1 0. 0 3 12/69 4

T he d i a 1- per m i t b i t a 11 o w s re m o te te r m i n a 1 s to at t a c h to
tha user via the DIAL command. See section AH.1.05 for
details.

·rhe user's subsystem name is interpreted as a six-character
~3mmand name, which may te any system ccmman1 or a user
disk.-loaded command (5 AV ED file).

+-----+-----+-----+-----+-----+-----+
sub system name

+-----+-----+-----+-----+-----+-----+
Th~ subsystem conditi:>n code mask is a half-word quantity
split into two 9-bit fields. The high order 9 bits are
~xaminad by the subsy3tem processor if the user has a core
image left; the low order 9 bits are examined if there is
~urrantly no core image. Within each 9-bit field, the bits
are interpreted as follows:

1 Traf new command
2 ·r r a p d i e e c t p r o g r am c a 11 (• D E A D • , • D o R Pl N·r ')
4 Trap CHNCOM if end of chain or no chain set up

10 -1eap ercor condition (file system, FMV, etc.)

The subsystem condition code occupies the high order 18 bits
of tha subsystem condition mask word. The low order 9 bits
of these 18 indicate which of the possible subsystem trap
=on1itions occurred t:> cause the subsystEm processor to be
entered (zerc if the SUBSYS commanj w~s issued directly by
tha us~r or his peogram). rhe following 8 bits specify an
error code if the subsystem condition code was 10 ('eeeor'),
in order to indicate the type of error that occuLred. This
is not yet imflemented, and the error code will be returned
as 0. Tha high order (sign) bit is on if there was a
doemant core image left.

++-------+--------+--------+--------+
I 1 error I cede 1 conlition mask 1
++-------+--------+--------+--------+

When tha CTSS supeevisoe determines that a user's subsystem
is to be called in (opticn bit 10 is on and usee is about to
JO dedd or dormant or is at command level and tyfeS a
command), it initiates the sp~cial comma.nd 1 SU8SYS 1 foe the
us3r, in the same way that ENDLOG is set up for an automatic
logout, placing the user in the gueues in waiting command
status. The SUBSYS commdnd may also be issued by the usee
:iir~ctly, fre>m the teeminal or via CHN:JM; this is
considered tc satisfy any condition mask.

W~en SUBSYS is entered, the following occurs:

1. If the user's current core imaJe is not that of his
subsystem (opti::>n bit 40 oft) and the automatic save

CTSS PROGRAMMER'S 3UIDE se:::ticn AH.10.03 12/6 9 5

opt i c n is s r:e c if i e d (o p ti on b i t 1 0 0 on) , s u B s Y s
simulates a 'MYS AVE pr:ogn T'.

2. If the s U B s Y s c :> m m an d w as in it i at e d by t he use r , e i the r
ty typing SUESYS at the terminal, or within a command
chain, the subsystem is un:::onditionally loaded, whether
or not the cucrent core image telongs to the subsystem.
T he con d it ion c ode i s se t to 0 • (T hi s i s the on 1 y w a y to
r~~nter the subsystem if a protection mode violaticn or
file system error with nc error return specified occurs
durinJ executi3n 3f the scrhsystem.)

l. If the user's current core image is that of his
subsystero, and the SUBSYS command was initiated by the
supervisor:, the u5er •s program (subsystem) is restarted
ty simulating the 'START' command. If a command line was
entered and traFFed, it ~ill be available in the current
command buffer. rhis is the case when a user, while
executing in the subsystem, quits and tries to issue a
command, or when the sutsystem itself has called DORMNT
and the user issues a ne~ ~omm:1nd. (This occurs only if
bit 1 of the subsystem mask is on.)

u If th~ user's current rore im~gP is not that of hi~

subsystem and the SUESYS ~omm:1nd was initiated by the
sup~rvisor, SUBSYS comp~r~s th~ ~urr~nt subsyste~

con:liticn code with the condition code mask. If any
conditicn is satisfied, the user's subsystem is lnaded,
option bit 40 is 5et (this hit on while a command is
being loaded instructs the comman1 pro=essor to set the
rastriction c~de bit in the user's current restriction
code that allows his subsystem to call the TIA's which
modify options and subsystem status), and the prcgram is
started. If none of the conditions are satisfied or
tnare is no subsy5tem set up, SUBSYS exits via COBMNT
unlass a command ~as trapped, in which case SUBSYS will
return tc the command processor to execute the command.

The following CJmmand5 when issued from the terminal are not
subject to being trafped by the subsystem facility, but will
a xa~ ute nnrmall y:

SAVE
MY SAVE
START
R STAR 'I
CPTION (t:estticted u::;er may not use)
SUBSYS

CTSS FFCGRAMMER':i GUICE Section AH.10.03 12;69 6

B~wara of attem[Jting to use 'SUBSYS' as a subsystem.
R~sults will be peculiar.

(END)

CiSS PROGfiAMME~=s ~UIDE

Set user options
OPTION

Saction ... "" "'" tsn. tv.v-.
1 ') .c. 0
I .L/ U 7

1
t

Allow a user to set his standard option and subsystem status
woris maintained in the supervisor to modify system
chara=teristics to suit his ovn needs.

With systems numbered BAO and higher, the command processor
has been completely redesigned to provide a more general
user interface.

Associated with each user, there
miintained in the supervisor
options, his subsystem name, and
~oj~ mask and last condition code.

are three status words
containing his standard
his subsystem condition

usar standard nptions occupy ~ half-word (18 bits), and are
intarprated as foll~ws:

+ ---- ------ ---- ---- +- --- - ---- --- - -- - - +
user options

+-----------------+-----------------+
1 Search user UFt first for command
2 Search user or system files (not both) for command
4 RESErF if c:>mmand resets dormant prog.

10 User subsystem ti:'af enabled
20 Inhibit ~uit signals foi:' user
4 0 Current user rrogram is subsystem

100 Automatic save befoi:'e loading subsystem
200 User is 'dialable 1

The two low crder bits are taken together to specify
four modes of command file searching:

0 Search system files then user files (normal mode)
1 Search user files then system files
2 Search system files only
3 Search user files only

Tha following disk-loaded commands are always taken from
tbe system tiles (prcvided that the user is allowed to
usa them) :

CTSS PROGRAMMER'S GUIDE s e c ti on A H • 1 0 • 0 4

LOGIN
LOGOUT
OTOLOG
DAEMON
DSD UMP
DS LOAD
FIBMJN
CFTION

(user may n c t issue)
(incremental dumpec only)
(incremental dumper only)
(incremental dumper only)
(FIB user a n:l FIBMON only)
(sub:> yst em- privileged user only)

12;6 9 2

Tha RESE1F bit specifies that if there is a dormant core
ima~e left fr~m the last command, and the command
currently being (recessed does not preserve this core
ima~e (i.e. n:>t SAVE, MYSAVE, START, RSTART, SOBSYS,
ENDLOG, RESE'IF, cr any 8-:::ore transfer c;ommand: usE,
DEBUG, fM, etc.), any active files will be reset by a
call to RESETF instead of bein~ closed normally. This
provides compatibility with previous versions of crss.

The subsystem trap enable bit causes all pro~ram calls
going to DEAD or DORMNr (including errocs) to simulate a
call to NEXCOM fer the command SUBSYS, provided that the
call does not c~me from the user's sutsystem (option bit
40 off), and causes all new commands issued from the
t3rminal to pass tht·ough the subsystem processor (with
the exce~ticn of exe"pt commands).

The quit-inhibit bit causes all quit signals to be
ijnored for the U5er. Program status will be unaffected
if the user atte1pts to guit and buffered output will
not be reset. N.B. The only w~y to stop a non-quittable
pro~ram that has gone into a loop is to fcrce an
automatic lcgcut by hanging up the data-phone (or
turning off p~wer to the terminal). Use this feature at
yout: own risk!

The subsystem execution bit, if on at command load time,
c~uses a new c~re image being loaded to have subsystem
privileges if the user does not have the subsystem
privilege himself. Program ~alls going to dead or
dormant status will execute normally if this bit is on,
regardless of the setting of the subsystem trap bit.

The subsystem save bit if set c~uses the subsystem
processor to simuldte d 'MYSAVE p1:ogn T' befoce it loads
the subsystem.

The dial-permit bit allo-s remote terminals to attach to
th3 user via the DIAL command. See section AH. 1.05 for
details.

The user's subsystem name is interpreted as a six-character
command name, which may be any system command or a user
lisk-loaded c:>mmand (:lAVED file).

Section AH.10.04 12/69 3

+-----+-----+-----+-----+-----+-----+
sut;system name

+-----+-----+-----+-----+-----+-----+
The subsystem condition code m~sk is ~ half-word quantity
split into two 9-bit fields. The high order 9 bits a['e
examined bj the subsystem prc~essor if the user has a core
imd]e laft; the low ocder 9 tits are examined if there is
curcently no core image. Within each 9-bit field, the bits
a~a interpreted as follows:

1 Trap new command
2 T r a f d i r e c t p r c g r a m :; a 11 (1 D E A D • , ' Do R M NT 1)

4 T['ap CHNCOM if end of chain or no chain set up
10 Trap error condition {file system, PMV, etc.)

The su bsy sterr cc nd i tion code occupies the high order 18 bits
oE tha subsystem condition mask word. The low order 9 bits
of these 1B indicate which of the possitle subsystem trap
conditions occurred to cause the subsystem processor to be
~ntarad. (zer:o if the :>U BS'iS command was issued directly by
the user or his program). The following 8 bits specify an
~rror code if the subsystem condition code was 10 ('error'),
in order to indicdte the tyfe of error that occurred. This
is not yet implemented, and the error code will be returned
a5 0. The high order (si·Jn) bit is on if there was a
lormant core image left.

++-------+--------+--------+--------+
11 etror 1 code 1 ~onJition mask 1
++-------+--------+--------+--------+

To turn on option bits:

oFT I c N s ET n n n n n n

To turn cff cpticn bits:

OPTION RESE1 nnnnnn

To spacify all opti~ns:

OPTION LCAD nnnnnn

(wh~ra •nnnnnn' is the oct~l representation of the option
h~ lf-word)

To specify subsystem status:

OPTION SETSYS ccmm~nd nnnnnn

CTSS fBCGBAMMtR'S GUICE Section AH.10.04 1.2;69 4

(wh~r~ 'command' is the six-character or fewer name of the
command which is the desired subsystem and •nnnnnn' is the
subsystam conditi3n mask. Option bit 10 is turned on by this
operation.)

To obtain a summary cf OFtions and subsystem mask bits:

JPTION HELP

To print out current options and subsystem inf~rmation:

OF'£ICN FRINT

To find out how ta use the command:

OPTION

Tha OPTICN command will be 'NOT FOUND.' in the system files
for a subsystem- restricted user. For a non-restricted user,
OPTION is always loaded from the system files, re~ardless of
the settings of the command loading options.

Tha CPTICN ccmmand will not
mechanism for a norma 1
subsystem-restricted).

be tL- apped
user (i.e.

by the subsystem
one who is not

(END)

Sac ti on ilH. i 1. 0 1 J/66

Print I/C error diagnostics PRNTER

Th~ PRNTER command calls the PRNTER subroutine (AG. 4. 06) to
format and the frint diagnosti= information available from
tha IODIAG subroutine (also in AG.4.06).

FRNTER

prints one line of the user's console of the form:
-'I/O'- 'ERROR' n: diagnosti= •--• subr 'AT' userloc
• (F. s. 'f sl oc 1) ' •

n = nume~ic value of file-system error code

diagnostic = ECt interpretation of 'n'

subr = entry in file-system in which the error
wa.s discovered.

userloc = location in user's prcgram or command of
call to •subr'.

fslcc = location within file-system (F.S.) where
the ecror vas discovered. ('I his is
generally cf little interest to user).

Normal exit via :HNCOM.

For usar programs and foe command chains which cont~in
individual commands which cannot continue execution when
fila -system errors are encountered. the PRNTER co11aand may
be called upon via the fcllowing alternate usage:

P RN 'I.ER MASK

MASK = 2!~~!1 argument used to control the
printout of diagnostic information. Eits
28-35 correspond exactly to the bit
positions used in spa~ifying "MASK" to the
PBN'IER subroutine. In addi ticn, the
sign-bit (bit 0) controls command chaining:
if the sign is negative (i.e. 1) contr-ol
passes immediately to CHNCOH; if the sign
bit is ~ositive (0) ani the user was within
a chain of commands, the comment

CTSS PROGRAMMER'S GUIDE Sect ion AH. 11.01 3/66 2

'IYPE 'START' TC CCNTINUE CHAIN

will be Frinted on
tJllJwed by d call to
user to t:Ike any
acti::>n. ryping START
proceed via :H NCOf'1.

the user •s console,
DORM N T, to a 11 ow the
necassary corrective
allows the chain to

If 'MASK' equals 0 (+ or
subr::>utine's def~ult mask
used.

-), the PRNTER
(375 (8)) will be

Tha following examples are equivalent ways of settinq up
this usage from within a command or user program:

MAD: EXECU1E NCOM. ($PRNTER$, MASK)

FAP:

MASK is either a vari~ble or a constant
denoting the desired tinary argument.

CAL =HPRN'IEil (name of command)
LCC MASK (argument of command)
TSX NEX~DM,4 (optional 'f!A =H ~EXCOM)

M A 5 K i s e i the r a 1 i te ra 1 reference (:::.tJ 'n ')
or the address of a variable containing
the desired binary value.

FLorn the console, the aFFtopriate binary confi~uaration may
b~ 1en~rated via GENCOM o~ via judicious choice of a B:D
ar· gu ment.

(EN C)

crss

CTSS USdge
W HD

GUICE S ectior1 • •• ".. n"' 1\U.IIaVL

To determine who is using CTSS at any given time.

WHO
or WHO N
or WHO PROGN -PROGN- -N-

The ndme Gf the current system and the last time it was
loaded are Frinted en the user's console, then the
number cf users currently logged in, and the current
time and date.

Following this is printed the line, problem and
progra•ser nu•ber, line multiplier, console
id~ntificati~n number, time used since logging in, and
login time for each user =urrently logged in.

If P~OBN PRCGN are specified, only statistics for PROBN
PROGN will be printed. * PRO:i N will print all users
with prcgra•mer number PROG. If PROGN is omitted PROBN
• will be assumed.

N is an optional pa.nmetet· givin~ the time in minutes
tba.t the prog~:am is to 'SLEEP' before again Frinting
the number cf users, date and time, and info~:mation

about each usee as explained above. However, instead
of the time of login, the time used since last print
out is printed. If N is omitted, control passes to
CHNCOrJ. If N was given, this routine may be terminated
at any time it is •asleep' by typing a new c~mmand.

(EN D)

C'rSS FRCGRAMMER 1 5 GUIDE

ListinJ control
SPACE, EJECT

sect ion A H. 11.03 12/69 1

Insart blank lines between commands in a chain, or eject a
page.

EJECr -A 1 A2 • • • An
SPACE n -A1 A2 ••• An-

'SPACE n• causes 'n' carriage returns to be typed. If 'n' is
omitted, '1' is assumed. EJECr is equivalent to 'SPACE 66 1 •

If A 1 ••• An affear, they will be passed back to the
supervisor as a c:>rRmand via SETCLS and NEXCJM.

(E NO}

C'rSS FECGRAMMER•:; GUICE

P r i n t com m an d 1 in e
ECH 0

S ~ r;t_ i on A H - 1 1 - 0 4

To print command line before executing the command.

E C H 0 -A 1 A '2. • • • An-

12/69 1

Th~ command name 'ECHO' followe3 by any arguments will be
typed on the ter·~tinal. If A1 ••• An appear, they will be
pdssed back tc the supervisot as a. command via SETCLS and
NEXCOM.

(END)

CTSS rRCGP.AMMEP.'S GUIDE sect ion A H. 11 ... Q 5 1? /h q . -, - -

octal/decimal conversicn
OCT, DEC

Allow octal-to-decimal or decimal-to-octal conver~ion from
::ommand level.

OCT/DEC nnnnnn -A1 A2 ••• An-

OCT will convert the decimal number nnnnnn
print the result; DEC will ccnvert the octal
to 1ecimal and print the result. If Al ••• An
will be passed back to the supervisor as a
SETCLS and NEXCOM.

to acta 1 and
number nnnnnn

arpeax:, they
command via

(EN D)

~,.,.,..._. ,...,. llU 11 f'\h 12/69 1 ...,~'""'-.LVJ.I n&J• I leVV

Turn printer en or off
PON, POPF

To engage or disengage the printing element on the terminal.

PON;POFF -A1 A2 ••• An-

The printer is turned en or off as
output is always printed in the case
only input printing is affected by
~pp~ar, they will be passed tack to
command via SKrCLS and NIXCOM.

specified. Note that
of a model 35 teletype;

POFF. If A1 An
the su pe rvi sor: as a

(END)

CT S S F R C G P. ! !! M E R ' S GU I D .E

Change ribbon shift
RED, BLACK

s e ct ion A H ~ 1 1 ~ o 7 12,/69

Change ribbon color setting on 1050 or 2741 terminal.

RED/BLACK -Al A2 ••• An-

Tha ribbon shift if any on the terminal is set to 'the
dP.sired setting. Note that input typed on a 2741 after
s~ttin~ ribbon shift to red will print black, whereas on a
1050 the r- it bon setting is permanent. If A 1 • • • An appear,
they will be rassed back to the supervisor as a C3mmand via
S!<;TCLS and NEXCOM.

(E NO)

C T S S F F. C G R AM M E R ' S GU ! C :E

Command chain checkpoint
YES

Section AH.11.08 12;69 1

Print a response on the teLminal, generally between commands
in a chain or at the end of a chain.

YES -Al A2 An-

An asterisk ('*') is typed en the terminal. If A 1 An
appear, they will be passed b~ck to the supervisor as a
~::>mlland via SETCLS and NE.XCOM.

(END)

CTSS FFCGRAMMER'5 r,o IDF:

P1use between c~mmands
WAIT

P~use in axecution foe specified time

WAIT n -A1 A2 ••• An-

12,169 1

·r he command will sleep for 1 n 1 ~£.Q!!.~§, then exit. If A 1
••• An afpear, they will be fassed back to the supervisor as
~ command via SE~CLS and NEXCOM.

(END)

Print date and time
'fi ME

Print ~ate dnd time on terminal

TIME -A1 A2 ••• An-

1 'l ~£ n "
IL., U -:7 I

Tha current date and time will be printed in the form

~M/[0/YY HH:MM:SS

IE A 1 • • • An appeaL·, they will be passed back to the
supervisor as a command via SETCLS anl NEXCOM.

(END)

Explain file error code
P ERROR

C' , .• -: ~ ~ " u 1 1 1 1
JC:\, \.L VU It U e I I • I I

1 '"'I • r r\
I£/ U 7

To allow the user t~ ~btain a diagnostic message exFlaining
a file system error at a time other th~n immediately after
the error occurs.

FEFEOR ENfRY ERCOD! -IOCODE-

A j i a J nos tic mess a y e :> f t he sam e f o c m as gene r.· a ted by the
PHNTER col'.trand (see AH. 11.0 1) will result, for err or
'ERCODE' in call to file system entry 'Eti'IRY'. If 'ERCODE'
is the arccr code f~r I/O error, the diagnostic will be for
I/0 error '.IOCODE' in call tc 'ENTRY'.

PERROR WRFILE 8 5

This comrrand will re:::ult in the messa]e:

ERROR 5: ILLE3AL I/0 REQUEST FCF DEVICE --WRFILF

(EN D)

CTSS PROGRAMi1ER!S AI.U 1

Public File Subrcutines

This section of the manual contains the documentation of
user-submitted subroutines in the Public File~ rhese
routines mu~t, of course, he loaded along with the frograms
which call them. The general procedure for this is:

LINK NAME1 BSS M1416 C~F104

(This need only be done once, of course.)
~x~mple,

LOADGO FRO:i NAM!1

Then, for

where PRCG is the first name of
program which calls a subroutine
in file NAME1 BSS.

a ass file containing a
(or subroutines) contained

Th~ nature of the Public File and the procedure for entering
programs in it are discussed in Section AD. 4.

(EN D)

CTSS

MADIO
Simplified i/o package for MAD programs
Reference: MAC-M-270
P~ tar J. Denning

.. ,.. .. (\ 1
n.J. .• L. v '

n , c. L
7f vv

1
I

MADIO is designed for use in the CTSS environment as a
=ompact input-output package. Its reading facility features
format free readinq within cne simple call. Its rrint
fl=ility incorporates the most commonly used MAD-type format
spe=ifi=aticns, a simplification of Hollerith field
specifications, and the facility to print without carriage
r~ turns. A program may read from the console by means of a
single call to READ, and print on the console with a call to
PHINT. These calls are intended to replace the use of the
HEAD FORMAT and PRIN1 FORMAT st~ tements. MADIO is about
(2400) d locations long, half the size of the CTSS Fackage,
(TJH). Unlike (IOH), MADIO does not use program common;{
thus, it can be used in conjunct ion wit b the NCLOAD command,
~hich can lead tc very ccmpact 'SAVED' files.

MADIC =an be obtained by linking to 1 MADIO BSS' in M1416
C~FL04. 'READ' cr 'PRIN'I' may be extra:=ted from 'MACTC ESS'
by metlns of the • EXr BSS' command •.

y~~: The call is:

R E I D. (I, B, ••• , L)

where A,B, ••• ,Lis the list of naaes into which values al.'e
to be read. Any or all of them may be in MAD block
not~ tion, i.e., A (J) ••• A (K) , prov idea K is greater than J,
and multiply-subscriFted arrays are peraissible. There is
no restl.'iction on the length of the list A,B, ••• ,L.

The call to READ puts the user into input wait status under
=ontrol of the READ program. The READ program counts the
number of locations specified by the list A,E, ••• ,L,
incl u:iing arrays. If there is any discrepancy between this
count and the number of loc~tions required for the items
typed on the console, an error condition results (see
below).

The user types a line of the form

cr S S f R C G RAM i1 E R ' 3 GU IDE s e ct ion A I • 2 • 0 1 <J/66 2

IT EM 1 IT EM 2 ITEMn

E~=h item is a data field, and one or more spaces separate
each itetr.

(1) If 'ITEMi' is a string of digits containing no
decimal point, it is interpreted to be an integer.
It may be t:receded by a •-• or an (optional) 1 + 1

sign.

(2) If 'ITEMi' is a string of digits includin:J a decimal
point the number is interpreted as floating fOint.

(J) If • I ·r E Mi • is a s t r in g o f dig its 0- 7 f o 11 owed b y a
'K', the striny is interpreted as o=tal.

(4) If 'ITEMi' is a string containin~ BCD characters
other than the digits 0-9, '+', •-•, 'K', •.• or •,•
it is interpreted as a hollerith string. A
hollerith string i~ entere1 six =haracters per
memory locati~n, the contents of the final location
left adjusted with tr~iling blanks.

(5) If 'ITEMi' is to be a hollerith string containing
spaces then it is enclosed in dollar signs, 1 $ 1 • If
the final '$' is missing, the end of the line, which
is assummed t3 be after the 14th word, is taken to
ba the end of the string. Tbu;-an entire line can
be read into a 14-word buffer by starting the line
with •s•. The •$• is ignored so that in actuality
83 characters are read in, with a blank inserted as
the 84!h character.

(6) Number i terns and hollerith items may be mixed in any
way en the line.

{7) It all the names A,B, ••• ,L would require more than
one line ~f typing (i.e., more than 84 characters
are needed) as many items as desired may be entered
on a line and remaining items entered in succeeding
lines. The program gives the following comment:

*****TYPE k MORE If EMS.

where k is the number of remaining ~~~QII lO£~!i~~~
to be filled (called for · by t be list A, B, ••• , L).
Hence the n arguments of the list could be entered
on as many as n console lines if desired.

(1) No more than 36 items or 84 characters to a line,
whichever coroes first.

CTSS F P. C G RA M ME R 1 S GU! D! Section AT ") ()1
n..a.e ev'

(2) No more than 12 digits to a number. Integers may
not exceed in magnitude 2.P.36. If X.Y is a
floating point number then the integer XY must not
exceed 2.P.27. This latter restriction can be
lifted if demand dictates.

(1) If the number of arguments typed is less
number of arguments in the list A,B, ••• ,L
follcwing comment is printed:

than
then

the
the

*****YOU HAVE k EXfRA IrEMS, DO YOU WANT T~ IGNORE THEM,

(2)

If •yes• is typed the extra arguments are ignored,
otherwise the Frcgram requests that the present line
be retyped.

If more thdn 12 digits in a numter, READ requests
ratyping the line. If a comma arFears in a string
of digits, it is ~ssumed to be a mis-typed decimal
point and retyping is requested.

(3) ether miscellaneous errors are cauqht, and the
following co~ment is printed:

*****ERROR AT IrEM NO. k. BETYPB LINE.

(1) Th~ call
READ. (.$.TEXT. $,A, B, ••• , L)

or,
READ. (T,A,B, ••• ,1)
VECTOR VALUES T : $.TEXT.$

Causes READ to redd Q~!Y in a BCD mode into the list
A,H, ••• ,L. 1his would be particularl-y useful for
r-e~ding into a buffer:

READ.($. rExr. S, BUFF(1) ••• BUFF(N))

If N is greateL than 14, the remaining words may be
entered en succeeding lines, as described above. When
READ is called, and the first location in the calling
sequence, T, contains the string ".TEXT.", REAC enter-s
BCD mode and iqnoces T. Hence the first item typed is
entered into A, the second into B, etc.
~~~!iQll: Be careful ~f a situation like 

READ. (A,B, ••• ,L) 



C 'f S S F 8 C G R A M M E R 1 S GU I D E S e ct i o n A I • 2 • 0 1 9/66 4 

if you should entel:' the wol:'d ".TEXT." into A, the next 
call of this fo[~ may still have ".TEXT." in A; then the 
items typed will be tl:'eated as BCD and entel:'ed into 
B, ••• ,L instead cf A,B, ••• ,L as intended. 

( 2) The message 

*****TYPE k MORE ITE~S. 

may occur frequently and may be annoying. The call 

READ. ($.OFF.$) 

will cause the program to enter a mode in which this 
message is suppressed. The call 

REAI:. (S.ON.S) 

~ill l:'eset to n3rmal mode. suppose the list A,B, ••• ,L 
calls for M reemory locations to be filled, the REAt 
pro~ram is operating in OFF-mode, and the items typed 
would fill N locations. The remaining (M-N) locations 
will be filled with zeros. In the CFF-mode, cnly one 
line of type is accefted • 

.t!QI£;. The BEAD FORMAr statement, if used, will cause 
in~orporation of the standard CTSS input-output packdge at 
loading tiroe, perhaps defeating the usefulness of the RIAI: 
program. 

I£2n2!~£ Y~£!S!: WRFLX, iRPLlA, RDFLX, EXIT. 

Y2~: The call is: 

P R I N T • (P M 'I , A , B , • • • , L ) 

where FM'I is a fermat statement, and A,B, ••• ,Lis the list 
of namas to be printed according to FMT. No restLiction is 
placed on the length of the list. Any of the names in the 
list may be in bl~ck notation, i.e., A (J) ••• A (K), prcvided K 
greater than J. Multiply-subs~ripted arrays al:'e permitted. 

F~T is a MAD-tyFe format statement enclosed in dollar signs 
of tha form: 



CTSS PROGRAnnER~S GUIDE Sel; ti on AI • 2. 0 i 9/66 5 

VEC'IOR VALUES FMT=$ ••• *$ 
or, 

VECTOR VALUE5 F.Mr=S ••• N*$ (See below.) 

If FM'r specifies format for k locations and the naae list 
sp~=ities altogether m locations, with k1m, then the minimum 
of k. and m locations are actually printed. Each field 
spe=ification is separated by a space or comma as desired. 

(1) It is no longer necessary to use H-formats. Hollerith 
strinJs are simply enclosed in parentheses, and no 
letter 'H' is used. However, since 1)' is used to 
t~rminate a string, the convention '=)' is used to 
iR§~£1 ') • into the output string, the '=' sign being 
ignored. To insert '=)' into the string, use •:=)'. 
~~~~~1~· The format statement 

VECrOB VALUES FMT=$ (HOLLERITH STRING.)*$

results in

HOLLERI rH S r RING ..

teing fLinted. Al~o,

V E: 70 R VA L UE S F ft T = $ (A R R A Y () , I 3 , (=)) * $

r~sul ts in

ARRAY (k)

being printed, where k is the value of an integer
variable named in the list.

(2) It is possible tc F.tint .. ithout a carriage return. The

(3)

format s~atement is terminated with'~*' instead of '*'
(N = no return). This can .be particularly useful for

entering data into progr~ms by means of single-line
que s ti on s and answers.
~!~.!!.E.!~· The foraa t statement

V BCTOB VALUES FMr=.$ (DO YOU WANT MORE,) N*$

results in

DO YOU WANT MORE,

being printed without a carriage return.

If an illegal format or some
arises, the FRINT program gives
Then it will allow the user to

other error condition
an error description.

return to the calling

C'r S S F B C G B A M M .E R ' S GU I D E section AI.2.01 9;66 6

pro~~am if he desi~es. With this feature, execution of
a prograro need net be halted by a format error, as is
n3rmal in CTSS.

(1) No E- formats are a !lowed.

(2) Integers must be less than 2.P. 36 in magnitude.

(3) If X.Y is a floating point number then the integer
X Y m us t be 1 es s t ha n 2 • P. 3 6 •

(4) All C-formats are interpreted as C6.

(5) Only cne level of nestinj is allowed. Thus
5 (6F8.2,S2,I5/) is allowed in the format statement,
tut not 5(6(F8.2),S2,I~/) or 3(F8.2,2(I5,S1,C6)).

(6) ot ccurse use of the PRINT FORMAT statement defeats
the use of PBINr.

~f!2! £Qn~!!iQ~~-
' 1) Illegal f:>r-mat results in the following:

•****TBOUBLE AT FORMAT WORD •word'.
*****PRESENr LINE IS ••
••••• (output line up to error}
*****DO YOU WANr ro RETURN TO CALLING PROGRAM,

If •yes• is typed, control is returned to calling
Frogram. Otherwise 'EXIT' is called. Note that
with this feature, execution of a Frogram is not
halted by illegal format, as with re]ular crss
library programs.

(2) Number exceeds specified field width. Signs and
dec i 11 a 1 f o i n t s a r e i n c 1 ud e d in t h e f i e 1 d w i d t h •
Suppose the specified field width is w, and the
number tc be pLinted contains x digits, where x is
larger than w. '!he rightmost (w-1) jigits of the
number are p r in t e d, an d an as t er is k (*) is i n se r ted
at the left cf the field. For example, suppose the
format F5.2 is given and the numter 1234.5 is to be
Frinted. Since the number is too wide for the
field, the following is actually Frinted:

* 34. 5

(E NO)

rome- C" r: C I"' r" D AM M 1: D I~ ron T n I;
._A. .J .J Jt; L' ""'u u n u lJ .&.. 1.\ J vv A...,._

Public file commands

1 'J ~t:. a
• "' v ~ 1

This secticn of the CTSS Programmer's Guide documents
us~r-supplied p~ograms which are analagous
commands. They are m~intained as SAVED files,
throu~h the public file directory M1416 Cl!FL04.

to system
accessible

rh~ public commands may be used by commands of the form:

DC P NAME ARG1 ARG2 •••

Altar-natively, one may link to the SAVED file,

LINK NAME SAVE[M1416 Cl1PL04

:tnl thet·edfter initiate the p["ogram with 'RESUME' or 'DO 0 1 ,

or , w it h oFt i c n b i t 1 2 ' se t , use the 1 ink as a ' user
::ommand' (see AH. 10.04 atout the OPTION command):

NAME ARG1 ARG2 •••

(END)

CTSS 'P"".nlfi"'\F'Ir"\1lM .. r"~•·-
r1'1\.iU1\ftrl1'1L1\"~

GPM - A General Purpose Macroqenerator
Christopher Strachey

This macrogenerat~r is an on-line symbol string processor,
both its input and its output teing strings of symbols. It
operates by a fotm of substitution which is completely
j~n~r3l in its application, in that substitution is allowed
anywhere. The result is a rowerful system including such
f~~tur~s as recursive functions and conditional expressions,
which can be implemented with very few (but very
r~barbative)instructi3ns.

c. strachey, 11 A :ieneral Purpose Macrogenerator," Ih~

~Qm~Yl~£ ~QY£Q~l, Vol. 8, No. 3, pp 225-241, october, 1965.
(A limited number ~f xerox copies are available in the
Project MAC Library.)

Usa ·e ___ :1_

RESUME GPM

A 11 in F u t/ out p ~ t i n 3 PM i s in 1 2-b i t mode • Within
aacro-names, however, only the last 6 bits are
effective, so that the name "defs" is equivalent
to "deFS". The following symbols are substituted
in the MAC implementation for the corresponding
symbols in the reference:

substitute s for ~
" • "
II ? R Q .. (" <
") ft >

The symbol 1 is used to indicate a continued line.
Return to the system for GP~ is accomplished by
the iDFUt symbcl \, via an unmatched > as in the
reference.

Four machine macros have teen introduced into the
MAC implementation which do not appear in the
reference:

$LOSE, name;

C r S S F F C G R AM M E H ' 3 GU I D E Section AJ .2.02 2;66 2

lESS;

This macr3 causes the most
the macro- name "name" to
definition chain.

recent definition of
be excised from the

This macr~ causes the current size of the stack to
be output. (rhe maximum allowatle stack. size is
5,CCO.)

$READ, name;

1)

rhis macro s~it=hes the ma=rogenerator input from
keyboard to the file name (memo).

If the file "name (memo)"
result is a return to the
mcnitcr call.

does not exist, the
macrogenerator via a

2) Occurence of the READ rna:: ro within a memo file is
prohibited and results in a monitor call, after
which reading cf the original file resumes. Input
returns t3 the keybo~rd when the rea1in~ of a file
is ccmfle ted.

$UNSTRING, arg;
This macL~ inserts co~mas tetween the characters
in the string referred to by "arg".

Mem~ files are created and edited by rYPsEr.
Conflict between symbol conventions in typset and
the macrogenerator l~ngu~ge must be avoided by
beginning TYPSEr with the commands

ERASE "
KILL ?

which establish the erase and kill conventions of
the mac~ogen~atoL.

Two public memo files have been prepared for the
convenience of macrogenerator users:

1) File DEFS (MEMO) ~ontains ce~tain standar-d
macr3definitions for loading onto the stack.

2) Additional information about
state of the macrogenerator
including ~uch d~ta as ~ list ot
defined in CEFS, may be ottained
to file GPMI NF (MEMO).

the current
language,

the wacros
b_y linking

(EN D)

CTSS PROGRAMMER'S GUIDE sec ti on A J .. 2 .. 0 3

Solution of equilibrium field problems
EPS SAVED
c. Tillman

Puroose ____ __

3/66 1

EPS is a conscle-oriented system intended pri~arily for the
solution of equilibrium field (boundary-value) problems in
t~o-dimensicnal continua. Implementation of this system has
r~quir~d developing extensive algebraic and input-output
capabilities. Thus, while EPS does not have the generality
of ~ ~omplete progcamming system, it does provide a facility
of considerable ~ower and flexibility for on-line algebraic
:~.nl numerical manipulations. Consequently, it may be
:t.ppliad to proble•s quite unrelated to those for which it
was specifically desiqned.

EPS tr~ats systems of simultaneous, second-order partial
differential equations by the method of finite differences.
Th~s~ ~quation~ <lrP. as::;umed to te representable in a
standard linear form; ho~ever, sin~e the coefficients for
this standard f3rm may be expressed not only as functions of
position but also as functions of the unknown field and its
l~riv~tives, it is possible to use EPS in an iterative
fashion to sclve certain nonlinear problems.

Since the frogram obtains solutions ty a finite-difference
technique, problem definition requires specification of a
finite-difference lattice. An important feature of EPS is
that it permits use cf irregular difference lattices, so
littica points may be precisely placed along boundary
contours and may be concentr~ted in re~ions of special
:::on:;ern. More~ ver-, the pas it ions of lattice points, even
those on boundaries, may easily be =aused to change during
th2 solution process; thus, e.g., problems involving free
boundaries may be treated.

Or~anizaticn of EPS resembles that of CTSS in the sense that
users cause various tasks to be performe1 by issuing
:;ommanis followed by argument strings. However, unlike
CTSS, EPS scans input in a manner similar to that employed
by format-free compil~rs. Thus one may type several
commands on a single line or ~ontinue a long command from
on~ line to the next with complete freedom. It follcws that
a simple carriage return cannot be used with EPS to signal
an "end of message". Rather, the user must denote the end
of ~ command or se~uence of commands by typing a "$" just
before his final Cdttiage return. Typical input lines for
E PS a.c~:

CTSS PROGRAMMER'S 3UIDE se:::tion AJ.2.0J 3/66 2

CEFIN E r=SQRT (x*x+y*y) $
s Er x= 3, y= 4 P R IN r r $

EPS currently recognize5 lwenty co~mands. These include the
co m m an d s " A P P E N 0 tt , " DE L E T E " , "C l C S E " a n d "I M P OS E " f or:
i~s:ribinj boundaries and boundary conditions, the comiJands
" D E F IN E" a n d " s E 'I" f c r pa ra me te r s pe c i f i c a t i on , the co m m an ds
"l'ALLY", "FORM" and "RELAX" for: initiation of various
s p e c i a 1 i z e d n u me r i c a 1 F r cc e d u re s, p 1 us 11 P BIN T u , " R E V I E W" ,
''LIST" an:l "EXPAND" t::>r: inspection of results or past input.

A discussion of EP.S commands 1ncl usaga conventions
found in MAC-M-284, which may serve as a rudimentary
manual. Further information :tnd help in usin~ EPS
obt~iued from the author.

RESUME EFS

may be
user • s

may be

At t~r -the CTSS W(ait) line, the message 'fROCEED:' will be
typed on the user's con£cle. A command or sequence of
commands may then be issued. Some command~ ~roduce output
r:~spons~s and sJme do not (most do); the user will, at any
rate, be made aware of return of control to the EPS
sup~rvisor by a recurcence of the 'PROCEED:' message. More
commands may be issued at this time--and so on.

(EN D)

C" -""' ,...+ .: ...,. ..., A , II (\ 1
u '<:;;""\.. ..LVU nu e • V I

Compress or expand tlCD files
SQZBCD SAVED, PAtBCD SAV.ED
B. Wolman

To compress £a£~_im!~~ (not line-marked)
r~movinj blanks in ~rder to decrease track
expand ccmfressea tiles.

BCD files
usage, and

To ~ompress file 'ALPHA EEIA 1 into file 'GAMMA DELTA':

R S QZ BCD ALPHA BET A GAM £1 A D .EL TA

To axpand file 'ALPHA EETA' into file 'GAMMA DELTA':

R FADBCD ALPHA BETA GAMMA DELTA

by
to

If DELTA is omitted, GAMMA BETA will be created. If 3AMMA
.1.s ctlso emitted, a new ALPHA BETA will be written.

::>lder COfies of the output file (GAr'!~A DELTA) will be
j~latad by a call t3 the litrary subroutine DELETE.

PADHCD SAVED ~ay be used to expand files which were
compressed using s QZ ECD.

(E NO)

CTSS a'Y &:: A""l
""' • ...) • v ~

") ' £.. £.. J/ vu

T:! xt display on ES L c:>nsole
DISPLY SAVED
H. Murray

To display text en the ESL ccnsole (second floor, Euilding
3 g).

RESUME DISPLY NAME1 NAM!2 -LINE-

NAME1 NAME2

LINE

is the CTSS name of the file to be disFlayed.

is the line number the picture is to begin
with (if other than 1).

PUSH-BUr roN t3 EXIT BUT SAVE PICTURE
9 TO 'TURN' FAGE

10 TO FIND LINE
11 TO EXIT F R C M F HOG RAM
12 TO START OVER

Typing "RRSUME DISPLY NAME1 NAME2" will cause the first
"P~1e" of the file to appear on the screen next to the
teletype. Any file may be displayed. Line-mar-ked files
will be displayed with one record on each line, as with the
PRINT collimand. A file that is not text (e.g. BSS, SAVED)
will be displayed with each word in the file interpreted as
BCD.

Errors result in self-explanatory comments and calls to
DJRM NT.

Push-button number 9 on the console is used to step the
proJram to the next page of text.

Push-button numbe~ 10 will command the program to find the
line having the sequence numter equal to or greater than the
number in the decim a 1 switches (a hove the toggle switch
r::!gist:!rs).

Push-button number- 12 will start over at the beginning of
the file.

When finished with the r:rogram, push-button 11 will sign off
from the kludge and return control to the user via CHNCOM.
Push-button 8 alEo sends control to CHNCOM, but it causes
th~ current picture t~ be retained.

CTSS PROGRAMMER'S ~uiDE Section A J. 5. 0 2 3;66 2

It called with nc arguments DISPLY signs off from the kludge
:tn:i r2turns via CHNCOM.. If called with the single argument
• 1 ' D Is P L Y s i g n s t he u ~ e r on to one cons o 1 e a n d t he n g oe s to
CHNCOM.

(EN D)

C! S S f P. C G R AM M E P. ' S GU ! ~ E Section AJ.5.03 7/55 1

List links in a file directory
LS T L N K S A V ED
c. Gacman

Pnt·oose
.;;....;;-~----

LSTLNK will print a summa~y of the linkage information for
some or all of the links in a file directory. rhe
information p~inted is the link name, the directory in which
the file resides, the mode, and the actual name if different
from the link name.

R LSTLNK -CF- -USE- -OPT- -NA~E1- -NAME2-

CF may be used to specify common file switching
and is of the form • (SYS)' or' (CFLn)' where
n is any diyit or 'P'. '(SYS)' and 1 (CFLP)'
are synonymous and mean TSSFIL or M1416
CMFL04. The crigin:tl common file switch is
rest~red tefore termination of the command.

USE ccmprises three agruments which may specify a
file (e. g., a link to another user's U.F .D.)
to be searched instead of the current U.P.D.

Cfl

(FILE) and is of the form '(USE)' NAME3
NAME4.

1t specified, may be
1 (NAME) ', and modifies the
and NAME2, below.

either
effect

• (TO) • or
of NAME 1

NAME1 NAME2 specify files, directories or alternate names
(compa~e with LRAMEi in AH.5.01) used to
select the links to be printed: if OPr is
null, the NAMEi refer to file names in the
directory being seax:-ched; if CPT is 1 (TO) •,
then links pointing to files in the directory
whose PROBNO PRDGNO are expressed by NAME1
NAME2 will be printed; and finally, if OPT is
'(NAME) •, then the IIAMEi refer to the names
in the 'ta r·ge t' directory. Examples:

R LSTLNK A B

lists :t link in the current directory.

R LSTLNK (BA!E) A B

lists ~ link which is named A B in the
d1~ect~~y in which the file resides.

CTSS PROGRAMMER'S ~uiDE Section AJ.5.03 7/66 2

R LSTLNK (TO) T0999 9876

lists all links whi=h point to files which
reside in directory I999 9876.

For edch link enc~untered, the following information is
printed:

NAME1 NAME2 PROBN PRCGN MODE -NAME3- -NAME4-

PROBN PHOGN is the file dire=tory in which the file (or
further link) resides.

MODE is 3 octal digit file mode.

NAME 3 N AM E 4 i s the n am e o f t he f i 1 e i n P R C B N P R C G N , i f
different tram NAM.E1 NAME2. It NAME3 is the
same as NAME1, NAME3 is printed as a sin~le
equals sign (=). If NAME4 is the same as
NAME2, only NAME3 is printej.

Orl~r of optional arguments when more than one
be as given in the general c~llin~ seguence
Wh~n usin3 the • (rO) • option, problem numters
four digits, the first of which is zero (0).
not T999. ·

Errors:

INVALID ARGUMEN'IS OF '(USB) '•
f~nce found for either NA~E3 or NAME4

' LI N K (S) N OT F 0 U N D '

are used must
1 in e , above.
must c o n ta i n
E.g., T0999,

specified links not cont~inad in direGtory.

'U.F.D. 'IOO LONG'.
entire file directory cculd not be rEad into
memory, most likely by mis-application of
Sedrch will cantinue on contents as read.

available
'(USE)'.

file system errors - various; result in call tc PRNTER
command.

{EN C)

CTSS PROGRAMMf.R 1 j ~UIDE Se::; tion AJ.; 5.: ou

Identificaticn .., ______ .._ ______ _
Print file direct~ry in octal
OCTL P SAVED
N. I. Morris

OCTLF will print all seven wcrds of file directory entry(s)
in octal. Two lines are printed for each entry. The first
contains the file name in BCI: followe:1 by the file name in
o:t~l. the remaining five words of the file directory entry
are printed in octal on the second line. This routine is
useful when the exact contents of a U.F.D. entry must be
:i~ t~rmined.

R OCTLP -CP- -USE- -NAMH1- -NAME2-

CF is used to indicate common file switching. It
is of the form '(CFLn) ' where •n 1 may be a
single digit or the letter 'f' to indicate
f11416 CMFL04.

USE consists of three parameters which specify a
file directory to be listed in place of the
user's •u.F.D. (FILE)'. It is of the form
1 (USE) ' F NA M 1 F NA M 2, where F N AM 1 , F N AM 2 are
the primary and secondary names of a link to
the •u.F.D. PILE' of the other file directory.

NAHE1 NIME2 Sfecif_y the file name(s) to be listed. If
both are omitted, the complete file directory
is printed. If either para meter is an
asterisk ('*'), all files of given primary or
secondary name are listed. If NAME2 is
omitted, '*' i~ assumed.

(EN D)

CTSS PHOGRArHiER ~ 5 saction • , c '' r
ltiJeJeVJ 1

Print list of files en file system tape.
TAPLF SAVED
N. I. Morris

TAPLF will print a li5ting of all tape files in
1ir~ctory. For each file, it will print the file
number of records, the lcgical unit of the tape
tn~ ph_ysical file number. rhis program is quite
t h os e w h o reg u la r 1 y use f i 1 e s y s te m ta pe s.

a usee • s
na5e, the
file, and
useful to

R fAPLF -:F- -USE- -NAME 1- -NAME2-

CF is used tc indicate common file
It is of the form 1 (CF ln) 1 where
siugle digit or the letter 'P'
fUblic file (!11416 CMFL04).

switching.
'n • may be a
to indicate

USE ccnsi~ts cf three p3rameters which specify a
file t~ be treated dS a file directory to be
listed in place of the user's U.F.D. (FILE).
It i s :> f t h e f o r: m '" (US E) 1 F N A M 1 F N AM 2 11 ,

where FNAM 1 FHAM2 is the name of the file to
be used. This ta=tic is used to list files
in another user's directory by reading
through the link FNAM1 FNA~2 to that usee's
U.F.D. (FILE).

NA!E1 tiAME2 specify the file name (s) to be listed. If
both are emitted, all t~pe files are listed.
If either parameter is '*', all files of
given primary or se=ondary name are listed.
If NAME2 is omitted, • *' is assumed.

AG.5.05
AH.3.06

Use of tapes in foreground
Tare-hand ling commands

(END)

c·rss PROGRAMMER 1 S GUIDE

Convert 6-bit to 12-bit files
b'f012 SAVgD
J. H. Saltzer

sect ion A J. 6 • 0 1 B/65 1

To conv~rt a card image file to (MEMO) form,
the RUNOFF command.

for use with

RESUME 6'1'012 NAME1 NAME2 NAME]

NAME1 ~AME2 is the name of a card-image file to be
converted to 12-bit line-marked format.

NAME3 is the primary name to be used
resulting output file. If NAME3 is
NAME1 will be used. The secondary
t h a ::> u t p u t f i 1 e is a 1 w a y s (ME f1rl) •

for the
omit ted,
name of

T he r es u 1 t i n g 1 2 - b i t 1 i ne - ma r ked f i 1 e m a y b P e d it e d w i t h
TYPSET or inserted into an alre~dy typed memo in at least
two ways. The '·append' request of RUNOFF may be used, or
the files may be combined by using the non-sequencing option
of tha CCMEIN commdnd.

(E NO)

crss ---- T:'\Tlto.,... .1: !1 \.,; IJ ltl\l''ll'l 1:1 [\ • ~

Combine line-marked files
APPEND SAVED
c. Garman

s e ct i c n A J _ 6 _ 0 2

To combine line-marked files so th~t they can be printed by
off-line request processing.

APPEND NAME1 NAME2 NAME3i NAl1E4i ••• NAME3n NAME4n

NAME1 NAME2 is the name of the file to be
combining the files NAME3i NAME~i
NAME4n.

created by
NAME 3n

APPEND is used tc prepare a single line-marked
for 3ff-line printing by use of a
ccntrcl card. if file NAME1 NAME2 does
ex is t , i t w i 11 be c rea ted (mode
otherwise the file will be added to by
'.APEND '.

file
PRIN;r

not
I p t) {

using

The files 1 NAME3i MAME4i'lrhe files NAME3i NAME4i will be
s~parated from each other in the combined file by a
program-control Faye skif, identifying the file.

Lin~-marked files will be copied line-by-line(files which
are not line-marked are assumed to be 14-word card images,
~nj will be copied with a full word of blanks added at the
beginning of the line, fer single spa=e program control.

If any of the NAME3i or NAME4e are '*' (single wasterisk),
tha corresponding NlMEli-1 or IAME4i-1 will be used. NAME 1
N AM E2 may not be at: pended to itself.

EXAMPLE:
(LIST))

(ass.ume that ABCXYZ FAP has been assembled with

APPEND our PUr ECD ABCIYZ * * FAP * SYM TB

which is equivalent to:

APPEND OUTPUT B:D ABCXYZ BCD ABCXYZ PAP ABCXYZ SYMTB

If all tbe names of the files the user wishes to append will
not fit on one line, the uset: m3.y type:

STAR'! NAME1 NAME2 HAHE3i NAME4i ••• etc.

after the 'READY' trcm the SJstem{ or if NAf1E1 NAME2 is the
s1ma, he need only type:

CTSS PROGRAMMER'S ~UIDF. Section AJ.6.02 8/65 2

S1ART * NAMEJi NA.ME4i •••

In either of the last two cases'*' for NAME3i or NA~E4i
r~f~rs to the last NAME] 3r NAME4 on the previous , .

.1..1ne.

All calls to system disc 3ubroutines have been provided with
the appropriate error returns, which all return to the
system via 'CHNCCM'. If the user provides no arguments, or
only NAMEl, the comment 1 INCORHECT FOR~AT' will be printed.
In ~ase the command list was truncated, or there was a
NAME3i without its fcllowing MAME4i, the comment 'MAME3i
I~NJRED' will be printed.

(EN D)

C l' S S FR C G R A M M E R 1 5 GU I D E

Enciphering, deciphering of files
GARBLE: ENCIPH SAVEl:, CECIPH SAVED
R. Fenichel, D. Edwaids

Pul:'oose ..-...-..-.,.. __
In order to provide added security or locks for files,
GAHBLE will scramble and unscramble (encipher and decipher)
fil~s by using a key word which is not necessarily stored
elsewhere within the system.

GARBLE accepts a ~essage fcom the user, and initiaizes a
random-number generator with a value computed from the
= ha ra~ ters of the mess age. A new random number is then
added to or subtracted from e~=h ~haracter of the file, as
it is b~ing enciphered or deciphered, respectively.

T he us e r h a d be t t e r r e roe a. be r the k e y s wh i c h he h as used - no
ona elsa will. Als:->, it is poor cryptographic practice to
use any given key on more than one file.

F ENCIPH NAME1 NAME2 -NAME3- -BAME4-
R DECIPH NAME1 NAME2 -NAME3- -NAME4-

to transform NAME1 NAME2 intc NAME] NAME4. If NAME3 is
omitted, it is taken as NAME1{ if NAriE4 is omitted, it is
taken as NAME2.

ENCIPH creates a file in PRIVATE, PROTECTED mode{
:; r~a tas a file in PERM ANENT mode.

IimiQ_g_

About 2 seconds;record.

DEC IPH

(END)

CTSS IRCGRA~~EP. 1 S GUIDE

Compare two files
Cf'lPARE

s e ct ion A .J ~ 6 - o 4

To peLform a word-by-woLd comparison of two files.

CMPARE NAME1 NAME2 NAME] -NAME4-

12/69

If NAME4 is omitted, it is assumed the same as NAME2. If
the twc files are identical, the message 'FILES ARE
IDENTICAL.' is printed. If the two files are not identical,
~ line is pLinted for each word that is not the same, giving
RELLOC within the files, the contents of the word in NAME1
NAME2, and the contents in NAME3 NAME4. If the end cf file
is reached in one of the files, 'EOF' is printed in the
=olumn for that file, dnd the remainder of the other file is
listed.

(E NO)

,...fIT' T"\ T!
UU .L 1.1 L

Convert 12-bit file t~ 6-bit
12TO 6

1'),~~o
I'-/ V J

To ~onvert a 12-bit file (e.g. $$$FIB OUTPUT) to 6-bit form
for offline Frocessing via the disk eiitor.

12T06 NAME 1 -NAME2- -NAME3- -NAr!E4-

File NAME1 NAME2 will undergo the 12-bit to 6-bit mapping
des c r i bed for t y pew r i te r i n p u t i n sec t i on A c. 2 • 0 1 ; the
r~sulting file is NAME3 NAME4. A single space is Frefixed
to each line of the outp~t file to serve as carriage control
for the disk edit~r.

If NAME2 is omitted, it is assumed
omitted, it is assumed the same
omitted, it is assumed 'ECD'.

' (MEMO)' ;
as NAME 1;

if
if

NAMEJ
N AME4

is
is

(END)

CTSS fBOGRAMMER•S GUIDE

search a saved file
SRCH SAVED
N. I. Morris

Section AJ.8.02

To search a SAVED file fer a specific word.

B SBCH NAMEl LWORD RWORD LMASK RMASK

d/65

NAME1 SAVED is the name of the file to be examined. LWORD
and RWORD are the left and right halves of the word being
saarch~d for. LMASK and RMASK are the left and right halves
of a mask used tc ccntrcl the search. If no mask is
spa~ified, a mask ~f 777777 777777 is assumed.

The file specified i~ loaded into ~ore from the disk. Then
~l~h word of the l~aded core image is compared against the
word specified in LWORD ~nd RWORD with only those bits
.;or.r:~~puading to i bits in the mask being cornpax:ed. All
occurrences of the wcrd being searched for result in the
printinJ of the abs3lute location of the word follcwed by
the word itself. If no cccurrence of the word is found, a
m~ssaga to that effect will be printed. After the search is
completed, the ftoqram will go to DORMNT. To resume another
search on the same file, type:

S'IAHT LWORD RWORD LMASK Bft.ASK

To finish a search, and continue a chain of commands, type
'STABT' followed by a carriage return.

Example:

To search the file 'PADBCD SAVED' for all LD~ instructions,
typ3:

R SRCH PADBCt 056000 0 777700 0

Not3 that preceding zeroes may he omitted.

(EHD)

CTSS PROGRAMMER'S ~UIDE Section AJ .8.03

G~n~rate dump of SAVFD file for off-line printing
DUMPER
D. Widr:ig

DU~PER can be used to generate dump files suitable for
off-line pr:inting. CJmplete machine conditions preserved in
the SAVED files can be obtained.

R D U l'1 F E H N AM ~ 1 - ' (C 0 R E) ' - - 1 (T EM P) ' - - ' (P R N T) 1 -

Th~ machine conditi3ns contained within NAME1 SAVED are
~e-formatted and written intc a file called NAME1 (DUMP).
If tha optional argument ' (CORE)' is used, a comFlete
P~S-like dum~ is alsc written into NAME1 (DUr'IP). Each word
in the core dump will be interpreted as octal, ECD, and
operation code. If the optional argument • (TEMP) 1 is used,
NAME1 (DUMP) will be created in tempor:ary mo:ie. If the
optional ~L-JUment '(PRNf)' is used, a summary of the saved
file's machine ccnditicns will be printe3 on the user's
~on so 1 a , i n add it i o n to t h e ot her act i v it i e s.

If the '(CORE)' argument is not used, the creation of
(DUMF) takes 1.5 - 2.0 seconds and pcoduces a 2-record
If the • (COR E) ' a cg ume n t is used, an X-record sAY ED
proi ucas =t. 6X-rec~rd (CUMP) file taking .5 - .8 seconds
cecord of SAVED file.

NAHE1
file.
file

per

(END}

romC"C"' nanf""na MMDr> te "'JlT1"\0
\, .1. J J C L\ V \3 L\ A U L & u 1.\ aJ >J U . .&. .., &.I

c.-,.,.. •• ,,.~ 11. ., 1 f\ f\ 1
.... .., ·._. "".L VU n U • IV • V I

Check success of RUNCOM
QUES SAVED
c. Garman

Pn r nos A -=-= .;~ ~--=

M~y b3 used to check success of commands in a 'RUNCOM'

R QUES AlPHA BET A

tUBS will check to see if file 'ALPHA
If it does exist, the ~hain will
immediately, without further ado. If
does not exist, ~rogram will print:

'FILE ALPHA BETA !107 FOUND.'

BETA 1 exists.
be continued
' A L PH A B Er A '

1 tC YCU WISH TO PROCEED,
and will wait for input. An
cause program to continue the
'CHNCOM 1 • Anything else will
abort the chain and return to

e x p 1 i c i t • Y ES • w i 11
chain via a call to
~ase the program to
the system via 'DEAD'.

R QUES ALPHA

R QUES

is the same as 'R QUES ALPHA BSS'

vill cause program to pause unequivocally
YOU WISH ro PROC~EC,' (same conditions on
before).

with 'DO
reply as

R QUBS ALPHA BETA (NOT)

N3TE

For protecting against the deletion of files, the
appearance of a third argument, '(NOT) •, reverses
the sense of the]Uestion, ie. if 'ALPHA SErA• is
not found, the chain will be ~ontinued immediately,
with no typed response. If the file exists, the
program will print:

'FILE ALPHA BETA ALREADY EXISTS ••• DO YOU WISH
TO FBOCEED,'. Waiting for a response (as above).
Naturally, if 'BETA' is to be 'BSS', it must be
stated explicitly.

If QURS is used within a RUNCOM, and the question is
not answeced in the affirmative, files of the fora
• ••• liNN SAVEt' may still remain in user's file
directory, as would be the case in any other break
in the RUNCOM chain.

(END)

CTSS PROGR!~~!R'S GUIDE Section

P~rametar identification within RUNCOM
RUNPR T SAVED
c. Garman

Pur nose
--~~..-..---

If it is desirable to print a comment line which identifies
tha substituted parameters within a RUNCOM, RUNPRT may be
used. It prints the contents of the current command buffer
with axcess blanks deleted.

B ES U M E RU N P R T A R G 1 • • • A R G n

HUNFBT will type one single line of text on the
user's console, of the form

$ ARG 1 ARG2 . . . ARGn$

where all blanks in the parameters ARGi have
been removed, and a single blank inserted
between successive ARGi. ARGi may be any
words to be used in constructing the comment
and any ~r none) of the ARGi may be
sustitutable arguments within te BONCOM.

Ra stric tions:

The full co1111and buffer may be used, but only 14 words will
ba printed after canversion of the input parameters into the
output image (null characters are ~Q! used in formatting the
output line). Only the last six characters of any parameter
will be printed.

Ex ample:

Consider the following RU"CON. in file X BCD:

CHAIN ALPHA MAD
HESU ME RU NPRT sr ART 'X 1 FOR ALPHA MAD
ftAD ALPHA (LIST)

Tha command

RORCOM X BOOK FAP

would result in the following output on the user's console:

CTSS PHOGRAMMEH'S ~UIDE Section AJ. i0.03

Y S1ARTED
$ S£ARr 'X' FOR BOOK FAP
LENGTH nnnnn

X HAS HEEN RUN

i, /6 5 2

(END)

CTSS PROGRAMMER'S GUIDE section A J = 11"' 0 1 B/65 1

Slave consoles
SLAVE SAVED
N. I. Morris

Pucoose
---~,._ __ _
To ~ttach one or m~re remote consoles to serve as I/O
devices for a user.

R SLAVE MODE !01 102 ••• ION

~ODE ccnsists of an~ combination of the slave modes
discussed in se::tion AG.1.05. MODE may also
be 'RELEAS' in order to release consoles that
are already slaved.

101 ••• IDN are the console identification numbers of the
consoles to be attached or released.

The console(s) srecified 3re slaved to the user in the mode
sp~cified. If f'lODE was • R ELEA s• , the consoles are released
fr:om the user.

(END)

CTSS PRCGRA~MER 1 S GUIDE sec ti on A K • 0 1? ~f:...Q ... ,, _,

S1mpl~ programs

This s2ction of the CTSS Programmer's Guide will be devoted
to samplE prcgrams illustrating techniques for using some of
the more obscure facilities frovided by the system.

Source files for these programs will be found in the crss
m1.nual directory (81416 3212), and will he named by the
section number in which they appear, e.g. the sample
subsyst~m described in section AK.8.01 will be available as
AK801 MAD, just as the manual section itself is AK801 ASCII.

Altnou~h the p~ogrdms descrited herein have in general been
tested and feu nd to work, no g ua ran tees are ma:le concerning
thair correctness, and time-tack credit requests involving
attempts tc use them cannot be honored.

(E MD)

CTSS ,..rrTnO
UULULI

1\ ll' Q (\ 1
n '" • ~ • 'V •

us~~e of subsystem facility: sample program

Allow a user to edit, compile, print and load programs, and
to lo~out; prohibit any other non-exempt commands. Give the
user the Ofticn to restart his proyram if a saved file was
:; r~ :t t~ d •

START

LOOK UP

WAIT

CKSAVE

R SAMPLE PROGHAM TO USE SUBSYSTEM FACILITY
R

R
R

R

R

DIMENSION :OMMND (20), WHO (1)
NORMAL MODE IS IN1E~ER

GETSYS. (NAME, MASK)
CODE ; (MASK .. RS. 1H) .A. 777'f.

WHENEVER CODE .E. 001R
GCLS. (COMMND, 0)
THROUGH LOOKUP, FOR I: 0, 1, COPlTBL{I) .E. FENCE

WHENEVER COMMND(O) .E. CC~TBL(I)
RS 0 PI. (4 0 K)
NCOl'l. (COMMND (0) , C Otl MND (1))

END OF CONDITIONAL
CON 11~ UE
PRMESS. (BZ57. (COMHND (0)), $ IS NOT A LEGAL COMMAND.$)
TRANSFER TO :KSAVE

CR WHENEVER CODE .E. 002K
THAN sFER ro : KSAVE

0 F WHENEVER CODE • E. 004 K
T RA NS FE R T 0 W AI T

OR WHENEVER :ODE .E. 010K
P R l1 BS A. ($ ERR 0 R $, 4 0 6 0 57 57 5 i 5 7K)
TRA N S:FER 'IO C KSA VE

OB WHENEVER CODE .ME. 0
PRMESS. (lONKNOiN SUBSISTErl TRAF CODE.$)

END OF CONDiriONAL

SETSYS. (NAME. MASK .A. 0170171<)
DORM NT.
TRANSFER 'IO S'IART

R
WHENEVER MASK .L. 0

WHOAMI. {WH0(1) ••• 2)
FS'IATE. {WHO.$ SAVED$, SIZE ••• 1, WAIT)

C T S S f F C G RAM M E R ' S GU I C E Section AK .8.01 12;69 2

R
R

WHENEVER SIZE • E. 0, TRANSFER TO WAIT
PRMESA. (.$DO YOU WANT TC RESTART YOUR PBOGRAM ••• $)
RDFLX A. (REPLY ••• 1)
WHENEVER REPLY .R~. 30 .E. iOOOOOY$

RS 0 PT • (4 0 K)
NCOM. ($CONTIN$, WHO)

END OF CONDITIONAL
END OF ~ONOITIONAL
TR AN S FER '10 WA I 'I

VECTOR VALUES CO~TBL = $ EDL$, $PRINT$, i MAD$,
1 $LOADGOS, $LOGOUT$, 777777777777K

V ECTOB VALUES FENCE = 777777777777K
R

END OF PROGRAM

(END)

	001
	002
	003
	1-01
	1-02
	1-03
	2-01_Preface
	2-02
	2-03
	3-01_TOC_Dec69
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01_Section_Index
	4-02
	4-03
	4-04
	AA.00.00_01_Introduction_To_Timesharing
	AA.00.00_02
	AA.01.00_01
	AA.01.00_02
	AA.01.00_03
	AA.01.00_04
	AA.01.00_05
	AA.01.00_06
	AA.02.00_01
	AA.02.00_02
	AA.02.00_03
	AA.02.00_04
	AA.02.00_05
	AA.02.00_06
	AA.02.00_07
	AA.02.00_08
	AA.02.00_09
	AA.02.00_10
	AA.02.00_11
	AA.02.00_12
	AA.02.00_13
	AA.02.00_14
	AA.02.00_15
	AA.02.01_01
	AA.02.01_02
	AA.02.01_03
	AA.02.01_04
	AA.02.01_05
	AB.01.00_01_Documentation
	AB.01.00_02
	AB.02.00_01
	AB.02.00_02
	AB.02.00_03
	AB.02.00_04
	AB.03.00_01
	AC.00.00_01_Hardware
	AC.00.00_02
	AC.01.00_01
	AC.02.01_01
	AC.02.01_02
	AC.02.01_03
	AC.02.01_04
	AC.02.01_05
	AC.02.01_06
	AC.02.01_07
	AC.02.01_08
	AC.02.02_01
	AC.02.02_02
	AC.03.00_01
	AD.01.00_01_Files
	AD.01.00_02
	AD.01.00_03
	AD.02.00_01
	AD.02.00_02
	AD.02.00_03
	AD.02.00_04
	AD.02.00_05
	AD.02.00_06
	AD.02.00_07
	AD.02.00_08
	AD.02.00_09
	AD.02.00_10
	AD.02.00_11
	AD.03.00_01
	AD.04.00_01
	AD.04.00_02
	AD.04.00_03
	AD.04.00_04
	AD.05.00_01
	AD.05.00_02
	AD.05.00_03
	AD.05.00_04
	AD.05.00_05
	AD.05.00_06
	AE.01.00_01_File_Editing
	AE.01.00_02
	AE.01.00_03
	AE.01.00_04
	AE.01.00_05
	AE.02.00_01
	AE.02.01_01
	AE.02.01_02
	AF.01.00_01_Background
	AF.01.00_02
	AF.01.00_03
	AF.01.00_04
	AG.00.00_01_Subroutines
	AG.00.00_02
	AG.00.00_03
	AG.01.01_01
	AG.01.01_02
	AG.01.01_03
	AG.01.02_01
	AG.01.03_01
	AG.01.04_01
	AG.01.04_02
	AG.01.04_03
	AG.01.05_01
	AG.01.05_02
	AG.01.05_03
	AG.01.05_04
	AG.01.06_01
	AG.01.06_02
	AG.01.07_01
	AG.01.07_02
	AG.01.08_01
	AG.01.09_01
	AG.01.09_02
	AG.01.10_01
	AG.01.10_02
	AG.01.11_01
	AG.01.12_01
	AG.01.13_01
	AG.01.13_02
	AG.01.14_01
	AG.01.14_02
	AG.02.01_01
	AG.02.01_02
	AG.02.02_01
	AG.02.02_02
	AG.02.02_03
	AG.02.02_04
	AG.02.03_01
	AG.02.03_02
	AG.02.03_03
	AG.02.03_04
	AG.02.04_01
	AG.02.05_01
	AG.02.06_01
	AG.02.06_02
	AG.02.07_01
	AG.02.08_01
	AG.02.08_02
	AG.02.08_03
	AG.02.08_04
	AG.02.08_05
	AG.02.08_06
	AG.02.09_01
	AG.02.10_01
	AG.02.10_02
	AG.02.10_03
	AG.02.10_04
	AG.02.11_01
	AG.02.11_02
	AG.02.11_03
	AG.03.01_01
	AG.03.01_02
	AG.03.02_01
	AG.03.02_02
	AG.03.03_01
	AG.03.03_02
	AG.03.04_01
	AG.03.05_01
	AG.03.06_01
	AG.03.07_01
	AG.03.07_02
	AG.03.07_03
	AG.04.01_01
	AG.04.01_02
	AG.04.02_01
	AG.04.02_02
	AG.04.03_01
	AG.04.03_02
	AG.04.04_01
	AG.04.05_01
	AG.04.06_01
	AG.04.06_02
	AG.04.06_03
	AG.04.06_04
	AG.05.01_01
	AG.05.01_02
	AG.05.02_01
	AG.05.02_02
	AG.05.03_01
	AG.05.04_01
	AG.05.04_02
	AG.05.05_01
	AG.05.05_02
	AG.05.05_03
	AG.05.05_04
	AG.05.05_05
	AG.05.05_06
	AG.06.01_01
	AG.06.01_02
	AG.06.02_01
	AG.06.02_02
	AG.06.03_01
	AG.06.03_02
	AG.06.04_01
	AG.06.05_01
	AG.06.05_02
	AG.06.06_01
	AG.06.06_02
	AG.06.07_01
	AG.06.08_01
	AG.06.09_01
	AG.06.09_02
	AG.07.01_01
	AG.07.01_02
	AG.07.02_01
	AG.07.03_01
	AG.07.03_02
	AG.07.03_03
	AG.07.03_04
	AG.07.03_05
	AG.07.03_06
	AG.07.04_01
	AG.07.05_01
	AG.07.06_01
	AG.07.06_02
	AG.07.07_01
	AG.07.08_01
	AG.07.09_01
	AG.08.00_01
	AG.08.01_01
	AG.08.01_02
	AG.08.02_01
	AG.08.03_01
	AG.08.03_02
	AG.08.03_03
	AG.08.03_04
	AG.08.04_01
	AG.08.05_01
	AG.08.05_02
	AG.08.05_03
	AG.08.05_04
	AG.08.05_05
	AG.09.01_01
	AG.10.01_01
	AG.10.02_01
	AG.10.03_01
	AG.10.04_01
	AG.10.05_01
	AG.10.05_02
	AG.10.05_03
	AG.10.05_04
	AG.10.07_01
	AG.10.08_01
	AG.10.09_01
	AG.10.09_02
	AG.10.10_01
	AG.10.10_02
	AG.10.11_01
	AG.10.12_01
	AG.10.13_01
	AG.11.01_01
	AG.11.01_02
	AG.11.02_01
	AG.11.03_01
	AG.11.03_02
	AG.11.04_01
	AG.12.01_01
	AG.12.01_02
	AG.12.02_01
	AG.12.02_02
	AG.12.03_01
	AG.12.04_01
	AG.13.00_01
	AG.13.01_01
	AG.13.01_02
	AH.01.01_01_Commands
	AH.01.01_02
	AH.01.01_03
	AH.01.01_04
	AH.01.02_01
	AH.01.03_01
	AH.01.03_02
	AH.01.03_03
	AH.01.04_01
	AH.01.05_01
	AH.01.06_01
	AH.02.01_01
	AH.02.02_01
	AH.02.03_01
	AH.02.04_01
	AH.02.04_02
	AH.02.04_03
	AH.02.04_04
	AH.02.04_05
	AH.02.04_06
	AH.02.04_07
	AH.02.05_01
	AH.02.05_02
	AH.02.06_01
	AH.02.07_01
	AH.02.07_02
	AH.02.07_03
	AH.02.07_04
	AH.02.07_05
	AH.02.07_06
	AH.02.07_07
	AH.02.08_01
	AH.02.09_01
	AH.02.10_01
	AH.02.10_02
	AH.02.10_03
	AH.02.11_01
	AH.02.12_01
	AH.02.15_01
	AH.02.16_01
	AH.02.17_01
	AH.02.17_02
	AH.02.18_01
	AH.02.18_02
	AH.02.18_03
	AH.02.18_04
	AH.02.19_01
	AH.02.19_02
	AH.02.19_03
	AH.02.19_04
	AH.02.19_05
	AH.03.02_01
	AH.03.02_02
	AH.03.02_03
	AH.03.02_04
	AH.03.02_05
	AH.03.02_06
	AH.03.02_07
	AH.03.02_08
	AH.03.03_01
	AH.03.03_02
	AH.03.04_01
	AH.03.04_02
	AH.03.05_01
	AH.03.05_02
	AH.03.05_03
	AH.03.06_01
	AH.03.06_02
	AH.03.06_03
	AH.03.07_01
	AH.03.08_01
	AH.03.09_01
	AH.03.09_02
	AH.03.09_03
	AH.03.09_04
	AH.03.09_05
	AH.03.09_06
	AH.03.09_07
	AH.03.09_08
	AH.03.09_09
	AH.03.09_10
	AH.03.09_11
	AH.03.09_12
	AH.03.09_13
	AH.03.09_14
	AH.03.09_15
	AH.03.09_16
	AH.03.10_01
	AH.03.11_01
	AH.03.11_02
	AH.03.12_01
	AH.03.12_02
	AH.04.01_01
	AH.04.01_02
	AH.04.01_03
	AH.04.02_01
	AH.04.02_02
	AH.04.03_01
	AH.04.03_02
	AH.04.04_01
	AH.04.05_01
	AH.04.06_01
	AH.05.01_01
	AH.05.01_02
	AH.05.01_03
	AH.05.01_04
	AH.05.01_05
	AH.05.01_06
	AH.05.01_07
	AH.05.01_08
	AH.05.02_01
	AH.05.03_01
	AH.05.03_02
	AH.05.04_01
	AH.05.04_02
	AH.05.05_01
	AH.05.06_01
	AH.05.07_01
	AH.05.08_01
	AH.05.08_02
	AH.06.01_01
	AH.06.01_02
	AH.06.02_01
	AH.06.02_02
	AH.06.03_01
	AH.06.03_02
	AH.06.04_01
	AH.06.04_02
	AH.06.05_01
	AH.06.05_02
	AH.06.06_01
	AH.06.06_02
	AH.06.06_03
	AH.06.07_01
	AH.06.07_02
	AH.06.07_03
	AH.06.07_04
	AH.06.08_01
	AH.06.09_01
	AH.06.10_01
	AH.07.01_01
	AH.07.01_02
	AH.07.01_03
	AH.07.01_04
	AH.07.01_05
	AH.07.01_06
	AH.07.02_01
	AH.07.02_02
	AH.07.03_01
	AH.07.03_02
	AH.07.04_01
	AH.07.04_02
	AH.07.04_03
	AH.07.04_04
	AH.07.04_05
	AH.07.04_06
	AH.07.04_07
	AH.07.04_08
	AH.07.05_01
	AH.07.06_01
	AH.07.07_01
	AH.07.08_01
	AH.07.08_02
	AH.07.08_03
	AH.07.08_04
	AH.08.00_01
	AH.08.00_02
	AH.08.01_01
	AH.08.01_02
	AH.08.01_03
	AH.08.01_04
	AH.08.01_05
	AH.08.01_06
	AH.08.01_07
	AH.08.01_08
	AH.08.01_09
	AH.08.01_10
	AH.08.02_01
	AH.08.02_02
	AH.08.02_03
	AH.08.02_04
	AH.08.02_05
	AH.08.02_06
	AH.08.02_07
	AH.08.02_08
	AH.08.02_09
	AH.08.02_10
	AH.08.02_11
	AH.08.02_12
	AH.08.02_13
	AH.08.02_14
	AH.08.03_01
	AH.08.03_02
	AH.08.04_01
	AH.08.04_02
	AH.08.05_01
	AH.08.06_01
	AH.08.06_02
	AH.08.07_01
	AH.08.07_02
	AH.08.07_03
	AH.08.07_04
	AH.08.07_05
	AH.08.07_06
	AH.08.08_01
	AH.08.08_02
	AH.08.08_03
	AH.08.08_04
	AH.08.08_05
	AH.08.08_06
	AH.08.08_07
	AH.08.08_08
	AH.08.08_09
	AH.08.08_10
	AH.08.08_11
	AH.08.08_12
	AH.08.08_13
	AH.08.08_14
	AH.08.08_15
	AH.08.08_16
	AH.08.08_17
	AH.08.09_01
	AH.09.01_01
	AH.09.01_02
	AH.09.01_03
	AH.09.01_04
	AH.09.01_05
	AH.09.01_06
	AH.09.01_07
	AH.09.01_08
	AH.09.01_09
	AH.09.01_10
	AH.09.01_11
	AH.09.01_12
	AH.09.01_13
	AH.09.01_14
	AH.09.01_15
	AH.09.01_16
	AH.09.03_01
	AH.09.05_01
	AH.09.05_02
	AH.09.06_01
	AH.09.06_02
	AH.09.07_01
	AH.10.01_01
	AH.10.01_02
	AH.10.01_03
	AH.10.01_04
	AH.10.01_05
	AH.10.02_01
	AH.10.03_01
	AH.10.03_02
	AH.10.03_03
	AH.10.03_04
	AH.10.03_05
	AH.10.03_06
	AH.10.04_01
	AH.10.04_02
	AH.10.04_03
	AH.10.04_04
	AH.11.01_01
	AH.11.01_02
	AH.11.02_01
	AH.11.03_01
	AH.11.04_01
	AH.11.05_01
	AH.11.06_01
	AH.11.07_01
	AH.11.08_01
	AH.11.09_01
	AH.11.10_01
	AH.11.11_01
	AI.00.00_01_Public_File_Subroutines
	AI.02.01_01
	AI.02.01_02
	AI.02.01_03
	AI.02.01_04
	AI.02.01_05
	AI.02.01_06
	AI.03.00_01
	AJ.02.02_01_Public_File_Commands
	AJ.02.02_02
	AJ.02.03_01
	AJ.02.03_02
	AJ.04.01_01
	AJ.05.02_01
	AJ.05.02_02
	AJ.05.03_01
	AJ.05.03_02
	AJ.05.04_01
	AJ.05.05_01
	AJ.06.01_01
	AJ.06.02_01
	AJ.06.02_02
	AJ.06.03_01
	AJ.06.04_01
	AJ.06.05_01
	AJ.08.02_01
	AJ.08.03_01
	AJ.10.01_01
	AJ.10.03_01
	AJ.10.03_02
	AJ.11.01_01
	AK.00.00.01_Sample_Programs
	AK.08.01_01
	AK.08.01_02

