
The Michigan Algorithm Decoder 

(The MAD Manual) 

Revised Edition - 1966 

"Though this be madness, yet there is method in't." 

Shakespeare: Hamlet 

The Michigan Algorithm Decoder (MAD) is a computer program which translates 

statements describing algorithms into the equivalent machine instructions. This 

descriptive language--also called MAD--is explained in this manual. ALGOL 58, 

which was proposed at one time as a standard language for the description of 
algorithms, was used as a pattern for this language; the original translating 

program was written in 1959 for an IBM 704 computer with 8192 words of 
core storage. Translators were subsequently written for the IBM 709/90/94 
machines by the University of Michigan Computing Center staff. Interested groups 

elsewhere have adapted the language for the IBM 7040, Philco 210-211, and Sperry­

Rand 1107 machines. The translator was originally included in the University of 
Michigan Executive System (UMES), but its construction as a subroutine has per­

mitted its inclusion in a number of different operating systems. 

Over the years a number of useful extensions to the language have been 
incorporated. These werB documented as addenda and minor revisions in the many 
printings of the first edition, which was written by Arden, Galler, and Graham. 

This edition is a major revision--done by Professor Elliott Organick of the 

University of Houston--which incorporates these addenda and corrects a number 

of shortcomings of the early version. Donald W. Boettner and Bruce J. Bolas of 

the University of Michigan assisted in this revision. 

The MAD language has been widely used by the students and staff of the 
University of Michigan and it has been used at a number of other centers as well. 
There are a number of versions extant and some of these may not contain all of 

the features described herein. 

Bruce W. Arden 

THE UNIVERSITY I 

ENGINEERING 008~~~~GAN 
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Chapter I 

INTRODUCTION 

"Begin at the beginning, 11 the King said gravely, "and go on 
till you come to the end; then stop. 11 

Lewis Carroll, Alice in Wonderland 

In presenting a problem to a digital computer for solution, one transmits to the 

machine a procedure for solving it (usually called an algorithm for the solution of that 

problem), and the data for a particular case. The algorithm must be stated unambiguously 

and completely. 

As a simple example, let us consider the problem of determining the largest number in 
a collection of n + 1 numbers A= (a0, a1, a2, ... , an} with n 21. A verbal descrip­
tion of the procedure (algorithm) might be 

(1) Pick up the first number. 

(2) Compare it with the second number. 

(3) If the first is larger or if they are equal, keep the first one. 

(4) If the second is larger, keep the second one. 

(5) Whichever one was saved from this comparison is now compared with the third 

number. 

(6) Continue to repeat Steps 2 through 5 (each time moving down the list) until 

the n + lst number has been included in the comparison. 

(7) The number which has. been finally saved is then the largest number in the 

collection A. 

Unfortunately, this method of description is not very precise. Such words as "compare 11 , 

11moving down the list 11 , and "finally saved" should really be spelled out more exactly. 

The following restatement of the procedure would probably be more suitable: 

(1) Let z a 0• 

Let j l. (2) 

(3) 

(4) 

If j > n, the problem is done, t go to Step 7; otherwise, go on. 

If let Z = aj; otherwise, go on. 

(5) Let j increase by 1. 

(6) Return to Step 3. 

(7) Z is the answer. 

Some further streamlining can be accomplished in the phrasing of a procedure statement 

without losing any clarity. This has to do with the way we denote the assigning of values 

tThis test is redundant the first time, but after n times through Steps 3 through 6 
it will terminate the process for us. It is redundant the first time because if 
n 2 1 as set forth in the problem statement, then for j = 1, j > n will always 
be false. 

1 
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to a variable of the problem. 

Note that a statement like 

"Let z = Ao" 

really means, 

"Let Z acquire (or be assigned) the value a0 . 

Now suppose we employ a special symbol, in particular, the left-pointing arrow ( .- ) 

to signify the process of assigning a value. Then 

11 Z *"" a II 
0 

becomes a perfectly meaningful shorthand. 

By the same reasoning, the statement 

"Let j increase by l" 

can now be restated as j .- j + 1. 

The value of j + l (the expression on the right of the arrow) is to be assigned to 

j (the variable on the left of the arrow). Another way of visualizing the step-by-step 

nature of a procedure is with the aid of a flow chart. (See Figure 1-1.) 

False 

False 

6 5 

Figure 1-1 

Note that the following conventions have been used here (or will be used later): 

A. Computation occurs in rectangular boxes. 1 ) 

B. Decisions occur in diamond-shaped boxes. ~ 

C. The "terminals" of a procedure, such as entries and exits, are represented 

by the oval symbol: ~ 

D. The direction of flow is represented by a "flow direction" line, which has 

an arrowhead wherever the "flow" enters another symbol. 

E. If a flow direction line cannot conveniently be drawn between two points, 

we may use an internal (non-terminal) connector symbol, a circle containing 

alabel: ~ ~ 

2 
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This algorithm, whether you study it as a sequence of statements or as a flow chart, 
exhibits an important concept, which occurs in a great many procedures; namely, it contains 
a loop. A loop has the following characteristic properties: 

(a) It is repeated over and over until some condition is satisfied (occasionally 

this may be a very complex condition). In the example, the condition "j > n 

is true". 

(b) Before the first transit through the loop, i.e., the first "iteration", some 

variables are given initial values. In the example, Z ~ a0 and j ~ 1. 

(c) During each transit, usually just before it is completed, some variable is 

incremented, and the termination condition is tested again. In our example, 
j is increased by 1, and if j .s;;_ n is true, the "body" of the loop is 

computed again--employing the new value of j. 

It is often convenient to take advantage of this standard structure of a loop, and use 

a special box in the flow chart called an "iteration box". The connections made by the 
box should make it easy to identify the "scope", i.e., the extent of the body of the loop. 

Moreover, the contents of the box itself should indicate the variable which is to be 
initialized, and later incremented, and the condition which will determine the number of 

iterations in the execution of the loop. 

The iteration box as we shall use it, will have three parts or compartments as shown 

in Figure 1-2. 

initialize 
--+--~the 

True (terminate) 

False (enter body of loop) 

body of loop ~ 
~ .._ ___ ;_; 

Figure 1--2. Main features of the iteration box 

If we enter at compartment 0 an initial value is given to the "control" or iteration 
variable. From this compartment the action moves to compartment ~ from whence either a 

True (T) or False (F) exit is then taken, dependihg on the condition that is tested there. 
Reentry to the iteration box is always at compartment ~ where an incrementing (increase 

or decrease) of the control variable takes place. From compartment ~ the action always 
shifts to compartment @, from whence there is again a T or F exit. 

If we study Figure 1-1, we see that Boxes 2, 6, and 3 serve the same functions as 

the three compartments of an iteration box as suggested in Figure 1-3. 

3 



Chapter I - Introduction MAD Reference Manual 

True 

False 

Figure 1-3 

Figure 1-1 may therefore be streamlined in its structural appearance as seen in 
Figure 1-4 by taking advantage of the iteration box convention. 

Figure 1-4 

' ":' 
/l 
l 
:! ,-body of the 

) '· ')....-. ~ loop 
~, 

We consider one more illustration to suggest where and how the iteration box may be 

employed in diagramming a computational loop. Suppose we wish to repeat a certain computa­

tion starting with the variable a having the value 12, and increasing it by the amount 

3 after each time through the body of the loop, terminating the repetition whenever a > 90, 
or IX+ Yj ,S: E, 

Figure 1-5 shows a suitable iteration box for this purpose. 

T 

F 

Figure 1-5. Another example 
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Communicating the algorithm to the computer. Once an algorithm has been stated as in 

a flow chart it should be presented to the computer directly in that form or as near to it 

as possible. For this, one needs a translator such as MAD which has the job of producing 

a translation from a flow diagram representation of the algorithm (or a direct equivalent 

of it) to a machine language representation of the same algorithm, i.e., into the basic 

code of the machine. 

A flow chart for an algorithm may be re-expressed in the MAD language, which is then 
acceptable as input to the translator. Attention to the details of this conversion will be 

necessary, but aside from this step the user's work ends with the diagram itself. The full 
details of the MAD language are the subject of Chapter II. With this overview we wish to 

introduce some of the basic ideas or highlights that typify this "input language." 

However, just to suggest what we mean by "details" of the language we show what the 

MAD language equivalent might be like for the iteration box of Figure l-5: 

THROUGH BACK, FOR ALPHA = 12, 3, ALPHA 

.G. 90 .OR .• ABS. (X+Y) ,LE. EPSILN 

Because MAD is a language built up out of a very limited character set (no more than 

48 characters in all), certain symbols which we will use in our flow charts will not be 

available. Simple substitutions are needed such as ".G." for ">", 
II 

= 
II in 

II .G. II in 

".LE. II in 

".ABS.(X+Y)" in 

The term "THROUGH BACK" 

loop through and including the 

the absence of 

the absence of 

the absence of 

the absence of 

is to be read as 

terminus of this 

" 
">" 
11~11 

"IX+YI" 

"repeat the computation" in the body of the 

body marked by the symbol "BACK". 

To continue with out overview of the language, we shall next look at the MAD equivalent 

of the algorithm in Figure l-4 which is presented in Figure 1-6, 

RETURN 

DIMENSION A(lOO) 
INTEGER J,N 
Z = A(O) 
THROUGH RETURN,FOR J=l,l,J.G.N 
WHENEVER Z .L. A(J), Z = A(J) 

END OF PROGRAM 

Figure 1-6 

The DIMENSION statement assigns a block of storage in the computer that is large 

enough to handle a0, a1, ... , a 100 , if necessary. The IN'rEGER statement declares the 

variables J and N to be integers. That is to say, only integer val~s will be 
assigned to these variables. By so declaring J and N, we can ensure that the arith­

metic involving their values (subscript modification, counting, etc.) can be done more 

simply and efficiently, usually with less round-off error than would be the case if non­

integer arithmetic were used. 

5 
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Non-integer arithmetic is the arithmetic which the computer performs on representations 
of real numbers, i.e., on numbers that have both integral and fractional parts. Because of 
the finite precision with which such numbers can be represented in a computer, the reals 
are in general only approximated. Moreover the same finitude introduces round-off error 

that is characteristic of these non-integer arithmetic operations. The "approximated" reals 

are coded internally in a form called "floating point" representation. Unless otherwise 

declared, values for a variable in a MAD program are assumed to be represented in the float­
ing point mode. 

The WHENEVER statement in Figure 1-6 is to be interpreted in the sense: Whenever the 

following condition (in this case Z < aj) is satisfied, do the specified action (Z = aj)' 
otherwise just go on. 

It is interesting to ask just how complicated a condition can be used in making deci­
sions. We have seen that such conditions may occur in iteration statements, and "WHENEVER" 

statements, etc., for the purpose of making binary (i.e., "yes" or "no") choices. An 

expression which can be labeled "True" or "False" is exactly what is needed here. Such 
expressions are called Booleant expressions, and usually involve "and", "or", "not", and 

possibly other such words,connecting shorter expressions involving <, ~' =, ~' >, and 2. 
For example, the following is a Boolean expression: 

((x- 3)3 < y and i ~ j) or x 2 3 

This will be "true" for some values of x, y, i, and j and "false" for others. It might 

then occur in statements such as: 

WHENEVER ((X- 3) .P. 3 .L. Y .AND. I .LE. J) .OR. X .GE.3, 
TRANSFER TO AGAIN 

or in the iteration statement 

THROUGH ALPHA, FOR BETA= l, 1, ((X- 3) .P. 3 .L. Y .AND. 
I .LE. J) • OR. X .GE. 3 

where • P. denotes exponentiation (i.e., "to the power"). 

We now return to the MAD statements in Figure 1-5 to inspect the symbol "RETURN" which 

has been used twice. It is used in the THROUGH statement to identify the symbol used to 
designate or label the terminating statement of the body of the loop. That is, each time 

the loop body is to be repeated, execution is to proceed down through and including the 
statement which has as its label the very same symbol, namely "RETURN". A MAD statement 

may be null or empty; .in this example we have given an empty statement the label "RETURN" 
to clearly mark the terminus of the loop. Statement labels, like variables, are arbitrary 

symbols, though they must be unique. One chooses them in an essentially arbitrary fashion. 

In our example problem on the largest of a set of numbers, we observe that no provision 
was made for obtaining the values of n, a0, a1, ••• , an on which to perform our computa­

tion, nor was any provision made for producing an answer. Normally, each program would 
contain suitable input and output statements, such as will be described in Chapter II and 

illustrated in Chapter III. Let us assume instead that we are interested in making our 
little algorithm available for use in any other program, as a prepackaged "function", in the 

tAfter the logician George Boole. 

6 



MAD Reference Manual Chapuer I -Introduction 

sense that, given n and a0, ... , an' this function computes as its value the largest of 

a0, ••. ,an. In this case we shall call our algorithm an EXTERNAL FUNCTION, and give it a 
name, say "MAX". It is an EXTERNAL FUNCTION because it will be written and translated 
externally with respect to the program which will later call upon it. The program for 
defining MAX will now be written: 

EXTERNAL FUNCTION MAX.(N,A) 
INTEGER J, N 
Z = A( 0) 
THROUGH BACK, FOR J = 1, 1, J .G. N 

BACK WHENEVER Z .L. A(J), Z = A(J) 
FUNCTION RETURN Z 
END OF FUNCTION 

The first statement specifies the inputs to the function to be N and A, the second 

statement indicates the point of entry, the FUNCTION RETURN statement specifies the value 
of Z as the desired value of the function, and the other statements are essentially as 

before. Any program using this function now need only call upon it by name, as in the state­
ment: 

LARGEQ = 1. + MAX.(6,Q)/3 

Note that the set (in this use of MAX ) whose largest element is desired is called Q, and 
N has the value 6. No DIMENSION statement is needed for A in the EXTERNAL FUNCTION 

definition program above, since A is there only as a "dummy variable" anyway. When used 

with the actual set Q, we would expect a DIMENSION statement for Q in the program that 
calls on MAX for a value. 

For a second example 

by Newton's method. The 

of a such that a L l. 

consider the problem of solving the equation f(x) = ax + x = 0 

equation is to be solved repeatedly, each time taking a new value 

The Newton formula is: 

where the prime denotes the derivative with respect to x. This method involves the repeated 

evaluation of the (iterative) formula until xi+ 1 is a root, i.e., until f(xi+l) = 0. 

Actually in the numerical solution of equations, where we deal with the finite-precision 
approximation of numbers, the loop termination condition becomes: 

until · jf(xi+1 ) I < E, where E is a small positive number. 

To evaluate the iterative formula the first time, it is necessary to have an initial 
approximation, x0, to the desired root. The use of the index, i, as well as the initial 

subscript zero suggests that we will produce a sequence, x0, x1, ... , xn' of approximations 
to the root. However, from the computational point of view we do not need all of these 
values simultaneously, since to evaluate the formula it is sufficient to know only the last 

value, x, produced. We can say 

x<-x-f.fit 

In other words each new value assigned to x will be the value of the expression (appearing 

on the right of the left arrow) which involves the current value of x. We are reminded of 

the fact that, in the actual MAD language statements produced for the computer, the 11=11 

symbol is used to signify the left arrow. In MAD then, the use of the "=" is different from 

7 
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the usual use of the symbol in mathematics where it indicates a relation. When the 
symbol is used as such a "replacement operator" the item on the left of the II is always 
the name of a variable. The variable may have a complicated subscript but nevertheless it 

is not an expression, but the name of a variable. The item on the right of the symbol is 

an expression involving one or more constants, variables, etc. The operation implied is 
simply that the value of the expression on the right becomes the value of the variable whose 

name appears on the left. This is referred to as assignment. 

For our specific example, then, the evaluation of the iterative formula could be 
described as 

altho,ugh we will, for convenience, break this into two statements. The entire computational 

procedure can be represented by the flow diagram in Figure l-7. 

l 

READ F 
a,x,e: 

T 

8 

PRINT 

a 

6 

PRINT 

a,x,e: 

Figure 1-7. Finding the roots of f(x) 
using Newton 1 s method. 

The corresponding MAD statements are: 

ST READ DATA 
WHENEVER A .L. 1.0, TRANSFER TO PRT 

REPEAT F = A .P. X + X 
X= X- F/(ELOG.(A)*A.P.X + 1.0) 

T 

3 

4 

x ... x- f/((ln a)· 
ax+l.O) 

0, 

WHENEVER .ABS.F ,GE, EPS, TRANSFER TO REPEAT 
PR;INT RESULTS A, X, EPS 
TRANSFER TO ST 

PRT Pif:t:N"l' RESULTS A 
TRANSFER TO ST 
END OF PROGRAM 

8 
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(1) The first statement, labeled ST, causes the data, which are values for 

a, x, and E, to be read into computer storage. 

The input for a typical data set for a, x, and E can be supplied 

on a punch card as shown in Figure 1-8. 

Figure 1-8. Typical data card which can be scanned 

as a result of executing a READ DATA 

statement. 

When a READ DA'I'A statement is executed, information on a data record 

(such as on the illustrated punch card) is scanned from left-to-right. Values 

read from the card are assigned to the appropriate variables, one after the 

other. The assignment process (input) terminates when an 11 j(- 11 character is 

encountered in the left-to-right scan. 

(2) The second statement is a simple conditional which causes the statement labeled 

PRT to be the next one executed if a < l. Otherwise, the next one in 

sequence (labeled REPEAT in this case) will be executed. 

(3) The statement labeled REPEAT computes ax+ x using the current value of 

x, and assigns this value to f, i.e., places the result of this computation 

in a storage location named F. 

(4) The next statement divides the value F of the function by the derivative of 

the function: (loge a • ax + l. 0), evaluated using the current value of x, 

subtracts this quotient from the current value of x and the resulting 

difference is stored as the current value of x. The name ELOG is the 

name used in MAD for the function loge and the item in parentheses 

following this name indicates the variable whose natural logarithm is 

desired, i.e., the argument. 

(5) The following statement is a simple conditional which causes the function 

and iterative formula to be evaluated again if lf(x) I 2 E. Otherwise, 

(i.e., lf(x) I < E) the next statement in sequence is executed. 

(6) The PRINT RESULTS statement causes three numbers--the current values for 

a, x, and E to be printed. When this statement is executed the names 

("A", "X", and "EPS") will be printed along with the respective values as 

a simple and effective way of identifying each printed value. 

(7) The TRANSFER statement that follows causes the statement labeled ST to 

be the next one performed. 

(8) The statement labeled PRT is the one executed irnmediately'~fter the first 

statement whenever a < 1.0. This statement causes the current value of a 

to be printed and labeled. (Here a must be < 1.0.) Thus, if a were 

0.426 the phrase "A~ 0.426000" would be printed. 

9 
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(9) The final statement indicates the end of the statements and is the last state­
ment executed when a definite termination to the problem is known. In our 
particular example, the computer never attempts to execute END OF PROGRAM 
because each time the TRANSFER statements return control to the READ DATA 

statement labeled ST. Instead, the computer would continue until it had 

exhausted the sets of given input values, a, x, E. 

The final example before the description of the language in Chapter II is a more general 

and more elaborate illustration of Newton's Method. Here, we consider the solution of the 
equation x3 + ax2 + bx + c = 0, starting with some input value for x0, using the iterative 
formula: 

x. -
l 

3 2 xi + axi + bxi + c 

3x/ + 2axi + b 

2x. 3 + ax. 2 - c 
l l 

which is obtained from the standard Newton's Method formula. We shall use the following 

condition as the criterion for halting the repeated evaluation of this formula: 

where n0 is some given upper limit to the number of iterations which we can tolerate. We 

are requiring that at xi the value of the function f(xi) will lie between the upper and 

lower bounds E2 and -E 2• Also, the distance between xi+l and xi should be less than 

e1 . The flow chart for a suitable algorithm is given in Figure 1-9. Observe that we are 
never concerned with more than two consecutive approximations to the root-- say x and xn. 

where f(y) 

and d(z) 

PRINT 
TITLE ANDI-----r~ 
INPUT 
INFORMA-

TION 

y3 + ay2 + by + c 

(2z3 + az 2 - c)/(3z2 + 2az + 

PRINT "NO 

CONVERGENCE" 

F 

Figure 1-9. Flow chart for finding roots of a cubic 

equation by Newton's Method. 

10 
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A corresponding MAD program is shown below: 

PRINT COMMENT S!SOLUTION OF CUBIC EQUATIONS 
GAMMA READ AND PRINT ~ATA 

R DATA CONSISTS OF NEW VALUES FOR 
R At Bt Ct XZEROt EPSlt EPS2t AND NZEROo 

X = XZERO 
NEXTX = Do CX) 
INTERNAL FUNCTION Fo!Y) = Y oPo3 +A* YoPo2 

1 +B*Y+C 
INTERNAL FUNCTION Oo!ZI = C2o*ZoPo3 + A*ZoPo2 

1 -CI/(3o*Z oPo2 +Zo*A*Z +B) 
ALPHA THROUGH BETA• FOR I = Ot lt CoABSoCNEXTX-X) oLo 

1 EPSl oANDo oASSo Fo(XI oLo EPS21 •ORo I eGEo 
2 NZERO 

X = NEXTX 
BETA NEXTX = OoCXI 

WHENEVER I oGEo NZEROt PRINT COMMENT S NO CONVERGENCES 
PRINT COMMENT S NOo OF ITERATIONS AND THE VALUE OF XS 
PRINT RESULTS It X 
TRANSFER TO GAMMA 
INTEGER It NZERO 
END OF PROGRAM 

The first statement causes the program to print a comment or title consisting of the 
phrase 

"SOLUTION OF CUBIC EQUATION" 

which, except for the digit 1, is the string of characters between the dollar signs (MAD 

equivalent of quotation marks). The first character following the opening quote mark is 

used as a code to govern the positioning of the paper for printing. A code of 111 11 posi­
tions the paper at the top of a new page before printing. (A code of "0" (blank space) 
causes the paper to be advanced one line before printing.) 

( EPS2 = .000001, NZERO 13* 

( XZERO 1.5, EPSl = .0001, / -
A = -12., B = 41., c = -30., 

r-- Reading order 

Figure 1-10. A set of data cards examined and copied as 
a result of executing the READ AND PRINT 
DATA statement. 

The statement labeled GAMMA would cause the program to read from one or more data 
cards the numbers a, b, c, x0, E1, E2, and n0 and to print an exact copy of the informa­
tion on the cards that are read. Cards are read until the terminating asterisk character 
is encountered as suggested in Figure 1-10. 

11 
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Two functions are defined in this program, one for f(y) and the other for d(z). 
Each is designated as an INTERNAL FUNCTION. 

These function definitions are a part of, but parenthetical to the .main program. Such 

definitions may be placed anywhere in the program in which they are embedded, 

The statement following that which is labeled BETA illustrates a conditional output 

statement. If the iteration is terminated because i 2 n0, the comment NO CONVERGENCE 

is printed before the values of I and X are printed, otherwise that remark is not 
printed, The final transfer to GAMMA causes the program to start over with a new set of 

data, if additional data is present; otherwise, the computation is automatically terminated. 

12 



Chapter II 

DESCRIPTION OF THE LANGUAGE 

"There is a ?,leasure sure in being mad, which none but 
madmen know. ' 

Dryden: The Spanish Friar 

1. Constants, Variables, Statement labels, Functions, Operations, and Expressions 

1.1 Constants 

There are five classes of constants. Integer, floating point, alphabetic, Boolean, 

and octal. 

1.1.1 Integer Constants 

Integer constants must be less than or equal to 34359738367 (i.e., 235 - 1) in absolute 
value. (However, see Section 1.10 if integer to floating-point conversion is involved.) 
The decimal point is assumed to be immediately to the right of the rightmost digit, but is 

always omitted. Integers may be positive or negative, and while the "+" sign may be 

omitted, the " sign must be present if the number is negative (e.g., 2, -2, 0, +0, -0, 
100 are all integers). Leading (but not following) zeros may be omitted (e.g., 5 and 005 

represent the same integer, but 3 and 300 do not). An integer may not contain charac­

ters other than digits and an optional sign; e.g., commas are not allowed. Thus, "1,500" 
is an illegal form for "1500". 

1.1.2 Floating Point Constants 

Floating point constants may be written with or without exponents. If written without 

an exponent, the constant contains a decimal point ".", which must be written, but which 

may appear anywhere in the number. Thus, 0., 1.5, -0.05, +100.0, .1 and -4. are all 
floating point constants. 

If the number is written with an exponent, it may be written with or without a decimal 
point, followed by the letter "E", followed by the exponent of the power of 10 that multi­

plies the number, (If the decimal point is omitted, it is assumed to be immediately to the 
left of the letter "E".) The exponent m consists of one or two digits preceded by a sign 

(although a "+" sign may be omitted), and must satisfy the condition -38 ~ m ~ 38. More 
specifically, the value of the number F must be 0 or else satisfy the condition 

Examples of floating point constants with exponent are: .05E -2(=.05 X 10- 2), 

-.05E2(= -.05 X 102), 5E02(= 5.0 X 102), 5.E2(= 5.0 X 102). 

Negative floating point constants must be preceded by a 

may be preceded by a "+ " sign. 

13 
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1.1.3 Alphabetic Constants 

An alphabetic constant consists of from one to six admissible characters preceded and 
followed by the character "$ 11 • The admissible characters include all letters of the 

alphabet, the digits 0 through 9, the special characters +, - (minus sign), ' (prime), 

*, /, =, ) , (, . , the comma 11 , 11 and the blank space, which is to be represe.nted here 

occasionally (but not punched on input cards), as the character 11 0 11 , Thus the following 

are alphabetic constants: $ABCD$, $TaJBE$, $DEC.D4$, $5+3=8$. Note that blank spaces, 
while ignored elsewhere in the language, count as characters in alphabetic constants. 

Within any alphabetic constant (i.e., between two $-signs), a pair of consecutive 

$-signs will be treated as the single character, $-sign. Any blanks between such a pair 
are completely ignored and are not counted as characters. Examples: 

$A$$B$ 

$A$ $B$ 

$$$.56$ 

represents the string A$B 

also represents the string A$B 

represents the string $.56 

with 3, 3, and 2 trailing blanks, respectively. 

Each character of an alphabetic constant is stored in its internal representation as 

a unique integer code. An alphabetic constant, therefore, appears internally as an integer 

that results from the concatenation of the integer codes of six characters. Any alphabetic 

constant containing fewer than six characters will be extended to six characters by adding 
blanks on the right; thus $ABCD$ will appear internally as ABCDDJ • 

1.1.4 Boolean Constants 

There are two Boolean constants-- 11true, 11 which is written lB, and 11false, 11 which 

is written DB. 

1.1.5 Octal Constants 

These constants are written as twelve digit octal integers followed by the letter K, 

except that leading zeros may be omitted. If one or more decimal digits follow the letter 
K, this is interpreted as an octal scale factor. Thus 127K2 would be the octal integer 
000000012700, and lKlO would produce the octal number 010000000000. Octal constants 
are assigned integer mode. 

1.1.6 Constants of other Modes 

Any constant (integer, floating-point, Boolean, alphabetic, or octal) may be declared 

to be of mode other than its normally assigned mode by following the constant by the letter 

M and the digit code for that mode. The standard digit codes are: 

0 Floating-point 

1 Integer 

2 Boolean 

3 Function Name 

4 Statement Label 

Modes 5, 6, and 7, which may be defined (see Appendix B), may also be used. The constant 

is converted ~ usual, but then is assigned the indicated mode, if the letter M is used. 
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Thus, if some new mode numbered 6 were defined for certain integers, then the appearance 
of the constant 32M6 would assign mode 6 to the decimal integer 32. The appearance of 
32KM6 would assign mode 6 to the octal constant 32, and the appearance of $AB$M6 

would assign mode 6 to the constant $AB$. Similarly, the appearance of 32.1E-1M6 would 
assign mode 6 to the number 3.21, which appears in storage in the usual floating-point 

form. (The mode digit may also be a parameter--see Section 3.8.) 

1.2 Variables (integer, floating-point or Boolean) 

The name of an integer, floating-point or Boolean variable consists of one to six 

letters or digits, the first of which must be a letter. If the variable is defined as an 

n-dimensional array variable (see Section 3.3) then the name of an element of the array 

consists of the variable name, (i.e., one to six letters or digits, starting with a letter), 

followed by the appropriate subscripts separated by commas and enclosed in parentheses. 

Thus the following are "single variables": X51, ALPHA6, LAMBDA, GROSS, while the follow­

ing are elements of arrays: BETA(Cl, C2, 6), Xl5(Y,Zl), J(6), J(Zl + 5*Z2, 5). (See 
Section 1.11 for the description of subscripts.) Parentheses enclosing subscripts may not 
be omitted. 

1.3 Statement Labels 

A statement may be labeled or unlabeled. Labels are used to refer to a statement by 

other statements. A statement label consists of from one to six letters or digits, the 

first of which must be a letter, e.g., IN or BACK. A statement label may be an element 

of a statement label vector, in which case the vector name is followed by a constant integer 
subscript enclosed in parentheses, e.g., S(2) or LBL(3). A statement label appears in 

the label field (i.e., Columns 1-10) of the statement it identifies, When a statement ex­

tends to additional cards (i.e., cards identified by a digit punched in Column 11) the 

statement label need not be punched on the additional cards. (See also section 4.) 

1.3.1 Statement label constants 

A statement label appearing in the label field of a statement will be called a constant 

of statement label mode. 

1.3.2 Statement label variables 

A statement label which does not appear in the label field is a variable of statement 

label mode, provided it is so declared in a mode declaration (See Section 3.2). 

1.4 Functions 

The name of a function consists of one to six letters or digits, but the name must be 

followed by a period(.) so that the translator can recognize it as a function name. The 
first character of a function name must be a letter. If the function is single-valued, then 

the value of the function is represented by ,following the function name with the proper 

number of arguments (see Section 3.10 for the definition of function) separated by commas 

and enclosed in parentheses. Thus, ADD51., COS., POLY., and FUNCT3. are function 

names, while ADD5l.(X,Y3,ADD.), POLY.(N,VJ,7) and COS.(X) ar~ function values. A 
function name given explicitly in this form will be called a function name constant. (See 

also Sec. 2.8.) For additional explanation regarding the distinction between function name 

15 
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constants and function name variables, see Section 1.13. (See also section 4.) 

1.5 Arithmetic Operations 

The following arithmetic operations are available: 

(a) 

(b) 

Addition, written as "+ ", 

Subtraction, written as II II 

e.g., Z5 +D. 

e.g., ZS- D. 

(c) Multiplication, written as "*", e.g., Z5*D. (Note that the "*" may not be 

omitted. It is illegal to write ZSD, since it would be impossible to distin­

guish such a product from the variable ZSD.) 

(d) Division, written as "/"; e.g., Z5/D. If both Z5 and D are integers, the 

result is again an integer; 

is truncated (not rounded). 

will have the value 2. 

e.g., the "fractional part" of the true quotient 

For example, if ZS = 8, and D = 3, then ZS/D 

(e) Exponentiation, written as ".P.", e.g., ZS.P.D, and meaning (ZS)D; i.e., 

Z5 raised to the power D. 

(f) Absolute value, written ".ABS."; e.g., .ABS.ZS, meaning IZ5I, the absolute 

value of ZS, and .ABS.(ZS-D) meaning Jzs- Dj. 

(g) Negation, written as "-"; e.g., -ALOHA, meaning the "negative of ALOHA." Thus 

-X.P.-.5 means -([• 5 ), the negative of the reciprocal of the square root of X. 

(h) Full word bitwise negation, written .N.I, where I is an integer expression, 

and meaning the operation of negating each binary digit in the binary represent­

ation of the value of I. The result is again an integer. 

Example: Let I = 6 which is represented internally as 

(normally interpreted as the 
"sign bit": plus, in this case) 

'-------"-. ,ooo ... 000110, 

36 bits 

Then .N.I would yield the value: 

("sign bit": minus, in this case) 
'----..... 

,lll. .. 1110011 

(which can be interpreted as a large negative integer in this case). 

(i) Full word bitwise logical operations and and Q£, written .A., .V., and .EV., 

respectively, meaning the bitwise and, or, and exclusive or of the full binary 

integer values of the operands. The result is again an integer. 

Example: Let I= -17 which is represented internally as 

and let J 

,1000.~.000100011 

36 bits 

9 which is represented internally as 

I 0000,, ,000010011 

36 bits 
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Then I .A. J would yield the value 

,0000 ..• 00000001, 

36 bits 

which is the integer 1, 

I .V. J would yield the value 

,1000, •• 00011001, 
36 bits 

which is the integer -25, 

and I .EV. J would yield the value 

,1000 ... 00011000, 

36 bits 

which is the integer -24. 

(j) Full word integer shifts, written .LS. and .RS., respectively; e.g., I .LS. J 

and I .RS. J, where I and J are integer expressions (see Section 1.10). 
I .LS. J means the value of I shifted left J binary places. The entire 

computer word, all 36 bits, is shifted. The sign of J is ignored; the absolute 
value of J is always used. Similarly with .RS •. Digits shifted off either 

end of the computer word are lost. Created blank positions are filled with 

zeros. The result is always again an integer. 

Example: Let I= -30 which is represented internally as 

and let J = 4. 

,100 ..• 0011110, 
36 bits 

Then I .LS, J would yield a value which is represented as 

1000 ... 111100000 1 

36 bits 

and I .RS. J would yield a value which is represented as 

1.6 Arithmetic Expressions 

100001000, •. 0001 1 

36 bits 

Arithmetic expressions are defined inductively as follows: 

(a) All integer, floating point, alphabetic and octal constants, integer and floating 

point individual variables, subscripted integer and floating point array variables, 
and integer and floating point values of functions are arithmetic expressions. 

A function value used in an expression must have at least one argument, even if 

the function is defined without dummy variables. (See Sections 2.8 and 3.10 for 

more information on functions.) 

(b) If E and F are any arithmetic expressions, and I and J integer expressions, 
then the following are also arithmetic expressions: +E, -E, .ABS.E, E + F, E - F, 

17 
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E*P, E/F, E ,P, F', (E), ,N, I, I ,A, J, I ,V, J, I ,EV, J, I ,LS, J, and I ,RS. J 

(c) The only arithmetic expressions are those arising in (a) and (b), 

1.7 Boolean Operations 

The following Boolean, or logical, operations are available in the language (where M 

and P are Boolean expressions): 

(a) • NOT.M has the value lB if and only if M has the value OB . 

(b) (M) has the same value as M. 

(c) M.OR.P has the value OB if and only if both M and p have the value DB. 

(d) M.AND.P has the value lB if and only if both M and p have the value lB. 

(e) M.THEN.P has the value OB if and only if M has the value lB and p has 

the value DB. 

(f) M.EXOR.P has the value lB if and only if either M or p has the value lB, 
but not both. 

(g) M.EQV.P has the value lB if and only if M and P have the same values. 

Thus .NOT., .OR., .AND., .THEN., .EXOR,, and ,EQV, correspond to the usual 
logical operations, "exclusive or," and 

1.8 Boolean Expressions 

Boolean expressions are defined inductively as follows: 

(a) Boolean constants, individual Boolean variables, subscripted Boolean array 
variables and Boolean-valued functions are Boolean expressions. (See Sections 

1.1.4 and 3.2.) 

(b) IfHandF 

H.NE.F, H.G.F, 

H < F, H ~ F, 

are arithmetic expressions: then H.L.F., H.LE.F, H.E.F, 

H.GE.F, are Boolean expressions, where the meanings are 

H = F, H ~ F, H > F, and H 2 F, respectively. 

(c) If M and P are Boolean expressions, then the following are also Boolean 
expressions: .NOT.M, (M), M,OR,P, M.AND.P, M,THEN.P, M,EXOR.P, and M,EQV.P. 

(d) The only Boolean expressions are those that arise in (a), (b), and (c). 

Examples of Boolean expressions are: (X .G. 3 ,AND. Y .LE, 2) .OR. (GAMMA .L. EPSILN), 

(.ABS, (Xl- X2)/Xl .LE. EPSILN) .AND. (F.(Xl) .L. EPSILN), and ((P .AND. Q) .THEN,Q) 

.EQV. (P .OR .. NOT. P), where P and Q are Boolean variables, 

Boolean expressions of types (a) and (b) above are referred to as "atomic Boolean 

expressions." Object programs produced by the translator will skip the evaluation of the 
remaining terms of a disjunction (an "or" expression) as soon as one term has the value lB, 

and a similar statement holds for conjunctions ("and" expressions). In order to obtain the 

maximum benefit from this skipping behavior, it is necessary to understand that the atomic 

Boolean expressions in a complex Boolean expression are evaluated from right to left, and 
the one most likely to be "true" in a disjunction, and the one most likely.to be "false" in 

a conjunction, should be placed as far toward the right end of the expression as possible. 

18 
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Thus, if one were testing for values of X between 0 and 2 and between 5 and 
6, one might write 

WHENEVER 0 .L. X .AND.X .L. 2 .OR. 5 .L. X .AND.X .L. 6 

If one knew that for the data expected, the values of X would occur most often between 
+1 and 2, one would do better to write the above as follows: 

WHENEVER X .L. 6 .AND. 5 .L. X .OR. 0 .L. X .AND. X .L. 2 

1.9 Parentheses Conventions (Precedence of Operators) 

Parentheses are used in the same way as in ordinary algebra and logic to specify the 
order of the computation. Also, certain conventions are used to allow deletion of par$n­
theses. The conventions used here are the same as in ordinary algebra and logic, namely: 
Parentheses may be omitted, subject to the rules (A) and (B) below, but redundant paren­
theses are allowed. 

(A) Within any expression the sequence of computation, unless otherwise indicated 
by parentheses, is: 

.ABS., + (as unary operations), .N., .LS., .RS • 

. A . 
• V., .EV . 
. P. 

- (as a unary operator) 

*, I 
+, - (as binary operations, i.e.; addition and subtraction) 
.E., .NE., .G., ,GE., .L., .LE • 

. NOT . 

• AND • 

. OR., .EXOR . 

• THEN • 
. EQV. 
, (as used to separate function arguments) 

Two other operations occur by implication only; viz., the function call (see Sec. 2.8) 
and subscription (see Sec, 1.11). Thus the call for the function: SIN. (X+ Y) implies 
that after the sum X + Y is computed, the operation of actually calling the function SIN 

must be performed. Similarly, the array element A(I + 3 x J) is determined by first 
evaluating the subscript I + 3 X J and then performing the implied subscription operation. 
These two implicit operations do not appear in the precedence list above, but may be con­
sidered to be together on a level just above .ABS., .N., etc. 

Examples: 

(1) 

(2) 

(3) 

.ABS.(B- c) means IB- cj, 

- B + C means (-B) + ( C) , 

B.P. - X + Y means B-X + Y, 

while 

while 

while 

.ABS.B -c means IBI - c. 
-(B + C) means the negation of the sum. 

B.P.(-X+Y) means -X+Y B . 

(4) K2/Z 3 means (K2/Z) - 3, while K2/(Z - 3) implies that Z - 3 is the 
denominator. 
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(5) A* B + C means (A * B) + C. 

(6) A.P.3/J means (A3)/J. 

(7) X.L. Y + 3 means (X) .L. (Y + 3). 

(8) P.AND .• NOT.P .EQV.Q means (P.AND.(.NOT,P)).EQV.Q. 

(9) Z = X+ Y/QA means Z +- (X+ (Y/QA)) 

(10) A= -B.P.X means X A- -(B). 

MAD Reference Manual 

(B) Within an expression operations appearing on the same line of the list in (A) are to 
be performed from left to right, unless otherwise indicated by parentheses. 

Examples: 

(1) A+ B- C +D-E means (((A+ B) -C)+ D) -E. 

(2) X/Z * Y/R * S means ( ( (X/Z) * Y)/R) * S. 

1.10 Mode of Expressions 

The kind of arithmetic performed on a constant, variable or function value is deter­
mined by its mode, There are five modes in MAD: floating point, integer, Boolean, state­

ment label, and function name. Floating point, integer, and Boolean constants were described 

in Section 1.1. Alphabetic constants and octal constants are assumed to be of integer mode. 

Section 3.2 describes how the modes of variables and functions are specified. 

If an expression consists entirely of one constant, one variable, or one functional 
value, the mode is that of the constant, variable, or functional value itself. If the 

expression is a compound expression; i.e., consists of two or more subexpressions joined 

by logical or arithmetic operations, the following rule applies: 

If an expression is a Boolean expression as defined in Section 1.8, then its mode is 

Boolean. An arithmetic expression is considered to be in the floating point mode if any 

operand of any arithmetic operation in the expression is in the floating point mode. If 

all operands are integer (or alphabetic or octal), then the expression is considered to be 
in the integer mode. In this determination arguments, though not values, of functions are 

ignored. 

Thus, if Y, Z, and W are floating point variables, while the function GCD. and 
the variables I and J are in the integer mode, then the expressions 

Y + GCD. (I,J) 

Y + Z - I 

I+ 1. 

GCD. (I, J)/Z 

are all floating point expressions whHe the expressions 

are all integer expressions. 

I + GCD. (I, J) 

(I+ J)/3 
I+ 1 

GCD. (I, J)/I 

20 
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If an expression has subexpressions of different modes, a conversion may be necessary 
before some of the operations can be performed, Thus, in the expression 

y + 3 

if Y is in the floating point mode it cannot be added directly to the integer 3. But 

for one precaution the user need not be concerned with this since the instructions necessary 

for the conversion of the integer to floating point form before adding are automatically 

inserted by the translator during the translation process. The precaution is that if the 
integer being converted is greater than 134,217,727 (i.e., 227 - 1), then an improper con­
version will take place. 

In some cases, however, the user must understand the sequence in which the conversions 

will be made. Consider the expression 

(Y + 7/3) + (I* J/K) 

where Y is in the floating point mode, and I, J, and K are in the integer mode. 
According to the parenthesizing conventions, the computation will proceed in the following 
order (where the T1 s are temporary locations): 

Tl +- I X J 

T2 <- T/K 

T3 7/3 

T4 .... Y+ T3 

TS <- T4 + T2 

and Ts will be the value of the expression. 

Now, since both I and J are integers, the first multiplication will be integer 

multiplication, and T1 will be an integer, Since the next step involves two integers, 

it will be integer division, and, if K happens to have a larger value than T1 the 

quotient is 0. Similarly, T3 will have the value 2 because of the division of two 

integers. In the computation of T4, however, we have "mixed modes," since Y is float­

ing point and T3 is integer. Here T3 will be automatically converted to floating point 
before adding. Likewise, in the next step, the integer T2 will be converted to floating 
point before adding to the floating point number T4• 

In other words, although the mode of the expression is floating point because of the 

presence of the floating point variable Y, some of the computation (until Y is involved) 

is performed in integer arithmetic, and this may occasionally cause the final value to be 

different from the value one might expect from a different analysis. 

In the example above, the divisions would be performed in the floating point mode if 

the expression were written: 

(Y + 7./3) + (I* J)/(K + 0.) 

Of course, many times the expression will be written as originally stated just to 

achieve the "truncation" effect. 

A single constant, variable, or function value of statement label (function name) mode 

is an expression of statement label (function name) mode. There are no other expressions 

of statement label (function name) mode. If A and B are both statement label (function 

name) expressions then A.E.B and A.NE.B are Boolean expressions except when A or B 
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are elements of a vector which has been preset by a VECTOR VALUES statement (see Section 
3.7). In this exceptional case A.E.B and A.NE.B are not expressions. 

1.11 Subscript Expressions 

Any arithmetic expression may be used as a subscript expression for an element of a 

linear or two-dimensional array. If the value of the expression is in the floating point 

mode (see Section 1.10), it is .truncated to integer form before being used as a subscript. 

(Since any mode conversion takes extra storage and time, one usually tries to avoid 
the use of floating point subscripts. To help in this, the MAD translator now reports to 
the programmer the first occurrence of such a conversion, as a warning that this has 

perhaps inadvertently been incorrectly written. This is not considered an error, and 
translation continues.) 

The expressions for subscript elements of an array whose dimension is three or greater 

must be of integer mode. Moreover, for arrays of dimension three or greater, the use of 
subscripts having other than integer mode will not be caught as an error. Subscript ex­
pressions may contain variables with subscripts, etc. 

Examples of subscripted variables: J(3), KlO(Z + 5 * XY/T), MP(A,B + 6 * J, 
I * 6/TDX) , T ( I ( J) ) , MA ( K ( Z + 5 ) + T ( 1 ) + 6) . 

1.12 Block Notation 

Input-output lists (see Section 2.14), VECTOR VALUES statements (see Section 3,7), and 

some subroutines (see Section 3, Chapter IV) allow the use of block notation, This has 

the form 

A, ••• ,B or A ••• B 

which is usually interpreted as the entire region from A to B, inclusive. The most 

common use is in terms of a single array; e.g., A(l), ... ,A(N), B(I,J), ... ,BU1,N), 

These would be interpreted as the regions: A(l), A(2), A(3), ... , A(N) and B(I,J), B(I,J+l), 

B(I,J+2), 0 .. , B(I+l,J), B(I+l,J+l), ... , B(M,N). If the commas are omitted, both must be 

omitted. 

1.13 Function Name Constants and Variables 

(a) The notation for function evaluations, i.e., function references, always requires 

a peridd after the name of the function. 

(b) Function~ constants are the names which designate entries in actual 

definitions, e.g., SIN., COS., F. --assuming F is defined as either an 

internal or external function. Function name constants are never subscripted 

and never appear without a period; they may not stand alone on the left side 

of an assignment statement. 

(c) Function~ variables, i.e., variables of function name mode where the mode 
is either declared or implicit from a VECTOR VALUES declaration, should not 

have a period when used as variables. Use on the left side of an assignment 

statement or as an argument of a function are examples, The following two 

restrictions apply to the use of function name variables when they are used 

as function names in function evaluations. 
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(1) Single function name variables, i.e., variables not normally considered 
to be an element of an array, must be written with a zero subscript 
preceding the period. For example, if G is a single function name 

variable its use in a function evaluation would appear G(O).(A,B) 

where A and B are the arguments. As with any single variable used 

only with a zero subscript, it does not need to be dimensioned. 

(2) 

Thus 

Such function evaluations may not be embedded 
They may appear by themselves or as the right 
statement. 

if G and H are function name variables, 

H(O). (A,B,T) 

or T=G(O).(A,B) 

would be acceptable statements, but not 

T == G(O).(A,B) + C*D 

in a larger expression. 
side of an assignment 

then 

No checking of mode (or conversion) will be made as a result of such an assign­
ment. 

2. Statements (Executable) (See Appendix A for admissible abbreviations) 

2.1 Assignment Statement 

This statement has the form illustrated by 

ALPHA= Y + Z + F.(X, Y, Z) 

That is, the left side of the sign consists of the name of a variable (either an 

individual variable or a subscripted array variable), and the right side consists of any 

expression of the same mode. The only exceptions to this mode requirement are the cases: 
(1) If the variable on the left is of integer mode then the value of a floating point 

expression on the right will be converted to integer mode. (2) If the variable on the 
left is of floating point mode then the value of an integer expression on the right will 
be converted to floating point mode. 

The assignment statemen~ (sometimes referred to as the substitution statement) is to 

be interpreted as: "(1) Compute the value of the expression on the right, (2) convert it, 

if necessary, to the mode of the variable on the left of the "=" sign, and (3) give 

the variable on the left the value which results from Steps (1) and (2)." (See Section 1.10 
for mode of expressions.) 

Thus, if Y is a floating point variable, then the statement 

y = 1 

will cause the integer 1 to be converted to floating point and then stored in the location 

called "Y"; i.e., Y will now have the value 1. (as a floating point number). If the 

statement were written 
y = 1. 

then the floating point number 1. would be stored in the location "Y"; i.e., Y would 

again have the floating point value 1., but in this case the conversion of the integer is 

23 



Chapter II - 2. 2 MAD Reference Manual 

unnecessary, thus speeding up the computation. 

When a floating point number is to be converted to an integer, it is first expressed 
as a number with both an integer part and a fractional part, and then the fractional part 
is truncated. Thus, the following floating point numbers: 

3E5, .3EO, .34568127E2, - .345681El0 

w.ould convert to the following integers, respectively: 

300000, 0, 34, -3456810000. 

Examples of assignment statements in other modes are: 

(1) Assuming B and C have been declared Boolean 

C = B .AND. D .L. 10. 

(2) Assuming BILL(3) is a statement label constant and HARRY is a statement 

label variable 

HARRY == BILL(3) 

(3) Assuming FUN is a function name variable 

FUN == COS. 

2.2 Transfer Statement 

This statement has the form: TRANSFER TO ~ 

Here ~ may be any statement label or 
labels an executable statement. Execution of 

from the statement whose label is the value 

TO SWTCH (K + 2) (if K == 4 then the value of 

2.3 Conditional Statements 

any expression in statement label mode which 

this statement causes the computation to continue 
of ~. Examples: TRANSFER TO SUMX, TRANSFER 

SWTCH(K + 2) is SWTCH(6)). 

There are two types of conditional statements. 

(a) Simple Conditional 

WHENEVER B,Q 

Here B is a Boolean expression and Q any executable statement except the following: 

END OF PROGRAM, a~other conditional, iteration, and function entry. Q may, however, be an 
iterated statement! If at the time of execution of this statement, the expression B has 
the value lB, i.e., true, the statement. Q is executed. If, however, B has the val~e 

DB, i.e., false, then Q is skipped and computation continues from the next statement in 
sequence. The comma in this statement, as in other statements containing punctuation, must 

be written. 

Examples: 

(b) Compound Conditional 

t(See sec. 2.17.2). 

WHENEVER XM.LE.l, TRANSFER TO END 

WHENEVER I.GE.N.AND.J.NE.I-1, I = 0 
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~2 OR WHENEVER B2 

} 82 

~k OR WHENEVER Bk 

} ek 

~k+l END OF CONDITIONAL 

Often the last condition Bk expressed is one for which the condition is always true. 

This may be expressed by the statement 

OR WHENEVER lB 

or alternately the statement 

OTHERliliSE 

The d. are statement labels which need not be used unless desired. k may equal one 
l 

(if no "OR WHENEVER ... " statements are used). Here B1 , ... , Bk are Boolean expressions, 

is a sequence (possibly and the execution of this block of statements is as follows. 8. 
J 

empty) of statements. These may include conditional statements, of either form. 

Each Bi is tested in turn, starting with B1 . If B1 has the value OB, then B2 
is tested, etc. As soon as some expression, say Bj, has the value lB, then the state­

ments between (but not including) ~- and ~-~ 1 (i.e., 8 .) are executed. At this point 
J J ,- J 

the execution of the entire block is considered ended, and computation continues from the 

first statement after the END OF CONDITIONAL statement which, in this illustration, we have 

chosen to label ~k+l" In other words, no more than one of the alternative computations is 

performed; e.g., that one which immediately follows the first expression Bi which has the 

value lB. If none of the Bi has the value lB, none of the computation in the scope of 

these statements is performed. 

Example: The evaluation of the function whose graph is shown in Figure 2-1 

y l 
I 
I 
I 
I X 

0 2 3 

Figure 2-l 

might be given by the section of the program: 

WHENEVER X .LE. 0 .. OR. l .. LE. X .AND. X .L. 2 .. OR. X .GE. 3 
y ~ 0 

OR WHENEVER 0 .• LE. X .AND. X.L.l. 
y ~X 

OR WHENEVER 2 .. LE. X .AND. X .L. 3. 

Y~l. 

END OF CONDITIONAL 
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This section of program could be rewritten in another way. 

WHENEVER O .. LE. X .AND. X .L. 1. 
y =X 

OR WHENEVER 2 .• LE. X .AND. X .L. 3. 
y = 1. 

OTHERWISE 
y = o. 

END OF CONDITIONAL 

The indentation of the assignment statements between the conditional statements is not 

required but contributes to the readability. 

2.4 CONTINUE Statement 

This statement has the simple form: 

CONTINUE 

When labeled, it serves as a junction point in the program, but causes no computation 
to be performed by its presence. It is merely a dummy or "do-nothing" statement. Its chief 
use is to indicate the scope of an iteration statement (see example in Section 2.5). A 

statement which is blank in Columns 11 - 72, but which has a statement label, is treated as 

a CONTINUE statement. 

2.5 Iteration Statement (THROUGH Statement) 

Figure 2-2 is a program segment which illustrates the use of this statement. 

K = 1 
L = 1 
A= D(l,l) 
THROUGH STl, FOR I= l,l,I .G. 10 
THROUGH STl, FOR J = l,l,J .G. 10 
WHENEVER A .GE. D(I,J), TRANSFER TO STl 
K = I 
L = J 

STl CONTINUE 

Figure 2-2. A program segment to determine the largest 

element (A) in a 10 row by 10 column array called D 

and to record its location (K,L). The search proceeds 
left to right, row by row. If the largest value 
appears more than once in the array, only the location 
of the first such element is recorded, 
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A THROUGH statement causes the block of statements which follows immediately after­

wards to be repeatedly executed, each time varying the value of some variable, until the 

specified list of values for that variable is exhausted, or until some specified condition 

is satisfied, The THROUGH statement may take either of the following two forms. (The 

second form is used more frequently than the first.) 

(a) THROUGH~' FOR VALUES OF V = E1 , E2, ... , Em 

Here ~ is the statement label of the last executable statement in the block to be 

repeated. The block of statements following (and not including) the THROUGH statement, up 

to and including the statement whose label is d, will be called the "scope" of the THROUGH 

statement. Following the word OF appears the name of the iteration variable (in the 

illustration: V), which may be either an individual variable or subscripted array variable 

of any mode. To the right of the sign may appear any number, i.e., a list, of 

expressions E1, ... , Em. The modes of the Ei bear the same relationship to the mode 

of V as they would in the statement V = Ei (see Section 2.1). Thus, if V is an integer 

or a floating point variable, then each of the Ei must be an integer or floating point 

expression, Similarly, if V is Boolean, then each of the Ei must be a Boolean expres­

sion. 

The execution of this statement causes the statements within its "scope" to be exe­

cuted, first with V = E1 , then again with V = E2, and so on, until the list of 

expressions is exhausted. Computation then proceeds with the statement immediately follow­

ing statement ~. At this time the iteration variable will have the value of the expression 

Em unless its value was changed during the final iteration. Should a transfer be made to 

another part of the program at any time during the iteration, V will have its current 

value. An example of this type of statement is: 

THROUGH A, FOR VALUES OF BETA= 3, 4, X5, Y(6 + I) + 3 
J = 5 * BETA + 6 
Jl = J . p .. 5 - 1 . 

A X(BETA) = Jl x- COS, (2. * THETA) 

(b) THROUGH _d, FOR V = E1 , E2, B 

Here _d is a statement which defines the "scope 11 exactly as in (a) above (with the 

exception: if ,d. is the label of the THROUGH statement itself, the iteration will proceed 

as described below, but the scope will be empty, and the iteration will consist only of the 

incrementing of V by E2 . and the testing). Following the word FOR is the name of the 

iteration variable (in the illustration: V), which may be an individual variable or sub­

scripted array variable of any mode, e.g., V may be an integer or a floating point variable 

and E1 and E2 may be integer or floating point expressions. In fact V, E1, and E2 
may be of any modes such that V = E1 and V = V + E2 are defined. B is a Boolean 

expression, 

The execution of the statement proceeds as follows: The variable V is set equal to 

the value of E1 . If the value of B = lB, the scope of the THROUGH statement is not 

executed. If the value of B = DB, the scope is executed, V is then incremented by the 

value of E2, and B is tested again. In general, as soon as B = lB, the scope is not 

executed, and the computation proceeds from the statement immediately following statement~. 
Each time B = DB, the statements in the scope are executed, then V is incremented by 

E2, and B is tested again. Thus, when the iteration is finished and 

the value used during the last computation of the scope, incremented by 
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not have been executed for this value of V. (The value of V will be E1, of course, j 

B = lB before the scope is executed at all.·) If, at any time, the computation transfers 

out of the iteration to another part of the program, the value of V will be the current 
value at the time the transfer was made. 

In all cases, every reference to an expression Ei will involve its current value at 

the time of reference. Moreover, the variable V may have its value changed at any time 
during the execution of the scope. In a statement of the form (a), the value of V will 

be reset by the value of the next Ei for the next computation of the scope. In a state­

ment of .form (b), the current value of V will be used for incrementing, testing, etc. 

Examples: 

(l) 

(2) 

n n-1 To evaluate the polynomial cnx + cn_1x + 

( •.. ((cnx + cn_1 )x + cn_ 2)x + •.. + c1 )x + c0 

the program: 

INTEGER J,N 
y = 0. 

•.. + c1x + c0 using the formula 

(nested multiplication), we may write 

THROUGH POLY, FOR J = N, -1, J .L. 0 
POLY Y = X * Y + C(J) 

(For the meaning of the statement INTEGER J,N, see Section 3.2.) 

f(xk) 
A Newton's Method solution (xk+l = xk- f'(xk)) of the equation f(x) =cos x- x = 0 

could be written as a single statement, using the criterion "lf(x) I < E and 

I I l f(xk)j<e" f t · th 't t' xk - xk+l = ~ or s opplng e l era lon: 

NEW THROUGH NEW, FOR X= XO, (COS.(X)-X)/(SIN.(X) + 1.), 
l .ABS.(COS,(X) -X) .L, EPSILN .AND. 
2 .ABS.(COS.(X) - X)/(SIN.(X) + 1.)) .1. EPSILN 

where XO is the initial guess. 

(3) If the value of the iteration variable is to be altered within the scope of the 
iteration, one may use a zero increment, E.g., suppose J is an integer variable, 
and the scope of the iteration is to be performed for those values of J which are 
multiples of 2, but not multiples of 5, and at the same time are less than the 
value of the. integer K. One might write the iteration as follows: 

THROUGH END, FOR J = 2, 0, J .GE. K 

,J=J+2 
END WHENEVER J .E. (J/5) * 5, J = J + 2 

(4) A table-look-up procedure using an iteration statement. Suppose that a string of 
alphabetic (or numeric) characters (i.e., a 11 sentence 11 ) has been decomposed into 

single characters stored in C(l), C(2), ••• , C(K), where K is the length of the 
string. Then the first occurrence of a comma could be found as follows: 

LOOK THROUGH LOOK, FOR I=J. l, C(I) .E. $,$ ,OR, I ,G, K 
WHENEVER I .G. K, TRANSFER TO NOCOMA 
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(c) As an alternative to the THROUGH statement and its scope, there are certain 
special constructions called the iterated expressions and iterated statements which are 
available. For details see Section 2.17. 

2,6 Nested Iteration Statements 

As indicated in Section 2.5, the "scope" of an iteration statement is the block ·or 

statements designated for repeated execution: 

THROUGH END, FOR V = E1, E2, B 

scope { 
END 

Some of the statements within the scope of an iteration may themselves be iteration 

statements. However, if iteration statement Q is in the scope of iteration statement ~, 

then the scope of Q must be entirely within the scope of ~· Figures 2-3 and 2-4 

show valid configurations: 

Scope of 

~ 

Scope of 

~ 

Scope of 

Q 

Scope of 

Q 

THROUGH K, FOR (Iteration statement~) 

THROUGH M, FOR (Iteration statement Q) 

Figure 2-3 

THROUGH K, FOR (Iteration statement~) 

THROUGH K, FOR (Iteration statement Q) 

Figure 2-4 

In Figure 2-4, although the scopes of ~ and Q both end on the statement labeled K, 

iteration Q is incremented and tested first. Therefore, iteration Q is completed before 
iteration ~ is incremented. Figure 2-5 shows another example of a valid configuration. 
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THROUGH K, FOR 

THROUGH M, FOR 
Scope of 

11. 

Scope of 

.§. 

THROUGH N, FOR 

Scope of 

.£. 

Figure 2-5 

Figure 2-6 represents an invalid configuration: 

Scope of 

11. 

Scope of 

.§. 

THROUGH K, FOR 

THROUGH M, FOR 

Figure 2-6 

MAD Reference Manual 

(Iteration .§.) 

(Iteration 1/.) 

(Iteration.£.) 

(Iteration.§.) 

(Iteration 1/.) 

When iteration statements occur in the scope of other iteration statements, they are 

said to be "nested." The "nesting depth" of a statement is the number of iteration state­

ments in whose scope it appears. The nesting depth of an iteration may not exceed 50. 

Scope of 

.§. 

Scope of 

11. 

Scope of 
.£. 

THROUGH K, FOR 

THROUGH M, FOR 

THROUGH N, FOR 

Figure 2-7 

(Iteration.§.) 

(Iteration 1/.) 

(Iteration .£.) 

Nesting 
depth 

1 
1 
2 
2 
2 
1 
1 
1 

In Figure 2-7 iteration .§. has a nesting depth 0, iteration '11. has nesting depth 
1, and iteration .£. has nesting depth 2. In Figure 2-5 both 11. and .£. have nesting 

depths of J 
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A form of nesting which often leads to confusion, although the compiler will accept it, 

is shown in Figure 2-8. This is the case of a partial overlap in the scopes of an iteration 

and of a compound conditional. Such overlap should be avoided. 

THROUGH ALPHA, FOR 
Scope of ~ .----------------
iteration 

Scope of ~ 

conditional 

.-----1-----------------"W-'HENEVER ... 

ALPHA '--------

,___ ____________ __:::E:::.:ND OF CONDITIONAL 

Figure 2-8 

There are no restrictions on jumping into or out of the statements in the scope of an 

iteration. 

Automatic indication of nesting depth 

At the right side of the listing of the MAD source program produced by the MAD compiler 

there appear two numbers on occasion. The first of these indicates the nesting depth with­

in compound conditionals of the statement, and the second indicates the iteration nesting 

depth as suggested in Figure 2-7. If either of these numbers is zero, it is not printed. 

This is especially useful in cases where either an END OF CONDITIONAL statement or the 

statement ending a THROUGH loop is omitted. 

2.7 Pause Statement 

PAUSE NO. n 

This statement indicates a breakpoint in the program, and it causes the computer to 

stop in such a way that the operator can manually start it and automatically go on to the 

next statement in the program. The number Q is an octal integer (written without the K) 

containing up to 5 digits, which will be displayed on the computer console for the 

operator to note when the computer stops, thus indicating the point in the program at which 

the stop occurred. 

2.8 Function Statement 

Normally, the value of a function will occur as part of an expression, as in the state-

ment: 

Z = COS.(X)/SIN.(X + 2.) 

Certain functions, however, may stand alone as separate statements, as a statement calling 

for the sorting of a list, etc. This would appear as: 

(a) EXECUTE LSORT.(ARRAY, MAP, N) 

or alternatively as: 

(b) LSORT. (ARRAY, MAP, N) 

(See Section 3.8 for definition of functions.) Here ARRAY, MAP, N are the "arguments" of the 

function (subroutine) LSORT. A function called as in (a) or (b) above need not be followed 
by a list of arguments. 
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2.9 Error Return Statement 

Provision is made for including an error return in function definition programs (see 
Section 3.10). The form of the statement is simply: 

ERROR RETURN 

(An example of its use is shown near the end of subsection 3.10.3.) 

In order to use it in a function evaluation, the last (right-most) argument of the 
function must be the label of a statement or a variable in statement label mode, whose 
value is the label of a statement to which a transfer is made in case the ERROR RETURN 

statement is executed. 

Even though an error return has been provided in the definition of a function, in the 

use of the function the last argument may be omitted. If it is omitted, execution of the 

ERROR RETURN statement will cause control to be transferred to the operating system in which 

the translated program is embedded, with an error indication. Note that the extra argument 
used in a call for the function does not appear at all in the function definition. 

Specifically, suppose the function F has been defined with n dummy variables, and 
suppose that in this definition an ERROR RETURN statement can be executed. Then a call on 

F may employ either n or n + 1 arguments. If n + 1 arguments are used then the 

n + 1st of these must be a statement label which will be referred to as a result of execu­

ting the ERROR RETURN. If n arguments are used in the call, then execution of ERROR 

RETURN will cause a return to the operating system. See the example in Section 3.10.3. 

2.10 End of Program Statement 

This executable statement has the form: END OF PROGRAM 

This statement must be physically the last statement in the program (i.e., the last 

card of the program being compiled). It may also be the last step in the sequence of compu­

tation. Execution of this statement will transfer control to the operating system in which 

the translated program is embedded. An alternate way of terminating a program- i.e., 

returning to the operating system - is to attempt to execute an input statement when the 

data has been exhausted. 

2.11 Function return 

FUNCTION RETURN ~ 

This statement is used in a function definition to indicate a return to the calling 

program. e is an expression whose value is to be the output of this function when the 

function is considered as a single valued function. ~ need not be specified if output 

variables are specified in the argument list (see Section 3.8), or if no value is to be 

returned. 

2.12 Entry to§ Function 

Entry points to a function being defined, particularly alternate entry points, are 

indicated by 

ENTRY TO ''J? , 

where n is the name of this entry (see Section 3.10). 
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2.13 List Manipulation Statements 

These statements facilitate the writing of recursive internal and external functions 

and other algorithms which employ push down lists or "stacks". (See Section 3.10.) They 

cause the designation and use of a vector for the temporary storage of data and actual 

transfer instructions (i.e., function returns). 

(a) SET LIST TO h, t: 
~ is the name of an array element desi~nated as the initial location to be used for 

temporary storage. This statement is an executable statement; thus different arrays may 

become the currently-designated LIST during execution. The value of the expression is 

checked as an upper limit on the length of the list. If e (with the comma) is omitted, no 

checking is done. The zeroth element of the list contains the index of the most recently 

added element. Since V(O):::V the "top" element on a list V is V(V). 'The programmer should be 

sure to assign V(O) an initial value. The usual case is handled by the assi~nment statement 

V=O. 
Note: The index in V(O) must always have the form of a MAD integer. If the array 

V is not of integer mode, statements such as V = V - 1 and V(V) = A will not give the 

desired action. In this case, the EQUIVALENCE declaration (Section 3.4) can be used to 

permit reference to V(O) by some other name which is of integer mode. 

(b) SAVE DATA ~ 

This statement causes the current values of the elements of the Jist ~'/ to be stored 

in the order of their appearance in the list ;(' as consecutive elements of the currently 

designated temporary storage vector--starting with the first currently available element. 

~ has the form of an output list as defined in Section 2.14. 

Example: 

Let V be an integer array which is the currently designated temporary storage vector 

as a result of executing 

SET LIST TO V 

Further, suppose that V(O) currently has the value 6. Then execution of 

SAVE DATA A, C, F 

will cause the following action: 

(l) the values of A, ·c, F, presumably of integer mode also, will be assigned to 

V(7), V(B) and V(9) respectively, i.e., as if the statements 

v(n = A, V(B) = C, and 

had been executed. 

(2) as a result of these assignments, the value of V(O) will be increased to 9. 

(c) SAVE RETURN 

This statement will appear only in the scope of the definition of a function (see 

Section 3.10). Its execution causes the reentry point to the calling program to be stored 

as the next available element of the currently designated temporary storage vector. 
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(d) RESTORE DATA ~·· 

~ is an input list as defined in Section 2.14. If the list designates Q storage 

assignments (not ~ecessarily n items in the list) the values of the last Q elements of 

the currently designated temporary storage vector are assigned as the values of the list 

variables. The order of this value assignment, assuming k used locations in temporary 

storage vector, (left to right in the list;() correspond to the k, k- l, ••. , k- n + 1 
elements of the temporary storage vector. The last Q elements of the temporary storage 
vector are then .made available for use by successive SAVE statements. 

Example ill: 

Let V be the currently designated LIST and let the value of V(O) be 15. The 
execution of 

RESTORE DATA B(l) ,,, B(3) 

will cause the following action: 

(1) values stored in V(l5), V(l4) and V(l3) will be assigned respectively 
to B(l), B(2) and B(3). 

(2) the value of V(O), which designates the "most recently added element" is 

decreased (by 3) to 12. 

Example ill: 
If the statement 

SAVE DATA A, B(l) ... B(3), C 

is used, the numbers A, B(l), B(2), B(3), C will go onto the push-down list, in that order. 

If one wishes to return these values to their original locations, the statement 

RESTORE DATA C, B(3) ... B(l),A 

is used, since the value of C, being the last on the list, is the first to be restored. 

(e) RESTORE RETURN 

This statement will appear only in the scope of a function definition and causes the 

current last element in the currently designated temporary storage vector to be used as 

the reentry point to the program calling the function. The last element of temporary 
storage is then made available for use by successive SAVE statements. 

2.14 Input-Output Statements 

In this section the following definitions will hold. 

,} denotes the format specification "vector" (see Section 2.15). J may be: 

(a) a single integer variable whose value is the format specification, or 

(b) an integer array element which is the. first element of the format vector, or 

(c) the vector itself, written as an alphabetic constant (which in this case may 

be more than six characters in length). See Example (1) in Chapter III. 

In (c), format information will be grouped six characters per word and preset automatically 

(along with dimension information produced by "simple dimensioning") in an internally created 
and dimensioned vector called .MODEl, which will appear in the symbol table. (See Appendix B.) 
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?( is an integer expression whose value is a tape number. 

A is an input-output list. Elements of ~ may be: 

(1) single variable names or array names with subscripts, 

( 2) blocks of the form A(i1, 

A( j 1, .•. , jn) where the 

n 2 1, 

•.. ,in) ... A(j1, ... , jn) or A(il' ... , in)' ... , 
i 1 s and j 1 s may be any subscript expression and 

(3) iteration el~ments of the form 

where Zl is the name of a variable, E1 and E2 are arithmetic expressions, 

13 is a Boolean expression, and X is a non-empty input-output list of the type 

being presently defined. (This list element may not be used in lists which are 
to be transmitted to or from binary tapes.) The interpretation of such an 

element is exactly analogous to the execution of an interation statement in 
J 

that the values designated on the list ~ are transmitted (as input or output) 
until /] has the value lB, with ?/ being initialized to E1 and being in­
cremented by E2 after each t'ransmission of the list ,.:>{: These iterations 

may be nested (just as iteration statements) to a depth of 50 - ~' where ~ 

is the current nesting depth of iteration statements in whose scope this element 

occurs. In addition to these, when ) 'l designates an output list, the elements 

of / may be: 

(4) constants, or 

(5) expressions including iterated expressions (see Section 2.17.1.) (There is one 

small lilnitation on the use of expressions. If a function call occurs in the 

list, such as: X+ F.(X, Y), the function F may use only a limited number 

(currently 20) of the first locations of erasable storage (see Section 3.5).) 

Moreover, the function F must not itself contain input or output statements 

which use the same subroutines as the output statement in progress. 

Elements of a list are separated by commas. Example of an output list: AB, D, 2.5, 
MTX(l) ..• MTX(N), P(l4), J(I, K). Example of a list which may be used either for input 

or output: A, B, K(3), J(25*I-L), A(K+l) ..• A(L*2). To completely understand the operation 
of statements which make an explicit reference to "TAPE," it is advisable to read the 

sections of the IBM 7090 Reference Manual which describes the operation of these units. 

(See also Restrictions in Section 4 below.) 

(a) PRINT FORMAT J, _/' 
Prints / according to format ;1 on the off-line printer. 

(b) PRINT ON LINE FORMAT J, .:;(' 
Prints ;r according to format ~· on the on-line printer. This statement is 
used for comments to the operator. After ~ has been printed a skip of 1/6 
page is automatically produced, allowing the operator to read the comment. 

In the following statement definitions, the phrase "Prints ;f" (or "Punches£" or 

"Transmits .,('") should be interpreted as "prints (or punches or transmits) the value of 

each element of the list/". 
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(c) PUNCH FORMAT J-, ./( 
Punches ~ on cards according to format ,1, 

(d) READ FORMAT .J, X' 
Reads cards into ;( according to format ~. 

(e) READ BCD TAPE ?7, -d, ;( 
WRITE BCD TAPE 77, J, ;( 

MAD Reference Manual 

Transmits ;( to or from tape IJZ in BCD form according to format -7, 
Note that when these statements are executed, the input-output conversion 
subroutine will enforce the usual restriction on the length of a "line", 

Therefore, the format should not specify more than 132 characters per record. 

(f) READ BINARY TAPE //,X 
Transmits to .)"' from tape 1l? until ;(is exhausted or until a complete tape 

record has been read. If there are more elements on the list than words in 
the record being read, reading will continue into the next record. 

WRITE BINARY TAPE 1~ .~ 
Transmits ;( to tape '72 in binary form as one record. 

(g) LOOK AT FORMAT J, / 
Transmits the information on the next card on the input tape, according to format 

~' into )( without going past the card. Hence the next time a READ FORMAT or 
LOOK AT FORMAT statement is processed, this same card will again be transmitted. 

Warning: If more than one card is specified (via one or more slashes in the 
format), each instruction to get a new card merely causes the same card to be 
rescanned. 

(h) Simplified Input-Output 

Statements from this group were illustrated in Chapter I. They are defined 
separately in Section 2,16. The symbol '.!?~:tt"" which appears in the PRINT 
RESULTS statements is essentially similar to "~;" as defined above, but 

differs in details. 

READ DATA 
READ AND PRINT DATA 
PRINT COMMENT 
PRINT RESULTS ,/td 
PRINT BCD RESULTS ..(~d­
PRINT OCTAL RESULTS ~~ 

(i) END OF FILE TAPE 12 
Writes an end of file mark on tape 17. 

( j) BACKSPACE RECORD OF TAPE 11?, IF LOAD POINT TRANSFER TO ~/ 
Move tape /{ back to beginning of last record. If the tape encounters the load 

point, the program goes to the executable statement labeled Q( (where .~ is a 
statement label or variable of statement label mode). If the phrase ", IF LOAD 

POINT TRANSFER TO ~" (including the comma) is omitted no transfer is made even 

if at load point. 
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(k) BACKSPACE FILE OF TAPE ,), IF' LOAD POINT TRANSFER TO _/ 

'rape i/{ is moved backward until an end-of-file mark, the load point gap, or the 

load point is encountered. If an end-of-file mark has been written previously, 

executing this statement backspaces over this end-of-file mark and stops just 

in front of it (since the end-of-file mark must be passed over to be recognized). 

If the tape encounters tl1e load point, the program goes to the executable state-

ment labeled .. ?f· is a statement label or variable of statement label 

mode). If the phrase ",IF LOAD POINT TRANSFER TO~" (including the comma) is 

omitted no transfer is made even if at load point. 

(m) SET LOIIJ DENSITY TAPE 71 
Causes tape 'JZ to be set to low density. 

(n) SET HIGH DENSITY TAPE iJ? 
Causes tape tJ! to be set to high density. 

( 0) UNLOAD TAPE iJZ 

Causes tape 'JZ to rewind and unload. 

(p) REWIND TAPE IJl 
Rewinds tape IJ(. 

If an error (improperly formed format specification, invalid data, a tape check, etc.) 

occurs during any input-output statement, the subroutine ERROR is automatically entered. 

The subroutine ERROR sets an error flag and returns control to the system in which the 

translated program is embedded. 

An end-of-file on the input tape (tape 7) signifies the end of the data. Normally the 

job is terminated and the comment, 

"**** ALL INPUT DATA HAVE BEEN PROCESSED" 

is printed. An end-of-file on other tapes terminates the job with the comment 

"****END OF FILE ON SCRATCH TAPE XX" 

L tape number 

This procedure can be altered by executing the subroutine SETEOF prior to the reading 

action. The calling sequence is 

SETEOF. ( S, T) (T is optional) 

S is a label which designates where to go when an end-of-file is encountered and T, an 

integer variable, designates where to store the number of the tape on which the end-of-file 

was found. In this case the above comments are not printed when the end-of-file occurs. 

The end-of-file procedure can be reset to normal procedure by executing SETEOF with S = 0, 

i.e., SETEOF.(O). 

When the end-of-tape condition is detected on the output tape (tape 6) the tape is 

terminated with an end-of-file mark and replaced with a blank tape by the operator. When 

writing on tapes other than the output tape, the job is terminated and control is returned 

to the executive system, This procedure can be altered (for tapes other than tape 6) by 

executing the subroutine SETETT prior to the writing action. The calling sequence is 

SETETT, ( S, T) (T is optional) 
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S is a label which designates where to go when the end-of-tape condition occurs and T 
designates where to store the number of the tape that caused the end-of-tape. In this case 
the tape is not terminated and replaced, The end-of-tape procedure can be reset to the 
normal procedure by executing SETETT with S O, i.e., SETETT.(O). 

The subroutines SETEOF and SETETT may be executed as many times as desired. Only 

one setting is in effect for end-of-file (that specified by the latest execution of SETEOF 

and end-of-tape (that specified by the latest execution of SETETT ), i.e., each setting 
cancels the previous one. 

2.15 FORMAT SPECIFICATIONS 

When information is read from (or punched in) a card into (or from) a computer, it is 

necessary to know how this information has been allocated among the available columns of 

the card. Similarly, whenever information is to be printed by a printer (either on-line 
or off-line), it is necessary to know how this information has been allocated among the 

columns available on the printer. A description of each allocation is called a format 
specification. Usually, but not always, such a specification is accompanied by a list of 
variables whose values are to be printed or punched or whose values are to be read. (Occa­
sionally, the information is contained entirely in the format specification, so the list 

may be empty.) A format specification is a string of alphabetic characters (as described 

below) terminated by an 11* 11 • This string is stored six characters per computer word in a 
vector of integer mode. This vector may be preset (see Section 3.7), computed, or read in 

as data. (Format features in addition to those described below may be found in the Univer­
sity of Michigan Executive System Manual.) 

2.15.1 Carriage Control 

Every format specification consists of a description of the allocation of available 
columns, and the form in which the particular information is to appear. Specifications for· 

reading or punching cards and printing of information are identical, with the following 

exceptions: 

(a) A card has 80 available columns,t while a line of print has 132 available 

columns. Any attempt to allocate more than the available number of columns will 
cause an error return (see Section 2.14.1). 

(b) The first column of a card has no special significance. The first (left-most) 
character of a line of print is treated differently. This character governs 

printer carriage control, such as skipping to a new page, double spacing, etc., 

and should not contain information to be printed. The user has effectively 131 

available columns on a line of print, but he in addition must always include as 

the first character a code to control the vertical spacing of that line. 

tActually, 80 columns may be used, but it is highly recommended that only 72 columns be 
used, with the last eight columns, 73 - 80, used for card identification information. 
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For example, the specification 

Sl6, 6HBETA = I2* 

will indicate that the line (or card) starts with a skip of 16 columns and then prints (or 

reads or punches) the characters "BETA =" followed by an integer field of two columns. The 

effect of the "carriage control" character (in this example, the "blank") may be described 

as follows: Before printing the line, the carriage is "positioned" according to the carriage 

control character as indicated in the table below. Then the legal carriage control character 

is replaced by a "blank", and the line is printed. If the first character is not a legal 

carriage control code, a single space is given before printing, and the entire line is 

printed. 

Legal Carriage Control Codes 

Character Before Printing 

Blank Single space before printing. 

+ No space - overprint the previous line. 

0 Double space before printing. 
- Triple space before printing. 

1 Sk.ip to top of next page before printing. 

2 Skip to next half-page. 

4 Skip to next quarter-page. 

G Skip to next sixth-page. 

8 Skip to next sixth-page. 

9 Single space before printing; suppress overflow. 
I.e.' print across page boundaries, without skipping. 

Carriage control characters apply only to lines that are to be printed off-line, and 

not at all to cards or to on-line printing. Normally,when the printed lines come within 3 

or Li lines from the bottom of the page, there is an automatic skip to the next page, called 

the "overflow" skip. The carriage control character 9 suppresses this skip so printing will 

continue across page boundaries. This is rarely used. 

As another example, the specification 

would cause a sldp to the next page (because the first character is a "1"), and cause "PHID=" 

to be printed, followed by a fixed point number. As will be explained below, the "6H" that 

appears in the specification indicates that 6 Hollerith (or BCD) characters follow, e.g., 

"lPHID=". Note that blanks are counted as characters here. 

2.15.2 The Basic Field Description 

Each specification describes successive fields across the available columns of the line 

(or card) record starting from the left. If the specification describes fewer than the total 
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number of available columns, the lin·e (or card) will automatically be filled in with blanks. 

But, as indicated above, if more than the total number of available columns is included in 
the specification, an error return (see Section 2.14.1) will result. 

The basic field description consists of a letter followed by an integer. The letter 

(except for T) indicates the form of the information in the external medium as follows: 

s Skip columns 

I Integer 

F Fixed point number (Internally floating point) 

E Floating point number 

K Octal number 

C Characters 

T (Causes a transfer of the format scanner) 

(For the purposes of input-output the Boolean values OB, lB are considered as integers 
and will be punched in cards and appear in print as 0,1,) 

The integer indicates 
be used. For example, K3 

character field, and S31 

in Section 2.15.10.below. 

the size of the field; i.e., the number of available columns to 

indicates a 3-column octal field, C23 indicates a 23-column 

indicates a skip of 31 columns. The T field is explained 

For F and E fields, i.e., fixed and floating point numbers, there is always the 
question of the placement of the decimal point, the form of the numbers, etc,, in addition 
to the field size, 

For this reason, the basic field description for E and F fields requires an addi­

tional integer giving the number of places after the decimal point that are to be rounded 

and printed (or read, or punched). The decimal point in the specification itself must 

always be present for E and F fields, except that if no fractional part is desired, the 

,0 may be omitted (i.e., F6 is the same as F6.0), 

Within the numeric type fields, E, F, I and K, 11+11 signs are not printed or punched, 

nor are they necessary on input cards. However, 11 11 signs may not be omitted on input, 

and are always printed and punched. If the field description gives a field size larger than 
the number requires, the n~~ber is positioned for printing or punching as far right as 

possible. If the field size given in a specification is too small, an error indication is 

given (see Section 2.15.12), It is important, therefore, to be sure to provide a large 

enough field to handle the information expected. In fact, some spacing can be achieved by 

giving large field sizes, since blanks automatically occur to the left of a number pushed 

to the right end of an over-sized field. 

2.15.3 The Form of the Number 

Integers (I fields) and octal numbers (K fields) are printed, punched, etc., directly, 

without any decimal point. Numbers printed or punched in E fields have the form (if 5 

decimal places are requested, for example): 

where n1n2 is the exponent, On input cards numbers in E fields must have an exponent 
of the form 
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although if the sign is punched, the "E" may be omitted. Similarly, if the "E" is 

punched, a "+" may be omitted, as well as a leading zero in the exponent. The exponent 

must be counted in the field size (four columns on output). 

Numbers to be printed or punched in F fields have the form (if 5 decimal uigits are 

requested, for example): 

although "+ u 

u_" signs. 

printed. 

signs are not printed. On input cards "+" signs may be omitted, but not 

If no digits are printed after the decimal point, the point itself is not 

On both E and F data any number of digits may be used, but only 8 digits of 
accuracy are retained. Moreover, E and F input data need not have the decimal point 

punched, and either E or F type data may be used in any E or F field on input data. 
If the decimal point is not punched, the field specification determines its position. For 
example, the punched number +9032 described by the specification Fl0,2 would be under­
stood to be the number +90.32 because the 2 in the specification indicates 2 decimal 

places to the right of the point. Similarly, the punched number +9032E3 described by the 

specification El0.4 would be understood to be the number +.9032E3. If the decimal point 
is punched in the card field, however, it completely overrides the setting of the point by 

the specification. The entire specification must be present, however. In K, I, E, and 

F fields, blanks are ignored on input cards, i.e., to the left, to the right, or even with­

in the number, A completely blank input I, E, or F field is interpreted as minus zero, 
while a completely blank input K field is interpreted as plus zero. 

2.15.4 Permissible Conversion 

It should be understood that there must be a relationship between the form of a number 

inside the computer and its external form. In other words, a number described by an I 

field specification is assumed to be integer in storage. A number described by E or F 
specification is assumed to be in floating point form in storage, Similarly a number 
governed by a K specification will be handled by direct binary-octal conversion, Infor­
mation described by a C specification is assumed to be in alphabetic (BCD) form both 

inside the computer and outside. 

2.15.5 Repetition of Basic Field Specifications 

If several consecutive fields can be described by the same basic specification, repeti­

tion may be avoided by prefixing the basic specification by its multiplicity. For example, 

the specification 

3Fl0.3, El8.4, 2E9.1, 3I2* 

is a short way of writing 

Fl0.3, Fl0.3, Fl0.3, El8.4, E9.1, E9.1, I2, I2, 12*. 

Either specification may be used, of course. A group of basic specifications may be 

repeated by enclosing the group in parentheses and preceding the left parenthesis by the 

multiplicity. Thus 
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3El0.3, 2(I2,3FlD.l), 2C5* 

would be equivalent to the following: 

El0.3, El0.3, El0.3, I2, FlO.l, FlO.l, FlO.l, I2, FlO.l, FlO.l, FlO.l, C5, C5*. 

A multiplicity of zero in front of a field specification or left parenthesis means that that 

specification (or group of specifications) is to be entirely skipped, without any effect on 

the line (or card) or on the list. This is useful in conjunction with the use of Boolean 

format variables (see Section 2.15.11). 

Nested parentheses are allowed; information about parenthesis nesting is retained in 

a list in the erasable section of storage. 

2.15.6 Modifiers 

It has been shown that field specifications have the standard form nXw.d, where n 

is the multiplicity, X the control letter, w is the field width, and d is the number 

of characters after the decimal point. (The .d may be missinp;.) Several modifiers may 

be prefixed to this field specification to cause special effects. Some modifiers (B, P) 

require integers immediately in front of them, while others (D, L, R, Z) do not. The 

order in which modifiers occur is immaterial. Examples of modified specifications are: 

-3P4Fl9.6, LK6, D2E25. 12 

The modifiers have the following effect: 

B - Normally, conversion is performed from (to) a decimal external form to (from) 

a binary internal form. The B modifier allows the use of other external number 

systems for I conversions. Thus, the modifier l6B causes the external form 

to be in hexadecimal (base 16) notation. The base thus specified may not exceed 

19. For bases greater than 10, the additional characters needed are taken from 

the beginning of the alphabet. (For base 16, A = 10, B = 11, C = 12, D 13, 

E = 14, and F = 15.) Note that Kl2 is not exactly equal to 8BI12, since 

the Kl2 conversion uses the left-most bit as part of the number, while the 

8BI12 uses this bit as the sign of the integer. The numbers occurring in the 

format specification itself are always interpreted as being in the decimal 

system. 

D Doubl~ Precision - If the character D occurs in an E or F specification, 

it indicates that this conversion is to be performed on a double-precision number 

(with each half of the number containing its own characteristic and fractional 

parts). Both halves of the number must be specified on the "list," the high 

order half first,followed immediately by the low order half. 

L -Left justified- For input, this affects only the octal (K) specification. Octal 

numbers are usually right-adjusted, with leading zeros inserted. The L modifier 

causes the number to be left-adjusted (i.e., shifted left to eliminate all leading 

zeros), with trailing zeros supplied. For output, this causes numbers printed 

with I, E, or F specifications to be positioned in their fields as far to the left 

as possible (instead of to the right, as is normal). 

p - A "scale factor" may be applied to an F number according to the formula 

Printed number = Internal number x lOScale factor 

(where the scaling is accomplished before the conversion is done). The "scale 
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factor," followed by the letter "p" is prefixed to the field specification, as 
in the example 

-2P2F7.3, F7.3* 

Thus, three numbers which would print OJ0.523J-1.56~93.671 according to the 

specification 3F7.3* would print instead OJ0,005]-0.0l6J93.671 if the specifi­

cation -2P2F7.3, F7.3* were used. It must be noted that for F fields this 

scale factor actually changes the values of the numbers to which it applies. It 

affects only those numbers to which it is directly applied, however. For E 
fields, the "scale factor" causes the number itself to be modified, but the 
exponent is correspondingly modified so the true value of the number remains 

unchanged. Thus, the number 0.9321E-3 would print as DD0.9321E-03 according 

to the specification El2.4, but it would print as D93.2100E-05 according to 

the specification 2PE12.4. Unlike an F number, the value is the same in 
either case. 

R - This is used with characters brought in by a C specification. Character infor­
mation is usually left-adjusted, with trailing blanks inserted. The R modifier 
causes the characters to be right-adjusted (i.e., shifted right to eliminate 
trailing blanks), with leading blanks supplied. 

Z - This forces leading or trailing blanks to be replaced by zeros on a C specifi-. 
cation. 

2.15.7 Multiple Specifications 

Several specifications may be condensed into one larger one by the use of the character 

"I". Each appearance of "I" (except as part of a Hollerith field--see Section 2.15.8) 

indicates that the specification of a new line (or card) record is to be started with what 

follows. A pair "I I" causes a blank line (or card), three "I I I" cause two blank lines 
(or cards), etc, Thus the specification 

3Fl0.3II2, Kl8, 2C517I3* 

implies that one line (or card) is described by the specification 3Fl0.3, and the next line 
(or card) is described by the specification I2, Kl8, 2C5, and the next by 7I3. It must 
be noted that each line (if printing is being described) is described individually here, 

and must include its own carriage control (see Section 2.15.1). 

2.15.8 Hollerith fields 

Although the C specification is available for transmitting characters (Hollerith 

information) to and from storage, it is often convenient to include strings of Hollerith 
characters directly in the format specification. This is done by means of a basic Hollerith 
fieid specification consi~ting of the string of characters to be transmitted, preceded by 

a count of these characters and the letter "H". Thus, if the specification 

lHl Fl0.3, 6HBETA = El0.2* 

were used in printing, one would 

field containing the character 

obtain a new page skip, because of the one-column Hollerith 
111." Then a ten-column F number would print, followed by 

and a ten-column floating point field. Note that blanks are the six characters "BETAD=" 
completely ignored throughout all format specifications except when they occur as characters 
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in a HoLLerith string. Note also, that while every field specification of types S, I, E, 

F, K and C must be followed by commas, the comma may be omitted after a Hollerith string 

of the type described here. The comma may be used, however, if desired. 

If a Hollerith field is specified without a count in front of the H, then the first 

character following the H is taken as a "break character," and all chara,cters in the 

format between it and the next appearance of it are used as the Hollerith field. As an 

example, the specification 

T20, H* AND/OR*, IS* 

will cause the six characters AND/OR to appear beginning in position 20 of the record, 

followed by a five-column integer. Warning: There is a danger here when writing several 

such Hollerith strings without counts. By not paying attention to the length of these 

strings, the maximum number of columns allowed for a line (or card) could easily be exceeded. 

2.15.9 Character fields 

It has been stated above that a number appearing in an oversize field is positioned as 

far as possible to the right. In the case of C information (characters), any information 

occurring in an oversize field is pushed to the left, while in either case, unused columns 

of the field are filled with blanks. Similarly, in case the specification describes 

too small a field, characters are taken from the left end of the field until the field is 

exhausted. 

Thus, if a card contains the characters: ABCDEFGHIJK in colwnn l through 11, and it 

is read according to the specification 2c3-x-, the two six characters words that are read 

into the computer are: 

ABCIIJJ 

DEFITJJ 

(where 110 11 denotes "blank"), while the specification C6* would cause a single word to 

be read: 

ABCDEF 

and C7,C3* would cause the words: 

ABCDEF and HIJITIJ 

to be read (since .at most six characters can go into one word of storage). 

2.15.10 Relationship between the List and the Specification 

The "list" consists of a set of names of variables to or from which information is to 

flow. Except for Hollerith strings embedded in the format specification itself (see 

Section 2.15.8) and the S fields, each field in the specification refers to one item on 

the list. For this purpose, a block entry on the list, such as A(6) ... A(8), counts as 

several names of variables (in this case, the three variables A(6), A(7), and A(8)), 

During the transmission of information, the input or output subroutine scans both the list 

and the specification simultaneously, correlating corresponding entries, and associating a 

field size, a type of conversion, etc., to each variable. If a Hollerith string is en­

countered in the specification, it is immediately transmitted, and it is not associated 

with any item on the "list." A T field causes the next specification to refer to a 
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specified column in the line (or card) image being processed; e.g., T35, 4HABCD* would 
cause the characters ABCD to be put into columns 35 - 38. 

For example, if the list consisted of 

A, B(l,l), I, K 

where I and K were integers, and the others floating point, and the specification was 

lHl, Fll.3, -2PE14.4, Sl3, 3HM = I3, S9, 3HJ = I3* 

we might find a printed line something like the following (at the top of the next page 
because of the lHl): 

OIIJ456. 010o:J-16.1251Et0CJ I I I I I I I I I I I I IMJ=D501 I I I I I I I I IJO=[]l7 

The same list would look the following way with the specification lHl, 2Fll.3, Sl6, 

3HM = I3, S9, 3HJ = I3*: 

o:Jo:J456.010o:J-1612.5101 I I I I I I I I II I I II I IN.0=05011 I I II I I I IJ0=017 

As stated above, a specification may not account for more than 80 columns on a card. 
It may happen, however, that a list calls for more information than can appear on a single 
card. Or perhaps only a certain part of each card is to be read. The determining factor 

in every case is whether or not the entire list has been accounted for. After each card 

is read according to the form~t specification, the list is consulted; if not yet satisfied, 

another card is read, and so on. It is important to realize that the specification is not 

necessarily scanned from the beginning when an asterisk (*) is encountered and the list is 

not satisfied. The specification scanner moves to the left from the end of the specifi­
cation (the *) until it hits a left parenthesis belonging to a pair of parentheses which is 
not nested inside any other pair of parentheses, and which is not in an H field. (If there 

is no such left parenthesis, it will move to the beginning of the specification.) It then 

examines the characters just to the left of this left parenthesis to see if they are a 

multiplicity indication (see Section 2.15.5). From now until the list is satisfied the 

effective portion of the format specification begins at the selected left parenthesis 

(together with the multiplicity, if any) and ends at the end of the specification. A 

similar statement may be made for printed or punched output. 

Thus, in the specification: 

3Fl0.3, /4(Fl0.3, 6HBETA = I2)* 

the first line printed (or read) would have three fixed-point numbers, while all subsequent 

lines would all be printed (or read) according to the specification 

4(Fl0.3, 6HBETA = I2)* 

As an example, one might have an integer on a first data card, followed by many cards, 

each with six floating point numbers. The specification might then be: 

I6/(6El0.5)* 

Only the first six columns would be read on the first card, and only 60 columns would be 
read on subsequent cards. The remaining columns are ignored and may contain any legitimate 

Hollerith characters. 

If a specification contains a Hollerith string of the form nHa1a2 ••• an' certain con­
ventions are observed. (l) If the list is satisfied, but the next field specification is 
a Hollerith string, the string is transmitted, anywayo (2) On input, i.e., reading from 
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cards, when a Hollerith string is encountered in the specification, the information in the 
corresponding columns of the input card will be brought in and will replace the BCD string 

itself within the format specification. This can then be used as a specification for out­
put. For example, this is useful for labeling a set of data and causing the label to appear 

on the output along with a date, etc. 

Thus, a card punched as follows: 

1 DATA SET NO, 3-A JULY 31, 1959 J. DOE 

might be read in with a format specification 

72HOJ~--------(72 blank spaces)------OJ* 

Later, this specification could be used to print the same information as a heading for the 

results. Note the "1" provided for carriage control for the printing. 

WARNING: The specifications S72* and 72(1H )*,while indicating 72 blank spaces, do 
not allow the reading in of an entire card, as indicated above, since they do not really 

provide a storage region of 72 characters in length into which the information on the card 

may be read and stored until needed. 

2.15.11 Use of~ Variables 

A format variable (see Section 3.9) may be used at any point in a format specification 

at which an integer constant is normally found; i.e., within any field specification or as 

part of any modifier. Each time a format is interpreted (i.e., an input or output state­
ment referring to it is executed), the current value of each format variable encountered is 

used in the format in place of the name of the format variable. Primes are used to delimit 

format variables when used in format information, Format variable occurrences may have one 

of three possible forms: 

rvr' rv( I) r' or rv( Il' I2) r 

where V is a format variable and I, I1, and I 2 are either integer constants or format 

variables, Also, format variables V, I, r1, and I 2 may be of either floating point, 
integer, or Boolean mode. Boolean and floating point values will be converted to integers 

before being used. lB and DB will be converted to l and O, respectively, and 

floating point values will be truncated as usual. Thus, in the format 1A1F3.1, Fl0.6*, 
where A is a Boolean format variable, the specification F3.1 will be used if A has 

the value lB, and not otherwise, All format variables must be names that exist in the 

program in which the input or output statement using the format occurs (i.e., they may not 
be arguments to a function which uses them as format variables), and they must be declared 

to be format variables using a FORMAT VARIABLE declaration (see Section 3.9). 

2.15.12 Input-Output Error Procedures 

The normal procedure after detection of an error is to print a description of the error 

along with other pertinent information and then terminate execution of the program. This 
procedure can be altered by executing the subroutine SETERR prior to reading or writing. 

The calling sequence for SETERR is: 

SETERR,(S,E,T) 

T is the location where the logical tape number will be stored, if an error occurs, 
E and T are optional arguments, S is a label which designates where to go when one of 
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the standard errors occurs and E designates where to store the error number. The comment 

is still printed. The error number is increased by 100 if the error occurs during output 

(e.g., error number= 1 if bad format occurs during input and error number= 101 if bad 
format occurs during output).t 

2.16 Simplified Input-Output Statements 

(a) READ DATA 

This statement causes information to be read from cards; no list of variable names or 
format specification is necessary. The values to be read and the variable names are punched 
in the data cards in a sequence of fields of the form: 

The v1, ..• , Vk are the variable names and n1, •.. , nk are the corresponding values. 
Reading is continued from card to card until the terminating mark * is encountered. Only 
the first 72 columns of a card may be used for data; as in the other cards the last eight 

columns are reserved for identification. Fields cannot be divided between cards, so the 
last character in a card not terminated by an asterisk would normally be a comma. However, 
as a convenience, the end of the card is treated as an implied comma and hence this final 

comma may be omitted. The variable names may designate single variables or elements of 

linear and two dimensional arrays. The subscripts on the array variables must be integer 

constants. The values may be floating point, integer, octal, Boolean, or alphabetic with 
the forms described for constants of corresponding mode (see Section 1.1). 

For convenience in entering values of array elements it is possible to designate only 
one variable name and have successive numbers, written without names, interpreted as the 
consecutive values of the array, i.e., 

would be the same as 

V(j)=nl' V(j+l)=n2, ... , V(j+k-l)=nk 

For 2-dimensional arrays successive numbers will be 
the designated row until the row - as determined from the 

vector - is filled, and then the next row will be started. 

cussed in Section 3.3.) 

entered in succeeding columns of 
current value of the dimension 

(The dimension vector is dis-

Zeros must be punched; adjacent commas (,,) are simply skipped. Blanks are ignored 

throughout except between dollar signs (which are used only to delimit a string of Hollerith 

characters) . 

Six or less Hollerith characters - delimited by dollar signs - may be values of single 
integer variables. Longer strings of Hollerith characters·may be entered as elements of 
arrays. Such strings are divided into six character groups for storage. 

set: 
As an example illustrating many of the features described herein consider the data card 

tFor a list of current error numbers and their 
"Reference Manual for I/0 (with conversion) 11 

Executive System (UMES) Manual. 
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Xl = 1.2, Yl = -6.8, INDEX= 4, A(4) = 3.1, -10.93, 
12,6, MATRIX (2,1) = 25E-2, 1.8E-10, 3.14E-8, 
STRING (1) = $ END OF PROBLEM $ * 

It is important to remember that, since such cards are data cards, they should not be in­

cluded as an integral part of the MAD statements but handled as ordinary numeric data. 

Strings of Hollerith characters may extend over more than one data card.t The charac­

ter "$" may be represented within an input string by writing two dollar signs with no 

spaces between them. The pair of dollar signs "$$" will be replaced by a single dollar 
sign when read in. There is one exception. 

column 72 of a card and the other in column 

If the first of a pair of dollar signs is in 

1 of the next card, they will not be inter-
preted as one dollar sign but instead will be interpreted as the termination of one Holle­

rith string and the beginning of the next. 

(b) READ AND PRINT DATA 

This has the same effect as READ DATA, except that after a card is read it is also 
printed as part of the output of the program. It is printed out exactly as the image of 

the entire card which was read. 

( c ) PRINT COMMENT $ . ./' $ 

Here ~ designates a string of no more than 132 Hollerith characters, The dollar 

sign is indicated in this string by the occurrence of two contiguous dollar signs. Blanks 

are valid characters, The string, delimited by dollar signs as indicated, will be printed, 

except for the first character which will be interpreted as a carriage control code and will 

not be printed if it is a legal carriage control. (See Section 2.15.1.) An example state­

ment is: 

PRINT COMMENT $1 JOHN PUBLIC, PROBLEM 1$ 

(d) PRINT RESULTS <>i;,;a 

Here ~~ designates a list of variable names, block designations, or expressions, but 
not iteration elements, The printed output is analogous to the input in that values of 

variables are preceded by the appropriate variable name and an equal sign; e.g., "X= -12.4". 

Blocks are labeled as such and printed using a block format. EJements of three and higher 
dimensional arrays will be labeled with the equivalent linear subscript. If dummy variables 
(in a function definition or expression) are included in the list the specific values 
assigned to such variables or expressions during execution will not be labeled but simply 

preceded by three dots ( .•• ). 

An example statement is: 

PRINT RESULTS Xl, Yl, Z(l) ..• Z(N + 1), MTX(l,l) .•• MTX(M,N) 

(e) PRINT BCD RESULTS ~J.t 
(f) PRINT OCTAL RESULTS/~ 

,_,p. 
These statements have the same effect as PRINT RESULTS ~~4C except that the value for 

each~~ element is treated as BCD (or OCTAL) information, and printed accordingly. 

The subscripts which are printed for two-dimensional arrays are based on the assumption 

that the lower limit of both subscript variables is one, If this is not the case, the sub­

script values which are printed may not be those the programmer might have expected; how­
ever, the result which is printed will be the value of the correct element of the array. 

tColumn 1 of the next card immediately follows column 72. 
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2.17 Iterated expression and iterated statement 

Two constructions are available which resemble the iteration element of an input­
output list ~~ These are the iterated expression and the iterated statement. 

2.17.1 The iterated expression has one of the forms: 

(V, I = E1, . E2, B, E3' E4, ... , En) 

or (V = EO, I = E1, E2' B, E3' E4, ... , En) 

The interpretation of this element is as follows: The variable V (possibly subscripted) 
is given the value of the expression E0, if this is present. The iteration is as in the 

THROUGH statement, in that I is given the value of the expression E1 , then B is 
tested, etc., with the expression E2 used as an increment. Each time B is false, each 

of the expressions E3, E4, •.. , En is evaluated, and each is immediately substituted for 
V. Thus, the action is similar, in the second form, for example, to the sequence 

A 

v = Eo 
THROUGH A, FOR I E1, E2, B 

V = E3 

V = E4 

V = E n 

except that the final value of V is considered to be the value of the iterated expression, 

and so §D. iterated expression may be used in any context in the MAD language in which §D. 

expression having the mode of y is legal. Mode conversion (such as floating point -

integer) will be performed as usual on the value of V after the iteration, if necessary. 

Note that any of the expressions E0, E1, ... , En may involve V and/or I. In addition, 

one may write, instead of some Ei (i = 3, ..• , n), an assignment statement with some 

other variable than V on the left. In this case, that assignment is made, and no assign­
ment is made for V at that point. Subsequent assignments are made for V, of course. 
For example, to carry out the computation 

one might write (using MAD notation): 

or alternatively: 

Y = A(O) + (8=0,, I=l, 1, I.G.M, S+A(I)* 

SIN,(X + T(I)).P.2/COS,(T(I))) 

Y=A(O)+(S=O., I=l, 1, I.G.M, Q=SIN.(X+T(I)), S+A(I)*QfQ/COS.(T(I))) 

As another example, the first element of a vector C which is greater than the value of B 

(assuming that there is such §D. element in Q) is 
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C((J,J=l,l,C(J).G,B)) 

Note that here the "scope" of the iteration is empty; i.e., there are no expressions after 
the Boolean expression. 

2.17.2 The iterated statement has the form 

(I = E1 , E2, B, s1 , S2, ••. , Sn) 

where s1 s2, ... , Sn are assignment statements, iterated statements, or function calls 
(i.e., EXECUTE statements without the word EXECUTE). Iterated statements are executable. 

As an example, one may compute the product C of two arrays A and B (Chapter III, 
Example 6). If A has dimensions m x n, and B has dimensions n x p, then 

n 
2: A.k Bk. 
k=l l J 

This may be written in MAD as follows: 

i 1, ... , m; j 1, ... , p 

(I=l,l,I.G.M, (J=l,l,J.G.P, C(I,J) (S=O.,K=l,l,K.G.N,S+A(I,K) * B(K,J)))) 

iterated expression 

Note the use of the iterated expression here. 

The iterated statement and the iterated expression should be recognized as different 
from the iteration element of §n input-output list. The distinguishing characteristics of 
each are as follows: 

(1) The iterated expression has a variable V explicitly written before the 

iteration structure and the others do not. A single value results from the 

iteration, viz., the final value of V. 

(2) The iterated statement is not embedded within any other statement, except as 
the second half of a simple conditional, or within larger iterated statements. 

No value results from executing an iterated statement, except for assignments 

made during the execution. 

(3) The iterated input-output list element occurs only in certain input or output 
lists. It does not have the variable V written explicitly before the 

iteration structure, and it has only expressions in its scope. Each value 
of each expression is used in the input or output transmission, subject to 

format specifications, as usual. An iterated expression may occur in an 
input or output list, but it always produces only one value, the value of V. 

3. Declarations (Non-executable statements) (See Appendix A for allowable abbreviations). 

Declarations are non-executable statements, and, except for function declarations, they 
may occur anywhere in the program. Their purpose is to furnish information to the translator 
program or to the reader of the program. Declarations may have statement labels, but names 

in the label field are ignored by the translator, and may not be referred to in other state­

ments. 
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3.1 Remark Declaration 

A remark declaration consists of any string of characters acceptable to the computer. 

This statement is completely ignored by the translator, and furnishes information to the 

reader of the program. Every card of the remark declaration must have an "R" in column 

11. A card which is blank in columns 1 - 72 is treated as a remark card. A remark card 

may occur before or after any other card in a MAD program, i.e., before or after END.OF 

PROGRAM, between continuation cards, etc. 

3.2 Mode Declaration 

All variables and function values are assumed to have the normal mode unless declared 

otherwise. The normal mode is floating point unless stated otherwise. Any of the other 

modes may be specified as the normal mode by writing the following declaration: 

NORMAL MODE IS '77! 

where ~~ is one of the following phrases: INTEGER, BOOLEAN, STATEMENT LABEL, FUNCTION 

NAME, FLOATING POINT, or MODE NUMBER Q, where Q is one of the digits 0 through 7, or 

a parameter. The meaning of each of these digits when used in a mode declaration is dis­

cussed in Appendix C. Only one such declaration may appear in a program and it is in 

effect for the whole program, no matter where it occurs in the ·program. If a variable or 

function value is to have a mode different from the normal mode then its mode must be 

declared in a declaration of the form: 

lll?v, L, ... , F., ... , BFN. 

where ~ is one of the phrases: INTEGER, BOOLEAN, STATEMENT LABEL, FUNCTION NAME, FLOATING 

POINT, or MODE NUMBER Q, and where n is as just defined; for example 

BOOLEAN P, Q, DIGIT., TRUE 

Following 1//? is the list of variables and functions whose values are to be of mode IJ)/. 

A program may contain any number of such mode declarations but a name may not be declared 

to be of two different modes. 

In the statement MODE NUMBER nX where n = 5, 6, or 7, and ,;( is a list of 

variable names and/or function names, a comma is allowed between n and ;( if n is one 

of the digits 5, 6, or 7, and a comma is required if n is a symbol which has been 

given a value of 5, 6, or 7 in a previous PARAMETER declaration. (See Section 3.8.) 

3.2.1 Automatic mode assignment 

All constants are automatically assigned modes by the translator (see Section 1.1). 

Other automatic assignments of modes are: 

(a) A name appearing in the statement label field is assigned statement label mode 

(see Section 1.3). 

(b) A function name constant is assigned function name mode (see Section 1.~). 

(c) A vector appearing as the dimension vector of some array in a dimension declara­

tion is assigned integer mode (see Section 3.3). 

(d) A vector which is preset by a vector values declaration is assigned a mode 

consistent with the first assigned value (see Section 3.7). 
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3.3 The DIMENSION Declaration 

In order to be sure that consecutive elements of a vector or array are stored in order 
in the computer, it is necessary to declare the ranges of the subscripts to be used in 

referring to elements of the array. If only one subscript is used (i.e., one is referring 

to the elements of a vector), it is understood that the lowest value a subscript may have 

is~' so one declares the highest value the subscript may assume at any·time during the 
computation: 

DIMENSION V(50) 

In this case, consecutive storage locations will be assigned for 51 elements, e.g., V(O), 
V(l), V(2), ... , V(50), Negative subscripts may not be used with vectors. If' the name V 

is used without any subscript, it is exactly the same as if V(O) had been written. 

For arrays with two or more dimensions (i.e., each reference to an element requires 

two or more subscripts), one declares the range of each subscript. Thus, if the array B 
is two-dimensional, and if the first subscript used with B is expected to take on values 

between -5 and 10 inclusive, while the second subscript will vary between l and 15 
inclusive, one would write: 

DIMENSION B((-5 •.. 10)*(1 ... 15)) 

Since many arrays have subscripts with ranges starting with 1, if l is the lower bound 

for a subscript, the one, the three dots, and the parentheses may be omitted, so that the 

last declaration above would more likely be written: 

DIMENSION B((-5 ••• 10)*15) 

In this case, storage would be allocated to B(-5,1), B(-5,2), ••• , B(-5,15), B(-4,1), 

B(l0,15). There are 10- (-5) + l = 16 rows and 15 columns in this array, so 241 

storage locations would be assigned to the array B. (16 X 15 + l = 241; the "first" 

element of the array has linear subscript l- see below.) 

•• •J 

Each array is always considered to have storage assigned to it as if it were a vector, 

regardless of the 2-dimensional (or higher-dimensional) structure declared for it as 

described here. References to elements of an array .may therefore be made by using the 

appropriate number of subscripts, or by using a single subscript. The "first" element of 
any array (of dimension two or higher) is automatically set to c-orrespond to the single 
subscript 1, so that in the example above, B(-5,1) could also be referred to as B(l) 

if desired, The single subscript is often called the "linear subscript", and the relation­
ship between the subscripts i and j in B(i,j) and the corresponding linear subscript 

r in B(r) is (for two-dimensional arrays): 

r n(i - 1) + (j - 1) + b 

where n is the number of columns and b is chosen so that the "first" element has linear 

subscript r = 1. For the example above, the first element is B(-5,1). Substituting, we 

have 

l 15(-5 - l) + (l - l) + b 

b 91 

For the array B, then, the relationsip is 

r = l5(i - l) + (j - l) + 91 

Since B is a vector, the symbol B itself is the same as B(O), which is not considered 
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part of the array B (since the "first" element corresponds to B(l)). Thus, with~' 
the symbol B may be used as a variable which is quite separate from the array B to 
which reference is made with subscripts, but is necessarily of the same mode. 

Declarations may occur anywhere in the program in any order, and they may be combined 
into a single statement, so a typical declaration might be 

DIMENSION P(20), Q(l0*20), R((-5 ... 10)*10*20), B((-5 ... 10)*15) 

Elements of arrays are assigned storage in the order determined by varying the last 

subscript first, then the next to last, etc., as indicated for the array 
if one writes B(0,12), ..• , B(l,3) in an output list, for example, with 

as above 

B above. Thus, 
B dimensioned 

B(O,l2), B(0,13), B(O,l4), B(0,15), B(l,l), B(l,2), B(l,3) 

would be printed, because the 

kept for use during execution 
the successor to B(O,l5) is 

declared ranges of the subscripts would be used. (These are 

of the program.) In this way it will correctly happen that 
B(l,l), rather than B(O,l6). 

3.3.1 Modifying the declared range of array subscripts during execution (use of SETDIM) 

It may be that the declared range for a subscript should be modified during execution 
of the program to reflect the storage requirements of different sets of data. In other 

words, the need can arise to keep the dimension current. 

For example, a program may be written which deals with an 

and the largest values which M and N may have are 30 and 
we employ the declaration 

DIMENSION D(30*20) 

M x N- array called D, 

20, respectively. Suppose 

For a particular set of data, it might happen that M = 6 and N = 4. Unless this were 

reflected in the "dimension information", the output list element D(l,l), .•• , D(M,N) 

would cause the values of D(l,l), .... , D(l,20), D(2,1), ... , D(2,20), ... , D(5,1), ... , 
D(5,20), D(6,1), ... , D(6,4) to be printed, and many of these values would be meaningless. 

A library subroutine (i.e., external function) is available called SETDIM, which will 

update dimension information when executed. The arguments to SETDIM are the name of the 
array, followed by the new ranges of all the subscripts, in order. In the example used 

here, one would write (after the values of M and N have been read as data): 

SETDIM. (D,M, N) 

·The arguments giving the ranges of the subscripts may be any integer valued expressions, 

The block notation must be used if the lower limit is not 1, so that one might write 

SETDIM.(D,3 ... N,M) 

Expressions of integer mode may be written as part of a block designation. If a subscript 

is to range from N to 2*N, one would write: 

SETDIM. (D,N ••• 2*N,M) 

Additional flexibility is available for more advanced applications, and this is 

described in Appendix B. 
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3.3.2 Including dimension information in other declarations 

The word DIMENSION may also be replaced by any of the following: PROGRAM COMMONJ 

ERASABLE) INTEGERJ BOOLEANJ FLOATING POINTJ FUNCTION NAMEJ STATEMENT LABELJ FORMAT VARIABLE) 

MODE NUMBER .!l (where .!lis a legitimate integer constant or parameterL with the effect 

determined by the specific declaration used. In any of these other casesJ dimension in­

formation is not required for a name on the list. If givenJ as described aboveJ the dimen­

sioning is in addition to the declared effect. (For PROGRAM COMMON see Section 3.6. For 
ERASABLE see Section 3.5) 

Example: 

INTEGER A(lO)J NJ PJ Q(30*3) 

3.3.3 Duplicate (or multiple) dimensioning 

Several variables with the same dimension information may be grouped in a declar­

ation. Any form of the dimension declaration may be used (see Appendix B). Variables so 
grouped will actually refer to the same dimension vectorJ and any change to the dimension 

information) such as a call for SETDIMJ will be a change for all arrays in the group. 

Examples: 

(1) ERASABLE (AJBJC)(l0)J(DJEJFJG)(l0*15) 

(2) DIMENSION (UJSJP)(25) 

3.3.4 Automatic dimensioning 

Dimensioning is automatic in two situations: 

(a) In case a statement label vectorJ say LJ is used (see Section 1.3) and .!l 

is the highest subscript used on L in the statement label field (i.e.J if 

L(lli) appears explicitly in the program) it is assumed that ill ~.!l)J then 

n + 1 locations are reserved for L. Of courseJ L may also appear in a 

dimension declaration) in which case the highest subscript is used. 

(b) If part or all of a vector is set by a VECTOR VALUES declaration (see Section 3.7)J 
the vector need not appear in a dimension statement unless the maximum subscript 
implied by the initial values is not sufficiently high. 

3.4 Equivalence Declaration 

This declaration has the form 

where tli and ..lj are individual variables or variables shown with constant linear sub­
scripts. 

Example: 

EQUIVALENCE (AJB)J (MATRIXJ XARRAY)J (CJ D(3)) 

and implies that the variables A and B are to represent the same storage location throug 

out the program) that MATRIX and XARRAY are to represent the same storage location through 

the program) etc. (Two variables which represent the same location always have the same 
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value at any given time.) Thus, any number of equivalences may be established by one 
EQUIVALENCE declaration, and any number of such declarations may occur (at any place) in 
a program. 

Variables whose names appear within.the same set of parentheses need not have the same 

mode. The mode must be established by the appropriate MODE declaration for each of the 

variables. Occurrences within an EQUIVALENCE declaration do not establish mode. 

A nonsubscripted array variable name in an EQUIVALENCE declaration represents that 

element of the array (considered as a one-dimensional vector) whose subscript is zero. 
Reference in an EQUIVALENCE declaration to an array element of any number of dimensions 

may be made by linear-subscript only (i.e., as an element of a vector). Note that occur­

rence of any elements from any two arrays in the same parentheses implies equating the 

entire arrays accordingly. 

3.5 ERASABLE Declarations 

This declaration has the form 

ERASABLE <t, A ,('., 
where ce., _l<j ,('-1 is a list of one or more variables or array names. 

Example: 

ERASABLE MATRIX, XARRAY, YARRAY 

and implies that the arrays and individual variables listed after the word ERASABLE (which 

need not have the same number of dimensions) are disjoint (i.e., non-overlapping in storage), 
but are assigned (in the order listed, from left to right) to a special section of storage 

which is separate. from the usual storage of variables and arrays. Each ERASABLE declaration 
eliminates the effect of previous assignments to this special section of storage, thus 

allowing several arrays to occupy the same storage at different times. It should be under­

stood that this storage is accessible to, and may be used by, subroutines. Dimension in­

formation may be included, if desired in this declaration. 

3.6 PROGRAM COMMON Declaration 

This declaration has the form 

PROGRAM COMMON (<., A -c, ... 

where a,~~ ... is a list of one or more variables or array names. 

Example: 

PROGRAM COMMON MATRIX, X, Yl, BC 

and implies that the arrays and individual variables listed after the words PROGRAM COMMON 

are non-overlapping in storage and are assigned (in the order in which they occur, from left 

to right) to a special section of storage which is separate from the usual storage of 

variables and arrays, and separate from ERASABLE storage (see Section 3.5). DimensioL 

information may be included, if desired. 

One use of this statement provides for several sections of a program to refer to 

variables and arrays by the same names, while being translated and checked out separately. 

A program divided up this way would have the form of a main program and several external 
function programs, with the main program being used primarily to call on each of the 

55 



Chapter II- 3.7 MAD Reference Manual 

external functions in turn. Although variables and arrays to be used jointly by several 
external functions can be communicated as arguments to the functions, assigning them to 
PROGRAM COMMON makes them available to all sections which declare them as such. 

The storage reserved for program common is reserved separately, and is not a part of 

any program (main program or external function program). Every program which refers to a 

variable in program common must have the same address assignment for that variable. This 

is usually done by including identical PROGRAM COMMON and DIMENSION declarations in all 
the programs which refer to program common, 

Another use for this PROGRAM COMMON assignment is in the case of a segmented program, 
i.e., a program so large that it is written in blocks which will occupy the same section 

of storage and be brought in one at a time. If one block of a program is to use the results 

of the previous block's computation, the variables involved should be specified as being in 
the PROGRAM COMMON region. Then they will not be destroyed in the process of bringing in 

the new block of program. The PROGRAM COMMON and DIMENSION declarations which set up this 

storage allocation must be identical in all blocks in which these arrays and variables are 
to be used, except that later segments may add additional names at the end of the list. 

PROGRAM COMMON declarations do not affect variables and arrays which have already been 

assigned to this common section of storage. If another such declaration occurs in a program, 

the arrays and variables listed therein are considered appended to the previous list of 
PROGRAM COMMON arrays and variables. The amount of storage actually reserved for program 

common is determined solely by the first program to be loaded into the computer. This may 

be either a main program or an external function program. 

3.7 Presetting Vectors 

Any vector or portion of a vector (or array when considered as a vector, i.e., using 

linear subscripts) may be preset (up to 200 locations) by declarations of one of the follow­

ing two forms: 

(a) VECTOR VALUES A(Q) = c0, c1, .•. , Cr 

Here Q is an integer constant, and A(n) may be written simply as A if Q = 0. 
The entries c0, .•• , Cr may be any constants (not necessarily all of the same mode), and 

in addition, Ci may be an alphabetic constant with more than six characters between dollar 
signs. In the latter case, the alphabetic constant Ci is treated as if it were broken up 
into six-character groups from the left, with any partial group filled with blanks at the 

right. (This must be an explicit list of constants; block notation may not be used here.) 

If there are ~ constants d0, ..• , ds-l in the list after breaking up long alphabetic 
constants, then the elements A(n), A(n + l)~ •.• , A(n + ~- l) are preset (in order) to 

the values d0, •.• , ds-l' A is automatically set to have the same mode as d0; and A 
is automatically given-a storage reservation of Q + ~ locations, which is the same as 

writing DlMENSION A(Q + ~- 1). The numbers must not exceed 200 in any one declaration. 

A may appear in a mode declaration as well, provided it is consistent with the mode 

of d0• If A appears in other VECTOR VALUES or DIMENSION declarations the maximum length 

given or implied for A is used for storage assignment. 
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(b) VECTOR VALUES A(m) ••• A(n) = k 

Here lli and Q are integer constants, with lli ~ n, and k is any constant (not a 
sequence of constants). If k is an alphabetic constant, it may not have more than 
six characters between dollar signs. This statement is treated exactly as in part (a), 

except that A(m), A(m + 1), ... , A(n- 1), A(n) all are preset with the value k. The 

storage reservation for A is equivalent to DIMENSION A(n) in this case, and A is set 

to the mode of k. Here, also, ~ - ~ + 1 must not exceed 200. 

These declarations are useful for presetting dimension vectors and format descriptions. 
The presetting is done at the time of translation. The constants ci (or k) are loaded 
(as part of the translated program) into A. These declarations produce no computation at 

execution time. However, the values of A may be modified later by other statements in. 

the program during execution. 

Vectors which have been assigned to ERASABLE storage (see Section 3.5) may not be 

preset by a VECTOR VALUES statement. Vectors assigned to PROGRAM COMMON may be preset with 
constants of any mode; but if statement label or function name values are preset in a 

multiple-segment ("overlay" or "ping-pong") program, the PROGRAM COMMON region should be 
identical for all sections. 

3.8 PARAMETER declaration 

·The following declaration may be used to assign values to symbols (called translation 

parameters) at the time of translation. 

Here Ai consists of 1 to 6 letters or digits, the first of which is a letter. Bi 
any numeric, alphabetic or Boolean constant, or a symbol consisting of 1 to 6 letters 

or digits, the first of which is a letter (possibly a translation parameter previously 

declared). 

is 

The effect of the declaration is to permit the replacement of any (subsequent) occur­

rence of Ai by Bi in the program. For example, Ai may occur in place of the integer 
constant normally required in a DIMENSION declaration if Bi is an integer constant. 

Similarly, Ai may occur in front of a single period as a function name if Bi is a symbol. 
However, Ai may not occur as part of a constant name, so that 3.AB is illegal even if 

AB is a translation parameter, and Ai may not occur as a defined operator. (Defined 
operators are discussed in Appendix C.) 

Such a declaration is effective at the point at which it occurs in the program, so 

that normally it would precede any use of Ai. Subsequent PARAMETER declarations supersede 

declarations of the same translation parameters, so that, in particular, 

PARAMETER X(X) 

cancels the effect of any previous PARAMETER declaration on X. No PARAMETER substitutions 

are ever made within any PARAMETER declaration itself. If Bi is itself a parameter, an 

additional substitution is not performed, allowing, for example, the interchange of two 

symbols, as in: 

PARAMETER B(A), A(B) 
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Examples are given below of possible uses of translation parameters as declared in the 
statement: 

PARAMETER Al(77), PI(3.1416), FCN(SIN) 

(a) DIMENSION B(Al*6), C(Al), V(Al) 

(b) RADIUS = CIRCUM/2.*PI 

( c ) Y = FCN. (X) 

(d) J = K + Al*B 

(e) PAUSE NO. Al 

These would have exactly the same effect as if the following statements had been used. 

(a) DIMENSION B(77*6), C(77), V(77) 

(b) RADIUS = CIRCUM/2.*3.1416 

(c) Y = SIN. (X) 

(d) J = K + 77*B 

(e) PAUSE NO. 77 

No mode, dimension, or other effects are implied by a PARAMETER declaration except those 

implied by the form of Bi as an integer, floating point, or other constant. 

A parameter may occur as part of a constant name if it is enclosed in parentheses and 

used, after the letter M, as a mode designation. The value substituted for the parameter 
must be one of the integers 0 through 7. Parentheses may also be used with integer con­
stant mode numbers. Thus, the following are legal uses of parameters: 

PARAMETER N(6), F(O) 

B = X .EQ. $ABC$M(N) 

VECTOR VALUES A= 1.2M3, 1.5M(5), 4M(N), lM(F) 

3.9 Format Variable Declaration 

This declaration has the form 

FORMAT VARIABLE X 
where .~ is a list of unsubscripted variable names. If this declaration is embedded within 
a function definition (see Section 3.10), then none of the names in ,X·' may be dummy 

variables. All names that will be used as format variables in formats (see Section 2.15.11) 
must be declared to be format variables in this way. This declaration does not imply any­
thing at all about arithmetic or Boolean mode or about dimension. There may be any number 
of such declarations, anywhere in the program. 

3.10 Function Definitions 

There are two main types of functions: the internal function and the external function. 
Since these are quite similar in many ways, that part of the description which is specific 
to external functions will be given in subsection 3.10.1, that which is specific to internal 
functions in subsection 3.10.2, and that which is common to both types will follow in 
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subsection 3.10.3. Throughout this section a single-valued function will be called a 
"function", and a function with multiple outputs and/or multiple exits will be called a 
"procedure". For the purposes of this manual a recursive function is one whose definition 
contains calls for the function being defined--or calls for functions which ultimately call 

the one being defined, Recursive functions have the same structure as other functions 

although, in general, they will include statements of the type described in Section 2.13, 
and certain considerations should be borne in mind when constructing such functions. These 

considerations arise from the fact that names, instead of values, are used as function 

arguments. The problem is considered in more detail in the examples of Chapter III. 

3.10.1 External Function Definitions 

These statements define functions not yet available in the language or as standard 

package programs ("subroutines"). The designation "EXTERNAL" implies that the statements 

which follow are to be translated independently of the main program in which they are to 

be used, (Because of this independence this block of statements is to be considered an 
entirely separate program, and must have its own DIMENSION and MODE declaration, etc. Names 
of variables, functions and labels which denote (or "represent") arguments of the function 
being defined are designated "dummy variables" (or "bound variables"). The modes of these 
dummy variables (if other than the normal mode), must be declared in the usual way (see 

Section 3.2), but arrays which are dummy variables must not be dimensioned, The word 

"EXTERNAL" also implies that names chosen for variables and functions in the current func­

tion definition. program have no relation whatever with similarly named variables and func­

tions in the main program (or other definition programs), and that no difficulties will be 
encountered because of the use of similar names. (See also section 4,) 

3.10.2 Internal Function Definitions 

These statements define functions not yet available in the language or as standard 

package programs ("subroutines"). The designation "INTERNAL" implies that the definition 

program which follows is to be translated as part of the main program. The word "INTERNAL" 

also implies that any variables or functions not listed as dummy variables in the definition 

of the function (but used in its evaluation), are understood to be the same as elsewhere in 

the main program, and the current values of these variables and functions will be used. 
Names of variables, functions, and labels which denote arguments of the function being 
defined are designated "dummy variables" (or "bound variables"). They must be distinct 

from those appearing elsewhere in the program. The modes of dummy variables (if other than 

normal mode) must be declared in the usual way, and arrays which are arguments must not be 

dimensioned, (See also section 4.) 

One-sentence definition: 

One form of internal function definition (not available as an external function defini­

tion because the latter must be a complete, independent program) is the one-sentence defini­

tion, which has the form: 

INTERNAL FUNCTION 'JZa.1111!-. ( Jj,;.;tt ) t 
where J lame- is the name of the function being defined and t' is an expression (arithmetic 

or Boolean) involving the variables in the ~~t of dummy variables, 
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Example: 

MAD Reference Manual 

INTERNAL FUNCTION SUMSQ, (X, Y, Z) = X*X + Y*Y + Z*Z - 'l'*T 

As indicated above, X, Y, and Z, as they occur here, are dummy variables, and 

(X, Y, Z) is the dummy variable list. The current value of T, however, will be obtained 

and used each time the value of the function is needed. An example of the use of the 

function so defined would be: 

A = 1.-SUMSQ, (U, V + 3, W) .P .. 5 

In the one-sentence internal function definition, at least one dummy variable must be 

indicated, even if the function does not use arguments. For example: 

INTERNAL FUNCTION F. = 2*Y + 1 

is not a legal definition, but 

INTERNAL FUNCTION F, (X) 2*Y + 1 

is. 

Only nonsubscripted names of variables (either individual or array) or names of func­

tions (without arguments) may appear in the dummy variable list. In the use of the function 

in an expression, the arguments may be any expressions that agree in mode with the corre­

sponding dummy variable in the dec lara tj_on, 

The modes of dummy variables and "actual" arguments must correspond. Thus, in the 

example definition 

INTERNAL FUNCTION POLY. (N, X, FN.) FN.(J*X).P.N- X/XBAR 

which might be used in the statement 

BETA ZQ POLY. (M + 1, Y, SIN.) + POLY, (M - 1, Z, cos.) 

it is understood that if N is in the integer mode, then so is M, and if X is in the 

floating point mode, then so are Y and Z. It is, of course, presumed that both M and 

N have been declared to be in the integer mode. Similarly, the values of SIN. and COS. 

must be the same mode as the values of FN. Moreover, in the use of functions this mode 

correspondence cannot be checked by the translator. 

The function POLY has as one of its arguments the name of a function, In the state-

ment BETA the function used in the first term to the right of the " sign is SIN and 

in the second term COS Hence statement BETA is then equivalent to: 

BETA ZQ = SIN, (J*Y) .P. (M+l) - Y/XBAR + COS. (J*Z) .P. (M-1) - Z/XBAR 

3.10.3 Internal and External Functions (Things they have in common) 

Each function definition (except one-sentence definitions described in 3.10.2) may 

define any number of functions and/or any number of procedures. However, within one func­

tion definition all functions and procedures defined must use exactly the same set of dummy 

variables, In other words, the functions CPADD.(X,Y,A,B) and CPMPY.(X,Y,A,B) may be 

defined, if desired, by one definition, but the functions SIN,(X) and ARCTAN,(X,Y) would 

require separate definitions. Similarly, the procedures RKSUB and ADAMS could be 

defined by the same definition if they have the same outputs, say Z and W, and the same 

input parameters, say X, Y, T, and N. However, if they did not have exactly the same 

outputs and the same inputs, they would require separate declarations. 
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In the use of a function (i.e., the call for it) the arguments may be constants, vari­
ables; function names, labels, or expressions. However, if one of the arguments appears to 
the left of an"=" sign in an assignment statement in the defining program it is not mean­
ingful to use a constant or an expression for that argument in the call. As mentioned 

earlier, the arguments cannot be checked for correspondence in mode and number to dummy 
variables. 

An example function definition program is as~~~-~ 

INTERNAL FUNCTION COS. (X) --(_ / or alternatively, 
... --lc INTERNAL FUNCTION (X) 
' ' ' (. ENTRY TO COS, --' ... t ~ 
ENTRY TO SIN. -~"-~ 

FUNCTION RETURN ALPHA + J - 3. 
ENTRY TO TAN. 

FUNCTION RETURN BETA/K5 - 4.* D 
END OF FUNCTION 

The first statement (INTERNAL FUNCTION COS.(X)) is a function declaration (i.e., declares 

that the following statements define a function called COS whose entry point is here). The 

opening declaration and entry point may alternatively be split into two statements as shown. 

If this is defining an external function, the declaration would be EXTERNAL FUNCTION COS.(X). 

Following the words INTERNAL (or EXTERNAL) FUNCTION is the dummy variable list ((X) in this 

example). The END OF FUNCTION declaration is the last statement in the function definition 
program. (In an EXTERNAL function definition this is also the last statement in the program.) 
An entry must be provided for each function being defined, but several functions may share 

any number of FUNCTION RETURN statements. An entry statement merely marks a point of entry, 

and does not affect the sequence of computation in any way. The expression after the 

phrase "FUNCTION RETURN" indicates that on this return the value of the function is to be 

the value of that expression. This expression must agree in mode with the function whose 

value it supplies, i.e., it must agree with the expected mode of the function value being 

called for in the calling program. This agreement is not checked. The definitions of func­
tions whose calls are intended to be included in expressions must have an expression follow­
ing the FUNCTION RETURN statement. If the calls for a function are to appear in an EXECUTE 
statement (generally such functions have multiple outputs) the FUNCTION RETURN statement may 

appear without an accompanying expression. 

Example of § procedure (called PROC ) definition 

EXTERNAL FUNCTION PROC, (M,N,I,P,Q) 
STATEMENT LABEL N,I 

FUNCTION RETURN 

WHENEVER B, TRANSFER TO I 

TRANSFER TO N 
END OF FUNCTION 
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In this example, N and I are actually alternate exits, and B represents some 
Boolean expression. 

It is important to note that internal function definitions of any kind whatever (in­
cluding the single statement definition of subsection 3.10.2) may occur anywhere in the 

program, except within another internal function definition. Internal function definitions 
may occur within external function definitions, however. External function definitions may 
not occur within any other programs, not even within other external function definitions. 
Each external function definition must be a complete, self-contained program. 

Example of ~ function definition (called INVSF ) 

The following is an example of a function whose value is 1/x if 0 < x ~ 1 and 
l/x2 if x > 1. If x ~ O, one obtains an error return (see Section 2.9). 

A EXTERNAL FUNCTION (X) 
J ENTRY TO INVSF. 
G WHENEVER X.G.O • • AND. X .LE. 1. 
c FUNCTION RETURN X .P. -1 
H OR WHENEVER X .G. 1. 
D FUNCTION RETURN X .P. -2 
I OTHERWISE 
E ERROR RETURN 
K END OF CONDITIONAL 

B END OF FUNCTION 

(Here the statements are all labeled only for reference in what follows.) 

The list of dummy variables in the opening declaration (statement A in the preceding 
paragraph) may contain only nonsubscripted variable names (either individual or array) or 
function names (without arguments). Within the definition program itself (the statements 
between statement A and statement B), a function name will usually occur with arguments, 
and an array variable will usually occur with subscripts. 

A few comments about the last example: This definition program defines a single-valued 

function of X, called INVSF Since no mode declaration is given it is assumed by the 
translator that X is floating point. The value of INVSF.(X) is computed by the use of 

a compound conditional. If 0 < X~ 1, (statement G) then statement C is executed, causing 
a return to the calling program with the value "i . If the condition 0 < X < 1 is not 
true, then the condition X> 1 is tested (statement H). If X> 1, statement D is 
executed. Finally, if neither of the conditions 0 < X~ 1 or X > 1 is true, then state­
ment I finds that X~ 0 and statement E (the ERROR RETURN) is executed, 

Suppose 

A B- D 
X T( I) + INVSF. (Y) * T( I-1) 
Y(I) Z + R(J) * 2.5 

is part of a program which calls on INVSF , and suppose the error return statement is exe­
cuted during the evaluation of INVSF.(Y) (i.e., Y ~ 0). Then control is returned to the 
system in which the translated program is e.mbedded, with an error flag set. However, suppose 
instead these statements: 

A 
F Z 
S Y(I) 

ER Z 
L Y(I) 

B - D 
T(I) + INVSF.(Y,ER) * T(I-1) 
Z + R(J) * 2.5 

0 
1. 

62 



MAD Reference Manual Chapter II - 3.10.4 
• 

are part of the calling program and Y ~ 0. When the ERROR RETURN statement is executed, 
control transfers to statement ER (then goes on to L), instead of finishing the exe­
cution of statement F (and then going on to S). Note that the END OF FUNCTION statement 
will never be executed, but must be present in the definition. Indeed,the only type of 

function definition in which the statement END OF FUNCTION is not required (in fact, is 

not allowed!) is the one-sentence internal function (Section 3.10.2). 

There is a table kept by the MAD translator in which are recorded all occurrences· of 

dummy variables (or parameters) within an external or internal function definition. Since 
all such occurrences must be initialized on each entry to the subroutine, it is very 
desirable that the number of entries in this table be kept as small as possible. This is 

especially important when a diagnostic comment is generated saying that this table has in 

fact overflowed! (The diagnostic comment produced in this case is PARAMETER USE TABLE 
EXCEEDED,) 

There are several ways to cut down the entries in this table and thus speed up the 

execution of the subroutine and shorten its length as well. (1) If X is an input to 
the subroutine and its value is used several times, start off the subroutine's computation 

with the assignment statement Y = X, and use Y everywhere as an auxiliary variable 
instead of X. Only this assignment statement will then need to be initialized with the 
address of X. (2) If the address of a variable is needed, as in the case of an output 

argument, or an argument which is an array name, one cannot use the method just given in 

(1). ·One can instead put the variable or array in PROGRAM COMMON by means of (identical) 

PROGRAM COMMON declarations in both the main program and the subroutine, Then the variable 

or array should not be used as an argument at all, and the initialization is thus avoided. 

Note that in this case (identical) DIMENSION declarations are necessary for such arrays in 
both the main program and the subroutine. 

3.10.4 TRANSMIT statements (General familiarity with the contents of the IBM 7090 
reference manual is assumed) 

A "calling sequence" (see Chapter IV, Section 3) is a process of establishing and 

transmitting (i.e., making available to the called program) the values of input argument 

expressions and/or the addresses of input or output arguments. These sequence~ (instruc­
tions in machine code) are generated by the MAD translator in the calling program as a 
consequence of each call on a function or procedure. 

Calling sequences for input-output subroutines ordinarily differ from calling sequences 
of other subroutines, in that the former use the STR instruction (IOP and FMT in UMAP) 

while the latter use the TXH and TIX instructions (PAR and BLK, respectively, in UMAP). 

The use of the STR allows computation by the called subroutine after the processing (evalu­
ation) of one argument and before the next is processed. This occurs in the role of N in 

the example below: 

READ FORMAT $I4*$, N, A(I,J), ..• , A(I,N) 

where the new value of N is used to determine A(I,N). Four types of TRANSMIT statements 
allow other subroutines (i.e., EXTERNAL functions) to have the input-output type of calling 

sequence: 
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TRANSMIT LIST J7 . , ~· 
TRANSMIT TAPE LIS'r 

TRANSMIT FORMAT LIST 

TRANSMIT TAPE FORMAT LIST /~) '/ 
{., \_/' "l) ~· 

where 1? is the name of an INTERNAL or EXTERNAL FUNCTION. X is any input or output list, 

,J is a logical tape number, and '-7 is any format designation, such as the name of a 

vector preset to format information, or format information itself. Note that since the 

STR instruction causes a transfer of control to location 00002, the subroutine SET2 

in the UM Executive System Library will probably be useful. The action of each of the 

above statements is to call the function named as 1( with an input-output calling sequence 

based on--7, J, and/or A. (See Chapter IV, section 3.) 

3.11 SYMBOL TABLE statements 

The MAD translator produces a "symbol table" as part of the object program whenever 

certain statements occur in the program. The symbol table contains symbols used in the 

source program, and associates with each symbol an "information word", described below. 

This table makes it possible, for example, for a symbol appearing on a data card (and which 

is read by a READ DATA statement) to be assigned a storage location and a mode (i.e., 

integer, floating point, etc.) at the time the data card is read. The information word 

has the form: 

DV M Add 

s l 2 3 l7 18 20 21 35 

where A is a l if the associated symbol is an array (i.e., it was dimensioned) and 0 

otherwise; DV is 0 if the symbol has no dimension vector (i.e., is not an array), and 

the relocatable address of the dimension vector if there is one; M is the mode of the 

symbol, such as 0 for floating point, l for integer, etc.; and Add is the (relocatable) 

address of the symbol. The concept of the "dimension vector'' is developed in Appendi.x B. 

The table is stored as an ordinary MAD vector, i.e., the top of the table would corre­

spond to V(O) if the vector were named V. (Actually the symbol .SYMTB is used 

internally for this table, and this will appear in the symbol table). Asswning such a 

name, the table has the form: 

V( 0) 

) V(l) 

I V(2) 

jV(N-1) = 

I V(N) = 

integer N giving highest subscript used in the table; 

i.e., if there were 15 symbols, or 30 words, then N 

information word for symbol in 

symbol associated with word in 

information word for symbol in 

symbol associated with word in 

v( 2). 

V(l). 

V(N). 

V(N-1). 

30. 

All symbols are in the form of left-justified alphabetic constants (with trailing blanks). 
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The symbol table produced by the translator does not always contain every symbol used 
in the program. If any of the (simple I/O) statements 

READ DATA 

READ AND PRINT DATA 

PRINT RESULTS A0 

PRINT BCD RESULTS ~ 
PRINT OCTAL RESULTS ,;( 

occurs anywhere in the program, then the symbol table will be "full", i.e., it will contain 

all symbols in the program (plus two additional symbols, as described below). If none of 
these statements occurs, but a FORMAT VARIABLE declaration occurred, then a "partial" 

symbol table is produced containing only those variables declared to be format variables 

(plus the two additional symbols). If neither a full nor partial table is produced, then 

a trivial one-word table is generated, with V(O) = 0. 

A non-trivial table (V(O) I 0) has two word entries whose format is described above, 
and in addition has two entries appended at the high-index (i.e., V(N-3), •.• , V(N)) end 

of the symbol table vector. Both of these entries have BCD symbols of "D ... rn", i.e., 
in V(N-2) and V(N). The address in V(N-3) is the address of the first location above 
the transfer vector in the MAD object program. This location is the one assigned to all 

variables which have a single occurrence in programs not using simple I/0. In the other 

added entry at location V(N-1), there is the address which is the first one below the 
ERASABLE region that has been assigned in the object program. The entire table is not 

ordered in any directly usable way and may be re-ordered at execution without affecting 
input-output operations. 

In order to allow interrogation and/or modification of the symbol table during the 

execution phase of a program two declarations are provided. 

SYMBOL TABLE VECTOR 'V 

FULL SYMBOL TABLE VECTOR 

where '&f is a DQg-subscripted variable. The first treats the symbol table as preset values 
of Z/, gives 1/ itself integer mode, and dimensions Z1 large enough to take the parti­
cular kind of table (i.e., full, partial, or trivial) that is being produced. The second 
declaration does all of this and forces a full table in addition. The variable &f'may be 

declared to be in PROGRAM COMMON, and it may be dimensioned larger than necessary, if 
desired. It should not be declared to be in ERASABLE. 

3.12 LISTING ON and LISTING OFF declarations 

The form of these declarations is as follows: 

LISTING ON 

LISTING OFF 

At the beginning of each MAD translation, LISTING ON will be automatically in effect. If 

LISTING OFF occurs, that statement will be printed; but statements that come after it, up 
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to and including any LISTING ON declaration, will not print. They will print with the 
object program if $PRINT OBJECT is requested. Note that UMAP-like code used in DEFINE 
sequences (see Appendix C) does not print with the object code in any case, 

3.13 REFERENCES ON and REFERENCES OFF declarations 

The form of these declarations is as follows: 

REFERENCES ON 

REFERENCES OFF 

At the beginning of every MAD translation an implicit REFERENCES OFF condition will be in 

effect. After an occurrence of REFERENCES ON, references to symbols which are encountered 

in the program will be collected until an occurrence of REFERENCES OFF. These declarations 

may be used as often as necessary. If any references have been collected, a list of 

references to (a) symbols, (b) function names, (c) dummy variables of INTERNAL FUNCTIONS, 

(d) dummy variables of EXTERNAL FUNCTIONS, and (e) PARAMETERS will be printed after part I 

of a MAD translation (even if there are errors). 

References are given in terms of the * number assigned to each statement by the 
translator. In case a statement contains a part I error! some references for that state­

ment may be included, but some may not be included, 

Each variable listed as occurring only once will be associated at that time with an 

number to make it easier to find. Since variables are often dimensioned (and/or declared 

to be in PROGRAM COMMON or ERASABLE or equivalent to something which is) to create specific 
storage assignments and are not used again in the program, no symbol is listed as occurring 
only once which appears in a PROGRAM COMMON, ERASABLE, or EQUIVALENCE declaration, or which 
is followed by dimension information in any declaration. The list of variables occurring 

only once does not appear if there are any part I errors. 

4, Restrictions 

Variable names appearing as dummy variables in any function declaration may not appear 
in a PROGRAM COMMON, ERASABLE, or EQUIVALENCE declaration, 

The name of a function with the period deleted must not be used as the name of a 

variable or as a statement label. A statement label must not be identical with any variable 
name, 

The object program produced by the translator automatically calls on the subroutines 

SYSTEM and ERROR , hence these names may not be used as variable names or statement labels 

in a MAD program. They may be used as function names only when referring to these sub­

routines. (These subroutines will be described in Chapter IV.) 

If a block designation A(i1, •.• , in) ,,, A(j 1, •.. , jn) is used in an input-output 

list Jt for reading or writing binary tape, the linear subscript corresponding to i 1, 
,,,, in may not be greater than the linear subscript corresponding to j 1, ... , jn. While 

the list for a binary tape statement is transmitted in the sequence written, a block 

A(i1, ,,,, in) ,,, A(j1, ,,,, jn) within the list is actually transmitted in reverse 

order, i.e., in the sequence A(j1, ,,,, jn) to A(i1, ••. , in), 

tsee Chapter IV, section 2. 

66 



Chapter III 

EXAMPLES 

"He prepares to go mad with fixed rule and method." 

Horace: Satires 

Note: The following illustrates how some programs may be written in the MAD language. 

Since they were written to illustrate as many features of the language as possible, they 
are not necessarily the most efficient or elegant programs which could have been written. 

They have all been tested on the computer, however; and they are correct. 

The flow chart notation used here may vary somewhat from the notation used by others. 

This variation reflects present computing practice where many individualistic forms are 

encountered and, moreover, causes no difficulty due to the essentially graphic nature of 
charts. 

In addition to the conventions given in Chapter I, the following are used in this 

chapter: 

l. 

(a) THROUGH .rJ, FOR VALUES OF -z/ = ;f is given by a box with two outlets: One 

usedwhen the list is not satisfied, and one used when the list is satisfied. 

IN~es OUT 
No 

... 
(b) A pause is represented by a hexagon. ~ 

(c) Operations involving tapes are indicated by:~ 

Scientific Examples 

Example 1 

Problem: To solve the quadratic equation ax2 + bx + c 0 for various sets of 
coefficients a, b, and c. 

Analysis: Let x1 and x2 be the two roots of the equation. Then their values 

are found by the formulas, 

- b - Jb2 - 4ac 
2a 

whenever a I 0. The single root x1 of the equation when a= 0 is 
x1 = -c/b. The input values of a, b, and c are printed immediately 

after they are brought in to help in finding trouble spots during the 

development of the program (not as necessary here as in longer problems, 

but a good idea!). Assume b' 0 if a • o. 
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READ 

a,b,c 

PRINT 
a 1 1-----~ "LINEAR 

EQUATION" 
x1 .... -c/b 

PRINT "REAL 
~l j------,1--{ SOLUTIONS 11 

( -b + .Jd)/2a 
( -b - .Jd)/2a 

PRINT "COMPLEX 
~2 SOLUTIONS" 

R(X1 ) +- -b/2a 
I(X1) +- .f=d/2a 
R(X2) +- -b/2a 

I(X2) +- -.f=d/2a 

PRINT 
a,b,c 
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Note: R(X1 ) and I(X1 ) are the 
real and imaginary parts 
of x1, and similarly, 
R(X2) and I(X2) are the 
real and imaginary parts 

of x2. 
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The Program: 

GAMMA 

ALPHA! 

ALPHA2 

BETA! 

BETA2 

$DATA 
4o 
o. 
1 • 

R 
R MAIN PROGRAM 
R 

READ FORMAT $3F!Oo4*$• Ao Bt C 
PRINT RESULTS A• Bo C 
WHENEVER A oNEo OoTRANSFER TO ALPHA2 
PRINT FORMAT LINEARo-C/B 
TRANSFER TO GAMMA 
D = B oPo2 -4o*A*C 
WHENEVER D oLo OotTRANSFER TO BETA2 

Chapter III 

PRINT FORMAT REALoi-B+SQRTe(0))/12e*Alo(-B-SQRTo<Dll/(2o*Al 
TRANSFER TO GAMMA 
PRINT FORMAi COMPLXo-B/12o*AltS0RToi-D)/{2o*Al• 

1 -B/12o*Alt-SORTo(-D)/(2o*Al 
TRANSFER TO GAMMA 

R 
R FORMAT SPECIFICATIONS 
R 

VECTOR VALUES LINEAR = $2!HOLINEAR EQUATION• X 
VECTOR VALUES REAL = $21HOREAL SOLUTIONSo Xl 

1 FlOo4tS8o4HX2 = Fl0•4*$ 
VECTOR VALUES COMPLX = $!9HOCOMPLEX SOLUTIONS• 

1 S4o7HRIX1l = F!Oo4tS8o7HI(Xl) = F!Oo4oS8t 
2 7HRIX2l = F10o4oS8t7HIIX2l = F10o4*$ 

END OF PROGRAM 

-8. 
5o 
1 • 

4o 
!Oo 

1 • 
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Example .?_ 

Problem: A logical (Boolean) expression such as 

T = (P .AND. Q) .OR. (.NOT. P .AND. R .AND. S) .OR. (R .OR. P) 

will have a value TRUE or FALSE (represented here by lB and OB, 

depending on the "input values" of the variables involved: P, Q, R, S. 

Q = R = S = OB, then the total expression T will have the value lB. 

of outputs for all possible inputs would be as follows: 

p Q R s T 

OB OB OB OB OB 

OB OB OB lB OB 

OB DB lB OB lB 

DB OB lB lB lB 

OB lB OB OB OB 

OB lB OB lB OB 

OB lB lB OB lB 

OB lB lB lB lB 

lB OB OB OB lB 

lB OB OB lB lB 

lB OB lB OB lB 

lB OB lB lB lB 

lB lB OB OB lB 

lB lB OB lB lB 

lB lB lB OB lB 

lB lB lB lB lB 

respectively) 

Thus, if P = lB, 

The entire table 

The problem is to write a program to generate the entire "truth table" for the given 

expression T. 

70 



MAD Reference Manual Chapter III 

The Program: 

No 

PARAMETER TRUE<OBlt FALSE<!Bl 

P +- OB, lB 

Q +- OB, lB 

R +- OB, lB 

S +- OB, lB 

PRINT P, Q, 
R, S, (P 1\ Q)v 
( -p 1\ R 1\ S) 
v(R v P) 

PRINT COMMENT $!TRUTH TABLE FOR THE FUNCTION$ 

Yes 

No 

PRINT C0MMENT$0(P,ANDo0)o0Ro<oNOToPoANDoRoANDoSloORo<RoORoP)$ 
PRINT FORMAT HEADER 
BOOLEAN PtOtRtS 
THROUGH AoFOR VALUES OF P = FALSEt TRUE 
THROUGH AtFOR VALUES OF Q = FALSEt lB 
THROUGH AoFOR VALUES OF R OBtTRUE 
THROUGH AtFOR VALUES OF S OBolB 
PRINT FORMAT TABLEtPoOtRtSt(P oANDo Q) oORo(oNOTo P oANDo R 

1 oANDoS)oORo<R aORoP) 
VECTOR VALUES HEADER= $lHloS10olHPtS10t1HQoS10tlHRoS10olHSt 

1 S15olHT*$ 
VECTOR VALUES TABLE= $1HOo4<S10ollltS15tll*$ 
END OF PROGRAM 

Note: Although it would have meant only a slight change in the format information, no 
attempt was made here to label the "O" and "1" that print as values in the table as 
Boolean, i.e., "OB" and "lB". This points up the fact that internally OB and lB 
are stored as 0 and 1, respectively. Also, the statement 

NORMAL MODE IS BOOLEAN 

could have been used as the fifth statement of this program instead of the BOOLEAN 

declaration. 

71 



Chapter III MAD Reference Manual 

Example .3. 
b 

Problem: To approximate ajf f(x) by Simpson 1 s Rule, for an arbitrary interval [a, b] 

using N equal subintervals (where N is an arbitrary even integer and a< b). 

b 
Analysis: By Simpson 1 s Rule, ~ f(x)dx ~ b3Na (y0 + 4y1 + 2y2 + 4y3 + ... + 4yN-l + yN)' 

a 

where yi = f(xi), and a= x0, xl' ... , xN = b are the partition points of the interval 

[a, b] . 

Method: We shall write the program in the form of an external function, so that it could 

be used with any other program. The evaluation of f(x) may be accomplished by another 

external function or an internal function. 

Flow Diagram: 

The Program: 

ALPHA 

RETURN 
1-=--"-\H (F (A)+4S1 +2S2- F (B)) /3 

+ F(X+H) 

EXTERNAL FUNCTION SIMPS. CAtB•NtFel 
INTEGER N 
H = (8-A)/N 
s 1 = o. 
52 = o. 
THROUGH ALPHAtFOR X c A+Ht 2•*H• X oG• 8 
51 = 51 + FoCX) 
52 = 52+ Fe<X+HJ 
FUNCTION RETURN H*CFoCAJ+4o*S1+2•*52-FeCBJJ/3• 
END OF FUNCTION 

If, for some reason, the integral of sin 3x - cos(rx + 1) were needed if 0 ~ r ~ 3, and 

the integral of sin 3x- cos rx otherwise, the program might then be as follows: 
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The Program: 

READ READ FORMAT $2Fl2o4tl6tF12o4*$•A•B•NtR 
INTEGER N 

R 

WHENEVER Oo oLEo R oANDo R oLEo 3• 
PRINT FORMAT RESULTtAtBtNtRtS!MPSoCAtBtNtF1ol 
OTHERWISE 
PRINT FORMAT RESULTtAtBtNtRtS!MPSoCAtBtNtF2ol 
END OF CONDITIONAL 
TRANSFER TO READ 

R DEFINITION OF FUNCTIONS 
R 

R 

INTERNAL FUNCTION FloCXI = SlNoC3o*Xl-COSoCR*X+1ol 
INTERNAL FUNCTION F2oCX) = SINoC3o*Xl-COSoCR*Xl 

R FORMAT SPECIFICATIONS 
R 

VECTOR VALUES RESULT = $23H1 FOR THE INTERVAL FROM 
1 Fl2o4t3H TO Fl2o4t5H WITH l6t38H EQUAL SUB-INTERVALS AND 
2 PARAMETER F12o4/ H*OTHE VALUE OF THE INTEGRAL IS Fl2•4**$ 

END OF PROGRAM 

External Function: 

ALPHA 

Data: 

EXTERNAL FUNCTION CAtBtNtFol 
INTEGER N 
ENTRY TO SIMPSo 
H = CB-Al/N 
Sl = Oo 
52 = o. 
THROUGH ALPHAt FOR X = A+Ht2o*Ht X eGo B 
S.l = S1+Fo lXI 
52 = S2+Fo CX+Hl 
FUNCTION RETURN H*CFoCAl+4o*S1+2•*S2-FoCBll/3o 
END OF FUNCTION 

0 2• 10 lOo 

An alternate way to write the first eight lines of this program, illustrating one use of 
the FUNCTION NAME mode, and using full abbreviations (see Appendix A), would be: 

READ 
I I R N 
R1 T SZF1Zo~•I6tF12t4*StAt8tNtR 
W1 R Oo oLEo R oANDo R oLEo 3o 

S=Flo 
OlE 

S=FZo 
ElL 
PIT RESULT• At 8• Nt Rt SIMPSa(AtBtNtS) 
TIO READ 
FUNCTION NA~1E S 
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Example Lf 

Problem: To find one real solution (if it exists) of the equation f(x) = 0 (where f is 

a continuous function) on an arbitrary interval [a, b], provided the roots (if there are 

more than one) are at least E apart. 

Analysis: We specify a, b, and E as parameters. The method used will be "half-intervaJ 

convergence," in which the function is evaluated at x = a, and then the interval is 

scanned for a change of signt in the value of f(x). If no change of sign is found, the 

scanning is repeated with a step size for searching equal to one-half the previous step 

size. If the step size becomes smaller than E, and no change of sign is found, the 

process is terminated, and comment is printed: "NO SOLUTION". 

If a change of sign is found between XL and XR' the value of f is computed at 
XL+ XR 

i.e.' the midpoint of the interval of uncertainty [xL' xR]. We then XM = 2 ' 
determine which of the intervals [xL' xM], [xM, xR] now contains a change in sign. We 

then compute the value of f at midpoint of that smaller interval, etc., until the interval 

being considered finally has length less than E, at which time either end may be taken 

as the solution with an error less than E. 

The method used here to handle the xM computation is perhaps not the most obvious 

one. It consists of a simple loop in which the value of x is adjusted by h t = ~, then 
h 1 h h 1 1 = :2 = 4' etc., until h is small enough. The adjustment of x is either to the 

left or right, depending on the occurrence or non-occurrence, respectively, of a change of 

sign between f(a) and f(x). 

It should be understood that this method may not find a root which is one of a pair 

of roots which either coincide or are less than E apart. 

tA change of sign is detected when the numbers involved have a negative product. 
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F 

T 

T 

F 

1----=------'>-l PRINT NO 

SOLUTION 
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Program: (It is assumed here that f (referred to as F 
defined as an internal function.) 

in the program) will be 

PSI 

ALPHA 

DELTA 
SIGMA 
ETA 

$DATA 

REFERENCES ON 

INTERNAL FUNCTION Fo (ZI= Z oPo 2 - 2• 
PRINT COMMENT$ ECHO CHECK OF VALUES FOR Ao8t AND EPS$ 
READ AND PRINT DATA 
VA = Fe<AI 
THROUGH ALPHAtFOR H = (8-AI/2oo-H/2otH oLo EPS 
THROUGH ALPHAoFOR X = A+HoHt X oGo 8 
WHENEVER Fo(XI oEo OooTRANSFER TO ETA 
WHENEVER YA*Fo!Xl oLo OotTRANSFER TO DELTA 
PRINT COMMENT $0 NO SOLUTIONS$ 
TRANSFER TO PSI 

R 
R THE NEXT SECTION IS ENTERED WHEN A CHANGE 
R OF SIGN IS FOUND 
R 

R 

THROUGH SIGMAoFOR H=H/2oo-H/2otH oLoEPS 
X= X+SIGNo!YA*Fo!X)l*H 
PRINT COMMENT $0 SOLUTION$ 
PRINT RESULTS X 
TRANSFER TO PSI 

R DEFINITION OF SIGNo FUNCTION 
R 

INTERNAL FUNCTION SIGNo(Z) = Z/oA8SoZ 
END OF PROGRAM 

A= lot 8 = 2ot EPS = oOl * 

Example .5. 

Problem: Find the transpose A1 of an n x n matrix A= (aij). 

Analysis: If we write A' = (bij), then bij = aji' We shall interchange symmetrically 
placed pairs of elements, leaving untouched elements on the main diagonal. The program 
will be in the form of an external function. 

Flow Diagram: 

z <- AI,K 

AI,K <- AK,I 
AK, I ... Z 

T 

76 



MAD Reference Manual 

EXTERNAL FUNCTION TRANSo (At N) 

(K= ltltKoGEoNt(I=K+Itlt I oGo Nt 
1 Z = AlltKlt AlltKl = AIKtllt A<Ktll = Zll 
R THE ABOVE IS AN ITERATED STATEMENT• SEE SECTION 2ol7 

FUNCTION RETURN 
INTEGER NtKtl 
END OF FUNCTION 

Chapter III 

Note: No dimension information is given for A, since it is an argument in a function 

definition program. This function would be called in a statement of the form 

TRANS. (A, N). 

DIMENSION Al25*25l 
INTEGER N 
FORMAT VARIABLE N 

RTHE FOLLOWING STATEMENT READS IN THE 
RVALUES OF N AND THE MATRIX At PROVIDING 
RTHEY ARE SO IDENTIFIED ON THE DATA CARDSt 

READ READ DATA 
R THE FOLLOWING STATEMENT RESETS THE DIMENSION 
R INFORMATION FOR THE A ARRAYo 

SETDIMo IAtNtN) 
TRANSoiAoN) 

PRINT FORMAT MATR!Xt A(ltlloooA(NtN) 
TRANSFER TO READ 
VECTOR VALUES MATRIX = $lHOt tNt Fl2•6*$ 
END OF PROGRAM 

Note that the use of the format variable N (see Section 2.15.11) allows the printing of 

the matrix by rows, .with each row having the correct number of columns. If the value of N 

exceeds 10, however, a format error will occur, since the format will be trying to specify 

more than 132 characters per line. 

Example .§ 

to produce the matrix 

with m • n S. 1500, 

Problem: Multiply the matrix A= (aij) by the matrix B = (bij) 
C=(cij)' i.e., C=A•B. Assumethat A hasdimensions mxn 
B has dimensions n X p, with n · p S. 1500, and C has dimensions 

.m • p S. 1500. 

m x p, with 

Analysis: An element cij of C is computed by the formula 

77 



Chapter III 

READ 

a 

$DATA 
M = 2• N 

MAD Reference Manual 

Set dimensions for A,B,C 

READ 

DIMENSION AC40*40lt BC40*40lt CC40*40) 
INTEGER ltJtKt Mt No P 

R THE NEXT STATEMENT INPUTS VALUES FOR MoNt AND/OR P 
READ AND PRINT DATA 
SETDIMo!AtMtNl 
SETDIM,CBtNtP) 
SETDIMo<CtMtPl 
READ FORMAT $6Fi2•4*$t A(ltlloooA(MtNlt BClt!loooB(NtPl 
PRINT FORMAT $JHOt8Fi3•4*$oAC!tll•••ACMtNltBCltlloooBCNtPl 
THROUGH a, FOR I = 1tlt I tG• M 
THROUGH a, FOR J = !tit J eGo P 
C!ltJ):CS:O,tK=lt1tKoGoNtS+ACitKl*BCKtJ)l 

R NOTEo THE PRECEDING 3 STATEMENTS CAN BE REPLACED BY A 
R SINGLE ITERATED STATEMENT• SEE EXAMPLE IN SECTION 2ol7 

PRINT.FORMAT RESULToCC!tlltt•CCMtPl 
TRANSFER TO READ 

R 

R FORMAT SPECIFICATIONS 
R 

VECTOR VALUES RESULT 
END OF PROGRAM 

3• p = 3 * 
1. 2• 
7t s. 

13. 14• 

$9H!C MATRIX//CIH0t8F13•4l*$ 

3· 4• 5· 
9t lOo 11 • 

15t 
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Example 1 

Problem: Solve a system of n ~ 20 simultaneous linear equations in n unknowns, assuming 

that one does not encounter a zero on the main diagonal of the coefficient matrix during 
the solution process. 

Analysis: We shall use a Jordan Elimination Method, in which each diagonal coefficient is 

used to "clear" all other coefficients in its column to zero by appropriate multiplications 

and subtractions. Since we shall divide the "clearing row" by the diagonal element in that 

row before clearing the column, we shall finish the process with only a diagonal of ones 

and the solution to the problem as the resulting right hand side of the equations. 

We denote the system of equations to be solved by: 

(1) 

all xl + a12x2 + 

a2lxl + a22x2 + 

+ alnxn = al,n+l 

+ a2nxn a2,n+l 

We divide the first row by its diagonal element Then to clear to zero we 
subtract a21 times the first row from the second row, and so on. In general, to clear 

aik to zero (after row k has been divided by akk), we subtract aik times row k from 
row i (ilk). A typical element aij is thus transformed each time by the formulas: 

(2) 

(3) 

where the value of akj in 
formed for k = 1,2, •.. , n. 

(3) is the result of 

For each (fixed) k, 

(ilk) 

(2). These transformations are per­

we will let i = 1,2, .•• , k-l,k+l, ... , 

n, so as to operate on all rows except i = k. While transforming each row we will cycle 

on j from right to left; i.e., j = n+l, n, n-1, ••. ,k, and we stop at j = k since 

for j < k there is no change in the matrix (since for j < k, akj = 0, except that we don't 

actually store the 0), 

The array 

is called the "matrix of coefficients" of the system (1). 

It should be understood that this method, involving the assumption of no zeros on the 

diagonal and not searching for the largest element of a row to use as a divisor (to minimize 
round-off error), is not satisfactory from a mathematical point of view. It could serve as 

a basis for a larger, more complete program, however, and serves here only as an example 
problem. 
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Set Dimensions 
for A 

T 

F 

F 

80 

READ 
Al,l' ... ,AN,N+l 

T 

AI, J +- AI, J 

- A __ A__ 
I,1CK, J 
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PRINT 

I,AI,N+l 
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The program: 

DELTA 

B 

E 

DIMENSION A(20*211 
READ DATA (VALUE OF N) 
SETDIMoiAtNtN+l) 
READ FORMAT$6F12•4*St Alltl)oooA(NtN+ll 
PRINT FORMAT INVALtNtA(ltl)oooAINoN+l) 
THROUGH Bt FORK= loltK oGo N 
(J = N+lt-ltJoLoKt A(KtJ) = A<KtJ) / A<KtK) 
THROUGH Bt FOR I = loloi oGo N 
WHENEVER I oEo Ko TRANSFER TO B 
(J = N+lt -1• J oLo Kt 

lAIItJ) = AIIoJ)-AIItK)*A<KtJ) 
CONTINUE 

R 

THROUGH Et FOR I = ltlti oGo N 
PRINT FORMAT RESULTtitAIItN+l) 
TRANSFER TO DELTA 
INTEGER ItJtKtN 

RFORMAT SPECIFICATIONS 
R 

VECTOR VALUES INVAL = S7Ht INPUT/ 4HON = I4/ 
t 7HOMATRIX//(lHOt8F12o4l*S 

VECTOR VALUES RESULT = $ !HOtT2o2HA<oi2t3H) = F!2o4*S 
END OF PROGRAM 

SDATA 
N = 3 * 

I o 

Oo 
1. 

-1· 

2, Business Data Processing Examples 

1. 
-to 

6o 
-2• 

Example 1 

-to 
-9• 

Chapter III 

0 
-32o 

Problem: Compute the social security deduction and accumulated gross pay. The program 

should read a card containing: (a) the employee's name, (b) his payroll number, (c) his 
gross pay for the current week, and (d) his accumulated gross pay for the current year (but 
not including item (c)). For each card read, the program should print (a) and (b) from the 
card; and, in addition, print (e) the updated gross pay, (f) the social security deduction 
for the current week, and (g) the net pay for the current week, taking into account only 
the social security deduction. 

Analysis: The social security deduction is currently 3%t of the gross pay until the 

accumulated gross pay for the year exceeds $4800.0o.t The updated gross pay can be 
computed from the formula, (e) = (c) + (d). The social security deduction has already 

been made on (d). There are thus three cases to consider: 

(1) (d) 2 4800,00, in this case (f) = 0. 

(2) (d) < 4800.00 and (c) + (d) > 4800,00, in this case (f) 

(3) (c)+ (d)~ 4800.00, in this case (f) 3% of (c). 

3% of 4800.00 - (d). 

The information on the cards to be read will be in the following format: 

tAdmittedly, slightly out of date. Maybe it should be a parameter. 
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The 

Card Columns 

l - 30 

31 - 38 

39 - 44 

45 - 52 

printed output 

Line Columns 

l 

2 - 31 

32 - 3LI 

35 - 42 

Lf3 - 45 

46 53 

54 - 56 

5'7 61 

62 - 64 

65 '70 

(a) 

(b) 

(c) 

(d) 

will be in the 

(a) 

(b) 

(e) 

(f) 

(g) 

MAD Reference Manual 

Information 

employee 1 s name 

payroll number 

gross pay for the current week in the form xxx.xx 
accumulated gross pay for the current year in the 

form xxxxx.xx 

following format: 

Information 

Carriage control for printer 

employeets name 

Blank 

payroll number 

Blank 

updated gross pay for current year in the form 

xxxxx.xx 

Blank 

social security deduction for current week in the 

form xx.xx 
Blank 

net pay for current week in the form xxx.xx 

Flow chart: We will use the following abbreviations: 

NAME for employee 1 s name (a). 

PAYNR 

GROSSW 

AGROSY 

UGROSY 

for payroll number (b). 

gross pay for current week (c). 

accumulated gross pay for current year (d). 

updated gross pay for current year (e). 

FICA social security deduction for current week (f). 

NET PAY net pay for current week (g). 
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>-......--~ READ NAME, 
PAYNR, GROSSW, 
AGROSY 

Chapter III 

FICA._ .03x 
>-----..! (4800-AGROSY) 

The Program: 

START 

$DATA 

PRINT NAME 
'------1 PAYNR, 

UGROSY, 
FICA,NETPAY 

READ FORMAT $5C6tl8oF6o2oF8o2*$o 

F 

FICA .... 
. 03 X GROSSW 

UGROSY + AGROSY 
+ GROSSW 

NETPAY .... 
GROSSW-FICA 

1 NAME<lloooNAME<5)• PAYNRt GROSSWo AGROSY 
DIMENSION NAME(5) 
INTEGER PAYNRo NAME 
WHENEVER AGROSY oGEo 4800o 

FICA=O• 
OR WHENtVER GROSSW+AGROSY oGo 4800o 

FICA=oG3*(4800o-AGROSY) 
OTHER\•! I SE 

F I CA=o U3*GROSS\·; 
E~D OF CONDITIONAL 
UGROSY = AGROSY+GROSSW 
NETPAY = GROSSW-FICA 
PRINT FORMAT $lHOt5C6tS3ol8tS3tF8o2tS3tF5o2tS3tF6o2*$• 

I NAME<lloooNAME(5)t PAYNRt UGROSYtFICAoNETPAY 
TRANSFER TO START 
END OF PROGRAM 

GEORGE WASHINGTON 12345678 iOOo 4800o 
..JOHN ADAMS 12345679 200 • 4900. 
THOMAS ..JEFFERSON 12345680 200. 4600. 
..JAMES MADISON 12345681 200. 4700 • 
..JOHN QUINCY ADAMS 12345682 iOOo 300. 

Notes on these programs: 

1. The maximum number of characters which can be stored in one machine word is 
six. Hence, we need five machine words to store the 30 characters allowed 
for the employee's name. We need to give a dimension declaration stating that 
NAME is actually to be a block and that NAME(5) is the last word of this 
block. In the read and print statements we specify that the whole block is to 
be read or printed by writing NAME(l) •.• NAME(5) and giving the format speci­
fication 5C6, i.e., 5 words of 6 characters. 
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2. Since the payroll number is an integer (I8, i.e., an 8 digit integer) we give 
an integer mode declaration stating that PAYNR is an integer. Similarly, 
since alphabetic information is assumed to be in the integer mode, NAME is 
also declared to be integer. 

Example £. 

Problem: Assume that a master tape is available containing basic information for each 
employee: (1) The employee number, (2) his hourly rate, (3) gross pay to date, 
(4) amount of withholding tax withheld to date, (5) social security deduction withheld 
to date, (6) net pay to date, and (7) the number of exemptions. Input will be in the 
form of m cards representing the current pay record, containing the employee's number 
and the number of hours worked during the current week. Pay is to be computed at time and 
a half for any hours worked over forty. We shall assume that the input deck is already 
sorted according to increasing employee number, but we shall provide for cards which may 
be out of order. The last input card must have an employee number greater than the last 
employee number of the master tape. 

The withholding tax W is to be computed by the formula: 

W = .18(Gross pay - 13n) 

where n is the number of exemptions. If n is negative, we set W = 0 (see Note 2 

below). The social security deduction FICA is 3 per cent of gross pay up to $4800, 

with no deduction for gross pay over $4800. 

A program is desired which will produce a listing (for each input card) of (a) employee 
number, (b) gross pay this week, (c) withholding tax, (d) FICA, (e) net pay for the 
week. Moreover, a new updated master tape should be prepared, with provision for saving the 
previous master tape as well. As much checking as possible should be incorporated, including 

specifying to the operator the number of the master tape needed, and the number to be assign­
ed to the new tape produced by the program, and the automatic checking that the correct tape 

has been mounted on the unit. 

Note 1: Abbreviations used here are outlined in Example 1, except for the following new 

terms: 
A WITHY 
AFICAY 
ANETY 
EXEMPT 

accumulated withholding tax for year 
accumulated social security deduction for year 
accumulated net pay for year 

number of exemptions 

Note 2: In the computation of the gross pay for the current week we shall find it useful to 
be able to compute a function (which we shall call EXCESS ) of two numbers, say 

a and b, whose value is 0 if a ~ b, and a-b if a > b. A formula for this 

function is 

EXCESS. (a, b) a- b + Ia- bl 
2 

where I I denotes the usual "absolute value." In fact, by using 

EXCESS, a simple one-line formula is: 

FICA= .03 X EXCESS.(GROSSW, EXCESS. (AGROSY, 4800.)) 
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where AGROSY is assumed to already contain GROSW, i.e., to have been updated 
already. We shall also apply this function in the case of the withholding tax 

to guarantee that we do not make a negative deduction. Thus 

W = .18*EXCESS. (GROSSW, 13*EXEMPT) 

Note 3: To check the order of input cards (normally in order of increasing employee 

number with a large employee number greater than the last employee number on the 

master tape) the program uses the subroutine SETEOF.(LABEL), where LABEL is 
the statement label of a statement to be executed if an end of file condition is 

detected during reading. 

Since the last input card has a large employee number the first end of file 

condition is normally detected at the end of processing, but an illegal input 

card may also exist with a high employee number. After the first end of file is 

detected the end of file return is changed and the input tape checked for end of 

file. If no end of file exists a comment is printed to change tapes and pro­

cessing begins again. 
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START READFORMAT IDENTtTAPENO 
INTEGER TAPENO•PAYNRtNUMB•JtO~TAPE 
PRINT ON ~INE FORMAT OPERtTAPENO 
PAUSE NOo 1 
REWIND TAPE 4 

MAD Reference Manual 

TEST REWIND TAPE 3 

MAIN 

REDO 

READ ( 1 ) 
READ<2> 

M FILE 

C FILE 

READ BINARY TAPE 3tOLTAPE 
WHENEVER OLTAPE •E• TAPENOtTRANSFER TO MAIN 
PRINT ON LINE FORMAT WRONG 
PAUSE NOo 3 
TRANSFER TO TEST 
CUMGRS = Oo 
CUMFIC Oo 
CUMNET Oo 
CUMW = Oo 
EXECUTE SETEOFo!M FILE) 
WRITE BINARY TAPE 4tTAPEN0+1 
READ FORMAT EMPLOYtPAYNRoHOURS 
READ BINARY TAPE 3• NUMBtRATEtAGROSYtA\1/ITHYt 

1AFICAYtANETYtEXEMPT 
WHENEVER NUMB oEo PAYNR 
GROSSW = RATE*HOURS+o5*RATE*EXCESSo(HOURSt40o) 
AGROSY = AGROSY+GROSSW 
Ill = ol8*EXCESSoCGR0SSWt13o*EXEMPT) 
FICA= o03*EXCESSo <GROSSWtEXCESSo!AGROSYt4800o)) 
NETPAY GROSSW-W-FICA 
AWITHY = AWITHY+W 
AFICAY = AFICAY+FICA 
ANETY = ANETY+NETPAY 
CUMGRS = CUMGRS+GROSSW 
CUMFIC = CUMFIC+FICA 
CUMNET = CUMNET+NETPAY 
CUMW = CUMW+\11 
WHENEVER oABSo CAGROSY-ANETY-AFICAY-AWITHY) oGEo o005o PRINT 

!FORMAT ERRORtPAYNR 
PRINT FORMAT OUTPUTtPAYNRtGROSSWtWtFICAtNETPAY 
J = 1 
OR WHENEVER NUMBoGoPAYNR 
PRINT FORMAT ORDERtPAYNR 
BACKSPACE RECORD OF TAPE 3 
TRANSFER TO READ<!) 
OTHERWISE 
J = 2 
END OF CONDITIONAL 
WRITE BINARY TAPE 4tNUMBtRATEtAGROSYtAWITHYtAFICAYtANETYt 

!EXEMPT 
TRANSFER TO READ(J) 
END OF FILE TAPE 4 
REWIND TAPE 3 
REWIND TAPE 4 
EXECUTE SETEOFo!C FILE) 
LOOK AT FORMAT EMPLOY• .DUMMY• DUMMY 
PRINT FORMAT NOMANtPAYNRoTAPENO 
PRINT ON LINE FORMAT NOMANoPAYNRoTAPENO 
PAUSE NOo 4 
TAPENO=TAPENO+l 
READ BINARY TAPE 3tDUMMY 
TRANSFER TO REOO 
PRINT ON LINE FORMAT OFFtTAPENOtTAPENO+l 
PAUSE NOo 2 

R 

PRINT FORMAT TOTALSoCUMGRSoCUMFICoCUMNETtCUMIIJ 
EXECUTE SYSTEM• 

INTERNAL FUNCTION EXCESSoCXtY):CX-Y+ oABSe CX-Y)I/2• 
R 
R FORMAT SPECIFICATIONS 
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R 
VECTOR VALUES !DENT = $l8*S 
VECTOR VALUES OPER = Sl5H4MOUNT TAPE NOo 18tS2t30HON TAPE UN! 

lT NOo 3tPRESS START*$ 
VECTOR VALUES WRONG = $48H4THE WRONG TAPE HAS SEEN USEDo PLEA 

lSE TRY AGAINo*$ 
VECTOR VALUES EMPLOY = $l8tF10o2*$ 
VECTOR VALUES ERROR = $37HOERROR IN CHECKING TOTALS FOR MAN N 

lOo 18*$ 
VECTOR VALUES OUTPUT = $lHOtl8t4F20o2*$ 
VECTOR VALUES OFF = $24H4REMOVE TAPE 3tLABEL IT 18tS4t23HREMO 

lVE TAPE 4t LABEL IT 18*$ 
VECTOR VALUES NOMAN = S38HOTHERE IS NO MASTER RECORD FOR MAN 

1N0oi8/22HOPULL TAPE 3• LABEL IT 18/51H0RESELECT TAPE 4 AS TAP 
2E 3 AND HANG BLANK TAPE ON 4/16H0THEN PUSH START*$ 

VECTOR VALUES ORDER = $8H0MAN NOol8t43H IS OUT OF ORDER OR NO 
1 MASTER RECORD EXISTS*$ 

VECTOR VALUES TOTALS = Sl3HlCUMo GROSS =FlOo2/12HOCUMo FICA = 
1FlOo2/l!HOCUMo NET = Fl0o2/23HOCUMo WITHHOLDING TAX = Fl0o2*$ 

END OF PROGRAM 

Example .3. 

Chapter III 

Problem: Mortgage Payment. The type of mortgage we consider here is the fixed principal 

type for which each installment consists of an interest payment, a fixed amount to be de­
ducted from the outstanding principal, and an additional amount to be placed in escrow--to 

be used to make insurance and tax payments, 

Assume that a master card file is available containing the following information for 

each mortgage: (1) the mortgage number; (2) amount of outstanding principal; (3) annual 

payment on principal; (4) interest rate; (5) annual escrow payment; and (6) current 

escrow balance, There is also a file of cards available containing the current payment 
record consisting of mortgage number and amount of payment received. The master file and 

current payment file are assumed to be in order of increasing mortgage number. 

The program is to read a card from the current payment record and check to see if it 
is acceptable. A payment is deemed acceptable if it consists of a single normal payment 

(i.e., a payment consisting of a single principal payment, a single escrow payment, and an 
interest payment for a single period) or if it consists of exactly two normal payments and 
any number (i = 0,1,2, ,,,) of principal payments. 

Note 1: To represent the doll~r sign ($) in an alphabetic constant we use the double $$ 
symbol. Thus $$$$ is stored internally as the six character alphabetic constant 

$JJJDJ. (See Section 1.13.) The printing of this constant is called for in the 
statement labeled OVRPY. Using a Cl field code, only the $ (the left most 

character) will be printed. 

Note 2: The current payments are processed until the file is exhausted, The detection of 
the end of file on reading transfers control to the section of the program which 

punches the new master file. 
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START 

CARDS 

c 

PAID 
ESCROW 
CODE 

OVRPAY 

B 

UPDATE 
D 

DIMENSION RECORDCZ00*7l 
INTEGER ltNUMB 
READ FORMAT SIZEtNUMB 
READ FORMAT MASTERtCI=1t1tloGoNUMBtRECORDCitl)oooRECORDCit6)l 
EXECUTE SETEOFoCUPDATE) 
I = 1 
READ FORMAT PAYMTt IDENTtAMOUNT 
THROUGH Bt FOR I = ltltl oGt NUMB 
WHENEVER RECORDCitl) oEo !DENT 

DUE! = REC0RDCit3l+RECORD(It5l+RECORDClt4)*RECORDCit2l 
WHENEVER oABSo CAMOUNT-DUEI) tLo o005 

RECORD CltZ) = RECORDCit2)-RECORDCit3l 
RECORD(It6l=RECORD(lt6l+RECORD(lt5) 
TRANSFER TO CODE 

OTHERWISE 
DUEZ = Zo*DUEI- RECORDCit4l*RECORDClo3) 

END OF CONDITIONAL 
WHENEVER oABSo CAMOUNT-DUEZl oLo o005 

RECORDCit2l=RECORDCitZl-Zo*RECORDCit3) 
TRANSFER TO ESCROW 

OR WHENEVER AMOUNT oGo DUEZ 
THROUGH Ct FOR PAY= RECORDCit3)tRECORDCit3)t 
AMOUNT oLo DUE2+PAY 
WHENEVER oABSo CAMOUNT-DUE2-PAY) oLo o005t TRANSFER TO 

PAID 
TRANSFER TO OVRPAY 

RECORD(It2)•REC0RDCit2)-Zo*REC0RDCit3l-PAY 
REC0RDCit6)=RECORDC!t6)+2o*RECORDC!t5) 
RECORD ( I t 7 l =I • 

OTHERWISE 
PRINT FORMAT REJECTtSSSS tDOLLARtAMOUNT 

END OF CONDITIONAL 
OR WHENEVER RECORDCit!l oGo !DENT 

PRINT FORMAT ORDERtiDENTtDOLLARtAMOUNT 
OTHERWISE 

CONTINUE 
1=1 
PRINT FORMAT NONEtiDENT 

END OF CONDITIONAL 
TRANSFER TO CARDS 
THROUGH Dt FOR I•ltlti oGo NUMB 
WHENEVER RECORDCit7)oGo OotPUNCH FORMAT MASTERtRECORDCitl)ooo 

!RECORD C It 6 l 
R 
RFORMAT SPECIFICATIONS 
R 

VECTOR VALUES SIZE=SI!O*S 
VECTOR VALUES MASTER=SF10o0t5F10•2*S 
VECTOR VALUES PAYMT = SF10e0tF10o2*S 
VECTOR VALUES REJECT = S20HOPAYMENT ON MORTGAGEtF!Oo •3Ho oC 

lltF!Oo2tl9H ·IS UNSATISFACTORYo*S 
VECTOR VALUES ORDER = S26HOPAYMENT CARD FOR MORTGAGEtF10oOt3H 

lt CltF10o2t44H IS OUT OF ORDER OR NO MASTER RECORD EXISTSo*S 
VECTOR VALUES NONE = $41HONO MASTER RECORD EXISTS FOR MORTGAG 

lE NOotFlOoO*S 
END OF PROGRAM 
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Example 4 

Problem: Computation of actuarial commutation columns based on an arbitrary set of mortal­
ity rates and an interest rate, as an external fUnction to be used by another program. 

Analysis: Commutation columns, which are very important tools in actuarial problems, are 

generated very easily by means of the formulas given below. The quantities Mx' Nx' and 

Dx in these formulas occur most often in combination, as in the computation of Px. 

Assuming a population of some initial size (at x = b0 ) (here 1,000,000), ~x is the 

number living at age x (so that £b = 1,000,000), qx is the mortality rate, and 
0 

dx is the number of deaths at age x. Thus dx = qx · £x. The quantity Dx is computed 

by the formula Dx = £x(l + i)-x, where i is the interest rate. Another quantity, ex 

is given by the formula ex = d (l + i)-(x+l). It can be used, for example, to compute 
X C 

the cost of term insurance, since x is the premium for one year term insurance of $1 
"""Dx""" 

at age x. 

The sums Mx and Nx are obtained by the formulas 

00 00 

M ~ c Nx ~ Dy X y y=x y=X 

We note that for some w, we always have q = w l, so that £w+l = 0 (since 

£ 1 = £ - d = £ - £w = 0), therefore w+ w w ~ Dw+l = 0, dw+l = 0, cw+l = 0, and the sums 

for Mx and Nx are actually finite sums. 

The three most useful quantities computed here are (l) Px = Mx/Nx' which is the 

annual premium payable for an entire life for $1 of whole life insurance, (2) Ax = Mx/Dx' 

which is the present value at age x of a whole life annuity of $1, first payment at 

age x. 

Printing of results is under control of an input variable PRINT. Certain relation­
ships must hold between some independently computed values, and these are used as checks 
on the computation: 

Nb /(l+i) 
0 

Px = 1/ax - i/(l+i) 

These cannot be expected to come out exactly equal, because of round-off, but they should 
differ by very little. 
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The Program: 

R 
R SAMPLE CALLING PROGRAM 
R 

READ FORMAT SI2F6o5*St Q(O)tooot QCJ00) 
DIMENSIONCQtLtSMALLDtBIGDtCtNtMoBIGAtSMALLAtPlC120) 

MAD Reference Manual 

EXECUTE COMFCNoiOt0t099oo03tLt SMALLDtBIGDtCtNtMoBIGAtSMALLAt 
1 p. 1) 

INTEGER PRINT 
END OF PROGRAM 

The External Function: 

8 

E 

G 

R COMMUTATION TABLE FUNCTION 
R IF PRINT = OtSUPPRESS PRINTING 

EXTERNAL F.UNCTIONCOtBZEROtOMEGAt I tLtSMALLDtB IGDtCtNt 
1 MtBIGAtSMALLAtPtPRINTl 

ENTRY TO COMFCNo 
INTEGER BZEROoOMEGAoPRINTtX 
LCBZERO) = 1E6 
V = Clo+l) oPo -BZERO 
THROUGH AtFOR X= BZEROtltX oGo OMEGA 
SMALLDCX) = Q(Xl*L(X) 
BJGDCX) = LCXl*V 
V = V/Clo+Il 
CCX) = SMALLDCXl*V 

A LCX+l) = LIX)-SMALLDIXl 
NIOMEGA) = BlGDCOMEGAl 
MCOMEGA) = C(OMEGAl 
THROUGH Bt FOR X= OMEGA-1o-1• X oLo BZERO 
N(X) = NCX+l) + BIGD(X) 
M<Xl = MCX+l) + C(X) 
WHENEVER oABSoCMIBZEROl+NIBZERO+ll-N(BZEROl/Cl+lo)l oGo lot 

1 TRANSFER TO MNERR 
THROUGH G •FOR X = BZEROtltX oGo OMEGA 
BIGACXl = MCX)/BIGDCX) 
SMALLACX) = NCX)/BIGD(X) 
PCXl = MCXl/NCX) 
WHENEVER oABSo CPCX)-lo/SMALLA<Xl + I/CI+lol) oGo 

1 tE-4tTRANSFER TO PERROR 
CONTINUE 
WHENEVER PRINT oEo OtFUNCTION RETURN 

R 
ROUTPUT GENERATOR 
R 

PRINT FORMAT HEADOlol 
VECTOR VALUES HEADOJ = $1Hlt4HJ = F5o4// 

1 4H XtS13t4HQCX)tSl8t4HL(Xl•S15otOHSMALL DCXlt 
2 ss~tHx*s 

PRINT FORMAT F1oCX=BZEROtloXoGoOMEGAoXoQCXltLCXltSMALLDCXloXl 
VECTOR VALUES F1 = $JH0tl3t3E22o9t17*$ 
PRINT FORMAT HEAD02 
VECTOR VALUES HEAD02 = $lHltT5t1HX•Sl1•8HBIG D<Xlt 

1 S16t4HC(X)oS18o4HMCX>•Sl8t4HNCX)tS11•1HX*$ 
PRINT FORMAT F2 t OC•BZEROtltXoGoOMEGA t XoBIGD (X l tC (X) t 

I M(X) oNCXl tXl 
VECTOR VALUES F2 = $lHOtl4t4E22o9tl7*$ 
PRINT FORMAT HEAD03 
VECTOR VALUES HEAD03 = $4H1 XoS11t8HBJG A(Xlt 

1 St3oiOHSMALL A(X)t S15o4HP(X)tSlltlHX *$ 
PRINT FORMAT F3t!X=BZEROtltX oGo OMEGAtXtBIGACXlt 

1 SMALLA<XloP(X)tXl 
VECTOR VALUES F3 = $1HOtl3o3E22o9tl7*$ 
FUNCTION RETURN 
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PERROR PRINT FORMAT PERReP(X)tSMALLAIXltl 
VECTOR VALUES PERR S27H0ERROR ON P CHECK• P(X) = E18•9• 

1 S10•13HSMALL A(X) = E18.9oS10t4HI F5•4*S 
TRANSFER TO G 

MNERR PRINT FORMAT MNERR1 
VECTOR VALUES MNERR1 = $19HOERROR ON MtN CHECK*$ 
TRANSFER TO E 
END OF FUNCTION 

SDATA 
2258 577 414 338 299 276 261 247 231 212 197 191 

192 198 207 215 219 225 230 237 243 251 259 268 
277 288 299 311 325 340 356 373 392 412 435 459 
486 515 546 581 618 659 703 751 804 861 923 991 

1064 1145 1232 1327 1430 1543 1665 1798 1943 2100 2271 2457 
2659 2878 3118 3376 3658 3964 4296 4656 5046 5470 5930 6427 
6966 7550 8181 8864 9602 10399 11259 12186 13185 14260 15416 16657 

17988 19413 20937 22563 24300 26144 28099 3.0173 32364 34666 37100 39621 
44719 54826 72467100000 

3. Symbol Manipulation and Recursive Function Examples 

3.1 Problem: Find the first occurrence of an arbitrary string of characters 
in a given text. 

Analysis: Let N be the number of characters in the text and T(l) T(N) be the tex~ 
stored one character per word. Let L be the number of letters in the string which is 
stored one character per word in W(l) ... W(L). 

READ N, t--,----+i READ L 
Tl' ... , TN Wl' ... , WL 

PRINT 
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The Program: 

ALPHA 

TST 

SCAN 

DIMENSION T(720ltW(30l 
NORMAL MODE IS INTEGER 
READ DATA (VALUE OF Nl 
READ FORMAT TXTtT<IloooT(Nl 
READ DATA (VALUE OF Ll 
READ FORMAT TXToW(l)oooW(L) 
THROUGH SCANt FOR I=ltltl oGo N•L+l 
THROUGH TSTt FOR ~=OtJtj oGEo L 
WHENEVER T(l+jl oNEo Wfj+llt TRANSFER TO SCAN 
PRINT FORMAT OUTtioW<lloooW(Ll 
TRANSFER TO ALPHA 
CONTINUE 
PRINT FORMAT NOT 
TRANSFER TO ALPHA 
VECTOR VALUES TXT=S72Cl*S 
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VECTOR VALUES OUT•SIJHOCHARACTER 13t13H IS ST+RT OF 30Cl*S 
VECTOR VALUES NOT = SHtOSTRING NOT FOUND'*$ 
END OF PROGRAM 

3.2 Problem: Evaluate the recursive function, 

f( 0) l 

f(n) f(n-l)Xn 

Analysis: This is the definition of n! . Although n! can be evaluated directly using a 
THROUGH statement, in this example it will be evaluated using its recursive definition to 
illustrate how recursive functions can be handled in MAD. 

The Program: 

EXTERNAL FUNCTION FACTo (N) 
NORMAL MODE IS INTEGER 
WHENEVER N oEo Ot FUNCTION RETURN 
SAVE RETURN 
SAVE DATA N 
T1 = FACTo(N-1) 
RESTORE DATA N 
RESTORE RETURN 
FUNCTION RETURN Tl*N 
END OF FUNCTION 

In order to use this function the calling program would have to specify a list for use in 
the SAVE and RESTORE statements. The following is an example of a program which uses FACT. 

DIMENSION LIST (100) 
NORMAL MODE IS INTEGER 
SET LIST TO LISTtlOO 
LIST=O 

BACK READ FORMAT INt NR 
PRINT FORMAT OUTt NRt FACTo(NR) 
TRANSFER TO BACK 
VECTOR VALUES IN • SI2*S 
VECTOR VALUES OUT = $4HON= 13•14HN FACTORIAL• lll*S 
END OF PROGRAM 
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3.3 Problem: To find the greatest common divisor of two integers Z and Y. 

Analysis: The greatest common divisor is defined recursively by three equations: 

GCD.(Y,Z) if Y > Z 

GCD. ( z' y) = I y if REM. ( z 'y) = 0 
GCD.(REM.(Z,Y),Y) otherwise 

where REM.(A,B) is the remainder of A/B. The function GCD expects the arguments to be 

found on the temporary storage list as the two most recent additions. The use of the list 

as a parameter list makes the establishment of dummy variables unnecessary. This is less 

efficient than the usual way of defining functions but serves to remove many pitfalls 

encountered in using dummy variables with recursive functions. 

EXTERNAL FUNCTION 
INTERNAL FUNCTION REMoCAtBI• A - CA/Bl*B 
ENTRY TO GCDo 
NORMAL MODE IS INTEGER 
RESTORE DATA ZtY 

WHENEVER Y oGo Z 
SAVE RETURN 
SAVE DATA ZtY 
X= GCDo(O) 
RESTORE RETURN 
FUNCTION RETURN X 
OR WHENEVER REM• CZtY) oEo 0 
FUNCTION RETURN Y 

END OF CONDITIONAL 
SAVE RETURN 
SAVE DATA REMo!ZtYltY 
X = GCDoCOl 
RESTORE RETURN 
FUNCTION RETURN X 
END OF FUNCTION 

Note: When called upon for a value, a function such as GCD must have at least one 

argument (in this example a dummy argument of zero is used), even though the argu­

ment is never called upon. This is because GCD is the name of the function while 

GCD.( ... ) is the value of the function. 

Note: The SET LIST TO statement need be executed once, either in the main program or in 

a subprogram (but before any use of SAVE or RESTORE), since the SAVE and RESTORE 

statements always refer to the current list. 

An example of a program using GCD is 

s 

NORMAL MODE IS INTEGER 
SET LIST TO LIST 
DIMENSION LIST (50) 
READ DATA (VALUES OF M AND N) 
SAVE DATA MtN 
PRINT FORMAT OUT•MtNtGCDo(O) 
TRANSFER TO S 
VECTOR VALUES OUT = $1H0t3HM= •17tS10t3HN= tl7tS10t5HGCD I7 

1*$ 
END OF PROGRAM 
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3.4 Problem: To evaluate Tschebychev polynomials. 

"\nalysis: The Tschebychev polynomial T(N,X) is defined recursively as follows: 

l if N = 0 

T(N,X) ~ I X if N = l 
2xXxT(N-l,X)-T(N-2,X) otherwise 

It is important to understand that when an expression is written as an argument of a 

function its value is computed and stored in a temporary location. It is this location 

(or address) which is actually used as the argument of the function, The implication of 

this use of a temporary location is that often expressions cannot be used as arguments of 

recursive functions. 

EXTERNAL FUNCTION CNtXl 
ENTRY TO TSCHEBt 
INTEGER NtZ 
WHENEVER N tEt 0• FUNCTION RETURN 1• 
WHENEVER N eE• 1• FUNCTION RETURN X 
SAVE RETURN 
SAVE DATA N-2 
Z ::: N-1 
Y = 2o*X*TSCHEBoCZtX) 
RESTORE DATA Z 
SAVE DATA Y 
M=TSCHEBtCZtXl 
RESTORE DATA Y 
RESTORE RETURN 
FUNCTION RETURN Y-M 
END OF FUNCTION 

A Program which uses TSCHEB is 

BEGIN 

SET LIST TO LIST 
DIMENSION LISTC1000) 
READ FORMAT INPUTtNtX 
PRINT FORMAT OUTPUTtNtXtTSCHEBtCNtXl 
TRANSFER TO BEGIN 

RFORMATS 
VECTOR VALUES INPUT=SI6tF10•2*S 
VECTOR VALUESOUTPUT=SIH0t4HN= 16t4H X= F10t2t 

111HOFUNCTION= F15t6*$ 
END OF PROGRAM 
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1. Card Format 

Chapter IV 

MECHANICS OF USING MAD 

"My dear! I really must get a thinner pencil. I can't manage 
this one a bit; it writes all manner of things that I don't 
intend." 

Lewis Carroll, Through the Looking Glass 

MAD Statements are punched according to the following card format: 

Statement STATEMENT Identification Label 

1 10 11 12 72 73 

~Remark and continuation designation column 

80 

1.1 Statement labels may be punched anywhere in Columns 1 - 10. Spaces are not relevant. 

1.2 Column 11 is used to designate a remark (R) or, alternately, a continuation of a state­

ment (0, 1, 2, ••• , 9). The digits used to indicate continuation cards need not be in any 

particular order but there may be at most 10 cards in a statement. 

Please observe that remarks are not statements, and cannot have continuation cards. 
Continuation cards following remarks are considered as continuations of the preceding state­
ment. Diagnostics occurring after remarks refer to the preceding statement. 

1.3 The statement may start anywhere in Columns 12 - 72. With the exception of characters 
enclosed between "$ ", spaces are not relevant. (Spaces may not be relevant even if they 

are so enclosed (see Section 2.15) in format specifications.) 

1.4 The identification information in Columns 73 - 80 is not used by the computer for any 

purpose but printing during translation and is arbitrary. Actually, it is good practice to 
use the first four of the available eight columns as a mnemonic code. Presumably, the last 

four would contain some sequence code. 
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2. Diagnostics 

During the process of translation many kinds of errors in the formation of statements 
and the allocation of storage can be detected. To understand this error detection and the 

subsequent printing of diagnostic comments some knowledge of the structure of the translator 

is helpful. The translation from statements to machine code is accomplished in three major 

sections: 

(1) The decomposition of the original statements into arrays of binary operations 

and pseudo-operations. 

(2) The analysis of all of the declarative information in order to allocate variable 

storage and identify the arithmetic types (i.e., modes) of variables, 

(3) The combination of the information produced from (1) and (2) to translate the 

arrays to relocatable binary programs, 

When an error is encountered in one of these sections the translation does not proceed to 

the next section. However, insofar as possible, the entire set of statements is processed 
through the section in which the error is detected and therefore more than one error may 

be detected. It should be understood then, that not all detectable errors .may be found 

because: 

(a) They are detectable only in a later stage of the translation. 

(b) Some types of errors make it impossible to attempt further detection within 

the section in which it occurs. 

(c) One error may actually obscure another error. 

Occasionally, an er~or in one statement may be such that it causes the translator to misin­

terpret a second statement, thus giving an error indication even though no error exists in 

the later statement, 

The printed diagnostic comment may very often have an alternative or ambiguous form. 

This results from the fact that it is frequently not possible to determine what form was 
intended--merely that the present structure is not admissible--and therefore some of the 

alternative possibilities are suggested by the comment. 

A list of vaTiables used in the program, but to which only one reference is made, is 

printed out for each MAD program, This list does not include any variables appearing in 

PROGRAM.COMMON, ERASABLE, DIMENSION, VECTOR VALUES, or EQUIVALENCE statements. If READ DATA, 

PRINT OCTAL RESULTS, PRINT BCD RESULTS, READ AND PRINT DATA, or PRINT RESULTS are used in 

the program, these variables are simply printed in the list, but if none of these five 

types of statements is used in the program, then the variables appearing in this list are 

all assigned to the same location, under the assumption that they are not purposely used 

for anything except perhaps redundant labeling of statements. This list has proven to be 

a valuable debugging aid, since misspelled names almost invariably show up on this list. It 

should therefore be checked carefully whenever it appears. 

3. Structure of Subroutines 

The information in this and the following sections of Chapter IV is developed in much 
greater detail in other Computing Center write-ups, However, the following sections should 

be sufficient for the general use of MAD, 
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Subroutines which are written for use by MAD programs--whether written in MAD as 
functions or in UMAP--must be relocatable and .must operate from the calling sequences the 
translator produces. Consider, for example, the function call--FN.(A,B,C)--which might 

appear in the body of a statement. Assume that B is an array which has an associated 
dimension vector BDIM. Using UMAP notation for illustrative purposes, the calling 
sequence produced would be: 

TSX FN,4 
PAR A 
BLK B, 0, BDIM 
PAR C 

Input-output routines utilize two types of parameters--the regional and single variable 
types .. In addition a format specification location is given. The parameter operation code 
used is IOP and the end of the parameter list is indicated by an IOP operation with a 

blank address. Thus the statement 

READ FORMAT FMT, BETA, X(l) ••• X(lOO), K 

would produce the calling sequence 

TSX .READ,4 
IOP FMT 
IOP BETA 
IOP X-l,O,X-100 
IOP K 
IOP 

On occasion it is useful to use the regional notation in subroutines which are not in 

the input-output category, for example, G.(GAMMA, DELTA, Z(lO) •.. Z(20)). The calling 

sequence would be 

TSX G,4 
PAR GAMMA 
PAR DELTA 
BLK Z-lO,O,Z-20 

It is important to notice that in this example, as well as in the first, the parameters 

--if executed as instructions--would produce no operation. 

It is beyond the scops of this manual to discuss the structure of relocatable programs 
(see Executive System write-up). It is sufficient to say that a relocatable program must 

contain--in addition to the actual instructions in the program--information as to which 

addresses must be relocated at the time of loading for execution and which addresses must 
not. In addition, the first card (or record) of such programs must contain information 

about the size of the program, the number of subroutines it calls on, the amount of storage 
it will share with other subroutines, the location of the list of subroutines it calls on, 

and the names by which the routine itself is referred to. The symbolic names of the sub­

routines called on must appear as the first words after this information. 

The execution of MAD programs requires the use of a loading routine to relocate and 

store the program and subroutines. Also, there are certain subroutines which may be auto­

matically called for by a MAD program without an explicit reference to them in the source 

program. 
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External functions are produced in a form compatible with other subroutines, except 

that no attempt is made in external functions to save and restore any high-speed registers, 

such as index registers, sense indicators, etc. 

4. System Subroutines 

The use of the following names for functions (subroutines) should be avoided except 

where the operation is the one indicated here. 

SYSTEM - Entry to this routine causes a return to the operating system. The 

END OF PROGRAM statement produces a call for this routine. 

ERROR - Entry to this routine also causes a return to the operating system. 

However, if a dump of storage was requested of the operating system 

such a print of storage will be produced before the return to the 

system. The ERROR RETURN statement may produce a call for this 

routine. 
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Allowable Abbreviations in MAD 

"That is not said right," said the caterpillar. 
"Not quite right, I'm afraid," said Alice timidly; 
"some of the words have got altered." 

Lewis Carroll, Alice in Wonderland 

Abbreviations may be used for the key words or phrases of most of the commonly used 
statements and declarations in MAD. These abbreviations are listed below. The version of 
the program produced by the MAD translator as output will have the full phrase instead of 
the abbreviation, for easier reading. The form of the abbreviation is always the same; 
viz, the first and last letter of the phrase, with a prime ( 1 ) between. An example of the 
use of these abbreviations is: 

W'R X .L. Y, T'O ALPHA 
W'R X .E. Y+l 

z = J 
O'R X .E. Y+2 

z J+2 
O'E 

z = J+3 
E'L 

The following is the list o 
not all statements and not all d 

B1E BACKSPACE FILE OF TAPE (not BACKSPACE RECORD OF TAPE) 
BIN BOOLEAN 
C1E CONTINUE 
DIR DEFINE BINARY OPERATOR (not DEFINE UNARY OPERATOR) 

D1N DIMENSION 
E1L END OF CONDITIONAL 
E1N END OF FUNCTION (not EXTERNAL FUNCTION or ERROR RETURN) 
E1M END OF PROGRAM 

E10 ENTRY TO 
EIE ERASABLE (not EXECUTE or EQUIVALENCE) 
F1F FOR VALUES OF 
FIT FLOATING POINT 

F 1E FORMAT VARIABLE (not FUNCTION NAME) 
F 1R FULL SYMBOL TABLE VECTOR 
FIN FUNCTION RETURN 
I 10 IF LOAD POINT TRANSFER TO 

I 1R INTEGER 
I 1 N INTERNAL FUNCTION 
L1F LISTING OFF 
LIN LISTING ON 

L1T LOOK AT FORMAT 
M1R MODE NUMBER 
M1E MODE STRUCTURE 
N1S NORMAL MODE IS 

NIN NORMAL MODE IS BOOLEAN 
NIT NORMAL MODE IS FLOATING POINT 
N1E NORMAL MODE IS FUNCTION NAME 
N1 R NORMAL MODE IS INTEGER 
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N1 L 
0 1R 
O'E 
P1 R 

P1T 
P 1S 
P1N 
R1A 

R1E 
R1T 
R1F 
R'N 

s•s 
S1A 
S1N 
s•o 
S1E 
S 1L 
S1R 
T1H 

T 10 
U1E 
v•s 
W1 R 

W1E 

NORMAL MODE IS STATEMENT LABEL 
OR WHENEVER 
OTHERWISE 
PARAMETER 

MAD Reference Manual 

PRINT FORMAT (not PRINT COMMENT or PUNCH FORMAT or PRINT ON LINE FORMAT) 
PRINT RESULTS (not PRINT BCD RESULTS or PRINT OCTAL RESULTS) 
PROGRAM COMMON 
READ AND PRINT DATA (not READ DATA or RESTORE DATA) 

READ BINARY TAPE (not READ BCD TAPE or REWIND TAPE) 
READ FORMAT 
REFERENCES OFF 
REFERENCES ON (not RESTORE RETURN) 

SAME SEQUENCE AS 
SAVE DATA 
SAVE RETURN 
SET LIST TO 

SET LOW DENSITY TAPE (not SET HIGH DENSITY TAPE) 
STATEMENT LABEL 
SYMBOL TABLE VECTOR 
THROUGH 

TRANSFER TO 
UNLOAD TAPE 
VECTOR VALUES 
WHENEVER 

WRITE BINARY TAPE (not WRITE BCD TAPE) 
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Introduction 

APPENDIX B: 

ADVANCED USES OF DIMENSION INFORMATION 

"This is called teamwork. I furnish the brains. You 
furnish the muscles, the aches and the pains." 

Dr. Seuss 

There is a simple formula which gives the relationship between the linear subscript of 
an element and its matrix subscripts. In what follows, assume that in each array the base 

element (i.e., the element with all subscripts equal to 1) has linear subscript b. For 
example, if b = 6, A(l,l) would coincide with A(6), A(l,2) would coincide with A(7), 
etc. In general, if A is an m x n array, and A(i,j) coincides with A(r), then 

r = n(i - 1) + (j - 1) + b. Thus, if in the example b = 6, i = 1, j = 2, then 
r = n(l- 1) + (2- 1) + 6 = 7, so A(l,2) coincides with A(7). If B is a three­
dimensional m X n X p array, and if B(i,j,k) coincides with B(r), then we have the 
formula 

r = np(i - 1) + p(j - 1) + (k - 1) + b 

Since r is a linear subscript, it must not assume negative values. By letting b 
take on larger values,, one can allow i, j, and k to assume zero (and even negative) 
values. We may, for example, wish to determine the value that b should have to allow i 
to vary over the range (-10 •.. 20) 
array A. To do this we may picture 
is to coincide with A(l), so that 

n = 16 (the number of columns), since 
j = 0, we have 

and j to vary over the 
A(-10,0) as the "first 

A(-10,1) will be A( 2), 

15 - 0 + 1 = 16, and, 

range (0 
element". 
etc., then 

for r = 1, 

1 16(-10 - 1) + (0 - 1) + b 

b 178 

This means that A(l,l) is really A(l78), and, for instance, A(O,l5) 

16(0 - 1) + (15 - 1) + 178 = 176. 

The Dimension Vector 

... 15) for an 
If this element 

we note that 

i = -10, and 

A(l76), since 

During the computation it is necessary that the program which handles array subscripts 

be able to establish the correspondence between the array subscripts and the linear sub­
script. Toward this end, certain information about the array A is stored in a separate 
vector, say in D(k), D(k + 1), ... , • The necessary information, as seen from the 

formula 

r = n(i - 1) + (j - 1) + b 

consists of the fact that A is 2-dimensional, together with the values of b and n. 
For a 3-dimensional m x n x p array, the fact that it is a 3-dimensional array is 

needed, and the values of b, n, and p, since 

r = np(i - 1) + p(j - 1) + (k - 1) + b 

Note that the number of rows, i.e., the span of the first subscript, is not needed. In 
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general, the "dimension vector" contains the following information: 

D(k) no. of subscripts (normally greater than l) 

D(k+l) 

D(k+2) 

D(k+3) 

b 

no. of columns, i.e., span of the second subscript 

span of the third subscript 

(The starting index k is arbitrary.) When the "standard" dimension declaration is used, 

such as 

(l) DIMENSION A((-10 ... 20) * (0 ... 15)) 

this dimension information (with b = 178) is automatically preset in an internally 

created vector named .MODEl, which is also automatically declared to be of integer mode 

and which is itself dimensioned high enough automatically. In addition, to allow the sub­

routine SETDIM to check that the new settings of subscript ranges do not overflow the 

storage allocated to the array, the amount of storage for the array is included in the 

dimension information in the "decrement part" of D(k). In UMAP notation, D(k) would 

have the form 

PZE 2, 497 

if the array is dimensioned as in (l) above, since 31 x 16 496, and one extra location 

is allowed for A(O). We shall indicate this pair of numbers here by using brackets, e.g., 

[2,497]. When the array is used as an argument in a call for an external function, the 

address of the dimension vector, D(k), is included in the same parruneter word in the call, 

so the function (i.e., subroutine) will automatically have access to the dimension inform­

ation. 

Naming the Dimension Vector 

Sometimes it will be useful to be able to modify the dimension information during the 

execution of the program. The subroutine SETDIM allows a certain amount of modification, 

but occasionally it is convenient to change b, or even the number of subscripts. One 

might also wish to base decisions on the current values of D(k), D(k+l), etc. It is 

therefore useful to be able to provide an ordinary MAD symbol to be used instead of .MODEl, 

so that references ·to it may be made in other parts of the program. This is accomplished 

by following the dimensioning values by a comma and the name (possibly subscripted with a 

constant integer subscript) to be used as the name of the dimension vector. For example, 

one might write 

DIMENSION V(lO * (3 ... 20), VDIM) 

In this case, one would automatically have preset values corresponding to these assignments: 

VDIM(O).- [2, 181] 

VDIM(l)- -1 

VDIM(2)- 18 
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During execution of the program, one could then interrogate or manipulate this informa­
tion in the usual way. Moreover, VDIM itself will be automatically dimensioned high 
enough (in this example, 2) to have storage allocated to handle this pre-set information. 
The subroutine SETDIM may be used as before to make the usual changes. 

Occasionally, it will be useful to provide dimension information directly, via 
VECTOR VALUES or READ DATA or READ FORMAT statements, and bypass all of the automatic 
features of the standard declaration. In this case, one may declare only the total amount 
of storage desired for the array, together with the name of the dimension vector, such as: 

DIMENSION A(lOO, ADIM) 

Now ADIM is regarded as the head of the dimension vector for A, and its mode will auto­
matically be integer, but no storage will be allocated for it (so that it needs a separate 
dimension declaration of its own), and no values will be pre-set into it. Dimension 
information may be stored explicitly into ADIM by a VECTOR VALUES declaration, by reading 
in values as data, or by computation. 

Example: 

The calling program for Example 5 (Chapter III) may be reprogrammed as shown below. 
The dimension vector for the A array is called AD, and two of its three values are 
preset in a VECTOR VALUES declaration. The third element (number of columns) is assigned 
as a result of data input. Use is made of an EQUIVALENCE declaration to relate N and 
AD(2). 

DIMENSION A(500,AD) 
VECTOR VALUES AD = 2 1, 0 
EQUIVALENCE (N,AD(2)J 
INTEGER N 
FORMAT VARIABLE N 

RTHE FOLLOWING STATEMENT READS IN THE 
RVALUES OF N AND THE MATRIX A, PROVIDING 
RTHEY ARE SO IDENTIFIED ON THE DATA CARDS, 
RTHUS ALSO SETTING UP THE DIMENSION 
RINFORMATION FOR A. 

READ READ DATA 
EXECUTE TRANS.(A,N) 
PRINT FORMAT MATRIX, A(l,l) . , , A(N,N) 
TRANSFER TO READ 
VECTOR VALUES MATRIX = $1HO, 1N1 Fl2.6*$ 
END OF PROGRAM 

In the one-dimensional case, one normally writes only the highest subscript to be used, 
as in the declaration 

DIMENSION V(lOO) 

and no dimension vector is provided at all. It is possible to have the automatic provision 
of a word containing the number of subscripts (in this case, 1) and the total amount of 
storage allocated (in this example, 101, for V(O), ... , V(lOO)). This is accomplished 
by writing one of the forms: 

DIMENSION V(lOO*) 

DIMENSION V(lOO*,VDIM) 
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In the first form the internally created symbol .MODEl is used to name the one-word 

dimension vector, which contains [1, 101]. 

If more than one declaration appears for some variable, the largest amount of storage 

so declared is allocated, but a check is made that only one dimension vector has been 

named. In the automatic case, each declaration is associated with a different subscript 

for .MODEl, so multiple definitions of this kind cannot be allowed for the same array. 

If there is no dimension vector, such as for a vector dimension declaration, no check is 

made. 

Access vectors 

Each use of the subscript notation A(i,j) where 

evaluation of the expression n(i - l) + (j - l) + b, 

in A and b is the base point, i.e., A(l,l) = A(b). 

A is an m x n array, involves 

~orhere n the number of columns 

A method which is much more effi-

cient is to preset or compute at the beginning of the program, an auxiliary or "access" 

vector: V(l) = b- l, V(2) = b- 1 + n, V(3) b- l + 2n, ... , V(m) = b- l + (m-l)n. 

Note that the ith element in the vector V is the linear subscript 
of the element in A immediately preceding the nrst element in the ith row. 
To refer to A(i,j) one now writes A(V(i) + j). The base point and number of 
columns may be changed during computation, but each time either is changed the 

elements of V must be re-computed. The usual subscript restrictions still 

hold, i.e., 

and b = 1, 

i 2 0, (V(i) + j) 2 0. For example, if 

then V(l) = 0, V(2) = 3, V(3) = 6, and 

A is a 4 X 3 matrix (m = 4, n = 3) 

v(4) = 9. The concept of an access 

vector may be extended for use with three or hi.gher dimensional arrays. For a three-dimen­

sional array one would need a two-dimensional access array which, in turn, could make use 

of its own access vector. 

Stora~ Functions 

In order to conserve storage, it may be desirable to store only one half of a syrr@etric 

matrix, or an upper (or lower) triangular matrix, etc. Perhaps only the non-zero elements 

of a sparse matrix might be stored. For such arrays, it is necessary to use a subscription 

subroutine other than the standard one supplied by MAD which expects to find the entire 

matrix stored by rows (in the two-dimensional case). Such special subscription subroutines 

may be written as any other INTERNAL or EXTERNAL FUNCTIONS in MAD or in UMAP, as usual. 

The arguments must be the array name, followed by the n subscripts (integer expressions) 

in the usual order. The value of the function which is to be computed is the linear sub­

script to be used to obtain the value desired. For example, if one wished to store only 

the upper triangle (plus diagonal) of an upper triangular two-dimensional array (by rows, 

starting at A(2)), the subscription function F could be defined as follows: (Assume a 

constant zero stored at A(l)) 

1, if i > j 
F. (A,i,j) (2(n+l)-i)(i-l) + J. 

2 - i + b, if i .s;;, j 

where n is the number of columns in the matrix A, and b is the base point. Of course, 

if n is not a constant, it will have to be made available to the subscription subroutine, 

probably via PROGRAM COMMON, as will the base point b, if used. It will automatically 

be available, of course, if the subroutine is written as an INTERNAL FUNCTION. Note that 
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in the case i > j, the value of F.(A;i,j) is the linear subscript 1 with the corre­
sponding value A(l) = 0. 

In order to notify MAD that such a subscription function is to be used, one merely 
inserts the name of the function as the first entry of the dimension vector of the appro­

priate array, moving the number of dimensions, etc., down by one in the dimension vector. 
Thus, the above example might be indicated as follows: 

DIMENSION C(lOO,ADIM) 

VECTOR VALUES CDIM = F.,2,2,10 

if there were ten columns. 

The following is a MAD definition for F given as an INTERNAL FUNCTION assuming it 
is embedded in the same program with the two preceding declarations. (Some of the state­
ments employ abbreviations which can be found in Appendix A.) 

INTERNAL FUNCTION F.(A I,J) 
EQUIVALENCE (CDIM(l),B),(CDIM(3),N) 
IIR I,J,B,N 
W1R I .G. J 
FUNCTION RETURN 1 
0 1E 
FUNCTION RETURN 

1 (2*. (N+l) - I)* (I-l)/2+J-I + B 
E1L 
END OF FUNCTION 

Note that the "highest subscript" of 100, which appears in the DIMENSION declaration 
for A, refers to the highest subscript produced by F, i.e,, the storage actually used. 
The dimension information (i.e., 2, 2, 10) describes the array as it would be if the entire 
array were in storage and no storage function F were used. Thus, F uses subscripts and 

dimension information related to the external version of the array, and it produces a 

linear subscript related to the actual (reduced) storage of the array. Although dimension 
information could always be computed or brought in as data instead of via a VECTOR VALUES 

declaration, the one exception to this is now the name of the subscription function. If 
used, it must occur as the first entry in a VECTOR VALUES declaration, and it must be 
followed immediately by at least one integer in the same declaration. It should be under­
stood that if this feature is used, references to matrix elements by means of subscripts 
are made as if the matrix were stored as originally described in this manual. Thus, sub­
routines do not need to kn0w whether a calling program is or is not using such storage 
conservation functions. 

The subroutine SETDIM may be used as before to make the usual changes in the 
dimension information. 

The Library Storage Functions SYMM and TRANSP 

Two special subscription functions are avai~able from the subroutine library: 

(a) SYMM will handle two-dimensional symmetric arrays for which only the upper 

half (plus diagonal) is stored by rows. 

(b) TRANSP will handle a two-dimensional array stored by rows (in full) but 
considered to be in transposed form. In other words, if a matrix B is 

designated as having subscription function TRANSP, then a call for B(6,2) 
will, in fact, produce the linear subscript of B(2,6). 
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Both SYMM and TRANSP automatically have access to the dimension vector (including 

the base point), so no provision needs to be made for putting any information in PROGRAM 

COMMON, for example. In fact, if the subscription function is written in UMAP, it may 

be able to use the fact that MAD provides the address of the dimension vector in the 

decrement part of the parameter which contains the address of the array, in this case the 

first parameter. Note, however, that the dimension information has been moved down by one 

because of the presence of the name of the subscription function; and this must be accounted 

for in any references to the dimension vector. 
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APPENDIX C: 

THE DEFINITION OF OPERATIONS 

"It is a bad plan that admits of no modification." 

Publelius 

(This write-up replaces the appendix, The Define Facility in MAD, in some 

previous MAD manuals. This is an extended version which differs in 

some details from the facility described earlier.) 

Introduction 

It is possible, when using the MAD language, to define new operations or redefine 
existing operations. This allows the translator's built-in ability to decompose expressions 

to be used when expressions are written involving these new definitions. As a prelude to 
introducing the statements for expressing such definitions the following observations are 
made to help motivate the form they will take. 

(1) In writing a translator (or any large program which is subject to frequent change) 
it is expeditious to include as much of the algorithm as possible in the form of tables 

which are then interpreted during the execution of the translator program. Changing large 

portions of the algorithm can then be accomplished by merely changing independent table 

entries as opposed to altering a highly interrelated maze of executed instructions. 

(2) A basic component of mathematically oriented languages is the expression. The 

principal virtue of this notational construction is that, regardless of complexity, it is 

formed in a very regular (in fact, recursive) way from operations that are usually binary, 

in the sense that two operands are involved. One of the primary tasks of a translator is 

to decompose expressions into their constituent operations. The translation of expressions 

to machine instructions can then be accomplished by simply producing for every operation 
its equivalent in machine language. 

(3) Since the operands in binary operations may also be expressions, the computation 
of an expression may require the temporary storage of the values of subexpressions. For 
instance, in (a + b) x (c + d) the values of the factors must be computed first and 
temporarily stored before the multiplication can be done. One of the most valuable features 

of a statement-type language is that these storage steps are implicit and need not be 

written by the programmer. Whenever possible, in the interests of efficiency, the arith­
metic registers should be used for temporary storage. Thus, in the above example, (c + d) 

could be computed and stored and then (a + b) computed. The latter result need not be 
stored, but could be transferred to the Multiplier-Quotient register in preparation for 
the multiplication. 

(4) Variables can be categorized by their range. The pre-defined ranges (i.e., sets 

of possible values) of variables in MAD are floating point, integer, Boolean, function name, 

and statement label. The type of range of a variable or constant is called the mode of the 

variable or constant. It is common and convenient practice to distinguish operations only 

by the modes of the operands. Thus, the same operator, +, is used to designate both the 

addition of integers and the addition of floating point numbers. 
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(5) A binary operation is a single valued function of two variables; that is, given 

two operands one result, r 1 , is produced. It is sometimes useful, however, to consider 

this basic function as a special case of an operation where two results are produced, 

mainly to facilitate the treatment of mode conversions. If (a+ b) is to be computed, 

where a is an integer and b is floating point, the preliminary "operation" of conver­

sion must be undertaken to make theoperands compatible for addition. This conversion can 

be viewed as an operation with two outputs or results: r 1 , a value for ~ (possibly 

unchanged from its original form) and r 2, a value for 12. (possibly unchanged from its 

original form). Operations requiring only one operand (unary operations) are in the special 

case category, also, as are the substitution or assignment "operatj_ons." (The latter, 

arising from constructions such as a ~ b, are really unary, identity operations where 

the single result is given a name. The name, a, is certainly not an operand in the usual 

sense, since no value from its range was involved in the operation, nonetheless it is con­

venient to regard such an operation as having two operands and no result.) 

(6) Operators have a precedence (or rank) associated with them. For example, X has 

a greater precedence than + (i.e., it is executed before +) in the expression 

(a+ b x c). One way to specify the precedence of an operator is to relate it to the 

precedence of an operator that has already been defined. Using P( ) for "precedence of," 
110 II t II II p1 for he new operator, and op2 for an existing operator, the declarations 

P(op1 ) < P(op 2), 

or P(op1 ) > P(op 2 ) 

assign a precedence to op1 . 

In the latter two cases, when one of the inequalities is used, it can be understood 

that the precedence assignment to op1 is such that there is no other existing operator, 

such that 

P(op1 ) ~ P(op3) < P(op 2), 

or P(op1 ) 2 P(op3) > P(op 2). 

Much of the rationale for permitting the definition of operations is contained in 

items (l) - (3), and some of the necessary statement constructions arise from the consid­

erations of items (4) - (6). Although internal and external functions may be used to 

define operations, these schemes do not take advantage of the built-in capacity of the 

translator to translate expression structure (or phrase structure). The regular formation 

of expressions permits the use of very complex notation without the need of explicitly 

writing the intermediate storage steps that are required. Whenever the operation is 

(1) local (i.e., a component of an expression), (2) can be expressed in relatively few 

machine instructions (these will be included as open subroutines), and (3) the operator 

can be given a precedence relative to the other operators, then the operation definition 

will be useful. The basic scheme is to write, first, the name of the operator and its 

relative precedence, second, the mode structure of its operands and results and, third, 

the machine instructions which constitute the definition of the operation. 

Operations must be defined before the first occurrence of the operation in a statement. 

The term "before" here is in the sense of physical order rather than order of execution, 
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since operator definitions are, of course, relevant only at the time of translation. Notice 
that this implies that the same operation may have different meanings at different points 
in the program. Also, since the order of appearance is not necessarily the same as the 
order of execution, the different meanings may be interspersed in computation. The preced­

ence of existing operations cannot be changed. Also the same symbol cannot be defined to 

be both a unary and binary operator even though this situation does exist with certain 

built-in operations. 

Operator-Mode Structure 

In the MAD translator expressions are decomposed into a set of binary operations (or 
special cases thereof) where the operands may be constants, variables, or the results of 
other expressions (i.e., temporary storage cells). The expression (a+ b) X (c +d) 

written as a set of distinct operations is 

T1 .... a + b 

T2 +- c + d 

T3 + T1 X T2 

The "triples", as the rightmost three columns are called, are processed in top-to­

bottom sequence. The modes of the operands are determined, and then the operator and these 

two m9des are used as an argument in a table look-up to find the sequence of machine instruc­

tions that are equivalent to the operation. Actually, these three items are first converted 

to numeric form before the table is consulted. The numeric codes for the pre-defined modes 

are: 

0 Floating point 
1 Integer 

2 Boolean 

3 Function name 
4 Statement label 

Three additional modes The operators are represented (5, 6, 7) may be defined. 
internally by an integer. is represented by 001 and * by For example, the operator + 
003; a complete list is given in Addendum I. Assuming that a and b are of integer 

mode, the argument for the table look-up obtained from the first line above would be 00111, 

writing the numbers in operator-mode a-mode b order. In the translator the operator-

mode table (OPMD) is a table with single word entries which are packed according to the 

following format. 

s----8 9-1112-1415-1718-20 21--------35 

Operator no. mode mode mode mode address where instruc-
a b r2 rl tion sequence begins 

a 

The built-in operations (i.e., pre-defined) of the MAD language are the initial values 
of this operator-mode table. The result of the table look-up, an address found in the f 2 
section of an entry, refers to a machine instruction sequence which is stored in the TMTX 
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region. Defining new operations consists of augmenting or altering these existing tables. 
Considering then, that there is a set of already defined arguments and corresponding 
functions, the modification can take four forms: 

of 

(1) The addition of new operator-mode arguments and corresponding instruction 
sequences. 

(2) The addition of new operator-mode arguments which correspond to already­
defined sequences. 

(3) The addition of new sequences which correspond to either existing operators 
with new modes or existing operator-mode arguments. 

(4) The assignment of an existing sequence to correspond to either existing operators 
with new modes or existing operator-mode arguments. 

It is not possible to alter the precedence of the predefined operators. 

The MAD statements for these four cases are shown below. The statement of precedence 
the defined operator is included and the necessary variation for unary operations is 

shown. Examples are given below. 

{UNARY } [def~~ed] {SAME AS } [exi~;ing] (1) DEFINE BINARY OPERATOR , PRECEDENCE LOWER THAN 
HIGHER THAN 

MODE STRUCTURE [mode] no. [mode] no. [def;~ed] [mode] no. 

(defining sequence) 

{UNARY } [def~~ed] {SAME AS } [exi~;ing] (2) DEFINE BINARY OPERATOR , PRECEDENCE LOWER THAN 
HIGHER THAN 

MODE STRUCTURE [mode] no. [mode] no. [def~~ed] [mode] no. , SAME SEQUENCE 

AS [mode] no. [exi~;ing] [mode] no. 

(3) MODE STRUCTURE [mode] no. [mode] no. txi~~in, [mode] no. 

(defining sequence) 

(4) MODE STRUCTURE [mode] no. [mode] no. rxi~~in~ [mode] no. , SAME SEQUENCE 

AS [mode] no. [exi~;ing] [mode] no, 

The MODE STRUCTURE statement may be varied to accommodate the special cases: 
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(1) The mode number to the left of the operator may be omitted when the operation 
is unary. 

(2) The sign and the preceding mode number may be omitted when the operation 
is the substitution or assignment type. 

(3) When the operator-mode combination is such that a "conversion operation" is 

called for, the modes of the two operands after conversion~ required to the 
left of the sign; i.e., 

[mode] 
no. [mode] 

no. 

Note that the form of the MODE structure statement allows the use of parameters 

in place of integer mode numbers. For example: 

PARAMETER MODE6(6),MODE(5) 

MODE STRUCTURE 1 MODE*MODE6 

(4) The defined operator must conform to MAD operator notation--i.e., an existing 

single symbol operator or an extended symbol of the form 

fining Sequences 

r 6 or fewer J 
Lalphabetic char. , 

The instruction sequences which correspond to the operations are written and ultimately 

key-punched in a. form that is essentially th~t of assembly language without a location field, 
The three letter mnemonic code for the machine operation appears in columns 8 - 10 of an 

input card; an asterisk (*) in column 11 indicates an indirectly addressed instruction; and 
the symbolic forms of the address, tag, and decrement appear in that order starting in 
column 16. These latter three items appear separated by commas and without any intervening 
spaces. The effect of blanks in one of the three instruction parts after the operation may 
be indicated by adjacent commas or by the terminal blanks in the instruction. The mnemonic 
designations of the permissibl~ machine instructions are listed in Addendum II. In addition 
to.machine instructions, three pseudo instructions may appear. It should be kept in mind 
that these instructions are not executed, but are simply patterns for the sequences which 
are included in the object program that the translator produces. As patterns, the trans­

lator must interpret every instruction in a selected sequence to determine, first, if it 

is a machine instruction (as opposed to a pseudo-instruction) and should therefore be in­
cluded in the object program. Second, the parts of the instructions must also be inter­
preted so that the addresses, tags, and decrements appropriate for the particular context 
can (in the object program) replace the codes that appear in the defining sequences. The 

pseudo-instructions control the order of interpretation (JMP), specify the method of termi­

nating the interpretation (OUT), and physically end sequences (END). Starting with the 
actual machine instructions, the permissible symbols in the address and decrement parts are: 
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FORM 

A 

A+ l 

B 

B + l 

DT 

DT + l 

T 

LOC ± [integer] 

[variable name]±[integer] 

[constant] 

[function name] 

± [integer] 

MAD Reference Manual 

MEANING 

address of the left (A) operand. 

address of the next address in sequence. 

address of the right (B) operand. 

address of the next address in sequence. 

address of the lower of. two consecutive temporary 
storage cells. 

address of the higher of two consecutive temporary 
storage cells. 

address of a single temporary storage cell. 

address where the instruction including this 
symbol will be stored in the object program, 
with an unsigned integer added or subtracted. 
The integer is taken modulo 128. 

address of the designated variable, 
negative integer less than 215 
subtracted. The [variable name] 
a dummy variable. 

with a non­
added or 
cannot be 

address of the designated constant which is written 
in any of the forms permitted in MAD. 

address of the entry to the designated function. 
The terminal period must be included as part of 
the name. 

The integer is taken modulo 128. 

The tag portion of the instruction may be any of the integers 0, 1, 2, ... , 7 with 

oxception--the STR instruction may not have a non-zero tag. 

As an aid in understanding the interpretive process it is useful to further describe 

the meaning of the symbol T (and DT). The most direct method for assigning temporary 

storage addresses is to reserve an element from a linear array T for every operation in 

an expression. Thus, the example (a+ b) x (c + d) when written in triple form would 

require the assignment of three locations because there are three operations involved: 

T1 a+ b 

T2 c + d 

T3 Tl X T2 

Since, whenever possible, the arithmetic registers are used for temporary storage, 

operation sequences can be considered to terminate with the result(s) left in the arith­

metic registers. If a result is not immediately used in the next operation, it must then 

be stored. The first step in the translation of the second operation would produce an 

instruction to store the result(s) of the previous operation into T1 . Thus, the symbol 

T, when used in translating the ith instruction, can be regarded as representing the 

name Ti-l' Actually, it would be uneconomical to reserve a temporary storage cell for 

every operation in an expression since many would not be required due to the "connected" 

character of consecutive operations. 'I'herefore, the subscript in the name Ti-l does 

not correspond to an actual position in a linear array. The symbol DT has the same inter­

pretation except that it is the name of the first of two consecutive storage elements; 

DT + 1 is the name of the second of these consecutive locations. Temporary locations are 

reused whenever possible. 
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The controlling pseudo-operation JMP causes the selection of one of two possible 
successors in the interpretive process, depending on the value of one of six Boolean 

variables. The values of these variables vary during the translation process depending 

upon (1) the relation between operands and (2.) the conditions when terminating the inter­

pretation of a sequence. More specifically, these variables are designated in the tag 

portion of a JMP pseudo-instruction and are the following. 

AT 1 if the A operand is the result of the operation represented by the 
preceding triple, otherwise D. 

BT 1 if the B operand is the result of the operation represented by the 

preceding triple, otherwise D. 

AC 1 if, during the execution of the instructions, a number would be in the 

accumulator at this point, otherwise D. 

MQ 1 if, during the execution of the instructions, a number would be in the 

multiplier-quotient register at this point, otherwise D. 

LA 1 if, during the execution of the instructions, a number would be in the 

logical accumulator (P bit instead of sign bit) at this point, other­
wise D. 

(blank]= 1 

During the interpretation of the JMP instruction, the next instruction is given by 

the address if the current value of the Boolean variable given in the tag is 1, otherwise 

the address of the next instruction is taken from the decrement. These addresses are 

designated relative to the current address in the translator and are of the form *± (non­
negative integer]. 

The terminal pseudo-operation OUT completes the interpretation of a sequence and 

also designates, by a code in the address part, the final state of the arithmetic registers. 

There are eight possible codes. 

tion. 

AC during execution a number would be left in the accumulator (arithmetic) 

MQ during execution a number would be left in the multiplier-quotient register 

LAC during execution a number would be left in the logical accumulator 

ACQ numbers would be.left in the accumulator and multiplier-quotient registers 

SQ if there would be numbers left in the accumulator and multiplier-quotient 

at the start of this operation, they would still be there (status quo) 

Z no numbers would be left in the arithmetic registers 

AAC the A result would be left in the accumulator 

BAC the B result would be left in the accumulator 

The last two are necessary when two results are obtained, as in a "conversion" opera-

When two operands are incompatible, the conversion merely transforms the operands to 

an acceptable form; it does not cause the specified operation to be carried out. Accord­

ingly, when either of the last two exits is taken, an automatic re-search of the operator-
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mode arguments is made with the conversion results as operands. Thus, the search process 
is continued until an ordinary binary (or unary) operation is encountered. 

The pre-defined binary operation of integer addition will serve to illustrate a 
defining sequence. The operator-mode table entry is DD111Dla . --....-----

a f 1 f 2 

The ones and zeros are octal digits. The symbol a designates the address where the 
first instruction of the following sequence is stored in the translator. 

It is presumed here that previous results will not be left in the logical accumulator 
in the contexts in which this operation will appear. 

JMP *+2,MQ,*+l Thus, if the previously interpreted sequence 
JMP *+3,AC,*+l3 left a result only in the AC, and if that 
JMP *+4,AT,*+l result were the A operand here (so that 
JMP *+5,BT,*+8 AC =AT= 1, MQ = BT = 0), the interpreter 
JMP *+11,AT,*+l would meet in turn the following elements of 
JMP *+4,BT,*+8 the sequence: 
XCA 

JMP *+2,MQ,*+l JMP *+8 
XCA JMP *+3,AC,*+l3 
ADD A JMP *+ll,AT,*+l 
OUT AC ADD B 
STQ T OUT AC 
JMP *+2 and produce as part of the object code: 
STO T 
CLA A ADD B 
ADD B with B replaced by the address of the B 
OUT AC operand. 
END 

Examples: 

The following two examples are complete in the sense that the mode structure statements 
are included as well as the defining sequence. 

(1) Define a binary operation .EV. with integer operands, where the result is a 
bitwise "exclusive or" of the two operands. (It happens that this operation 
has been permanently added to the MAD language; nevertheless this example is 
still illuminating.) 

DEFINE BINARY OPERATOR .EV., PRECEDENCE SAME AS .V. 
MODE STRUCTURE 1 = 1 .Ey. 1 

JMP *+7,AC,*+l 
JMP *+l,MQ,*+3 
JMP *+9,AT,*+l 
JMP *+10,BT,*+l3 
JMP *+l,LA,*+4 
JMP *+4,AT,*+l 
JMP *+8,BT,*+l2 
STO T 
CAL A 
ERA B 
OUT LAC 
XCL 
JMP *-3 
XCL 
ERA A 
OUT LAC 
STQ T 
JMP *-9 
SLW T 
JMP *-11 
END 
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(2) Define a binary operation with double-precision operands of mode 5 which produces 
a double-precision number as a result which is the product of the two operands. 
The multiplication is to be accomplished by a subroutine DPM which has one 
operand in the AC and MQ and the other is specified in parameter form. (Remember 
that the MODE NUMBER 5 declaration statement permits the assignment of variables 

to this new mode.) Notice that this sequence allows for the possibility that the 
previous result may be a single value and,hence not a double-precision number. 
The assumption is made, also, that any previous result of mode 5 which is "connect­

ed" to this operation is in both the accumulator and multiplier-quotient registers. 

MODE STRUCTURE 5 = 5*5 
JMP *+2,AC;*+l 
JMP *+4,MQ,*+5 
JMP *+6,AT,*+l 
JMP *+9,BT,*+l 
JMP *+12,MQ,*+l5 
STQ T 
CU A 
LDQ A + 1 
TSX =DPM.,4 
TXH B 
TXH B + 1 
OUT ACQ 
TSX =DPM.,4 
TXH A 
TXH A + 1 
OUT ACQ 
STO DT 
STQ DT + 1 
JMP *-12 
STO T 
JMP *-14 
END 

Diagnostics 

The definition ability just described gives the programmer the ability to design, in 
part, his own compiler. As with any step in the direction of greater generality the door 
is opened for mistakes which are very difficult to diagnose. There are some checks built 
into the MAD translator which may indicate difficulties with sequences. The operation 

definer is advised to understand the cause for the following diagnostic comments. The 
statement 

ERROR [no.] IN PART III- **[octal no.]**** ..• 

contains, in the string of asterisks, the twelve octal digit contents of the accumulator 
at the time the error was encountered. In some of the following diagnostics this inform­
ation is useful in determining the difficulty. 

SEQUENCE FOR OP-MODE ARGUMENT [co~bi~~~~ons] INCORRECT OR TOO LONG -- If an attempt is 

made .to interpret an instruction outside of the table of currently defined sequences 
then the sequence is incorrect in some way. 

Since the defined sequences are inserted as open subroutines for each occurrence 
of the operations, an interpretive sequence should not exceed in length some reasonable 
number such as 100. Loops in interpretation will cause this diagnostic comment also. 

The number of instructions that were interpreted will be in the accumulator. 
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TEMPORARY [temp.no.] SHOULD rffiVE BEEN RESERVED BY OPERATOR [op.no.] IN THE STATEMENT 

ENDING When an operand is a reference to a temporary storage cell (i.e., the 

result of a previously computed operation) then some previous sequence, if the 

definitions are correct, must include a step storing that operand. Such a step would 

appear as STO T or some similar instruction. The erroneous statement is printed 

following this cow~ent unless the statement required more than one card, in which 

case only the last card image is printed. 

ILLEGAL OPERATION OR ADDRESS MNEMONIC IN DEFINING SEQUENCE -- When an incorrect code is 

used in a definition, this comment is printed. The octal representation of the 

offending code is in the accumulator. (See Addendum I) 

OPERATOR-MODE NOT IN TABLE -- If the 

SAME SEQUENCE AS [mode] 
no. [mode] 

no. 

statement is used and the designated operator-mode combination is not in the currently 

defined table, this diagnostic comment is printed. 

INVALID OPERATOR-MODE COMBINATION [operator-mode-] (000/M/M) IN THE STATEMENT ENDING 
combination 

This error may be caused by definition difficulties or more often, by the appearance 

of operands of incorrect mode in expressions involving either the pre-defined or 

programmer-defined operations. An operator-mode combination has been encountered 

which is not defined. The left three octal digits of the number inserted in the 

statement are the operation number, the next digit is the mode of the left operand, 

and the next digit is the mode of the right operand. If the erroneous statement 

required several cards, only the last card image is printed, but the error may be 

anywhere in the statement. 

TEMPORARY [temp.no.] RESERVED BUT NOT USED AS AN OPERAND IN THE STATEMENT PRECEDING-- This 

comment does not stop translation since it is not caused by an error that would result 

in incorrect computation. Some sequence resulted in the inclusion of an unnecessary 

store operation. The line number of the offending operation is one greater than the 

temporary number shown. The statement involved is not the one printed but the 

preceding one. 

Comments 

The strategy for defining single and double valued operations is apparent from the 

examples included here and, more directly, from considering the register structure of the 

machine. 'The technique is to terminate a sequence with operations that would leave the 

result(s) in the arithmetic register(s) and then make it the initial task of sequence 

interpretation to determine what store instructions, if any, must be inserted. This basic 

scheme is certainly useful for experimenting with single-valued operations and for double­

valued operations such as double-precision operations, complex operations, approximation­

error arithmetic operations, range number computations, etc. 

It is interesting to speculate on what would be necessary to extend this definition 

ability to arbitrary vector-valued operations. First, the limited arithmetic registers 

could not be used for temporary storage,and the storage into temporary registers would be 
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an explicit part of a sequence and not relegated to the initial part of the succeeding 

instruction. This would require a slightly different interpretation of the symbol T, 

which could be readily accomplished, however. Since temporary storage would always be 

required, the conditional structure of such sequences would be much simpler. The other 

problem is, of course, that the temporary storage cells must become arrays, but here again 

the existing temporary assignment structure is directly usable with the addition of one 

facility. If, just prior to the evaluation of an expression composed of vector valued 

operations, the temporary storage elements are set to addresses of another storage array, 

spaced so that the regions between addresses can accommodate the vector results, then the 

single temporary cells may be used for indirect reference. By indirectly addressing all 

operands, statements such as 

E ( (A*B)+C)*D 

could be executed, where the designated variables are conformable matrices. One difficulty 

is that the dimension information used to set up the addresses for indirect referencing 

would be limited to that available at the time of translation. It is debatable whether 

the facility gained is worth the additional complexity of the translator in view of these 

restrictions and the relative ease with which functions currently may be used to specify 

matrix operations. However, installations using MAD may wish to experiment with adding 

this more general definition ability. 

Pre-defined Packages 

Three complete packages of definitions are available for automatic inclusion in MAD 

source programs. These are designed to facilitate vector and matrix arithmetic, double 

precision arithmetic, and complex number arithmetic. 'I'he statement 

INCLUDE iJ 

whereiJ is one of MATRIX, DOUBLE PRECISION, or COMPLEX will make the program behave as if 

the source cards for the corresponding definition package had been physically inserted 

into the MAD program at that point. (The word INCLUDE may be abbreviated I'E.) Complete 

writeups for these three packages are available in the Computing Center's 7090 Executive 

System Manual. 
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DOUBLE STORAGE MODE DECLARATION 

The format of this declaration is 

y/ 
DOUBLE STORAGE MO~E ~ 

where ;( is a list of integers, each in the range 0 to 7. An occurrence of this 

declaration has three effects: 

(1) the amount of storage allocated for each variable of the specified mode(s) 

is doubled, 

(2) all variable and constant lineart subscripts applied to variables of the 

specified mode(s) are doubled, and 

(3) in all define sequences, the expressions A + l, B + l and DT + 1 are inter­

preted as A - l, B- l and DT - l, respectively. 

Statements presetting variables with a double storage mode, such as VECTOR VALUES, etc., 

must now provide a pair of values (enclosed in parentheses) for each subscript position in 

the vector. Examples of this (for mode l declared to have double storage) are: 

For mode 6: 

VECTOR VALUES V = (l,$A$), (2,$B$),(3,$C$) 

VECTOR VALUES Q(3), ... ,Q(6) = (1,0) 

VECTOR VALUES M = (l.3M6,0), (2.4,1.) 

VECTOR VALUES N, ... ,N(3) = (2.4M6,0) 

Note that the mode will be determined by the first constant, as usual. 

tFor multi-dimensional arrays the equivalent linear subscript is doul 
prior to its use. 
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Pre-Defined Operators in MAD 

NAME OCTAL CODE PRECEDENCE OPERATION 

+ 001 8 a+ b _,. AC 

002 8 a - b _,. AC 

* 003 9 a * b _,. AC 

I 004 9 a/b ... MQ 

005 1 b ... a 

.ABS. 012 14 lb I ... AC 

.P. 013 ll ab -+ AC 

.v. 061 12 avb ... LA (full word) 

.A. 065 13 aAb _,. LA (full word) 

.N. 066 14 b _,.LA (full word) 

.LS. 067 14 left shift a, b binary positions 
+ LA (full word) 

.RS. 070 14 right shift a, b binary positions 
+ LA (full word) 

.NEG. 045 10 - b -+ AC 

•• RTN. 076 not applicable b _,. AC, a designates return address (mode 4) 
.. DIF. 035 not applicable a - b-+ AC, result is always mode 2 

Of the pre-defined operators only these may be referred to or redefined by definition 

statements. The pre-defined operators not listed constitute an unalterable basic set whose 
meaning (semantic content) is used in the decomposition of expressions. The two primary 

syntatical structures arising from this set are (1) subscription,and (2) Boolean expressions. 

Accordingly, the value of subscripted expressions must be of integer mode, and the operands 

of the Boolean operators (not the full word operations) must be of Boolean mode. Due to 
the method of decomposing Boolean expressions, even the operands of the relations .E., 

.NE., .G., .GE., .L., .LE. must be treated in a Boolean manner. The existence of the 
implicit operator .DIF, which is explained below, permits the use of the relations with 

newly defined modes. There are two other operators, also, which may not be written ex­
plicitly in a statement and yet are subject to definition. 

.NEG. The symbol 11 - 11 is used in statements to indicate both the unary and the binary 

operator, and it is always clear from context which was intended. Some distinction 
must be made when the operator alone is written, and the symbol .NEG. is used for 

unary minus (i.e., negation) . 

•• RTN. This symbol, which is obviously invalid in a statement, stands for the operation of 
placing the appropriate value(s) in the arithmetic register(s) and then returning 

from a function to its calling program. It is analogous to the right hand side of 

a substitution statement (the b operand) and then a transfer to a given address 

(the a operand is the address of a word whose decrement contains the complemented 

return address). 
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As such there is no result. As an example, if the result of a function were a 
double precision number, say mode 5, the following would be a reasonable definition. 

MODE STRUCTURE 4 .. RTN. 5 
JMP *+3,BT,*+l 
CLA B 
LDQ B+l 
LXD A,4 
TRA 1,4 
OUT ACQ 
END 

.. DIF. In the decomposition of Boolean expressions (or Boolean scan) the operations 

involving .AND., .OR., .NOT., and the relations are not executed as such, but are 
converted into tests and transfers so that only the necessary evaluations of sub­
expressions are made. The relations are usually basic operands in such expressions, 
and the first step in determining the truth or falsity of such a relation is to 
form the difference of the two operands. Then the difference may be tested for 
some combination of the possible positive, negative and zero values. Thus, if the 
difference is defined for some new type of operand, and the numeric result left 
in the accumulator is (somewhat arbitrarily) designated to be of Boolean mode, 
then the relations may be used with these newly defined entities. For example, 
.. DIF. could be defined for double precision numbers (say, mode 5) as follows. 

MODE STRUCTURE 2 = 5 •. DIF. 5 
JMP *+20,AT,*+l 
JMP *+23,BT,*+l 
JMP *+4,LA,*+l 
JMP *+2,AC_,*+l 
JMP *+6,MQ,*+10 
JMP *+7,MQ,*+3 
SLW T 
JMP *+7 
STO T 
JMP *+5 
STQ T 
JMP *+3 
STO DT 
STQ DT+l 
CLA A 
SUB B 
TNZ LOC+3 
CLA A+l 
SUB B+l 
OUT AC 
SUB B 
TNZ LOC+3 
XCA 
JMP *-5 
SUB A 
TNZ LOC+3 
XCA 
SUB A+l 
CHS 
OUT AC 
END 

If, by error, attempts are made to use subscripts of other than integer mode, diag­
nostic statements may be produced by the translator which display numeric, pre­
defined subscription operators. The following is a short list of octal subscription 
operator codes to aid in recognizing these cases. 

024, 025, 033, 073 
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ACL 
ADD 
ADM 
ALS 
ANA 
ANS 
ARS 
AXC 
AXT 
CAL 
CAS 
CHS 
CLA 
CLM 
CLS 
COM 
DCT 
DVP 
ERA 
FAD 
FAM 
FDP 
FMP 
FRN 
FSB 
FSM 
HPR 
IIA 
IIS 
LAC 
LAS 
LET 
LDC 
LDI 
LDQ 
LGL 
LGR 
LLS 
LRS 
LXA 
LXD 
MPR 

ADDENDUM II 

Permissible Machine Instructions 

(for use in operator definition) 

Listed in UMAP Mnemonic Form 

MPY 
MSE 
MZE 
NOP 
NZ'r 
OAI 
OFT 
ONT 
ORA 
ORS 
OSI 
PAC 
PAI 
PAX 
PBT 
PDC 
PDX 
PIA 
PXA 
PXD 
PSE 
PZE 
RIA 
RIS 
RND 
RQL 
SBM 
SLQ 
SLW 
SSM 
SSP 
STA 
STD 
STI 
STL 
STO 
STP 
STQ 
STR 
STT 
STZ 
SUB 
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SXA 
SXD 
TIF 
TIO 
TIX 
TLQ 
TMI 
TNO 
TNX 
TNZ 
TOV 
TPL 
TQO 
TQP 
TRA 
TSX 
TTR 
TXH 
TXI 
TXL 
TZE 
UAM 
UFA 
UFM 
UFS 
USM 
XCA 
XCL 
XEC 
ZET 



INDEX 

.A., 16, 19 
Abbreviations, 103 
.ABS., 16 
AC (DEFINE), 117 
Absolute Value, 16 
Access Vectors, 108 
Actuarial Example, 92 
Addition, 16 
Admissible Characters, 22 
Algorithm, 1, 5 
Alphabetic Constants, 14 
.AND., 18 
Arguments of Functions, 17, 59, 61 
Arithmetic, Expressions, 16 

Operations, 11 
Array, One-Dimensional (See Vector) 

Variables, 15, 52, 54, 56 
Assignment Statement, 23 
Asterisk, 16, 39 
AT (DEFINE), 117 
Automatic Dimensioning, 54 

B Modifier, 42 
BACKSPACE FILE Statement, 37 
BACKSPACE RECORD Statement, 36 
Base Element, 105 
BCD (Hollerith) (See Hollerith (BCD) 
Blank Spaces, 22 
Blocks, Input-output, 22, 44, 101 
Boolean, 81 

Constants, 14 
Expressions, 18, 27 
Operations, 14 

Bound Variables, 59 
Break Character, 44 
BT (DEFINE), 117 
Business Data Processing Examples, 81 

C Field (Format), 42, 44 
Call For Function (See Function Call) 
Calling Sequence (See Function Call) 
Card Format, 99 
Carriage Control, 38, 43 
Character Field (Format), 42, 44 
Characters, Admissible (See Admissible 

Characters) 
Column 11 (Card Format), 99 
Comma, 19 

(In Format), 44 
Compound Conditional, 24 
Conditional, Compound, (See Compound 

Conditional) 
Conditional) Simple, (See Simple 

Statement, 24 
Constants, 13 

Alphabetic, 14 
Boolean, 14 
Floating Point, 13 
Function Name, 14, 22 
Integer, 13 
Octal, 14 
Of Other Modes, 14 

CONTINUE Statement, 26 
Conversion, Floating Point to Integer, 23 

Integer to Floating Point, 20, 23 

D Modifier, 42 
Decimal Point in Format, 40 
Declarations, 50 
DEFINE Facility, 111 
DEFINE Operator Examples, 118 
Defining Sequences, 115 
Deletion of Parentheses, 19 
Depth, Nesting, of Iteration, 30 
Diagnostics, 100, 119 
Dimension Information, Advanced Uses of, 105 
Dimension Information in Other 

Declarations, 54 
DIMENSION Statement, 5, 52, 105 
Dimension Vector, 64, 105 
Division, 16 
DOUBLE STORAGE MODE, 123 
Dummy Arguments (See Dummy Variables) 
Dummy Variables, 59, 61, 62 
Duplicate Dimensioning, 54 
,E,, 18 
.EV., 17,19 
E Field (Format), 40 
END OF CONDITIONAL Statement, 25 
End of File Condition, 37 
END OF FILE TAPE Statement, 36 
END OF FUNCTION Statement, 61 
END OF PROGRAM Statement, 10, 32, 102 
End of Tape Condition, 37 
ENTRY TO Statement, 32, 61 
Equals Sign, 4, 5, 19, 61 
EQUIVALENCE Declaration, 54, 66 
ERASABLE, 55, 57 
Error Detection (See Diagnostics) 
ERROR RETURN Statement, 32, 62 
ERROR Subroutine, 66 
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.EQV. I 18 
Examples, Business Data Processing, 81 

Recursive Functions, 95 
Scientific, 67 
Symbol Manipulation, 95 

Executable Statements, 23 
EXECUTE Statement, 31, 61 
.EXOR., 18, 61 
Exponent, 13 
Exponentiation, 16 
Expression, Arithmetic, 17 

Boolean, 18 
Compound, 18 

EXTERNAL FUNCTION, 7, 59, 60 

F Field (Format), 40 
Field Description (Format), 39 
Floating Point, 6, 13 

Conversion (See Conversion) 
Subscripts, 22 

Flow Chart, 2 
FOR, (See Iteration Statement) 
FOR VALUES OF, (See Iteration Statement) 
Format, 34, 38 

Modification, 77 
Specification, 38, 44 
Variable Declaration, 58, 77 
Variables, 58, 65 

Function~Arguments (See Arguments of Functions) 
Caii, 59, 61 
Definition, 58, 62 
Entry, 32 
Name, 22, 51, 59 



Function Name, Constants and Variables, 22 
Mode, 73 

Function, Reference, 22 
Return, 61 

FUNCTION RETURN Statement, 32, 61 
Functions, 15 
Function Statement (See EXECUTE Statement) 
Function Value (See Value of a Function) 

.G.,.GE, 18 

Half-Interval Convergence, 74 
Hierarchy of Parentheses, (See Parentheses) 
Hollerith (BCD), 43 

I Field (Format), 40 
Identification (Card Format), 99 
Including Dimension Information in 

Other Declarations, 54 
Individual Variables (See Single Variables) 
Input-output, Blocks (See Blocks, ofl~~~t) 

Calling Sequences (See TRANSMIT Statements) 
Error Procedure, 46 
List, 33, 35, 44 
Statements, 34 

Integer, Constants, 13, 56 
Conversion, 20 
Division, 16, 20 
Shift, 17 

INTEGER Statement, 5 
INTERNAL FUNCTION, 12, 58, 59, 60 
INTERNAL FUNCTION», One Statement 

Definition, 59 
Iterated, Expression, 29, 35, 49 

Statement, 29, 49 
Iteration, Box, 34 

Nested, 29 
Statement, 26 
Variable, 27 

JMP, 117 
Jordan Elimination Method Example, 79 

K Field (Format), 43 

.• L. ,LEq 18 
L Modifier, 42 
.LS. I 17 
Labels, Statement (See Statement Labels) 
Left Shift, 17 
LOC (DEFINE), 116 
Linear Subscript, 52, 55, 56, 105, 108 
List, Manipulation, 33, 96 

Input-Output (See Inuut-Output List) 
LISTING ON Declaration, 65, 73 
LISTING OFF Declaration, 65, 72, 76 
LOOK AT FORMAT, 36, 88 

Matrices (See Array Variables) 
Matrix Multiplication, 77 
Matrix Transpose Example, 72 
Mode, 20, 27, 51, 55, 59, 60 

Assignment, Automatic, 51 
Declaration, 51 
Of Expressions, 20, 23, 27 
Number Declaration, 51 
Scheme (DEFINE), 114 

Modes (DEFINE), 113 
MODE STRUCTURE Statement (DEFINE) 114, 118 
Modifiers, 42 
Modifying Subscript Ranges, 53 
Mortgage Example, 89 
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MQ (DEFINE), 117 
Multiple Specifications (Format), 43 
Multiplication, 16 
Multiplicity (Format), 41, 45 

Name, 15, 59 
.NE. I 18 
Negation, 16 
Negation, Bit Wise, 16 
Nesting Depth of Iteration, 29 
Nesting Depth, Automatic Indication, 31 
Newton's Method, 7, 28 
Non-Executable Statements, 50 
NORMAL MODE IS Statement, 51, 71, 96 
.NOT. I 18 

One-Dimensional Array (See Vector) 
Open Subroutine, 112 
Operation Codes (DEFINE), 114, 125 
Operations, Arithmetic, 16 

Boolean, 18 
Operator-mode Table, 113 
.OR. I 18 
OR WHENEVER Statement (See Conditional 

State111ent) 
OTHERWISE Statement (See Conditional 

Statement) 
OUT, 117 

.P., 16 
P Modifier, 42 
P Prefix (Format), 42 
PARAMETER Declaration, 57, 71, 115 
Parameters, Subroutine (See Subroutine 

Parentheses, 19 Parameters) 

PAUSE Statement, 31, 88 
Payroll Example, 81, 84 
Permissible Machine Instructions 

(DEFINE), 127 
Precedence Hierarchy(See Parentheses) 
Predefined Operators, 125 
Presetting Vectors, 56 
PRINT COMMENT, 36, 48 
PRINT FORMAT Statement, 35 
PRINT ON LINE FORMAT Statement, 35 
PRINT RESULTS, 9, 36, 48 
Procedure, 1, 59, 60, 62 
PROGRAM COMMON, 55, 57, 66 
Pseudo-Instructions, 117 
PUNCH FORMAT Statement, 36 
Push Down Lists, 33 

Quadratic Equation, 67 

R(Col.ll) (See Remark Declaration) 
R Modifiers, 43 
.RS,, 17 
Range of Subscripts, 52 
READ AND PRINT DATA, 36, 48 
READ BCD TAPE Statement, 36 
READ BINARY TAPE Statement, 36 
READ DATA, 10, 36, 48 
READ FORMAT Statement, 35 
Recursive Functions, 59, 95, 96 
Redundant Parentheses, 19 
REFERENCES ON Declaration, 66, 73, 76 
REFERENCES OFF Declaration, 66 
Regional Notation (See Blocks, Input­

Output) 
Relocatable Binary Programs, 100 
Remark Declaration, 51 
RESTORE DATA Statement, 34, 96, 97 



RESTORE RETURN Statement, 34, 96, 97 
REWIND TAPE Statement, 37 
Right Shift, 17 

S Field (Format), 40 
SAVE DATA Statem~nt, 33, 96, 97 
SAVE RETURN Statement, 33, 96, 97 
Scale Factors (Format), 42 
Scientific Examples, 67 
Scope, 3, 27, 29 
Set High Density Tape, 37 
SETDIM Subroutine, 53, 78, 81, 109 
SET LIST TO Statement, 33, 96, 97 
Set Low Density Tape, 37 
SETEOF Subroutine, 37, 91 
SETERR Subroutine, 46 
SETETT Subroutine, 37 
Simple Conditional, 24 
Simplified Input-Output Statement, 47,65 
Simpson's Rule, 72 
Simultaneous Linear Equations, 79 
Single Variables, 15 
Social Security Example, 84 
Spaces, Blank, 14 
Specification, Format (See Format 

Specification) 
Statement (DEFINE),ll4 
Statements, Executable (See Executable 

Statements) 
Statement Label, Constants, 15, 24 

Variables, 15, 24 
Vector, 15 

Statements, Input-Output (See Input­
Output Statements) 

Non-Executable (See Non-Executable 
Statements) 

Storage Function, 108, 109 
Subroutine Parameters, 101 
Subroutines, 59, 66, 101 
Subscript Expressions, 15, 22 
Subscript, Linear, (See Linear Subscript) 
Subscripts, 22 

Negative, 52 
Ranges of, 52 
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Substitution Statement, 23 
Subtraction, 16 
Symbol Manipulation Examples, 95 
SYMBOL TABLE Statements, 64 
SYSTEM Subroutine, 37, 66 

T (DEFINE), 116 
Table Look-up, 28 
Temporary Storage, 113 
• THEN., 18 
THROUGH Statement (See Iteration Statement) 
TRANSFER Statement, 6, 24, 
Translator, 5 
TRANSMIT Statement, 63 
Transpose of a Matrix (See Matrix Transpose) 
Triples, 113 
Truth Table, 70 
Truncation (See Integer Division) 
Tschebychev Polynomial Example, 98 

Unload Tape, 37 

.v.' 16 
Valid Iteration Configuration, 29 
Value of a Function, 31, 97 
Variable, 15, 66, 111 
Variables, Bound (See Bound Variables) 

Dummy (See Dummy Variables) 
Vector, 52, 54, 56 

Presetting, 56 
Statement Label, 15 

VECTOR VALUES Statements, 56 

WHENEVER Statement (See Conditional 
Statement) 

WRITE BCD TAPE Statement, 36 
WRITE BINARY TAPE Statement, 36 

Z Modifier, 43 
Zero Increment for Iteration, 28 
Zero Subscript, 52 

OB, 14 

lB, 14 

$ Sign, 14, 56, 99 
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