
The Michigan Algorithm Decoder

(The MAD Manual)

Revised Edition - 1966

"Though this be madness, yet there is method in't."

Shakespeare: Hamlet

The Michigan Algorithm Decoder (MAD) is a computer program which translates

statements describing algorithms into the equivalent machine instructions. This

descriptive language--also called MAD--is explained in this manual. ALGOL 58,

which was proposed at one time as a standard language for the description of
algorithms, was used as a pattern for this language; the original translating

program was written in 1959 for an IBM 704 computer with 8192 words of
core storage. Translators were subsequently written for the IBM 709/90/94
machines by the University of Michigan Computing Center staff. Interested groups

elsewhere have adapted the language for the IBM 7040, Philco 210-211, and Sperry­

Rand 1107 machines. The translator was originally included in the University of
Michigan Executive System (UMES), but its construction as a subroutine has per­

mitted its inclusion in a number of different operating systems.

Over the years a number of useful extensions to the language have been
incorporated. These werB documented as addenda and minor revisions in the many
printings of the first edition, which was written by Arden, Galler, and Graham.

This edition is a major revision--done by Professor Elliott Organick of the

University of Houston--which incorporates these addenda and corrects a number

of shortcomings of the early version. Donald W. Boettner and Bruce J. Bolas of

the University of Michigan assisted in this revision.

The MAD language has been widely used by the students and staff of the
University of Michigan and it has been used at a number of other centers as well.
There are a number of versions extant and some of these may not contain all of

the features described herein.

Bruce W. Arden

THE UNIVERSITY I

ENGINEERING 008~~~~GAN

CHAPTER I

CHAPTER II

TABLE OF CONTENTS

INTRODUCTION

DESCRIPTION OF THE LANGUAGE
l. Constants, Identifiers, Operations and Expressions

l.l Constants •... ~ ...••
1.1.1 Integer Constants
1.1.2 Floating Point Constants
1.1.3 Alphabetic Constants ..
1.1.4 Boolean Constants
1.1.5 Octal Constants
l.l. 6 Constants of Other Modes •

1.2 Variables ••...•..•..
1.3 Statement Labels•..

1.3.1 Statement Label Constants
1.3.2 Statement Label Variables

1.4 Functions .•.....
1.5 Arithmetic Operations .
1.6 Arithmetic Expressions
1.7 Boolean Operations
1.8 Boolean Expressions ..
1.9 Parentheses Conventions
1.10 Mode of Expressions .
l.ll Subscript Expressions .
1.12 Block Notation
1.13 Function Name Constants and Variables
Statements (Executable)
2.1 Assignment Statement
2.2 Transfer Statement
2.3 Conditional Statements
2.4 CONTINUE Statement
2.5 Iteration Statement (THROUGH Statement)
2.6 Nested Iteration Statements •
2.7 Pause Statement ...•
2.8 Function Statement
2.9 Error Return Statement
2.10 End of Program Statement
2.11 Function Return .•.•••
2.12 Entry to a Function ...•
2.13 List Manipulation Statements
2.14 Input-output Statements

2.14.1 End of File and End of Tape
2.15 Format

2.15.1
2.15.2
2.15.3
2.15.4
2.15.5

Specifications • . .
Carriage Control . • . •
The Basic Field Description
The Form of the Number
Permissible Conversion . . • • . •
Repetition of Basic Field Specifications

l

13
13.
13
13
13
14
14
14
14

15
15
15
15
15
16

17
18
18
19
20
22
22
22
23
23
24
24
26
26

29
31
31
32
32
32
32

33
34

37
38
38
39
40
41
41

TABLE OF CONTENTS, continued

CHAPTER III

CHAPTER IV

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
ADDENDUM I
ADDENDUM II

INDEX

2.15.6 Modifiers .•...•.
2.15.7 Multiple Specification
2.15.8 Hollerith Fields
2.15.9 Character Fields
2.15.10 Relationship between the List and the

Specification . • •
2.15.11 Use of Format Variables ...
2.15.12 Input-Output Error Procedures

2.16 Simplified Input-Output Statements
2.17 Iterated Expression and Iterated Statement

2.17.1 The Iterated Expression
2.17.2 The Iterated Statement

3. Declarations ••. , ..
3.1 Remark Declaration
3.2 Mode Declaration

3.2.1 Automatic Mode Assignment
3.3 The Dimension Declaration . · ..•

3.3.1 Modifying the Declared Range of Array
Subscripts during Execution (use of SETDIM)

Including dimension information in other
declarations . • . . . •
Duplicate (or multiple) dimensioning •
Automatic dimensioning

3.4 EQUIVALENCE Declaration ..
3.5 ERASABLE Declarations .•.
3.6 PROGRAM COMMON Declaration
3.7 Presetting Vectors
3.8 PARAMETER Declaration .. .
3.9 FORMAT Variable Declaration
3.10 FUNCTION Definitions

3.10.1 External Function Definitions
3.10.2 Internal Function Definitions
3.10.3 Internal and External Functions
3.10.4 TRANSMIT Statements , ••.•.

3.11 SYMBOL TABLE Statements ...•....
3.12 LISTING ON and LISTING OFF Declarations
3.13 REFERENCES ON and REFERENCES OFF Declarations

4. Restrictions

EXAMPLES

MECHANICS OF USING MAD
l. Card Format
2. Diagnostics
3. Structure of Subroutines
4. System Subroutines

ALLOWABLE ABBREVIATIONS
ADVANCED USES OF DIMENSION INFORMATION
THE DEFINITION OF OPERATIONS, PRE-DEFINED PACKAGES.
DOUBLE STORAGE MODE DECLARATION .

PRE-DEFINED OPERATORS • · · · · ·
PERMISSIBLE MACHINE INSTRUCTIONS

42
43
43
44

44
46
46

47
.... 49

49
50
50
51
51
51
52

53

54
54
54

54
55
55
56

57
58
58

59
59
60
63
64

65
66
66

67

99
99

100
100
102

103
105
111
123
125
127

Chapter I

INTRODUCTION

"Begin at the beginning, 11 the King said gravely, "and go on
till you come to the end; then stop. 11

Lewis Carroll, Alice in Wonderland

In presenting a problem to a digital computer for solution, one transmits to the

machine a procedure for solving it (usually called an algorithm for the solution of that

problem), and the data for a particular case. The algorithm must be stated unambiguously

and completely.

As a simple example, let us consider the problem of determining the largest number in
a collection of n + 1 numbers A= (a0, a1, a2, ... , an} with n 21. A verbal descrip­
tion of the procedure (algorithm) might be

(1) Pick up the first number.

(2) Compare it with the second number.

(3) If the first is larger or if they are equal, keep the first one.

(4) If the second is larger, keep the second one.

(5) Whichever one was saved from this comparison is now compared with the third

number.

(6) Continue to repeat Steps 2 through 5 (each time moving down the list) until

the n + lst number has been included in the comparison.

(7) The number which has. been finally saved is then the largest number in the

collection A.

Unfortunately, this method of description is not very precise. Such words as "compare 11 ,

11moving down the list 11 , and "finally saved" should really be spelled out more exactly.

The following restatement of the procedure would probably be more suitable:

(1) Let z a 0•

Let j l. (2)

(3)

(4)

If j > n, the problem is done, t go to Step 7; otherwise, go on.

If let Z = aj; otherwise, go on.

(5) Let j increase by 1.

(6) Return to Step 3.

(7) Z is the answer.

Some further streamlining can be accomplished in the phrasing of a procedure statement

without losing any clarity. This has to do with the way we denote the assigning of values

tThis test is redundant the first time, but after n times through Steps 3 through 6
it will terminate the process for us. It is redundant the first time because if
n 2 1 as set forth in the problem statement, then for j = 1, j > n will always
be false.

1

Chapter I - Introduction MAD Reference Manual

to a variable of the problem.

Note that a statement like

"Let z = Ao"

really means,

"Let Z acquire (or be assigned) the value a0 .

Now suppose we employ a special symbol, in particular, the left-pointing arrow (.-)

to signify the process of assigning a value. Then

11 Z *"" a II
0

becomes a perfectly meaningful shorthand.

By the same reasoning, the statement

"Let j increase by l"

can now be restated as j .- j + 1.

The value of j + l (the expression on the right of the arrow) is to be assigned to

j (the variable on the left of the arrow). Another way of visualizing the step-by-step

nature of a procedure is with the aid of a flow chart. (See Figure 1-1.)

False

False

6 5

Figure 1-1

Note that the following conventions have been used here (or will be used later):

A. Computation occurs in rectangular boxes. 1)

B. Decisions occur in diamond-shaped boxes. ~

C. The "terminals" of a procedure, such as entries and exits, are represented

by the oval symbol: ~

D. The direction of flow is represented by a "flow direction" line, which has

an arrowhead wherever the "flow" enters another symbol.

E. If a flow direction line cannot conveniently be drawn between two points,

we may use an internal (non-terminal) connector symbol, a circle containing

alabel: ~ ~

2

MAD Reference Manual Chapter I - Introduction

This algorithm, whether you study it as a sequence of statements or as a flow chart,
exhibits an important concept, which occurs in a great many procedures; namely, it contains
a loop. A loop has the following characteristic properties:

(a) It is repeated over and over until some condition is satisfied (occasionally

this may be a very complex condition). In the example, the condition "j > n

is true".

(b) Before the first transit through the loop, i.e., the first "iteration", some

variables are given initial values. In the example, Z ~ a0 and j ~ 1.

(c) During each transit, usually just before it is completed, some variable is

incremented, and the termination condition is tested again. In our example,
j is increased by 1, and if j .s;;_ n is true, the "body" of the loop is

computed again--employing the new value of j.

It is often convenient to take advantage of this standard structure of a loop, and use

a special box in the flow chart called an "iteration box". The connections made by the
box should make it easy to identify the "scope", i.e., the extent of the body of the loop.

Moreover, the contents of the box itself should indicate the variable which is to be
initialized, and later incremented, and the condition which will determine the number of

iterations in the execution of the loop.

The iteration box as we shall use it, will have three parts or compartments as shown

in Figure 1-2.

initialize
--+--~the

True (terminate)

False (enter body of loop)

body of loop ~
~ .._ ___ ;_;

Figure 1--2. Main features of the iteration box

If we enter at compartment 0 an initial value is given to the "control" or iteration
variable. From this compartment the action moves to compartment ~ from whence either a

True (T) or False (F) exit is then taken, dependihg on the condition that is tested there.
Reentry to the iteration box is always at compartment ~ where an incrementing (increase

or decrease) of the control variable takes place. From compartment ~ the action always
shifts to compartment @, from whence there is again a T or F exit.

If we study Figure 1-1, we see that Boxes 2, 6, and 3 serve the same functions as

the three compartments of an iteration box as suggested in Figure 1-3.

3

Chapter I - Introduction MAD Reference Manual

True

False

Figure 1-3

Figure 1-1 may therefore be streamlined in its structural appearance as seen in
Figure 1-4 by taking advantage of the iteration box convention.

Figure 1-4

' ":'
/l
l
:! ,-body of the

) '· ')....-. ~ loop
~,

We consider one more illustration to suggest where and how the iteration box may be

employed in diagramming a computational loop. Suppose we wish to repeat a certain computa­

tion starting with the variable a having the value 12, and increasing it by the amount

3 after each time through the body of the loop, terminating the repetition whenever a > 90,
or IX+ Yj ,S: E,

Figure 1-5 shows a suitable iteration box for this purpose.

T

F

Figure 1-5. Another example

4

MAD Reference Manual Chapter I - Introduction

Communicating the algorithm to the computer. Once an algorithm has been stated as in

a flow chart it should be presented to the computer directly in that form or as near to it

as possible. For this, one needs a translator such as MAD which has the job of producing

a translation from a flow diagram representation of the algorithm (or a direct equivalent

of it) to a machine language representation of the same algorithm, i.e., into the basic

code of the machine.

A flow chart for an algorithm may be re-expressed in the MAD language, which is then
acceptable as input to the translator. Attention to the details of this conversion will be

necessary, but aside from this step the user's work ends with the diagram itself. The full
details of the MAD language are the subject of Chapter II. With this overview we wish to

introduce some of the basic ideas or highlights that typify this "input language."

However, just to suggest what we mean by "details" of the language we show what the

MAD language equivalent might be like for the iteration box of Figure l-5:

THROUGH BACK, FOR ALPHA = 12, 3, ALPHA

.G. 90 .OR .• ABS. (X+Y) ,LE. EPSILN

Because MAD is a language built up out of a very limited character set (no more than

48 characters in all), certain symbols which we will use in our flow charts will not be

available. Simple substitutions are needed such as ".G." for ">",
II

=
II in

II .G. II in

".LE. II in

".ABS.(X+Y)" in

The term "THROUGH BACK"

loop through and including the

the absence of

the absence of

the absence of

the absence of

is to be read as

terminus of this

"
">"
11~11

"IX+YI"

"repeat the computation" in the body of the

body marked by the symbol "BACK".

To continue with out overview of the language, we shall next look at the MAD equivalent

of the algorithm in Figure l-4 which is presented in Figure 1-6,

RETURN

DIMENSION A(lOO)
INTEGER J,N
Z = A(O)
THROUGH RETURN,FOR J=l,l,J.G.N
WHENEVER Z .L. A(J), Z = A(J)

END OF PROGRAM

Figure 1-6

The DIMENSION statement assigns a block of storage in the computer that is large

enough to handle a0, a1, ... , a 100 , if necessary. The IN'rEGER statement declares the

variables J and N to be integers. That is to say, only integer val~s will be
assigned to these variables. By so declaring J and N, we can ensure that the arith­

metic involving their values (subscript modification, counting, etc.) can be done more

simply and efficiently, usually with less round-off error than would be the case if non­

integer arithmetic were used.

5

Chapter I - Introduction MAD Reference Manual

Non-integer arithmetic is the arithmetic which the computer performs on representations
of real numbers, i.e., on numbers that have both integral and fractional parts. Because of
the finite precision with which such numbers can be represented in a computer, the reals
are in general only approximated. Moreover the same finitude introduces round-off error

that is characteristic of these non-integer arithmetic operations. The "approximated" reals

are coded internally in a form called "floating point" representation. Unless otherwise

declared, values for a variable in a MAD program are assumed to be represented in the float­
ing point mode.

The WHENEVER statement in Figure 1-6 is to be interpreted in the sense: Whenever the

following condition (in this case Z < aj) is satisfied, do the specified action (Z = aj)'
otherwise just go on.

It is interesting to ask just how complicated a condition can be used in making deci­
sions. We have seen that such conditions may occur in iteration statements, and "WHENEVER"

statements, etc., for the purpose of making binary (i.e., "yes" or "no") choices. An

expression which can be labeled "True" or "False" is exactly what is needed here. Such
expressions are called Booleant expressions, and usually involve "and", "or", "not", and

possibly other such words,connecting shorter expressions involving <, ~' =, ~' >, and 2.
For example, the following is a Boolean expression:

((x- 3)3 < y and i ~ j) or x 2 3

This will be "true" for some values of x, y, i, and j and "false" for others. It might

then occur in statements such as:

WHENEVER ((X- 3) .P. 3 .L. Y .AND. I .LE. J) .OR. X .GE.3,
TRANSFER TO AGAIN

or in the iteration statement

THROUGH ALPHA, FOR BETA= l, 1, ((X- 3) .P. 3 .L. Y .AND.
I .LE. J) • OR. X .GE. 3

where • P. denotes exponentiation (i.e., "to the power").

We now return to the MAD statements in Figure 1-5 to inspect the symbol "RETURN" which

has been used twice. It is used in the THROUGH statement to identify the symbol used to
designate or label the terminating statement of the body of the loop. That is, each time

the loop body is to be repeated, execution is to proceed down through and including the
statement which has as its label the very same symbol, namely "RETURN". A MAD statement

may be null or empty; .in this example we have given an empty statement the label "RETURN"
to clearly mark the terminus of the loop. Statement labels, like variables, are arbitrary

symbols, though they must be unique. One chooses them in an essentially arbitrary fashion.

In our example problem on the largest of a set of numbers, we observe that no provision
was made for obtaining the values of n, a0, a1, ••• , an on which to perform our computa­

tion, nor was any provision made for producing an answer. Normally, each program would
contain suitable input and output statements, such as will be described in Chapter II and

illustrated in Chapter III. Let us assume instead that we are interested in making our
little algorithm available for use in any other program, as a prepackaged "function", in the

tAfter the logician George Boole.

6

MAD Reference Manual Chapuer I -Introduction

sense that, given n and a0, ... , an' this function computes as its value the largest of

a0, ••. ,an. In this case we shall call our algorithm an EXTERNAL FUNCTION, and give it a
name, say "MAX". It is an EXTERNAL FUNCTION because it will be written and translated
externally with respect to the program which will later call upon it. The program for
defining MAX will now be written:

EXTERNAL FUNCTION MAX.(N,A)
INTEGER J, N
Z = A(0)
THROUGH BACK, FOR J = 1, 1, J .G. N

BACK WHENEVER Z .L. A(J), Z = A(J)
FUNCTION RETURN Z
END OF FUNCTION

The first statement specifies the inputs to the function to be N and A, the second

statement indicates the point of entry, the FUNCTION RETURN statement specifies the value
of Z as the desired value of the function, and the other statements are essentially as

before. Any program using this function now need only call upon it by name, as in the state­
ment:

LARGEQ = 1. + MAX.(6,Q)/3

Note that the set (in this use of MAX) whose largest element is desired is called Q, and
N has the value 6. No DIMENSION statement is needed for A in the EXTERNAL FUNCTION

definition program above, since A is there only as a "dummy variable" anyway. When used

with the actual set Q, we would expect a DIMENSION statement for Q in the program that
calls on MAX for a value.

For a second example

by Newton's method. The

of a such that a L l.

consider the problem of solving the equation f(x) = ax + x = 0

equation is to be solved repeatedly, each time taking a new value

The Newton formula is:

where the prime denotes the derivative with respect to x. This method involves the repeated

evaluation of the (iterative) formula until xi+ 1 is a root, i.e., until f(xi+l) = 0.

Actually in the numerical solution of equations, where we deal with the finite-precision
approximation of numbers, the loop termination condition becomes:

until · jf(xi+1) I < E, where E is a small positive number.

To evaluate the iterative formula the first time, it is necessary to have an initial
approximation, x0, to the desired root. The use of the index, i, as well as the initial

subscript zero suggests that we will produce a sequence, x0, x1, ... , xn' of approximations
to the root. However, from the computational point of view we do not need all of these
values simultaneously, since to evaluate the formula it is sufficient to know only the last

value, x, produced. We can say

x<-x-f.fit

In other words each new value assigned to x will be the value of the expression (appearing

on the right of the left arrow) which involves the current value of x. We are reminded of

the fact that, in the actual MAD language statements produced for the computer, the 11=11

symbol is used to signify the left arrow. In MAD then, the use of the "=" is different from

7

Chapter I - Introduction MAD Reference Manual

the usual use of the symbol in mathematics where it indicates a relation. When the
symbol is used as such a "replacement operator" the item on the left of the II is always
the name of a variable. The variable may have a complicated subscript but nevertheless it

is not an expression, but the name of a variable. The item on the right of the symbol is

an expression involving one or more constants, variables, etc. The operation implied is
simply that the value of the expression on the right becomes the value of the variable whose

name appears on the left. This is referred to as assignment.

For our specific example, then, the evaluation of the iterative formula could be
described as

altho,ugh we will, for convenience, break this into two statements. The entire computational

procedure can be represented by the flow diagram in Figure l-7.

l

READ F
a,x,e:

T

8

PRINT

a

6

PRINT

a,x,e:

Figure 1-7. Finding the roots of f(x)
using Newton 1 s method.

The corresponding MAD statements are:

ST READ DATA
WHENEVER A .L. 1.0, TRANSFER TO PRT

REPEAT F = A .P. X + X
X= X- F/(ELOG.(A)*A.P.X + 1.0)

T

3

4

x ... x- f/((ln a)·
ax+l.O)

0,

WHENEVER .ABS.F ,GE, EPS, TRANSFER TO REPEAT
PR;INT RESULTS A, X, EPS
TRANSFER TO ST

PRT Pif:t:N"l' RESULTS A
TRANSFER TO ST
END OF PROGRAM

8

MAD Reference Manual Chapter I - Introduction

(1) The first statement, labeled ST, causes the data, which are values for

a, x, and E, to be read into computer storage.

The input for a typical data set for a, x, and E can be supplied

on a punch card as shown in Figure 1-8.

Figure 1-8. Typical data card which can be scanned

as a result of executing a READ DATA

statement.

When a READ DA'I'A statement is executed, information on a data record

(such as on the illustrated punch card) is scanned from left-to-right. Values

read from the card are assigned to the appropriate variables, one after the

other. The assignment process (input) terminates when an 11 j(- 11 character is

encountered in the left-to-right scan.

(2) The second statement is a simple conditional which causes the statement labeled

PRT to be the next one executed if a < l. Otherwise, the next one in

sequence (labeled REPEAT in this case) will be executed.

(3) The statement labeled REPEAT computes ax+ x using the current value of

x, and assigns this value to f, i.e., places the result of this computation

in a storage location named F.

(4) The next statement divides the value F of the function by the derivative of

the function: (loge a • ax + l. 0), evaluated using the current value of x,

subtracts this quotient from the current value of x and the resulting

difference is stored as the current value of x. The name ELOG is the

name used in MAD for the function loge and the item in parentheses

following this name indicates the variable whose natural logarithm is

desired, i.e., the argument.

(5) The following statement is a simple conditional which causes the function

and iterative formula to be evaluated again if lf(x) I 2 E. Otherwise,

(i.e., lf(x) I < E) the next statement in sequence is executed.

(6) The PRINT RESULTS statement causes three numbers--the current values for

a, x, and E to be printed. When this statement is executed the names

("A", "X", and "EPS") will be printed along with the respective values as

a simple and effective way of identifying each printed value.

(7) The TRANSFER statement that follows causes the statement labeled ST to

be the next one performed.

(8) The statement labeled PRT is the one executed irnmediately'~fter the first

statement whenever a < 1.0. This statement causes the current value of a

to be printed and labeled. (Here a must be < 1.0.) Thus, if a were

0.426 the phrase "A~ 0.426000" would be printed.

9

Chapter I - Introduction MAD Reference Manual

(9) The final statement indicates the end of the statements and is the last state­
ment executed when a definite termination to the problem is known. In our
particular example, the computer never attempts to execute END OF PROGRAM
because each time the TRANSFER statements return control to the READ DATA

statement labeled ST. Instead, the computer would continue until it had

exhausted the sets of given input values, a, x, E.

The final example before the description of the language in Chapter II is a more general

and more elaborate illustration of Newton's Method. Here, we consider the solution of the
equation x3 + ax2 + bx + c = 0, starting with some input value for x0, using the iterative
formula:

x. -
l

3 2 xi + axi + bxi + c

3x/ + 2axi + b

2x. 3 + ax. 2 - c
l l

which is obtained from the standard Newton's Method formula. We shall use the following

condition as the criterion for halting the repeated evaluation of this formula:

where n0 is some given upper limit to the number of iterations which we can tolerate. We

are requiring that at xi the value of the function f(xi) will lie between the upper and

lower bounds E2 and -E 2• Also, the distance between xi+l and xi should be less than

e1 . The flow chart for a suitable algorithm is given in Figure 1-9. Observe that we are
never concerned with more than two consecutive approximations to the root-- say x and xn.

where f(y)

and d(z)

PRINT
TITLE ANDI-----r~
INPUT
INFORMA-

TION

y3 + ay2 + by + c

(2z3 + az 2 - c)/(3z2 + 2az +

PRINT "NO

CONVERGENCE"

F

Figure 1-9. Flow chart for finding roots of a cubic

equation by Newton's Method.

10

MAD Reference Manual Chapter I - Introduction

A corresponding MAD program is shown below:

PRINT COMMENT S!SOLUTION OF CUBIC EQUATIONS
GAMMA READ AND PRINT ~ATA

R DATA CONSISTS OF NEW VALUES FOR
R At Bt Ct XZEROt EPSlt EPS2t AND NZEROo

X = XZERO
NEXTX = Do CX)
INTERNAL FUNCTION Fo!Y) = Y oPo3 +A* YoPo2

1 +B*Y+C
INTERNAL FUNCTION Oo!ZI = C2o*ZoPo3 + A*ZoPo2

1 -CI/(3o*Z oPo2 +Zo*A*Z +B)
ALPHA THROUGH BETA• FOR I = Ot lt CoABSoCNEXTX-X) oLo

1 EPSl oANDo oASSo Fo(XI oLo EPS21 •ORo I eGEo
2 NZERO

X = NEXTX
BETA NEXTX = OoCXI

WHENEVER I oGEo NZEROt PRINT COMMENT S NO CONVERGENCES
PRINT COMMENT S NOo OF ITERATIONS AND THE VALUE OF XS
PRINT RESULTS It X
TRANSFER TO GAMMA
INTEGER It NZERO
END OF PROGRAM

The first statement causes the program to print a comment or title consisting of the
phrase

"SOLUTION OF CUBIC EQUATION"

which, except for the digit 1, is the string of characters between the dollar signs (MAD

equivalent of quotation marks). The first character following the opening quote mark is

used as a code to govern the positioning of the paper for printing. A code of 111 11 posi­
tions the paper at the top of a new page before printing. (A code of "0" (blank space)
causes the paper to be advanced one line before printing.)

(EPS2 = .000001, NZERO 13*

(XZERO 1.5, EPSl = .0001, / -
A = -12., B = 41., c = -30.,

r-- Reading order

Figure 1-10. A set of data cards examined and copied as
a result of executing the READ AND PRINT
DATA statement.

The statement labeled GAMMA would cause the program to read from one or more data
cards the numbers a, b, c, x0, E1, E2, and n0 and to print an exact copy of the informa­
tion on the cards that are read. Cards are read until the terminating asterisk character
is encountered as suggested in Figure 1-10.

11

Chapter I - Introduction MAD Reference Manual

Two functions are defined in this program, one for f(y) and the other for d(z).
Each is designated as an INTERNAL FUNCTION.

These function definitions are a part of, but parenthetical to the .main program. Such

definitions may be placed anywhere in the program in which they are embedded,

The statement following that which is labeled BETA illustrates a conditional output

statement. If the iteration is terminated because i 2 n0, the comment NO CONVERGENCE

is printed before the values of I and X are printed, otherwise that remark is not
printed, The final transfer to GAMMA causes the program to start over with a new set of

data, if additional data is present; otherwise, the computation is automatically terminated.

12

Chapter II

DESCRIPTION OF THE LANGUAGE

"There is a ?,leasure sure in being mad, which none but
madmen know. '

Dryden: The Spanish Friar

1. Constants, Variables, Statement labels, Functions, Operations, and Expressions

1.1 Constants

There are five classes of constants. Integer, floating point, alphabetic, Boolean,

and octal.

1.1.1 Integer Constants

Integer constants must be less than or equal to 34359738367 (i.e., 235 - 1) in absolute
value. (However, see Section 1.10 if integer to floating-point conversion is involved.)
The decimal point is assumed to be immediately to the right of the rightmost digit, but is

always omitted. Integers may be positive or negative, and while the "+" sign may be

omitted, the " sign must be present if the number is negative (e.g., 2, -2, 0, +0, -0,
100 are all integers). Leading (but not following) zeros may be omitted (e.g., 5 and 005

represent the same integer, but 3 and 300 do not). An integer may not contain charac­

ters other than digits and an optional sign; e.g., commas are not allowed. Thus, "1,500"
is an illegal form for "1500".

1.1.2 Floating Point Constants

Floating point constants may be written with or without exponents. If written without

an exponent, the constant contains a decimal point ".", which must be written, but which

may appear anywhere in the number. Thus, 0., 1.5, -0.05, +100.0, .1 and -4. are all
floating point constants.

If the number is written with an exponent, it may be written with or without a decimal
point, followed by the letter "E", followed by the exponent of the power of 10 that multi­

plies the number, (If the decimal point is omitted, it is assumed to be immediately to the
left of the letter "E".) The exponent m consists of one or two digits preceded by a sign

(although a "+" sign may be omitted), and must satisfy the condition -38 ~ m ~ 38. More
specifically, the value of the number F must be 0 or else satisfy the condition

Examples of floating point constants with exponent are: .05E -2(=.05 X 10- 2),

-.05E2(= -.05 X 102), 5E02(= 5.0 X 102), 5.E2(= 5.0 X 102).

Negative floating point constants must be preceded by a

may be preceded by a "+ " sign.

13

sign. Positive constants

Chapter II - 1.1.3 MAD Reference Manual

1.1.3 Alphabetic Constants

An alphabetic constant consists of from one to six admissible characters preceded and
followed by the character "$ 11 • The admissible characters include all letters of the

alphabet, the digits 0 through 9, the special characters +, - (minus sign), ' (prime),

*, /, =,) , (, . , the comma 11 , 11 and the blank space, which is to be represe.nted here

occasionally (but not punched on input cards), as the character 11 0 11 , Thus the following

are alphabetic constants: $ABCD$, $TaJBE$, $DEC.D4$, $5+3=8$. Note that blank spaces,
while ignored elsewhere in the language, count as characters in alphabetic constants.

Within any alphabetic constant (i.e., between two $-signs), a pair of consecutive

$-signs will be treated as the single character, $-sign. Any blanks between such a pair
are completely ignored and are not counted as characters. Examples:

$A$$B$

A B

$$$.56$

represents the string A$B

also represents the string A$B

represents the string $.56

with 3, 3, and 2 trailing blanks, respectively.

Each character of an alphabetic constant is stored in its internal representation as

a unique integer code. An alphabetic constant, therefore, appears internally as an integer

that results from the concatenation of the integer codes of six characters. Any alphabetic

constant containing fewer than six characters will be extended to six characters by adding
blanks on the right; thus $ABCD$ will appear internally as ABCDDJ •

1.1.4 Boolean Constants

There are two Boolean constants-- 11true, 11 which is written lB, and 11false, 11 which

is written DB.

1.1.5 Octal Constants

These constants are written as twelve digit octal integers followed by the letter K,

except that leading zeros may be omitted. If one or more decimal digits follow the letter
K, this is interpreted as an octal scale factor. Thus 127K2 would be the octal integer
000000012700, and lKlO would produce the octal number 010000000000. Octal constants
are assigned integer mode.

1.1.6 Constants of other Modes

Any constant (integer, floating-point, Boolean, alphabetic, or octal) may be declared

to be of mode other than its normally assigned mode by following the constant by the letter

M and the digit code for that mode. The standard digit codes are:

0 Floating-point

1 Integer

2 Boolean

3 Function Name

4 Statement Label

Modes 5, 6, and 7, which may be defined (see Appendix B), may also be used. The constant

is converted ~ usual, but then is assigned the indicated mode, if the letter M is used.

MAD Reference Manual ehapter II - 1.2

Thus, if some new mode numbered 6 were defined for certain integers, then the appearance
of the constant 32M6 would assign mode 6 to the decimal integer 32. The appearance of
32KM6 would assign mode 6 to the octal constant 32, and the appearance of ABM6

would assign mode 6 to the constant AB. Similarly, the appearance of 32.1E-1M6 would
assign mode 6 to the number 3.21, which appears in storage in the usual floating-point

form. (The mode digit may also be a parameter--see Section 3.8.)

1.2 Variables (integer, floating-point or Boolean)

The name of an integer, floating-point or Boolean variable consists of one to six

letters or digits, the first of which must be a letter. If the variable is defined as an

n-dimensional array variable (see Section 3.3) then the name of an element of the array

consists of the variable name, (i.e., one to six letters or digits, starting with a letter),

followed by the appropriate subscripts separated by commas and enclosed in parentheses.

Thus the following are "single variables": X51, ALPHA6, LAMBDA, GROSS, while the follow­

ing are elements of arrays: BETA(Cl, C2, 6), Xl5(Y,Zl), J(6), J(Zl + 5*Z2, 5). (See
Section 1.11 for the description of subscripts.) Parentheses enclosing subscripts may not
be omitted.

1.3 Statement Labels

A statement may be labeled or unlabeled. Labels are used to refer to a statement by

other statements. A statement label consists of from one to six letters or digits, the

first of which must be a letter, e.g., IN or BACK. A statement label may be an element

of a statement label vector, in which case the vector name is followed by a constant integer
subscript enclosed in parentheses, e.g., S(2) or LBL(3). A statement label appears in

the label field (i.e., Columns 1-10) of the statement it identifies, When a statement ex­

tends to additional cards (i.e., cards identified by a digit punched in Column 11) the

statement label need not be punched on the additional cards. (See also section 4.)

1.3.1 Statement label constants

A statement label appearing in the label field of a statement will be called a constant

of statement label mode.

1.3.2 Statement label variables

A statement label which does not appear in the label field is a variable of statement

label mode, provided it is so declared in a mode declaration (See Section 3.2).

1.4 Functions

The name of a function consists of one to six letters or digits, but the name must be

followed by a period(.) so that the translator can recognize it as a function name. The
first character of a function name must be a letter. If the function is single-valued, then

the value of the function is represented by ,following the function name with the proper

number of arguments (see Section 3.10 for the definition of function) separated by commas

and enclosed in parentheses. Thus, ADD51., COS., POLY., and FUNCT3. are function

names, while ADD5l.(X,Y3,ADD.), POLY.(N,VJ,7) and COS.(X) ar~ function values. A
function name given explicitly in this form will be called a function name constant. (See

also Sec. 2.8.) For additional explanation regarding the distinction between function name

15

Chapter II - 1.5 MAD Reference Manual

constants and function name variables, see Section 1.13. (See also section 4.)

1.5 Arithmetic Operations

The following arithmetic operations are available:

(a)

(b)

Addition, written as "+ ",

Subtraction, written as II II

e.g., Z5 +D.

e.g., ZS- D.

(c) Multiplication, written as "*", e.g., Z5*D. (Note that the "*" may not be

omitted. It is illegal to write ZSD, since it would be impossible to distin­

guish such a product from the variable ZSD.)

(d) Division, written as "/"; e.g., Z5/D. If both Z5 and D are integers, the

result is again an integer;

is truncated (not rounded).

will have the value 2.

e.g., the "fractional part" of the true quotient

For example, if ZS = 8, and D = 3, then ZS/D

(e) Exponentiation, written as ".P.", e.g., ZS.P.D, and meaning (ZS)D; i.e.,

Z5 raised to the power D.

(f) Absolute value, written ".ABS."; e.g., .ABS.ZS, meaning IZ5I, the absolute

value of ZS, and .ABS.(ZS-D) meaning Jzs- Dj.

(g) Negation, written as "-"; e.g., -ALOHA, meaning the "negative of ALOHA." Thus

-X.P.-.5 means -([• 5), the negative of the reciprocal of the square root of X.

(h) Full word bitwise negation, written .N.I, where I is an integer expression,

and meaning the operation of negating each binary digit in the binary represent­

ation of the value of I. The result is again an integer.

Example: Let I = 6 which is represented internally as

(normally interpreted as the
"sign bit": plus, in this case)

'-------"-. ,ooo ... 000110,

36 bits

Then .N.I would yield the value:

("sign bit": minus, in this case)
'----.....

,lll. .. 1110011

(which can be interpreted as a large negative integer in this case).

(i) Full word bitwise logical operations and and Q£, written .A., .V., and .EV.,

respectively, meaning the bitwise and, or, and exclusive or of the full binary

integer values of the operands. The result is again an integer.

Example: Let I= -17 which is represented internally as

and let J

,1000.~.000100011

36 bits

9 which is represented internally as

I 0000,, ,000010011

36 bits

MAD Reference Manual

Then I .A. J would yield the value

,0000 ..• 00000001,

36 bits

which is the integer 1,

I .V. J would yield the value

,1000, •• 00011001,
36 bits

which is the integer -25,

and I .EV. J would yield the value

,1000 ... 00011000,

36 bits

which is the integer -24.

(j) Full word integer shifts, written .LS. and .RS., respectively; e.g., I .LS. J

and I .RS. J, where I and J are integer expressions (see Section 1.10).
I .LS. J means the value of I shifted left J binary places. The entire

computer word, all 36 bits, is shifted. The sign of J is ignored; the absolute
value of J is always used. Similarly with .RS •. Digits shifted off either

end of the computer word are lost. Created blank positions are filled with

zeros. The result is always again an integer.

Example: Let I= -30 which is represented internally as

and let J = 4.

,100 ..• 0011110,
36 bits

Then I .LS, J would yield a value which is represented as

1000 ... 111100000 1

36 bits

and I .RS. J would yield a value which is represented as

1.6 Arithmetic Expressions

100001000, •. 0001 1

36 bits

Arithmetic expressions are defined inductively as follows:

(a) All integer, floating point, alphabetic and octal constants, integer and floating

point individual variables, subscripted integer and floating point array variables,
and integer and floating point values of functions are arithmetic expressions.

A function value used in an expression must have at least one argument, even if

the function is defined without dummy variables. (See Sections 2.8 and 3.10 for

more information on functions.)

(b) If E and F are any arithmetic expressions, and I and J integer expressions,
then the following are also arithmetic expressions: +E, -E, .ABS.E, E + F, E - F,

17

Chapter II- 1.7 MAD Reference Manual

E*P, E/F, E ,P, F', (E), ,N, I, I ,A, J, I ,V, J, I ,EV, J, I ,LS, J, and I ,RS. J

(c) The only arithmetic expressions are those arising in (a) and (b),

1.7 Boolean Operations

The following Boolean, or logical, operations are available in the language (where M

and P are Boolean expressions):

(a) • NOT.M has the value lB if and only if M has the value OB .

(b) (M) has the same value as M.

(c) M.OR.P has the value OB if and only if both M and p have the value DB.

(d) M.AND.P has the value lB if and only if both M and p have the value lB.

(e) M.THEN.P has the value OB if and only if M has the value lB and p has

the value DB.

(f) M.EXOR.P has the value lB if and only if either M or p has the value lB,
but not both.

(g) M.EQV.P has the value lB if and only if M and P have the same values.

Thus .NOT., .OR., .AND., .THEN., .EXOR,, and ,EQV, correspond to the usual
logical operations, "exclusive or," and

1.8 Boolean Expressions

Boolean expressions are defined inductively as follows:

(a) Boolean constants, individual Boolean variables, subscripted Boolean array
variables and Boolean-valued functions are Boolean expressions. (See Sections

1.1.4 and 3.2.)

(b) IfHandF

H.NE.F, H.G.F,

H < F, H ~ F,

are arithmetic expressions: then H.L.F., H.LE.F, H.E.F,

H.GE.F, are Boolean expressions, where the meanings are

H = F, H ~ F, H > F, and H 2 F, respectively.

(c) If M and P are Boolean expressions, then the following are also Boolean
expressions: .NOT.M, (M), M,OR,P, M.AND.P, M,THEN.P, M,EXOR.P, and M,EQV.P.

(d) The only Boolean expressions are those that arise in (a), (b), and (c).

Examples of Boolean expressions are: (X .G. 3 ,AND. Y .LE, 2) .OR. (GAMMA .L. EPSILN),

(.ABS, (Xl- X2)/Xl .LE. EPSILN) .AND. (F.(Xl) .L. EPSILN), and ((P .AND. Q) .THEN,Q)

.EQV. (P .OR .. NOT. P), where P and Q are Boolean variables,

Boolean expressions of types (a) and (b) above are referred to as "atomic Boolean

expressions." Object programs produced by the translator will skip the evaluation of the
remaining terms of a disjunction (an "or" expression) as soon as one term has the value lB,

and a similar statement holds for conjunctions ("and" expressions). In order to obtain the

maximum benefit from this skipping behavior, it is necessary to understand that the atomic

Boolean expressions in a complex Boolean expression are evaluated from right to left, and
the one most likely to be "true" in a disjunction, and the one most likely.to be "false" in

a conjunction, should be placed as far toward the right end of the expression as possible.

18

MAD Reference Manual Ch~pter II - 1.9

Thus, if one were testing for values of X between 0 and 2 and between 5 and
6, one might write

WHENEVER 0 .L. X .AND.X .L. 2 .OR. 5 .L. X .AND.X .L. 6

If one knew that for the data expected, the values of X would occur most often between
+1 and 2, one would do better to write the above as follows:

WHENEVER X .L. 6 .AND. 5 .L. X .OR. 0 .L. X .AND. X .L. 2

1.9 Parentheses Conventions (Precedence of Operators)

Parentheses are used in the same way as in ordinary algebra and logic to specify the
order of the computation. Also, certain conventions are used to allow deletion of par$n­
theses. The conventions used here are the same as in ordinary algebra and logic, namely:
Parentheses may be omitted, subject to the rules (A) and (B) below, but redundant paren­
theses are allowed.

(A) Within any expression the sequence of computation, unless otherwise indicated
by parentheses, is:

.ABS., + (as unary operations), .N., .LS., .RS •

. A .
• V., .EV .
. P.

- (as a unary operator)

*, I
+, - (as binary operations, i.e.; addition and subtraction)
.E., .NE., .G., ,GE., .L., .LE •

. NOT .

• AND •

. OR., .EXOR .

• THEN •
. EQV.
, (as used to separate function arguments)

Two other operations occur by implication only; viz., the function call (see Sec. 2.8)
and subscription (see Sec, 1.11). Thus the call for the function: SIN. (X+ Y) implies
that after the sum X + Y is computed, the operation of actually calling the function SIN

must be performed. Similarly, the array element A(I + 3 x J) is determined by first
evaluating the subscript I + 3 X J and then performing the implied subscription operation.
These two implicit operations do not appear in the precedence list above, but may be con­
sidered to be together on a level just above .ABS., .N., etc.

Examples:

(1)

(2)

(3)

.ABS.(B- c) means IB- cj,

- B + C means (-B) + (C) ,

B.P. - X + Y means B-X + Y,

while

while

while

.ABS.B -c means IBI - c.
-(B + C) means the negation of the sum.

B.P.(-X+Y) means -X+Y B .

(4) K2/Z 3 means (K2/Z) - 3, while K2/(Z - 3) implies that Z - 3 is the
denominator.

19

Chapter II - 1.10

(5) A* B + C means (A * B) + C.

(6) A.P.3/J means (A3)/J.

(7) X.L. Y + 3 means (X) .L. (Y + 3).

(8) P.AND .• NOT.P .EQV.Q means (P.AND.(.NOT,P)).EQV.Q.

(9) Z = X+ Y/QA means Z +- (X+ (Y/QA))

(10) A= -B.P.X means X A- -(B).

MAD Reference Manual

(B) Within an expression operations appearing on the same line of the list in (A) are to
be performed from left to right, unless otherwise indicated by parentheses.

Examples:

(1) A+ B- C +D-E means (((A+ B) -C)+ D) -E.

(2) X/Z * Y/R * S means (((X/Z) * Y)/R) * S.

1.10 Mode of Expressions

The kind of arithmetic performed on a constant, variable or function value is deter­
mined by its mode, There are five modes in MAD: floating point, integer, Boolean, state­

ment label, and function name. Floating point, integer, and Boolean constants were described

in Section 1.1. Alphabetic constants and octal constants are assumed to be of integer mode.

Section 3.2 describes how the modes of variables and functions are specified.

If an expression consists entirely of one constant, one variable, or one functional
value, the mode is that of the constant, variable, or functional value itself. If the

expression is a compound expression; i.e., consists of two or more subexpressions joined

by logical or arithmetic operations, the following rule applies:

If an expression is a Boolean expression as defined in Section 1.8, then its mode is

Boolean. An arithmetic expression is considered to be in the floating point mode if any

operand of any arithmetic operation in the expression is in the floating point mode. If

all operands are integer (or alphabetic or octal), then the expression is considered to be
in the integer mode. In this determination arguments, though not values, of functions are

ignored.

Thus, if Y, Z, and W are floating point variables, while the function GCD. and
the variables I and J are in the integer mode, then the expressions

Y + GCD. (I,J)

Y + Z - I

I+ 1.

GCD. (I, J)/Z

are all floating point expressions whHe the expressions

are all integer expressions.

I + GCD. (I, J)

(I+ J)/3
I+ 1

GCD. (I, J)/I

20

MAD Reference Manual Cliapter II- 1.10

If an expression has subexpressions of different modes, a conversion may be necessary
before some of the operations can be performed, Thus, in the expression

y + 3

if Y is in the floating point mode it cannot be added directly to the integer 3. But

for one precaution the user need not be concerned with this since the instructions necessary

for the conversion of the integer to floating point form before adding are automatically

inserted by the translator during the translation process. The precaution is that if the
integer being converted is greater than 134,217,727 (i.e., 227 - 1), then an improper con­
version will take place.

In some cases, however, the user must understand the sequence in which the conversions

will be made. Consider the expression

(Y + 7/3) + (I* J/K)

where Y is in the floating point mode, and I, J, and K are in the integer mode.
According to the parenthesizing conventions, the computation will proceed in the following
order (where the T1 s are temporary locations):

Tl +- I X J

T2 <- T/K

T3 7/3

T4 Y+ T3

TS <- T4 + T2

and Ts will be the value of the expression.

Now, since both I and J are integers, the first multiplication will be integer

multiplication, and T1 will be an integer, Since the next step involves two integers,

it will be integer division, and, if K happens to have a larger value than T1 the

quotient is 0. Similarly, T3 will have the value 2 because of the division of two

integers. In the computation of T4, however, we have "mixed modes," since Y is float­

ing point and T3 is integer. Here T3 will be automatically converted to floating point
before adding. Likewise, in the next step, the integer T2 will be converted to floating
point before adding to the floating point number T4•

In other words, although the mode of the expression is floating point because of the

presence of the floating point variable Y, some of the computation (until Y is involved)

is performed in integer arithmetic, and this may occasionally cause the final value to be

different from the value one might expect from a different analysis.

In the example above, the divisions would be performed in the floating point mode if

the expression were written:

(Y + 7./3) + (I* J)/(K + 0.)

Of course, many times the expression will be written as originally stated just to

achieve the "truncation" effect.

A single constant, variable, or function value of statement label (function name) mode

is an expression of statement label (function name) mode. There are no other expressions

of statement label (function name) mode. If A and B are both statement label (function

name) expressions then A.E.B and A.NE.B are Boolean expressions except when A or B

21

Chapter II - 1.11 MAD Reference Manual

are elements of a vector which has been preset by a VECTOR VALUES statement (see Section
3.7). In this exceptional case A.E.B and A.NE.B are not expressions.

1.11 Subscript Expressions

Any arithmetic expression may be used as a subscript expression for an element of a

linear or two-dimensional array. If the value of the expression is in the floating point

mode (see Section 1.10), it is .truncated to integer form before being used as a subscript.

(Since any mode conversion takes extra storage and time, one usually tries to avoid
the use of floating point subscripts. To help in this, the MAD translator now reports to
the programmer the first occurrence of such a conversion, as a warning that this has

perhaps inadvertently been incorrectly written. This is not considered an error, and
translation continues.)

The expressions for subscript elements of an array whose dimension is three or greater

must be of integer mode. Moreover, for arrays of dimension three or greater, the use of
subscripts having other than integer mode will not be caught as an error. Subscript ex­
pressions may contain variables with subscripts, etc.

Examples of subscripted variables: J(3), KlO(Z + 5 * XY/T), MP(A,B + 6 * J,
I * 6/TDX) , T (I (J)) , MA (K (Z + 5) + T (1) + 6) .

1.12 Block Notation

Input-output lists (see Section 2.14), VECTOR VALUES statements (see Section 3,7), and

some subroutines (see Section 3, Chapter IV) allow the use of block notation, This has

the form

A, ••• ,B or A ••• B

which is usually interpreted as the entire region from A to B, inclusive. The most

common use is in terms of a single array; e.g., A(l), ... ,A(N), B(I,J), ... ,BU1,N),

These would be interpreted as the regions: A(l), A(2), A(3), ... , A(N) and B(I,J), B(I,J+l),

B(I,J+2), 0 .. , B(I+l,J), B(I+l,J+l), ... , B(M,N). If the commas are omitted, both must be

omitted.

1.13 Function Name Constants and Variables

(a) The notation for function evaluations, i.e., function references, always requires

a peridd after the name of the function.

(b) Function~ constants are the names which designate entries in actual

definitions, e.g., SIN., COS., F. --assuming F is defined as either an

internal or external function. Function name constants are never subscripted

and never appear without a period; they may not stand alone on the left side

of an assignment statement.

(c) Function~ variables, i.e., variables of function name mode where the mode
is either declared or implicit from a VECTOR VALUES declaration, should not

have a period when used as variables. Use on the left side of an assignment

statement or as an argument of a function are examples, The following two

restrictions apply to the use of function name variables when they are used

as function names in function evaluations.

22

MAD Reference Manual Chapter II - 2.1

(1) Single function name variables, i.e., variables not normally considered
to be an element of an array, must be written with a zero subscript
preceding the period. For example, if G is a single function name

variable its use in a function evaluation would appear G(O).(A,B)

where A and B are the arguments. As with any single variable used

only with a zero subscript, it does not need to be dimensioned.

(2)

Thus

Such function evaluations may not be embedded
They may appear by themselves or as the right
statement.

if G and H are function name variables,

H(O). (A,B,T)

or T=G(O).(A,B)

would be acceptable statements, but not

T == G(O).(A,B) + C*D

in a larger expression.
side of an assignment

then

No checking of mode (or conversion) will be made as a result of such an assign­
ment.

2. Statements (Executable) (See Appendix A for admissible abbreviations)

2.1 Assignment Statement

This statement has the form illustrated by

ALPHA= Y + Z + F.(X, Y, Z)

That is, the left side of the sign consists of the name of a variable (either an

individual variable or a subscripted array variable), and the right side consists of any

expression of the same mode. The only exceptions to this mode requirement are the cases:
(1) If the variable on the left is of integer mode then the value of a floating point

expression on the right will be converted to integer mode. (2) If the variable on the
left is of floating point mode then the value of an integer expression on the right will
be converted to floating point mode.

The assignment statemen~ (sometimes referred to as the substitution statement) is to

be interpreted as: "(1) Compute the value of the expression on the right, (2) convert it,

if necessary, to the mode of the variable on the left of the "=" sign, and (3) give

the variable on the left the value which results from Steps (1) and (2)." (See Section 1.10
for mode of expressions.)

Thus, if Y is a floating point variable, then the statement

y = 1

will cause the integer 1 to be converted to floating point and then stored in the location

called "Y"; i.e., Y will now have the value 1. (as a floating point number). If the

statement were written
y = 1.

then the floating point number 1. would be stored in the location "Y"; i.e., Y would

again have the floating point value 1., but in this case the conversion of the integer is

23

Chapter II - 2. 2 MAD Reference Manual

unnecessary, thus speeding up the computation.

When a floating point number is to be converted to an integer, it is first expressed
as a number with both an integer part and a fractional part, and then the fractional part
is truncated. Thus, the following floating point numbers:

3E5, .3EO, .34568127E2, - .345681El0

w.ould convert to the following integers, respectively:

300000, 0, 34, -3456810000.

Examples of assignment statements in other modes are:

(1) Assuming B and C have been declared Boolean

C = B .AND. D .L. 10.

(2) Assuming BILL(3) is a statement label constant and HARRY is a statement

label variable

HARRY == BILL(3)

(3) Assuming FUN is a function name variable

FUN == COS.

2.2 Transfer Statement

This statement has the form: TRANSFER TO ~

Here ~ may be any statement label or
labels an executable statement. Execution of

from the statement whose label is the value

TO SWTCH (K + 2) (if K == 4 then the value of

2.3 Conditional Statements

any expression in statement label mode which

this statement causes the computation to continue
of ~. Examples: TRANSFER TO SUMX, TRANSFER

SWTCH(K + 2) is SWTCH(6)).

There are two types of conditional statements.

(a) Simple Conditional

WHENEVER B,Q

Here B is a Boolean expression and Q any executable statement except the following:

END OF PROGRAM, a~other conditional, iteration, and function entry. Q may, however, be an
iterated statement! If at the time of execution of this statement, the expression B has
the value lB, i.e., true, the statement. Q is executed. If, however, B has the val~e

DB, i.e., false, then Q is skipped and computation continues from the next statement in
sequence. The comma in this statement, as in other statements containing punctuation, must

be written.

Examples:

(b) Compound Conditional

t(See sec. 2.17.2).

WHENEVER XM.LE.l, TRANSFER TO END

WHENEVER I.GE.N.AND.J.NE.I-1, I = 0

24

MAD Reference Manual Chapter II - 2.3

~2 OR WHENEVER B2

} 82

~k OR WHENEVER Bk

} ek

~k+l END OF CONDITIONAL

Often the last condition Bk expressed is one for which the condition is always true.

This may be expressed by the statement

OR WHENEVER lB

or alternately the statement

OTHERliliSE

The d. are statement labels which need not be used unless desired. k may equal one
l

(if no "OR WHENEVER ... " statements are used). Here B1 , ... , Bk are Boolean expressions,

is a sequence (possibly and the execution of this block of statements is as follows. 8.
J

empty) of statements. These may include conditional statements, of either form.

Each Bi is tested in turn, starting with B1 . If B1 has the value OB, then B2
is tested, etc. As soon as some expression, say Bj, has the value lB, then the state­

ments between (but not including) ~- and ~-~ 1 (i.e., 8 .) are executed. At this point
J J ,- J

the execution of the entire block is considered ended, and computation continues from the

first statement after the END OF CONDITIONAL statement which, in this illustration, we have

chosen to label ~k+l" In other words, no more than one of the alternative computations is

performed; e.g., that one which immediately follows the first expression Bi which has the

value lB. If none of the Bi has the value lB, none of the computation in the scope of

these statements is performed.

Example: The evaluation of the function whose graph is shown in Figure 2-1

y l
I
I
I
I X

0 2 3

Figure 2-l

might be given by the section of the program:

WHENEVER X .LE. 0 .. OR. l .. LE. X .AND. X .L. 2 .. OR. X .GE. 3
y ~ 0

OR WHENEVER 0 .• LE. X .AND. X.L.l.
y ~X

OR WHENEVER 2 .. LE. X .AND. X .L. 3.

Y~l.

END OF CONDITIONAL

25

Chapter II - 2.4 MAD Reference Manual

This section of program could be rewritten in another way.

WHENEVER O .. LE. X .AND. X .L. 1.
y =X

OR WHENEVER 2 .• LE. X .AND. X .L. 3.
y = 1.

OTHERWISE
y = o.

END OF CONDITIONAL

The indentation of the assignment statements between the conditional statements is not

required but contributes to the readability.

2.4 CONTINUE Statement

This statement has the simple form:

CONTINUE

When labeled, it serves as a junction point in the program, but causes no computation
to be performed by its presence. It is merely a dummy or "do-nothing" statement. Its chief
use is to indicate the scope of an iteration statement (see example in Section 2.5). A

statement which is blank in Columns 11 - 72, but which has a statement label, is treated as

a CONTINUE statement.

2.5 Iteration Statement (THROUGH Statement)

Figure 2-2 is a program segment which illustrates the use of this statement.

K = 1
L = 1
A= D(l,l)
THROUGH STl, FOR I= l,l,I .G. 10
THROUGH STl, FOR J = l,l,J .G. 10
WHENEVER A .GE. D(I,J), TRANSFER TO STl
K = I
L = J

STl CONTINUE

Figure 2-2. A program segment to determine the largest

element (A) in a 10 row by 10 column array called D

and to record its location (K,L). The search proceeds
left to right, row by row. If the largest value
appears more than once in the array, only the location
of the first such element is recorded,

26

MAD Reference Manual Chapter II - 2.5

A THROUGH statement causes the block of statements which follows immediately after­

wards to be repeatedly executed, each time varying the value of some variable, until the

specified list of values for that variable is exhausted, or until some specified condition

is satisfied, The THROUGH statement may take either of the following two forms. (The

second form is used more frequently than the first.)

(a) THROUGH~' FOR VALUES OF V = E1 , E2, ... , Em

Here ~ is the statement label of the last executable statement in the block to be

repeated. The block of statements following (and not including) the THROUGH statement, up

to and including the statement whose label is d, will be called the "scope" of the THROUGH

statement. Following the word OF appears the name of the iteration variable (in the

illustration: V), which may be either an individual variable or subscripted array variable

of any mode. To the right of the sign may appear any number, i.e., a list, of

expressions E1, ... , Em. The modes of the Ei bear the same relationship to the mode

of V as they would in the statement V = Ei (see Section 2.1). Thus, if V is an integer

or a floating point variable, then each of the Ei must be an integer or floating point

expression, Similarly, if V is Boolean, then each of the Ei must be a Boolean expres­

sion.

The execution of this statement causes the statements within its "scope" to be exe­

cuted, first with V = E1 , then again with V = E2, and so on, until the list of

expressions is exhausted. Computation then proceeds with the statement immediately follow­

ing statement ~. At this time the iteration variable will have the value of the expression

Em unless its value was changed during the final iteration. Should a transfer be made to

another part of the program at any time during the iteration, V will have its current

value. An example of this type of statement is:

THROUGH A, FOR VALUES OF BETA= 3, 4, X5, Y(6 + I) + 3
J = 5 * BETA + 6
Jl = J . p .. 5 - 1 .

A X(BETA) = Jl x- COS, (2. * THETA)

(b) THROUGH _d, FOR V = E1 , E2, B

Here _d is a statement which defines the "scope 11 exactly as in (a) above (with the

exception: if ,d. is the label of the THROUGH statement itself, the iteration will proceed

as described below, but the scope will be empty, and the iteration will consist only of the

incrementing of V by E2 . and the testing). Following the word FOR is the name of the

iteration variable (in the illustration: V), which may be an individual variable or sub­

scripted array variable of any mode, e.g., V may be an integer or a floating point variable

and E1 and E2 may be integer or floating point expressions. In fact V, E1, and E2
may be of any modes such that V = E1 and V = V + E2 are defined. B is a Boolean

expression,

The execution of the statement proceeds as follows: The variable V is set equal to

the value of E1 . If the value of B = lB, the scope of the THROUGH statement is not

executed. If the value of B = DB, the scope is executed, V is then incremented by the

value of E2, and B is tested again. In general, as soon as B = lB, the scope is not

executed, and the computation proceeds from the statement immediately following statement~.
Each time B = DB, the statements in the scope are executed, then V is incremented by

E2, and B is tested again. Thus, when the iteration is finished and

the value used during the last computation of the scope, incremented by

27

B = lB, V has

E2 . The scope will

Chapter II - 2.5 MAD Reference Manual

not have been executed for this value of V. (The value of V will be E1, of course, j

B = lB before the scope is executed at all.·) If, at any time, the computation transfers

out of the iteration to another part of the program, the value of V will be the current
value at the time the transfer was made.

In all cases, every reference to an expression Ei will involve its current value at

the time of reference. Moreover, the variable V may have its value changed at any time
during the execution of the scope. In a statement of the form (a), the value of V will

be reset by the value of the next Ei for the next computation of the scope. In a state­

ment of .form (b), the current value of V will be used for incrementing, testing, etc.

Examples:

(l)

(2)

n n-1 To evaluate the polynomial cnx + cn_1x +

(•.. ((cnx + cn_1)x + cn_ 2)x + •.. + c1)x + c0

the program:

INTEGER J,N
y = 0.

•.. + c1x + c0 using the formula

(nested multiplication), we may write

THROUGH POLY, FOR J = N, -1, J .L. 0
POLY Y = X * Y + C(J)

(For the meaning of the statement INTEGER J,N, see Section 3.2.)

f(xk)
A Newton's Method solution (xk+l = xk- f'(xk)) of the equation f(x) =cos x- x = 0

could be written as a single statement, using the criterion "lf(x) I < E and

I I l f(xk)j<e" f t · th 't t' xk - xk+l = ~ or s opplng e l era lon:

NEW THROUGH NEW, FOR X= XO, (COS.(X)-X)/(SIN.(X) + 1.),
l .ABS.(COS,(X) -X) .L, EPSILN .AND.
2 .ABS.(COS.(X) - X)/(SIN.(X) + 1.)) .1. EPSILN

where XO is the initial guess.

(3) If the value of the iteration variable is to be altered within the scope of the
iteration, one may use a zero increment, E.g., suppose J is an integer variable,
and the scope of the iteration is to be performed for those values of J which are
multiples of 2, but not multiples of 5, and at the same time are less than the
value of the. integer K. One might write the iteration as follows:

THROUGH END, FOR J = 2, 0, J .GE. K

,J=J+2
END WHENEVER J .E. (J/5) * 5, J = J + 2

(4) A table-look-up procedure using an iteration statement. Suppose that a string of
alphabetic (or numeric) characters (i.e., a 11 sentence 11) has been decomposed into

single characters stored in C(l), C(2), ••• , C(K), where K is the length of the
string. Then the first occurrence of a comma could be found as follows:

LOOK THROUGH LOOK, FOR I=J. l, C(I) .E. $,$,OR, I ,G, K
WHENEVER I .G. K, TRANSFER TO NOCOMA

28

MAD Reference Manual Chapter II - 2.6

(c) As an alternative to the THROUGH statement and its scope, there are certain
special constructions called the iterated expressions and iterated statements which are
available. For details see Section 2.17.

2,6 Nested Iteration Statements

As indicated in Section 2.5, the "scope" of an iteration statement is the block ·or

statements designated for repeated execution:

THROUGH END, FOR V = E1, E2, B

scope {
END

Some of the statements within the scope of an iteration may themselves be iteration

statements. However, if iteration statement Q is in the scope of iteration statement ~,

then the scope of Q must be entirely within the scope of ~· Figures 2-3 and 2-4

show valid configurations:

Scope of

~

Scope of

~

Scope of

Q

Scope of

Q

THROUGH K, FOR (Iteration statement~)

THROUGH M, FOR (Iteration statement Q)

Figure 2-3

THROUGH K, FOR (Iteration statement~)

THROUGH K, FOR (Iteration statement Q)

Figure 2-4

In Figure 2-4, although the scopes of ~ and Q both end on the statement labeled K,

iteration Q is incremented and tested first. Therefore, iteration Q is completed before
iteration ~ is incremented. Figure 2-5 shows another example of a valid configuration.

29

Chapter II - 2.6

THROUGH K, FOR

THROUGH M, FOR
Scope of

11.

Scope of

.§.

THROUGH N, FOR

Scope of

.£.

Figure 2-5

Figure 2-6 represents an invalid configuration:

Scope of

11.

Scope of

.§.

THROUGH K, FOR

THROUGH M, FOR

Figure 2-6

MAD Reference Manual

(Iteration .§.)

(Iteration 1/.)

(Iteration.£.)

(Iteration.§.)

(Iteration 1/.)

When iteration statements occur in the scope of other iteration statements, they are

said to be "nested." The "nesting depth" of a statement is the number of iteration state­

ments in whose scope it appears. The nesting depth of an iteration may not exceed 50.

Scope of

.§.

Scope of

11.

Scope of
.£.

THROUGH K, FOR

THROUGH M, FOR

THROUGH N, FOR

Figure 2-7

(Iteration.§.)

(Iteration 1/.)

(Iteration .£.)

Nesting
depth

1
1
2
2
2
1
1
1

In Figure 2-7 iteration .§. has a nesting depth 0, iteration '11. has nesting depth
1, and iteration .£. has nesting depth 2. In Figure 2-5 both 11. and .£. have nesting

depths of J

30

MAD Reference Manual Chapter II - 2.7

A form of nesting which often leads to confusion, although the compiler will accept it,

is shown in Figure 2-8. This is the case of a partial overlap in the scopes of an iteration

and of a compound conditional. Such overlap should be avoided.

THROUGH ALPHA, FOR
Scope of ~ .----------------
iteration

Scope of ~

conditional

.-----1-----------------"W-'HENEVER ...

ALPHA '--------

,___ ____________ __:::E:::.:ND OF CONDITIONAL

Figure 2-8

There are no restrictions on jumping into or out of the statements in the scope of an

iteration.

Automatic indication of nesting depth

At the right side of the listing of the MAD source program produced by the MAD compiler

there appear two numbers on occasion. The first of these indicates the nesting depth with­

in compound conditionals of the statement, and the second indicates the iteration nesting

depth as suggested in Figure 2-7. If either of these numbers is zero, it is not printed.

This is especially useful in cases where either an END OF CONDITIONAL statement or the

statement ending a THROUGH loop is omitted.

2.7 Pause Statement

PAUSE NO. n

This statement indicates a breakpoint in the program, and it causes the computer to

stop in such a way that the operator can manually start it and automatically go on to the

next statement in the program. The number Q is an octal integer (written without the K)

containing up to 5 digits, which will be displayed on the computer console for the

operator to note when the computer stops, thus indicating the point in the program at which

the stop occurred.

2.8 Function Statement

Normally, the value of a function will occur as part of an expression, as in the state-

ment:

Z = COS.(X)/SIN.(X + 2.)

Certain functions, however, may stand alone as separate statements, as a statement calling

for the sorting of a list, etc. This would appear as:

(a) EXECUTE LSORT.(ARRAY, MAP, N)

or alternatively as:

(b) LSORT. (ARRAY, MAP, N)

(See Section 3.8 for definition of functions.) Here ARRAY, MAP, N are the "arguments" of the

function (subroutine) LSORT. A function called as in (a) or (b) above need not be followed
by a list of arguments.

31

Chapter II - 2.9 MAD Reference Manual

2.9 Error Return Statement

Provision is made for including an error return in function definition programs (see
Section 3.10). The form of the statement is simply:

ERROR RETURN

(An example of its use is shown near the end of subsection 3.10.3.)

In order to use it in a function evaluation, the last (right-most) argument of the
function must be the label of a statement or a variable in statement label mode, whose
value is the label of a statement to which a transfer is made in case the ERROR RETURN

statement is executed.

Even though an error return has been provided in the definition of a function, in the

use of the function the last argument may be omitted. If it is omitted, execution of the

ERROR RETURN statement will cause control to be transferred to the operating system in which

the translated program is embedded, with an error indication. Note that the extra argument
used in a call for the function does not appear at all in the function definition.

Specifically, suppose the function F has been defined with n dummy variables, and
suppose that in this definition an ERROR RETURN statement can be executed. Then a call on

F may employ either n or n + 1 arguments. If n + 1 arguments are used then the

n + 1st of these must be a statement label which will be referred to as a result of execu­

ting the ERROR RETURN. If n arguments are used in the call, then execution of ERROR

RETURN will cause a return to the operating system. See the example in Section 3.10.3.

2.10 End of Program Statement

This executable statement has the form: END OF PROGRAM

This statement must be physically the last statement in the program (i.e., the last

card of the program being compiled). It may also be the last step in the sequence of compu­

tation. Execution of this statement will transfer control to the operating system in which

the translated program is embedded. An alternate way of terminating a program- i.e.,

returning to the operating system - is to attempt to execute an input statement when the

data has been exhausted.

2.11 Function return

FUNCTION RETURN ~

This statement is used in a function definition to indicate a return to the calling

program. e is an expression whose value is to be the output of this function when the

function is considered as a single valued function. ~ need not be specified if output

variables are specified in the argument list (see Section 3.8), or if no value is to be

returned.

2.12 Entry to§ Function

Entry points to a function being defined, particularly alternate entry points, are

indicated by

ENTRY TO ''J? ,

where n is the name of this entry (see Section 3.10).

32

MAD Reference Manual Chapter II - 2.13

2.13 List Manipulation Statements

These statements facilitate the writing of recursive internal and external functions

and other algorithms which employ push down lists or "stacks". (See Section 3.10.) They

cause the designation and use of a vector for the temporary storage of data and actual

transfer instructions (i.e., function returns).

(a) SET LIST TO h, t:
~ is the name of an array element desi~nated as the initial location to be used for

temporary storage. This statement is an executable statement; thus different arrays may

become the currently-designated LIST during execution. The value of the expression is

checked as an upper limit on the length of the list. If e (with the comma) is omitted, no

checking is done. The zeroth element of the list contains the index of the most recently

added element. Since V(O):::V the "top" element on a list V is V(V). 'The programmer should be

sure to assign V(O) an initial value. The usual case is handled by the assi~nment statement

V=O.
Note: The index in V(O) must always have the form of a MAD integer. If the array

V is not of integer mode, statements such as V = V - 1 and V(V) = A will not give the

desired action. In this case, the EQUIVALENCE declaration (Section 3.4) can be used to

permit reference to V(O) by some other name which is of integer mode.

(b) SAVE DATA ~

This statement causes the current values of the elements of the Jist ~'/ to be stored

in the order of their appearance in the list ;(' as consecutive elements of the currently

designated temporary storage vector--starting with the first currently available element.

~ has the form of an output list as defined in Section 2.14.

Example:

Let V be an integer array which is the currently designated temporary storage vector

as a result of executing

SET LIST TO V

Further, suppose that V(O) currently has the value 6. Then execution of

SAVE DATA A, C, F

will cause the following action:

(l) the values of A, ·c, F, presumably of integer mode also, will be assigned to

V(7), V(B) and V(9) respectively, i.e., as if the statements

v(n = A, V(B) = C, and

had been executed.

(2) as a result of these assignments, the value of V(O) will be increased to 9.

(c) SAVE RETURN

This statement will appear only in the scope of the definition of a function (see

Section 3.10). Its execution causes the reentry point to the calling program to be stored

as the next available element of the currently designated temporary storage vector.

33

Chapter II - 2.14 MAD Raference Manual

(d) RESTORE DATA ~··

~ is an input list as defined in Section 2.14. If the list designates Q storage

assignments (not ~ecessarily n items in the list) the values of the last Q elements of

the currently designated temporary storage vector are assigned as the values of the list

variables. The order of this value assignment, assuming k used locations in temporary

storage vector, (left to right in the list;() correspond to the k, k- l, ••. , k- n + 1
elements of the temporary storage vector. The last Q elements of the temporary storage
vector are then .made available for use by successive SAVE statements.

Example ill:

Let V be the currently designated LIST and let the value of V(O) be 15. The
execution of

RESTORE DATA B(l) ,,, B(3)

will cause the following action:

(1) values stored in V(l5), V(l4) and V(l3) will be assigned respectively
to B(l), B(2) and B(3).

(2) the value of V(O), which designates the "most recently added element" is

decreased (by 3) to 12.

Example ill:
If the statement

SAVE DATA A, B(l) ... B(3), C

is used, the numbers A, B(l), B(2), B(3), C will go onto the push-down list, in that order.

If one wishes to return these values to their original locations, the statement

RESTORE DATA C, B(3) ... B(l),A

is used, since the value of C, being the last on the list, is the first to be restored.

(e) RESTORE RETURN

This statement will appear only in the scope of a function definition and causes the

current last element in the currently designated temporary storage vector to be used as

the reentry point to the program calling the function. The last element of temporary
storage is then made available for use by successive SAVE statements.

2.14 Input-Output Statements

In this section the following definitions will hold.

,} denotes the format specification "vector" (see Section 2.15). J may be:

(a) a single integer variable whose value is the format specification, or

(b) an integer array element which is the. first element of the format vector, or

(c) the vector itself, written as an alphabetic constant (which in this case may

be more than six characters in length). See Example (1) in Chapter III.

In (c), format information will be grouped six characters per word and preset automatically

(along with dimension information produced by "simple dimensioning") in an internally created
and dimensioned vector called .MODEl, which will appear in the symbol table. (See Appendix B.)

34

MAD Reference Manual Chapter II - 2.14

?(is an integer expression whose value is a tape number.

A is an input-output list. Elements of ~ may be:

(1) single variable names or array names with subscripts,

(2) blocks of the form A(i1,

A(j 1, .•. , jn) where the

n 2 1,

•.. ,in) ... A(j1, ... , jn) or A(il' ... , in)' ... ,
i 1 s and j 1 s may be any subscript expression and

(3) iteration el~ments of the form

where Zl is the name of a variable, E1 and E2 are arithmetic expressions,

13 is a Boolean expression, and X is a non-empty input-output list of the type

being presently defined. (This list element may not be used in lists which are
to be transmitted to or from binary tapes.) The interpretation of such an

element is exactly analogous to the execution of an interation statement in
J

that the values designated on the list ~ are transmitted (as input or output)
until /] has the value lB, with ?/ being initialized to E1 and being in­
cremented by E2 after each t'ransmission of the list ,.:>{: These iterations

may be nested (just as iteration statements) to a depth of 50 - ~' where ~

is the current nesting depth of iteration statements in whose scope this element

occurs. In addition to these, when) 'l designates an output list, the elements

of / may be:

(4) constants, or

(5) expressions including iterated expressions (see Section 2.17.1.) (There is one

small lilnitation on the use of expressions. If a function call occurs in the

list, such as: X+ F.(X, Y), the function F may use only a limited number

(currently 20) of the first locations of erasable storage (see Section 3.5).)

Moreover, the function F must not itself contain input or output statements

which use the same subroutines as the output statement in progress.

Elements of a list are separated by commas. Example of an output list: AB, D, 2.5,
MTX(l) ..• MTX(N), P(l4), J(I, K). Example of a list which may be used either for input

or output: A, B, K(3), J(25*I-L), A(K+l) ..• A(L*2). To completely understand the operation
of statements which make an explicit reference to "TAPE," it is advisable to read the

sections of the IBM 7090 Reference Manual which describes the operation of these units.

(See also Restrictions in Section 4 below.)

(a) PRINT FORMAT J, _/'
Prints / according to format ;1 on the off-line printer.

(b) PRINT ON LINE FORMAT J, .:;('
Prints ;r according to format ~· on the on-line printer. This statement is
used for comments to the operator. After ~ has been printed a skip of 1/6
page is automatically produced, allowing the operator to read the comment.

In the following statement definitions, the phrase "Prints ;f" (or "Punches£" or

"Transmits .,('") should be interpreted as "prints (or punches or transmits) the value of

each element of the list/".

35

Chapter II - 2.14

(c) PUNCH FORMAT J-, ./(
Punches ~ on cards according to format ,1,

(d) READ FORMAT .J, X'
Reads cards into ;(according to format ~.

(e) READ BCD TAPE ?7, -d, ;(
WRITE BCD TAPE 77, J, ;(

MAD Reference Manual

Transmits ;(to or from tape IJZ in BCD form according to format -7,
Note that when these statements are executed, the input-output conversion
subroutine will enforce the usual restriction on the length of a "line",

Therefore, the format should not specify more than 132 characters per record.

(f) READ BINARY TAPE //,X
Transmits to .)"' from tape 1l? until ;(is exhausted or until a complete tape

record has been read. If there are more elements on the list than words in
the record being read, reading will continue into the next record.

WRITE BINARY TAPE 1~ .~
Transmits ;(to tape '72 in binary form as one record.

(g) LOOK AT FORMAT J, /
Transmits the information on the next card on the input tape, according to format

~' into)(without going past the card. Hence the next time a READ FORMAT or
LOOK AT FORMAT statement is processed, this same card will again be transmitted.

Warning: If more than one card is specified (via one or more slashes in the
format), each instruction to get a new card merely causes the same card to be
rescanned.

(h) Simplified Input-Output

Statements from this group were illustrated in Chapter I. They are defined
separately in Section 2,16. The symbol '.!?~:tt"" which appears in the PRINT
RESULTS statements is essentially similar to "~;" as defined above, but

differs in details.

READ DATA
READ AND PRINT DATA
PRINT COMMENT
PRINT RESULTS ,/td
PRINT BCD RESULTS ..(~d­
PRINT OCTAL RESULTS ~~

(i) END OF FILE TAPE 12
Writes an end of file mark on tape 17.

(j) BACKSPACE RECORD OF TAPE 11?, IF LOAD POINT TRANSFER TO ~/
Move tape /{ back to beginning of last record. If the tape encounters the load

point, the program goes to the executable statement labeled Q((where .~ is a
statement label or variable of statement label mode). If the phrase ", IF LOAD

POINT TRANSFER TO ~" (including the comma) is omitted no transfer is made even

if at load point.

36

MAD Reference Manual Chapter II - 2.14.1

(k) BACKSPACE FILE OF TAPE ,), IF' LOAD POINT TRANSFER TO _/

'rape i/{ is moved backward until an end-of-file mark, the load point gap, or the

load point is encountered. If an end-of-file mark has been written previously,

executing this statement backspaces over this end-of-file mark and stops just

in front of it (since the end-of-file mark must be passed over to be recognized).

If the tape encounters tl1e load point, the program goes to the executable state-

ment labeled .. ?f· is a statement label or variable of statement label

mode). If the phrase ",IF LOAD POINT TRANSFER TO~" (including the comma) is

omitted no transfer is made even if at load point.

(m) SET LOIIJ DENSITY TAPE 71
Causes tape 'JZ to be set to low density.

(n) SET HIGH DENSITY TAPE iJ?
Causes tape tJ! to be set to high density.

(0) UNLOAD TAPE iJZ

Causes tape 'JZ to rewind and unload.

(p) REWIND TAPE IJl
Rewinds tape IJ(.

If an error (improperly formed format specification, invalid data, a tape check, etc.)

occurs during any input-output statement, the subroutine ERROR is automatically entered.

The subroutine ERROR sets an error flag and returns control to the system in which the

translated program is embedded.

An end-of-file on the input tape (tape 7) signifies the end of the data. Normally the

job is terminated and the comment,

"**** ALL INPUT DATA HAVE BEEN PROCESSED"

is printed. An end-of-file on other tapes terminates the job with the comment

"****END OF FILE ON SCRATCH TAPE XX"

L tape number

This procedure can be altered by executing the subroutine SETEOF prior to the reading

action. The calling sequence is

SETEOF. (S, T) (T is optional)

S is a label which designates where to go when an end-of-file is encountered and T, an

integer variable, designates where to store the number of the tape on which the end-of-file

was found. In this case the above comments are not printed when the end-of-file occurs.

The end-of-file procedure can be reset to normal procedure by executing SETEOF with S = 0,

i.e., SETEOF.(O).

When the end-of-tape condition is detected on the output tape (tape 6) the tape is

terminated with an end-of-file mark and replaced with a blank tape by the operator. When

writing on tapes other than the output tape, the job is terminated and control is returned

to the executive system, This procedure can be altered (for tapes other than tape 6) by

executing the subroutine SETETT prior to the writing action. The calling sequence is

SETETT, (S, T) (T is optional)

3'(

Chapter II - 2.15 MAD Reference Manual

S is a label which designates where to go when the end-of-tape condition occurs and T
designates where to store the number of the tape that caused the end-of-tape. In this case
the tape is not terminated and replaced, The end-of-tape procedure can be reset to the
normal procedure by executing SETETT with S O, i.e., SETETT.(O).

The subroutines SETEOF and SETETT may be executed as many times as desired. Only

one setting is in effect for end-of-file (that specified by the latest execution of SETEOF

and end-of-tape (that specified by the latest execution of SETETT), i.e., each setting
cancels the previous one.

2.15 FORMAT SPECIFICATIONS

When information is read from (or punched in) a card into (or from) a computer, it is

necessary to know how this information has been allocated among the available columns of

the card. Similarly, whenever information is to be printed by a printer (either on-line
or off-line), it is necessary to know how this information has been allocated among the

columns available on the printer. A description of each allocation is called a format
specification. Usually, but not always, such a specification is accompanied by a list of
variables whose values are to be printed or punched or whose values are to be read. (Occa­
sionally, the information is contained entirely in the format specification, so the list

may be empty.) A format specification is a string of alphabetic characters (as described

below) terminated by an 11* 11 • This string is stored six characters per computer word in a
vector of integer mode. This vector may be preset (see Section 3.7), computed, or read in

as data. (Format features in addition to those described below may be found in the Univer­
sity of Michigan Executive System Manual.)

2.15.1 Carriage Control

Every format specification consists of a description of the allocation of available
columns, and the form in which the particular information is to appear. Specifications for·

reading or punching cards and printing of information are identical, with the following

exceptions:

(a) A card has 80 available columns,t while a line of print has 132 available

columns. Any attempt to allocate more than the available number of columns will
cause an error return (see Section 2.14.1).

(b) The first column of a card has no special significance. The first (left-most)
character of a line of print is treated differently. This character governs

printer carriage control, such as skipping to a new page, double spacing, etc.,

and should not contain information to be printed. The user has effectively 131

available columns on a line of print, but he in addition must always include as

the first character a code to control the vertical spacing of that line.

tActually, 80 columns may be used, but it is highly recommended that only 72 columns be
used, with the last eight columns, 73 - 80, used for card identification information.

38

MAD Reference Manual Chapter II - 2.15.2

For example, the specification

Sl6, 6HBETA = I2*

will indicate that the line (or card) starts with a skip of 16 columns and then prints (or

reads or punches) the characters "BETA =" followed by an integer field of two columns. The

effect of the "carriage control" character (in this example, the "blank") may be described

as follows: Before printing the line, the carriage is "positioned" according to the carriage

control character as indicated in the table below. Then the legal carriage control character

is replaced by a "blank", and the line is printed. If the first character is not a legal

carriage control code, a single space is given before printing, and the entire line is

printed.

Legal Carriage Control Codes

Character Before Printing

Blank Single space before printing.

+ No space - overprint the previous line.

0 Double space before printing.
- Triple space before printing.

1 Sk.ip to top of next page before printing.

2 Skip to next half-page.

4 Skip to next quarter-page.

G Skip to next sixth-page.

8 Skip to next sixth-page.

9 Single space before printing; suppress overflow.
I.e.' print across page boundaries, without skipping.

Carriage control characters apply only to lines that are to be printed off-line, and

not at all to cards or to on-line printing. Normally,when the printed lines come within 3

or Li lines from the bottom of the page, there is an automatic skip to the next page, called

the "overflow" skip. The carriage control character 9 suppresses this skip so printing will

continue across page boundaries. This is rarely used.

As another example, the specification

would cause a sldp to the next page (because the first character is a "1"), and cause "PHID="

to be printed, followed by a fixed point number. As will be explained below, the "6H" that

appears in the specification indicates that 6 Hollerith (or BCD) characters follow, e.g.,

"lPHID=". Note that blanks are counted as characters here.

2.15.2 The Basic Field Description

Each specification describes successive fields across the available columns of the line

(or card) record starting from the left. If the specification describes fewer than the total

39

Chapter II - 2.15.3 MAD Reference Manual

number of available columns, the lin·e (or card) will automatically be filled in with blanks.

But, as indicated above, if more than the total number of available columns is included in
the specification, an error return (see Section 2.14.1) will result.

The basic field description consists of a letter followed by an integer. The letter

(except for T) indicates the form of the information in the external medium as follows:

s Skip columns

I Integer

F Fixed point number (Internally floating point)

E Floating point number

K Octal number

C Characters

T (Causes a transfer of the format scanner)

(For the purposes of input-output the Boolean values OB, lB are considered as integers
and will be punched in cards and appear in print as 0,1,)

The integer indicates
be used. For example, K3

character field, and S31

in Section 2.15.10.below.

the size of the field; i.e., the number of available columns to

indicates a 3-column octal field, C23 indicates a 23-column

indicates a skip of 31 columns. The T field is explained

For F and E fields, i.e., fixed and floating point numbers, there is always the
question of the placement of the decimal point, the form of the numbers, etc,, in addition
to the field size,

For this reason, the basic field description for E and F fields requires an addi­

tional integer giving the number of places after the decimal point that are to be rounded

and printed (or read, or punched). The decimal point in the specification itself must

always be present for E and F fields, except that if no fractional part is desired, the

,0 may be omitted (i.e., F6 is the same as F6.0),

Within the numeric type fields, E, F, I and K, 11+11 signs are not printed or punched,

nor are they necessary on input cards. However, 11 11 signs may not be omitted on input,

and are always printed and punched. If the field description gives a field size larger than
the number requires, the n~~ber is positioned for printing or punching as far right as

possible. If the field size given in a specification is too small, an error indication is

given (see Section 2.15.12), It is important, therefore, to be sure to provide a large

enough field to handle the information expected. In fact, some spacing can be achieved by

giving large field sizes, since blanks automatically occur to the left of a number pushed

to the right end of an over-sized field.

2.15.3 The Form of the Number

Integers (I fields) and octal numbers (K fields) are printed, punched, etc., directly,

without any decimal point. Numbers printed or punched in E fields have the form (if 5

decimal places are requested, for example):

where n1n2 is the exponent, On input cards numbers in E fields must have an exponent
of the form

40

MAD Reference Manual Chapter II - 2.15.4

although if the sign is punched, the "E" may be omitted. Similarly, if the "E" is

punched, a "+" may be omitted, as well as a leading zero in the exponent. The exponent

must be counted in the field size (four columns on output).

Numbers to be printed or punched in F fields have the form (if 5 decimal uigits are

requested, for example):

although "+ u

u_" signs.

printed.

signs are not printed. On input cards "+" signs may be omitted, but not

If no digits are printed after the decimal point, the point itself is not

On both E and F data any number of digits may be used, but only 8 digits of
accuracy are retained. Moreover, E and F input data need not have the decimal point

punched, and either E or F type data may be used in any E or F field on input data.
If the decimal point is not punched, the field specification determines its position. For
example, the punched number +9032 described by the specification Fl0,2 would be under­
stood to be the number +90.32 because the 2 in the specification indicates 2 decimal

places to the right of the point. Similarly, the punched number +9032E3 described by the

specification El0.4 would be understood to be the number +.9032E3. If the decimal point
is punched in the card field, however, it completely overrides the setting of the point by

the specification. The entire specification must be present, however. In K, I, E, and

F fields, blanks are ignored on input cards, i.e., to the left, to the right, or even with­

in the number, A completely blank input I, E, or F field is interpreted as minus zero,
while a completely blank input K field is interpreted as plus zero.

2.15.4 Permissible Conversion

It should be understood that there must be a relationship between the form of a number

inside the computer and its external form. In other words, a number described by an I

field specification is assumed to be integer in storage. A number described by E or F
specification is assumed to be in floating point form in storage, Similarly a number
governed by a K specification will be handled by direct binary-octal conversion, Infor­
mation described by a C specification is assumed to be in alphabetic (BCD) form both

inside the computer and outside.

2.15.5 Repetition of Basic Field Specifications

If several consecutive fields can be described by the same basic specification, repeti­

tion may be avoided by prefixing the basic specification by its multiplicity. For example,

the specification

3Fl0.3, El8.4, 2E9.1, 3I2*

is a short way of writing

Fl0.3, Fl0.3, Fl0.3, El8.4, E9.1, E9.1, I2, I2, 12*.

Either specification may be used, of course. A group of basic specifications may be

repeated by enclosing the group in parentheses and preceding the left parenthesis by the

multiplicity. Thus

41

Chapter II - 2.15.6 MAD Reference Manual

3El0.3, 2(I2,3FlD.l), 2C5*

would be equivalent to the following:

El0.3, El0.3, El0.3, I2, FlO.l, FlO.l, FlO.l, I2, FlO.l, FlO.l, FlO.l, C5, C5*.

A multiplicity of zero in front of a field specification or left parenthesis means that that

specification (or group of specifications) is to be entirely skipped, without any effect on

the line (or card) or on the list. This is useful in conjunction with the use of Boolean

format variables (see Section 2.15.11).

Nested parentheses are allowed; information about parenthesis nesting is retained in

a list in the erasable section of storage.

2.15.6 Modifiers

It has been shown that field specifications have the standard form nXw.d, where n

is the multiplicity, X the control letter, w is the field width, and d is the number

of characters after the decimal point. (The .d may be missinp;.) Several modifiers may

be prefixed to this field specification to cause special effects. Some modifiers (B, P)

require integers immediately in front of them, while others (D, L, R, Z) do not. The

order in which modifiers occur is immaterial. Examples of modified specifications are:

-3P4Fl9.6, LK6, D2E25. 12

The modifiers have the following effect:

B - Normally, conversion is performed from (to) a decimal external form to (from)

a binary internal form. The B modifier allows the use of other external number

systems for I conversions. Thus, the modifier l6B causes the external form

to be in hexadecimal (base 16) notation. The base thus specified may not exceed

19. For bases greater than 10, the additional characters needed are taken from

the beginning of the alphabet. (For base 16, A = 10, B = 11, C = 12, D 13,

E = 14, and F = 15.) Note that Kl2 is not exactly equal to 8BI12, since

the Kl2 conversion uses the left-most bit as part of the number, while the

8BI12 uses this bit as the sign of the integer. The numbers occurring in the

format specification itself are always interpreted as being in the decimal

system.

D Doubl~ Precision - If the character D occurs in an E or F specification,

it indicates that this conversion is to be performed on a double-precision number

(with each half of the number containing its own characteristic and fractional

parts). Both halves of the number must be specified on the "list," the high

order half first,followed immediately by the low order half.

L -Left justified- For input, this affects only the octal (K) specification. Octal

numbers are usually right-adjusted, with leading zeros inserted. The L modifier

causes the number to be left-adjusted (i.e., shifted left to eliminate all leading

zeros), with trailing zeros supplied. For output, this causes numbers printed

with I, E, or F specifications to be positioned in their fields as far to the left

as possible (instead of to the right, as is normal).

p - A "scale factor" may be applied to an F number according to the formula

Printed number = Internal number x lOScale factor

(where the scaling is accomplished before the conversion is done). The "scale

MAD Reference Manual Chapter II- 2.15.7

factor," followed by the letter "p" is prefixed to the field specification, as
in the example

-2P2F7.3, F7.3*

Thus, three numbers which would print OJ0.523J-1.56~93.671 according to the

specification 3F7.3* would print instead OJ0,005]-0.0l6J93.671 if the specifi­

cation -2P2F7.3, F7.3* were used. It must be noted that for F fields this

scale factor actually changes the values of the numbers to which it applies. It

affects only those numbers to which it is directly applied, however. For E
fields, the "scale factor" causes the number itself to be modified, but the
exponent is correspondingly modified so the true value of the number remains

unchanged. Thus, the number 0.9321E-3 would print as DD0.9321E-03 according

to the specification El2.4, but it would print as D93.2100E-05 according to

the specification 2PE12.4. Unlike an F number, the value is the same in
either case.

R - This is used with characters brought in by a C specification. Character infor­
mation is usually left-adjusted, with trailing blanks inserted. The R modifier
causes the characters to be right-adjusted (i.e., shifted right to eliminate
trailing blanks), with leading blanks supplied.

Z - This forces leading or trailing blanks to be replaced by zeros on a C specifi-.
cation.

2.15.7 Multiple Specifications

Several specifications may be condensed into one larger one by the use of the character

"I". Each appearance of "I" (except as part of a Hollerith field--see Section 2.15.8)

indicates that the specification of a new line (or card) record is to be started with what

follows. A pair "I I" causes a blank line (or card), three "I I I" cause two blank lines
(or cards), etc, Thus the specification

3Fl0.3II2, Kl8, 2C517I3*

implies that one line (or card) is described by the specification 3Fl0.3, and the next line
(or card) is described by the specification I2, Kl8, 2C5, and the next by 7I3. It must
be noted that each line (if printing is being described) is described individually here,

and must include its own carriage control (see Section 2.15.1).

2.15.8 Hollerith fields

Although the C specification is available for transmitting characters (Hollerith

information) to and from storage, it is often convenient to include strings of Hollerith
characters directly in the format specification. This is done by means of a basic Hollerith
fieid specification consi~ting of the string of characters to be transmitted, preceded by

a count of these characters and the letter "H". Thus, if the specification

lHl Fl0.3, 6HBETA = El0.2*

were used in printing, one would

field containing the character

obtain a new page skip, because of the one-column Hollerith
111." Then a ten-column F number would print, followed by

and a ten-column floating point field. Note that blanks are the six characters "BETAD="
completely ignored throughout all format specifications except when they occur as characters

43

Chapter II - 2.15.9 MAD Reference Manual

in a HoLLerith string. Note also, that while every field specification of types S, I, E,

F, K and C must be followed by commas, the comma may be omitted after a Hollerith string

of the type described here. The comma may be used, however, if desired.

If a Hollerith field is specified without a count in front of the H, then the first

character following the H is taken as a "break character," and all chara,cters in the

format between it and the next appearance of it are used as the Hollerith field. As an

example, the specification

T20, H* AND/OR*, IS*

will cause the six characters AND/OR to appear beginning in position 20 of the record,

followed by a five-column integer. Warning: There is a danger here when writing several

such Hollerith strings without counts. By not paying attention to the length of these

strings, the maximum number of columns allowed for a line (or card) could easily be exceeded.

2.15.9 Character fields

It has been stated above that a number appearing in an oversize field is positioned as

far as possible to the right. In the case of C information (characters), any information

occurring in an oversize field is pushed to the left, while in either case, unused columns

of the field are filled with blanks. Similarly, in case the specification describes

too small a field, characters are taken from the left end of the field until the field is

exhausted.

Thus, if a card contains the characters: ABCDEFGHIJK in colwnn l through 11, and it

is read according to the specification 2c3-x-, the two six characters words that are read

into the computer are:

ABCIIJJ

DEFITJJ

(where 110 11 denotes "blank"), while the specification C6* would cause a single word to

be read:

ABCDEF

and C7,C3* would cause the words:

ABCDEF and HIJITIJ

to be read (since .at most six characters can go into one word of storage).

2.15.10 Relationship between the List and the Specification

The "list" consists of a set of names of variables to or from which information is to

flow. Except for Hollerith strings embedded in the format specification itself (see

Section 2.15.8) and the S fields, each field in the specification refers to one item on

the list. For this purpose, a block entry on the list, such as A(6) ... A(8), counts as

several names of variables (in this case, the three variables A(6), A(7), and A(8)),

During the transmission of information, the input or output subroutine scans both the list

and the specification simultaneously, correlating corresponding entries, and associating a

field size, a type of conversion, etc., to each variable. If a Hollerith string is en­

countered in the specification, it is immediately transmitted, and it is not associated

with any item on the "list." A T field causes the next specification to refer to a

44

MAD Reference Manual Chapter II - 2.15.10

specified column in the line (or card) image being processed; e.g., T35, 4HABCD* would
cause the characters ABCD to be put into columns 35 - 38.

For example, if the list consisted of

A, B(l,l), I, K

where I and K were integers, and the others floating point, and the specification was

lHl, Fll.3, -2PE14.4, Sl3, 3HM = I3, S9, 3HJ = I3*

we might find a printed line something like the following (at the top of the next page
because of the lHl):

OIIJ456. 010o:J-16.1251Et0CJ I I I I I I I I I I I I IMJ=D501 I I I I I I I I IJO=[]l7

The same list would look the following way with the specification lHl, 2Fll.3, Sl6,

3HM = I3, S9, 3HJ = I3*:

o:Jo:J456.010o:J-1612.5101 I I I I I I I I II I I II I IN.0=05011 I I II I I I IJ0=017

As stated above, a specification may not account for more than 80 columns on a card.
It may happen, however, that a list calls for more information than can appear on a single
card. Or perhaps only a certain part of each card is to be read. The determining factor

in every case is whether or not the entire list has been accounted for. After each card

is read according to the form~t specification, the list is consulted; if not yet satisfied,

another card is read, and so on. It is important to realize that the specification is not

necessarily scanned from the beginning when an asterisk (*) is encountered and the list is

not satisfied. The specification scanner moves to the left from the end of the specifi­
cation (the *) until it hits a left parenthesis belonging to a pair of parentheses which is
not nested inside any other pair of parentheses, and which is not in an H field. (If there

is no such left parenthesis, it will move to the beginning of the specification.) It then

examines the characters just to the left of this left parenthesis to see if they are a

multiplicity indication (see Section 2.15.5). From now until the list is satisfied the

effective portion of the format specification begins at the selected left parenthesis

(together with the multiplicity, if any) and ends at the end of the specification. A

similar statement may be made for printed or punched output.

Thus, in the specification:

3Fl0.3, /4(Fl0.3, 6HBETA = I2)*

the first line printed (or read) would have three fixed-point numbers, while all subsequent

lines would all be printed (or read) according to the specification

4(Fl0.3, 6HBETA = I2)*

As an example, one might have an integer on a first data card, followed by many cards,

each with six floating point numbers. The specification might then be:

I6/(6El0.5)*

Only the first six columns would be read on the first card, and only 60 columns would be
read on subsequent cards. The remaining columns are ignored and may contain any legitimate

Hollerith characters.

If a specification contains a Hollerith string of the form nHa1a2 ••• an' certain con­
ventions are observed. (l) If the list is satisfied, but the next field specification is
a Hollerith string, the string is transmitted, anywayo (2) On input, i.e., reading from

45

Chapter II - 2.15.11 MAD Reference Manual

cards, when a Hollerith string is encountered in the specification, the information in the
corresponding columns of the input card will be brought in and will replace the BCD string

itself within the format specification. This can then be used as a specification for out­
put. For example, this is useful for labeling a set of data and causing the label to appear

on the output along with a date, etc.

Thus, a card punched as follows:

1 DATA SET NO, 3-A JULY 31, 1959 J. DOE

might be read in with a format specification

72HOJ~--------(72 blank spaces)------OJ*

Later, this specification could be used to print the same information as a heading for the

results. Note the "1" provided for carriage control for the printing.

WARNING: The specifications S72* and 72(1H)*,while indicating 72 blank spaces, do
not allow the reading in of an entire card, as indicated above, since they do not really

provide a storage region of 72 characters in length into which the information on the card

may be read and stored until needed.

2.15.11 Use of~ Variables

A format variable (see Section 3.9) may be used at any point in a format specification

at which an integer constant is normally found; i.e., within any field specification or as

part of any modifier. Each time a format is interpreted (i.e., an input or output state­
ment referring to it is executed), the current value of each format variable encountered is

used in the format in place of the name of the format variable. Primes are used to delimit

format variables when used in format information, Format variable occurrences may have one

of three possible forms:

rvr' rv(I) r' or rv(Il' I2) r

where V is a format variable and I, I1, and I 2 are either integer constants or format

variables, Also, format variables V, I, r1, and I 2 may be of either floating point,
integer, or Boolean mode. Boolean and floating point values will be converted to integers

before being used. lB and DB will be converted to l and O, respectively, and

floating point values will be truncated as usual. Thus, in the format 1A1F3.1, Fl0.6*,
where A is a Boolean format variable, the specification F3.1 will be used if A has

the value lB, and not otherwise, All format variables must be names that exist in the

program in which the input or output statement using the format occurs (i.e., they may not
be arguments to a function which uses them as format variables), and they must be declared

to be format variables using a FORMAT VARIABLE declaration (see Section 3.9).

2.15.12 Input-Output Error Procedures

The normal procedure after detection of an error is to print a description of the error

along with other pertinent information and then terminate execution of the program. This
procedure can be altered by executing the subroutine SETERR prior to reading or writing.

The calling sequence for SETERR is:

SETERR,(S,E,T)

T is the location where the logical tape number will be stored, if an error occurs,
E and T are optional arguments, S is a label which designates where to go when one of

46

MAD Reference Manual Chapter II - 2.16

the standard errors occurs and E designates where to store the error number. The comment

is still printed. The error number is increased by 100 if the error occurs during output

(e.g., error number= 1 if bad format occurs during input and error number= 101 if bad
format occurs during output).t

2.16 Simplified Input-Output Statements

(a) READ DATA

This statement causes information to be read from cards; no list of variable names or
format specification is necessary. The values to be read and the variable names are punched
in the data cards in a sequence of fields of the form:

The v1, ..• , Vk are the variable names and n1, •.. , nk are the corresponding values.
Reading is continued from card to card until the terminating mark * is encountered. Only
the first 72 columns of a card may be used for data; as in the other cards the last eight

columns are reserved for identification. Fields cannot be divided between cards, so the
last character in a card not terminated by an asterisk would normally be a comma. However,
as a convenience, the end of the card is treated as an implied comma and hence this final

comma may be omitted. The variable names may designate single variables or elements of

linear and two dimensional arrays. The subscripts on the array variables must be integer

constants. The values may be floating point, integer, octal, Boolean, or alphabetic with
the forms described for constants of corresponding mode (see Section 1.1).

For convenience in entering values of array elements it is possible to designate only
one variable name and have successive numbers, written without names, interpreted as the
consecutive values of the array, i.e.,

would be the same as

V(j)=nl' V(j+l)=n2, ... , V(j+k-l)=nk

For 2-dimensional arrays successive numbers will be
the designated row until the row - as determined from the

vector - is filled, and then the next row will be started.

cussed in Section 3.3.)

entered in succeeding columns of
current value of the dimension

(The dimension vector is dis-

Zeros must be punched; adjacent commas (,,) are simply skipped. Blanks are ignored

throughout except between dollar signs (which are used only to delimit a string of Hollerith

characters) .

Six or less Hollerith characters - delimited by dollar signs - may be values of single
integer variables. Longer strings of Hollerith characters·may be entered as elements of
arrays. Such strings are divided into six character groups for storage.

set:
As an example illustrating many of the features described herein consider the data card

tFor a list of current error numbers and their
"Reference Manual for I/0 (with conversion) 11

Executive System (UMES) Manual.

47

interpretation, see Appendix I to
in the University of Michigan

Chapter II - 2.16 MAD Reference Manual

Xl = 1.2, Yl = -6.8, INDEX= 4, A(4) = 3.1, -10.93,
12,6, MATRIX (2,1) = 25E-2, 1.8E-10, 3.14E-8,
STRING (1) = $ END OF PROBLEM $ *

It is important to remember that, since such cards are data cards, they should not be in­

cluded as an integral part of the MAD statements but handled as ordinary numeric data.

Strings of Hollerith characters may extend over more than one data card.t The charac­

ter "$" may be represented within an input string by writing two dollar signs with no

spaces between them. The pair of dollar signs "$$" will be replaced by a single dollar
sign when read in. There is one exception.

column 72 of a card and the other in column

If the first of a pair of dollar signs is in

1 of the next card, they will not be inter-
preted as one dollar sign but instead will be interpreted as the termination of one Holle­

rith string and the beginning of the next.

(b) READ AND PRINT DATA

This has the same effect as READ DATA, except that after a card is read it is also
printed as part of the output of the program. It is printed out exactly as the image of

the entire card which was read.

(c) PRINT COMMENT $. ./' $

Here ~ designates a string of no more than 132 Hollerith characters, The dollar

sign is indicated in this string by the occurrence of two contiguous dollar signs. Blanks

are valid characters, The string, delimited by dollar signs as indicated, will be printed,

except for the first character which will be interpreted as a carriage control code and will

not be printed if it is a legal carriage control. (See Section 2.15.1.) An example state­

ment is:

PRINT COMMENT $1 JOHN PUBLIC, PROBLEM 1$

(d) PRINT RESULTS <>i;,;a

Here ~~ designates a list of variable names, block designations, or expressions, but
not iteration elements, The printed output is analogous to the input in that values of

variables are preceded by the appropriate variable name and an equal sign; e.g., "X= -12.4".

Blocks are labeled as such and printed using a block format. EJements of three and higher
dimensional arrays will be labeled with the equivalent linear subscript. If dummy variables
(in a function definition or expression) are included in the list the specific values
assigned to such variables or expressions during execution will not be labeled but simply

preceded by three dots (.••).

An example statement is:

PRINT RESULTS Xl, Yl, Z(l) ..• Z(N + 1), MTX(l,l) .•• MTX(M,N)

(e) PRINT BCD RESULTS ~J.t
(f) PRINT OCTAL RESULTS/~

,_,p.
These statements have the same effect as PRINT RESULTS ~~4C except that the value for

each~~ element is treated as BCD (or OCTAL) information, and printed accordingly.

The subscripts which are printed for two-dimensional arrays are based on the assumption

that the lower limit of both subscript variables is one, If this is not the case, the sub­

script values which are printed may not be those the programmer might have expected; how­
ever, the result which is printed will be the value of the correct element of the array.

tColumn 1 of the next card immediately follows column 72.
48

MAD Reference Manual Chapter II - 2.17

2.17 Iterated expression and iterated statement

Two constructions are available which resemble the iteration element of an input­
output list ~~ These are the iterated expression and the iterated statement.

2.17.1 The iterated expression has one of the forms:

(V, I = E1, . E2, B, E3' E4, ... , En)

or (V = EO, I = E1, E2' B, E3' E4, ... , En)

The interpretation of this element is as follows: The variable V (possibly subscripted)
is given the value of the expression E0, if this is present. The iteration is as in the

THROUGH statement, in that I is given the value of the expression E1 , then B is
tested, etc., with the expression E2 used as an increment. Each time B is false, each

of the expressions E3, E4, •.. , En is evaluated, and each is immediately substituted for
V. Thus, the action is similar, in the second form, for example, to the sequence

A

v = Eo
THROUGH A, FOR I E1, E2, B

V = E3

V = E4

V = E n

except that the final value of V is considered to be the value of the iterated expression,

and so §D. iterated expression may be used in any context in the MAD language in which §D.

expression having the mode of y is legal. Mode conversion (such as floating point -

integer) will be performed as usual on the value of V after the iteration, if necessary.

Note that any of the expressions E0, E1, ... , En may involve V and/or I. In addition,

one may write, instead of some Ei (i = 3, ..• , n), an assignment statement with some

other variable than V on the left. In this case, that assignment is made, and no assign­
ment is made for V at that point. Subsequent assignments are made for V, of course.
For example, to carry out the computation

one might write (using MAD notation):

or alternatively:

Y = A(O) + (8=0,, I=l, 1, I.G.M, S+A(I)*

SIN,(X + T(I)).P.2/COS,(T(I)))

Y=A(O)+(S=O., I=l, 1, I.G.M, Q=SIN.(X+T(I)), S+A(I)*QfQ/COS.(T(I)))

As another example, the first element of a vector C which is greater than the value of B

(assuming that there is such §D. element in Q) is

Chapter II- 2.17.2 MAD Reference Manual

C((J,J=l,l,C(J).G,B))

Note that here the "scope" of the iteration is empty; i.e., there are no expressions after
the Boolean expression.

2.17.2 The iterated statement has the form

(I = E1 , E2, B, s1 , S2, ••. , Sn)

where s1 s2, ... , Sn are assignment statements, iterated statements, or function calls
(i.e., EXECUTE statements without the word EXECUTE). Iterated statements are executable.

As an example, one may compute the product C of two arrays A and B (Chapter III,
Example 6). If A has dimensions m x n, and B has dimensions n x p, then

n
2: A.k Bk.
k=l l J

This may be written in MAD as follows:

i 1, ... , m; j 1, ... , p

(I=l,l,I.G.M, (J=l,l,J.G.P, C(I,J) (S=O.,K=l,l,K.G.N,S+A(I,K) * B(K,J))))

iterated expression

Note the use of the iterated expression here.

The iterated statement and the iterated expression should be recognized as different
from the iteration element of §n input-output list. The distinguishing characteristics of
each are as follows:

(1) The iterated expression has a variable V explicitly written before the

iteration structure and the others do not. A single value results from the

iteration, viz., the final value of V.

(2) The iterated statement is not embedded within any other statement, except as
the second half of a simple conditional, or within larger iterated statements.

No value results from executing an iterated statement, except for assignments

made during the execution.

(3) The iterated input-output list element occurs only in certain input or output
lists. It does not have the variable V written explicitly before the

iteration structure, and it has only expressions in its scope. Each value
of each expression is used in the input or output transmission, subject to

format specifications, as usual. An iterated expression may occur in an
input or output list, but it always produces only one value, the value of V.

3. Declarations (Non-executable statements) (See Appendix A for allowable abbreviations).

Declarations are non-executable statements, and, except for function declarations, they
may occur anywhere in the program. Their purpose is to furnish information to the translator
program or to the reader of the program. Declarations may have statement labels, but names

in the label field are ignored by the translator, and may not be referred to in other state­

ments.

50

MAD Reference Manual Chapter II - 3.1

3.1 Remark Declaration

A remark declaration consists of any string of characters acceptable to the computer.

This statement is completely ignored by the translator, and furnishes information to the

reader of the program. Every card of the remark declaration must have an "R" in column

11. A card which is blank in columns 1 - 72 is treated as a remark card. A remark card

may occur before or after any other card in a MAD program, i.e., before or after END.OF

PROGRAM, between continuation cards, etc.

3.2 Mode Declaration

All variables and function values are assumed to have the normal mode unless declared

otherwise. The normal mode is floating point unless stated otherwise. Any of the other

modes may be specified as the normal mode by writing the following declaration:

NORMAL MODE IS '77!

where ~~ is one of the following phrases: INTEGER, BOOLEAN, STATEMENT LABEL, FUNCTION

NAME, FLOATING POINT, or MODE NUMBER Q, where Q is one of the digits 0 through 7, or

a parameter. The meaning of each of these digits when used in a mode declaration is dis­

cussed in Appendix C. Only one such declaration may appear in a program and it is in

effect for the whole program, no matter where it occurs in the ·program. If a variable or

function value is to have a mode different from the normal mode then its mode must be

declared in a declaration of the form:

lll?v, L, ... , F., ... , BFN.

where ~ is one of the phrases: INTEGER, BOOLEAN, STATEMENT LABEL, FUNCTION NAME, FLOATING

POINT, or MODE NUMBER Q, and where n is as just defined; for example

BOOLEAN P, Q, DIGIT., TRUE

Following 1//? is the list of variables and functions whose values are to be of mode IJ)/.

A program may contain any number of such mode declarations but a name may not be declared

to be of two different modes.

In the statement MODE NUMBER nX where n = 5, 6, or 7, and ,;(is a list of

variable names and/or function names, a comma is allowed between n and ;(if n is one

of the digits 5, 6, or 7, and a comma is required if n is a symbol which has been

given a value of 5, 6, or 7 in a previous PARAMETER declaration. (See Section 3.8.)

3.2.1 Automatic mode assignment

All constants are automatically assigned modes by the translator (see Section 1.1).

Other automatic assignments of modes are:

(a) A name appearing in the statement label field is assigned statement label mode

(see Section 1.3).

(b) A function name constant is assigned function name mode (see Section 1.~).

(c) A vector appearing as the dimension vector of some array in a dimension declara­

tion is assigned integer mode (see Section 3.3).

(d) A vector which is preset by a vector values declaration is assigned a mode

consistent with the first assigned value (see Section 3.7).

51

Chapter II - 3.3 MAD Reference Manual

3.3 The DIMENSION Declaration

In order to be sure that consecutive elements of a vector or array are stored in order
in the computer, it is necessary to declare the ranges of the subscripts to be used in

referring to elements of the array. If only one subscript is used (i.e., one is referring

to the elements of a vector), it is understood that the lowest value a subscript may have

is~' so one declares the highest value the subscript may assume at any·time during the
computation:

DIMENSION V(50)

In this case, consecutive storage locations will be assigned for 51 elements, e.g., V(O),
V(l), V(2), ... , V(50), Negative subscripts may not be used with vectors. If' the name V

is used without any subscript, it is exactly the same as if V(O) had been written.

For arrays with two or more dimensions (i.e., each reference to an element requires

two or more subscripts), one declares the range of each subscript. Thus, if the array B
is two-dimensional, and if the first subscript used with B is expected to take on values

between -5 and 10 inclusive, while the second subscript will vary between l and 15
inclusive, one would write:

DIMENSION B((-5 •.. 10)*(1 ... 15))

Since many arrays have subscripts with ranges starting with 1, if l is the lower bound

for a subscript, the one, the three dots, and the parentheses may be omitted, so that the

last declaration above would more likely be written:

DIMENSION B((-5 ••• 10)*15)

In this case, storage would be allocated to B(-5,1), B(-5,2), ••• , B(-5,15), B(-4,1),

B(l0,15). There are 10- (-5) + l = 16 rows and 15 columns in this array, so 241

storage locations would be assigned to the array B. (16 X 15 + l = 241; the "first"

element of the array has linear subscript l- see below.)

•• •J

Each array is always considered to have storage assigned to it as if it were a vector,

regardless of the 2-dimensional (or higher-dimensional) structure declared for it as

described here. References to elements of an array .may therefore be made by using the

appropriate number of subscripts, or by using a single subscript. The "first" element of
any array (of dimension two or higher) is automatically set to c-orrespond to the single
subscript 1, so that in the example above, B(-5,1) could also be referred to as B(l)

if desired, The single subscript is often called the "linear subscript", and the relation­
ship between the subscripts i and j in B(i,j) and the corresponding linear subscript

r in B(r) is (for two-dimensional arrays):

r n(i - 1) + (j - 1) + b

where n is the number of columns and b is chosen so that the "first" element has linear

subscript r = 1. For the example above, the first element is B(-5,1). Substituting, we

have

l 15(-5 - l) + (l - l) + b

b 91

For the array B, then, the relationsip is

r = l5(i - l) + (j - l) + 91

Since B is a vector, the symbol B itself is the same as B(O), which is not considered

52

MAD Reference Manual Chapter II - 3.3.1

part of the array B (since the "first" element corresponds to B(l)). Thus, with~'
the symbol B may be used as a variable which is quite separate from the array B to
which reference is made with subscripts, but is necessarily of the same mode.

Declarations may occur anywhere in the program in any order, and they may be combined
into a single statement, so a typical declaration might be

DIMENSION P(20), Q(l0*20), R((-5 ... 10)*10*20), B((-5 ... 10)*15)

Elements of arrays are assigned storage in the order determined by varying the last

subscript first, then the next to last, etc., as indicated for the array
if one writes B(0,12), ..• , B(l,3) in an output list, for example, with

as above

B above. Thus,
B dimensioned

B(O,l2), B(0,13), B(O,l4), B(0,15), B(l,l), B(l,2), B(l,3)

would be printed, because the

kept for use during execution
the successor to B(O,l5) is

declared ranges of the subscripts would be used. (These are

of the program.) In this way it will correctly happen that
B(l,l), rather than B(O,l6).

3.3.1 Modifying the declared range of array subscripts during execution (use of SETDIM)

It may be that the declared range for a subscript should be modified during execution
of the program to reflect the storage requirements of different sets of data. In other

words, the need can arise to keep the dimension current.

For example, a program may be written which deals with an

and the largest values which M and N may have are 30 and
we employ the declaration

DIMENSION D(30*20)

M x N- array called D,

20, respectively. Suppose

For a particular set of data, it might happen that M = 6 and N = 4. Unless this were

reflected in the "dimension information", the output list element D(l,l), .•• , D(M,N)

would cause the values of D(l,l), , D(l,20), D(2,1), ... , D(2,20), ... , D(5,1), ... ,
D(5,20), D(6,1), ... , D(6,4) to be printed, and many of these values would be meaningless.

A library subroutine (i.e., external function) is available called SETDIM, which will

update dimension information when executed. The arguments to SETDIM are the name of the
array, followed by the new ranges of all the subscripts, in order. In the example used

here, one would write (after the values of M and N have been read as data):

SETDIM. (D,M, N)

·The arguments giving the ranges of the subscripts may be any integer valued expressions,

The block notation must be used if the lower limit is not 1, so that one might write

SETDIM.(D,3 ... N,M)

Expressions of integer mode may be written as part of a block designation. If a subscript

is to range from N to 2*N, one would write:

SETDIM. (D,N ••• 2*N,M)

Additional flexibility is available for more advanced applications, and this is

described in Appendix B.

53

Chapter II - 3.3.2 MAD Reference Manual

3.3.2 Including dimension information in other declarations

The word DIMENSION may also be replaced by any of the following: PROGRAM COMMONJ

ERASABLE) INTEGERJ BOOLEANJ FLOATING POINTJ FUNCTION NAMEJ STATEMENT LABELJ FORMAT VARIABLE)

MODE NUMBER .!l (where .!lis a legitimate integer constant or parameterL with the effect

determined by the specific declaration used. In any of these other casesJ dimension in­

formation is not required for a name on the list. If givenJ as described aboveJ the dimen­

sioning is in addition to the declared effect. (For PROGRAM COMMON see Section 3.6. For
ERASABLE see Section 3.5)

Example:

INTEGER A(lO)J NJ PJ Q(30*3)

3.3.3 Duplicate (or multiple) dimensioning

Several variables with the same dimension information may be grouped in a declar­

ation. Any form of the dimension declaration may be used (see Appendix B). Variables so
grouped will actually refer to the same dimension vectorJ and any change to the dimension

information) such as a call for SETDIMJ will be a change for all arrays in the group.

Examples:

(1) ERASABLE (AJBJC)(l0)J(DJEJFJG)(l0*15)

(2) DIMENSION (UJSJP)(25)

3.3.4 Automatic dimensioning

Dimensioning is automatic in two situations:

(a) In case a statement label vectorJ say LJ is used (see Section 1.3) and .!l

is the highest subscript used on L in the statement label field (i.e.J if

L(lli) appears explicitly in the program) it is assumed that ill ~.!l)J then

n + 1 locations are reserved for L. Of courseJ L may also appear in a

dimension declaration) in which case the highest subscript is used.

(b) If part or all of a vector is set by a VECTOR VALUES declaration (see Section 3.7)J
the vector need not appear in a dimension statement unless the maximum subscript
implied by the initial values is not sufficiently high.

3.4 Equivalence Declaration

This declaration has the form

where tli and ..lj are individual variables or variables shown with constant linear sub­
scripts.

Example:

EQUIVALENCE (AJB)J (MATRIXJ XARRAY)J (CJ D(3))

and implies that the variables A and B are to represent the same storage location throug

out the program) that MATRIX and XARRAY are to represent the same storage location through

the program) etc. (Two variables which represent the same location always have the same

54

MAD Reference Manual Chapter II - 3.5

value at any given time.) Thus, any number of equivalences may be established by one
EQUIVALENCE declaration, and any number of such declarations may occur (at any place) in
a program.

Variables whose names appear within.the same set of parentheses need not have the same

mode. The mode must be established by the appropriate MODE declaration for each of the

variables. Occurrences within an EQUIVALENCE declaration do not establish mode.

A nonsubscripted array variable name in an EQUIVALENCE declaration represents that

element of the array (considered as a one-dimensional vector) whose subscript is zero.
Reference in an EQUIVALENCE declaration to an array element of any number of dimensions

may be made by linear-subscript only (i.e., as an element of a vector). Note that occur­

rence of any elements from any two arrays in the same parentheses implies equating the

entire arrays accordingly.

3.5 ERASABLE Declarations

This declaration has the form

ERASABLE <t, A ,('.,
where ce., _l<j ,('-1 is a list of one or more variables or array names.

Example:

ERASABLE MATRIX, XARRAY, YARRAY

and implies that the arrays and individual variables listed after the word ERASABLE (which

need not have the same number of dimensions) are disjoint (i.e., non-overlapping in storage),
but are assigned (in the order listed, from left to right) to a special section of storage

which is separate. from the usual storage of variables and arrays. Each ERASABLE declaration
eliminates the effect of previous assignments to this special section of storage, thus

allowing several arrays to occupy the same storage at different times. It should be under­

stood that this storage is accessible to, and may be used by, subroutines. Dimension in­

formation may be included, if desired in this declaration.

3.6 PROGRAM COMMON Declaration

This declaration has the form

PROGRAM COMMON (<., A -c, ...

where a,~~ ... is a list of one or more variables or array names.

Example:

PROGRAM COMMON MATRIX, X, Yl, BC

and implies that the arrays and individual variables listed after the words PROGRAM COMMON

are non-overlapping in storage and are assigned (in the order in which they occur, from left

to right) to a special section of storage which is separate from the usual storage of

variables and arrays, and separate from ERASABLE storage (see Section 3.5). DimensioL

information may be included, if desired.

One use of this statement provides for several sections of a program to refer to

variables and arrays by the same names, while being translated and checked out separately.

A program divided up this way would have the form of a main program and several external
function programs, with the main program being used primarily to call on each of the

55

Chapter II- 3.7 MAD Reference Manual

external functions in turn. Although variables and arrays to be used jointly by several
external functions can be communicated as arguments to the functions, assigning them to
PROGRAM COMMON makes them available to all sections which declare them as such.

The storage reserved for program common is reserved separately, and is not a part of

any program (main program or external function program). Every program which refers to a

variable in program common must have the same address assignment for that variable. This

is usually done by including identical PROGRAM COMMON and DIMENSION declarations in all
the programs which refer to program common,

Another use for this PROGRAM COMMON assignment is in the case of a segmented program,
i.e., a program so large that it is written in blocks which will occupy the same section

of storage and be brought in one at a time. If one block of a program is to use the results

of the previous block's computation, the variables involved should be specified as being in
the PROGRAM COMMON region. Then they will not be destroyed in the process of bringing in

the new block of program. The PROGRAM COMMON and DIMENSION declarations which set up this

storage allocation must be identical in all blocks in which these arrays and variables are
to be used, except that later segments may add additional names at the end of the list.

PROGRAM COMMON declarations do not affect variables and arrays which have already been

assigned to this common section of storage. If another such declaration occurs in a program,

the arrays and variables listed therein are considered appended to the previous list of
PROGRAM COMMON arrays and variables. The amount of storage actually reserved for program

common is determined solely by the first program to be loaded into the computer. This may

be either a main program or an external function program.

3.7 Presetting Vectors

Any vector or portion of a vector (or array when considered as a vector, i.e., using

linear subscripts) may be preset (up to 200 locations) by declarations of one of the follow­

ing two forms:

(a) VECTOR VALUES A(Q) = c0, c1, .•. , Cr

Here Q is an integer constant, and A(n) may be written simply as A if Q = 0.
The entries c0, .•• , Cr may be any constants (not necessarily all of the same mode), and

in addition, Ci may be an alphabetic constant with more than six characters between dollar
signs. In the latter case, the alphabetic constant Ci is treated as if it were broken up
into six-character groups from the left, with any partial group filled with blanks at the

right. (This must be an explicit list of constants; block notation may not be used here.)

If there are ~ constants d0, ..• , ds-l in the list after breaking up long alphabetic
constants, then the elements A(n), A(n + l)~ •.• , A(n + ~- l) are preset (in order) to

the values d0, •.• , ds-l' A is automatically set to have the same mode as d0; and A
is automatically given-a storage reservation of Q + ~ locations, which is the same as

writing DlMENSION A(Q + ~- 1). The numbers must not exceed 200 in any one declaration.

A may appear in a mode declaration as well, provided it is consistent with the mode

of d0• If A appears in other VECTOR VALUES or DIMENSION declarations the maximum length

given or implied for A is used for storage assignment.

56

MAD Reference Manual Chapter II - 3.8

(b) VECTOR VALUES A(m) ••• A(n) = k

Here lli and Q are integer constants, with lli ~ n, and k is any constant (not a
sequence of constants). If k is an alphabetic constant, it may not have more than
six characters between dollar signs. This statement is treated exactly as in part (a),

except that A(m), A(m + 1), ... , A(n- 1), A(n) all are preset with the value k. The

storage reservation for A is equivalent to DIMENSION A(n) in this case, and A is set

to the mode of k. Here, also, ~ - ~ + 1 must not exceed 200.

These declarations are useful for presetting dimension vectors and format descriptions.
The presetting is done at the time of translation. The constants ci (or k) are loaded
(as part of the translated program) into A. These declarations produce no computation at

execution time. However, the values of A may be modified later by other statements in.

the program during execution.

Vectors which have been assigned to ERASABLE storage (see Section 3.5) may not be

preset by a VECTOR VALUES statement. Vectors assigned to PROGRAM COMMON may be preset with
constants of any mode; but if statement label or function name values are preset in a

multiple-segment ("overlay" or "ping-pong") program, the PROGRAM COMMON region should be
identical for all sections.

3.8 PARAMETER declaration

·The following declaration may be used to assign values to symbols (called translation

parameters) at the time of translation.

Here Ai consists of 1 to 6 letters or digits, the first of which is a letter. Bi
any numeric, alphabetic or Boolean constant, or a symbol consisting of 1 to 6 letters

or digits, the first of which is a letter (possibly a translation parameter previously

declared).

is

The effect of the declaration is to permit the replacement of any (subsequent) occur­

rence of Ai by Bi in the program. For example, Ai may occur in place of the integer
constant normally required in a DIMENSION declaration if Bi is an integer constant.

Similarly, Ai may occur in front of a single period as a function name if Bi is a symbol.
However, Ai may not occur as part of a constant name, so that 3.AB is illegal even if

AB is a translation parameter, and Ai may not occur as a defined operator. (Defined
operators are discussed in Appendix C.)

Such a declaration is effective at the point at which it occurs in the program, so

that normally it would precede any use of Ai. Subsequent PARAMETER declarations supersede

declarations of the same translation parameters, so that, in particular,

PARAMETER X(X)

cancels the effect of any previous PARAMETER declaration on X. No PARAMETER substitutions

are ever made within any PARAMETER declaration itself. If Bi is itself a parameter, an

additional substitution is not performed, allowing, for example, the interchange of two

symbols, as in:

PARAMETER B(A), A(B)

57

Chapter II - 3.9 MAD Reference Manual

Examples are given below of possible uses of translation parameters as declared in the
statement:

PARAMETER Al(77), PI(3.1416), FCN(SIN)

(a) DIMENSION B(Al*6), C(Al), V(Al)

(b) RADIUS = CIRCUM/2.*PI

(c) Y = FCN. (X)

(d) J = K + Al*B

(e) PAUSE NO. Al

These would have exactly the same effect as if the following statements had been used.

(a) DIMENSION B(77*6), C(77), V(77)

(b) RADIUS = CIRCUM/2.*3.1416

(c) Y = SIN. (X)

(d) J = K + 77*B

(e) PAUSE NO. 77

No mode, dimension, or other effects are implied by a PARAMETER declaration except those

implied by the form of Bi as an integer, floating point, or other constant.

A parameter may occur as part of a constant name if it is enclosed in parentheses and

used, after the letter M, as a mode designation. The value substituted for the parameter
must be one of the integers 0 through 7. Parentheses may also be used with integer con­
stant mode numbers. Thus, the following are legal uses of parameters:

PARAMETER N(6), F(O)

B = X .EQ. ABCM(N)

VECTOR VALUES A= 1.2M3, 1.5M(5), 4M(N), lM(F)

3.9 Format Variable Declaration

This declaration has the form

FORMAT VARIABLE X
where .~ is a list of unsubscripted variable names. If this declaration is embedded within
a function definition (see Section 3.10), then none of the names in ,X·' may be dummy

variables. All names that will be used as format variables in formats (see Section 2.15.11)
must be declared to be format variables in this way. This declaration does not imply any­
thing at all about arithmetic or Boolean mode or about dimension. There may be any number
of such declarations, anywhere in the program.

3.10 Function Definitions

There are two main types of functions: the internal function and the external function.
Since these are quite similar in many ways, that part of the description which is specific
to external functions will be given in subsection 3.10.1, that which is specific to internal
functions in subsection 3.10.2, and that which is common to both types will follow in

58

MAD Reference Manual Chapter II - 3.10.1

subsection 3.10.3. Throughout this section a single-valued function will be called a
"function", and a function with multiple outputs and/or multiple exits will be called a
"procedure". For the purposes of this manual a recursive function is one whose definition
contains calls for the function being defined--or calls for functions which ultimately call

the one being defined, Recursive functions have the same structure as other functions

although, in general, they will include statements of the type described in Section 2.13,
and certain considerations should be borne in mind when constructing such functions. These

considerations arise from the fact that names, instead of values, are used as function

arguments. The problem is considered in more detail in the examples of Chapter III.

3.10.1 External Function Definitions

These statements define functions not yet available in the language or as standard

package programs ("subroutines"). The designation "EXTERNAL" implies that the statements

which follow are to be translated independently of the main program in which they are to

be used, (Because of this independence this block of statements is to be considered an
entirely separate program, and must have its own DIMENSION and MODE declaration, etc. Names
of variables, functions and labels which denote (or "represent") arguments of the function
being defined are designated "dummy variables" (or "bound variables"). The modes of these
dummy variables (if other than the normal mode), must be declared in the usual way (see

Section 3.2), but arrays which are dummy variables must not be dimensioned, The word

"EXTERNAL" also implies that names chosen for variables and functions in the current func­

tion definition. program have no relation whatever with similarly named variables and func­

tions in the main program (or other definition programs), and that no difficulties will be
encountered because of the use of similar names. (See also section 4,)

3.10.2 Internal Function Definitions

These statements define functions not yet available in the language or as standard

package programs ("subroutines"). The designation "INTERNAL" implies that the definition

program which follows is to be translated as part of the main program. The word "INTERNAL"

also implies that any variables or functions not listed as dummy variables in the definition

of the function (but used in its evaluation), are understood to be the same as elsewhere in

the main program, and the current values of these variables and functions will be used.
Names of variables, functions, and labels which denote arguments of the function being
defined are designated "dummy variables" (or "bound variables"). They must be distinct

from those appearing elsewhere in the program. The modes of dummy variables (if other than

normal mode) must be declared in the usual way, and arrays which are arguments must not be

dimensioned, (See also section 4.)

One-sentence definition:

One form of internal function definition (not available as an external function defini­

tion because the latter must be a complete, independent program) is the one-sentence defini­

tion, which has the form:

INTERNAL FUNCTION 'JZa.1111!-. (Jj,;.;tt) t
where J lame- is the name of the function being defined and t' is an expression (arithmetic

or Boolean) involving the variables in the ~~t of dummy variables,

59

Chapter II - 3.10.3

Example:

MAD Reference Manual

INTERNAL FUNCTION SUMSQ, (X, Y, Z) = X*X + Y*Y + Z*Z - 'l'*T

As indicated above, X, Y, and Z, as they occur here, are dummy variables, and

(X, Y, Z) is the dummy variable list. The current value of T, however, will be obtained

and used each time the value of the function is needed. An example of the use of the

function so defined would be:

A = 1.-SUMSQ, (U, V + 3, W) .P .. 5

In the one-sentence internal function definition, at least one dummy variable must be

indicated, even if the function does not use arguments. For example:

INTERNAL FUNCTION F. = 2*Y + 1

is not a legal definition, but

INTERNAL FUNCTION F, (X) 2*Y + 1

is.

Only nonsubscripted names of variables (either individual or array) or names of func­

tions (without arguments) may appear in the dummy variable list. In the use of the function

in an expression, the arguments may be any expressions that agree in mode with the corre­

sponding dummy variable in the dec lara tj_on,

The modes of dummy variables and "actual" arguments must correspond. Thus, in the

example definition

INTERNAL FUNCTION POLY. (N, X, FN.) FN.(J*X).P.N- X/XBAR

which might be used in the statement

BETA ZQ POLY. (M + 1, Y, SIN.) + POLY, (M - 1, Z, cos.)

it is understood that if N is in the integer mode, then so is M, and if X is in the

floating point mode, then so are Y and Z. It is, of course, presumed that both M and

N have been declared to be in the integer mode. Similarly, the values of SIN. and COS.

must be the same mode as the values of FN. Moreover, in the use of functions this mode

correspondence cannot be checked by the translator.

The function POLY has as one of its arguments the name of a function, In the state-

ment BETA the function used in the first term to the right of the " sign is SIN and

in the second term COS Hence statement BETA is then equivalent to:

BETA ZQ = SIN, (J*Y) .P. (M+l) - Y/XBAR + COS. (J*Z) .P. (M-1) - Z/XBAR

3.10.3 Internal and External Functions (Things they have in common)

Each function definition (except one-sentence definitions described in 3.10.2) may

define any number of functions and/or any number of procedures. However, within one func­

tion definition all functions and procedures defined must use exactly the same set of dummy

variables, In other words, the functions CPADD.(X,Y,A,B) and CPMPY.(X,Y,A,B) may be

defined, if desired, by one definition, but the functions SIN,(X) and ARCTAN,(X,Y) would

require separate definitions. Similarly, the procedures RKSUB and ADAMS could be

defined by the same definition if they have the same outputs, say Z and W, and the same

input parameters, say X, Y, T, and N. However, if they did not have exactly the same

outputs and the same inputs, they would require separate declarations.

60

MAD Reference Manual Chapter II - 3.10.3

In the use of a function (i.e., the call for it) the arguments may be constants, vari­
ables; function names, labels, or expressions. However, if one of the arguments appears to
the left of an"=" sign in an assignment statement in the defining program it is not mean­
ingful to use a constant or an expression for that argument in the call. As mentioned

earlier, the arguments cannot be checked for correspondence in mode and number to dummy
variables.

An example function definition program is as~~~-~

INTERNAL FUNCTION COS. (X) --(_ / or alternatively,
... --lc INTERNAL FUNCTION (X)
' ' ' (. ENTRY TO COS, --' ... t ~
ENTRY TO SIN. -~"-~

FUNCTION RETURN ALPHA + J - 3.
ENTRY TO TAN.

FUNCTION RETURN BETA/K5 - 4.* D
END OF FUNCTION

The first statement (INTERNAL FUNCTION COS.(X)) is a function declaration (i.e., declares

that the following statements define a function called COS whose entry point is here). The

opening declaration and entry point may alternatively be split into two statements as shown.

If this is defining an external function, the declaration would be EXTERNAL FUNCTION COS.(X).

Following the words INTERNAL (or EXTERNAL) FUNCTION is the dummy variable list ((X) in this

example). The END OF FUNCTION declaration is the last statement in the function definition
program. (In an EXTERNAL function definition this is also the last statement in the program.)
An entry must be provided for each function being defined, but several functions may share

any number of FUNCTION RETURN statements. An entry statement merely marks a point of entry,

and does not affect the sequence of computation in any way. The expression after the

phrase "FUNCTION RETURN" indicates that on this return the value of the function is to be

the value of that expression. This expression must agree in mode with the function whose

value it supplies, i.e., it must agree with the expected mode of the function value being

called for in the calling program. This agreement is not checked. The definitions of func­
tions whose calls are intended to be included in expressions must have an expression follow­
ing the FUNCTION RETURN statement. If the calls for a function are to appear in an EXECUTE
statement (generally such functions have multiple outputs) the FUNCTION RETURN statement may

appear without an accompanying expression.

Example of § procedure (called PROC) definition

EXTERNAL FUNCTION PROC, (M,N,I,P,Q)
STATEMENT LABEL N,I

FUNCTION RETURN

WHENEVER B, TRANSFER TO I

TRANSFER TO N
END OF FUNCTION

61

Chapter II - 3.10,3 MAD Reference Manual

In this example, N and I are actually alternate exits, and B represents some
Boolean expression.

It is important to note that internal function definitions of any kind whatever (in­
cluding the single statement definition of subsection 3.10.2) may occur anywhere in the

program, except within another internal function definition. Internal function definitions
may occur within external function definitions, however. External function definitions may
not occur within any other programs, not even within other external function definitions.
Each external function definition must be a complete, self-contained program.

Example of ~ function definition (called INVSF)

The following is an example of a function whose value is 1/x if 0 < x ~ 1 and
l/x2 if x > 1. If x ~ O, one obtains an error return (see Section 2.9).

A EXTERNAL FUNCTION (X)
J ENTRY TO INVSF.
G WHENEVER X.G.O • • AND. X .LE. 1.
c FUNCTION RETURN X .P. -1
H OR WHENEVER X .G. 1.
D FUNCTION RETURN X .P. -2
I OTHERWISE
E ERROR RETURN
K END OF CONDITIONAL

B END OF FUNCTION

(Here the statements are all labeled only for reference in what follows.)

The list of dummy variables in the opening declaration (statement A in the preceding
paragraph) may contain only nonsubscripted variable names (either individual or array) or
function names (without arguments). Within the definition program itself (the statements
between statement A and statement B), a function name will usually occur with arguments,
and an array variable will usually occur with subscripts.

A few comments about the last example: This definition program defines a single-valued

function of X, called INVSF Since no mode declaration is given it is assumed by the
translator that X is floating point. The value of INVSF.(X) is computed by the use of

a compound conditional. If 0 < X~ 1, (statement G) then statement C is executed, causing
a return to the calling program with the value "i . If the condition 0 < X < 1 is not
true, then the condition X> 1 is tested (statement H). If X> 1, statement D is
executed. Finally, if neither of the conditions 0 < X~ 1 or X > 1 is true, then state­
ment I finds that X~ 0 and statement E (the ERROR RETURN) is executed,

Suppose

A B- D
X T(I) + INVSF. (Y) * T(I-1)
Y(I) Z + R(J) * 2.5

is part of a program which calls on INVSF , and suppose the error return statement is exe­
cuted during the evaluation of INVSF.(Y) (i.e., Y ~ 0). Then control is returned to the
system in which the translated program is e.mbedded, with an error flag set. However, suppose
instead these statements:

A
F Z
S Y(I)

ER Z
L Y(I)

B - D
T(I) + INVSF.(Y,ER) * T(I-1)
Z + R(J) * 2.5

0
1.

62

MAD Reference Manual Chapter II - 3.10.4
•

are part of the calling program and Y ~ 0. When the ERROR RETURN statement is executed,
control transfers to statement ER (then goes on to L), instead of finishing the exe­
cution of statement F (and then going on to S). Note that the END OF FUNCTION statement
will never be executed, but must be present in the definition. Indeed,the only type of

function definition in which the statement END OF FUNCTION is not required (in fact, is

not allowed!) is the one-sentence internal function (Section 3.10.2).

There is a table kept by the MAD translator in which are recorded all occurrences· of

dummy variables (or parameters) within an external or internal function definition. Since
all such occurrences must be initialized on each entry to the subroutine, it is very
desirable that the number of entries in this table be kept as small as possible. This is

especially important when a diagnostic comment is generated saying that this table has in

fact overflowed! (The diagnostic comment produced in this case is PARAMETER USE TABLE
EXCEEDED,)

There are several ways to cut down the entries in this table and thus speed up the

execution of the subroutine and shorten its length as well. (1) If X is an input to
the subroutine and its value is used several times, start off the subroutine's computation

with the assignment statement Y = X, and use Y everywhere as an auxiliary variable
instead of X. Only this assignment statement will then need to be initialized with the
address of X. (2) If the address of a variable is needed, as in the case of an output

argument, or an argument which is an array name, one cannot use the method just given in

(1). ·One can instead put the variable or array in PROGRAM COMMON by means of (identical)

PROGRAM COMMON declarations in both the main program and the subroutine, Then the variable

or array should not be used as an argument at all, and the initialization is thus avoided.

Note that in this case (identical) DIMENSION declarations are necessary for such arrays in
both the main program and the subroutine.

3.10.4 TRANSMIT statements (General familiarity with the contents of the IBM 7090
reference manual is assumed)

A "calling sequence" (see Chapter IV, Section 3) is a process of establishing and

transmitting (i.e., making available to the called program) the values of input argument

expressions and/or the addresses of input or output arguments. These sequence~ (instruc­
tions in machine code) are generated by the MAD translator in the calling program as a
consequence of each call on a function or procedure.

Calling sequences for input-output subroutines ordinarily differ from calling sequences
of other subroutines, in that the former use the STR instruction (IOP and FMT in UMAP)

while the latter use the TXH and TIX instructions (PAR and BLK, respectively, in UMAP).

The use of the STR allows computation by the called subroutine after the processing (evalu­
ation) of one argument and before the next is processed. This occurs in the role of N in

the example below:

READ FORMAT $I4*$, N, A(I,J), ..• , A(I,N)

where the new value of N is used to determine A(I,N). Four types of TRANSMIT statements
allow other subroutines (i.e., EXTERNAL functions) to have the input-output type of calling

sequence:

63

Chapter II - 3.11 MAD Reference Manual

TRANSMIT LIST J7 . , ~·
TRANSMIT TAPE LIS'r

TRANSMIT FORMAT LIST

TRANSMIT TAPE FORMAT LIST /~) '/
{., _/' "l) ~·

where 1? is the name of an INTERNAL or EXTERNAL FUNCTION. X is any input or output list,

,J is a logical tape number, and '-7 is any format designation, such as the name of a

vector preset to format information, or format information itself. Note that since the

STR instruction causes a transfer of control to location 00002, the subroutine SET2

in the UM Executive System Library will probably be useful. The action of each of the

above statements is to call the function named as 1(with an input-output calling sequence

based on--7, J, and/or A. (See Chapter IV, section 3.)

3.11 SYMBOL TABLE statements

The MAD translator produces a "symbol table" as part of the object program whenever

certain statements occur in the program. The symbol table contains symbols used in the

source program, and associates with each symbol an "information word", described below.

This table makes it possible, for example, for a symbol appearing on a data card (and which

is read by a READ DATA statement) to be assigned a storage location and a mode (i.e.,

integer, floating point, etc.) at the time the data card is read. The information word

has the form:

DV M Add

s l 2 3 l7 18 20 21 35

where A is a l if the associated symbol is an array (i.e., it was dimensioned) and 0

otherwise; DV is 0 if the symbol has no dimension vector (i.e., is not an array), and

the relocatable address of the dimension vector if there is one; M is the mode of the

symbol, such as 0 for floating point, l for integer, etc.; and Add is the (relocatable)

address of the symbol. The concept of the "dimension vector'' is developed in Appendi.x B.

The table is stored as an ordinary MAD vector, i.e., the top of the table would corre­

spond to V(O) if the vector were named V. (Actually the symbol .SYMTB is used

internally for this table, and this will appear in the symbol table). Asswning such a

name, the table has the form:

V(0)

) V(l)

I V(2)

jV(N-1) =

I V(N) =

integer N giving highest subscript used in the table;

i.e., if there were 15 symbols, or 30 words, then N

information word for symbol in

symbol associated with word in

information word for symbol in

symbol associated with word in

v(2).

V(l).

V(N).

V(N-1).

30.

All symbols are in the form of left-justified alphabetic constants (with trailing blanks).

64

MAD Reference Manual Chapter II - 3.12

The symbol table produced by the translator does not always contain every symbol used
in the program. If any of the (simple I/O) statements

READ DATA

READ AND PRINT DATA

PRINT RESULTS A0

PRINT BCD RESULTS ~
PRINT OCTAL RESULTS ,;(

occurs anywhere in the program, then the symbol table will be "full", i.e., it will contain

all symbols in the program (plus two additional symbols, as described below). If none of
these statements occurs, but a FORMAT VARIABLE declaration occurred, then a "partial"

symbol table is produced containing only those variables declared to be format variables

(plus the two additional symbols). If neither a full nor partial table is produced, then

a trivial one-word table is generated, with V(O) = 0.

A non-trivial table (V(O) I 0) has two word entries whose format is described above,
and in addition has two entries appended at the high-index (i.e., V(N-3), •.• , V(N)) end

of the symbol table vector. Both of these entries have BCD symbols of "D ... rn", i.e.,
in V(N-2) and V(N). The address in V(N-3) is the address of the first location above
the transfer vector in the MAD object program. This location is the one assigned to all

variables which have a single occurrence in programs not using simple I/0. In the other

added entry at location V(N-1), there is the address which is the first one below the
ERASABLE region that has been assigned in the object program. The entire table is not

ordered in any directly usable way and may be re-ordered at execution without affecting
input-output operations.

In order to allow interrogation and/or modification of the symbol table during the

execution phase of a program two declarations are provided.

SYMBOL TABLE VECTOR 'V

FULL SYMBOL TABLE VECTOR

where '&f is a DQg-subscripted variable. The first treats the symbol table as preset values
of Z/, gives 1/ itself integer mode, and dimensions Z1 large enough to take the parti­
cular kind of table (i.e., full, partial, or trivial) that is being produced. The second
declaration does all of this and forces a full table in addition. The variable &f'may be

declared to be in PROGRAM COMMON, and it may be dimensioned larger than necessary, if
desired. It should not be declared to be in ERASABLE.

3.12 LISTING ON and LISTING OFF declarations

The form of these declarations is as follows:

LISTING ON

LISTING OFF

At the beginning of each MAD translation, LISTING ON will be automatically in effect. If

LISTING OFF occurs, that statement will be printed; but statements that come after it, up

65

Chapter II - 3.13 MAD Reference Manual

to and including any LISTING ON declaration, will not print. They will print with the
object program if $PRINT OBJECT is requested. Note that UMAP-like code used in DEFINE
sequences (see Appendix C) does not print with the object code in any case,

3.13 REFERENCES ON and REFERENCES OFF declarations

The form of these declarations is as follows:

REFERENCES ON

REFERENCES OFF

At the beginning of every MAD translation an implicit REFERENCES OFF condition will be in

effect. After an occurrence of REFERENCES ON, references to symbols which are encountered

in the program will be collected until an occurrence of REFERENCES OFF. These declarations

may be used as often as necessary. If any references have been collected, a list of

references to (a) symbols, (b) function names, (c) dummy variables of INTERNAL FUNCTIONS,

(d) dummy variables of EXTERNAL FUNCTIONS, and (e) PARAMETERS will be printed after part I

of a MAD translation (even if there are errors).

References are given in terms of the * number assigned to each statement by the
translator. In case a statement contains a part I error! some references for that state­

ment may be included, but some may not be included,

Each variable listed as occurring only once will be associated at that time with an

number to make it easier to find. Since variables are often dimensioned (and/or declared

to be in PROGRAM COMMON or ERASABLE or equivalent to something which is) to create specific
storage assignments and are not used again in the program, no symbol is listed as occurring
only once which appears in a PROGRAM COMMON, ERASABLE, or EQUIVALENCE declaration, or which
is followed by dimension information in any declaration. The list of variables occurring

only once does not appear if there are any part I errors.

4, Restrictions

Variable names appearing as dummy variables in any function declaration may not appear
in a PROGRAM COMMON, ERASABLE, or EQUIVALENCE declaration,

The name of a function with the period deleted must not be used as the name of a

variable or as a statement label. A statement label must not be identical with any variable
name,

The object program produced by the translator automatically calls on the subroutines

SYSTEM and ERROR , hence these names may not be used as variable names or statement labels

in a MAD program. They may be used as function names only when referring to these sub­

routines. (These subroutines will be described in Chapter IV.)

If a block designation A(i1, •.• , in) ,,, A(j 1, •.. , jn) is used in an input-output

list Jt for reading or writing binary tape, the linear subscript corresponding to i 1,
,,,, in may not be greater than the linear subscript corresponding to j 1, ... , jn. While

the list for a binary tape statement is transmitted in the sequence written, a block

A(i1, ,,,, in) ,,, A(j1, ,,,, jn) within the list is actually transmitted in reverse

order, i.e., in the sequence A(j1, ,,,, jn) to A(i1, ••. , in),

tsee Chapter IV, section 2.

66

Chapter III

EXAMPLES

"He prepares to go mad with fixed rule and method."

Horace: Satires

Note: The following illustrates how some programs may be written in the MAD language.

Since they were written to illustrate as many features of the language as possible, they
are not necessarily the most efficient or elegant programs which could have been written.

They have all been tested on the computer, however; and they are correct.

The flow chart notation used here may vary somewhat from the notation used by others.

This variation reflects present computing practice where many individualistic forms are

encountered and, moreover, causes no difficulty due to the essentially graphic nature of
charts.

In addition to the conventions given in Chapter I, the following are used in this

chapter:

l.

(a) THROUGH .rJ, FOR VALUES OF -z/ = ;f is given by a box with two outlets: One

usedwhen the list is not satisfied, and one used when the list is satisfied.

IN~es OUT
No

...
(b) A pause is represented by a hexagon. ~

(c) Operations involving tapes are indicated by:~

Scientific Examples

Example 1

Problem: To solve the quadratic equation ax2 + bx + c 0 for various sets of
coefficients a, b, and c.

Analysis: Let x1 and x2 be the two roots of the equation. Then their values

are found by the formulas,

- b - Jb2 - 4ac
2a

whenever a I 0. The single root x1 of the equation when a= 0 is
x1 = -c/b. The input values of a, b, and c are printed immediately

after they are brought in to help in finding trouble spots during the

development of the program (not as necessary here as in longer problems,

but a good idea!). Assume b' 0 if a • o.

67

Chapter III

READ

a,b,c

PRINT
a 1 1-----~ "LINEAR

EQUATION"
x1 -c/b

PRINT "REAL
~l j------,1--{ SOLUTIONS 11

(-b + .Jd)/2a
(-b - .Jd)/2a

PRINT "COMPLEX
~2 SOLUTIONS"

R(X1) +- -b/2a
I(X1) +- .f=d/2a
R(X2) +- -b/2a

I(X2) +- -.f=d/2a

PRINT
a,b,c

68

MAD Reference Manual

Note: R(X1) and I(X1) are the
real and imaginary parts
of x1, and similarly,
R(X2) and I(X2) are the
real and imaginary parts

of x2.

MAD Reference Manual

The Program:

GAMMA

ALPHA!

ALPHA2

BETA!

BETA2

$DATA
4o
o.
1 •

R
R MAIN PROGRAM
R

READ FORMAT $3F!Oo4*$• Ao Bt C
PRINT RESULTS A• Bo C
WHENEVER A oNEo OoTRANSFER TO ALPHA2
PRINT FORMAT LINEARo-C/B
TRANSFER TO GAMMA
D = B oPo2 -4o*A*C
WHENEVER D oLo OotTRANSFER TO BETA2

Chapter III

PRINT FORMAT REALoi-B+SQRTe(0))/12e*Alo(-B-SQRTo<Dll/(2o*Al
TRANSFER TO GAMMA
PRINT FORMAi COMPLXo-B/12o*AltS0RToi-D)/{2o*Al•

1 -B/12o*Alt-SORTo(-D)/(2o*Al
TRANSFER TO GAMMA

R
R FORMAT SPECIFICATIONS
R

VECTOR VALUES LINEAR = $2!HOLINEAR EQUATION• X
VECTOR VALUES REAL = $21HOREAL SOLUTIONSo Xl

1 FlOo4tS8o4HX2 = Fl0•4*$
VECTOR VALUES COMPLX = $!9HOCOMPLEX SOLUTIONS•

1 S4o7HRIX1l = F!Oo4tS8o7HI(Xl) = F!Oo4oS8t
2 7HRIX2l = F10o4oS8t7HIIX2l = F10o4*$

END OF PROGRAM

-8.
5o
1 •

4o
!Oo

1 •

Chapter III MAD Reference Manual

Example .?_

Problem: A logical (Boolean) expression such as

T = (P .AND. Q) .OR. (.NOT. P .AND. R .AND. S) .OR. (R .OR. P)

will have a value TRUE or FALSE (represented here by lB and OB,

depending on the "input values" of the variables involved: P, Q, R, S.

Q = R = S = OB, then the total expression T will have the value lB.

of outputs for all possible inputs would be as follows:

p Q R s T

OB OB OB OB OB

OB OB OB lB OB

OB DB lB OB lB

DB OB lB lB lB

OB lB OB OB OB

OB lB OB lB OB

OB lB lB OB lB

OB lB lB lB lB

lB OB OB OB lB

lB OB OB lB lB

lB OB lB OB lB

lB OB lB lB lB

lB lB OB OB lB

lB lB OB lB lB

lB lB lB OB lB

lB lB lB lB lB

respectively)

Thus, if P = lB,

The entire table

The problem is to write a program to generate the entire "truth table" for the given

expression T.

70

MAD Reference Manual Chapter III

The Program:

No

PARAMETER TRUE<OBlt FALSE<!Bl

P +- OB, lB

Q +- OB, lB

R +- OB, lB

S +- OB, lB

PRINT P, Q,
R, S, (P 1\ Q)v
(-p 1\ R 1\ S)
v(R v P)

PRINT COMMENT $!TRUTH TABLE FOR THE FUNCTION$

Yes

No

PRINT C0MMENT$0(P,ANDo0)o0Ro<oNOToPoANDoRoANDoSloORo<RoORoP)$
PRINT FORMAT HEADER
BOOLEAN PtOtRtS
THROUGH AoFOR VALUES OF P = FALSEt TRUE
THROUGH AtFOR VALUES OF Q = FALSEt lB
THROUGH AoFOR VALUES OF R OBtTRUE
THROUGH AtFOR VALUES OF S OBolB
PRINT FORMAT TABLEtPoOtRtSt(P oANDo Q) oORo(oNOTo P oANDo R

1 oANDoS)oORo<R aORoP)
VECTOR VALUES HEADER= $lHloS10olHPtS10t1HQoS10tlHRoS10olHSt

1 S15olHT*$
VECTOR VALUES TABLE= $1HOo4<S10ollltS15tll*$
END OF PROGRAM

Note: Although it would have meant only a slight change in the format information, no
attempt was made here to label the "O" and "1" that print as values in the table as
Boolean, i.e., "OB" and "lB". This points up the fact that internally OB and lB
are stored as 0 and 1, respectively. Also, the statement

NORMAL MODE IS BOOLEAN

could have been used as the fifth statement of this program instead of the BOOLEAN

declaration.

71

Chapter III MAD Reference Manual

Example .3.
b

Problem: To approximate ajf f(x) by Simpson 1 s Rule, for an arbitrary interval [a, b]

using N equal subintervals (where N is an arbitrary even integer and a< b).

b
Analysis: By Simpson 1 s Rule, ~ f(x)dx ~ b3Na (y0 + 4y1 + 2y2 + 4y3 + ... + 4yN-l + yN)'

a

where yi = f(xi), and a= x0, xl' ... , xN = b are the partition points of the interval

[a, b] .

Method: We shall write the program in the form of an external function, so that it could

be used with any other program. The evaluation of f(x) may be accomplished by another

external function or an internal function.

Flow Diagram:

The Program:

ALPHA

RETURN
1-=--"-\H (F (A)+4S1 +2S2- F (B)) /3

+ F(X+H)

EXTERNAL FUNCTION SIMPS. CAtB•NtFel
INTEGER N
H = (8-A)/N
s 1 = o.
52 = o.
THROUGH ALPHAtFOR X c A+Ht 2•*H• X oG• 8
51 = 51 + FoCX)
52 = 52+ Fe<X+HJ
FUNCTION RETURN H*CFoCAJ+4o*S1+2•*52-FeCBJJ/3•
END OF FUNCTION

If, for some reason, the integral of sin 3x - cos(rx + 1) were needed if 0 ~ r ~ 3, and

the integral of sin 3x- cos rx otherwise, the program might then be as follows:

72

MAD Reference Manual Chapter III

The Program:

READ READ FORMAT $2Fl2o4tl6tF12o4*$•A•B•NtR
INTEGER N

R

WHENEVER Oo oLEo R oANDo R oLEo 3•
PRINT FORMAT RESULTtAtBtNtRtS!MPSoCAtBtNtF1ol
OTHERWISE
PRINT FORMAT RESULTtAtBtNtRtS!MPSoCAtBtNtF2ol
END OF CONDITIONAL
TRANSFER TO READ

R DEFINITION OF FUNCTIONS
R

R

INTERNAL FUNCTION FloCXI = SlNoC3o*Xl-COSoCR*X+1ol
INTERNAL FUNCTION F2oCX) = SINoC3o*Xl-COSoCR*Xl

R FORMAT SPECIFICATIONS
R

VECTOR VALUES RESULT = $23H1 FOR THE INTERVAL FROM
1 Fl2o4t3H TO Fl2o4t5H WITH l6t38H EQUAL SUB-INTERVALS AND
2 PARAMETER F12o4/ H*OTHE VALUE OF THE INTEGRAL IS Fl2•4**$

END OF PROGRAM

External Function:

ALPHA

Data:

EXTERNAL FUNCTION CAtBtNtFol
INTEGER N
ENTRY TO SIMPSo
H = CB-Al/N
Sl = Oo
52 = o.
THROUGH ALPHAt FOR X = A+Ht2o*Ht X eGo B
S.l = S1+Fo lXI
52 = S2+Fo CX+Hl
FUNCTION RETURN H*CFoCAl+4o*S1+2•*S2-FoCBll/3o
END OF FUNCTION

0 2• 10 lOo

An alternate way to write the first eight lines of this program, illustrating one use of
the FUNCTION NAME mode, and using full abbreviations (see Appendix A), would be:

READ
I I R N
R1 T SZF1Zo~•I6tF12t4*StAt8tNtR
W1 R Oo oLEo R oANDo R oLEo 3o

S=Flo
OlE

S=FZo
ElL
PIT RESULT• At 8• Nt Rt SIMPSa(AtBtNtS)
TIO READ
FUNCTION NA~1E S

73

Chapter III MAD Reference Manual

Example Lf

Problem: To find one real solution (if it exists) of the equation f(x) = 0 (where f is

a continuous function) on an arbitrary interval [a, b], provided the roots (if there are

more than one) are at least E apart.

Analysis: We specify a, b, and E as parameters. The method used will be "half-intervaJ

convergence," in which the function is evaluated at x = a, and then the interval is

scanned for a change of signt in the value of f(x). If no change of sign is found, the

scanning is repeated with a step size for searching equal to one-half the previous step

size. If the step size becomes smaller than E, and no change of sign is found, the

process is terminated, and comment is printed: "NO SOLUTION".

If a change of sign is found between XL and XR' the value of f is computed at
XL+ XR

i.e.' the midpoint of the interval of uncertainty [xL' xR]. We then XM = 2 '
determine which of the intervals [xL' xM], [xM, xR] now contains a change in sign. We

then compute the value of f at midpoint of that smaller interval, etc., until the interval

being considered finally has length less than E, at which time either end may be taken

as the solution with an error less than E.

The method used here to handle the xM computation is perhaps not the most obvious

one. It consists of a simple loop in which the value of x is adjusted by h t = ~, then
h 1 h h 1 1 = :2 = 4' etc., until h is small enough. The adjustment of x is either to the

left or right, depending on the occurrence or non-occurrence, respectively, of a change of

sign between f(a) and f(x).

It should be understood that this method may not find a root which is one of a pair

of roots which either coincide or are less than E apart.

tA change of sign is detected when the numbers involved have a negative product.

74

MAD Reference Manual

F

T

T

F

1----=------'>-l PRINT NO

SOLUTION

75

T

Chapter III

Definition
SIGN.(Z) = Z/IZI

Chapter III MAD Reference Manual

Program: (It is assumed here that f (referred to as F
defined as an internal function.)

in the program) will be

PSI

ALPHA

DELTA
SIGMA
ETA

$DATA

REFERENCES ON

INTERNAL FUNCTION Fo (ZI= Z oPo 2 - 2•
PRINT COMMENT$ ECHO CHECK OF VALUES FOR Ao8t AND EPS$
READ AND PRINT DATA
VA = Fe<AI
THROUGH ALPHAtFOR H = (8-AI/2oo-H/2otH oLo EPS
THROUGH ALPHAoFOR X = A+HoHt X oGo 8
WHENEVER Fo(XI oEo OooTRANSFER TO ETA
WHENEVER YA*Fo!Xl oLo OotTRANSFER TO DELTA
PRINT COMMENT $0 NO SOLUTIONS$
TRANSFER TO PSI

R
R THE NEXT SECTION IS ENTERED WHEN A CHANGE
R OF SIGN IS FOUND
R

R

THROUGH SIGMAoFOR H=H/2oo-H/2otH oLoEPS
X= X+SIGNo!YA*Fo!X)l*H
PRINT COMMENT $0 SOLUTION$
PRINT RESULTS X
TRANSFER TO PSI

R DEFINITION OF SIGNo FUNCTION
R

INTERNAL FUNCTION SIGNo(Z) = Z/oA8SoZ
END OF PROGRAM

A= lot 8 = 2ot EPS = oOl *

Example .5.

Problem: Find the transpose A1 of an n x n matrix A= (aij).

Analysis: If we write A' = (bij), then bij = aji' We shall interchange symmetrically
placed pairs of elements, leaving untouched elements on the main diagonal. The program
will be in the form of an external function.

Flow Diagram:

z <- AI,K

AI,K <- AK,I
AK, I ... Z

T

76

MAD Reference Manual

EXTERNAL FUNCTION TRANSo (At N)

(K= ltltKoGEoNt(I=K+Itlt I oGo Nt
1 Z = AlltKlt AlltKl = AIKtllt A<Ktll = Zll
R THE ABOVE IS AN ITERATED STATEMENT• SEE SECTION 2ol7

FUNCTION RETURN
INTEGER NtKtl
END OF FUNCTION

Chapter III

Note: No dimension information is given for A, since it is an argument in a function

definition program. This function would be called in a statement of the form

TRANS. (A, N).

DIMENSION Al25*25l
INTEGER N
FORMAT VARIABLE N

RTHE FOLLOWING STATEMENT READS IN THE
RVALUES OF N AND THE MATRIX At PROVIDING
RTHEY ARE SO IDENTIFIED ON THE DATA CARDSt

READ READ DATA
R THE FOLLOWING STATEMENT RESETS THE DIMENSION
R INFORMATION FOR THE A ARRAYo

SETDIMo IAtNtN)
TRANSoiAoN)

PRINT FORMAT MATR!Xt A(ltlloooA(NtN)
TRANSFER TO READ
VECTOR VALUES MATRIX = $lHOt tNt Fl2•6*$
END OF PROGRAM

Note that the use of the format variable N (see Section 2.15.11) allows the printing of

the matrix by rows, .with each row having the correct number of columns. If the value of N

exceeds 10, however, a format error will occur, since the format will be trying to specify

more than 132 characters per line.

Example .§

to produce the matrix

with m • n S. 1500,

Problem: Multiply the matrix A= (aij) by the matrix B = (bij)
C=(cij)' i.e., C=A•B. Assumethat A hasdimensions mxn
B has dimensions n X p, with n · p S. 1500, and C has dimensions

.m • p S. 1500.

m x p, with

Analysis: An element cij of C is computed by the formula

77

Chapter III

READ

a

$DATA
M = 2• N

MAD Reference Manual

Set dimensions for A,B,C

READ

DIMENSION AC40*40lt BC40*40lt CC40*40)
INTEGER ltJtKt Mt No P

R THE NEXT STATEMENT INPUTS VALUES FOR MoNt AND/OR P
READ AND PRINT DATA
SETDIMo!AtMtNl
SETDIM,CBtNtP)
SETDIMo<CtMtPl
READ FORMAT $6Fi2•4*$t A(ltlloooA(MtNlt BClt!loooB(NtPl
PRINT FORMAT $JHOt8Fi3•4*$oAC!tll•••ACMtNltBCltlloooBCNtPl
THROUGH a, FOR I = 1tlt I tG• M
THROUGH a, FOR J = !tit J eGo P
C!ltJ):CS:O,tK=lt1tKoGoNtS+ACitKl*BCKtJ)l

R NOTEo THE PRECEDING 3 STATEMENTS CAN BE REPLACED BY A
R SINGLE ITERATED STATEMENT• SEE EXAMPLE IN SECTION 2ol7

PRINT.FORMAT RESULToCC!tlltt•CCMtPl
TRANSFER TO READ

R

R FORMAT SPECIFICATIONS
R

VECTOR VALUES RESULT
END OF PROGRAM

3• p = 3 *
1. 2•
7t s.

13. 14•

$9H!C MATRIX//CIH0t8F13•4l*$

3· 4• 5·
9t lOo 11 •

15t

78

6t
12.

MAD Reference Manual Chapter III

Example 1

Problem: Solve a system of n ~ 20 simultaneous linear equations in n unknowns, assuming

that one does not encounter a zero on the main diagonal of the coefficient matrix during
the solution process.

Analysis: We shall use a Jordan Elimination Method, in which each diagonal coefficient is

used to "clear" all other coefficients in its column to zero by appropriate multiplications

and subtractions. Since we shall divide the "clearing row" by the diagonal element in that

row before clearing the column, we shall finish the process with only a diagonal of ones

and the solution to the problem as the resulting right hand side of the equations.

We denote the system of equations to be solved by:

(1)

all xl + a12x2 +

a2lxl + a22x2 +

+ alnxn = al,n+l

+ a2nxn a2,n+l

We divide the first row by its diagonal element Then to clear to zero we
subtract a21 times the first row from the second row, and so on. In general, to clear

aik to zero (after row k has been divided by akk), we subtract aik times row k from
row i (ilk). A typical element aij is thus transformed each time by the formulas:

(2)

(3)

where the value of akj in
formed for k = 1,2, •.. , n.

(3) is the result of

For each (fixed) k,

(ilk)

(2). These transformations are per­

we will let i = 1,2, .•• , k-l,k+l, ... ,

n, so as to operate on all rows except i = k. While transforming each row we will cycle

on j from right to left; i.e., j = n+l, n, n-1, ••. ,k, and we stop at j = k since

for j < k there is no change in the matrix (since for j < k, akj = 0, except that we don't

actually store the 0),

The array

is called the "matrix of coefficients" of the system (1).

It should be understood that this method, involving the assumption of no zeros on the

diagonal and not searching for the largest element of a row to use as a divisor (to minimize
round-off error), is not satisfactory from a mathematical point of view. It could serve as

a basis for a larger, more complete program, however, and serves here only as an example
problem.

79

Chapter III

Set Dimensions
for A

T

F

F

80

READ
Al,l' ... ,AN,N+l

T

AI, J +- AI, J

- A __ A__
I,1CK, J

MAD Reference Manual

PRINT

I,AI,N+l

MAD Reference Manual

The program:

DELTA

B

E

DIMENSION A(20*211
READ DATA (VALUE OF N)
SETDIMoiAtNtN+l)
READ FORMAT$6F12•4*St Alltl)oooA(NtN+ll
PRINT FORMAT INVALtNtA(ltl)oooAINoN+l)
THROUGH Bt FORK= loltK oGo N
(J = N+lt-ltJoLoKt A(KtJ) = A<KtJ) / A<KtK)
THROUGH Bt FOR I = loloi oGo N
WHENEVER I oEo Ko TRANSFER TO B
(J = N+lt -1• J oLo Kt

lAIItJ) = AIIoJ)-AIItK)*A<KtJ)
CONTINUE

R

THROUGH Et FOR I = ltlti oGo N
PRINT FORMAT RESULTtitAIItN+l)
TRANSFER TO DELTA
INTEGER ItJtKtN

RFORMAT SPECIFICATIONS
R

VECTOR VALUES INVAL = S7Ht INPUT/ 4HON = I4/
t 7HOMATRIX//(lHOt8F12o4l*S

VECTOR VALUES RESULT = $!HOtT2o2HA<oi2t3H) = F!2o4*S
END OF PROGRAM

SDATA
N = 3 *

I o

Oo
1.

-1·

2, Business Data Processing Examples

1.
-to

6o
-2•

Example 1

-to
-9•

Chapter III

0
-32o

Problem: Compute the social security deduction and accumulated gross pay. The program

should read a card containing: (a) the employee's name, (b) his payroll number, (c) his
gross pay for the current week, and (d) his accumulated gross pay for the current year (but
not including item (c)). For each card read, the program should print (a) and (b) from the
card; and, in addition, print (e) the updated gross pay, (f) the social security deduction
for the current week, and (g) the net pay for the current week, taking into account only
the social security deduction.

Analysis: The social security deduction is currently 3%t of the gross pay until the

accumulated gross pay for the year exceeds $4800.0o.t The updated gross pay can be
computed from the formula, (e) = (c) + (d). The social security deduction has already

been made on (d). There are thus three cases to consider:

(1) (d) 2 4800,00, in this case (f) = 0.

(2) (d) < 4800.00 and (c) + (d) > 4800,00, in this case (f)

(3) (c)+ (d)~ 4800.00, in this case (f) 3% of (c).

3% of 4800.00 - (d).

The information on the cards to be read will be in the following format:

tAdmittedly, slightly out of date. Maybe it should be a parameter.

81

Chapter III

The

Card Columns

l - 30

31 - 38

39 - 44

45 - 52

printed output

Line Columns

l

2 - 31

32 - 3LI

35 - 42

Lf3 - 45

46 53

54 - 56

5'7 61

62 - 64

65 '70

(a)

(b)

(c)

(d)

will be in the

(a)

(b)

(e)

(f)

(g)

MAD Reference Manual

Information

employee 1 s name

payroll number

gross pay for the current week in the form xxx.xx
accumulated gross pay for the current year in the

form xxxxx.xx

following format:

Information

Carriage control for printer

employeets name

Blank

payroll number

Blank

updated gross pay for current year in the form

xxxxx.xx

Blank

social security deduction for current week in the

form xx.xx
Blank

net pay for current week in the form xxx.xx

Flow chart: We will use the following abbreviations:

NAME for employee 1 s name (a).

PAYNR

GROSSW

AGROSY

UGROSY

for payroll number (b).

gross pay for current week (c).

accumulated gross pay for current year (d).

updated gross pay for current year (e).

FICA social security deduction for current week (f).

NET PAY net pay for current week (g).

82

MAD Reference Manual

>-......--~ READ NAME,
PAYNR, GROSSW,
AGROSY

Chapter III

FICA._ .03x
>-----..! (4800-AGROSY)

The Program:

START

$DATA

PRINT NAME
'------1 PAYNR,

UGROSY,
FICA,NETPAY

READ FORMAT $5C6tl8oF6o2oF8o2*$o

F

FICA
. 03 X GROSSW

UGROSY + AGROSY
+ GROSSW

NETPAY
GROSSW-FICA

1 NAME<lloooNAME<5)• PAYNRt GROSSWo AGROSY
DIMENSION NAME(5)
INTEGER PAYNRo NAME
WHENEVER AGROSY oGEo 4800o

FICA=O•
OR WHENtVER GROSSW+AGROSY oGo 4800o

FICA=oG3*(4800o-AGROSY)
OTHER\•! I SE

F I CA=o U3*GROSS\·;
E~D OF CONDITIONAL
UGROSY = AGROSY+GROSSW
NETPAY = GROSSW-FICA
PRINT FORMAT $lHOt5C6tS3ol8tS3tF8o2tS3tF5o2tS3tF6o2*$•

I NAME<lloooNAME(5)t PAYNRt UGROSYtFICAoNETPAY
TRANSFER TO START
END OF PROGRAM

GEORGE WASHINGTON 12345678 iOOo 4800o
..JOHN ADAMS 12345679 200 • 4900.
THOMAS ..JEFFERSON 12345680 200. 4600.
..JAMES MADISON 12345681 200. 4700 •
..JOHN QUINCY ADAMS 12345682 iOOo 300.

Notes on these programs:

1. The maximum number of characters which can be stored in one machine word is
six. Hence, we need five machine words to store the 30 characters allowed
for the employee's name. We need to give a dimension declaration stating that
NAME is actually to be a block and that NAME(5) is the last word of this
block. In the read and print statements we specify that the whole block is to
be read or printed by writing NAME(l) •.• NAME(5) and giving the format speci­
fication 5C6, i.e., 5 words of 6 characters.

83

Chapter III MAD Reference Manual

2. Since the payroll number is an integer (I8, i.e., an 8 digit integer) we give
an integer mode declaration stating that PAYNR is an integer. Similarly,
since alphabetic information is assumed to be in the integer mode, NAME is
also declared to be integer.

Example £.

Problem: Assume that a master tape is available containing basic information for each
employee: (1) The employee number, (2) his hourly rate, (3) gross pay to date,
(4) amount of withholding tax withheld to date, (5) social security deduction withheld
to date, (6) net pay to date, and (7) the number of exemptions. Input will be in the
form of m cards representing the current pay record, containing the employee's number
and the number of hours worked during the current week. Pay is to be computed at time and
a half for any hours worked over forty. We shall assume that the input deck is already
sorted according to increasing employee number, but we shall provide for cards which may
be out of order. The last input card must have an employee number greater than the last
employee number of the master tape.

The withholding tax W is to be computed by the formula:

W = .18(Gross pay - 13n)

where n is the number of exemptions. If n is negative, we set W = 0 (see Note 2

below). The social security deduction FICA is 3 per cent of gross pay up to $4800,

with no deduction for gross pay over $4800.

A program is desired which will produce a listing (for each input card) of (a) employee
number, (b) gross pay this week, (c) withholding tax, (d) FICA, (e) net pay for the
week. Moreover, a new updated master tape should be prepared, with provision for saving the
previous master tape as well. As much checking as possible should be incorporated, including

specifying to the operator the number of the master tape needed, and the number to be assign­
ed to the new tape produced by the program, and the automatic checking that the correct tape

has been mounted on the unit.

Note 1: Abbreviations used here are outlined in Example 1, except for the following new

terms:
A WITHY
AFICAY
ANETY
EXEMPT

accumulated withholding tax for year
accumulated social security deduction for year
accumulated net pay for year

number of exemptions

Note 2: In the computation of the gross pay for the current week we shall find it useful to
be able to compute a function (which we shall call EXCESS) of two numbers, say

a and b, whose value is 0 if a ~ b, and a-b if a > b. A formula for this

function is

EXCESS. (a, b) a- b + Ia- bl
2

where I I denotes the usual "absolute value." In fact, by using

EXCESS, a simple one-line formula is:

FICA= .03 X EXCESS.(GROSSW, EXCESS. (AGROSY, 4800.))

84

MAD Reference ManuaJ Chapter III

where AGROSY is assumed to already contain GROSW, i.e., to have been updated
already. We shall also apply this function in the case of the withholding tax

to guarantee that we do not make a negative deduction. Thus

W = .18*EXCESS. (GROSSW, 13*EXEMPT)

Note 3: To check the order of input cards (normally in order of increasing employee

number with a large employee number greater than the last employee number on the

master tape) the program uses the subroutine SETEOF.(LABEL), where LABEL is
the statement label of a statement to be executed if an end of file condition is

detected during reading.

Since the last input card has a large employee number the first end of file

condition is normally detected at the end of processing, but an illegal input

card may also exist with a high employee number. After the first end of file is

detected the end of file return is changed and the input tape checked for end of

file. If no end of file exists a comment is printed to change tapes and pro­

cessing begins again.

85

<X>
0'1

CUMGRS
CUMFIC

a l • l CUMNET
CUMW

0
0 I I SET END OF
0 } • FILE TO s
0

T !Compute and
~ • Accumulate

GROSSW

;:, T , I PRINT
' Wrong

Order,
PAY NR.

l 1READ PAY NR.
I • HOURS

Compute With­
holding Tax W
and FICA

NET PAY +­

GROSSW- W
- FICA

PRINT
Checked • I PAY NR.

) 1 GROSSW,W,

PRINT
~------~Error,

PAY NR.

FICA
NET PAY

Accumulate
NET PAY, W,J , l E

FICA

0
:::>
~
c+
(D
>-;

H
H
H

~
""' (D,
(D
>-;
(D

~
()
(D

:s:
g
p:>
I-'

():)
-.:)

TAPE NO.
TAPE NO. +l

PRINT
Grand
Totals

~

LOOK AT
INPUT CARD

I • ~ CALL SYSTEM

~
:::0
(I) ...,
(I)

'i
(I)

~
()
(I)

:s:
g
P'
1-'

0
::Y
§
c+
(I)

'i

H
H
H

Chapter III

START READFORMAT IDENTtTAPENO
INTEGER TAPENO•PAYNRtNUMB•JtO~TAPE
PRINT ON ~INE FORMAT OPERtTAPENO
PAUSE NOo 1
REWIND TAPE 4

MAD Reference Manual

TEST REWIND TAPE 3

MAIN

REDO

READ (1)
READ<2>

M FILE

C FILE

READ BINARY TAPE 3tOLTAPE
WHENEVER OLTAPE •E• TAPENOtTRANSFER TO MAIN
PRINT ON LINE FORMAT WRONG
PAUSE NOo 3
TRANSFER TO TEST
CUMGRS = Oo
CUMFIC Oo
CUMNET Oo
CUMW = Oo
EXECUTE SETEOFo!M FILE)
WRITE BINARY TAPE 4tTAPEN0+1
READ FORMAT EMPLOYtPAYNRoHOURS
READ BINARY TAPE 3• NUMBtRATEtAGROSYtA\1/ITHYt

1AFICAYtANETYtEXEMPT
WHENEVER NUMB oEo PAYNR
GROSSW = RATE*HOURS+o5*RATE*EXCESSo(HOURSt40o)
AGROSY = AGROSY+GROSSW
Ill = ol8*EXCESSoCGR0SSWt13o*EXEMPT)
FICA= o03*EXCESSo <GROSSWtEXCESSo!AGROSYt4800o))
NETPAY GROSSW-W-FICA
AWITHY = AWITHY+W
AFICAY = AFICAY+FICA
ANETY = ANETY+NETPAY
CUMGRS = CUMGRS+GROSSW
CUMFIC = CUMFIC+FICA
CUMNET = CUMNET+NETPAY
CUMW = CUMW+\11
WHENEVER oABSo CAGROSY-ANETY-AFICAY-AWITHY) oGEo o005o PRINT

!FORMAT ERRORtPAYNR
PRINT FORMAT OUTPUTtPAYNRtGROSSWtWtFICAtNETPAY
J = 1
OR WHENEVER NUMBoGoPAYNR
PRINT FORMAT ORDERtPAYNR
BACKSPACE RECORD OF TAPE 3
TRANSFER TO READ<!)
OTHERWISE
J = 2
END OF CONDITIONAL
WRITE BINARY TAPE 4tNUMBtRATEtAGROSYtAWITHYtAFICAYtANETYt

!EXEMPT
TRANSFER TO READ(J)
END OF FILE TAPE 4
REWIND TAPE 3
REWIND TAPE 4
EXECUTE SETEOFo!C FILE)
LOOK AT FORMAT EMPLOY• .DUMMY• DUMMY
PRINT FORMAT NOMANtPAYNRoTAPENO
PRINT ON LINE FORMAT NOMANoPAYNRoTAPENO
PAUSE NOo 4
TAPENO=TAPENO+l
READ BINARY TAPE 3tDUMMY
TRANSFER TO REOO
PRINT ON LINE FORMAT OFFtTAPENOtTAPENO+l
PAUSE NOo 2

R

PRINT FORMAT TOTALSoCUMGRSoCUMFICoCUMNETtCUMIIJ
EXECUTE SYSTEM•

INTERNAL FUNCTION EXCESSoCXtY):CX-Y+ oABSe CX-Y)I/2•
R
R FORMAT SPECIFICATIONS

88

MAD Reference Manual

R
VECTOR VALUES !DENT = $l8*S
VECTOR VALUES OPER = Sl5H4MOUNT TAPE NOo 18tS2t30HON TAPE UN!

lT NOo 3tPRESS START*$
VECTOR VALUES WRONG = $48H4THE WRONG TAPE HAS SEEN USEDo PLEA

lSE TRY AGAINo*$
VECTOR VALUES EMPLOY = $l8tF10o2*$
VECTOR VALUES ERROR = $37HOERROR IN CHECKING TOTALS FOR MAN N

lOo 18*$
VECTOR VALUES OUTPUT = $lHOtl8t4F20o2*$
VECTOR VALUES OFF = $24H4REMOVE TAPE 3tLABEL IT 18tS4t23HREMO

lVE TAPE 4t LABEL IT 18*$
VECTOR VALUES NOMAN = S38HOTHERE IS NO MASTER RECORD FOR MAN

1N0oi8/22HOPULL TAPE 3• LABEL IT 18/51H0RESELECT TAPE 4 AS TAP
2E 3 AND HANG BLANK TAPE ON 4/16H0THEN PUSH START*$

VECTOR VALUES ORDER = $8H0MAN NOol8t43H IS OUT OF ORDER OR NO
1 MASTER RECORD EXISTS*$

VECTOR VALUES TOTALS = Sl3HlCUMo GROSS =FlOo2/12HOCUMo FICA =
1FlOo2/l!HOCUMo NET = Fl0o2/23HOCUMo WITHHOLDING TAX = Fl0o2*$

END OF PROGRAM

Example .3.

Chapter III

Problem: Mortgage Payment. The type of mortgage we consider here is the fixed principal

type for which each installment consists of an interest payment, a fixed amount to be de­
ducted from the outstanding principal, and an additional amount to be placed in escrow--to

be used to make insurance and tax payments,

Assume that a master card file is available containing the following information for

each mortgage: (1) the mortgage number; (2) amount of outstanding principal; (3) annual

payment on principal; (4) interest rate; (5) annual escrow payment; and (6) current

escrow balance, There is also a file of cards available containing the current payment
record consisting of mortgage number and amount of payment received. The master file and

current payment file are assumed to be in order of increasing mortgage number.

The program is to read a card from the current payment record and check to see if it
is acceptable. A payment is deemed acceptable if it consists of a single normal payment

(i.e., a payment consisting of a single principal payment, a single escrow payment, and an
interest payment for a single period) or if it consists of exactly two normal payments and
any number (i = 0,1,2, ,,,) of principal payments.

Note 1: To represent the doll~r sign ($) in an alphabetic constant we use the double $$
symbol. Thus $$$$ is stored internally as the six character alphabetic constant

$JJJDJ. (See Section 1.13.) The printing of this constant is called for in the
statement labeled OVRPY. Using a Cl field code, only the $ (the left most

character) will be printed.

Note 2: The current payments are processed until the file is exhausted, The detection of
the end of file on reading transfers control to the section of the program which

punches the new master file.

89

\0
0

READ N,
RECORD1 l' ••. ,
RECORDN;6

Compute
Double
Payment

DUE 2

T I PRINT
Wrong
Order

Update Out-
T j standing

' Principal
and Escrow

READ
IDENT,AMOUNT

CALL SYSTEM~

Update
> T ,.1 Outstanding 1---------,

Principal

F
Compute
Outstanding I I ,. I
Principal

PUNCH
RECORDI,l',
RECORDI,6

Set Indicator
:for Punching
New Master
Record

0
:::>'
.§
c+
ro ,.,
H
H
H

~
!:0 ro
H;,
ro ,.,
ro

" ()

ro

~
I"
1--'

MAD Reference Manual

START

CARDS

c

PAID
ESCROW
CODE

OVRPAY

B

UPDATE
D

DIMENSION RECORDCZ00*7l
INTEGER ltNUMB
READ FORMAT SIZEtNUMB
READ FORMAT MASTERtCI=1t1tloGoNUMBtRECORDCitl)oooRECORDCit6)l
EXECUTE SETEOFoCUPDATE)
I = 1
READ FORMAT PAYMTt IDENTtAMOUNT
THROUGH Bt FOR I = ltltl oGt NUMB
WHENEVER RECORDCitl) oEo !DENT

DUE! = REC0RDCit3l+RECORD(It5l+RECORDClt4)*RECORDCit2l
WHENEVER oABSo CAMOUNT-DUEI) tLo o005

RECORD CltZ) = RECORDCit2)-RECORDCit3l
RECORD(It6l=RECORD(lt6l+RECORD(lt5)
TRANSFER TO CODE

OTHERWISE
DUEZ = Zo*DUEI- RECORDCit4l*RECORDClo3)

END OF CONDITIONAL
WHENEVER oABSo CAMOUNT-DUEZl oLo o005

RECORDCit2l=RECORDCitZl-Zo*RECORDCit3)
TRANSFER TO ESCROW

OR WHENEVER AMOUNT oGo DUEZ
THROUGH Ct FOR PAY= RECORDCit3)tRECORDCit3)t
AMOUNT oLo DUE2+PAY
WHENEVER oABSo CAMOUNT-DUE2-PAY) oLo o005t TRANSFER TO

PAID
TRANSFER TO OVRPAY

RECORD(It2)•REC0RDCit2)-Zo*REC0RDCit3l-PAY
REC0RDCit6)=RECORDC!t6)+2o*RECORDC!t5)
RECORD (I t 7 l =I •

OTHERWISE
PRINT FORMAT REJECTtSSSS tDOLLARtAMOUNT

END OF CONDITIONAL
OR WHENEVER RECORDCit!l oGo !DENT

PRINT FORMAT ORDERtiDENTtDOLLARtAMOUNT
OTHERWISE

CONTINUE
1=1
PRINT FORMAT NONEtiDENT

END OF CONDITIONAL
TRANSFER TO CARDS
THROUGH Dt FOR I•ltlti oGo NUMB
WHENEVER RECORDCit7)oGo OotPUNCH FORMAT MASTERtRECORDCitl)ooo

!RECORD C It 6 l
R
RFORMAT SPECIFICATIONS
R

VECTOR VALUES SIZE=SI!O*S
VECTOR VALUES MASTER=SF10o0t5F10•2*S
VECTOR VALUES PAYMT = SF10e0tF10o2*S
VECTOR VALUES REJECT = S20HOPAYMENT ON MORTGAGEtF!Oo •3Ho oC

lltF!Oo2tl9H ·IS UNSATISFACTORYo*S
VECTOR VALUES ORDER = S26HOPAYMENT CARD FOR MORTGAGEtF10oOt3H

lt CltF10o2t44H IS OUT OF ORDER OR NO MASTER RECORD EXISTSo*S
VECTOR VALUES NONE = $41HONO MASTER RECORD EXISTS FOR MORTGAG

lE NOotFlOoO*S
END OF PROGRAM

91

Chapter III

Chapter III MAD Reference Manual

Example 4

Problem: Computation of actuarial commutation columns based on an arbitrary set of mortal­
ity rates and an interest rate, as an external fUnction to be used by another program.

Analysis: Commutation columns, which are very important tools in actuarial problems, are

generated very easily by means of the formulas given below. The quantities Mx' Nx' and

Dx in these formulas occur most often in combination, as in the computation of Px.

Assuming a population of some initial size (at x = b0) (here 1,000,000), ~x is the

number living at age x (so that £b = 1,000,000), qx is the mortality rate, and
0

dx is the number of deaths at age x. Thus dx = qx · £x. The quantity Dx is computed

by the formula Dx = £x(l + i)-x, where i is the interest rate. Another quantity, ex

is given by the formula ex = d (l + i)-(x+l). It can be used, for example, to compute
X C

the cost of term insurance, since x is the premium for one year term insurance of $1
"""Dx"""

at age x.

The sums Mx and Nx are obtained by the formulas

00 00

M ~ c Nx ~ Dy X y y=x y=X

We note that for some w, we always have q = w l, so that £w+l = 0 (since

£ 1 = £ - d = £ - £w = 0), therefore w+ w w ~ Dw+l = 0, dw+l = 0, cw+l = 0, and the sums

for Mx and Nx are actually finite sums.

The three most useful quantities computed here are (l) Px = Mx/Nx' which is the

annual premium payable for an entire life for $1 of whole life insurance, (2) Ax = Mx/Dx'

which is the present value at age x of a whole life annuity of $1, first payment at

age x.

Printing of results is under control of an input variable PRINT. Certain relation­
ships must hold between some independently computed values, and these are used as checks
on the computation:

Nb /(l+i)
0

Px = 1/ax - i/(l+i)

These cannot be expected to come out exactly equal, because of round-off, but they should
differ by very little.

92

MAD Reference Manual

@- - J "E c 10(

ENTRY l,_v_~_(l_+_I_) -_B_o.......J

T

F

Failed

F

Cx +- dxV

1x+l ... 1x- dx

93

Failed

Print
Error
Comment

Chapter III

Check

Chapter III

The Program:

R
R SAMPLE CALLING PROGRAM
R

READ FORMAT SI2F6o5*St Q(O)tooot QCJ00)
DIMENSIONCQtLtSMALLDtBIGDtCtNtMoBIGAtSMALLAtPlC120)

MAD Reference Manual

EXECUTE COMFCNoiOt0t099oo03tLt SMALLDtBIGDtCtNtMoBIGAtSMALLAt
1 p. 1)

INTEGER PRINT
END OF PROGRAM

The External Function:

8

E

G

R COMMUTATION TABLE FUNCTION
R IF PRINT = OtSUPPRESS PRINTING

EXTERNAL F.UNCTIONCOtBZEROtOMEGAt I tLtSMALLDtB IGDtCtNt
1 MtBIGAtSMALLAtPtPRINTl

ENTRY TO COMFCNo
INTEGER BZEROoOMEGAoPRINTtX
LCBZERO) = 1E6
V = Clo+l) oPo -BZERO
THROUGH AtFOR X= BZEROtltX oGo OMEGA
SMALLDCX) = Q(Xl*L(X)
BJGDCX) = LCXl*V
V = V/Clo+Il
CCX) = SMALLDCXl*V

A LCX+l) = LIX)-SMALLDIXl
NIOMEGA) = BlGDCOMEGAl
MCOMEGA) = C(OMEGAl
THROUGH Bt FOR X= OMEGA-1o-1• X oLo BZERO
N(X) = NCX+l) + BIGD(X)
M<Xl = MCX+l) + C(X)
WHENEVER oABSoCMIBZEROl+NIBZERO+ll-N(BZEROl/Cl+lo)l oGo lot

1 TRANSFER TO MNERR
THROUGH G •FOR X = BZEROtltX oGo OMEGA
BIGACXl = MCX)/BIGDCX)
SMALLACX) = NCX)/BIGD(X)
PCXl = MCXl/NCX)
WHENEVER oABSo CPCX)-lo/SMALLA<Xl + I/CI+lol) oGo

1 tE-4tTRANSFER TO PERROR
CONTINUE
WHENEVER PRINT oEo OtFUNCTION RETURN

R
ROUTPUT GENERATOR
R

PRINT FORMAT HEADOlol
VECTOR VALUES HEADOJ = $1Hlt4HJ = F5o4//

1 4H XtS13t4HQCX)tSl8t4HL(Xl•S15otOHSMALL DCXlt
2 ss~tHx*s

PRINT FORMAT F1oCX=BZEROtloXoGoOMEGAoXoQCXltLCXltSMALLDCXloXl
VECTOR VALUES F1 = $JH0tl3t3E22o9t17*$
PRINT FORMAT HEAD02
VECTOR VALUES HEAD02 = $lHltT5t1HX•Sl1•8HBIG D<Xlt

1 S16t4HC(X)oS18o4HMCX>•Sl8t4HNCX)tS11•1HX*$
PRINT FORMAT F2 t OC•BZEROtltXoGoOMEGA t XoBIGD (X l tC (X) t

I M(X) oNCXl tXl
VECTOR VALUES F2 = $lHOtl4t4E22o9tl7*$
PRINT FORMAT HEAD03
VECTOR VALUES HEAD03 = $4H1 XoS11t8HBJG A(Xlt

1 St3oiOHSMALL A(X)t S15o4HP(X)tSlltlHX *$
PRINT FORMAT F3t!X=BZEROtltX oGo OMEGAtXtBIGACXlt

1 SMALLA<XloP(X)tXl
VECTOR VALUES F3 = $1HOtl3o3E22o9tl7*$
FUNCTION RETURN

94

MAD Reference Manual Chapter III

PERROR PRINT FORMAT PERReP(X)tSMALLAIXltl
VECTOR VALUES PERR S27H0ERROR ON P CHECK• P(X) = E18•9•

1 S10•13HSMALL A(X) = E18.9oS10t4HI F5•4*S
TRANSFER TO G

MNERR PRINT FORMAT MNERR1
VECTOR VALUES MNERR1 = $19HOERROR ON MtN CHECK*$
TRANSFER TO E
END OF FUNCTION

SDATA
2258 577 414 338 299 276 261 247 231 212 197 191

192 198 207 215 219 225 230 237 243 251 259 268
277 288 299 311 325 340 356 373 392 412 435 459
486 515 546 581 618 659 703 751 804 861 923 991

1064 1145 1232 1327 1430 1543 1665 1798 1943 2100 2271 2457
2659 2878 3118 3376 3658 3964 4296 4656 5046 5470 5930 6427
6966 7550 8181 8864 9602 10399 11259 12186 13185 14260 15416 16657

17988 19413 20937 22563 24300 26144 28099 3.0173 32364 34666 37100 39621
44719 54826 72467100000

3. Symbol Manipulation and Recursive Function Examples

3.1 Problem: Find the first occurrence of an arbitrary string of characters
in a given text.

Analysis: Let N be the number of characters in the text and T(l) T(N) be the tex~
stored one character per word. Let L be the number of letters in the string which is
stored one character per word in W(l) ... W(L).

READ N, t--,----+i READ L
Tl' ... , TN Wl' ... , WL

PRINT

95

Chapter III

The Program:

ALPHA

TST

SCAN

DIMENSION T(720ltW(30l
NORMAL MODE IS INTEGER
READ DATA (VALUE OF Nl
READ FORMAT TXTtT<IloooT(Nl
READ DATA (VALUE OF Ll
READ FORMAT TXToW(l)oooW(L)
THROUGH SCANt FOR I=ltltl oGo N•L+l
THROUGH TSTt FOR ~=OtJtj oGEo L
WHENEVER T(l+jl oNEo Wfj+llt TRANSFER TO SCAN
PRINT FORMAT OUTtioW<lloooW(Ll
TRANSFER TO ALPHA
CONTINUE
PRINT FORMAT NOT
TRANSFER TO ALPHA
VECTOR VALUES TXT=S72Cl*S

MAD Reference Manual

VECTOR VALUES OUT•SIJHOCHARACTER 13t13H IS ST+RT OF 30Cl*S
VECTOR VALUES NOT = SHtOSTRING NOT FOUND'*$
END OF PROGRAM

3.2 Problem: Evaluate the recursive function,

f(0) l

f(n) f(n-l)Xn

Analysis: This is the definition of n! . Although n! can be evaluated directly using a
THROUGH statement, in this example it will be evaluated using its recursive definition to
illustrate how recursive functions can be handled in MAD.

The Program:

EXTERNAL FUNCTION FACTo (N)
NORMAL MODE IS INTEGER
WHENEVER N oEo Ot FUNCTION RETURN
SAVE RETURN
SAVE DATA N
T1 = FACTo(N-1)
RESTORE DATA N
RESTORE RETURN
FUNCTION RETURN Tl*N
END OF FUNCTION

In order to use this function the calling program would have to specify a list for use in
the SAVE and RESTORE statements. The following is an example of a program which uses FACT.

DIMENSION LIST (100)
NORMAL MODE IS INTEGER
SET LIST TO LISTtlOO
LIST=O

BACK READ FORMAT INt NR
PRINT FORMAT OUTt NRt FACTo(NR)
TRANSFER TO BACK
VECTOR VALUES IN • SI2*S
VECTOR VALUES OUT = $4HON= 13•14HN FACTORIAL• lll*S
END OF PROGRAM

MAD Reference Manual Chapter III

3.3 Problem: To find the greatest common divisor of two integers Z and Y.

Analysis: The greatest common divisor is defined recursively by three equations:

GCD.(Y,Z) if Y > Z

GCD. (z' y) = I y if REM. (z 'y) = 0
GCD.(REM.(Z,Y),Y) otherwise

where REM.(A,B) is the remainder of A/B. The function GCD expects the arguments to be

found on the temporary storage list as the two most recent additions. The use of the list

as a parameter list makes the establishment of dummy variables unnecessary. This is less

efficient than the usual way of defining functions but serves to remove many pitfalls

encountered in using dummy variables with recursive functions.

EXTERNAL FUNCTION
INTERNAL FUNCTION REMoCAtBI• A - CA/Bl*B
ENTRY TO GCDo
NORMAL MODE IS INTEGER
RESTORE DATA ZtY

WHENEVER Y oGo Z
SAVE RETURN
SAVE DATA ZtY
X= GCDo(O)
RESTORE RETURN
FUNCTION RETURN X
OR WHENEVER REM• CZtY) oEo 0
FUNCTION RETURN Y

END OF CONDITIONAL
SAVE RETURN
SAVE DATA REMo!ZtYltY
X = GCDoCOl
RESTORE RETURN
FUNCTION RETURN X
END OF FUNCTION

Note: When called upon for a value, a function such as GCD must have at least one

argument (in this example a dummy argument of zero is used), even though the argu­

ment is never called upon. This is because GCD is the name of the function while

GCD.(...) is the value of the function.

Note: The SET LIST TO statement need be executed once, either in the main program or in

a subprogram (but before any use of SAVE or RESTORE), since the SAVE and RESTORE

statements always refer to the current list.

An example of a program using GCD is

s

NORMAL MODE IS INTEGER
SET LIST TO LIST
DIMENSION LIST (50)
READ DATA (VALUES OF M AND N)
SAVE DATA MtN
PRINT FORMAT OUT•MtNtGCDo(O)
TRANSFER TO S
VECTOR VALUES OUT = $1H0t3HM= •17tS10t3HN= tl7tS10t5HGCD I7

1*$
END OF PROGRAM

9'7

Chapter III MAD Reference Manual

3.4 Problem: To evaluate Tschebychev polynomials.

"\nalysis: The Tschebychev polynomial T(N,X) is defined recursively as follows:

l if N = 0

T(N,X) ~ I X if N = l
2xXxT(N-l,X)-T(N-2,X) otherwise

It is important to understand that when an expression is written as an argument of a

function its value is computed and stored in a temporary location. It is this location

(or address) which is actually used as the argument of the function, The implication of

this use of a temporary location is that often expressions cannot be used as arguments of

recursive functions.

EXTERNAL FUNCTION CNtXl
ENTRY TO TSCHEBt
INTEGER NtZ
WHENEVER N tEt 0• FUNCTION RETURN 1•
WHENEVER N eE• 1• FUNCTION RETURN X
SAVE RETURN
SAVE DATA N-2
Z ::: N-1
Y = 2o*X*TSCHEBoCZtX)
RESTORE DATA Z
SAVE DATA Y
M=TSCHEBtCZtXl
RESTORE DATA Y
RESTORE RETURN
FUNCTION RETURN Y-M
END OF FUNCTION

A Program which uses TSCHEB is

BEGIN

SET LIST TO LIST
DIMENSION LISTC1000)
READ FORMAT INPUTtNtX
PRINT FORMAT OUTPUTtNtXtTSCHEBtCNtXl
TRANSFER TO BEGIN

RFORMATS
VECTOR VALUES INPUT=SI6tF10•2*S
VECTOR VALUESOUTPUT=SIH0t4HN= 16t4H X= F10t2t

111HOFUNCTION= F15t6*$
END OF PROGRAM

98

1. Card Format

Chapter IV

MECHANICS OF USING MAD

"My dear! I really must get a thinner pencil. I can't manage
this one a bit; it writes all manner of things that I don't
intend."

Lewis Carroll, Through the Looking Glass

MAD Statements are punched according to the following card format:

Statement STATEMENT Identification Label

1 10 11 12 72 73

~Remark and continuation designation column

80

1.1 Statement labels may be punched anywhere in Columns 1 - 10. Spaces are not relevant.

1.2 Column 11 is used to designate a remark (R) or, alternately, a continuation of a state­

ment (0, 1, 2, ••• , 9). The digits used to indicate continuation cards need not be in any

particular order but there may be at most 10 cards in a statement.

Please observe that remarks are not statements, and cannot have continuation cards.
Continuation cards following remarks are considered as continuations of the preceding state­
ment. Diagnostics occurring after remarks refer to the preceding statement.

1.3 The statement may start anywhere in Columns 12 - 72. With the exception of characters
enclosed between "$ ", spaces are not relevant. (Spaces may not be relevant even if they

are so enclosed (see Section 2.15) in format specifications.)

1.4 The identification information in Columns 73 - 80 is not used by the computer for any

purpose but printing during translation and is arbitrary. Actually, it is good practice to
use the first four of the available eight columns as a mnemonic code. Presumably, the last

four would contain some sequence code.

99

Chapter IV - 2 MAD Reference Manual

2. Diagnostics

During the process of translation many kinds of errors in the formation of statements
and the allocation of storage can be detected. To understand this error detection and the

subsequent printing of diagnostic comments some knowledge of the structure of the translator

is helpful. The translation from statements to machine code is accomplished in three major

sections:

(1) The decomposition of the original statements into arrays of binary operations

and pseudo-operations.

(2) The analysis of all of the declarative information in order to allocate variable

storage and identify the arithmetic types (i.e., modes) of variables,

(3) The combination of the information produced from (1) and (2) to translate the

arrays to relocatable binary programs,

When an error is encountered in one of these sections the translation does not proceed to

the next section. However, insofar as possible, the entire set of statements is processed
through the section in which the error is detected and therefore more than one error may

be detected. It should be understood then, that not all detectable errors .may be found

because:

(a) They are detectable only in a later stage of the translation.

(b) Some types of errors make it impossible to attempt further detection within

the section in which it occurs.

(c) One error may actually obscure another error.

Occasionally, an er~or in one statement may be such that it causes the translator to misin­

terpret a second statement, thus giving an error indication even though no error exists in

the later statement,

The printed diagnostic comment may very often have an alternative or ambiguous form.

This results from the fact that it is frequently not possible to determine what form was
intended--merely that the present structure is not admissible--and therefore some of the

alternative possibilities are suggested by the comment.

A list of vaTiables used in the program, but to which only one reference is made, is

printed out for each MAD program, This list does not include any variables appearing in

PROGRAM.COMMON, ERASABLE, DIMENSION, VECTOR VALUES, or EQUIVALENCE statements. If READ DATA,

PRINT OCTAL RESULTS, PRINT BCD RESULTS, READ AND PRINT DATA, or PRINT RESULTS are used in

the program, these variables are simply printed in the list, but if none of these five

types of statements is used in the program, then the variables appearing in this list are

all assigned to the same location, under the assumption that they are not purposely used

for anything except perhaps redundant labeling of statements. This list has proven to be

a valuable debugging aid, since misspelled names almost invariably show up on this list. It

should therefore be checked carefully whenever it appears.

3. Structure of Subroutines

The information in this and the following sections of Chapter IV is developed in much
greater detail in other Computing Center write-ups, However, the following sections should

be sufficient for the general use of MAD,

100

MAD Reference Manual Chapter IV - 3

Subroutines which are written for use by MAD programs--whether written in MAD as
functions or in UMAP--must be relocatable and .must operate from the calling sequences the
translator produces. Consider, for example, the function call--FN.(A,B,C)--which might

appear in the body of a statement. Assume that B is an array which has an associated
dimension vector BDIM. Using UMAP notation for illustrative purposes, the calling
sequence produced would be:

TSX FN,4
PAR A
BLK B, 0, BDIM
PAR C

Input-output routines utilize two types of parameters--the regional and single variable
types .. In addition a format specification location is given. The parameter operation code
used is IOP and the end of the parameter list is indicated by an IOP operation with a

blank address. Thus the statement

READ FORMAT FMT, BETA, X(l) ••• X(lOO), K

would produce the calling sequence

TSX .READ,4
IOP FMT
IOP BETA
IOP X-l,O,X-100
IOP K
IOP

On occasion it is useful to use the regional notation in subroutines which are not in

the input-output category, for example, G.(GAMMA, DELTA, Z(lO) •.. Z(20)). The calling

sequence would be

TSX G,4
PAR GAMMA
PAR DELTA
BLK Z-lO,O,Z-20

It is important to notice that in this example, as well as in the first, the parameters

--if executed as instructions--would produce no operation.

It is beyond the scops of this manual to discuss the structure of relocatable programs
(see Executive System write-up). It is sufficient to say that a relocatable program must

contain--in addition to the actual instructions in the program--information as to which

addresses must be relocated at the time of loading for execution and which addresses must
not. In addition, the first card (or record) of such programs must contain information

about the size of the program, the number of subroutines it calls on, the amount of storage
it will share with other subroutines, the location of the list of subroutines it calls on,

and the names by which the routine itself is referred to. The symbolic names of the sub­

routines called on must appear as the first words after this information.

The execution of MAD programs requires the use of a loading routine to relocate and

store the program and subroutines. Also, there are certain subroutines which may be auto­

matically called for by a MAD program without an explicit reference to them in the source

program.

101

Chapter IV - 4 MAD Reference Manual

External functions are produced in a form compatible with other subroutines, except

that no attempt is made in external functions to save and restore any high-speed registers,

such as index registers, sense indicators, etc.

4. System Subroutines

The use of the following names for functions (subroutines) should be avoided except

where the operation is the one indicated here.

SYSTEM - Entry to this routine causes a return to the operating system. The

END OF PROGRAM statement produces a call for this routine.

ERROR - Entry to this routine also causes a return to the operating system.

However, if a dump of storage was requested of the operating system

such a print of storage will be produced before the return to the

system. The ERROR RETURN statement may produce a call for this

routine.

102

APPENDIX A:

Allowable Abbreviations in MAD

"That is not said right," said the caterpillar.
"Not quite right, I'm afraid," said Alice timidly;
"some of the words have got altered."

Lewis Carroll, Alice in Wonderland

Abbreviations may be used for the key words or phrases of most of the commonly used
statements and declarations in MAD. These abbreviations are listed below. The version of
the program produced by the MAD translator as output will have the full phrase instead of
the abbreviation, for easier reading. The form of the abbreviation is always the same;
viz, the first and last letter of the phrase, with a prime (1) between. An example of the
use of these abbreviations is:

W'R X .L. Y, T'O ALPHA
W'R X .E. Y+l

z = J
O'R X .E. Y+2

z J+2
O'E

z = J+3
E'L

The following is the list o
not all statements and not all d

B1E BACKSPACE FILE OF TAPE (not BACKSPACE RECORD OF TAPE)
BIN BOOLEAN
C1E CONTINUE
DIR DEFINE BINARY OPERATOR (not DEFINE UNARY OPERATOR)

D1N DIMENSION
E1L END OF CONDITIONAL
E1N END OF FUNCTION (not EXTERNAL FUNCTION or ERROR RETURN)
E1M END OF PROGRAM

E10 ENTRY TO
EIE ERASABLE (not EXECUTE or EQUIVALENCE)
F1F FOR VALUES OF
FIT FLOATING POINT

F 1E FORMAT VARIABLE (not FUNCTION NAME)
F 1R FULL SYMBOL TABLE VECTOR
FIN FUNCTION RETURN
I 10 IF LOAD POINT TRANSFER TO

I 1R INTEGER
I 1 N INTERNAL FUNCTION
L1F LISTING OFF
LIN LISTING ON

L1T LOOK AT FORMAT
M1R MODE NUMBER
M1E MODE STRUCTURE
N1S NORMAL MODE IS

NIN NORMAL MODE IS BOOLEAN
NIT NORMAL MODE IS FLOATING POINT
N1E NORMAL MODE IS FUNCTION NAME
N1 R NORMAL MODE IS INTEGER

103

Appendix A

N1 L
0 1R
O'E
P1 R

P1T
P 1S
P1N
R1A

R1E
R1T
R1F
R'N

s•s
S1A
S1N
s•o
S1E
S 1L
S1R
T1H

T 10
U1E
v•s
W1 R

W1E

NORMAL MODE IS STATEMENT LABEL
OR WHENEVER
OTHERWISE
PARAMETER

MAD Reference Manual

PRINT FORMAT (not PRINT COMMENT or PUNCH FORMAT or PRINT ON LINE FORMAT)
PRINT RESULTS (not PRINT BCD RESULTS or PRINT OCTAL RESULTS)
PROGRAM COMMON
READ AND PRINT DATA (not READ DATA or RESTORE DATA)

READ BINARY TAPE (not READ BCD TAPE or REWIND TAPE)
READ FORMAT
REFERENCES OFF
REFERENCES ON (not RESTORE RETURN)

SAME SEQUENCE AS
SAVE DATA
SAVE RETURN
SET LIST TO

SET LOW DENSITY TAPE (not SET HIGH DENSITY TAPE)
STATEMENT LABEL
SYMBOL TABLE VECTOR
THROUGH

TRANSFER TO
UNLOAD TAPE
VECTOR VALUES
WHENEVER

WRITE BINARY TAPE (not WRITE BCD TAPE)

104

Introduction

APPENDIX B:

ADVANCED USES OF DIMENSION INFORMATION

"This is called teamwork. I furnish the brains. You
furnish the muscles, the aches and the pains."

Dr. Seuss

There is a simple formula which gives the relationship between the linear subscript of
an element and its matrix subscripts. In what follows, assume that in each array the base

element (i.e., the element with all subscripts equal to 1) has linear subscript b. For
example, if b = 6, A(l,l) would coincide with A(6), A(l,2) would coincide with A(7),
etc. In general, if A is an m x n array, and A(i,j) coincides with A(r), then

r = n(i - 1) + (j - 1) + b. Thus, if in the example b = 6, i = 1, j = 2, then
r = n(l- 1) + (2- 1) + 6 = 7, so A(l,2) coincides with A(7). If B is a three­
dimensional m X n X p array, and if B(i,j,k) coincides with B(r), then we have the
formula

r = np(i - 1) + p(j - 1) + (k - 1) + b

Since r is a linear subscript, it must not assume negative values. By letting b
take on larger values,, one can allow i, j, and k to assume zero (and even negative)
values. We may, for example, wish to determine the value that b should have to allow i
to vary over the range (-10 •.. 20)
array A. To do this we may picture
is to coincide with A(l), so that

n = 16 (the number of columns), since
j = 0, we have

and j to vary over the
A(-10,0) as the "first

A(-10,1) will be A(2),

15 - 0 + 1 = 16, and,

range (0
element".
etc., then

for r = 1,

1 16(-10 - 1) + (0 - 1) + b

b 178

This means that A(l,l) is really A(l78), and, for instance, A(O,l5)

16(0 - 1) + (15 - 1) + 178 = 176.

The Dimension Vector

... 15) for an
If this element

we note that

i = -10, and

A(l76), since

During the computation it is necessary that the program which handles array subscripts

be able to establish the correspondence between the array subscripts and the linear sub­
script. Toward this end, certain information about the array A is stored in a separate
vector, say in D(k), D(k + 1), ... , • The necessary information, as seen from the

formula

r = n(i - 1) + (j - 1) + b

consists of the fact that A is 2-dimensional, together with the values of b and n.
For a 3-dimensional m x n x p array, the fact that it is a 3-dimensional array is

needed, and the values of b, n, and p, since

r = np(i - 1) + p(j - 1) + (k - 1) + b

Note that the number of rows, i.e., the span of the first subscript, is not needed. In

105

Appendix B MAD Reference Manual

general, the "dimension vector" contains the following information:

D(k) no. of subscripts (normally greater than l)

D(k+l)

D(k+2)

D(k+3)

b

no. of columns, i.e., span of the second subscript

span of the third subscript

(The starting index k is arbitrary.) When the "standard" dimension declaration is used,

such as

(l) DIMENSION A((-10 ... 20) * (0 ... 15))

this dimension information (with b = 178) is automatically preset in an internally

created vector named .MODEl, which is also automatically declared to be of integer mode

and which is itself dimensioned high enough automatically. In addition, to allow the sub­

routine SETDIM to check that the new settings of subscript ranges do not overflow the

storage allocated to the array, the amount of storage for the array is included in the

dimension information in the "decrement part" of D(k). In UMAP notation, D(k) would

have the form

PZE 2, 497

if the array is dimensioned as in (l) above, since 31 x 16 496, and one extra location

is allowed for A(O). We shall indicate this pair of numbers here by using brackets, e.g.,

[2,497]. When the array is used as an argument in a call for an external function, the

address of the dimension vector, D(k), is included in the same parruneter word in the call,

so the function (i.e., subroutine) will automatically have access to the dimension inform­

ation.

Naming the Dimension Vector

Sometimes it will be useful to be able to modify the dimension information during the

execution of the program. The subroutine SETDIM allows a certain amount of modification,

but occasionally it is convenient to change b, or even the number of subscripts. One

might also wish to base decisions on the current values of D(k), D(k+l), etc. It is

therefore useful to be able to provide an ordinary MAD symbol to be used instead of .MODEl,

so that references ·to it may be made in other parts of the program. This is accomplished

by following the dimensioning values by a comma and the name (possibly subscripted with a

constant integer subscript) to be used as the name of the dimension vector. For example,

one might write

DIMENSION V(lO * (3 ... 20), VDIM)

In this case, one would automatically have preset values corresponding to these assignments:

VDIM(O).- [2, 181]

VDIM(l)- -1

VDIM(2)- 18

106

MAD Reference Manual Appendix B

During execution of the program, one could then interrogate or manipulate this informa­
tion in the usual way. Moreover, VDIM itself will be automatically dimensioned high
enough (in this example, 2) to have storage allocated to handle this pre-set information.
The subroutine SETDIM may be used as before to make the usual changes.

Occasionally, it will be useful to provide dimension information directly, via
VECTOR VALUES or READ DATA or READ FORMAT statements, and bypass all of the automatic
features of the standard declaration. In this case, one may declare only the total amount
of storage desired for the array, together with the name of the dimension vector, such as:

DIMENSION A(lOO, ADIM)

Now ADIM is regarded as the head of the dimension vector for A, and its mode will auto­
matically be integer, but no storage will be allocated for it (so that it needs a separate
dimension declaration of its own), and no values will be pre-set into it. Dimension
information may be stored explicitly into ADIM by a VECTOR VALUES declaration, by reading
in values as data, or by computation.

Example:

The calling program for Example 5 (Chapter III) may be reprogrammed as shown below.
The dimension vector for the A array is called AD, and two of its three values are
preset in a VECTOR VALUES declaration. The third element (number of columns) is assigned
as a result of data input. Use is made of an EQUIVALENCE declaration to relate N and
AD(2).

DIMENSION A(500,AD)
VECTOR VALUES AD = 2 1, 0
EQUIVALENCE (N,AD(2)J
INTEGER N
FORMAT VARIABLE N

RTHE FOLLOWING STATEMENT READS IN THE
RVALUES OF N AND THE MATRIX A, PROVIDING
RTHEY ARE SO IDENTIFIED ON THE DATA CARDS,
RTHUS ALSO SETTING UP THE DIMENSION
RINFORMATION FOR A.

READ READ DATA
EXECUTE TRANS.(A,N)
PRINT FORMAT MATRIX, A(l,l) . , , A(N,N)
TRANSFER TO READ
VECTOR VALUES MATRIX = $1HO, 1N1 Fl2.6*$
END OF PROGRAM

In the one-dimensional case, one normally writes only the highest subscript to be used,
as in the declaration

DIMENSION V(lOO)

and no dimension vector is provided at all. It is possible to have the automatic provision
of a word containing the number of subscripts (in this case, 1) and the total amount of
storage allocated (in this example, 101, for V(O), ... , V(lOO)). This is accomplished
by writing one of the forms:

DIMENSION V(lOO*)

DIMENSION V(lOO*,VDIM)

Appendix B MAD Reference Manual

In the first form the internally created symbol .MODEl is used to name the one-word

dimension vector, which contains [1, 101].

If more than one declaration appears for some variable, the largest amount of storage

so declared is allocated, but a check is made that only one dimension vector has been

named. In the automatic case, each declaration is associated with a different subscript

for .MODEl, so multiple definitions of this kind cannot be allowed for the same array.

If there is no dimension vector, such as for a vector dimension declaration, no check is

made.

Access vectors

Each use of the subscript notation A(i,j) where

evaluation of the expression n(i - l) + (j - l) + b,

in A and b is the base point, i.e., A(l,l) = A(b).

A is an m x n array, involves

~orhere n the number of columns

A method which is much more effi-

cient is to preset or compute at the beginning of the program, an auxiliary or "access"

vector: V(l) = b- l, V(2) = b- 1 + n, V(3) b- l + 2n, ... , V(m) = b- l + (m-l)n.

Note that the ith element in the vector V is the linear subscript
of the element in A immediately preceding the nrst element in the ith row.
To refer to A(i,j) one now writes A(V(i) + j). The base point and number of
columns may be changed during computation, but each time either is changed the

elements of V must be re-computed. The usual subscript restrictions still

hold, i.e.,

and b = 1,

i 2 0, (V(i) + j) 2 0. For example, if

then V(l) = 0, V(2) = 3, V(3) = 6, and

A is a 4 X 3 matrix (m = 4, n = 3)

v(4) = 9. The concept of an access

vector may be extended for use with three or hi.gher dimensional arrays. For a three-dimen­

sional array one would need a two-dimensional access array which, in turn, could make use

of its own access vector.

Stora~ Functions

In order to conserve storage, it may be desirable to store only one half of a syrr@etric

matrix, or an upper (or lower) triangular matrix, etc. Perhaps only the non-zero elements

of a sparse matrix might be stored. For such arrays, it is necessary to use a subscription

subroutine other than the standard one supplied by MAD which expects to find the entire

matrix stored by rows (in the two-dimensional case). Such special subscription subroutines

may be written as any other INTERNAL or EXTERNAL FUNCTIONS in MAD or in UMAP, as usual.

The arguments must be the array name, followed by the n subscripts (integer expressions)

in the usual order. The value of the function which is to be computed is the linear sub­

script to be used to obtain the value desired. For example, if one wished to store only

the upper triangle (plus diagonal) of an upper triangular two-dimensional array (by rows,

starting at A(2)), the subscription function F could be defined as follows: (Assume a

constant zero stored at A(l))

1, if i > j
F. (A,i,j) (2(n+l)-i)(i-l) + J.

2 - i + b, if i .s;;, j

where n is the number of columns in the matrix A, and b is the base point. Of course,

if n is not a constant, it will have to be made available to the subscription subroutine,

probably via PROGRAM COMMON, as will the base point b, if used. It will automatically

be available, of course, if the subroutine is written as an INTERNAL FUNCTION. Note that

108

MAD Reference Manual Appendix B

in the case i > j, the value of F.(A;i,j) is the linear subscript 1 with the corre­
sponding value A(l) = 0.

In order to notify MAD that such a subscription function is to be used, one merely
inserts the name of the function as the first entry of the dimension vector of the appro­

priate array, moving the number of dimensions, etc., down by one in the dimension vector.
Thus, the above example might be indicated as follows:

DIMENSION C(lOO,ADIM)

VECTOR VALUES CDIM = F.,2,2,10

if there were ten columns.

The following is a MAD definition for F given as an INTERNAL FUNCTION assuming it
is embedded in the same program with the two preceding declarations. (Some of the state­
ments employ abbreviations which can be found in Appendix A.)

INTERNAL FUNCTION F.(A I,J)
EQUIVALENCE (CDIM(l),B),(CDIM(3),N)
IIR I,J,B,N
W1R I .G. J
FUNCTION RETURN 1
0 1E
FUNCTION RETURN

1 (2*. (N+l) - I)* (I-l)/2+J-I + B
E1L
END OF FUNCTION

Note that the "highest subscript" of 100, which appears in the DIMENSION declaration
for A, refers to the highest subscript produced by F, i.e,, the storage actually used.
The dimension information (i.e., 2, 2, 10) describes the array as it would be if the entire
array were in storage and no storage function F were used. Thus, F uses subscripts and

dimension information related to the external version of the array, and it produces a

linear subscript related to the actual (reduced) storage of the array. Although dimension
information could always be computed or brought in as data instead of via a VECTOR VALUES

declaration, the one exception to this is now the name of the subscription function. If
used, it must occur as the first entry in a VECTOR VALUES declaration, and it must be
followed immediately by at least one integer in the same declaration. It should be under­
stood that if this feature is used, references to matrix elements by means of subscripts
are made as if the matrix were stored as originally described in this manual. Thus, sub­
routines do not need to kn0w whether a calling program is or is not using such storage
conservation functions.

The subroutine SETDIM may be used as before to make the usual changes in the
dimension information.

The Library Storage Functions SYMM and TRANSP

Two special subscription functions are avai~able from the subroutine library:

(a) SYMM will handle two-dimensional symmetric arrays for which only the upper

half (plus diagonal) is stored by rows.

(b) TRANSP will handle a two-dimensional array stored by rows (in full) but
considered to be in transposed form. In other words, if a matrix B is

designated as having subscription function TRANSP, then a call for B(6,2)
will, in fact, produce the linear subscript of B(2,6).

109

Appendix B MAD Reference Manual

Both SYMM and TRANSP automatically have access to the dimension vector (including

the base point), so no provision needs to be made for putting any information in PROGRAM

COMMON, for example. In fact, if the subscription function is written in UMAP, it may

be able to use the fact that MAD provides the address of the dimension vector in the

decrement part of the parameter which contains the address of the array, in this case the

first parameter. Note, however, that the dimension information has been moved down by one

because of the presence of the name of the subscription function; and this must be accounted

for in any references to the dimension vector.

110

APPENDIX C:

THE DEFINITION OF OPERATIONS

"It is a bad plan that admits of no modification."

Publelius

(This write-up replaces the appendix, The Define Facility in MAD, in some

previous MAD manuals. This is an extended version which differs in

some details from the facility described earlier.)

Introduction

It is possible, when using the MAD language, to define new operations or redefine
existing operations. This allows the translator's built-in ability to decompose expressions

to be used when expressions are written involving these new definitions. As a prelude to
introducing the statements for expressing such definitions the following observations are
made to help motivate the form they will take.

(1) In writing a translator (or any large program which is subject to frequent change)
it is expeditious to include as much of the algorithm as possible in the form of tables

which are then interpreted during the execution of the translator program. Changing large

portions of the algorithm can then be accomplished by merely changing independent table

entries as opposed to altering a highly interrelated maze of executed instructions.

(2) A basic component of mathematically oriented languages is the expression. The

principal virtue of this notational construction is that, regardless of complexity, it is

formed in a very regular (in fact, recursive) way from operations that are usually binary,

in the sense that two operands are involved. One of the primary tasks of a translator is

to decompose expressions into their constituent operations. The translation of expressions

to machine instructions can then be accomplished by simply producing for every operation
its equivalent in machine language.

(3) Since the operands in binary operations may also be expressions, the computation
of an expression may require the temporary storage of the values of subexpressions. For
instance, in (a + b) x (c + d) the values of the factors must be computed first and
temporarily stored before the multiplication can be done. One of the most valuable features

of a statement-type language is that these storage steps are implicit and need not be

written by the programmer. Whenever possible, in the interests of efficiency, the arith­
metic registers should be used for temporary storage. Thus, in the above example, (c + d)

could be computed and stored and then (a + b) computed. The latter result need not be
stored, but could be transferred to the Multiplier-Quotient register in preparation for
the multiplication.

(4) Variables can be categorized by their range. The pre-defined ranges (i.e., sets

of possible values) of variables in MAD are floating point, integer, Boolean, function name,

and statement label. The type of range of a variable or constant is called the mode of the

variable or constant. It is common and convenient practice to distinguish operations only

by the modes of the operands. Thus, the same operator, +, is used to designate both the

addition of integers and the addition of floating point numbers.

111

Appendix C MAD Reference Manual

(5) A binary operation is a single valued function of two variables; that is, given

two operands one result, r 1 , is produced. It is sometimes useful, however, to consider

this basic function as a special case of an operation where two results are produced,

mainly to facilitate the treatment of mode conversions. If (a+ b) is to be computed,

where a is an integer and b is floating point, the preliminary "operation" of conver­

sion must be undertaken to make theoperands compatible for addition. This conversion can

be viewed as an operation with two outputs or results: r 1 , a value for ~ (possibly

unchanged from its original form) and r 2, a value for 12. (possibly unchanged from its

original form). Operations requiring only one operand (unary operations) are in the special

case category, also, as are the substitution or assignment "operatj_ons." (The latter,

arising from constructions such as a ~ b, are really unary, identity operations where

the single result is given a name. The name, a, is certainly not an operand in the usual

sense, since no value from its range was involved in the operation, nonetheless it is con­

venient to regard such an operation as having two operands and no result.)

(6) Operators have a precedence (or rank) associated with them. For example, X has

a greater precedence than + (i.e., it is executed before +) in the expression

(a+ b x c). One way to specify the precedence of an operator is to relate it to the

precedence of an operator that has already been defined. Using P() for "precedence of,"
110 II t II II p1 for he new operator, and op2 for an existing operator, the declarations

P(op1) < P(op 2),

or P(op1) > P(op 2)

assign a precedence to op1 .

In the latter two cases, when one of the inequalities is used, it can be understood

that the precedence assignment to op1 is such that there is no other existing operator,

such that

P(op1) ~ P(op3) < P(op 2),

or P(op1) 2 P(op3) > P(op 2).

Much of the rationale for permitting the definition of operations is contained in

items (l) - (3), and some of the necessary statement constructions arise from the consid­

erations of items (4) - (6). Although internal and external functions may be used to

define operations, these schemes do not take advantage of the built-in capacity of the

translator to translate expression structure (or phrase structure). The regular formation

of expressions permits the use of very complex notation without the need of explicitly

writing the intermediate storage steps that are required. Whenever the operation is

(1) local (i.e., a component of an expression), (2) can be expressed in relatively few

machine instructions (these will be included as open subroutines), and (3) the operator

can be given a precedence relative to the other operators, then the operation definition

will be useful. The basic scheme is to write, first, the name of the operator and its

relative precedence, second, the mode structure of its operands and results and, third,

the machine instructions which constitute the definition of the operation.

Operations must be defined before the first occurrence of the operation in a statement.

The term "before" here is in the sense of physical order rather than order of execution,

112

MAD Reference Manual Appendix C

since operator definitions are, of course, relevant only at the time of translation. Notice
that this implies that the same operation may have different meanings at different points
in the program. Also, since the order of appearance is not necessarily the same as the
order of execution, the different meanings may be interspersed in computation. The preced­

ence of existing operations cannot be changed. Also the same symbol cannot be defined to

be both a unary and binary operator even though this situation does exist with certain

built-in operations.

Operator-Mode Structure

In the MAD translator expressions are decomposed into a set of binary operations (or
special cases thereof) where the operands may be constants, variables, or the results of
other expressions (i.e., temporary storage cells). The expression (a+ b) X (c +d)

written as a set of distinct operations is

T1 a + b

T2 +- c + d

T3 + T1 X T2

The "triples", as the rightmost three columns are called, are processed in top-to­

bottom sequence. The modes of the operands are determined, and then the operator and these

two m9des are used as an argument in a table look-up to find the sequence of machine instruc­

tions that are equivalent to the operation. Actually, these three items are first converted

to numeric form before the table is consulted. The numeric codes for the pre-defined modes

are:

0 Floating point
1 Integer

2 Boolean

3 Function name
4 Statement label

Three additional modes The operators are represented (5, 6, 7) may be defined.
internally by an integer. is represented by 001 and * by For example, the operator +
003; a complete list is given in Addendum I. Assuming that a and b are of integer

mode, the argument for the table look-up obtained from the first line above would be 00111,

writing the numbers in operator-mode a-mode b order. In the translator the operator-

mode table (OPMD) is a table with single word entries which are packed according to the

following format.

s----8 9-1112-1415-1718-20 21--------35

Operator no. mode mode mode mode address where instruc-
a b r2 rl tion sequence begins

a

The built-in operations (i.e., pre-defined) of the MAD language are the initial values
of this operator-mode table. The result of the table look-up, an address found in the f 2
section of an entry, refers to a machine instruction sequence which is stored in the TMTX

113

Appendix C MAD Reference Manual

region. Defining new operations consists of augmenting or altering these existing tables.
Considering then, that there is a set of already defined arguments and corresponding
functions, the modification can take four forms:

of

(1) The addition of new operator-mode arguments and corresponding instruction
sequences.

(2) The addition of new operator-mode arguments which correspond to already­
defined sequences.

(3) The addition of new sequences which correspond to either existing operators
with new modes or existing operator-mode arguments.

(4) The assignment of an existing sequence to correspond to either existing operators
with new modes or existing operator-mode arguments.

It is not possible to alter the precedence of the predefined operators.

The MAD statements for these four cases are shown below. The statement of precedence
the defined operator is included and the necessary variation for unary operations is

shown. Examples are given below.

{UNARY } [def~~ed] {SAME AS } [exi~;ing] (1) DEFINE BINARY OPERATOR , PRECEDENCE LOWER THAN
HIGHER THAN

MODE STRUCTURE [mode] no. [mode] no. [def;~ed] [mode] no.

(defining sequence)

{UNARY } [def~~ed] {SAME AS } [exi~;ing] (2) DEFINE BINARY OPERATOR , PRECEDENCE LOWER THAN
HIGHER THAN

MODE STRUCTURE [mode] no. [mode] no. [def~~ed] [mode] no. , SAME SEQUENCE

AS [mode] no. [exi~;ing] [mode] no.

(3) MODE STRUCTURE [mode] no. [mode] no. txi~~in, [mode] no.

(defining sequence)

(4) MODE STRUCTURE [mode] no. [mode] no. rxi~~in~ [mode] no. , SAME SEQUENCE

AS [mode] no. [exi~;ing] [mode] no,

The MODE STRUCTURE statement may be varied to accommodate the special cases:

114

MAD Reference Manual Appendix C

(1) The mode number to the left of the operator may be omitted when the operation
is unary.

(2) The sign and the preceding mode number may be omitted when the operation
is the substitution or assignment type.

(3) When the operator-mode combination is such that a "conversion operation" is

called for, the modes of the two operands after conversion~ required to the
left of the sign; i.e.,

[mode]
no. [mode]

no.

Note that the form of the MODE structure statement allows the use of parameters

in place of integer mode numbers. For example:

PARAMETER MODE6(6),MODE(5)

MODE STRUCTURE 1 MODE*MODE6

(4) The defined operator must conform to MAD operator notation--i.e., an existing

single symbol operator or an extended symbol of the form

fining Sequences

r 6 or fewer J
Lalphabetic char. ,

The instruction sequences which correspond to the operations are written and ultimately

key-punched in a. form that is essentially th~t of assembly language without a location field,
The three letter mnemonic code for the machine operation appears in columns 8 - 10 of an

input card; an asterisk (*) in column 11 indicates an indirectly addressed instruction; and
the symbolic forms of the address, tag, and decrement appear in that order starting in
column 16. These latter three items appear separated by commas and without any intervening
spaces. The effect of blanks in one of the three instruction parts after the operation may
be indicated by adjacent commas or by the terminal blanks in the instruction. The mnemonic
designations of the permissibl~ machine instructions are listed in Addendum II. In addition
to.machine instructions, three pseudo instructions may appear. It should be kept in mind
that these instructions are not executed, but are simply patterns for the sequences which
are included in the object program that the translator produces. As patterns, the trans­

lator must interpret every instruction in a selected sequence to determine, first, if it

is a machine instruction (as opposed to a pseudo-instruction) and should therefore be in­
cluded in the object program. Second, the parts of the instructions must also be inter­
preted so that the addresses, tags, and decrements appropriate for the particular context
can (in the object program) replace the codes that appear in the defining sequences. The

pseudo-instructions control the order of interpretation (JMP), specify the method of termi­

nating the interpretation (OUT), and physically end sequences (END). Starting with the
actual machine instructions, the permissible symbols in the address and decrement parts are:

115

Appendix C

FORM

A

A+ l

B

B + l

DT

DT + l

T

LOC ± [integer]

[variable name]±[integer]

[constant]

[function name]

± [integer]

MAD Reference Manual

MEANING

address of the left (A) operand.

address of the next address in sequence.

address of the right (B) operand.

address of the next address in sequence.

address of the lower of. two consecutive temporary
storage cells.

address of the higher of two consecutive temporary
storage cells.

address of a single temporary storage cell.

address where the instruction including this
symbol will be stored in the object program,
with an unsigned integer added or subtracted.
The integer is taken modulo 128.

address of the designated variable,
negative integer less than 215
subtracted. The [variable name]
a dummy variable.

with a non­
added or
cannot be

address of the designated constant which is written
in any of the forms permitted in MAD.

address of the entry to the designated function.
The terminal period must be included as part of
the name.

The integer is taken modulo 128.

The tag portion of the instruction may be any of the integers 0, 1, 2, ... , 7 with

oxception--the STR instruction may not have a non-zero tag.

As an aid in understanding the interpretive process it is useful to further describe

the meaning of the symbol T (and DT). The most direct method for assigning temporary

storage addresses is to reserve an element from a linear array T for every operation in

an expression. Thus, the example (a+ b) x (c + d) when written in triple form would

require the assignment of three locations because there are three operations involved:

T1 a+ b

T2 c + d

T3 Tl X T2

Since, whenever possible, the arithmetic registers are used for temporary storage,

operation sequences can be considered to terminate with the result(s) left in the arith­

metic registers. If a result is not immediately used in the next operation, it must then

be stored. The first step in the translation of the second operation would produce an

instruction to store the result(s) of the previous operation into T1 . Thus, the symbol

T, when used in translating the ith instruction, can be regarded as representing the

name Ti-l' Actually, it would be uneconomical to reserve a temporary storage cell for

every operation in an expression since many would not be required due to the "connected"

character of consecutive operations. 'I'herefore, the subscript in the name Ti-l does

not correspond to an actual position in a linear array. The symbol DT has the same inter­

pretation except that it is the name of the first of two consecutive storage elements;

DT + 1 is the name of the second of these consecutive locations. Temporary locations are

reused whenever possible.

ll6

MAD Reference Manual Appendix C

The controlling pseudo-operation JMP causes the selection of one of two possible
successors in the interpretive process, depending on the value of one of six Boolean

variables. The values of these variables vary during the translation process depending

upon (1) the relation between operands and (2.) the conditions when terminating the inter­

pretation of a sequence. More specifically, these variables are designated in the tag

portion of a JMP pseudo-instruction and are the following.

AT 1 if the A operand is the result of the operation represented by the
preceding triple, otherwise D.

BT 1 if the B operand is the result of the operation represented by the

preceding triple, otherwise D.

AC 1 if, during the execution of the instructions, a number would be in the

accumulator at this point, otherwise D.

MQ 1 if, during the execution of the instructions, a number would be in the

multiplier-quotient register at this point, otherwise D.

LA 1 if, during the execution of the instructions, a number would be in the

logical accumulator (P bit instead of sign bit) at this point, other­
wise D.

(blank]= 1

During the interpretation of the JMP instruction, the next instruction is given by

the address if the current value of the Boolean variable given in the tag is 1, otherwise

the address of the next instruction is taken from the decrement. These addresses are

designated relative to the current address in the translator and are of the form *± (non­
negative integer].

The terminal pseudo-operation OUT completes the interpretation of a sequence and

also designates, by a code in the address part, the final state of the arithmetic registers.

There are eight possible codes.

tion.

AC during execution a number would be left in the accumulator (arithmetic)

MQ during execution a number would be left in the multiplier-quotient register

LAC during execution a number would be left in the logical accumulator

ACQ numbers would be.left in the accumulator and multiplier-quotient registers

SQ if there would be numbers left in the accumulator and multiplier-quotient

at the start of this operation, they would still be there (status quo)

Z no numbers would be left in the arithmetic registers

AAC the A result would be left in the accumulator

BAC the B result would be left in the accumulator

The last two are necessary when two results are obtained, as in a "conversion" opera-

When two operands are incompatible, the conversion merely transforms the operands to

an acceptable form; it does not cause the specified operation to be carried out. Accord­

ingly, when either of the last two exits is taken, an automatic re-search of the operator-

117

Appendix C MAD Reference Manual

mode arguments is made with the conversion results as operands. Thus, the search process
is continued until an ordinary binary (or unary) operation is encountered.

The pre-defined binary operation of integer addition will serve to illustrate a
defining sequence. The operator-mode table entry is DD111Dla . --....-----

a f 1 f 2

The ones and zeros are octal digits. The symbol a designates the address where the
first instruction of the following sequence is stored in the translator.

It is presumed here that previous results will not be left in the logical accumulator
in the contexts in which this operation will appear.

JMP *+2,MQ,*+l Thus, if the previously interpreted sequence
JMP *+3,AC,*+l3 left a result only in the AC, and if that
JMP *+4,AT,*+l result were the A operand here (so that
JMP *+5,BT,*+8 AC =AT= 1, MQ = BT = 0), the interpreter
JMP *+11,AT,*+l would meet in turn the following elements of
JMP *+4,BT,*+8 the sequence:
XCA

JMP *+2,MQ,*+l JMP *+8
XCA JMP *+3,AC,*+l3
ADD A JMP *+ll,AT,*+l
OUT AC ADD B
STQ T OUT AC
JMP *+2 and produce as part of the object code:
STO T
CLA A ADD B
ADD B with B replaced by the address of the B
OUT AC operand.
END

Examples:

The following two examples are complete in the sense that the mode structure statements
are included as well as the defining sequence.

(1) Define a binary operation .EV. with integer operands, where the result is a
bitwise "exclusive or" of the two operands. (It happens that this operation
has been permanently added to the MAD language; nevertheless this example is
still illuminating.)

DEFINE BINARY OPERATOR .EV., PRECEDENCE SAME AS .V.
MODE STRUCTURE 1 = 1 .Ey. 1

JMP *+7,AC,*+l
JMP *+l,MQ,*+3
JMP *+9,AT,*+l
JMP *+10,BT,*+l3
JMP *+l,LA,*+4
JMP *+4,AT,*+l
JMP *+8,BT,*+l2
STO T
CAL A
ERA B
OUT LAC
XCL
JMP *-3
XCL
ERA A
OUT LAC
STQ T
JMP *-9
SLW T
JMP *-11
END

.118

Reference Manual Appendix C

(2) Define a binary operation with double-precision operands of mode 5 which produces
a double-precision number as a result which is the product of the two operands.
The multiplication is to be accomplished by a subroutine DPM which has one
operand in the AC and MQ and the other is specified in parameter form. (Remember
that the MODE NUMBER 5 declaration statement permits the assignment of variables

to this new mode.) Notice that this sequence allows for the possibility that the
previous result may be a single value and,hence not a double-precision number.
The assumption is made, also, that any previous result of mode 5 which is "connect­

ed" to this operation is in both the accumulator and multiplier-quotient registers.

MODE STRUCTURE 5 = 5*5
JMP *+2,AC;*+l
JMP *+4,MQ,*+5
JMP *+6,AT,*+l
JMP *+9,BT,*+l
JMP *+12,MQ,*+l5
STQ T
CU A
LDQ A + 1
TSX =DPM.,4
TXH B
TXH B + 1
OUT ACQ
TSX =DPM.,4
TXH A
TXH A + 1
OUT ACQ
STO DT
STQ DT + 1
JMP *-12
STO T
JMP *-14
END

Diagnostics

The definition ability just described gives the programmer the ability to design, in
part, his own compiler. As with any step in the direction of greater generality the door
is opened for mistakes which are very difficult to diagnose. There are some checks built
into the MAD translator which may indicate difficulties with sequences. The operation

definer is advised to understand the cause for the following diagnostic comments. The
statement

ERROR [no.] IN PART III- **[octal no.]**** ..•

contains, in the string of asterisks, the twelve octal digit contents of the accumulator
at the time the error was encountered. In some of the following diagnostics this inform­
ation is useful in determining the difficulty.

SEQUENCE FOR OP-MODE ARGUMENT [co~bi~~~~ons] INCORRECT OR TOO LONG -- If an attempt is

made .to interpret an instruction outside of the table of currently defined sequences
then the sequence is incorrect in some way.

Since the defined sequences are inserted as open subroutines for each occurrence
of the operations, an interpretive sequence should not exceed in length some reasonable
number such as 100. Loops in interpretation will cause this diagnostic comment also.

The number of instructions that were interpreted will be in the accumulator.

119

Appendix C MAD Reference Manual

TEMPORARY [temp.no.] SHOULD rffiVE BEEN RESERVED BY OPERATOR [op.no.] IN THE STATEMENT

ENDING When an operand is a reference to a temporary storage cell (i.e., the

result of a previously computed operation) then some previous sequence, if the

definitions are correct, must include a step storing that operand. Such a step would

appear as STO T or some similar instruction. The erroneous statement is printed

following this cow~ent unless the statement required more than one card, in which

case only the last card image is printed.

ILLEGAL OPERATION OR ADDRESS MNEMONIC IN DEFINING SEQUENCE -- When an incorrect code is

used in a definition, this comment is printed. The octal representation of the

offending code is in the accumulator. (See Addendum I)

OPERATOR-MODE NOT IN TABLE -- If the

SAME SEQUENCE AS [mode]
no. [mode]

no.

statement is used and the designated operator-mode combination is not in the currently

defined table, this diagnostic comment is printed.

INVALID OPERATOR-MODE COMBINATION [operator-mode-] (000/M/M) IN THE STATEMENT ENDING
combination

This error may be caused by definition difficulties or more often, by the appearance

of operands of incorrect mode in expressions involving either the pre-defined or

programmer-defined operations. An operator-mode combination has been encountered

which is not defined. The left three octal digits of the number inserted in the

statement are the operation number, the next digit is the mode of the left operand,

and the next digit is the mode of the right operand. If the erroneous statement

required several cards, only the last card image is printed, but the error may be

anywhere in the statement.

TEMPORARY [temp.no.] RESERVED BUT NOT USED AS AN OPERAND IN THE STATEMENT PRECEDING-- This

comment does not stop translation since it is not caused by an error that would result

in incorrect computation. Some sequence resulted in the inclusion of an unnecessary

store operation. The line number of the offending operation is one greater than the

temporary number shown. The statement involved is not the one printed but the

preceding one.

Comments

The strategy for defining single and double valued operations is apparent from the

examples included here and, more directly, from considering the register structure of the

machine. 'The technique is to terminate a sequence with operations that would leave the

result(s) in the arithmetic register(s) and then make it the initial task of sequence

interpretation to determine what store instructions, if any, must be inserted. This basic

scheme is certainly useful for experimenting with single-valued operations and for double­

valued operations such as double-precision operations, complex operations, approximation­

error arithmetic operations, range number computations, etc.

It is interesting to speculate on what would be necessary to extend this definition

ability to arbitrary vector-valued operations. First, the limited arithmetic registers

could not be used for temporary storage,and the storage into temporary registers would be

120

MAD Reference Manual Appendlx C

an explicit part of a sequence and not relegated to the initial part of the succeeding

instruction. This would require a slightly different interpretation of the symbol T,

which could be readily accomplished, however. Since temporary storage would always be

required, the conditional structure of such sequences would be much simpler. The other

problem is, of course, that the temporary storage cells must become arrays, but here again

the existing temporary assignment structure is directly usable with the addition of one

facility. If, just prior to the evaluation of an expression composed of vector valued

operations, the temporary storage elements are set to addresses of another storage array,

spaced so that the regions between addresses can accommodate the vector results, then the

single temporary cells may be used for indirect reference. By indirectly addressing all

operands, statements such as

E ((A*B)+C)*D

could be executed, where the designated variables are conformable matrices. One difficulty

is that the dimension information used to set up the addresses for indirect referencing

would be limited to that available at the time of translation. It is debatable whether

the facility gained is worth the additional complexity of the translator in view of these

restrictions and the relative ease with which functions currently may be used to specify

matrix operations. However, installations using MAD may wish to experiment with adding

this more general definition ability.

Pre-defined Packages

Three complete packages of definitions are available for automatic inclusion in MAD

source programs. These are designed to facilitate vector and matrix arithmetic, double

precision arithmetic, and complex number arithmetic. 'I'he statement

INCLUDE iJ

whereiJ is one of MATRIX, DOUBLE PRECISION, or COMPLEX will make the program behave as if

the source cards for the corresponding definition package had been physically inserted

into the MAD program at that point. (The word INCLUDE may be abbreviated I'E.) Complete

writeups for these three packages are available in the Computing Center's 7090 Executive

System Manual.

121

APPENDIX D:

DOUBLE STORAGE MODE DECLARATION

The format of this declaration is

y/
DOUBLE STORAGE MO~E ~

where ;(is a list of integers, each in the range 0 to 7. An occurrence of this

declaration has three effects:

(1) the amount of storage allocated for each variable of the specified mode(s)

is doubled,

(2) all variable and constant lineart subscripts applied to variables of the

specified mode(s) are doubled, and

(3) in all define sequences, the expressions A + l, B + l and DT + 1 are inter­

preted as A - l, B- l and DT - l, respectively.

Statements presetting variables with a double storage mode, such as VECTOR VALUES, etc.,

must now provide a pair of values (enclosed in parentheses) for each subscript position in

the vector. Examples of this (for mode l declared to have double storage) are:

For mode 6:

VECTOR VALUES V = (l,A), (2,B),(3,C)

VECTOR VALUES Q(3), ... ,Q(6) = (1,0)

VECTOR VALUES M = (l.3M6,0), (2.4,1.)

VECTOR VALUES N, ... ,N(3) = (2.4M6,0)

Note that the mode will be determined by the first constant, as usual.

tFor multi-dimensional arrays the equivalent linear subscript is doul
prior to its use.

123

ADDENDUM I

Pre-Defined Operators in MAD

NAME OCTAL CODE PRECEDENCE OPERATION

+ 001 8 a+ b _,. AC

002 8 a - b _,. AC

* 003 9 a * b _,. AC

I 004 9 a/b ... MQ

005 1 b ... a

.ABS. 012 14 lb I ... AC

.P. 013 ll ab -+ AC

.v. 061 12 avb ... LA (full word)

.A. 065 13 aAb _,. LA (full word)

.N. 066 14 b _,.LA (full word)

.LS. 067 14 left shift a, b binary positions
+ LA (full word)

.RS. 070 14 right shift a, b binary positions
+ LA (full word)

.NEG. 045 10 - b -+ AC

•• RTN. 076 not applicable b _,. AC, a designates return address (mode 4)
.. DIF. 035 not applicable a - b-+ AC, result is always mode 2

Of the pre-defined operators only these may be referred to or redefined by definition

statements. The pre-defined operators not listed constitute an unalterable basic set whose
meaning (semantic content) is used in the decomposition of expressions. The two primary

syntatical structures arising from this set are (1) subscription,and (2) Boolean expressions.

Accordingly, the value of subscripted expressions must be of integer mode, and the operands

of the Boolean operators (not the full word operations) must be of Boolean mode. Due to
the method of decomposing Boolean expressions, even the operands of the relations .E.,

.NE., .G., .GE., .L., .LE. must be treated in a Boolean manner. The existence of the
implicit operator .DIF, which is explained below, permits the use of the relations with

newly defined modes. There are two other operators, also, which may not be written ex­
plicitly in a statement and yet are subject to definition.

.NEG. The symbol 11 - 11 is used in statements to indicate both the unary and the binary

operator, and it is always clear from context which was intended. Some distinction
must be made when the operator alone is written, and the symbol .NEG. is used for

unary minus (i.e., negation) .

•• RTN. This symbol, which is obviously invalid in a statement, stands for the operation of
placing the appropriate value(s) in the arithmetic register(s) and then returning

from a function to its calling program. It is analogous to the right hand side of

a substitution statement (the b operand) and then a transfer to a given address

(the a operand is the address of a word whose decrement contains the complemented

return address).

125

Addendum I MAD Reference Manual

As such there is no result. As an example, if the result of a function were a
double precision number, say mode 5, the following would be a reasonable definition.

MODE STRUCTURE 4 .. RTN. 5
JMP *+3,BT,*+l
CLA B
LDQ B+l
LXD A,4
TRA 1,4
OUT ACQ
END

.. DIF. In the decomposition of Boolean expressions (or Boolean scan) the operations

involving .AND., .OR., .NOT., and the relations are not executed as such, but are
converted into tests and transfers so that only the necessary evaluations of sub­
expressions are made. The relations are usually basic operands in such expressions,
and the first step in determining the truth or falsity of such a relation is to
form the difference of the two operands. Then the difference may be tested for
some combination of the possible positive, negative and zero values. Thus, if the
difference is defined for some new type of operand, and the numeric result left
in the accumulator is (somewhat arbitrarily) designated to be of Boolean mode,
then the relations may be used with these newly defined entities. For example,
.. DIF. could be defined for double precision numbers (say, mode 5) as follows.

MODE STRUCTURE 2 = 5 •. DIF. 5
JMP *+20,AT,*+l
JMP *+23,BT,*+l
JMP *+4,LA,*+l
JMP *+2,AC_,*+l
JMP *+6,MQ,*+10
JMP *+7,MQ,*+3
SLW T
JMP *+7
STO T
JMP *+5
STQ T
JMP *+3
STO DT
STQ DT+l
CLA A
SUB B
TNZ LOC+3
CLA A+l
SUB B+l
OUT AC
SUB B
TNZ LOC+3
XCA
JMP *-5
SUB A
TNZ LOC+3
XCA
SUB A+l
CHS
OUT AC
END

If, by error, attempts are made to use subscripts of other than integer mode, diag­
nostic statements may be produced by the translator which display numeric, pre­
defined subscription operators. The following is a short list of octal subscription
operator codes to aid in recognizing these cases.

024, 025, 033, 073

126

ACL
ADD
ADM
ALS
ANA
ANS
ARS
AXC
AXT
CAL
CAS
CHS
CLA
CLM
CLS
COM
DCT
DVP
ERA
FAD
FAM
FDP
FMP
FRN
FSB
FSM
HPR
IIA
IIS
LAC
LAS
LET
LDC
LDI
LDQ
LGL
LGR
LLS
LRS
LXA
LXD
MPR

ADDENDUM II

Permissible Machine Instructions

(for use in operator definition)

Listed in UMAP Mnemonic Form

MPY
MSE
MZE
NOP
NZ'r
OAI
OFT
ONT
ORA
ORS
OSI
PAC
PAI
PAX
PBT
PDC
PDX
PIA
PXA
PXD
PSE
PZE
RIA
RIS
RND
RQL
SBM
SLQ
SLW
SSM
SSP
STA
STD
STI
STL
STO
STP
STQ
STR
STT
STZ
SUB

127

SXA
SXD
TIF
TIO
TIX
TLQ
TMI
TNO
TNX
TNZ
TOV
TPL
TQO
TQP
TRA
TSX
TTR
TXH
TXI
TXL
TZE
UAM
UFA
UFM
UFS
USM
XCA
XCL
XEC
ZET

INDEX

.A., 16, 19
Abbreviations, 103
.ABS., 16
AC (DEFINE), 117
Absolute Value, 16
Access Vectors, 108
Actuarial Example, 92
Addition, 16
Admissible Characters, 22
Algorithm, 1, 5
Alphabetic Constants, 14
.AND., 18
Arguments of Functions, 17, 59, 61
Arithmetic, Expressions, 16

Operations, 11
Array, One-Dimensional (See Vector)

Variables, 15, 52, 54, 56
Assignment Statement, 23
Asterisk, 16, 39
AT (DEFINE), 117
Automatic Dimensioning, 54

B Modifier, 42
BACKSPACE FILE Statement, 37
BACKSPACE RECORD Statement, 36
Base Element, 105
BCD (Hollerith) (See Hollerith (BCD)
Blank Spaces, 22
Blocks, Input-output, 22, 44, 101
Boolean, 81

Constants, 14
Expressions, 18, 27
Operations, 14

Bound Variables, 59
Break Character, 44
BT (DEFINE), 117
Business Data Processing Examples, 81

C Field (Format), 42, 44
Call For Function (See Function Call)
Calling Sequence (See Function Call)
Card Format, 99
Carriage Control, 38, 43
Character Field (Format), 42, 44
Characters, Admissible (See Admissible

Characters)
Column 11 (Card Format), 99
Comma, 19

(In Format), 44
Compound Conditional, 24
Conditional, Compound, (See Compound

Conditional)
Conditional) Simple, (See Simple

Statement, 24
Constants, 13

Alphabetic, 14
Boolean, 14
Floating Point, 13
Function Name, 14, 22
Integer, 13
Octal, 14
Of Other Modes, 14

CONTINUE Statement, 26
Conversion, Floating Point to Integer, 23

Integer to Floating Point, 20, 23

D Modifier, 42
Decimal Point in Format, 40
Declarations, 50
DEFINE Facility, 111
DEFINE Operator Examples, 118
Defining Sequences, 115
Deletion of Parentheses, 19
Depth, Nesting, of Iteration, 30
Diagnostics, 100, 119
Dimension Information, Advanced Uses of, 105
Dimension Information in Other

Declarations, 54
DIMENSION Statement, 5, 52, 105
Dimension Vector, 64, 105
Division, 16
DOUBLE STORAGE MODE, 123
Dummy Arguments (See Dummy Variables)
Dummy Variables, 59, 61, 62
Duplicate Dimensioning, 54
,E,, 18
.EV., 17,19
E Field (Format), 40
END OF CONDITIONAL Statement, 25
End of File Condition, 37
END OF FILE TAPE Statement, 36
END OF FUNCTION Statement, 61
END OF PROGRAM Statement, 10, 32, 102
End of Tape Condition, 37
ENTRY TO Statement, 32, 61
Equals Sign, 4, 5, 19, 61
EQUIVALENCE Declaration, 54, 66
ERASABLE, 55, 57
Error Detection (See Diagnostics)
ERROR RETURN Statement, 32, 62
ERROR Subroutine, 66

128

.EQV. I 18
Examples, Business Data Processing, 81

Recursive Functions, 95
Scientific, 67
Symbol Manipulation, 95

Executable Statements, 23
EXECUTE Statement, 31, 61
.EXOR., 18, 61
Exponent, 13
Exponentiation, 16
Expression, Arithmetic, 17

Boolean, 18
Compound, 18

EXTERNAL FUNCTION, 7, 59, 60

F Field (Format), 40
Field Description (Format), 39
Floating Point, 6, 13

Conversion (See Conversion)
Subscripts, 22

Flow Chart, 2
FOR, (See Iteration Statement)
FOR VALUES OF, (See Iteration Statement)
Format, 34, 38

Modification, 77
Specification, 38, 44
Variable Declaration, 58, 77
Variables, 58, 65

Function~Arguments (See Arguments of Functions)
Caii, 59, 61
Definition, 58, 62
Entry, 32
Name, 22, 51, 59

Function Name, Constants and Variables, 22
Mode, 73

Function, Reference, 22
Return, 61

FUNCTION RETURN Statement, 32, 61
Functions, 15
Function Statement (See EXECUTE Statement)
Function Value (See Value of a Function)

.G.,.GE, 18

Half-Interval Convergence, 74
Hierarchy of Parentheses, (See Parentheses)
Hollerith (BCD), 43

I Field (Format), 40
Identification (Card Format), 99
Including Dimension Information in

Other Declarations, 54
Individual Variables (See Single Variables)
Input-output, Blocks (See Blocks, ofl~~~t)

Calling Sequences (See TRANSMIT Statements)
Error Procedure, 46
List, 33, 35, 44
Statements, 34

Integer, Constants, 13, 56
Conversion, 20
Division, 16, 20
Shift, 17

INTEGER Statement, 5
INTERNAL FUNCTION, 12, 58, 59, 60
INTERNAL FUNCTION», One Statement

Definition, 59
Iterated, Expression, 29, 35, 49

Statement, 29, 49
Iteration, Box, 34

Nested, 29
Statement, 26
Variable, 27

JMP, 117
Jordan Elimination Method Example, 79

K Field (Format), 43

.• L. ,LEq 18
L Modifier, 42
.LS. I 17
Labels, Statement (See Statement Labels)
Left Shift, 17
LOC (DEFINE), 116
Linear Subscript, 52, 55, 56, 105, 108
List, Manipulation, 33, 96

Input-Output (See Inuut-Output List)
LISTING ON Declaration, 65, 73
LISTING OFF Declaration, 65, 72, 76
LOOK AT FORMAT, 36, 88

Matrices (See Array Variables)
Matrix Multiplication, 77
Matrix Transpose Example, 72
Mode, 20, 27, 51, 55, 59, 60

Assignment, Automatic, 51
Declaration, 51
Of Expressions, 20, 23, 27
Number Declaration, 51
Scheme (DEFINE), 114

Modes (DEFINE), 113
MODE STRUCTURE Statement (DEFINE) 114, 118
Modifiers, 42
Modifying Subscript Ranges, 53
Mortgage Example, 89

129

MQ (DEFINE), 117
Multiple Specifications (Format), 43
Multiplication, 16
Multiplicity (Format), 41, 45

Name, 15, 59
.NE. I 18
Negation, 16
Negation, Bit Wise, 16
Nesting Depth of Iteration, 29
Nesting Depth, Automatic Indication, 31
Newton's Method, 7, 28
Non-Executable Statements, 50
NORMAL MODE IS Statement, 51, 71, 96
.NOT. I 18

One-Dimensional Array (See Vector)
Open Subroutine, 112
Operation Codes (DEFINE), 114, 125
Operations, Arithmetic, 16

Boolean, 18
Operator-mode Table, 113
.OR. I 18
OR WHENEVER Statement (See Conditional

State111ent)
OTHERWISE Statement (See Conditional

Statement)
OUT, 117

.P., 16
P Modifier, 42
P Prefix (Format), 42
PARAMETER Declaration, 57, 71, 115
Parameters, Subroutine (See Subroutine

Parentheses, 19 Parameters)

PAUSE Statement, 31, 88
Payroll Example, 81, 84
Permissible Machine Instructions

(DEFINE), 127
Precedence Hierarchy(See Parentheses)
Predefined Operators, 125
Presetting Vectors, 56
PRINT COMMENT, 36, 48
PRINT FORMAT Statement, 35
PRINT ON LINE FORMAT Statement, 35
PRINT RESULTS, 9, 36, 48
Procedure, 1, 59, 60, 62
PROGRAM COMMON, 55, 57, 66
Pseudo-Instructions, 117
PUNCH FORMAT Statement, 36
Push Down Lists, 33

Quadratic Equation, 67

R(Col.ll) (See Remark Declaration)
R Modifiers, 43
.RS,, 17
Range of Subscripts, 52
READ AND PRINT DATA, 36, 48
READ BCD TAPE Statement, 36
READ BINARY TAPE Statement, 36
READ DATA, 10, 36, 48
READ FORMAT Statement, 35
Recursive Functions, 59, 95, 96
Redundant Parentheses, 19
REFERENCES ON Declaration, 66, 73, 76
REFERENCES OFF Declaration, 66
Regional Notation (See Blocks, Input­

Output)
Relocatable Binary Programs, 100
Remark Declaration, 51
RESTORE DATA Statement, 34, 96, 97

RESTORE RETURN Statement, 34, 96, 97
REWIND TAPE Statement, 37
Right Shift, 17

S Field (Format), 40
SAVE DATA Statem~nt, 33, 96, 97
SAVE RETURN Statement, 33, 96, 97
Scale Factors (Format), 42
Scientific Examples, 67
Scope, 3, 27, 29
Set High Density Tape, 37
SETDIM Subroutine, 53, 78, 81, 109
SET LIST TO Statement, 33, 96, 97
Set Low Density Tape, 37
SETEOF Subroutine, 37, 91
SETERR Subroutine, 46
SETETT Subroutine, 37
Simple Conditional, 24
Simplified Input-Output Statement, 47,65
Simpson's Rule, 72
Simultaneous Linear Equations, 79
Single Variables, 15
Social Security Example, 84
Spaces, Blank, 14
Specification, Format (See Format

Specification)
Statement (DEFINE),ll4
Statements, Executable (See Executable

Statements)
Statement Label, Constants, 15, 24

Variables, 15, 24
Vector, 15

Statements, Input-Output (See Input­
Output Statements)

Non-Executable (See Non-Executable
Statements)

Storage Function, 108, 109
Subroutine Parameters, 101
Subroutines, 59, 66, 101
Subscript Expressions, 15, 22
Subscript, Linear, (See Linear Subscript)
Subscripts, 22

Negative, 52
Ranges of, 52

130

Substitution Statement, 23
Subtraction, 16
Symbol Manipulation Examples, 95
SYMBOL TABLE Statements, 64
SYSTEM Subroutine, 37, 66

T (DEFINE), 116
Table Look-up, 28
Temporary Storage, 113
• THEN., 18
THROUGH Statement (See Iteration Statement)
TRANSFER Statement, 6, 24,
Translator, 5
TRANSMIT Statement, 63
Transpose of a Matrix (See Matrix Transpose)
Triples, 113
Truth Table, 70
Truncation (See Integer Division)
Tschebychev Polynomial Example, 98

Unload Tape, 37

.v.' 16
Valid Iteration Configuration, 29
Value of a Function, 31, 97
Variable, 15, 66, 111
Variables, Bound (See Bound Variables)

Dummy (See Dummy Variables)
Vector, 52, 54, 56

Presetting, 56
Statement Label, 15

VECTOR VALUES Statements, 56

WHENEVER Statement (See Conditional
Statement)

WRITE BCD TAPE Statement, 36
WRITE BINARY TAPE Statement, 36

Z Modifier, 43
Zero Increment for Iteration, 28
Zero Subscript, 52

OB, 14

lB, 14

$ Sign, 14, 56, 99

llllllllllllllllllflm~IIl11~Uilifll1illllllllllllllllll
3 9015 02229 2091

