W I Sy S S < o B & D SR S Ly RO LT
Frogremsing wuafil dote 18 Lospulation Lentey

Dec. 16, 1963

FROM: F. J. Corbatd
SUBJELT: Prograwming Style and Exposition

First, a few lofty vemsrks. The perfectly written program
would be one vhere the procedura wers not snly lucidly stated but
sccomplished with the most effective use of computer time end -
space resources. These somewhat contradictory objectives raquire
& compromise szmong the factors of brevity, completemess, and
gu §@3tivemsss as well as the ever-present concern for space-time
efficiency. - -

In general, to present programming method, specificatlon and
usage idess effeetivaly 18 of couree a problem of exposition. A
description of e program which may or way not be embeddsd in 2 formal
progren should resemble 2 section of a textbook, im that by
organized matexrial, the resder is guided snd shown the proper
gequence for absorbing the ideas presgsent. This is often done by
an introductory summary establishing the scope and context as well
as the essentiazl points to be made; indicszions of the relative
importance of the different sections to be vead are of further
asgistance. A not unregsonable guide is to assume that the liklihood
of & description being read to completion is inversely proportiocnal
to the length, so that it is s contest for you, the writer, to gain
for a given degree of clarity, maximum reader lmpact and interest
as briefly zs possible, For in the end the all-too-typical reader
will only vead that which he has beszn gersugded is worth his
spending his ¢time on. Hgving wade this poiant 1¢ nevertheless remains
to be ecmphinsized that lack of eclarity 13 mora of & fault then lack
of brevity. - S -

Rezpproaching the practical world of writing CISS sysz@ﬁ prograns,
tha fgll@wﬁmg guidelines, many of which ave typographical in natuve,
ave offsvad: |

1. All programming idess should be erganized and broken down
go that they cen be expressed in modulaes of BSS asubprograms.
This modularity gives assurguce that any single pieca cen be
understosd or rewrititen reasonable quiekly and that there is
cowplete independence between subprograms except for the
euplicit “ealls" and the implicit “common™ pool. Purthex
benefits vesult from the rapidity and machime~time efficiency
with which a module can be redone and replaced. At present
the lack of generality and the slight inefficiency of the BSS
fore do not seem to be a problem.

Pg. 2

2. All wmodules should be as wachine invarlant as possible,
~and in the MAD languagc swoapt when excessive clumsiness

or inefficiency result. It is importamt that our programaing
ideas be in a state to be rgpidly transferable to the different
computers of the future.

3. Unless good reasons exist, no MAD subprogrem should exceed
about 200 statements. FAP subprograms should be kept as

small as possible unless they are a hiih»efficiency version

of a MAD wodule; in any case, single FAP subprograms should
not exceed a few hundred cards. :

4. Programs should have vertical punctuation (by weans of
blank Remark cards in MAD, ¥ cards in FAP) such that significent
sections sre set off as “paragraphs™. This particularly
applies to before and after the scope of GH statements.

5. Every MAD or FAP progrem should contain interspersed
comments. A MAD program which is between 20 to 35 percent
remark cards (including blank “punctuation" remark cards)

is reasonable. (All remark cards in MAD should bz blank in
column 12 at least.) In FAP, 25 to 50 percent of the cards
with comments is reasonable. FAP programs should always have
preceding remark carde giving a sswple cglling sequence.

6. Extended remarks of greater length are tolerable (and in
general desirable) provided they are all in one block at either
the beginning or end of the program. In either case, there
should be an initial remark stating the scope (i.e. line
numbers) of the extended remarks so that typewriter users can
skip over them if desired. (A special version of PRINIF which
filters out remarks might be useful during debugging.)

7. To show loop and conditional nesting, in MAD, all loops

and compound conditional statements should be clarified by
indentation of 2 zﬁaces {or 1 space in heavily-nested cases).
This indentation should apply to all statements in the respective
scopes except THRYUGH, NEVER, $R WHENEVER, ¢THERWISE and

END OF C@ND%TIORAL. (Use circled digits for spaces when key
punching is being done by others.)

8. To set off key phrases punctuate with a space between the
comma and the FOR in a THROUGH statement; punctuate with a
space after the comypa in a simple WHENEVER statement.

9. All programs should have their declarations collected at
either the begioming or the end.

10. The above points are not rigid rules and exceptions
{especially in the direction of greater explicitness) should
be made whenever important or tricky algorithms are being
done. Maximum speed of communication of ideas with minimum
reader time and effort is the overall criterion by which to
judge altexrmatives.

