
·~.~-.

(!0035

May 20, 1966
To: MULTICS Distribution

From: R. C. MeGee

The attached paper by Nguyen, Slosberg, and Joel describes a method
of using the 645 running under K2. GECOS for debuggtng MULTICS
modules. The programming necessary for accomplishing this mode
of r.)peration is being done jointly by Dave .Joel• s Development Tool
Un~t in Cambridge and my Programming Integration Uni.t in Phoenix ..

T'.te method dedicates one GIOC for use by GECOS and leaves the
r,econd GIOC available for use by MULTICS modules. In addition,
it provides a method for a module under test to gain ~omplete
control of all 645 hardware features while maintaining access to the
development tools provided under GECOS.

fch

.-..

;._
·.·_ ..

(_.;.. u () ..:5 ~

May 13, 1966

Initial Utilization of the GE-645 at Project MAC

v. B. Nguyen, D. H. Slosberg, D. E. Joel

Introduction

It is planned to utilize the GE-645 in two distinct phasesr

1. Phase 1 uses the hardware in exactly the same way that the GE-635 is

currently being used, i.e., using the present 6.36 and 64.5 systems

and their logical extensions.

2. Phase 2 brings the user closer to the GE-645 by removing the simu-

lator from the 6.36 and 64.5 environments, allowing a process to

execute instead of being simulated, permitting the process to per-

form input/output using the entire facility of one GIOC, and permit•

ting the process to handle its own faults.

Phase 1 provides a good environment for "bringing up" the GE-645 using Kl GECOS

(or later K2 GECOS), and at the same time giving complete backup in the shape

of the GE-635 still on site. Note that Kl or K2 GECOS consists of GE-635 GECOS'

plus a supplement (herein named the GECOS Supplement).

Phase 2 provides the software developer with a broader facility, while still

retaining basic control of the GE-645 by Kl or K2 GECOS.

A main design objective is that users of the 6.36 and 64.5 systems will be able

to run jobs in Phase 2 without realizing the disappearance of Phase l.

Phase 1

The only requirement to implement this phase is that Kl GECOS (using an IOC) be

operational, i.e., that the GE•645 can be run in exactly the same way as a GE-635

(as viewed from the users end).

j

' ~l .

I
Page 2

This environment is to be checked out in Phoenix prior to delivery of the GE•645'.

The checkout procedure to be used is complete running of typical 6.36 and 64.5 jobs.

Phase 2

The method of operation planned here is exactly the same as in Phase 1 except

during the one activity in a 6.36 or 64.5 job which is devoted to loading and

executing a 645 process.

The main characteristics of the operation at load/execute time are as followst

1. The GECOS Supplement, on request, yields information about the 1635

Slave' activity currently in execution. This allows the 645 loader

to determine its own environment.

2. The GECOS Supplement, on request, sets a 1645 Process' switch which

causes interrogation of a users pseudo faul~ and interrupt vectors

- when a fault or appropriate interrupt occurs, and reflects the con•

dition to the user as indicated by the contents of the appropriate

vector.

3. When a fault condition occurs with the 1 645 Process' switch on, and

the appropriate entry in ti1e users pseudo fault vee tor indicates that

the user is not hanciling this conottion, the GECOS Supplement passes

control to a termination routine in the 645 loader through a fixed

communication zone. This permits the normal form of dump given by 6.36

or 64.5 to be obtained in preference to the GECOS abort dump.

•

Page 3

4. It is normal practice to use two libraries to set up execution.

One contains 635 subprograms (e.g., the 645 loader), and the other

contains 645 assembled segments (especially the special inclusion

segments). Any changes required converting from Phase 1 to Phase 2

operation are handled entirely by manipulation of these two libraries.

5, The 645 Process placed into execution is in a position to do anything

it wants to, and thus can cause a catastrophic software failure, It

is a design objective that the user have this freedom while still

trying to catch error situations if possible (see 3 above),

The specific requirements of the system are described below in soma detail,

with particular emphasis being given to interface details:

l, The GECOS Supplement

When a 635 slave activity is set up, the basic mechanism is that of

building a descriptor segment. The entries which are required in the

descriptor segment are described in Figure 1.

Segment
Number

5

6

Description

Describes t~e assigned 635
slave memory, unpaged,
1024 word blocks.

Describes the mailbox area
for the GIOC assigned to
645 process work only,
unpaged.

Descriptor
Attributes

Slave procedure,
slave access, write
permit.

Data

Figure 1. Descriptor Segment for 635 Slave Activity.

.. Page 4

It is necessary that the 645 loader make requests of the Supplement. The vehicle

used is the Master Mode Entry 1 command, which is restricted to use in GE-635

software only. the specific requests which the 645 loader can make are as fol•

lows:

a) Return a descriptor word.

LDA
LDQ
MMEl

l,DL
N,DL
64

Typel

The N1 th word in the descriptor segment (N starts at zero)

is passed back by the Supplement in register A.

b) Change Mode, set 1645 Process' switch.

LDA 2,DL
LDQ • MVFD~l8/FVECTR,l8/IVECTR
MMEl 64

FVECTR and IVECTR are locations in the 1 635 slave mamory 1

at which the pseudo fault and interrupt vectors are located.

The Supplement changes the descriptor for segment 5 from

slave procedure, slave access, write permit to master pro•

cedure.

The Supplement sets the 1 645 Process' switch so that if

faults or interrupts (from the dedicated 645 process GIOC)

occur, the pseudo vectors provided by the user are inter-

rogated (see later discussion on fault and interrupt handling).

c) Discontinue interrogation of pseudo fault vector.

LDA 3,DL
MMEl 64

This request is honored only if the 1 645 Process' switch is on.

The function provided is the ability to have faults interpreted

by GECOS while executing 'escape' coding (which really is

635 code).

d) Resume interrogation of pseudo fault vector.

LDA 4,DL
MMEl 64

Pqe5

This request is honored only if the 1645 Process' switch is

on.

When a fault occurs the Supplement checks a set of conditions and reacta

accordingly. The specific checking is shown in the decision table diagrammed

in Figure 2.

An example of the use of this diagram ist fault occurs, and execution mode

at time of fault occurrence is relative, and '645 Process• switch is off,

then follow ACTION #3.

When an interrupt occurs on a device dedicated to GECOS (on an IOC with Kl, or on

a GIOC with K2), the Supplement reflects the interrupt to GECOS. When an

interrupt occurs on the GIOC dedicated to 645 process work, the Supplement

checks a set of conditiorsand reacts accordingly. The specific checking ia

shown in the decision table diagrammed in Figure 3.

)

Occurrence

of a

fault

Figure 2.

Execution

Mode
Absolute

at time of

fault

occurrence

Execution

Mode

relative

at time of

fault

occurrence

Fault handling in the GECL)supplement - (Read from left to right))

I Fault Control-unit move switch is on.
(Fault occurred while a prior fault was
being simulated)

IACTION #1: Communicate trouble (code I
66) tc slave program, and go to slave
terminate routine (see definition of
communication Region)

Interrupt Control-unit move switch is on.IACTION #2: Communicate trouble
(Fault occurred while an interrupt was (Code 65) to slave program, and go
being simulated) to slave terminate routine.

Control-unit move switches are both off. !ACTION #3:

Reflect the fault to
1 645 Process' switch is off.

GECOS

'645

Users pseudo fault vector is
inactive Q1ME1 64 type 3 in
eJ_fe_et) ___ ----·---------1-------------------+

Process'
User

Switch pseudo

fault

is on vector

active

Instructions in users
pseudo fault vector
are SCU and TRA

Instruction in users
pseudo vector are not
SCU and TRA

~
1 ~

tr\C •

ACTION #4: Turn on the fault control­
unit move switch. Move the control­
unit; this simulates the users SCU

(a fault can occur here resulting in
~CTION #1). Turn off the fault contro
unit move switch. Execute the users
TRA.

ACTION #5: Communicate fault infor­
mation to slave program and go to
slave terminate routine.

'"d
Ill

OQ
tD

0\

)))

Figure 3. Interrupt handling in the GECOS Supplement

(Read from left to right}

~--------=--------------------------- . , __ _

Occurrence

of

an

Interrupt

Device on which
interrupt occurred
is dedicated to GECOS

Device on
1 645 Process' switch is off

which

interrupt

occurn::cl

is de';

to 645

procc

(GIOC)

'645

PUJC('SS f

8.:it dt

is on.

Instructions in users pseudo
interrupt vector are
SCUand RCU

Instructions in users

pseudo interrupt

vector are SCU and TRA

Instructions in user pseudo
interrupt vector are not
SCU and TRA or SCU and RCU

ACTION #1:

Reflect the interrupt to
GECOS

ACTION #2:

Ignore the interrupt

ACTION #3: Turn on the interrupt
control-unit move switch. Move
the control-unit; this simulates
the users SCU (a fault can occur
here resulting in fault ACTION #1)
Turn off the interrupt control-unit
move switch. Execute the users
TRA.

ACTION #4: Communicate interrupt
information to slave program and
go to slave terminate routine.

1--------1---------·. --·- I

•

"d

"' ()Q
CD

.....

.•. Page 8

2. The 645 Loader and Associated Routines

When the 645 Loader gets' contro~ it has the responsibility of setting up a

descriptor segment for the 645 Process, loading several fixed segments (described

in Figure 4) and all other requested segments (details may be found in writeups on

6.36 and 64.5), setting up a communication region for the purpose of communicating

with the Supplement and the 645 Process segment 'escape', and finally transferring

control to the 645 Process in segment 'init'.

Th• fixed segments which are loaded are as follower

Segment Descriptor
Number Description Attributes
4 Pseudo fault vector at 400~ in '635 slave Data

memory'. Segment name is fvectr'. 192
words long, unpaged. First 64 words are
the fault vector, remainder reserved for
ITS pointers for SCU-TRA instruction
pairs. Loader initializes to zero.

5 Describes the assigned 635 slave memory, Slave procedure
unpaged, 1024 word blocks. Information Slave access,
obtained from Supplement (MMEl 64).

I
write permit.

Segment name is 1memory'.
I

6 Describesthe channel 4~ilbox for the Data
GIOC assigned to 645 ?rocess work.
Unpaged. Segment na..-ue 'c;iocl'.

7 Pseudo interrupt vector at 7003 in 1 635 Data
slave memory'. Se;;r,-.~,·,;: name is 'ivectr 1

•

192 words long, un~~6~G. First 64 words
are the interrupt vector(s), remainder
reserved for ITS pointers for SCU•TRA
instruction pairs. Loader initializes
to SCU, RCU instruction pairs.

Figure 4. Basic entries in the descriptor segment for a 1645 Process'

..

Page 9

The communication region which the 645 Loader sets up has the following format:

Address (decimal) Length
within 1635 slave (words) Description
memory'.

240 2 Area which segment 'escap~ uses to
pass a pointer (ITS pair) to the
argument list.

242 2 Area which segment 1escape 1 uses to
save control infor~tion. 635 escape
coding returns to 1 45 Process' by
executing an RTD 242 instruction.

244 6 Area used by the Supplement to hold
the control unit when the Supplement
has determined that the '645 Process•
should terminate itself.

250 1 Area used by the Supplement to indi-
cate the fault number or interrupt
channel number (format ARG-N) causing
1 645 Process' termination.

251 2 Unused

)
253 1 Pointer to 635 escape coding)

)
)

254 1 Pointer to supplement initiated ter-)
mination routine.)

)
255 1 Pointer to normal termination routine .~

Figure 5. Communication Region in 635 Slave Memory.

Set
up
by
645

loader

I
I .. -.
(• Page 10

~ The termination routines, whether Supplement initiated or normal, have the responsi•

bil:Lty for collecting information on machine conditions and writing this infor•

-

mation, together with a core dump, onto a file (file code CR) in the same format

used by the simulator in Phase 1.

~nt 'escape'

When entry point 1finish 1 is called, termination of the '645 Process' is effect;ed

by t:he normal termination routine. Segment 'escape' gets to thi.a routine by

trarLsferring indirectly to segment 5 location 255.

tra • its(5,255,*),*

Escape to perform 635 escape coding is performed by saving the argument list pointer

in s:egment 5 location 240, putting the escape "number" in index register 7, saving

cont:rol in segment 5 location 242, and transferring indirectly to segment 5 location

253.

escaper save
eapbp
stpbp
ldJC, 7
stcd
tra
return

ap}4,*
•its (5,240),*
ap J2,*

•its (5,242),*
•its (5,253,*),*

Further details about the use of escape coding are available in the appropriate writeup

in ~M section BE.7

