
G0080 1/21/69

R. A. FRE1 BURGHOUSE

SIGNIFICANT FEAT.URES OF MULTICS PL/1

The Multics PL/1 implementation embodies a number of int~resting features

including new implementation strategies and new language constructs. This

paper is a brief description of some of ~he more significant and unusual

features. More complete documentation of the implementation and a detailed

specification of the language will be available at a later date. The

reader is urged to also. read the companion document titled COMPATIBILITY

CONSIDERATIONS OF THE PL/1 IMPLEMENTATION.

The PL/1 Language

The language of the Multics PL/1 implementation is defined by IBM

publication Y33-6003-0. · A number of features (1 isted in Appendix 1)

are hot implemented in the initial compiler. Certain more exotic

features (tasking, sterling data, etc.) will never be implemented.

The PL/1 language implemented for Multics is a new language having fewer

restrictions than EPL and containing many features not found in EPL.

Some of the more interesting features are described in the following

sections.

Data Initialization

The PL/1. compiler implements the full fo.rm of the initial attribute

for all storage classes. This permits the use of based initialized

structures and all forms of array initialization. Initialization of

internal static is done entirely at ~ompil~ time making it a u~eful

method of writing table driven routines.

-2-

Data Packine

The attributes "aligned" and "unaligned" may be appiied to strings to

control their packing within aggregates. Unaligned strings and structures

may be passed as arguments and may serve as the-argument to the 11addr"

function. In such cases, the image (the based declaration or parameter

declaration) which is used to reference the unaligned item must.also

be declared unaligned. These two attributes allow the programmer to

completely control the packing of data.

Self-defined Based Structures

The PL/1 language contains a feature known as ·the "refer option" which

is useful for declaring self-defining structures.

Example:

del 1 self based,

2 size fixed, ..
2 s char (n refer(size));

At the time of allocation the length of the string risn will be

computed using the·value of "n". All subsequent references to the string

will comp~te the length using the value of "size". The assignment of

"n" to "size" occurs automatically at the time of allocation. This

feature eliminates the existing EPL ackwardness of allocating and

referencing self-defining structures.

-3-

Multiple Entries and Returns

The PL/l compiler correctly implements the multiple entry multiple

return features of the PL/l language .. The number of parameters may

differ for each entry, the position of any particular parameter may be

different in each entry, and the return value of each entry may have

different attributes. A return (exp) statement will cause the expression

to be converted to the correct type determined dynamically by the entry

used to enter the procedure. This feature has always existed in PL/l

but was not correctly implemented in EPL.

Reference Qualification

References to elements of structures do not need to be fully qualified,

they need only be sufficiently qualified to make them unique according

to the rules of PL/l.

References to based items do not have to be explicitly pointer qualified

if the based attribute used to declare the item provides a pointer,

i.e., based(p). Note also that it is no longer necessary to provide

the pointer in the based attribute, i.e., based is legal.

Scope Rules

The PL/l compiler obeys the rules of the PL/l language with regard to

the scope of declarations. Declarations do not have to precede their

use as 1s the case in EPL. The compiler also obeys all PL/1 rules

related to the establishment of default declarations and.attributes.

-4-

The compiler produc~s a storage map which shows all declaratfons of

identifiers and lists the attributes either declared or assumed for each.

declaration. Declarations established contextually a~e listed separately

to provide the programmer a quick method of checking for missing declare

statements or mis-spelled identifiers.

IMPLEMENTATION STBATEGIES

Areument Passine

All arguments passed by PL/1 calls are passed directly. This means that

the pointers which constitute the argument list of the Multics call always

point directly to the data. Specifiers and dope are never used. This direct

passing of arguments means that all types of arguments are passed as

efficiently as arithmetic scalars are passed by EPL.

If a parameter 1s declared to have* bounds or lengths, then the calling

sequence must include argument descriptors which supply the missing size

data. PL/1 argument descriptors are an extension of the Multics standard

argument descriptors described in BD.7.02. The PL/1 compiler allows the

programmer to control the creation of argument descriptors through the

use of the entry attribute. If the PL/1 programmer always completely

declares every entry he calls, then argument descriptors will only be

created when they are actually needed. This means that PL/1 calls are

as simple and efficient as they could be in any language using the Multics

standard call.

Accessine of Data

PL/1 object code addresses all data, including members of adjustable

aggregates, directly through the use of effici~nt in-line code. If the

. -5-.

address 9f the data is constant, it is computed at col)lpile time. If it

is a mixture of constant and variable terms, the constant terms are

combined at compile time. Dope and specifiers are never used to address

or allocate data. They do not exist in PL/1 object programs.

String Operations

All string operations are done by in-line code or by "tsb" type

subroutinized code. No descriptors or calls are produced for string

operations. The substr builtin function is implemented as a part of the

normal addressing code and is therefore extremely efficient.

String Temporaries

Str.ing temporaries or dummies are designed in such a way that they

appear to be both a varying and a non-varying string. This means that

the programmer does not need to be concerned with ·whether a string expression

IS varying or non-varying when he uses such an expression as an argument.

All string temporaries are stored in the stack. The ·stack is extended

during the execution of each statement by the amount necessary to hold

the temporaries of that statement. The allocate and free machinery is

never employed for string processing.

Varying Strings

The PL/1 implementation of varying strings uses a new data format which

consists of an integer followed by a non-varying string whose length is

the declared maximum of the varying string.

-6-

The integer Is used to hold the current SIZe of the string In bit9 or

characters.

Using this new data format, operations on varying strings are just as

efficient as operations on non-varying strjngs. No epilogue is needed to

free automatic varying strings. PL/1 will never create an. epilogue

for any reason.

On Conditions

On conditions,including the condition prefix,are implemented by PL/1 in

a very efficient manner which uses the stack ~ather than the Multics

condition machinery. This use of the stack means that as long as the

programmer wishes the scope of an enabled condition to be within his own

ring or set of programs he need not use the Multics machinery. If he

wishes the effects of the Mu1 tics machinery, he must call it directly.

Label Variables

The PL/1 compiler implements and believes the label (x,y ..) form of the

label attribute. If all of the identifiers in the label list appear as

labels in the same block as the declaration, then the label variable will

be assumed to have only values from that block.

This means that all transfers to this label variable which occur In this

block will transfer to the text segment location without trying to pop

the stack via the unwinder.

The label () attribute should be used to replace the initialize label

array of EPL. It has the advantage of being a general purpose variable

which followes all the rules of the language.

-7-

Label variables may be initialized by an initial attribute or by the

·use of the following form:

del lab(J) label;

lab(1):

lab(2):

lab(3):

General Features

The PL/1 compiler obeys the rules of the PL/1 language as defined by

Y33-6003-0. It behaves in a consistent and defined manner for all

legal programs. The use of features which are not yet implemented or

which are temporarily restricted will result in a meaningful diagnostic.

The compiler can produce approximately 350 umque diagnostics. It will

also optionally produce a complete list of all symbols used 1n the

program with all of their declared and derived attributes. Items which

have not beeh declared by a declare statement or by use as labels will

be l_isted separately.

Object Code Efficiency

The PL/1 compiler performs a great deal of analysis at compile time in

an attempt to produce efficient code for all language features. The

notion of an ''efficient subset" which has developed out of experience.

with the EPL implementation is not valid for the PL/1 implementation.

Certain constructs are more efficient than others but there exists no

sharp division between efficient and inefficient features. This phenomenon

of EPL is due primarily to the use of dope, specifiers, allocate, free,

epilogue, etc. for all but a li~ited set of cases. The PL/1 compiler

-8-

does a good job with all language features. The user is urged to expand

his coding style to take full advantage of the language. A programmer's

guide to efficient PL/1 object code will be published at a later date.

The Object Code Design

The compiler develops a complete expansion of the program In terms of

its internal representation. In this process all accessing operations

are brought out to the same level as user written explicit computations.

A future version of the compiler will perform general optimization over

this expanded code eliminating common subexpressions and removing code

from loops. The internal representation is translated by the code

generator into a set of macros which are expanded into 645 instructions

in'such a way as to make the text segment as short as possible. Extensive

use is made of out of line sequences transferred to via "tsb" type

instructions. This strategy results in the subroutinization of invariant

,~~~~ code and the reduction of page faults, while retaining most advantages

of in line code.

The code generator produces text, link and symbol segments directly.

An assembly-like listing is also optionally produced.

SUMMARY OF PL/1 FEATURES

1. Epilogues are never created.

2. Varying strings. are implemented just as efficiently as non-varying

strings.

J. Dope and specifiers are never created.

4· All arguments are passed as efficiently as EPL passes arithmetic

scalars.

5· String temporaries are designed to appear as both varying and

non-varying strings.

6. No calls are used to implem.ent string operators. The substr builtin function

1s expanded into normal accessing code and is therefore very efficient.

7. The compiler obeys t.he rules of the language as defined by Y33-6003-0.

· It issues diagnostics and provides other useful information about the

program being compiled.

8. The object code is very efficient and makes heavy use of out of line

"tsb" subroutines located in an This slrategy

reduces the number of page faults Increase the execution

time by any significant amount.
'? -. - __s..,.... ...

~..,,.'f

APPENDIX 1

LANGUAGE fEATURES NOT IMPLEMENTED .IN THE FI~ST VERSION OF THE PL/1 COMPILER

1. All. input/output features including all related statements,

.declarations, on conditions and builtin functions.

2. Sterling data and pictured data.

3; Tasking- all related options, declarations, on conditions and

builtin functions.

4. Scaled fixed point arithmetic.

5. Complex arithmetic.

6. Precision controlled arithmetic.

7. Decimal arithmetic is implemented as binary with the appropriate

conversion of the declared prec1s1on.

8. Controlled storage class.·

9. The attributes: defined, position, like, cell, generic.

10. Conversion between character string and arithmetic and between

arithmetic and character string.

11. Aggregate expressions and array cross sections.

12. Check and s1ze condition prefix.

13. Some builtin functions are omitted but the EPL subset is avaifable.

14. Division of fixed point values must be done using the divide function.

15. Prologue dependencies are not resolved. Values available upon

e~try to a block ~o not include values declared as automatic jn

that block.

