
COMPATIBILITY CONSIDERATIONS OF THE PL/1 IMPLEMENTATION

G0081 1/20/69
R. FREIBURGHOUSE

Considerable interest has been expressed concerning the extent to which

the implementation of PL/1 is compatible with the implementation of EPL

and related Multics standards. This document is an attempt to satisfy

this interest and at the same time to explain certain aspects of t~e PL/1

implementation. The companion document titled "SIGNIFICANT FEATURES OF

MULTICS PL/1 11 describes more completely the advantages. of the PL/1

implementation.

The issue of compatibility should be separated into two areas of discussion.

Syntactic differences in the two languages represent one type of incompatibility.

lmpJementation differences which affect the semantics of the language are

a second type of incompatibility. Our aiscussion considers both of these

areas of difference.

1. Syntactic Incompatibility

The evolution of the PL/1 language has resulted In considerable

improvement in the language and has also made previous definitions of

the language obsolete in the sense that they are no longer subsets

of the current language.

The language of the Multics PL/1 implementation is defined by IBM

publication YJJ-6003-0. A number of features (listed in Appendix 1)

are not ~mplemented in the initial compiler. Certain more exotic

features (tasking, sterling data, etc.) will never be implemented. A

more precise description of the implemented language will be available

at a later date.

-2-

Conversion of an EPL Proeram to a PL/1 Proeram

A Multics command will be a~ailable which will. process an EPL program

issuring warnings of syntactic imcompatibilities. It is expected that

the programmer will make the indicated modifications to his program.

The number of syntactic imcompatibil ities 1s reasonably small and is

given in Appendix 2 of this document.

2. Implementation Strateeies and the extent of Semantic Incompatibility

ThE? PL/1 implementation differs from the EPL implementation in several

aspects. The use of new strategies 1n these areas was deemed necessary

in order to achieve a higher degree of object program efficiency. The

. PL/1 implementation of varying strings, on conditions, and argument

descriptors differs from EPL's implementation of these features.

2.1 ON-Conditions

ON conditions are less important than the other two areas so we will

dispense with them first. The PL/1 implementation of the condition

prefix and on-unit enabling uses the main stack. It is done 1n such a

way as to make these features extremely efficient (there are no

epilogues and no enabling calls i~ the prologue). However, th~ s9ope of

an enabled on-unit is limited to the ring in .which it was enabled. If

a PL/1 programmer wishes to invoke the Multics signalling machinery~ he

must use explicit calls to that machinery. Signalling across rings can

be easily done by the appropriate use of both the system machinery and

the PL/1 implementation. A detailed explanation of this mechanism

will be available at a later date.

-3-

2.2 Var~it;l_g Strings

The PL/1 implementation of varying strings incorporates two new

data types (521 and 522).

PL/1 varying

PL/1 varying

bit string (521)

I
' I -~-___..!

current SIZe declared maximum
in bits SIZe in bits
integer (35)

character string (522)

________ !
~ '-------~r-------~

current size
in characters
integer (35)

declared maximum
size in characters

Note: The amount of storage allocated to a varying string is always

an integral number of words. The address 9f a varying string

1s the address of the data. T~e address of the current size

1s the address of the data minus one.

This implementation has the following advantages:

1. No epilogue is needed to de-allocate automatic varying strings

or string temporaries.

2. This design allows string temporaries to be created in such a way

as to appear to be either varying or non-varying strings.

J. Operations on varying strings are just as efficient as operations

on non-varying strings.

4. No specifiers or dope are needed to.operate on the data. The

declared size is available to the program from the declaration.

The current size and data are addressable with a single pointer:

-4-

The pr1mary dis~dvantage of this implementation is that the· new data

types are not acceptable to EPL nor are EPL style varying_ strings

acceptable to PL/1. Users are urged to switch to PL/1 and use ~arying

strings rather than adopt some other strategy. A second and intrinsic

disadvantage of this implementation stems from the fact that it

allocates the declared maximum amount ·of storage.

2.3 The PL/1 Call Interface

The call i·ng sequence produced by the PL/ I campi ler wi 11 be the Mul tics

standard call as described in BD.?.02 with one minor modification.

BD.?.02 states that the right half of the first word of the argument

list will be 0 for calls between external procedures and 2 for calls

·to internal procedures. PL/1 will use the codes 4 and 8 to indicate

these same conditions.

For the purpose of argument compatibility, it is essential for PL/1

and EPL to know whether or not they are being called from a PL/1

procedure or from an EPL (or EPL like) procedure. The use of the new

codes (4 and 8) serve this purpose.

2.3.1 Arguments

The argument pointers of the PL/1 call will point directly to ~he

value of the argument. All arguments are directly addressed including

those which do not begin on a word boundary. If the data do~s not begin

on a word boundary the pointer will refer to the first word which

contains the data. The pointer will contain the bit offset necessary

to address the data. The data types of PL/1 are listed 1n Appendix 3

of this document.

-5-

The format of a pointer 1s that of a 645 ITS pa1r with a possibly

empty bit field located 1n the second word. No incompatibility ·is

introduced because of the presence of this bit field.

2.3.2 Argument Descri~tors

The PL/1 implementation of strings and the design of the compiler has

eliminated the need for argument descr.iptors except when a parameter

was declared with an *extent. The only· conditions which will cause

the PL/1 compiler to produce descriptors are:

1. The parameters of the entry have not been described through

the use of an entry (<description>) attribute in the calling

program.

2. An entry (<description>) attribute has been specified in the

calling program but one or more of the parameter descriptions

contain an * extent.

The design of the compiler, the definition of new string types, and

the use of argument descriptors has enabled the compiler to eliminate

all dope and specifiers and achieve the following design objectives:

1. All data, including members of adjustable aggregates, is addressed

directly by efficient in-line code. If the address 1s constant

it is computed at compile time. If it is a mixture of constant

and variable terms the constant terms are combined at compile

time.

2. Substr 1s always done in-line as a part of the normal addressing

fund ion.

.-6-

3. All string operations are done by in-line code or b~ "tsb"

type subroutinized ·code. No descriptors or calls are produced

for any string operation.

4. Epilogues are never created.

2.3.4 Descriptor Formats

Descriptors are used to implement the ~~extent feature of the PL/1

language. They will also serve to allow argument compatibility

b~tween PL/1 and EPL and will implement the call back feature. The

design of the descriptors is an extension of the design given in

BD.?.02 and is compatible with it. The descriptor pointers will refer

to ar~umen\ descriptors of the following forms:

Basic Descriptor

0 17 20 35

'"'----..... -----.J '-......,-/
data_ type read

write
code

SIZe

All arguments (scalars or aggregates) will have a basic descriptor of

this form.· The size field is defined only for strings and areas.

It represents the declared size in bits, characters, or words. The

read/write code is used to indicate whether the.argument is a read/only

or a return argument. If the argument is a temporary (PL/1 dummy)

the code will be 1 otherwise it will be 2.

-7-

Arra'l Descriptor

If the data type of the basic descriptor 1s that of an array the basi~

descriptor will be followed by an array descriptor of the following form:

Structure Descriptor

'low bound n

high bound n

mu 1 tip 1 i er n !

low bound 1

high bound 1

multiplier 1

If the data type of the basic descriptor is that of a structure or

array of structures, the basic descriptor or array descriptor is followed

by descriptors of each element of the structure. The relative position

of an element descriptor is the same as the relative position of the

data it describes. Appendix 3 gives the complete·list of PL/1

data types.

2.4 Argument Compatibility between PL/1 and EPL

The previous discussion may have created the impression that EPL and

PL/1 are quite incompatible because of differences in the use of dope

specifiers and descriptors. Th'is is not the case since all Mult.ics

standard data types (except varying strings) can be passed betw~en

PL/1 and EPL or between EPL and PL/1.

-8-

The PL/1 entry Is sensitive to the kind of call it is· receiving.

When called by EPL (or an EPL like call) it will map EPL specifiers

and. dope into its own desired form •. In this way all the Multics

standard data types, except long and sho~t varying strings, can be

passed to PL/1 programs.

In the near future the EPL compiler will be modified so that its

object programs will recognize a PL/1 call and will map the PL/1

descriptors into s~ecifiers and dope. Varying strings Will not be

mapped. Note that the PL/1 call must include descriptors·for this

mapping to occur.

Arguments passed between PL/1 and EPL or between EPL and PL/1 through

the use of external static or the use of based declarations in the

called program may contain any PL/1 data types except varying strings.

A more complete discussion of the use of PL/1 and a description of the

process of converting an EPL program into a PL/1 program will be

available at a later date.

Summary of Legal Argument~Types

Calls between PL/1 and EPL or between EPL and PL/1 may include arguments

which are:

1. arithmetic scalars

2. pointers

.3. labels

4. non-varying strings

5. entry variables

6~ 1 dimensional arr~ys of items 1 to 4

-9-

these calls may not include:

1. structures

2. multi-dimensional arrays

J. areas

4. vary1ng strings

The Use of the Validate Option

The validate option of PL/1 and EPL can be used to perform argument

mapping between PL/1 and EPL procedures. This device provides for

nearly complete argument compatability. A detailed discussion of

this feature will be available in future documentation.

APPEND I X 1

LANGUAGE FEATURES NOT IMPLEMENTED IN THE FIRST VERSION OF THE PL/1 COMPILER

1. All input/output feat~res including all related statements,

declarations, on c?nditions and builtin functions.

2. Sterling data and pictured data.

3. Tasking -all related options, declarations, on conditions and

builtin functions.

4. Scaled fixed point arithmetic.

5. Complex arithmetic.

6. Precision controlled arithmetic.

? .. Decimal arithmetic is implemented as binary with the appropriate

convers1on of the declared prec1s1on.

8. Controlled storage class.

9. The attributes: defined, position, like, cell~ generic.

10. Conversion between character string and arithmetic and between

arithmetic and character string.

11. Aggregate expressions and array cross sections.

12. Check and s1ze condition prefix.

13. Some builtin functions are omitted but the EPL subset 1s available.

14. Division of fixed point values must be done us1ng the divide function.

15. Prologue dependencies are not resolved. Values available upon

entry to a block do not include values declared as automatic in

that block.

APPENDIX 2

SYNTACTIC DIFFERENCES BETWEEN PL/ I AND EPL

1. EPL 'allows expressions to specify the extents of a parameter. "PL/1

allows only constants or asterisk. Replace all expressions with *·

2. If the return value of a function is to be specified in the declaration

of that function, those attributes must be enclosed in a returns ()

attribute. EPL allows this form but also allows these attributes

to be written anywhere.

J, The default packing rules for th~ two languages are different. An

EPL structure-which would not be packed under EPL rules must be

declared aligned to achieve the same result.

4. The precision of a default bit to fixed point conversion 1n PL/1

is always 71. In EPL the precision is 63 when the length of the

string 1s not a constant, and is the length of the string when the

string s1ze is a c~nstant.

5. The extents specified for the return value on an entry or procedure

statement must be constant. An asterisk will work but will cause a

diagnostic since it is not legal PL/1. EPL allows anything to be

given for an extent.

. '

APPENDIX 2 (continued)

7. EPL does not diagnose the use of an * extent specified for a non

parameter string. This unfortunate circumstance has led to some gross

language violations on the part of many EPL users. This device has

mainly been used in conjunction with a routine cv-string to enable a

varying string to be referenced as if it were a non~varying string. The

use of substr is the proper way to achieve the same effect. The

PL/1 implementation of substr is extremely efficient and thus should

be used for this case.

8. PL/1 will not implement the divide operator for fixed point data.

The divide function must be used to divide fixed-point values.

EPL produces a floating-point result for fixed-point division.

. --
APPEND I X 3

DATA TYPE CODES USED IN PL/1 DESCRIPTORS

1 single precision real integer

2 double precision real integer

3 single precision real floating-point

4 double precision real floating-point

5 single precision complex integ~r (2 words)

6 double .precision complex integer (4 words)

7 single precision complex floating-point (2 words)

8 double precision complex floating-point (4 words)

13

14

15

16

17-24

29-31

514

518

519

520

5.21

5;22

5;23

5:24

5:25

5:26

5:~7

5~~8

pointer data

offset data
.
label data

entry data

arrays of types 1-8

arrays of types 13-15

structure

area

bit string

character string

varying bit string

varying character string

array of structures

array of areas

array of bit strings

array of character strings

array of varying bit strings

array of varying character strings

data types which are

not Multics standard

