
DATE: 

rro: 

FROM: 

SUBJECT: 

G0102 

JULY 29, 1971 

GOO DISTRIBUTION 

D. R. VINOGRAD 

WHAT'S A SYSTEM TO DO? - ASSURING SYSTEM 
DATA INTEGRITY 

The attached paper entitled 11What's a System to do? -
Assuring System Data Integrity,. is to be presented at 
the IEEE Conference which will be held in Boston on 
September 22-24, 1971. 

/11 

~'~ y 
;J._. I L<~s 

~s 



G0102 

WHAT'S A SYSTEM TO DO? - ASSURING SYSTEM DATA INTEGRITY 
David R. Vinograd 

Cambridge Information Systems laboratory 
Honeywell Information Systems, Incorporated 

575 Technology Square 
.Cambridge, Massachusetts 02139 

Sulllllar)~ 

Mu~,tics, a multiple access computer system, 
has employed various software approaches to meet 
its reliability goals. These approaches 
includE! a comprehensive system protection scheme 
and thE! on-1 ine redonstruction of system data 
bases ~rhen errors are detected. Considerable 
attention has been paid to system failure 
recovet·y methods which preserve system data 
integrity. 

Multics1•2is a multi-user remote access 
system being developed jointly by Project MAC of 
Massachusetts Institute of Technology and 
Cambri clge Information Sys terns laboratory of 
Honeywe·ll Information Systems, Incorporated. 
The system is implemented in the Pl/I language. 
Multi cs pro vi des, for its users, a vi rtua 1 
memory within which exists a tree-structured 
directory hierarchy. The virtual rr.emory imple
mentation is supported through both paging and 
segmentation.3 System protection is provided 
by an c1ccess control scheme based on concentric 
rings of descending authority complemented by 
control of individual file access. 

Mu'!tics is designed to be a computer utility 
and is presently providing daily round-the-clo"ck 
service to the MIT coll"munity. Its reliability 
must be such that 24-hour operation is standard. 
Adminhtrative functions, such as billing and 
user n!gistration must be operational in an on
line environment as must all system services 
such a!: automatic file backup, wHere, independent 
of the user, copies of his most recently modified 
files Hre periodically written onto tape. 
Repair of minor system bugs and program~ing 
deficil!ncies must also be possible without an 
interruption of service. 

In general, the Multics system has attempted 
to pre•tent, anticipate, and recover from as many 
errors as possible, without imposing any severe 
constNints on its users. The design goals were 
as follows: 

(1) Th·~ system should recover from the loss of 
data i11 a manner which does not disrupt any user 
initiated task. 

(2) If the above is not possible then the system 
should recover in a manner which is not damaging 
to continued system operation. 

(3) If the above is not possible then the system 
must b'~ capable of being restarted with a low 
data l1lSS in a short time period. 

1 -

Within the bounds imposed by the above rules, 
it was recognized that system reliability and 
performance do interact and the trade-offs must 
be considered. Further, a system implementation 
strategy has been to deal with those error 
conditions which most often occur or have the 
greatest severity, before attemoting to 
solve those errors whic~ seldom happen. 

A major Multics design problem was to prevent 
unauthorized access ·to both system and user 
files. A user's identity is verified ~1hen he 
logs in. Once logged in the user cannot be 
allowed to reference a file to which he has not 
been given access. Control of user access to a 
file is specified by user name and can be 
manipulated by the user if he has the proper 
permissio~. The user can specify read, write, 
or execute permission or a combination of these 
attributes for such other users as he desires. 
The system specifies user access to system 
library data and procedures via the same mechan
ism. A result of the virtual memory 
implementation is that file ·a·ccess can be 
enforced by the hardware and is checked during 
each memory reference. 

To protect the system from the user, the 
system operates in a ring other tha~ that of the 
user. When the user makes a request of the 
system he is switched to a ring of higher 
authority, the system's ring. The points of 
entry into this ring of higher authority are 
completely defined and access to them is 
controlled. The act of ring switching invokes 
the mechanism of argument vali~ation. Arguments 
supplied by user programs to system procedures 
are checked as to access, type and number. 
Hhere information is to be returned, user access 
to the return area is also checked. The system 
also uses the access control mechanism to protect 
itself from itself, (i.e., from buggy code or 
hard1~are malfunction). System data and 
procedures have only as much access as they 
require for operational purposes, and should an 
error occur inadvertant modification will be 
trapped by the hardware before any damage is done. 

It is an inescapable fact of large system 
operation that errors will occur; their occurrence 
must be anticipated. When an error does occur 
the data loss can be minimized by good design of 
both data bases and procedures that manipulate 
them. Multics has used this design approach as 
described below. 

To protect one user from another, data bases 
in the system have been decentralized on a per
user basis wherever feasible. These data bases 

- 2 -



exist in disjoint address spaces and the 
invalidation of one, while affecting its user, 
does no harm to the other users of the system. 
Where this decentralization was not feasible, 
such as ·system data bases, the data bases have 
been designed to serve very specific functions; 
such as I/0 terminal buffers. Management of 
each type of data base is centralized to one 
procedure as much as possible. This is done 
both tc aid system debugging and to insure 
_system control over the data base contents. 

Where a data base is shared and may be 
modified by more than one user at a time, a lock
ing str·ategy must be used. In Multics, locks 
can be either read or write locks. If the 
system desires to read a data base it must first 
lock it. If writing is desired a further 
indicator is set. Thus, as long as the lock is 
not sH in the 'write' mode then the data is 
assumed to be consistent. To further control 
system access, some data bases are set to hard
ware rt!ad access until they are locked. 

In any large and complex computer operation, 
hard1-1are failures will occur. In many cases, 
Multics can recover gracefully. For example, 
I/0 errors on secondary storage are retried 
while .nalfunctioning I/0 terminals are dis
connected. !-:emory parity errors and other 
hard11are faults are also usually recoverable, 
In the case of such hardi'Jare errors the system 
operat~r is informed about the occurrence of the 
error and the state of the machine at the time 
the error \'/as detected. User-caused "errors" 
such as illegal machine operations are reported 
directly to the user on his console with · 
appropriate supplementary information. 

Any errors 1-1hich occur l'lhile operating in the 
system's ring within the Multics supervisor are 
of a much more critical nature than those which 
occur in the user's ring. System data bases 
must be intact and consistent before control can 
be returned to the user's ring. Vihen an error is 
detected a PL/I condition is signalled and the 
handler for the condition is invoked. This 
handler can then verify the consistency of any 
locked system data bases and take appropriate 
action. If the data base is only read-locked 
it can be unlocked. If the data base is write
locked then it must be checked for consistency. 
This 'checkout' is referred to as "salvaging". 
For example, the on-line directory "salvager" is 
invoked to rebuild inconsistent directory data 
bases ~efore control is returned to the user's 
ring. A similar scheme is used by the 
proced~res that allocate remote access terminal 
buffer; and the technique \'Jill be extended to 
other ;ystem data base managers as the need 
de vel o ~s. 

Certain types of system errors are extremely 
diffic·Jlt to recover from and usually cause 
system failure. In this event, the system must 
be restarted with minimum information loss. If 
the inFormation in main core can be updated into 
second,l.ry storage then data consistency is 

- 3 -

preserved and no further work need be done. 
If this cannot be accomplished then a free
standing "salvager" subsystem is used. This 
salvager has two main functions. First, it 
performs consistency checks on Multics 
directories, rebuilding them when necessary. 
Second, it validates the secondary storage 
assignment for each file. The salvager views 
the entire Multics directory hierarchy as 
questionable data and is capable of rebuilding 
from incomplete information a new consistent 
directory and replacing the older copy. 

Should the salvager be unable to completely 
restore the integrity of the directory hierarchy 
and its contents, the lost information can be 
recovered from tapes created by the automatic 
file backup facility. This background service, 
which is invisible to the user, periodically 
scans the directory hierarchy for modified files 
and writes a copy onto tape. Less frequently, 
all files in the directory hierarchy are copied 
onto tape. 

Multics employs other techniques to minimize 
service interruptions. The system is capable of 
dynamic reconfi gurati on of processors, memory 
and I/0 channels without service interruptions. 
Thus, maintenance and repair of various pieces 
of hard1'1are c"an be completed off-line without the 
user being al'lare of the change. This feature 
also allOI'IS the system operator to selectively 
remove a hardware module that is failing. The 
system's hardware clock also provides an alarm 
clock facility. When the alarm goes off an 
interrupt is generated. The alarm feature is 
used by I/0 software as a 'time-out' to restart 
I/0 traffic should a peripheral interrupt get 
lost. 

Multics is still under development but is 
daily proving itself as a service within the MIT 
user community. Its availability at all hours, 
day in, day out, is due to a great extent to the 
techniques outlined here and efforts to improve 
system reliability are continuing. 

References: 
1) Corbato, F.J. and Vyssotsky, V.A. 
"Introduction and Overview of the Multics System" 
AFIPS Conf.Proc.27 (1965 FJCC) 
Spartan Books,Washington,D.C.l967, pp 185-196 
2) r•lultics Progran~mers' Manual, Revision #7 
Copyright 1969, 1970, 1971 
Massachusetts Institute of Technology 
3) Bensoussan, A, Clingen, C.T. and Daley. R.C. 
"The Multics Virtual lv.emory'' 
ACM Second Symposium on Operating System 
Principles, October 20-22, 1969 
Princeton University pp 30-42 
4) Graham. R.M. 
"Protection in an Information Processing Utility" 
Comm. ACM 11~ 5(May 1968) 365-369 

- 4 -

1-

r 


