
TO: Multics Repository 

FROM: J. H. Saltzer 

SUBJ: Character Handling and PL/I 

DATE: June 30, 1966 

M0070 

In recent weeks much debate has occurred on. the subject 
of character handling in the PL/I lanauage, and on the 
relationship between PL/I, the ASCII character set, and 
the canonical form for ASCII character streams described 
in MSPM section BC.2.02. This memo is intended to summarize 
the basic issues involved and to offer a proposal for 
salvaging as much as practical from an awkward set of 
constraints. It is a result of conversations with many 
people, including M. D. Mcilroy, R. Morris, V. Vyssotsky, 
F. J. Corbato, E. L. Glaser, R. M. Graham, and A. Evans. 

The PL II 1 anguage inc 1 udes a data type known as "character 
string" and a set of conventions for operators, literals, 
and built-in functions to manipulate this data type. 
Allocation of space for this data type, and certain of 
the built-in functions, are based upon simple character 
counts. 

In the simplest possible interpretation of character strings, 
they are merely strings of 9-bit entities, with no knowledge 
of or interest in their contents. At present, this inter
pretation is used in the EPL compiler. This simple inter
pretation, while adequate in the absence of control characters, 
leaves some deficiencies when a character set with control 
characters is used. Two examples can serve to illustrate 
the types of problems encountered. First, consider the 
character string "A - d9/dt'' in which the "theta" is con
structed of a capital "O'' overstruck 'J'Jith a minus sign. 
Considering 9-bit characters as independent entities, 
the question "how many minus signs does this string contain" 
has the answer "two". The user who wishes to consider 
the second minus sign to be part of a theta" rather than 

·a minus sign must explicitly program a check for a backspace 
character on each side of each potential minus sign. 
From this example, it is clear that there are users who 
need the ability to consider a "print position" (from 
BC.2.02) as an entity, rather than a 9-bit character. 

A second example concerns input and output format statements. 
Suppose that the programmer is writing out tabular data 
consisting of character strings followed by integers, 
using a format such as "A10, X3, IS", expecting his character 



PAGE 2 

strings to begin in column 1 of the page, and his integers 
to be in columns 14-18. If one of the character strings 
happens to contain an overstruck character, the integer 
on that line will be printed two columns to the left of 
where he expected. Even if the programmer realizes that 
some of his character strings might contain overstrikes, 
he is hard put to find a way to program past this problem. 

A further complication introduced by the simple interpretation 
of character data by PL/1 is that by use of the concatenation 
operator one can very readily construct strings which 
are not in canonical form. 

Solutions 

With this background, then, there have been proposed at 
least three different ways of handling canonical streams 
in PL/I programs. 

1. Create a new data type, perhaps named "Print Position 
String 11 , in \-Jhich the object of manipulation is the 
print position. 

2. Re-interpret the character data type so that wherever 
the term "character" appears the term "print position" 
is understood. 

3. Using the simple interpretation of character strings, 
add a list of subroutines to the library to replace 
the PL/1 built-in functions when working with canonical 
streams which may contain control characters. This 
proposal has roughly the effect of implementing the 
first proposal 11outside of the language." 

The first two proposals, while attractive, cost an obvious 
price in lost compatibility with other PL/1 compilers. 
They also have a more fundamental shortcoming, namely 
that the operations which are appropriate for a print 
position data type are far from obvious; one can only 
say with some certainty that the PL/1 character manipulation 
operations are not adequate for dealing with print positions . 

. For example, the built-in function "length" is not immediately 
useful in counting print positions if a character string 
consists of more than one line. 

It is therefore suggested here that the third alternative 
be followed, and that a minor change to the canonical 
form be made so that a minimum of special concern is required 
of the programmer not using control characters. The remainder 
of this memo describes 1) changes to canonical form, and 



PAGE 3 

2) a suggested list of library subroutines needed to handle 
canonical strings as a sequence of print positions rather 
than a sequence of characters. 

Relative Tabulate Characters 

MSPM Section BC.2.01 originally proposed that horizontal 
blank space be represented in the canonical form exclusively 
by a Relative Horizontal Tabulate charater 1 consisting 
of a special ASCII control character~ followed by a space 
count. The reasons for this proposal were two-fold: 

1. To permit trivial comparison of tltJO strings ltJhich 
differ only in the amount of space appearing between 
two graphics. (.~j,nd thus to encourage the notion 
that typed-in horizontal space is simply horizontal 
space~ no matter how much of it a sloppy typist uses.) 

2. To provide a measure of code compression by replacing 
repeated blanks with a two-character entity. 

While these objectives are still valid 1 a number of problems 
arise if ordinary PL/I character-string operators are 
used on strings containing blank space represented by 
relative horizontal tabs: 

1. The single space is represented by a ''space 11 character 
rather than RHT 1. A user dealing with the raw characters 
will observe this singularity. 

2. In order to analyze a string of characters with the 
PL/1 string operators~ it is necessary to do some 
extra work. Two approaches are either to 11 decanonicalize 11 

the string by having a subroutine replace RHT's with 
blanks, or use 11 UNSPEC 11 or misi-matched declarations 
across calls to analyze the relative tabs. 

The decanonicalizer would probably result in files being 
written into the file system containing blanks as well 
as RHT's. Analysis of RHT's by subroutine requires quite 
a bit of extra effort by the routine programmer. Without 

. going to a third alternative of completely abandoning 
PL/1 built-in character operations as 11 implementation 
dependent 11 , the simplest approach is to instead abandon 
the relative horizontal tab. For similar reasons, the 
relative vertical tab is also abandoned. 

Horizontal space is then represented in the canonical 
form by the appropriate number of 11 space 11 characters~ 
vertical space by the appropriate number of 11 New Line 11 

characters. 



PAGE 4 

Canonical String Manipulation Subroutines 

The following subroutines are suggested as a starting 
point for a .complete library of operators for canonical 
strings. The fundamental unit of manipulation is the 
print position, as defined in BC.2.02. Except for the 
first subroutine, it is assumed that all argument strings 
are canon ica 1. 

1. Canonicalizer 

y = canonicalize (a) 

The value of canonicalize is a varying string equal 
to the result of converting the strin~ s to canonical 
form. (Note that no "decanon ica 1 izer is necessary, 
since a canonical string is a perfectly ordinary 
character string.) 

2. Print Position Extraction 

y = pp_substr (a,n,m) 

The value of pp_substr is a varying string consisting 
of the nth through the (n+m-1)th print positions 
of the canonical string S• Note that the result 
of pp_substr is a canonical string. Consider, for 
example, the canoRical string x = "a(HLR)256(HLF) 11 

(representing a ~s) the result of pp_substr(x,3,1) 
would be "<HLR)S<HLF)". 

3. Print Position Inserter 

call pp_subst (y,a,n,m) 

The string y is substituted into the string 2 in the nth 
through (n+m-1)th print positions of 2· 

4. Print position counter 

k = pp_length (a,j) 

The value of pp_length is the number of print positions 
in the jth line of the string 2· 

s. Line counter 

k = line_count(a) 

The value of line count is the number of complete 
lines in the string a. The string 11abc 11 is zero 



PAGE 5 

1 ines; the string "abc(NL)" is one 1 ine. The string 
11abc<NL)def 11 is sti 11 one 1 ine# but "abc(NL)def(NL) 
is two lines. In general, the line count equals 
the number of new line characters in the string. 

6. Check for line fragment 

b = 1ine_fragment(a) 

The value of line_fragment is a 1-bit string with 
value 10 1 b if the string 2 ends with a New Line 
character. Otherwise its value is '1' b. 

7. Line Extractor 

y = line_substr(a,n,m) 

The value of line_subst is a varying string containing 
the nth through the (n+m-l)th lines of the string 
2· 

,..,.. 


