—
’ -

/‘\.

o~

MULTICS STAFF BULLETIN-27

FROM: Mike Spier
TO: MSB Distribution
DATE: March 6, 1972

SUBJECT: The new Standard Object Segment

This is the final iteration on the new Standard Object
Segment format; it has been accepted by all principals and the
intention is to immediately start on its implementation. The
projected work will include modification of the new PL/1
compiler, the ALM assembler, the Binder, as well as all other
language processor currently supported on Multics. Also, all
object segment manipulating tools (such as decode_object_, linker
and prelinker, debug etc.) will be appropriately modified to
handle both current and new object segment formats in an upwards
compatible way.

This new format 1is conditionally accepted as the new
standard for object segments, however its final adoption will be
delayed until it is practically implemented in ALM, V2PL1 and the
Binder, and is demonstratively functional.

Recipients of this document are requested to read it and
submit any comments or criticism within the shortest possible
delay, so as to enable us to catch any bugs or inconsistencies
before work progresses too far.

P

.~

_——

Multics Standard Ohject Segment - March 6, 1972 Paye 1

THE DULIICS SIANRARD QBJECT RROGRAN

fhis document presents a standard format for the Multics
Sbject program to assure its compatibility with the “*ultics
nachina®, the implication being that a piece of code which
succassfully axecutes on the 645 procesSor is not necessarily a
stanjard ttultics object program, and that the concept of
exscytion on the ‘Multics machine’ includes notions of Fruare
recursive re=entrant procedure, atcess control, and Such
functions as dyhamic linking, machine independent diagnostics and
iebugginy, binding atc, This standard relates primarily to the
external interfaces of an object program, the objective being to
leave as much freedom of code generation as rossible to the
langaage procesSors, and to impose a ceftain discirline only in
re3ards to code which interfaces with the external world, It is
assuned that the reader is reasonably familiar with Multics,

certain formats jescribed within this document are identical
to formats foUnd in older non-~standard object programs; othars
are new and thefeforle incompatible with older object ©programs.
Such new formats are apnotated, within this document, with the
synbol (NEW) to allow the reamder more eaSe in relating the
presant standarld to older ones, NeedleSs to say, all such new
formats are upwards compatible and the staniard Service sysStem
tools are coded 1in such a way as ¢to properly handle a3ll
officially recognized object program formats until such time when
the present standari 1is applied to all object programs in the
systam.

The Multics stanjard objeet program is the only tvype of
object program guaranteed to be supported by the Multics standara
service system tools,

Lable 2f Zontenis

1. OVERVIEW
2e DATR STRUCTURES

€.1. The Text Section
2a1s1. The Entry Seguence
2a1s2. The Gate Procedure Entry Vector
24123« The Argument List
2e1s4. The Stack Frame

2;.20 The Deflnition Segtion
2e2sle The Definition Section Heajder

1ultics Standard ObJect Segment =- March 6, 1972

s

&ode

dalis

2alale
dadads
2acale
Calane

The
The
The
The

Pefinition
Expression word
Type Pair
Trap Pair

The LinKage Section

cadals
2434l
20dad.
2adale

The
The
The
The

The Symbol

2alals

2e8a20
daleds
2alalls
2altalds
2a8a60
Raltal,
22448

The
The
The
The
The
The
The

Linkage Section Header
Internal Storage Area
Links

First-Reference Traps

Section

Object Map

Symbol Plock Header

Source Map

Relocation Information

PL/1 Symbol Block (TO BF SUPPLIFD)
ALY Symbol Rlock (TO BE SUPPLTIED)
Binder*’s Symbol Bloeck

Debug’s Symbol Rlock (T0 Bg SUPPLIED)

GENERKATED CODFE

dols

dade

dods

dole

The Text SecCction

dalals
dalsads

The
The

Entry Sequence
Relocation codes

The Defipnition Section
Implicit Definitions

3adale

The LinKage Section

3-&1&1 .
dedats
3adads

The
The
The

The Symbol

3alals

The

Internal Storage
Links

Relocation Codes

Section
Relocation Codes

FINCTIQONAL INTERFACES

od.

Hedo

Dynamic Linkino

Binding

Yaning Conventions

Standard System Tools
Include Files
Subroutines
Commanis

de8a10
daba2e
1als3.

Page 2

P

T

’41-\

Multics Standard ObJect Segment = March 6, 1972 Page 3
1. OVERVIEW

A Multics staniard object program is an executahle
nardvare-level (i,e,, machine code) representation of some higher
languaje algorithm, projuced by the appropriate langusge
erocassor, FhySically, it is a single array of words at the base
of a distinct segment known as an gbiject segment.,

The generated Object code falls into several catesories, the
nost inportant Of which are,

Iext -~ the execUtable machine code representation of the desired
aljorithnm,

pefiaitions ~ sYmbolic information with the aifd of which certain
variables which are 4internal to the object proaram are made
kpown to the external world and accCessible to the dynamic
linking mechahism (the Multics linker),

Links = symboliC representatiom of variaples whose address is
unknown at Complile time, and «cam only he evaluated (i,e.,
resolved 4int0 a machine address by the dyramic linking
mechanism) at execution time,

Symbal Ires - internal definition of Symbolic source language
variables, thelr attributes and relative address within the
object segment; neeied for the execution of 4interpretive code
such as PL/1 Ipput/output as well as for debugoing purposes.

disgarical Infokmation = information describing the circumstances
unier which the object seaoment was created, such as name and
version of lanNguage processor, creation time, identification of
input sourcer, identification of userl who initiated the objact
sejment creation, etc,

Relozation Informatian - which identifies all instances of
internal relative ajdress references,

Riagnostics Aids = information which allows standard system tools
to extract useful information out of an ebject segment,

2bigezt Map - cobtrol information to allow the ‘Multics machine’
(e,g., the linker) apd the Multics standard service system
tools to recognize the structure of the object segment,

The generfated information items listed above are not stored,
intermixad, Within a monolithic object Segment, Rather, the
object segment 1s structured 4into four sgctions. named text,
lafinition, liDkacg ard gymbol. A section is an array of woris,

Moltics Standard ObhJect Seoament - March 6, 1972 Page U

The obJject segment 1s a concatenation of these four sections, in
tha following seguence,

text || definition |} linkaage |1 sympol

the length of all but the last (i,e., Symbol) section must he an
2ven nukber of Words,

The assignMent of any item 0f genefated code to one of the
four secztions 1is decided on the basis of such considerations as
access attributes and efficient resource management, The rnles
of assigament are as follows,

Iext Secztien = <contains only the Pure (non selfmodifying)
eXacutable vrart of the object progfam; that is, instructions
ani read-only conStants, It may also Contain relative pointars
into the definition, linkage and syZbol sections as descrihed
helow,

efiaitisn Segtian - <contains only non-executable read=-only
synhollc information which 4is 4intented for the purrose of
iynaniz linking and symbolic debugging, It is assumed that the
1efinition section will be infrequently referenced (as opposed
to the constanhtly referanced text section); this section is
tharefore not Trecommenjed as a Trepository £for vread=only
constants whiCh are refarenced 3during the execution of the text
section, The definition section may sometimes (as in the case
of an object segMent generated by the Multics Binder) bDe
structured into definition blockss, which are threaded together,

kinkage Segction = contains the impure (i,e,, modified during the
progran’s execution) parts of the program and consists of two
types of data

1) links which are modified at run time by the Multies linker
to contalnp the machine address of external variables,

b) internal storage of the type called "own” 4in ALGOL and
"{nternal static" in PL/1,

synkal Saction - namei so because it was initially designed to
store the language processor‘’s symbol tree, is the repository
of all generated items of information which 40 not belong in
tha first three Sections, The symbol section may typically be
further structured into variable length gsymbol Llogks: stored
contiguously and threaded to form a list, The symbol section
may contain pUre (non=-writable) information only,

During the eXecution of an obJect proogram, the Text,
Definition and Synbol sections are sharable among several
procasses; the linkane section is copied 4into each process’

o~~~

"~

qultics Standard OhJect Seoment = March 6, 1972 Pag» 1

nenory space 8o that sach copy is a per=process data basSe,

tn

be discarded Upon process termination, The original 1linkage

section serveS as a copying template only,

dultics standard Object Segment = March 6, 1972 Padas 6
2e UATA STRUCTURES

This section describes the main data formats and structures
wnich may be encountered withim the four sections of amn object
segmant, Definltions are given in PL/1, Most structures defined
pelow have a “decl_vVers’ {tem, a constant which desionates ¢the
format of the Structure; when the stfucture is modified, so is
the constant, allowing system tools to Jifferentiate hetwesen
concurcent incoMpatible versions of a single structure, Normally,
whenaver the strfucture isg modified, the “‘*decl_vers’ item is
incramentel Dby one, Al] structures as 3efined in this document
have the declaration version number set to the constant °‘1°,
inless otherwise gpecifieqg,

€als The Text Section

The text section ig basically unStructured, containinag the
nachine languaGe Trepresgntation of Some symbolic language
aljgorithm as coMpiled by the appropriate language Processor,

Three (optional) items, however, which may aprear within the
taxt section have stanlard formats, They are a) the entry
sejuance, b) the 645 follow-on gate prfocedure entry veetor, and
) the argument list used in inter-procedure calls,

alal., The EntrY Sequence (NEW)

The entry SeqQuence {s mandatory for executahle object
segmants (as OppoSed tp compiled data bases in object segment
€ormat); there must he an entry sequence for every procedure
entry point. The entry segquence has the following format,
jezlare 1 entrY_seqQuence aligned,

2 symbol_ptr bit(18) unaligned,

2 descriptor hit(1) unaligned,

2 unusei bit(17) upaligned,

2 save_sequence(n) bit(36) aligned;

symbol_ptr = polnter (relative to the base o©f ¢the definition
section) to the symbolic definition of this entrypoint, Thus,
given a pointer t0 an entrypoint, it is possible to reeonstruct
its symbolic Name for purposes such as diagnostics or
jebugging,

iescriptor - set to "1"b if the entry point’s formal definition
(s2e section 2,¢,2) contains descripPtors for the arguments of
this entry point; this information is redundant, duplicated 1in
th2 formal definition,

PLN

-~

’K.

Yultics Standard OhJject Segment = March 6, 1972 Pays 7

fave_sequence = iS an array of g words containing the standard
save saguence code,

02tg?! the value (i,e,, offset within the text section) of the
entrypoint correSponds to the address of the *Save_sequence’
itam. If "ent_offsSet’ is the value of entrypoint "start*, then
the symbol_ptr Pointing to definition "start"” is located at
(ent _offset=1), :

¢alald. The Gate Proceiure Fntry Vector (NEW)

R 645 follOw=on gate procedure can only be entered at the
first g 1locatlons at the bottom of the segrent (i,e.s nffsats
(0)8 through (n=-1)8), where each locCation correspondsg to a
numbarad entryPoint, The validation of the value g is rerformed
by the hariware.

32teg: The folloWing formats relate to structures whose values are
compated at rUn time and allocated in the procedure’s ecurrent
stack frame, They arle nevartheless descCfibed withim this section
because they are logically 4ndivisibly related to the text
section and conStitUte part of the procedure’s current activation
record,

2alad. The Argument List

The argument 1list 4is a structure, (normally) allecated in
the procesdure’s current stack frame, whose value may be computed
at run time., It may have the following format,

daclare 1 arglist aligned,

2 n_ar9s bit(18) unaligned,

2 code bit(18) unaligned,

2 n_deScr bit(18) unaligned,

2 unused bit(18) uvnaligned,

2 arg_ptr(d) prointer,

2 parent_stack_ptr pointer, (OPTIONAL)
2 descr_ptr(p) oointer; (OPTIONAL)

n_arys = a (fixed bin(17)) positive integer vhose value is (2+%p)
whare g is the number of arguments in this list,

coie - a (fixed bin(17)) positive integer whose value has the
iual purpose of a) Yifferenmtiating between an older (Epl)
format and *he presant (PL/1) format of the argument lis¢, and
b) defining whether or not the optional ‘parent_stack_frame’
itam is allocated within the argument 1list, The e¢code can
assumne one Oof the fo2llowing values,

4 «> this is a PL/1 tyoe argument list,
B => this is a PL/1 type argument list featuring an optional
‘parant_stacCk_ptr’,

Multics Standard ObJect Ssoment = March 6, 1972 Page 8

n_iescr - a (f£iXed bin(17)) positive integer whose value is
either zero, indizating ¢that this list contains no ontional
argument descriptors, or (2*p) 4indicating ¢that there are 1
jescriptors cCorresponding ¢to the 0 arguments; descriptor i
corrasponas t0 argument §,

arg_ptr - a rointer (ITS pair) to the hase of a variable,

parent_stack_ptr = optional pointer to the stack frame of 1
nestad proceduUre’s immediate parent,

iascr_ptr = optional pointer to an argument descrivtor,
dala3, The Stack Frame (NEW)

I> BE SUPPLIFD

o~

—

-~

fultics Standard ObJject Segment = March 6, 1972 Page 9

2a2¢ The Definition Section

For histofical reasons, character Strings are repreSenteAd
within the Definition Section in ALM ‘acc’ format which may be
iefined by the tollowing (free style) PL/1 declaration,

jeclare 1 acc,
< char_count bit(9) unaligned,
2 strinag char(char_count) uralioned;

For the purpose of this 4ocument, we shall use the notation °‘char
acc’ t> represenNt an ‘acc’ strina, Note that a) the lenath of
such a3 varying strinc is incorporated within the string, and b)
*acc’ strings ale padjed to the riaght (Wwhaen necessary) with null
characters (000)8,

The Jefinltion section contains a number of data Structures
which are,

2a2sal1., The Definition Section Header

The definition section header resides at the base of the
iefinition section and contains a pointar (relative *o the base
2f the dafinition section) to the beginning cf the definition
list, The definltion 1list 4is a threaded 1list of formal
jefinitions, defining those variables within the object bprogram
which are made known aXternally. The list consists of one or
nore definition blocks, each of which congists of one or more
type-3 3definitions, and zero or more non type=3 definitions (see
below).

1 def_header based(p) aligned,
2 def_list bit(18) unaligned, (NEW)
2 unusej bit(54) vnaligned; (NEw)

jaclare

jef_list - relative pointer to first definitiomn in definition
list.

¢alade The Definition
The f£ormat of a jefinition is as follows,

jazlare 1 definition based(p) aligned,

2 forward_thread bit(18) unaligned,

2 backvard_thread bit(18) unaligned, (NEW)
2 value bit(18) uynalianesd,

2 £lags, (NEW)

3 new_format bit(1) unaligned,

ignore bit(1) unalioned.

entrypoint bit(1) unaligned,

retain hit(1) unaligned,

deScr_sw bhit(1) unalianeil,

wwwWww

yultics sStaniard ObJect Seoament - March 6, 1972 rage 19

3 unUsed bit(10) unaligned,

class bit(3) unaligned, (NEW)

synbol_ptr Lit(18) unaligneds, (NEW)
segname_ptr bit(18) unaligned, (NFW)

n_args hit(18) unaligned, (NEw)
descriptor(n_args) hit(18) unaligned; (YEW)

NN DD

forwar3_tnread = thread (relative to the pase of the definition
section) to the next Jefinition, The thread terrinates when it
points to a A45 word which is all zero, This thread providies a
siagle seauenNtial list of all ¢the definitions within the
jefinition secCtion,

packward _thread = thread (relative to the base of the definition
section) to the precading daefinition, The thread terminares
whan it points to a 645 word which is all zero, Tris threasd
nrovid2s A sSiNgle saacusntial list of 311 the definitions within
tha 1efinition section,

valuz - this is the offset, within the Section designated ty +the
=zlass variabhle, of this symbelic definicion,

flags = 15 binaly indicators to provide aijditional information
about this definition,

new_format ~=> "1"h jefinition has the format descrihed 1in
talis doCument, as distinct £frfom ¢the older definition
formnat,

ignore => "1"b tnis dJdefinition does pot represent an
external symbol and must thefefore be ignored by the
Mayltics linker,

entrypoint => "1"t this is the definition of an entrypoint
({.,essr a variable referenced through a transfer of control
ilastructlion).,

ratain => "1"b this jefinition must not be deleted from ¢the
ohject segment,

descr_sw =2 "1"p this definition includes an array of
argument descriptors (L,e,40 iters ‘n_args* ani
“jescrintor(n_args)’ contain valid information),

class - this field contains a (fixed bin(3)) code which indicates
relative to which section of the obJjezt segment the value is,
as f£follows,
G => text Section
=> linkage section
-> symbol section
=> this symhol is a segment name (NFW)

W N -

svmbol_ptr - rointer (relative to the base of the definition
saction) te an alignead acc string representing the
d2finition’s symbslic name,

saglane_ptr - Pointer (relative to the base of the definition
s2ction) to the first class=3 (see balow) segname definition

_—

.~

Multics Standard ObJect Segment = March 6, 1972 Page 11

of this definition hlock,

g2ke2: the following two 4items may he interpreted only if
Gascr_sw="1"D,

n_args = a Positive fixed bin(17) intecer whose value
corresponds to the number of arguments exrected by tnis
extarnal entrypoint,

descriptor - an array of pointers, relatjve to the bhase of the
taxt section, which point to the descriptors of the
corresponiing entrypoint arauments,

In the caSe of a class-3 definition, which is the segname
healer of a definition block, the ahove structure is interpreted
as follows,

leclare 1 segname based(p) aligned, (NEW)

2 forward_thread bit(18) unaligned,

2 backVard_.thread bit(18) unalignesi,
2 segname_thread bit(18) unaligned,

2 f£lags bit(15) unaligned,

2 class bit(3) unaligned,

2 symbOl_ptr bit(18) unaligned,

2 defblock.ptr bit(18) unaligned;

Segname_thresd = thread (relative to the pase of the definition
section) to the next class~3 definition, The thread terminates
whan it pointS to a 645 word which is all zero, This thread
orovides a SiNgle sequential list of all class=3 definitions.

lefblock_ptr - this thread (relative to the base of the
lefinition section) points to the head of the definition block
associated with this segname, Definition blocks (which are
eacth a list of non class~3 definitions threaded together by the
forwarl_thread) are preceded sequentially (within that thread)
by zero or more class~3 definitiong each of which has its
defblock _ptr pointing to the block’s first non class=3
jefinition,

The end Of a 3efinition block i8S getermined by one of the
£ollowingy conditions (whichever comes firgt),

a) forward_thrfead points to an all zerfo word,

h) the current entry‘s «class is not 3, and forvard_thread
points to a8 class~3 jefinition,

c) the current definition is class~3, and both forward_thread
and defhloCk_ptr point to the game class=-3 definitien,

Figure=-1 illustrates the threading of definition entries,

2alald., The Expression Worj

Myltics Standard Object Segment = March 6, 1972 Page 12

The expresSion word is the item polinted to PY the expression
pointer of an unsnaPped link (see belowv), and has the folloving
structure,

eclare 1 exp_Word based(p) aligned,
2 type_pair_ptr bit(18) unaligned.
2 expression bit(18) unaligned;

type_palr_ptr = pOintér (relative to the pase of the definition
seztion) to the 1ink’s type=-palr,

expression =~ a Signed fixed binary(17) value to be added to the
value (i.,e.» Offset within a segment) of the resolved 1link.

222a4. The Type Pair

The type pair 1is a structure which defines the external
synhol pointed to hY a link,

leclare type_pair based(p) aligned,

1
2 type bit(18) unaligned,

2 trap.ptr bit(18) unaligned,

2 segname_ptr bit(18) urnaligned,

2 entryYname_ptr bit(18) unaligned:

type - this is a f£ixei binary(17) positive integer which may
assune one Of the following values,

1 => this i3 a selfreferencing link (i,e., the segment in which
the exterNal symbol is located is the very object segment
containing this jefinition) of the form
mysalf|O+eXpreSsion,modifiaer

2 => unused (NEW), used to define a nOow obsolete ITB~type 1ink,

3 > this is a 1ink referencing a specified Segment, bhut no
symbolic entryname of the form

segname|O+expression,modifier

4 => this is a link referencing both a symbolic segmentname and
a symbollic entryname, of the form

sagnames$entryname+expression,modifier

5 => this is a selfreferencing 1link having a symbolic
entrynamne, of the form

myselfSentryname+expression,nodifier

trap_ptr = if nOnp=zero then this is a pointer (relative ¢to the
base of the definition gsection) to a trap~pair,

P

Multics Standard QbJect Ssament = March 6, 1972 rage 13

segname_ptr -~ 18 a Pointer to the referencei segment; its value
may be intelpreted in one of two ways, depending on the value
of the type item,

a) f£or types 1 and 5, this item is a fixed binary(17) positive
integer code which may assume one of the following values,
je3zignating the sections of the selfreferencino object segment,

0 »> selfreference to the object’s text section} such a
reference 1s represented symbolically as ‘*textt

1 «> selfreference to the object’'s 1linkage Section; sSuch
refarence 1s represented symbolically as *+*link*

2 => selfreference to the object's symbol section; such
reference 1s represented symbolically as ‘wsymbol’

b) for typeS 3 an3 4, this item is & pointer (relative to the
base of the definition gection) to an aligned ‘acc' string
represantation of the referenced segment’s symbholic name.

antryname_ptr = i8S 38 pointer to the referenced item (i,e,, offset
within the referenced segment)) its value may be intermpreted in
one 2f two waYs, depending on the value of the type item,

a) £or types 1 and 3, this value is ignored and an offset of O
(zars) {s assumed,

b) for typeS 4 ani 5, this item is a pointer (relative to the
base of the definition section) to an aliegned ‘acc! string
representatiol of an external symbol,

2a243. The Trap Pair

The trap pair is a structure specifying tvo external symbols
(i.e., Pointing to two links), the first of whiech is the gall
pointer and the Second being the argumant rointer, During the
process of dynaMic linking, the Linker =while processing a type
Pair-- may -encOunter a non~zaro trap_ptr; inm that caSe, prior to
the snapping of the actual link, the linker <£irst invokes the
trap procedure Using the specified call and argument pointers,
Ihe trap pair 18 structured as follows,
jeclare trap_.pair based(p) aligned,
call_ptr bit(18) unaligned,
arguMent_ptr bit(18) unaligned;

NN

call_ptr =~ a pointer (relative ¢to the base of the 1linkage
section) to a link specifying the entrypoint of a trap
procedure.

argumnent _ptr - a polnter (relative to the base of the 1linkage
section) ¢to a link specifying the base of an argument list to
be passed to the trap procedure,

Multics Standard Object Seament = March 6, 1972 Page 14

pgte: The 4invokation of =a trap Procedure 4involves Some
technical 3ifficulty in that a standard argument 1list cannot he
usad in conjufection with such a call, More specifically, the
argument list &S an array of pointers, normally residing in the
procedyre’s stack frame, whose value is computed at run tire.
Argunent lists for trap procedures must be provided at compile
tine (becauser by dafinition, they will be used prior to the
first 4invokation of the trapped procedures) and may therefore
contain no Pointers, whose values arfe undetermined at that
tine, I'wo posSible solutions are recemmended,

a) the argument list is prepared at run time by an initialization
proceiure, 8&nd put into an external static data base rointed
£t> by the ‘argument_ptr’ link.

b) the ¢trap Procedure uses a non=Standard argument list
containing Constant values rather than pointers to variables
(2,3.0 the *datmk_°* procedure),

In any case, it is currently imposSiple for users to specify
traps before limk Using high level languages (e.,g.» PL/1 Fortran
2tc,), 85 that the uUsa of this facility is practically reatricted
to systen programmers using the Multics assembly language ALM,

2.3 The Linkage Section

The Linkage Section 4s substructured 4inte four distinct
components, whiCh are a) a fixed-length header which alwvays
resiles at the base of the linkage section, b) a variable lenath
area usel for internal storage, c) a variable length Structure of
links and 4) an array of firste-reference traps. These four
components are allocated within the 1linkage section 4n the
followiny seguefcs,

headel || internal storage || links || traps

with the further restrigtion that the link structure must begin
at an evan location (offset) within the linkage section,

2.341., The Linkage Section Header

The header of the linkage section has the following format,
jeclare 1 linkage_header based(p) alignegd,
2 ohject_seg fixed binary,
2 def_Section bit(18) unaligned,
2 £irst_reference bit(18) unaliagned, (NEW)
2 section_thread pointer,
2 linkage_ptr pointer, (NEW)
2 begin_links bit(18) ynaligned,
2 section_lenoth bit(18) unaligned,

PlamaN

A

-

fultics Standard Object Seoment =~ March 6, 1972 Page 15

2 object_seg bit(18) unaligned,
2 comblned.length bit(18) unaligned;

Sbject _seg = reSet to zerp,

jef_section - a pointer (relative to the base of the obJject
segyment) to the base of the Aefinition section,

first_reference = a pointer [relative t0 the base of the linkage
saction) to the array of first-reference traps, As exnrlained
below, these traps are activated by the linker when the first
reference to this object segment is made within a given
process, InpRrialt: as explained in following note, this item
is overwritten in the copied 1linkage section with an ITS
pointer to the obJject’s defimition section, Consequently, its
value may oRly be validly 4interrogated within the original
linkage section template,

Notg: when the Object segment 48 1loaded inte memory for the
purpose of execWUtion, the impure linkage section is copied ints a
per=process writable 3jata hase (known as the combined 1linkage
section) and the preceding 4items (which are intentionally
allocatel to ocCupy a contiguous pair of words) are overwritten
with a pointerl variable (645 ITS pair) pointing to the base of
the 3efinition Section),

section_thread = under certain applications, linkage sections may
be threaded toOgether, to form a linkage list; such applications
are not 4iscusSsed within this document, The forvard_thread is
an absolute pointer to the next linkage section in the 1ist,
allowing a list t0 spread over more than a single seagment,

linkage_ptr - 48 a Pointer, set by the linker Auring the process
of copying 3into the combined linkage sectien, to the original
linkaga section within tha object segment, It is used by the
link unsnappinfg mechanism,

begin_links = this i1s a pointer (relative to the base of the
linkage sectlon) to the first 1link (the base of the link
structure), The length of the linkage header is known to be set
to the f£ixed Value B, providing an implicit relative peinter to
tha base of the inNtarna)l storage area,

section_length = this is a fixed binary(18) positive 4integer
valua representing tha length, in words, of the 1linkage
section,

opjest_sag = when the linkage section is copied into the combined
linkage section, the segment number of the object segment is
put into this item,

combined length = when several linkage Sections are combined into
a list, this item (of the £first linkage sectien in the list)

Multics Sstanfard ObJect Segment = March 6, 1972 Paage 16

contains the length of the entire list,
243,22 The Internal Storage Area

The internal storage area is an array of vords used bv
complilers to allocate 4internal static variables, and has no
predaternined structure to it,

24343 The Links

This is an array of links, each defining an external symhol
referencad bY this object segment Wwhose effective address is
anknown at compile time and can be resolved only at the moment of
execytion,

A link must reside on an even address location in memory,
ani must therefore be located at an even offset from the base of
the linkage section, The format of a link is,

jeclare 1 link based(p) aligned,

2 header_pointer bit(18) unaligned,
2 ignoret bit(12) unaligned,

2 tag Pit(6) unalignead,

2 expression_ptr bit(18) unaligned,
2 ignore2 bit(12) unaliogned,

2 modifier bit(6) unaliogneds
header_pointer =~ is a backpointer (relative to the head of the
linkaga section) to the head of the linkage section, It is, in

sther words, the negative value of ¢the 1link vpair's offset
within the linkage section.,

ignore1 = unused, Resat to zero.

tag - a constant (46)B which represents a 645 fault tag 2 and
1istinctly 4identifies an unsnapped link, The snapped link (ITS
palr) has a distinct (uU3)B tag.

expression_ptr = pointer (relative to the base of the definition
seztion) to the eXpression structure defining this link,

ignore2 = unhused, Reset to zero,

nodifier - a 645 address modifier,

Figure=2 illustfates the struceture of a link,
243al4. The First-Reference Traps

It is Sometimes desirel to effect soMme special
initialization Of anh object seament when it is first referenced
for execzution (i.e,, linked to) in a given process, for examnle
in ordaer to comPlement the object segment with process derendent

lamn

PaanN

o

Yultics standard ObJect Sesgment =~ March 6, 1972 Page 17

information, such as a segment number, The array of
first-reference traps contains relative vpointers to links
iefining proceduresS to he invoked upon first reference within a
process, and corresPonding links to specify aracument pointers for
such invokations (if any). NormallY, a procedure may have a
single initialiZation trap, however bound segmentS may specify
ssveral, If item *first_reference’ in the linkage section heajer
is "J"b then no such initialization is Cequired; a non~zero value
of that item 48 a relative pointer to the array of traps, and
injicates that initialization is required,

declare 1 fr_traps based(p) aligned, (NEW)
2 decl_vers fixed bin,

2 n_traps f£ixed bin,

2 arraY(n_traps) aligned,

2 call_ptr bit(18) unaligned,

2 arg_Ptr bit(18) unaligned;

lecl _vers - a coOnstant designating the format of this structure;
whanever the structure is modified, so is this constant,
allowing system tools to easily diffefentiate between several
inzompatible Verslons of a single structure,

n_traps e~ specifies the number of trap vpointers in this
structyre, AN obJect segment, such as a bound object, may have
several initialization traps to be invokel,

call_ptr = a pointer (relative to the base o0f the linkage
section) to a link specifying an initialization procedure to be
invoked by the linker wupon f£first reference to this object
within a given process,

arg_etr - if unegual "0"b, this is a polnter (relative to hase of
linkage sectlon) to a linrk specifying an argument list for
matching ‘call_ptr‘,

2.4, The Symbol Section

The symbol section consists of one or more Symbol blocks,
followed by anh gblegct map, which are allocated contiguously and
threaded (beginhing with the object map) to form a single 1list,
It terminates with a8 single 645 word containing a (left addusted)
18=bit pointer (relative to the base of the obhject segment)
pointing to the object map, This pointer must alyays constitute
the last word of an object segment, The size (in words) of the
Sbject segment 4s a quantity which may be obtained from the
Multics file syStem, Using this value, it is possible to 1locate
the segmant’s object map (through this pointer) which in its turn
contains all the information necessary in order to identify and
access the divers components of the object segment, Knowledge of
the ohject map 1s the key to the decodinag of an object seagment,
and the conveltion bhy which the last word points to the object

fultics Standard ObJect Segment = March 6, 1972 Page 18

nap provides that key,

The gsymbol section contains a significant number of variahle
length charactell 8trings whieh should be dqirectly accessible, bhut
wvhich (for the Sake of economy) should preferahly be stored in
packad format, In order to achieve Such sStorage organization,
strings within the Symbol section may be pointed to by a gtring
eaintec, which contains both offset and length of the string in
packed form,

declare] stripngpointer aligned, (NEW)
2 offset bit(18) unalignesl,
2 length bit(18) unaligned;

whera offset 1s a pointer (relative to the base of the symbol
block) to the first character of the aligned string, and lenath
is a (fixed binary(17)) positive integer representing the 1length
5f the string in characters, This Fepresentation allows easy
access to the String by using the PL/1 bpuilt in functions
‘addrel’, ‘fixed’ and ‘supstr’, In the following description, we
shall usa the notation *stringpointer’ to denote such a pointer;
a stringpointer is null if its value is all zero,

24421 The Object Map (NEW)

The obiect map is a fixed length structure residing at the
very end of the object segment, It contains all the necessary
structural informatlon pertaining to the object segment,
jeclare 1 object_map hased(p),

2 decl_vers fixel bin,
2 identifier char(8) aligned,
2 text_offset bit(18) unaligned,
2 text_length bit(18) ynaligned,
2 definition_offset bit(18) unaligned.
2 definition_length bit(18) unaligned,
2 linkage_offset bit(18) unaligned,
2 linkage_length bit(18) unaligned,
2 symbol_offset bit{18) unalighed.,
2 symbol_length bit(18) unalignead,
2 first_block bit(18) unaligned,
2 number_of_blocks bit(18) unaliqgnad,
2 format aligned,
3 bound bit(1) unaligned,
3 relocatable bit(1) unaligned,
3 procedure bit(1) unaligned,
3 unused bit(15) unaligned,
2 map_Ptr bit(18) aligned;

jecl_vers - a coOnstant designating the format of this structure;
whanevar the structure is modified, so0 1is this constant,
allowing systeém tOols to easily differentiate between several

o

—

Multics standard ObJect Segmént = March 6, 1972 Page 19

incomnpatible Versions of a single structure,
lidentifiar = muSt he the constant "obj_map"”,

text _offset ~ offset (relative to the base of the object seqment)
0f the text section,

text_length -~ a fixed binarry(17) positive integer representina
the length in words of the text section,

lefinition_offset =~ analogous to text _offget
lefinition_length ~ analogous to text_length
linkage_offset = analogous to text_offset
linkage_length = analogous to text_length
symbol _offset ~ analogous to text_offset
symbol _langth = analogous to text_length

Eirst_block - Pointer (relative to the base ©06f the symhol
section) to the most regent symbol block, An object segment may
have one or moOre Symbol blocks which are threaded on a 1ist in
reverse chronOlogical order (i,e., newest block i8 first on the
list),

number Of_blockS = this is a (fixed binary(17)) positive inteser
iisplaying the number of symbol blocks within this symsol
section,

pound - this is a bound segment

relocatable = "1"b => ¢this object segment has relocation
information in itS £4irst symbol block,

procedure =~ "1"D => this i{s an executable object programj
"O"ph => this is a data base,

Tap_ptr - this 1s a pointer, relative to the base of the object

segment, to the object map; as mentioned before, this {tem must
reside in the last word of the object segment,

2alte2, The Symbol Block Hgader (NEW)

The symbol bloCk has two main functions, a) to document the
circamstances Under which the object Wwag created, and bP) serve
35 a repository for information which d4%es not belona in any of
the Sther three sactions (es9se relocation 4informatinn,
compller’s symbol tree etc,). The symhol section must contain at
least one symbOl block, describing the creatien circumstances of

Multics Standard ObJect Segment =~ March 6, 1972 Page 20

the object segment, R sympol Section may also contain more than a
single symbol block, for example in the case of a bound object,
whers in addition to the symbol block describing the object’s
creatisn by the binder, there is also a svymhol block for each of
the zomponent objects, The symbol section is designed so that
symbsl blocks may be iynamically appended to, or deleted from it,
such as Ln the cCase of the debugger which allocates itself a
symbs1 block in order to stofe in it breakpoint information. The
size and structUre of a symbol block are variable, depending uoon
their purpose, All symbol blocks have a standard fixed format
header, as follows,

Jeclare symbol_block_haeader hased(p) aligned,
decl_.vers fixed bin,

identifier char(8) aligned,
gen_Version_number fixed bin,
gen_creation_time £ixed bin(71),
objeCt_creation_time f£ixed bin(71),
genefator char(8) alioned,
gen_Version_name stringpointer,

userid stringpointer,

commeént Stringpointer,

text _boundary bit(18) unaligned,
stat_boundary bit(18) unaligned,
sourCe_map bit(18) unaligned,

area_pointar bit(18) unaligned,
sectionbdse_backpointer bit(18) unaligned,
block_size bit{18) unaligned,
next_bloCk_thread bit(18) unaligned.
rel_text bit(18) unaligned,

rel_def Dit(18) unaligned,

rel_link bit(18) unaligned,

rel_Symbol bit(18) unaligned,
default_truncate bie(18) unaligned,
optional_.truncate bit(18) unaligned’

[SESESNESNESCESESECRSNESEVE SN VRSN VE VI SR VRV SRS,V

jecl_vers ~ a constant designating the format of this structure;
whenever the sStfuctura 48 modified, so is this constant,
allowing system tOols to easily differentiate between several
inzomnpatible Versions of a single structure,

identifier = symbolic code to define the purrose of this symbol
hlock, It maY asSume one of the following values,

"symnbtree" => compiler symbol tree
“bind_map" _.?> bind map
"ibbreak” => debua breakpoint information

jen_version_number = a positive integer designating the version
of thz gehefator whigch was used in compiling this object
pragram, The pPolicy regarding this version number is that
whanevear a Jenerator is substantially modified, such as the
adlition of new capabilities or the generation of newv object

K4 ~

—

Multics Standard ObJect Segment = March 6, 1972 Page 21

cole patterns, this numper has to be incrementead by one, It is
usad mainly bY system tools which sometimes have to bhe
cognizant of the code generation peculiarities of a given
conpiler,

Jen_creation_tiMe = a3 calendar clock reading specifvying the
jate/time at Vhichkthis generator was created,

object_creation_time - a calendar clock reading specifying the
late/time at Which this symbol block Was generated.

Jenerator = symbolic code defining the processer which generatend
this symbol block, It may assume one of the values in the
following 1list (which is subject to change or exransion),

"alm"
”pl1n
"fortran"
"binder”
"debyg"”

gen_version_name = the generator's version in Aireectly oprintable
character string form, such as.

"PL/1 ComPiler vVersion 7,3 of Wednesday, July 28, 1971"

this string 1s dispjlayed by various System toolS. The (inteser
part of the) Version number imbedded 4in the string must be
identizal with the numper stored in ‘gen_version_number’; the
optional fracCtion as displayed above (7,3) is added in
increments of (,1) whenever (for reasons such as fixed bugs or
minotr improvemMentS) a generator is 4installed which does not
differ in any sSignificant way from other generators of that
version, It 1s mandatory that the geherator name be updated
whenevar the genefator is fnstalled for public use,

userid =~ the standard Multics identifier of the user in behalf of
whom this symbol block was created,

comment - it 485 sometimes desirable to put certain factual
information conCcerning the generator (e,g.,, certain co>de
generation peculiaritieg) of perhaps the actual nprocess of
object program generation (e,g,.,, warning about non fatal errsrs
encountered during compilation, or warning concerning certain
defaults appllied Dy the generator) into the object segment., The
conment is diSplaYed by certalin system tools, and may be of
spacial dintelest) for example, when a decision has to be made
concarning the suitability of a given object Segment for
official installation in the system libraries,

text_poundary = for specialized programs, it 1is sometimes
necessary that the text section begin on a predetermined
bouniary (e.ges, O mod 64 address); this 4is an 4integer which

Multics Standard ObJect Segment = March 6, 1972 Page 22

iefines this bounijary, Its default value is 2 (0 mo3 2
adiress).,

stat_pounjary - same as text_boundary, for internal static., Tts
jefault value is 2,

source_map = 3 Pointer (relative to the base of the symbol block)
to a source_map structure (see 2,4,3) defining the pathnames of
the source files, If no source map iS provided, this vpointer
is resst to "U"b,

area_pointer = Pointer (relative to the base of the symbol block)
to the actual symbol block information (e,9,, Syrbol tree, bind
map etz,).

sectionbase_backpointer - pointer (relative to base o0f synmhol
block) to base of symbol section, This is a negative quantity,

block_size = a (f£ixed binmary(17)) integer value reprresenting the
size of the sYmbol block (including header) in words,

next_block_thread =~ thread (relative to base of symbol section)
to next symbol block.

rel_text « pointer (relative to base of symbol block) to text
section relocation information, as defined below,

cel_3ef - pointer (relative to the base of the symhol bloek) to
jefinition section relocation information,

rel_link = pointer (relative to base of symhel bloek) to 1linkage
section relocation information.

rel_symnbol = pPolnter (relative to base O0f symbol block) to symbol
section relocation informatien.

jefaualt_truncate = offset (relative to base of symbol block)
starting from which the binder systematically truncates control
information (Such as relocation bits) from symbol section,
while still maintaining such information as the symbol tree.

optional_truncate = offset (relative to base of symbol block)
starting from vhich the binder may optionally truncate
non=-essential parts of the symbol tree in order to achieve
maxinun reduction in size of bound object segment,

2a4a3. The SourcCe map

The source map is a structure defining the source segments
used to> originate this object segment, as follows,

jeclare 1 source_map alioned based(p),
2 decl_vers fixed bin,

s

K amnN

——

Multics Standard ObJject Seament = March 6, 1972 Page 23

2 size fixed bin,

2 map(size) aligned.
3 pathname stringpointer,
3 uid £ixei bin,
3 dem £ixed bin(71);

lecl_vers - a constant designating the format of this Structure;
whenever the sStructure is modified, so» is this constant,
allowing system toOols to easily differentiate between several
incompatible Versions of a single structure,

Size - the number of entries in the "map"” arravy (i,e., number of
source files defined in this structure),

pathname - a stringpointer specifying the full pathname
(treename) of the source segment,

uij - the unique identifier of the source segment’s branch at
conpile timg.

itm =~ the jatewtime modified from the sOurce Segment's branch,

¢aldald. The ReloCation Information

The relocation information designates all instances of
relative aiddressSing within a given section of the object segment,
s> a8 to enable the relocation of such a section (as in the case
5f binling), A Variable length prefix coding scheme 4isg used,
where there 18 a logical relocation item for each halfvord of a
jiven section, If the halfword 4is an absolute value (non
relocatable) that 4item 48 a single bit whose value is zero,
Jtherwise, the ltem is a string of either 5 or 15 bits whose
first bit (s set to "1"p, The relocation 4nformation 1is
concatenated to form a single string which may only be accessed
sequentially; 3f the next bit is a zero, it is a single=hit
absolute relocation item, otherwise it is either a 5 or a 15 bpit
item depending Upon the relocation codes as defined bhelowv,

There are foUr distinct blocks 0f relocation information,
one for each of the four object segment sections! text,
Jefinition, linkage and symhol; these relocation bloecks are
known as ‘rel_text’, ‘rel_def’, ‘rel_link’ and trel_symbol’,
correspondingly.

The relocation blocks reside within the symbol block of the
Jenerator which produced the object segment, The correspondance
between the relOcation items and the halfwords in a given section
is made by matching the seguence of items with a Sequence _of
nalfwords, from left to right and from word to word by increasing
valua of aidress,

1ultics standard ObJect Seoment =~ March 6, 1972 Page 24

The relocation block pointed to from the symbol block header
(eegap ral_text) is structured as follevws,

relinfo based(p),

jecl_vers fixed bin,

n_bite £ixed bin,

relbits bit(n_bits) alianed;

jeclare

NN N2

lecl_vers = a cOnstant designating the format of this structure;
whanevaer the structure 1s modified, so is this constant,
allowing system tOols to easily differentiate between =several
inconpatible Versions of a single structure,

n_bits = the siZe of the string of relocation bits,
relbits - the radcked string of relocation bits,

Following 48 a tabulation of the possible codes and their
corresponding relocation types,

*0"b => Absolute

#10000"p => Text

"10001"p => Negative Text

"10010"p «> Link 18

*"10011"p => Negative Link 18

*10100"b =2 Link 15

"10101"h «> pefinition

"10110"p «> Symbol

"10111"b => Negative Symbol

"11000"p =»> Internal Storage 18 (NEW)
"110017"h =2 Internal Storage 15 (NEW)
"11010"p => Self Relative

"11011"b =2 Unusad

"11100"p =2 Unused

"11101"bh =2 Unused

"11110"b =2 Expanded Absolute (NEW)
"11111"p =2 Escape

Absolute « do nOt reloscate
I'ext -~ use teXt section relocation counter

Negative Text = use text section relocation eounter, The Treason
for having distinct relocation codes for negative quantities is
that spacial Coding might have to be uUsed in order ¢o convert
tha 18«~bit field in aquestion into its correct fixed binary
form.

Link 18 - use linkage section relocation counter on ¢he entire
18-bit halfword, This, as well as the Negative Llink 18 and the
Link 15 relocation codes apply only to the array of 1links in
the 1linkage section (i,e,, by definition, usage of these
relocation codes implies external reference through a link),

——

Multics Standard Object Segment = March 6, 1972 page 25

¥egative Link 18 = Same as above

Link 15 = use linkage section relocation counter on the low orier
15-bits of the halfvord, This relocation code ma¥ onlY re Used

in conjunction with a 645 instruction featuring a base/offset
adiress field,

Definition = indicated that the halfword contains an address
which is relative to the base of the definition section,

Symbdl = use syMpol section relocatien counter,
Negative Symhol ~ same as above

Internal Storage 18 = use internal storage relocation counter on
the entire 18=bit halfword.

internal storage 15 = use internal storage relocation counter on
the low order 15~bits of the halfword.

Expapnded Absolute = it has been established that a major part of
an object ofogram has the absolute relocation code; for
efficlency reasons, the expanded absolute code allows the
definition of a block of absolutely relocated halfwords, The 5
bits of relocation code are immediately followed by a fixed
length 10-bit field which 4s a (fixed binary(10)) positive
count of the number of contiguous halfwords all having an
absolute relocation, Evidently, usage of the expanded absolute
cole can be economically Jjustified only 4f the number of
contiguyous abS8olute halfwords exceeds 4,

Escape = reserved for possible future use,
Figure=3 illustrates the overall structure of the symbol section,

2alad., The PL/1 Symbol Bloeck
D) BE SUPPLIED
dalsl. The ALM Symbol Block

I> BE SUPPLIED

248227, The Binder‘s Symbol Bloek

The birder’s s¥mbol block contains the bind map, deseribing
the relocation values assigned to the various sections of the
bouni component object segments, The block consists of a variable
length structure, followed by an area in which variable lenagth

Multics Standard Object Segment = March 6, 1972 Page 26

symbolic 4information is stored, The format of the bindmapr
structure is,

jeclare 1 bindmap Dbased(p) aligned,

2 decl_vers fixed bin,

2 n_comMponents fixed bin,

2 compoOonent(n_components) aligned,
naMe stringpointer,
generator_name char(8) aligned,
teXt_start bit(18) unaligned,
text_length bit{18) unaligned.
stat_start bit(18) unaligned,
stat_length bit(18) unaligned,
symp_start bit(18) unaligneqd,
syMb_length bit{18) unaligned,
defblecCck_ptr bit(18) unaligned;

WWwWWwLbLwww ww

iecl_vers - a constant designating the format of this structure;
whenever the S8Structure is modified, so is ¢this constant,
allowing system tools to easily differentiate between several
inzompatible Versions of a single structure,

n_conponants = humber of component obJjects bound within this
bounl segment.

component =~ variable length array featuring one entry per bound
conponant object Segment,

name =~ pointer to the symbolic name of the bound component, This
ig the name under which the component objeet was identified
within the archive file used as the binder’s input (i,e.s» the
nane corresponding to the object’s ‘objectname’ entry in the
bindfile), The stringpointer is relative to the base of the
bindmap structure,

generator_name = the name of the generator which created this
conponent obhject Segment,

text_start = (fixed binary(17)) integer value of the component’s
text saction TeloCation counter,

text_length - (fixed binary(17)) integer value of the component’s
text saction’s length,

stat_start = relocation coupter for component‘s internal static,
stat_length - length of component’s internal static,
synb_start - relocation counter for component’s symbol section,

symb_length - length of component’s symbol section,

o

Meltics Standard ObJect Segment « March 6, 1972 Page 27

lefblock _ptr = Lf non-zero, this is a pointer (relative to the
base of the definition section) to the component’s definition
block (first class=3 segname defirition of that component’s
jefinition bloeky,

2s448, Debug’s Symbol Block

I'd BE SUPPLIED

Multics Standard ObJject Segment = March 6, 1972 Page 28
3. GENERATED CODE

This section describes those parts of the generated code
(othar than the structural parts discussed in section 2) which
have to confolm ¢0 a systemwide standard because they interface
with system tools sUch as the bhinder, the Aefault error haniler,
iebuyz etz,

341 The Text SecCtion

The text Sectlion contains a number of sequences where it is
ajvantageous tO have all generators oproduce identical code
pattarns, such as the call, save and return sequences, For the
purpose of this document, howvever, only the entry seauence and
the Jenerated relocation codes are of interest,

3.1.1, The EntrY Sequence (NEW)

The entry sequence must fulfil two requirements, a) that at
the location pFreceding the entrypoint (i,e.» (entrypoint=1))
there s a left adjusted 18mbit Trelative peointer ¢o the
lefinition of that entrypoint (within the definition section),
and b)) ¢that the save sequence executed within that entrypoint
store an ITS pointer to that entrypoint at spl22 8o that by
inspacting the proceiure‘s current stack frame one may determine
the adiras3s of the entrypoint at which it vas invoked, and then
reconstruct that entry‘'s symbolic nmame through use of its
jefinition pointer,

3,1,2, The ReloCation Codes (NgW)

The following list defines the only relocation codes vhich
nay be generated in conjunction with the text section, and then
only within the scoPe of the restrictions specified,

Absolute = no restriction
Text = no restriction
Negative Text = nO restrictioen

Link 18 = may onlY be a direct (i.,e,, unindexed) reference to a
link,

Link 15 - may only appear within the address field of a
(basa/offset) type instruction (bit29="1"p), The instruction
nust not bhe 4ndexed, and must not contairn a "19”b tm
nolifier. Rlsos the following instruction codes may not have

Multics standard ObJect Segmént = March 6, 1972 Page 29

this relocation code,

STBA (559)8
STBY (552)8
STCA (751)8
STCQ (752)8

Nate: the peculiar restrictjons jimposed wupon the 1link=15 and
int=15 ralocation codes stem from the fact that these relocation
cojes apply to base/offset type address fields encountered in the
11iress portion of machine instructions; the effective value of
such an adiress {8 Computed by the hardware at execute ¢time, To
that eni, certain hardwvare restrictions are imposed on snch
instructions, When the Multics Binder processes these
instructions, it oOften resolves them inte simpleraddress format
and has to further modify information in the opr=code (riaght hand)
portion of the instruction word. Therefore, these relocation
codes nust only be Spacified in a conteXt which is comprehensihle
to the 645 contfol unit,

pefinition = Ro restriction

Symnbol =~ no restriction

Internal Storage 18 « np restriction

Internal Stordge 15 = may only appear within the address field
of a (base/offget) type 4instruction (bit29="1"p), The
instruction must not contain a "10"b tm modifier, hovever it
nay be indexed, The 4instruction codes excluded from the
Link=15 relCcation may also be used,

Self Relative = noO restriction

Expandad AbSolute = no restriction
3.2¢ The Definition Saection

There are No relocation codes associated with the definition

section, Item ‘rel_3ef’ 4in the symbol block header has been
provided for the sake of completeness and may be used in the
future.

3alal, Inplicit Definitions (NEW)

All generated ohject segments must feature the following
implicit definition,

Multics Standard Ohject Segment = March 6, 1972 Page 30

"symbol_table” = Jefining the base of the symhol hlock
Jenerated Dy the current language ProcesSsor, relative to the
base of the symbol section,

Additionally, obdjects created bY the binder have the
inplicit Jdefinlition “bpind_map” which points te the hase of the
symh»l hlock Qenerated by the hinder, relative to the hase of the
symbsl saction,

3a3e The Linkage SecCtion

The 1linkage Section <consists of four distinct hlocks: the
linkage section header, the internal storage, the links and the
first reference traps,, The format and value of the linkage
saction header are as defined in section (2,3,1),

3.3.1, The Intefnal Storage

The internal storage 48 a repository for items of the
internal static storage class, It maY contain data items only;
even though access to the linkage section is of the ‘rev’ type,
it may not contain any executabhle code,

Text = no restrictions

3.342. The Links

The 1link area may only contain an array of 1links as defined
in section (2,3+3), The links must be considered as distinct
unrelatel item8, and no structure (e,9., array) of links may be
agssunel, They must be accessed explicitly and 4individually
through an unindexed internal reference featuring the link~18 or
the Link=15 relOcation coijes,

3.3.3. The ReloCation Codes [NEW)

Only the linkage section header and the 1links may have
relocation codeés aSsociated with them (the internal storage area
has associated with it a single Expanded Absolute relocation
itEM)o -

Absolute - no restriction; mandatory for the 4internal storage
araa,

g

o~

Multics Standard ObJect Segmént = March 6, 1972 Page 31

Link 18 = no restriction

Negative Link 18 = no restriection
Definition = no restriction

Internal Storage JQ = no restriction

Expandej Absolute = no restriction
3.4, The Symbol Section

The symbol section may contain information related to some
dSther section (Such as a symbol tree defining relative offsets of
symbolic items), and therefore maY have relocatien coies
associatad with 1it,

3.4,1, The ReloCation Codes (NEW)
Absolute = no restriction
Text = no restriction
Link 18 =« no restriction
Pefinition = nNo restriction
Synhbol = no regtriction
Negative SymbOl = no restriction
Interna)l Storage 18 = np restriction

Self Ralative » no restriction

Expanded AbSolute = no restriction

dultics Staniard ObJect Segment = March 6, 1972 rpage 32
4, FUNCTTONAL INTERFACES

This section briefly describes a number of the obJject
segmant’s functional interfaces in order to give the reader some
iiea as to how certain structures and formats, described in
sections (2, 3) are used, Also, a list of standard system tools
is provijed in order to allow a subsystem or compiler writer to
acguaint himself with existing facilities on Multics,

4,1, Dynamic Linking

one of the basic principles of Multics is that information
is always accesSed by its symholic file system name, and <that
segmants are asSigned a machine address (i,e,, segment number) at
the noment of eXecution only, It followsS that any inter=segment
raference musSt be resolved prior to its execution into a machine
ajiress which 18 a priori unknown, Certain computer systems
raguire that Such address resolution be vperformed, prior to
axecation, by a process commonly known as "loading", which may be
thought 2f as a "poSte-compilation” in which several independently
complled procedUres are assembled 4into a single procedure 4in
which all previous symbolic 4inter=procedure references are
convertel into internal relative addresSes,

In Yultics, such 1loaiing 18 unneceSsary because the dynamic
linkiny mechanism allows symbolic refefences to be evaluated and
resolved wheneVer they are aencountered 4during execution, 1A
hardware register, known as the lipkaga pointer (1p) is always
set to point to the base of the currently executing procedure’s
linkage sectioh, All references to external symbols are made in
the form (lplDe™) where o 45 a relative offset within that
procadure’s linkage saction, and notation *,*' {ndicates
iniirection (i.e,, address substitution), Location (lpln)
contains an unSnapPei link, as defined in section (2.3,3), which
features a linkfault (u6)g tag, When the processor attempts to
execuate the indirection and vrecogniZes the £fault tag (46)8,
execution is interrupted and the procesSor faults (i,e.s forces
control) to the Multics linker.

¥ota: Ian the following description of the linking mechanism,
referencs is made t0 items Adefined in sections 2,2.2, 2,2.3,
2.2¢% and 2.3¢3, The reader may wish to consult Figure=2 which
illustrates thea structure of a link,

The linker’s only input is a pointer to the unsnapred 1link
which initiateq the linkage fault, By wusing ¢the 1link’s
‘healer.pointer’ the linker is able to Calculate the address of
the linkage section header which in turn contains in its first

_—

o~

Multics Standard ObJect Segment = March 6, 1972 Paje 33

two words an ITS pointer to the object Sseagment’s definition
saction (this pointer is get when the prfocedure i8 referenced for
the first time, as is explained beaslow),

Let us name the pointer to the definition section defp; the
13irass calculation

addrel(jefp, expression_ptr)

produces a pointer to the 1link’s expression word, Given a
pointer to the expression word, the address calculation

adirel(defp, type_palir_ptr)

produyces a pointer to the link*s type~pair, whereupon 4in turn
aidress calculations

ajdrel(defp, segname_ptr)
ani
adirel(defp, entryname_ptr)

yiell pointers to the respective ‘acc’ strings which define the
2xternal symbol,

The linker £irst interrogates the ‘trap_prtr’ ditem 4n the
link’s type-pair, and {f that item’s value is unequal to "0"p
then the linker effects a call to (lpi(trap_ptr),*), a call vhich
in turn may provoke a linkage fault (in Multics. dynamic linking
nay be recursive),

If the ‘trap_ptr’ is null (or upon <return from ¢the trap
procedura) the linksr proceeds to Obtain a vpointer to the
referencaj obJect segment, For link types 1 and 5
(gselfrefarencing 1links) ¢this 4is a pointer to the referencing
procedura, For link types 3 and 4 the vpointer is ohtained by
calling the MUltics file system with the symbolic !segmentnanme’
portion 5f the external symbol, The linker is nov in possession
of the sagment number portion ggg# for the referenced symbpol.

The 1linkef alSo obtains from the file system a value length
which is the lefgth (in wvords) of the referenced object segment,
By convention, (langthw~1) is the offset within the object segment
2f a pointer to the object map, which contains the offset of the
referencai object’s definition section, The linker computes a
pointer to the target Jefinition section, searches 4it, and
lozates the definition for ‘entrypoint' wvhich designates the
2ffget of that Symhol within the object segment, Goine back to
the 1link’s exPresSion word, the linker performs the computation
(pffset+expression) to obtain the final relative address vportion
of the referefced symbol, It now inseCfts values gga® and offset
into the correspPonding ‘header_pointer’ and ‘expression_ptr’ of
the unsnapred 11ink, <changes the 1link’s tag to (43)8 and thus
convarts the original unspapped link into a valid (executable)

Yultics Stanjard ObJect Segment - March 6, 1972 Page 3u

ITS pointer, Whereupon the referencing procedure’s executinn is
rasumnel at the Point of interruption.

BY zonverting tha original linkfault into an ITS pointer it
is assured tnat oOnly the very first reference to an evytarnal
synbol will 1invoke the dynamic 1linking mecharism, and the
associatas cosSt of linking, Future refefences to (lpipn,*) will be
iirectly executeji,

By definition, an executable object segment is pure
(non=selfmodifying) procedure and may Not be altered. As wve nave
seef, the proceSs of 3jynamic linking reJuires that an unsnacned
link be overwritten with an ITS pointer; also, that ITS pointer
contains a ged# which may assume different values dependina u»on
the circumstances wunder which 1linking took place, Therefore,
vhenever the linker attempts to link to an object Segment which
has nevar befole been referenced within that Multics orocess, i+
initiates that Segment (i,e,, requests the file system to fnake
the segmnent khown within that MulticS process under some ggq#)
and copies its entire linkage section into a wvritable datatcase
known as the cambined linpkage sectidn, The (1p) register will
always pPoint to the linkage section copY, and it 4is this capy
vnich 4s modified during the procedure’s execution, The process
of copying includes the appropriate setting of the
‘definition_ptr’ (words 081), ‘linkage_otr’ and4 ‘object_segq*
items in the coPied linkage section healer,

It i{s sometimes jesirable to reverSe the process of dynanic
linkiny (unsnaP a 1link) and restore the original linkfault
information, Given an offset p t> a link in the combined linkage
section, unsnapping 4is trivially achieved by 1locating the
d>riginal linkage section in the object sSegment through the
‘linkaje_ptr’ item in the copied linkage section header, ani by
dver#ritingy the snabPped 1link with its ofiginal value found at

addrel(linkage_ptr,)

Fijure-4 is a flow chart illustrating the overall 1logic of the
linkar,

Vi

o~

fultics Standjard ObJect Segment ~ March 6, 1972 Page 35
4.2« Biniing

Dynamic linking is a very useful and powerful cabPability; it
provides the caSuyal user with the convenience of not having to
explicitly asseMble all of the moldules related to his nrogram and
"loai"” then befOore being able to execute 4t, Rather, he needs
only to be conCerned with specific moiules which are of interast
to him, leaving it Up to Multies to loecate and link to all other
nodules which may be pither his own, or perhaps library procedure
provided as standard tools, Moreover, he need not even be aware
of cartain modules Which are invoked by the system in his hehalf.

Somatimes, however, a large subsystem whieh by right shonld
be <codel as a single procedure 4is in effect subdivided into
iistinct smaller modules, mostly for reasons of coding (anad
lebugging) conVenience, This collection of procedures may now be
execyted, and will be 4interlinked by the dynamic linkinag
nechanisn, In this case, however, it is known in advance that
this collection of physically distinct procedures effectively
forms a single Jogical unit, The cost of dynamic limking, no
matter how trivial it may be, will be 4ncurred whenever this
subsysten 4is ifvoked for the first time by some Multics process.
Suppose that we have a compiler named ‘comp$comp’ which vas coded
nodularly in 2 distinct modules, each of which features an
average 2f @ ehtrypPoints; further suppose that 4in erder to
execute the cOmpiler all entrypoints must be linked to by the p
nojules, The coSt of a single compilation will thus be {nereased
by the overhead coS8t of invoking pn*m linkage faults, vhereas the
only linkage falUlt that needs to be taken is that of 1linking to
‘compScomp’e all oOthers being dinternal to the compiler and
annecessary, in the sense that the compiler’s modularity is a
convenience to the writer of the compiler but an UnnecesSsary and
expensive penalty to the ussr,

The Multic8 binder is a "post precessor” which, given an
input of n object segments combines and reduces them ints a
single nev "bound’ object segment, One of the functions of
bindiny 1is to reduce all internal interseament references from
linkfaults to relative internal addresses, Thus, by binding all
components of olUr compiler, we would produce a new object segment
namei ‘compScompP’ whose execution provokes none of the previous
a*m linkage faults,

Rnother re2son f£or binding is that in a paged virtual memsry
such as Multics’, p distinct object segment would incur the eXtra
expense of an aVerage 1/2 a page of lost storage per segment, By
binding many component objects (even if they perhaps are only
narginally related to one another) one May make substantial gains
in storage space,

BY binding several obhject segments, whether related or not,
one 19ses none of the capabilities asSociated vwith those ohject

Multics Standard ObJect Segment = March 6, 1972 Page 36

saamants in thelr free standing form, The only discernihle effect
°f binding is that the storage requirements of the hound obiesct
segmant are lesS then the combined storage requirements of all
the component object segmants, and that any internal interseguent
raferences will be Pre~linked automatically, Functionally, the
2xecygtion ©of a collection of bound object segments iS guaranteed
to be identical to tha execution of thoSe same object segment in
free-standing form,

4.3, Naming ConVentions

Multics segments have symbolic names which may be from 1 to
32 characters 19ng, By convention, such namesS mayY be compound,
consisting of a concatenation of two of more sub=names where the
point 2f concatenation is flagoed by the insertion of a ","
character; the number of subemnames within a compound name is
linited only Dy the imposed maximum total length of 32
characters,

It 4is often desirable to give similiar names to two or more
logically relatel segments, For example, if we have a segment
containing the Symbolic source language of some program °pProg’
ani we compile 3t to produce two more segments, namely the object
segment and a Segment containing a printable listing of the
compilation, we woulld 1like ¢0 indicate that theSe two new
sagments are in effect a deriviative of ‘prog! and give them
names in which the symbol fprog’ is featurel,

By convention, it is always the oObject segment vwvhich |1is
Jiven the primMary name ‘prog’, All Other related segments are
given conpound NameS consisting of the primary (first sub=) name
‘proy* and one or more standard suffixes, Thus if the source
langaage in our example is PL/1, the segment containing that
source code 18 bY convention named ‘Prog,p2l11‘, and the listing
segmant produced by the PL/1 compiler i8S named ‘pProg.lise’, By
asiny this syStemWwide convemtion, we may nov invoke the PL/1
compiler by typing

pl1 prog
ani the compilef Will automatically conStruct the name ‘prog,plt’

and locate that segnent which it knows by convention to contain
the source code for ‘prog‘,

4,4, Standaril SY¥stem Tools

> BS SUPPLIED

Ty

