Supplement to the
645 Processor Manual

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
INFORMATION PROCESSING CENTER

May 22, 1973
SUMMARY OF THE H6180 PROCESSOR

INTRODUCTION

This memo presents a summary of the H6180 processor from the
point of view of the subsystem writer who must write or debug
code at the assembly language level. The H6180 processor
represents an extension and general cleanup of the H645, and
this memo assumes that the reader is reasonably familiar with
the H645.*

Experience with the H645 and the Multics system has uncovered
a number of areas in which performance and maintainability
could be substantially improved with certain deviations from
the H645 specification. The following areas were felt to

be of sufficient importance to warrant changes to the H645
specification.

1. Hardware aids for improved compatibility with standard
H600 and H6000 line software.

2. Refinements to the paging and segmentation mechanisms to
improve overall system performance.

3. Complete implementation of the Multics protection ring
mechanism in the H6180 processor to improve system perform-
ance and reduce software complexity.

4., Incorporation of the H6080 Extended Instruction Set (EIS)*
within the H6180 processor. The EIS provides a comprehen-
sive set of instructions for bit and character string
manipulation as well as decimal arithmetic.

These changes are described in detail on the following pages.

¥For more information, refer to the Honeywell Modél 645 Processor
Reference Manual and the Series 6000 Extended Instruction Set
Processor manual.

Page 2

1, Hardware Compatibility with H600/H6000

The issue of compatibility with product line software is really
two issues stemming from two distinctly different motivations.
One issue is that of "stand-alone compatiblity" which allows the
running of standard product line software (e.g., GCOS, T and D
monitor, etc.) on a stand-alone machine. The other issue is

that of "slave program compatibility” which allows for the
efficient execution of H600/6000 slave programs under the control
of the Multics system. A compatibility switch on the H6180
processor handles the problem of stand-alone compatiblity while

a program-settable mode is provided as a software aid in handling
the problem of slave program compatibility.

2. Modifications to the Paging and Segmentation Hardware

The H6180 contains a number of modifications to the H645 paging
and segmentation hardware to improve the performance of the
Multics software and to simplify some areas now felt to have

been overdesigned in the H645. The changes to the H645 specifica-
tion are summarized below and are described in more detail later
in this memo.

2.1 The address field in the segment descriptor word is
extended to a full 24-bit absolute address to allow
page tables (and unpaged segments) to begin on any
main memory address. This modification allows the
software a great deal more flexibility in the alloca-
tion of page table space and greatly reduces the amount
of main storage reserved for page tables.

2.2 The processor supports only a single page size rather
than the two page sizes supported by the H645. However,
provision is made to allow the page size to be modified
by field engineering in an orderly and well understood
fashion.

2.3 Each of the eight address base registers (now called
Pointer Registers) of the H6180 processor is extended
to contain both a segment number and a word number
portion. The H645 concept of internal and external
base registers and control fields is dropped. Each of
the eight address base registers on the H6180 processor
behaves as a 645 base register pair. In addition, each
of the new address base registers contains a bit offset
field for use by the new EIS instructions.

2.4 Some minor changes have been made to the definition of
the 645 master and slave modes which are renamed respect-
ively to be the privileged and unprivileged modes to
avoid confusion with H6000 terminology. A minor change
has also been made in the treatment of execute-only
segments to allow entry at locations other than zero.

Page 3

2.5 The access control information contained in the H645
page table word (not used in Multics) has been removed.
In the H6180, all access control is implemented in
the segment descriptor word.

3. Hardware Implementation of Multics Ring Protection

The Multics concept of protection rings, ring crossing and argu-
ment validation has been implemented as an integral part of the
segmentation hardware on the H6180 processor. The hardware
implementation of rings is really a further modification to the
H645 segmentation hardware. However, the modification is intro-
duced separately at this point since it involves perhaps the
most significant deviation from the H645 specification and, as
such, deserves somewhat more motivation. In the H645 version of
Multics, the ring protection mechanism is, of necessity,
completely simulated by the Multics software. The H645 Multics
maintains, in parallel, separate descriptor segments for each
ring of each process. The ring crossing is simulated by a rather
costly and complex fault processing mechanism which includes the
copying and validation of argument pointers and the switching

of descriptor segments to simulate the effect of switching rings.
The cost of the current simulation amounts to approximately 5

to 10 percent of the useful chargeable CPU time and contributes
substantially to the overall complexity of the system. 1In the
H6180 processor, ring crossing and argument validation are handled
directly by the hardware without costly software intervention.

As a result, a call to an inner ring requires no more CPU time
than a call to a procedure in the same ring.

4. The Extended Instruction Set

The H6080 and the H6180 include instructions for string manipula-
tion and decimal arithmetic. The eight address registers of the
H6080 are a direct subset of the eight address base registers of
the H6180 processor (also extended to contain bit offset fields).

The H6180 permits Multics programs to take full advantage of the
new instructions in a manner which is sympathetic to the Multics
environment. In addition, H6080 slave programs which use the new
instructions will be able to continue to run efficiently under
Multics.

Page 4

SLAVE PROGRAM COMPATIBILITY WITH THE H6000 SERIES

Many H635 and H6000 slave programs can be run on the H645 version
of Multics (e.g., GCOS and the Dartmouth System). The H635 (or
H6000) slave program is loaded into a single paged segment and
Multics library programs are provided to intercept faults gener-
ated by the 635 program and provide the user-callable functions
of the GCOS or DTSS supervisor. This technique works quite well
for most slave programs. However, a number of 635 slave programs
(particularly subsystems such as BASIC and the DTSS debugger)
make indirect use of the H635 Base Address Register (BAR) by
calling the supervisor to set the BAR to span a subset of the
current user core image (e.g., to protect the subsystem from its
user). In the H645 there is no general and effecient way to
simulate the address relocation and protection of the BAR within
a single paged segment. Therefore an H600/6000 BAR compatibility
mode is provided on the H6180 which operates in the following
manner when the H6180 is set to run in Multics mode.

1. A program-settable indicator is introduced to control the use
of the BAR. The normal and usual setting of this indicator
is ON, and in this state the contents of the BAR is ignored.
When the indicator is OFF, the processor is said to be in BAR
mode.

2. When the processor is in BAR mode, the word number of each
computed address is checked against the bound field of the
BAR and augmented by the BAR base field. This operation
cannot be interrupted and is done before the address is
used to select the proper page table word. A boundary viola-
tion causes a "store" fault.

3. The contents of the BAR are settable by the normal H6000 LBAR
instruction which is unprivileged when the H6180 is in Multics
mode.

4. The BAR mode is turned on by the Transfer and Set Slave (TSS)
instruction. (The contents of the BAR apply only to the
final effective address of the TSS instruction.) The TSS
instruction is also unprivileged in Multics mode.

5. The BAR mode is exited by a fault or an interrupt, and can
only be reentered by an RCU or TSS instruction.

Page 5

Many H600/6000 slave programs are written to expect certain extern-
ally generated faults and interrupts (e.g., timer runout) to be
reflected to the slave program through a software-simulated fault
vector. To avoid race conditions these programs commonly use bit

28 of the instruction word to inhibit external faults and interrupts.
Furthermore, such programs are unprepared to handle interrupts in
mid-instruction. So that H600/6000 slave programs can be run

efficiently under Multics, the function of the BAR mode is extended
as follows.

6. When in BAR mode, an unprivileged program (e.g., a 635 slave
program) is allowed to inhibit interrupts via the use of bit
28 of the instruction word. 1In any mode, asynchronous inter-
rupts encountered in mid-instruction are delayed until the
instruction is complete. (In fact interrupt sampling is done
only after an instruction pair completes execution, i.e.,
after most "odd" instructions.)

Page 6

SEGMENTATION ON THE H6180

This section describes the segmentation hardware of the H6180.
In most respects, the mechanism is quite similar to the H645
appending hardware with the addition of some refinements to
improve the performance of the system software. The single
substantial deviation from the H645 specification is the addi-
tion of hardware to implement the Multics protection ring
mechanism.

1. The Descriptor Segment Base Register (DSBR)

As in the H645 the base of the descriptor segment is located
through the DSBR which on the H6180 specifies the following
information.

ADDR BND U STACK

DSBR.ADDR specifies the full 24-bit address of the first
double word of either a page table (for a paged
descriptor segment) or the first location of the

descriptor segment itself (for an unpaged descrip-

tor segment).

DSBR.BND specifies the highest 0 mod 16 descriptor segment
address which can be accessed without causing
an out of bounds fault.

DSBR.U specifies whether the descriptor segment is paged
(= 0) or unpaged (= 1).

DSBR.STACK is used in conjunction with the new CALL6 instruc-
tion. Whenever the H6180 processes a CALL6 instruc-

tion which requires the processor to switch to an

inner ring (an inward call), the segment number of

the stack for the inner (target) ring is computed

by concatenating DSBR.STACK to the left of the ring

number of the target ring. For example, if
DSBR.STACK is 57 (octal) and the target ring is

3, the H6180 will compute the segment number of the

stack for the target ring as 573 (octal). This
facility is required to allow ring crossing to

be fully automatic and places certain requirements

on the segment numbers assigned to segments used
as stacks.

Page 7

2. The Segment Descriptor Word (SDW)

As in the H645 each segment (when active in main storage and
known to a process) is described to the processor by a segment
descriptor word (SDW) which is located by using the segment
number of the segment as an index into the descriptor segment

of the process.

To accomodate the hardware-implemented ring

crossing and argument validation and other changes, the SDW
has been extended to the 72-bit double word described below.

word O

ADDR Rr1 [r2|R3|F|FC|

word 1 [X| BOUND R|E|w|P|U]| cL |

SDW.ADDR (0-23)

SDW.R1 (24-26)

SDW.R2 (27-29)

SDW.R3 (30-32)

SDW.F (33)

SDW.FC (34-35)

SDW.BOUND (1-14)

Is a full 24-bit absolute address and specifies
the core address of either a page table (for a
paged segment) or the first location of an
unpaged segment.

Specifies the highest ring number of the read/write
bracket for this segment (0-Rl, see (3) on rings
and ring brackets).

Specifies the highest ring number of the
read/execute bracket of this segment (R1-R2,
see (3)).

Specifies the highest ring number of the call
bracket of this segment ((R2+1) - R3, see (3)).

Is a directed fault indicator and if off (= 0)
specifies that the processor is to execute the
directed fault specified in the FC field (see
below) .

Indicates (if F is off) which of the 4 directed
faults (DFO0-DF3) the processor is to execute.
(Note that the 645 provided for 8 directed faults.)

Is the boundary field and indicates the highest
l6-word block of the segment which can be addressed
without causing an out-of-bounds fault. If the
high order 14 bits of an address to this segment
is greater than the value of the boundary field,
an out-of-bounds fault is generated. (The
boundary field could be maintained to the nearest
word but special checks would have to be made

for instructions which reference two or more
continguous words.) A boundary field of 14

bits is chosen because some instructions (e.g.,
the new version of STB) reference up to 16
contiguous words. A further implication is that
the software is expected to allocate unpaged
segments on a zero mod 16 word boundary.

SDW.R (15)

SDW.E (16)

SDW.W (17)

SDW.P (18)

SDW.U (19)

Page 8

Is the read-permit indicator. Data fetches

by other segments are permitted to this segment
only if this indicator is on (= 1) and if the
processor is executing in a ring less than or
equal to R2 (i.e., within the read/write or
read/execute bracket, see (3)).

Is the execute-permit indicator. Instruction
fetches from this segment are permitted only
if this indicator is on (= 1) and if the proces-
sor is executing in a ring greater than or
equal to Rl and less than or equal to R2 (i.e.,
within the read/execute bracket, see below).
Note that when the E indicator is on and the R
indicator is off, the segment is to be treated
as an "execute-only" procedure segment. An
execute-only procedure segment is permitted

to reference data within itself (i.e., within
the same segment) in spite of the lack of the
read indicator. However, read permission is
denied to other segments. (Note: targets of
XEC and XED instructions can exist in segments
with only the R bit on.)

Is the write-permit indicator. Attempts to store
into this segment are honored only if this indicator
is on (= 1) and if the processor is executing in

a ring less than or equal to Rl (i.e., within

the read/write bracket, see below).

Is the privileged mode indicator. If this indica-
tor is on (= 1) and if the processor is executing
in ring 0, the procedure segment is permitted to
execute privileged instructions and inhibit
interrupts under control of bit 28. Privileged
procedures need no further powers and are subject
to all other access checking (read, write permis-
sion bounds checking, etc.). Since privileged
procedures can only be executed in ring 0, it is
no longer necessary to limit calls to privileged
procedures to enter via word 0 of the segment.

Indicates whether the segment is paged (= 0) or
unpaged (= 1). If the segment is unpaged, ADDR

is the full absolute address of the first word
(word 0) of the segment. If the segment is paged,
ADDR is the full absolute address of the beginning
of the page table for the segment.

Page 9

SDW.G (20) Is the gate indicator and if off (= 0) any
call to this segment from a different segment
must be directed to an address value less
than the value of the CL field (see below).

SDW.CL (22-35) Is the call limiter. If G is off any external
transfer to this segment via the new CALL6
instruction (described below) must be directed
to a word number less than the value of this
field.

3. Rings and Ring Brackets

A Multics process consists of procedure and data segments which are
all directly addressable through the descriptor segment of that
process. However, a process may only access a segment when the
process is running at an appropriate level of privilege. For example,
all of the segments of the hardcore supervisor are shared and
accessible to all Multics processes but only when executing at the
highest level of privilege.

The Multics system allows segments to be grouped into an ordered
set of collections called rings in which segments requiring the
highest level of privilege to reference can only be accessed from
within the innermost ring of the set. Each ring is identified
with a ring number designating the required level of privilege
necessary to access segments in that ring. In Multics, the ring
with the highest privilege is ring 0 which contains the procedures
and data bases of the hardcore supervisor. Each user process

has at least two rings, one for the hardcore supervisor and one
for user programs and data. The user process may generate more
rings (levels of lesser privilege) if desired.

Frequently, it is useful to allow a segment to be accessible in
more than one ring. For example, it is often useful for a data
base which is writeable in an inner ring to be readable in an
outer ring. For this reason, the concept of ring brackets were
introduced.

The access of a user to a specific segment is controlled by two
quantities: the access attributes (e.g., read, execute, write)

and the ring brackets. The ring brackets of a segment are speci-
fied by three integers (R1l, R2 and R3) each of which must be

greater than or equal to the preceding number. The first number

(R1l) specifies the top (highest ring number) of the read/write
bracket, the second number (R2) specifies the top of the read/execute
bracket and the last number (R3) specifies the top of the call
bracket.

3.1

3.3

Page 10

The Read/Write Bracket (Rings 0-R1)

Attempts to read or write a segment by a procedure
executing in a ring within the read/write bracket are
allowed if the appropriate (read or write) access indica-
tors are on for the segment being referenced. Execution
of a procedure in a ring within this bracket is permitted
only at the top of the read/write bracket (Rl) which is
also the bottom of the read/execute bracket. Note that
the highest ring from which a segment can be written is
specified by Rl. As a result, the data in the segment

is no more reliable than the procedure segments which
operate in that ring.

The Read/Execute Bracket (Rings R1-R2)

Attempts to read or execute (transfer to) a segment by

a procedure executing in a ring within the read/execute
bracket are allowed if the appropriate (read and execute)
indicators are on for the segment being referenced.
Writing of a segment within its read/execute bracket

is permitted only from the ring at the bottom of the
bracket (Rl) which is also the top of the read/write
bracket. If R2 is equal to Rl the read/execute bracket
specifies a single ring (Rl).

The Call Bracket (Rings (R2 + 1) - R3)

Attempts to call a (procedure) segment from another
segment executing in a ring above the read/execute
bracket, but within the call bracket of the procedure
to be called, are allowed if the execute indicator of
the procedure to be called is on and if the new CALL6
instruction (described below) is used. When the CALL6
instruction is directed to a procedure in an inner ring
which has the appropriate execute access and call
bracket, the processor will automatically switch to the
ring specified as the R2 of the procedure being called.
The call bracket and the CALL6 instruction are the only
means (except for faults) by which control can be passed
from an outer ring to an inner (more privileged) ring.
If R3 is equal to R2, the call bracket is null and the
procedure cannot be called from an outer ring.

Summarx

Assuming that the appropriate (read, execute or write)
indicators are on, the following list summarizes the
effects of the three ring brackets.

Page 11

3.4.1 Writing is permitted from a ring within the
read/write bracket only (i.e., if ring<Rl).

3.4.2 Reading is permitted from a ring within the
read/write bracket or the read/execute bracket
(i.e., ring<R2).

3.4.3 Execution (or transfer of control) is permitted
only from a ring within the read/execute bracket
(i.e., Rl<ring<R2).

3.4.4 Calling (via CALL6 only) is permitted from a ring
within the read/execute or call brackets (i.e.,
Rl<ring<R3).

3.4.5 The CALL6 instruction is the only instruction
which may be used to access a segment in a ring
within its call bracket (i.e., R2<ring<R3).

3.4.6 No access is permitted to a segment from a ring
higher than the call bracket (i.e., ring>R3).

4. Processor Address Registers

Like the 645, the H6180 processor has 10 address or pointer registers

(PR's) . Eight of these pointer registers can be directly accessed
and modified by the software, one is used to locate the current
instruction and one is used exclusively by the processor for effec-
tive address calculations. Unlike the 645, each of the eight
program addressable pointer registers specifies a full segmented
address including the segment number and the word number in a
single pointer register.

4.1 The Procedure Pointer Register

The procedure pointer register (PPR) is used by the proces-
sor to locate the current instruction and may be modified
by the software to effect a transfer of control. The PPR
is actually an extension of the PBR and IC of the 645. The
contents of the 36-bit PPR are outlined below.

PRR PSR IC

PPR.PRR (3 bits) Is the procedure ring register and specifies
the ring (level of privilege) in which the
processor is currently executing. PRR may be
set to a higher value only by an RTCD or RCU
instruction. It may be set to a lower value
only by a CALL6 instruction (see below) or by
a fault or interrupt.

Page 12

PPR.PSR (15 bits) Is the procedure segment register (same as

the PBR in the 645) and specifies the segment
number of the current procedure segment.

PPR.IC (18 bits) Is the instruction counter (same as in the 645).

4.2

The Temporary Pointer Register

The temporary pointer register (TPR) is used exclusively
by the processor for operand address calculations and
serves the same general purpose as the TBR and computed
address (CA) of the 645. It should be noted here that
the addition of multiple-operand instructions (e.g., for
string manipulation) requires additional TPR's (one for
each additional operand). The contents of the 42-bit TPR
are outlined below.

TRR TSR CA BITNO

TPR.TRR (3 bits) Is the temporary ring register and is used to

maintain the lowest level of privilege (i.e.,
highest ring number) encountered during oper-
and address calculation. The TRR is initialized
with the value of the PRR field of the PPR at
the beginning of each instruction. During the
operand address calculation, TRR is used to
record the highest value of SDW.R1 (the top of
the read/write bracket) of any segment used

in the address calculation. For example, if

an indirect address is fetched from segment X,
TRR is set to the larger of TRR (its current
value) and the Rl field in the SDW for segment
X. Note that during the operand address calcula-
tion, the value of TRR may get larger but never
smaller.

TPR.TSR (15 bits) Is the temporary segment register (same as the

TBR in the 645) and is initialized with the
value of the PSR field of the PPR at the
beginning of each instruction. During operand
address calculation, TSR contains the segment
number portion of the current address calcula-
tion.

TPR.CA (18 bits) Is the computed address and serves the same

function as the 645 register of the same name.
The computed address is initialized at the
beginning of each instruction with the contents
of the instruction counter of the PPR. During
operand address calculation, CA contains the
word number portion of the current address
calculation.

Page 13

TPR.BITNO (6 bits) Is a bit offset relative to the first bit in

the word specified by CA.

Once an operand address calculation is complete, the value
of TRR is compared with the ring brackets of the segment
containing the operand address to determine if the opera-
tion is to be allowed. For example, if the instruction
intends to store into this operand, the value of TRR must
be less than or equal to the Rl (in the SDW) of the segment
to be modified.

4.3 The Eight Pointer Registers
The H6180 processor contains eight program-accessible
pointer registers (PR's) which replace the 8 address
base registers (ABR's) of the 645. The PR's of the 6180
processor differ from the 645 base registers in that
each PR contains both a segment number and a word number
portion. In effect, each PR of the 6180 processor
behaves as a 645 base register pair. The contents of
each 42-bit PR is outlined below.
RN SEGNO WORDNO BITNO
RN (3 bits) Is used by the software to specify the level
of privilege (i.e., ring number) at which the
processor is to treat the address contained
in the address register. When the processor
uses the contents of a PR for address modifica-
tion (e.g., bit 29 in the instruction word is on)
the value of TRR is set to the larger of TRR
(its current value) and the RN field of the
specified PR. The use of the RN field of a PR
allows the software to save the TRR of an oper-
and address calculation (e.g., through the use
of an EPP (effective pointer to pointer, formerly
EAP) instruction.
SEGNO (15 bits) Specifies the segment number portion of the
segmented address.
WORDNO (18 bits) Specifies the word number portion of the segmented

address.

BITNO (6 bits) Specifies a bit offset relative to WORDNO.

Page 14

4.4 1ITS Pointers

The software may store the contents of a PR into an ITS
(indirect to segment) word pair with the use of an SPRI
(store pointer in ITS format, formerly STP) instruction.
The software may then address indirectly through the ITS
indirect word rather than using the original PR. Alter-
natively, the software may reload another PR from the
ITS word pair through the use of the EPP instruction.

In either case, it is necessary to save the value of the
RN of the PR in the ITS word pair so that the privilege
level of the original operand address calculation is not
lost. As a result, the ITS word pair is modified to
include a ring number field as outlined below.

SEGNO RN ITS
WORDNO BITNO MOD
SEGNO (3-17) Is the segment number field (as in the 645). Note

that bits 0-2 of the ITS word pair are set to zero
for compatibility with 645 programs expecting an
18-bit segment number in the upper half of the
first word.

RN (18-20) Is set to the value of the RN field of the PR during
the SPRI instruction. If the processor attempts to
indirect through an ITS word pair, TRR is set to the
larger of TRR, RN (of the ITS), and Rl of the seg-
ment containing the ITS. Note that an improper
value of RN in an ITS word pair has no ill effect
since the processor always takes the maximum of
TRR and RN. In other words, it is impossible for
an ITS word pair to specify a higher privilege
than the segment in which it resides.

ITS (30-35) Specifies the modifier code (octal 43) for the ITS
. modifier (same as in the 645).

WORDNO (0-17) Is the word number portion of the saved PR (same
as in the 645).

BITNO (21-26) Is the bit offset of the PR saved by the SPRI
instruction.

MOD (30-35) Is set to zero by the SPRI instruction but may be
set by the software to specify further address
modification (same as in the 645).

Page 15

Since most Multics compilers (notably PL/I) calculate
addresses via an EPP instruction, compiler-generated
code can take full advantage of the hardware protection
mechanism with little or no modification. If all
addresses of all input parameters are calculated and
saved (for use as outgoing argument pointers) via the
use of the EPP and SPRI instructions it will be possible
for a procedure operating in ring 1 to pass to ring 0

a parameter given to the procedure from ring 2 without
checking the address of the parameter. The access
checking is fully automatic as long as the TRR of the
original address calculation continues to be maintained
and passed along as the RN field of a PR or ITS word

pair.

The STCD (store control double) instruction has been
modified to store the PRR in the same manner as SPRI
stores the RN field of a PR. The PRR is stored by the
STCD to allow an RTCD (return control double) instruction
to return to the proper ring.

4,5 ITP Pointers

To accomodate the possibility of a bit offset, the
indirect word for ITP modification (called ITB on the
645) has been modified as follows.

| PRNUM ——— e B & 4

—

WORDNO BITNO MOD

PRNUM (0-2)

ITP (30-35)

WORDNO (0-17)

BITNO (21-26)

MOD (30-35)

Is the number of the PR to be used in the indirec-
tion.

Is the "Indirect Through Pointer" modifier (octal'
41, the same as for ITB in the 645).

Is added to the WORDNO field of the specified PR
during indirection to form a new computed address.

Is the bit offset which overrides the BITNO field
of the specified PR during indirection.

May specify further address modification.

Page 16

When an ITP modifier is found in the (even) word of an
indirect reference, a new effective address is computed
in the TPR as follows:

C(PRn.WORDNO) + C(ITP.WORDNO) + C(R) => TPR.CA
C(PRn.SEGNO) => C(TPR.TSR)

C(ITP.BITNO) => C(TPR.BITNO)

MAX (PRn.RN,SDW.R1,TPR.TRR) => C(TPR.TRR)

where PRn is ITP.PRNUM. Further indirection is possible
if ITP.MOD so indicates. C(R) is specified by a previous
IR tag.

5. The CALL6 Instruction

The new CALL6 instruction is provided as the only means by which

a procedure segment may call a procedure in an inner ring (i.e.,

set PRR to a lower value). The CALL6 instruction is to be used in
all standard inter-procedure calls and is intended to replace the
transfer instruction as the last instruction of the standard Multics
calling sequence.

The "6" of the CALL6 instruction specifies that the pair of pointer
registers (6-7) is to be involved in the execution of the CALLS6.
(This use of a pair of PR's involves two full PR's (RN, SEGNO,
WORDNO, and BITNO) and should not be confused with a 645 base regis-
ter pair.) When the CALL6 instruction is used to transfer control
to another ring, the segment number of the stack for the target
ring is formed by concatenating DSBR.STACK to the left of the ring
number of the target ring. The CALL6 instruction behaves as a

TRA (transfer) instruction with the following exceptions.

5.1 The access checking for a CALL6 instruction allows PRR to
be set to a lower value provided that the call is made
from a ring within the call bracket of the target segment.

5.2 If an attempt is made to call a procedure in an outer
ring (a relatively rare case) an access violation occurs.
Due to the necessity of copying all arguments the standard
call, save and return sequences cannot handle calls to
outer rings without excessive software overhead. There-
fore, calls to outer rings' procedures will continue
to cause a fault to allow the system software to interpret
the call.

5.3 At the beginning of the CALL6, the contents of PR6 are
assumed to point to a location (i.e., the current stack
frame) within the stack segment of the calling ring.
During execution of the CALL6, the processor sets the
contents of PR7 to point to word 0 of the stack segment
of the target ring in one of two ways. (TPR.TRR contains
the target ring number.)

5.3.1

5.3.3

Page 17

If the call is to a procedure in the same ring
PR7 is set to point to word zero of the current
stack segment as follows.

PR6.SEGNO => PR7.SEGNO
00...00 => PR7.WORDNO, PR7.BITNO
TPR.TRR => PR7.RN

If the call is to an inner ring (TPR.TRR<PPR.PRR)
PR7 is set to point to word 0 of the stack seg-
ment of the target ring as follows.

DSBR.STACK| | TPR.TRR => PR7.SEGNO
00...00 => PR7.WORDNO, PR7.BITNO
TPR.TRR => PR7.RN

If an attempt is made to use CALL6 to transfer

to an outer ring (TPR.TRR>PPR.PRR) an access
violation fault will be generated. The only

way control can be transferred to an outer ring
is via the RTCD (Return Control Double) instruc-
tion (i.e., the hardware only permits inward
calls and outward returns). Calls to outer rings
can of course be hand coded to look like outward
returns to the hardware.

Page 18

The H6180 INSTRUCTION SET

The instruction set of the H6180 processor is basically a merger

of the 645 and H6080 instruction sets with several new instructions
added for dealing with the extended pointer (address) registers of
the H6180 processor. The definition of the H6180 instructions set
is constrained to meet two distinctly different objectives. The
first objective is to provide H6080 object code compatibility
sufficient to allow the running of complete H6080 operating systems
(e.g., GCOS) on a stand-alone basis and to allow the efficient
operation of H6080 slave programs under Multics. The second
objective is to maintain sufficient compatibility with H645 object
code to allow Multics, with minimal software changes, to run
effectively on both the current H645 and the H6180 processors.

l. Compatibility of Pointer Registers with 645 Address Base Registers

The H6180 processor contains eight pointer registers (PRs) in place
of the eight address base registers (ABRs) of the H645. By Multics
convention, the ABRs of the 645 are always used as four
internal/external ABR pairs. The control fields are set so that
ABRO/ABR1, ABR2/ABR3, ABR4/ABR5, and ABR6/ABR7 function as "pointer
registers," each capable of holding a complete word number/segment
number address. By convention, the even-numbered ABR's are used

as the internal ABR of the pair. Each PR on the H6180 processor
behaves like a 645 ABR pair, and can hold a complete segmented
address. This doubling of the number of pointer registers makes
code generation by the language translators more straightforward,
and makes it possible to produce object programs that are more
efficient. It means, however, that a careful mapping of 645 ABR-
manipulating order codes to the H6180 processor was required to
maintain upward compatibility of object programs.

Two aspects of the compatibility problem must be considered: the
use of these registers in the formation of instruction operand
addresses, and the effect of instructions which manipulate them.

ABR-relative addressing is specified on the H645 by setting bit 29
of an instruction word to "1" and placing an ABR number in the seg-
ment tag field of the instruction (bits 0-2). The operand address
calculation depends on whether the segment tag names the internal
or the external ABR in a pair. If it names the internal ABR in some
pair (i.e., 0, 2, 4, or 6), then both the word number from that
ABR and the segment number from the paired external ABR participate
in the formation of the operand address for the instruction. The
effect is addressing relative to the complete address in the
"pointer register" formed by the pair. If the segment tag names
the external ABR in some pair (i.e., 1, 3, 5, or 7), then only

the segment number from that external ABR is used and a word number
of zero is assumed. The effect is addressing relative to the
beginning of the segment since the word number portion in the
internal ABR is ignored.

Page 19

These two uses of ABR-pair "pointer registers" in operand address
formation are possible because two ABR numbers are associated
with each of the four "pointer registers" formed by pairs. Because
there is not enough room in an instruction word to increase the
size of the segment tag from three to four bits, only one number
can be associated with each PR of the H6180 processor. Thus,
addressing relative to the beginning of a segment through a PR
which points to an arbitrary word within that segment is no
longer possible. To address relative to the beginning of a seg-
ment on the H6180 processor a PR must first be explicitly loaded
with a pointer to it, i.e., with the complete address of word
zero of the segment.

To maintain upward compatibility of object programs, it was neces-
sary to be able to construct object code that will do addressing
relative to the beginning of a segment through a "pointer register"
which will execute properly on both the H645 and the H6180 processor.
The mapping of 645 ABR-manipulating order codes to the H6180
processor defined below shows how this goal was met with code that
executes efficiently on both machines.

The second aspect of the compatibility problem was the effect of
instructions which manipulate ABR-pair "pointer registers"” on the
645. These instructions may also be applied to either the internal
or the external ABR in a pair. Generally, the effect of the
instruction on the "pointer register" formed by the pair is differ-
ent in the two cases. For example, the "Add to Address Base Register
n" (ADBn) instruction has the different effects of adding to the

word number and adding to the segment number in the "pointer register"
formed by the pair, depending on whether the internal or external

ABR of the pair is specified as "n", respectively. The other 645
instructions with this property are EABn, EAPn, LBRn, SBRn, STPn,

and TSBn. In cases where both functions performed by one of these
instructions are used by Multics, instructions are provided on the
H6180 processor to perform both on PRs. In several cases, however,
both functions are not used, and only one or the other is provided

on the H6180 processor. The same order code is used to represent

the same function on both machines in all cases.

Before proceeding to a description of the proposed order code map-
ping, it is necessary to define some notation. The term "effective
address" is used with respect to the H645 to mean the word number
from the complete address of the ultimate operand of an instruction.
Because Multics users think in terms of complete addresses, however,
there is a tendency for them to use this term to mean the complete
address of the operand, rather than just the word number from the
complete address. The "Effective Address to Pair n" (EAPn) instruc-
tion suggests this usage is also acceptable. To eliminate user
confusion on this matter, the following definitions are made: the
contents of the temporary pointer register (TPR) at the conclusion
of an operand address formation is called the effective pointer
(ep) . The ring number (TRR), segment number (TSR), word number
(CA), and bit number in the TRR are called the effective ring (er),
effective segment (es), effective address (ea), and effective bit
(eb) , respectively. The following diagram summarizes this notation.

Page 20

TER
[3
TRR TSR CA BITNO
— ~) - Je J ——)
L‘ er es ea eb
ep

The mapping of order codes for manipulating pointer registers can
now be considered. The PRs of the H6180 processor are numbered
PRO through PR7, and the order code mapping will associate PRO,
PR2, PR4, and PR6 with the ABRO/ABR1l, ABR2/ABR3, ABR4/ABR5, and
ABR6/ABR7 "pointer registers" of the 645, respectively. The 645
instruction set includes 59 order codes for manipulating paired
and unpaired ABRs. These are grouped as 10 mnemonic instructions.
They are mapped to 82 order codes grouped as 12 instructions

on the H6180 processor. The ten 645 instructions are considered
in alphabetic order.

ADBn - Add to Address Base Register n

Summary: C(Y),_ ;4 + C(ABRn) 4 _,4 => C(ABRn) 4 _,,

If n is even, then this instruction adds to the word number

in the internal ABR of a pair. If n is odd, then it adds to
the segment number in the external ABR of a pair. The first
function is used by Multics and is duplicated on the H6180
processor. The second function is meaningless with respect

to Multics and is not duplicated. The four order codes thus
freed are reused to provide the add-to-word-number function

for the four additional PRs on the H6180 processor. The result
is the H6180 processor instruction:

ADWPn - Add to Word Number Field of PRn (old ADBn order codes)

C(¥)4_y7 * C(PRn.WORDNO) => C(PRn.WORDNO)
00...0 => C(PRn.BITNO)

Page 21

EABn - Effective Address to Base n

Summary: EA => C(ABRn), ;-

If n is even, then this instruction replaces the word number in
the internal ABR of a pair with the effective address (word
number from the complete address) of the operand of the instruc-
tion. If n is odd, then it replaces the segment number in

the external ABR of a pair with the effective address. Both
functions are used by Multics. They provide the best way of
loading a pair with a complete address represented as a pair

of integers. For example, if a segment number is contained

in word "temp" as an integer and a word number is contained

in word "temp+l" as an integer, then the sequence:

ldaq temp place the integers in the A and Q
eab0 0,ql put second integer in internal ABR of pair 0/1
eabl 0,al put first integer in external ABR of pair 0/1

loads the ABRO/ABR1 "pointer register" with the complete address
represented by the segment number and the word number. Both
functions of the EABn instruction are provided on the 6180
processor. The order codes for EABO, EAB2, EAB4, and EAB6
become EAWP0, EAWP2, EAWP4 and EAWP6, respectively. This instruc-
tion, "Effective Address to Word Number Field of PRn", is
described below. New order codes are provided for EAWPl, EAWP3,
EAWP5, and EAWP7. The order codes for EABl, EAB3, EAB5, and
EAB7, become EASP0O, EASP2, EASP4, and EASP6, respectively. This
instruction, "Effective Address to Segment Number Field of

PRn", is described below. New order codes are provided for
EASP1, EASP3, EASP5, and EASP7. The mapping of, say, EABl to
EASPQ is correct, for EABl updates the segment number portion

of the ABRO/ABR1 "pointer reglster" and EASP0O does the same to
the corresponding PR (which is PR0O) of the H6180 processor.

With this mapping, the object form of the instruction sequence
given in the example above performs the same function on

both machines. A summary of these two H6180 processor instruc-
tion is:

EASPn - Effective Address to Segment Number Field of
PRn (EABl, 3, 5, 7 and 4 new codes)

EA => C(PRn.SEGNO)

EAWPn - Effective Address to Word Number Field of PRn
(EABO, 2, 4, 6 and 4 new codes)

EA => C(PRn.WORDNO)

EB => C(PRn.BITNO)

Page 22

EAPn - Effective Address to Pair n

Summary: If C(ABRn),, "1" then ES => C(ABRn), -

If C(ABRn),, = "0" then EA => C(ABRn),_,, and
ES => C(ABRm),_,. :

where "m" is the external ABR associated with
the internal ABRn

If n is even, then C(ABRn)21 = "0" will be true and this instruc-

tion replaces the word number/segment number in the ABRn/ABRn+l
"pointer register" with the word number and segment number from
the complete address of the operand of the instruction. If n
is odd, then C(ABRn)21 = "1" will be true and only the segment

number from the complete operand address replaces the segment
number in the specified external ABR of a pair. The first
function of the EAPn instruction is frequently used in Multics
object programs, and is provided on the H6180 processor. The
second function is infrequently used and is not duplicated on
the follow-on processor. Instead, the order codes for EAP1,
EAP3, EAP5, and EAP7 are used to solve the compatibility problem
caused by lack of room in which to expand the segment tag field
of an instruction from three bits to four bits to match the
increased number of pointer registers (see above in the introduc-
to this section).

Taking these ideas one at a time, the order codes for EAPO,
EAP2, EAP4, and EAP6 become EPPO, EPP2, EPP4, and EPP6, respect-
ively, on the H6180 processor. This instruction, "Effective
Pointer to PRn", is described below. New order codes are
provided for EPPl, EPP3, EPP5, and EPP7.

Next, before using the order codes of EAPl, EAP3, EAP5, and
EAP7 to provide a different function on the H6180 processor,

it must be shown that the function provided by them can be
duplicated with other instructions. Consider an example of the
occurrence of the instruction:

eap3 <operand > replace segment number in the 2/3 pointer
register with the segment number of
operand

This instruction can be replaced with three instruction sequence:

eaa ABR2|0 word number from 2/3 to au

eap?2 <operand> complete address of operand to the 2/3
pointer register

eab2 0,au replace word number with number saved in
au

Page 23

The same sort of thing could be done using one of the index
registers rather than the accumulator. Because the EAPn
instruction is very seldom used with n specified as odd, the
inefficiency of replacing one instruction with three is of
no concern. The order code for EAPn with n odd is used to
provide a different function on the H6180 processor.

The different function is one that is not provided by a single
instruction on the H645. The new instruction is EPBPn: Effect-
ive Pointer at Segment Base to PRn. The ring number and segment
number from the effective pointer at the instruction's operand
are placed in the RINGNO and SEGNO fields of PRn and the

WORDNO and BITNO fields are set to zero. This generates in

PRn a pointer at the beginning of the segment containing the
operand of the instruction. The order codes for EAPl, EAP3,
EAP5, and EAP7 are mapped to EPBPl, EPBP3, EPBP5, and EPBP7,
respectively. New order codes are provxded for EPBP0O, EPBP2,
EPBP4, and EPBP6. Note that the mapping here is dlfferent than
for the case of EABn for n odd. EABL mapped to EASPO, but

EAPl maps to EPBPl. The reason for this is so that the EPBPn
instruction can solve the compatibility problem. As has been
described, code sequences of the form (where n is even):

eapn <operand > pointer at operand to pair n/n+l

<opcode> ABRn+l |m,<modifier> reference relative to
the beginning of the
segment pointed into by
ABRn/ABRn+1l

will no longer work on the H6180 processor. (The object form
of the second instruction in the sequence will generate a
reference relative to PRn+l and the first instruction in the
sequence loaded PRn.) This sequence can be made to work on
both machines by lnsertlng a third instruction. The modified
645 instruction sequence is:

eapn <operand>

eapn+l ABRn|0 effectively does nothing on the 645

<opcode> ABRn+l|m,<modifier>

Page 24

On the H6180 processor the object form of the above sequence
is the same as that generated by the following sequence of the
H6180 processor instructions:

eppn <operand> pointer at operand to PRn
epbpn+l PRn|0 pointer at beginning of operand seg-
. ment to PRn+l

<opcode> PRn+l|m,<modifier> addressing relative to beginning
of segment

The effect of the sequence is the same on both machines and
although the mnemonics are different, the order codes used are,
in fact, the same. Thus, the strange mapping of the EAP1l, EAP3,
EAP5, and EAP7 instructions solves this problem of compatibility
between the 645 and the H6180 processor.

The two instructions for the H6180 processor generated from EAPn
are summarized as:

EPBPn - Effective Pointer at Segment Base to PRn (EAPl, 3,
5, 7, and 4 new codes)

er => C(PRn.RINGNO)

es => C(PRn.SEGNO)

00...0 => C(PRn.WORDNO), C(PRn.BITNO)

EPPn - Effective Pointer to PRn (EAPO, 2, 4, 6 and 4 new codes)
ep => C(PRn)

LBRn - Load Base Register n

Summary: C(Y) => C(ABRn)

0-23

This instruction manipulates single ABRs, and ignores the pairing
specified by the control fields. It is infrequently used and

is not duplicated on the H6180 processor. The order codes thus
freed are used for a new function on the H6180 processor: loading
a pointer register from a segment number and word number stored

in a single word as a "packed pair". This new instruction is
summarized below:

LPRPn - Load Pointer Register from Packed Pointer into PRn
(0ld codes for LBRn)

er => C(PRn.RINGNO)
C(Y)6-17 => C(PRn.SEGNO)
C(Y);g_35 => C(PRn.WORDNO)
C(Y)o_5 => C(PRn.BITNO)

Page 25
LDB - Load Bases

Summary : C(Y,Y+l,...,Y+7)o_23 => C(ABRO,ABR1,...,ABR7)

The analog of this instruction on the H6180 processor loads

the eight PRs from eight consecutive ITS pairs. The decision
to load from ITS pairs is made because each pointer register

is longer than 36 bits and thus requires two words of storage
in any case, and storing and loading the PRs from ITS pairs
allows the stored images to be used as indirect addresses. The
new instruction has the following summary:

LPRI - Load Pointers from ITS Pointers into Pointer Registers
(old LDB)

"lpri loc" is equivalent to the following sequence assuming
"loc" is the address (zero mod 16) of a vector of eight ITS

pairs:
epp0 loc, *
eppl loc+2,*
epp7 loc+14,*

LDCF - Load Control Field

This instruction has no use with respect to PRs, and is dropped.
The order code is freed for other use.

SBRn - Store Address Base Register n

This instruction is the inverse of the 645 LBRn instruction,
and is mapped to the inverse of the H6180 processor LPRPn instruc-
tion.

SPRPn - Store PRn in Packed Pointer format (old codes
for SBRn)

C(PRn.BITNO) => C(Y),_;
C(PRn.SEGNO) => C(Y),_,
C(PRn.WORDNO) => C(Y) o s

STB - Store Bases

This instruction is the inverse of the 645 LDB instruction and
is mapped to the inverse of the H6180 processor LPRI instruction.

Page 26
SPRI - Store Pointers Register in ITS format (old STB)

"spri loc" is equivalent to the following sequence assuming
"loc" is a zero mod 16 address:

sprio loc
spril loc+2
spri?7 loc+14

STPn - Store Pair n

Summary: If C(ABRn)21 = "0" then
C(ABRm) 5_,, => C(Y)y_y9+ 00...0 => C(Y) g 0297
ITS tag (100011) => c(Y)30_35
C(ABRn) ;_,, => C(Y+1)4 ;5,00...0 => C(¥+1l),g_35
If C(ABRn),, = "1" then
C(ABRn) o_,5 => C(¥)(34, 00...0 => C(¥),g ,q,
ITS tag (100011) => C(Y),,_ s
00...0 => C(Y+1)

where ABRm is the external base paired with ABRn and
Y is a zero mod 2 address.

This instruction is another of those with two functions, depending
whether the internal or external ABR of pair is specified by "n".
If n is even, then C(ABRn)21 = "0" will be true and the instruc-

tion causes the contents of the ABR pair "pointer register"

including this ABR to be stored as an ITS pair. The ITS pair
will contain the complete address from the pair. On the other
hand, if n is odd then C(ABRn)21 = "1" will be true and an ITS

pair is produced that contains only the segment number from the
specified external ABR in a pair and a word number of zero. Both
functions are provided on the H6180 processor. The order codes
for sTPO, STP2, STP4, and STP6 become SPRIO, SPRI2, SPRI4, and
SPRI6 on the H6180 processor, respectively. This instruction,
"Store Pointer from PRn" in ITS format, is described below. New
order codes are provided for SPRI1l, SPRI3, SPRI5, and SPRI7.

The order codes for STPl, STP3, STP5, and STP7 become SPBPO,
SPBP2, SPBP4, and SPBP6 on the H6180 processor. This instruction,
"Store Pointer at Segment Base from PRn", is described below.

New order codes are provided for SPBP1l, SPBP3, SPBP5, and SPBP7.
The mapping here is similar to the mapping described earlier for
the 645 EABn instruction.

Page 27

SPRIn - Store Pointer from PRn in ITS format (STPO, 2,
4, 6 and 4 new codes)

000 => C(Y)O_2

PRn,SEGNO => C(Y)3_17

PRn.RN => C(Y)18-20

00...0 => C(Y) 5 _og

ITS flag (100011l) => C(Y)3o_35

PRn.WORDNO => C(Y+1), ;.

00...0 => C(Y+l)18_20

PRn.BITNO => C(Y+l)21_26

00...0 => C(Y+1)27_35

SPBPn - Store Pointer at Segment Base from PRn (STPl1l, 3,
5, 7, and 4 new codes). Same as SPRIn except:

00...0 => C(Y+1)

TSBn - Transfer and Set Base n

Summary: If C(ABRn),; = "0" then C(IC) + 00...01 => C(ABRn)O_l7
C(PBR) => C(ABRm)O_l7, EA => C(IC) ,ES => C(PBR)

where n and m are the designated internal and linked
external ABR's, respectively

IF C(ABRn),; = "1" then C(PBR) => C(ABRn)O_l7,
EA => C(IC) ,ES => C(PBR)

Of the two functions performed by this instruction, only that
associated with n even is useful under Multics. The function
performed when n is odd is not duplicated on the H6180 processor.
The order codes thus freed are used to provide the first function
for the additional four PRs. Thus, the following instruction

is defined:

TSPn - Transfer and Set PRn (old TSBn order codes)

C (PRR) C (PRn.RINGNO)

C (PSR) C (PRn.SEGNO)
C(IC) + 1 => C(PRn.WORDNO)
000000 => C(PRn.BITNO)

es => C(PSR)

ea => C(IC)

>
>

Page 28

2. Other Modifications to the H645 Instruction Set

With the exception of the instructions discussed earlier and those
listed below, all H645 and H6080 instructions are interpreted by
the H6180 as specified in their respective processor manuals. The
instructions listed below have been modified from their H645
versions. Detailed instruction writeups of all modified unprivi-
leged instructions are provided in section 4.

LBAR - Load Base Address Register

This instruction causes a "635 Compatibility" fault on the
H645. On the H6180 the BAR is loaded with the specified
values. LBAR is an unprivileged instruction when the H6180
is in Multics mode but is privileged when the H6180 is in
GCOS (H6080) mode.

RCCL - Read Calendar Clock

The manner in which the processor port number is specified
by the RCCL is greatly simplified.

RET, STCl, STI, and LDI Instructions

These instructions have all been modified to deal with the
expanded number of indicators which are maintained in the
H6180.

RTCD and STCD Instructions

These instructions no longer save and reload the indicators
on the H6180. (Indicators are no longer saved accross a call
by the standard CALL, SAVE, and RETURN macros.) In addition
RTCD is modified to handle a return to an outer ring.

STAC - Store A Conditionally

This instruction is implemented using the limited read-alter-
rewrite (RAR) facility of the H6180. On the H645 an RAR instruc-
tion would delay any instruction until it completed its RAR
cycle. On the H6180 an RAR instruction will only delay other
RAR instructions but have no control over non-RAR instructions.

Page 29

TSS - Transfer and Set Slave

The TSS instruction allows an unprivileged user program to
enter Multics BAR mode and transfer to H600/6000 slave pro-
grams to be run in BAR mode within the Multics environment.

3. New Instructions

In addition to the EIS instructions the following new unprivileged
instructions have been added to the H6180.

EPAQ - Effective Pointer to AQ

The EPAQ instruction loads the full effective pointer (TRR,
TSR, WORDNO, and bit number) into the AQ in a form such that
each value is available for subsequent AU, AL, QU, or QL
indexing operations.

STACQ - Store A Conditional on Q

The STACQ instruction is designed as an eventual replacement
for STAC as a locking instruction. If the contents of the
operand word are equal to the contents of the Q register, the
A register is stored in the operand word and the zero indica-
tor is set on. Otherwise the operand is not modified and the
zero indicator is set off.

4. Writeups of New and Modified Instructions

This section gives detailed instruction write-ups of all new or
modified instructions with the exception of the EIS instructions
which are documented in standard Honeywell 6000 line publications.
Note that the H6000 line operation code field now includes bit

27 giving a 10-bit opcode field (600 line opcodes were restricted
to 9 bits, 18-26). In the instruction writeups the opcode is given
as XXX (Y) where XXX is the octal value of the first 9 bits of

the field and Y is 0 or 1 depending on the value of bit 27 in the
opcode. Thus the opcode for the H635 instruction LDA (H635 opcode
235) is written as 235 (0).

Page 30

ADWPn - Add to Word Register of PRn

Mnemonic Name of Instruction Op Code (octal)

ADWPn Add to Word Register of PRn 050 (0)

051 (0)
052 (0)
053 (0)
150 (0)
151 (0)
152 (0)
153 (0)

Summary: C(Y),_,5 + C(PRn.WORDNO) => C(PRn.WORDNO)

00 ... 00 => C(PRn.,BITNO)
The contents of memory location Y is added to the contents
of the WORDNO field of Pointer Register n and the result
replaces the contents of the WORDNO field. Zeros replace

the contents of the BIT field of Pointer Register n. The
rest of Pointer Register n remains unchanged.

Modifications: All except CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifications: CI, SC, SCR

Page 31

CALL6 - Call Instruction

Mnemonic Name of Instruction Op Code (octal)
CALL6 Call (using PR6-7) 713 (0)
Summary : C(TPR) => C(PPR)

where: if C(TPR.TRR) < C(PPR.PRR),
C(DSBR.STACK) || C(TPR.TRR) => C(PR7.SEGNO)
if C(TPR.TRR) = C(PPR.PRR), C(PR6.SEGNO) => C(PR7.SEGNO)
00 ... 00 => C(PR7.WORDNO)
00 ... 00 => C(PR7.BITNO)
C(TPR.TRR) => C(PPR.PRR)
C(TPR.TSR) => C(PPR.PSR)
C(TPR.CA) => C(PPR.IC)
C(TPR.TRR) => C(PR7.RN)

The SEGNO field of PR7 is replaced according to the TRR and
PRR fields (see above) and the effective ring number, segment
number and segment address replace the corresponding fields
of the procedure pointer register.

Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Note: If C(TRR) > C(PRR) an access violation fault is
initiated and the instruction is not executed.

Page 32

4.3 EASPn - Effective Address to Segment Number Field of PRn

Mnemonic Name of Instruction Op Code (octal)

EASPn Effective Address to Segment 311 (0)
Number Field of PRn 310 (1)
313 (0)
312 (1)
331 (0)
330 (1)
333 (0)
332 (1)

Summary : EA3_17 => C(PRn.SEGNO)

The least significant 15 bits of the effective address regis-
ter replaces the contents of the SEGNO field of Pointer
Register n. The rest of Pointer Register n remains unchanged.
Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Note: This and EAWPn replace the 645 Effective Address to
Base n instruction.

Page 33

EAWPn - Effective Address to Word/Bit Number Field of PRn

Mnemonic Name of Instruction Op Code (octal)

EAWPnN Effective Address to Word/Bit 310 (0)
Number Field of PRn 311 (1)

312 (0)
313 (1)
330 (0)
331 (1)
332 (0)
333 (1)

Summary: C(TPR.CA) => C(PRn.WORDNO)
C(TPR.BITNO) => C(PRn.BITNO)

The calculated address and bit number replaces the contents
of the word and bit number fields of Pointer Register n.

The remaining fields of Pointer Register n remain unchanged.
Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Note: This and EASPn replace the 645 Effective Address to
Base n instruction.

Page 34

EPAQ - Effective Pointer to AQ Register

Mnemonic Name of Instruction Op Code (octal)

EPAQ Effective Pointer to AQ Register 212 (0)

Summary: C(TPR) => C(AQ),, _ ;4

where:

00 ... 00 => C(aQ),_,
C(TPR.TSR) => C(AQ),_,

00 ... 00 => C(AQ)q_5,
C(TPR.TRR) => C(AQ)45_;:
C(TPR.CA) => C(AQ) 54 .

00 ... 00 => C(AQ) g, ¢
C(TPR.BITNO) => C(AQ) c¢ o,

Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected:

Zero If Cc(AQ) 0, then ON; otherwise OFF

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

4.6

Page 35

EPBPn - Effective Pointer at Base to PRn

Mnemonic Name of Instruction Op Code (octal)

EPBPn Effective Pointer at Base 350 (1)
to PRn 351 (0)

352 (1)
353 (0)
370 (1)
371 (0)
372 (1)
373 (0)

Summary: C(TPR.TRR) => C(PRn.RN)
C(TPR.TSR) => C(PRn.SEGNO)
00 ... 00 => C(PRn.WORDNO)
00 ... 00 => C(PRn.BITNO)

The ring number and segment number portion of the Effective
Pointer (TPR) replace the contents of the RN and SEGNO fields
of Pointer Register n. The contents of the WORDNO and BITNO
fields of Pointer Register n are forced to zero.
Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Note: This and EPPn replace the 645 Effective Address to
Pair n instruction.

Page 36

EPPn - Effective Pointer to PRn

Mnemonic Name of Instruction Op Code (octal)

EPPn Effective Pointer to PRn 350 (0)
351 (1)

352 (0)
353 (1)
370 (0)
371 (1)
372 (0)
373 (1)

Summary: C(TPR) => C(PRn)

C(TPR.TRR) => C(PRn.RN)
C(TPR.TSR) => C(PRn.SEGNO)
C(TPR.CA) => C(PRn.WORDNO)
C(TPR.BITNO) => C(PRn.BITNO)

The ring number, segment number, bit number, and computed
address of the Effective Pointer (TPR) replace the contents
of the RN, SEGNO, WORDNO and BITNO fields of Pointer Register
n.

Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Note: This and EPBPn replace the 645 Effective Address to
Pair n instruction.

Page 37

LBAR - Load Base Address Register

Mnemonic Name of Instruction Op Code (octal)

LBAR ' Load Base Address Register 230 (0)

Summary: C(Y),_ g => BAR.BASE
C(Y¥)g_y9 => BAR.BOUND

BAR.BASE is the high order 9 bits of an 18-bit relocation
constant (with 9 low order zeros) used to relocate effective
address calculations when the processor is placed in BAR
mode. BAR.BOUND specifies the number of 512-word logical
blocks within the simulated "core image." A reference to a
logical block above this bound will cause a store fault.

The LBAR instruction is unprivileged when executed while

the processor is in Multics mode.

Modifications: all except DU, DL, CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

" Page 38

4.9 LDI - Load Indicator Register

Mnemonic Name of Instruction Op Code (octal)

LDI Load Indicator Register 634 (0)

Summary: C(Y),g_34 = C(IR)

The relationship between C(Y),q 5, and the indicators is as

follows:

Bit Position C(Y) Indicator
18 Zero
19 Negative
20 Carry
21 Overflow
22 Exponent Overflow
23 Exponent Underflow
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
29 Truncation
30 Multi-Word Inst. Int.

Modifications: All except CI, SC, SCR
The tally runout indicator will reflect C(Y),g

regardless of what address modification is per-
formed on the LDI instruction for tally opera-
tions.

Indicators Affected:

barity Mask If corresponding bit in C(Y) is 1, and pro-
cessor is in Privileged Mode, then ON; other-
wise OFF. Indicator is NOT AFFECTED in the
Non-Privileged Mode.

Bar Mode Not affected

Absolute Mode Not affected

All other Indica- | If corresponding bit in C(Y) is ONE, then
tors ON; otherwise OFF.

Illegal Procedure Fault:
Modifications: ' SC, SCR, CI

Page 39

4.10 LPRI - Load Pointer Registers from ITS Pairs

Mnemonic Name of Instruction Op Code (octal)

LPRI Load Pointer Registers 173 (0)
from ITS Pairs

Summary: C(Y, Y + 2, ..., ¥ + 14)00_71 => C(PRO, PR1l, ..., PR7)

where:
MAX(Y+2n pair 18-20, SDW.R1l, TPR.TRR) => C(PRn.RN)
C(Y + 2n pair) ;_,- => C(PRn.SEGNO)
C(Y + 2n pair) 5. _c3 => C(PRn.WORDNO)
C(Y + 2n pair).,_., => C(PRn.BITNO)
Starting at location Y, the contents of eight word pairs (in

ITS pair format) replace the contents of Pointer Registers
0 thru 7 as shown. The hardware assumes Y14-17=0000 (zero

modulo 16) and addressing will be incremented accordingly.
No check is made. The contents of the ITS word pairs loaded
is unchanged.

Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Note: This replaces the 645 Load Base Register instruction.

4.11

LPRPn - Load Pointer Register n Packed

Page 40

Mnemonic Name of Instruction Op Code (octal)
LPRPn Load Pointer Register n Packed 76n (0)
Summary : C(Y)o_35 => C(PRn)
where:

C(TPR.TRR) => C(PRn.RNR)

c(Y) 0-5 => C(PRn.BITNO)

X| IC(Y)6_17 => C(PRn.SEGNO)

C(Y)yg_35 => C(PRn.WORDNO)
If the C(Y),_,, is all ones, X will be 111111; if C(Y). ;4

is not all ones, X will be 000000.

Modifications:

Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

All except DU, DL, CI, SC, SCR

4.12

Page 41

RCCL - Read Calendar Clock

Mnemonic Name of Instruction Op Code (octal)

RCCL - Read Calendar Clock - 633 (0)

C(Calendar Clock) => C(AQ),q_ 47
C(Y)o_2 specify which Processor Port is to be used.

The contents of the clock in one of the System Controllers
replaces the contents of the AQ register as shown. The
contents of the clock is unchanged. The contents of the
three most significant bits of the C(Y) specify which Proces-
sor Port (i.e., which System Controller) is to be used.

Modifications: All except DU, DL, CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Page 42

4,13 RET = Return

Mnemonic Name of Instruction Op Code (octal)

RET Return 630 (0)

Summary: C(Y),_ ;5 => C(IC); C(¥);q_ 35 => C(IR)

The contents of the location specified by Y replace the
contents of the Instruction Counter and Indicator Register.
The Tally Runout indicator reflects the state of C(Y)25

prior to address modification and is unaffected by any sub-
sequent modification performed on the RET instruction.

The relationship between C(Y)18-31 and the indicators are
as follows:

Bit Position C(Y) Indicator
18 Zero
19 Negative
20 Carry
21 overflow
22 Exponent Overflow
23 Exponent Underflow
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
28 Not (BAR Mode)
29 Truncation
30 Multi-word Inst. Int.
31 Absolute Mode

Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected:

Parity Mask Not affected

Bar Mode Not affected

Absolute Mode Not affected

All other Indica- If corresponding bit in C(Y) is 1, then
tors ON; otherwise OFF.

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Page 43

4.14 RTCD - Return Control Double

Mnemonic Name of Instruction Op Code (octal)

RTCD Return Control Double 610 (0)

Summary: C(Y pair) => C(PPR)
C(y pair)3_17 => C(PPR.PSR)

Max(C(Y)) g_5qs C(TPR.TRR), C(SDW.Rl,)) => C(PRR)
C(Y pair);¢_o; => C(PPR.IC)

If TPR.TRR>PPR.PRR, then TPR.TRR+PR0-7 .RN, other-
wise no change to RN

The contents of the word pair starting at location Y replaces

the contents of the procedure segment and ring number. The
hardware assumes Y17 = 0. No check is made. The contents of

the word pair starting at location Y is unchanged.
Modifications: All except DU, DL, CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Page 44

4.14 SPBPn - Store Segment Base Pointer of PRn

Mnemonic

Name of Instruction Op Code (octal)

SPBPn

Store Segment Base Point of PRn 250 (1)

Summary :

251 (0)
252 (1)
253 (0)
650 (1)
651 (0)
652 (1)
653 (0)

000 => C(Y pair), _ ,
C(PRn.SEGNO) => C(Y pair), _ 14
C(PRn.RN) => C(Y pair),g _ 59
00 ... 00 => C(Y pair)21 - 29
43g => C(Y pair) 35 _ 35

00 ... 00 => C(Y pair) 5, 4,

The ring number and segment descriptor number currently

in the Pointer Register n replace the contents of word

pair starting at location Y as shown. The hardware

assumes Yl7 = 0. No check is made. The contents of Pointer

Register n is unchanged.

Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Note: This and SPRIn replace the 645 Store Pair n instruction.

2N

4.15

Page 45

SPRI - Store Pointer Registers as ITS Pairs

Mnemonic Name of Instruction Op Code (octal)
SPRI Store Pointer Registers as 254 (0)
ITS Pairs

Summary: C(PRO, PR1l,...,PR7) => C(Y, Y+2,...,Y+l4)o - 71

where:

000 => C(Y+2n pair), _ ,
C(PRn.SEGNO) => C(Y+2n pair)3 - 17
C(PRn.RN) => C(Y¥+2n pair)18 - 20
00 ... 00 => C(Y+2n pair)21
438 => C(Y+2n pair)30 - 35
C(PRn.WORDNO) => C(Y+2n pair)36 - 53
000 => C(Y+2n pair)g, _ g¢
C(PRn.BITNO) => C(Y+2n pair)., _ 62
00 ... 00 => C(Y+2n pair) .3 _ 4;

- 29

Starting at location Y, the contents of Pointer Registers
0 - 7 replace the contents of eight word pairs (in ITS pair
format). The hardware assumes Y,, _ ;5 = 0000 and addressing

is incremented accordingly. No check is made. The contents
of the Pointer Registers are unchanged.

Modifications: All except DU, DL, CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Note: This replaces the 645 Store Bases instruction.

Page 46

4.16 SPRIn - Store Pointer Register n as ITS Pair

Mnemonic Name of Instruction Op Code (octal)
SPRIn Store Pointer Register n 250 (0)
as ITS Pair 251 (1)
252 (0)
253 (1)
650 (0)
651 (1)
652 (0)
653 (1)
Summary: C(PRn) => C(Y), _ 44
where:
000 => C(Y pair)o -2

C(PRn.SEGNO) => C(Y pair),

C(PRn.RN) => C(Y pair),g _ 2017
00 ... 00 => C(Y pair),; _ 59

43g => C(Y pair) 5, _ 35
C(PRn.WORDNO) => C(Y pair) 3. _ g3
000 => C(Y pair)g, _ 5¢
C(PRn.BITNO) => C(Y pair)57 - 62
00 ... 00 => C(Y pair) 5 _ 43

The contents of Pointer Register n replaces the contents of
the word pair (in ITS format) starting at location Y. The
hardware assumes Y17 = 0. No check is made. The contents

of the Pointer Register n are unchanged.
Modifications: All except DU, DL, CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Note: This and SPBPn replace the 645 Store Pair n instruc-
tion.

4.17

Page 47

SPRPn - Store Pointer Register n Packed

Mnemonic Name of Instruction Op Code (octal)

SPRPn Store Pointer Register n Packed 54n (0)

Summary: C(PRn) => C(Y),_ ;g

where:

C(PRn.BITNO) => C(Y), _
C(PRn.SEGNO) ;_;, => C(¥), _ ;4
C(PRn.WORDNO) => C(Y)18 - 35
The contents of Pointer Register n replace the contents of
location Y as shown. The contents of Pointer Register n are
unchanged.

Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

If the 3 most significant bits of C(PRn.SEGNO) # 000
and C(PRn.SEGNO) # to all one's (Null Pointer).

Note: This replaces the 645 Store Address Base Register
n instruction.

Page 48

SREG - Store Registers

Mnemonic Name of Instruction Op Code (octal)

SREG Store Registers 753 (0)

Summary: C(X0,X1l,...,X7,A,Q,E,TR) = C(Y,¥+1,...,Y+7)
where Y must be a 0 modulo 8 address.*

The contents of the Index (X0-X7), A, Q, E, and TR
registers are stored in successive locations beginning at
Y and ending at Y+7 in the following format:

C(X0) => C(Y)_i5 C(R) => C(Y+4) 3¢
C(X1) => C(Y),g_35 C(Q) => C(Y+3),_ 35
C(X2) => C(¥Y+1l), ;4 C(E) => C(Y+6), 5

C(X3) => C(Y+1l),4_35 00 ... 0 => C(Y+6),4_35
C(xX4) => C(¥Y+2),_;4 C(TR) => C(¥+7),_,¢
C(X5) => C(¥+2),45_35 00 ... 0 => C(Y+7) 59 _ 3,
C(X6) => C(Y+3),_44 C(RALR) => C(Y+7) 33 35

C(X7) => C(Y+3) g 3¢

Modifications: All except DU, DL, CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

*The hardware assumes Y;g ;4 = 000 and addressing is incremented

accordingly. No check is made.

Page 49

4.19 STAC - Store A Conditional

Mnemonic Name of Instruction Op Code (octal)

STAC Store A Conditional 354 (0)

Summary: Test C(Y) Then:

1) if C(Y) = 0, C(A) = C(Y), Zero indicator set ON
2) if C(Y) # 0, Zero indicator set OFF

If the initial C(Y) is non-zero then C(Y) are not changed
by this instruction.

Modifications: All types except DU, DL, CI, SC, SCR

Indicators Affected:

Zero If initial C(Y) = 0, then ON; otherwise OFF

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Page 50

4.20 STACQ - Store A Conditional on Q

Mnemonic Name of Instruction Op Code (octal)

STACQ Store A Conditional-C(Y)=C(Q) 654 (0)

Summary: Test C(Y) Then:

1) if c(Y) = c(Q), c(A) => C(Y), Zero indicator set ON
2) if Cc(Y) # C(Q), Zero indicator set OFF

If the initial C(Y) is # C(Q) then C(Y) are not changed by
this instruction.

Modifications: All types except DU, DL, CI, SC, SCR

Indicators Affected:

Zero If initial C(Y) = C(Q), then ON; otherwise OFF

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Page 51

4.21 STCl - Store Instruction Counter Plus 1

Mnemonic Name of Instruction Op Code (octal)

STC1 Store Instruction Counter plus 1 554 (0)

Summary: C(IC) + 0 ... 01 = C(Y),_;4
C(IR) => C(Y);g_3;
00 ... 0 = C(¥)5, 35

The contents of the Instruction Counter and the Indicator
Register are stored in C(Y)O__17 and C(Y)18—31 respectively

after modification. The C(Y)25 reflects the state of the

Tally Runout indicator prior to modification. The relation-
ship between the C(Y)18-31 and the indicators are as follows:

Bit Position C(Y) Indicators
18 Zero
19 Negative
20 Carry
21 Overflow
22 Exponent Overflow
23 Exponent Underflow
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
28 Not (BAR Mode)
29 Truncation
30 Multi-Word Inst. Int.
31 Absolute Mode

Modifications: All except DU, DL, CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifiations: DU, DL, CI, SC, SCR

Page 52

4,22 STCD - Store Control Double

Mnemonic Name of Instruction Op Code (octal)

STCD Store Control Double 357 (0)

Summary: C(PPR) => C(Y pair)
where:

000 => C(Y pair),_,
C(PPR.PSR) => C(Y pair),_,-
C(PPR.PRR) => C(Y pair)ls_20
00 ... 00 => C(Y pair)21__29
438 => C(Y pair)30_35
C(PPR.IC)+2 => C(Y pair)36_53

The procedure segments, ring number and the instruction
counter are stored in the word pair starting at location
Y as shown. The hardware assumes Yl7 = 0. No check is
made.

Modifications: All except DU, DL, CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Page 53

4.23 STI - Store Indicator Register

Mnemonic Name of Instruction Op Code (octal)

STI Store Indicator Register 754 (0)

Summary: C(IR) => C(Y)18-31

The contents of the Indicator Register are stored in C(¥)yg_31
after modification, but the C(Y)z5 reflects the state of the

Tally Runout indicator prior to modification. The relation-
ship between C(¥) .31 and the indicators are as follows:

Bit Position C(Y) Indicator
18 Zero
19 Negative
20 Carry
21 Overflow
22 Exponent Overflow
23 Exponent Underflow
24 Overflow Mask
25 Tally Runout
26 Parity Error
27 Parity Mask
28 Not (BAR Mode)
29 Truncation
30 Multi-Word Inst. Int.
31 Absolute Mode

Modifications: All except DU, DL, CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Page 54

4.24 TSPn - Transfer and Set PRn

Mnemonic Name of Instruction Op Code (octal)

TSPn Transfer and Set PRn 270 (0)
271 (0)
272 (0)
273 (0)
670 (0)
671 (0)
672 (0)
673 (0)

Summary: C(PPR) => C(PRn)
where:

C(PPR.PRR) => C(PRn.RN)
C(PPR.PSR) => C(PRn.SEGNO)
C(PPR.IC)+1 => C(PRn.WORDNO)
0 ... 00 => C(PRn.BITNO)
C(TPR.CA) => C(PPR.IC)
C(TPR.TSR) => C(PPR.PSR)

The contents of the procedure pointer register replace the
contents of Pointer Register n. The effective segment address
and a segment number (see above) replace the instruction
counter and segment number of the procedure pointer register.
Modifications: All except DU, DL, CI, SC, SCR

Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, CI, SC, SCR

Note: This replaces the 645 Transfer and Set Base n instruc-
tion.

Page 55
4.25 TSS - Transfer and Set Slave

Mnemonic Name of Instruction Op Code (octal)

TSS Transfer and Set Slave 715 (0)

Summary: EA => C(PPR.IC), C(TPR.TSR) => C(PPR.PSR)

The new Effective Address replaces the C(PPR.IC), and the
new Pointer in TPR.TSR formed during the Appending process
for the transfer address replaces C(PPR.PSR).

If this instruction is executed while in the Multics opera-
tional mode, then the Absolute indicator is turned off and
the Master Mode indicator will reset (BAR mode). The BAR is
then used in the final address preparation of the transfer
and will be applied to all subsequent instructions until a
fault or interrupt occurs.

If this instruction is executed with the Master Mode indicator
reset (in BAR Mode) then it functions as a TRA instruction.

Modifications: All except DU, DL, CI, SC, SCR
Indicators Affected: None

Illegal Procedure Fault:
Modifications: DU, DL, SC, CI, SCR

Page 57
APPENDIX A

Alphabetic H-6180 Instruction Listing (Includes EIS)

Instruction

502 (1) A4BD Add 4-bit character displacement to AR
501 (1) A6BD Add 6-bit character displacement to AR
500 (1) A9BD Add 9-bit character displacement to AR
560 (1) AARO Alphanumeric descriptor to ARO

561 (1) AAR1 Alphanumeric descriptor to ARl

562 (1) AAR2 Alphanumeric descriptor to AR2

563 (1) AARS3 Alphanumeric descriptor to AR3

564 (1) AAR4 Alphanumeric descriptor to AR4

565 (1) AARS Alphanumeric descriptor to AR5

566 (1) AAR6 Alphanumeric descriptor to AR6

567 (1) AAR7 Alphanumeric descriptor to AR7

503 (1) ABD Add bit displacement to AR

202 (1) AD2D Add using 2 decimal operands

222 (1) ADp3D Add using 3 decimal operands

212 (0) ABSA Absolute Address to Accumulator

075 (0) Apa Add to Accumulator

077 (0) ADAQ Add to A-Q

415 (0) ADE Add to Exponent Register

033 (0) ADL Add Low to A-Q

035 (0) ADLA Add Logical to Accumulator

037 (0) ADLAQ Add Logical to A-Q

036 (0) ADLQ Add Logical to Quotient

020 (0) ADLXO Add logical to Index
021 (0) ADLX1 Add Logical to Index
022 (0) ADLX2 Add Logical to Index
023 (0) ADLX3 Add Logical to Index
024 (0) ADLX4 Add Logical to Index
025 (0) ADLX5 Add Logical to Index
026 (0) ADLX6 Add Logical to Index
027 (0) ADLX7 Add Logical to Index
076 (0) ADQ Add to Quotient Register

050 (0) ADWPO Add to Word Number Field of PRO
051 (0) ADWP1l Add to Word Number Field of PR1
052 (0) ADWP2 Add to Word Number Field of PR2
053 (0) ADWP3 Add to Word Number Field of PR3
150 (0) ADWP4 Add to Word Number Field of PR4
151 (0) ADWPS Add to Word Number Field of PR5
152 (0) ADWP6 Add to Word Number Field of PR6
153 (0) ADWP?7 Add to Word Number Field of PR7

SNSoonmddswNhhH+-HO

060 (0) ADXO Add to Index O
061 (0) ADX1l Add to Index 1
062 (0) ADX2 Add to Index 2
063 (0) ADX3 Add to Index 3
064 (0) ADXx4 Add to Index 4
065 (0) ADX5 Add to Index 5
066 (0) ADX6 Add to Index 6
067 (0) ADX7 Add to Index 7

Page 58

Instruction

775 (0) ALR Accumulator Left Rotate

735 (0) ALS Accumulator Left Shift

375 (0) ANA And to Accumulator

377 (0) ANAQ And to A-Q

376 (0) ANQ And to Quotient

355 (0) ANSsA And to Storage Accumulator

356 (0) ANSQ And to Storage Quotient

340 (0) ANSXO And to Storage Index 0

341 (0) ANSX1 And to Storage Index 1

342 (0) ANSX2 And to Storage Index 2

343 (0) ANSX3 And to Storage Index 3

344 (0) ANSXx4 And to Storage Index 4

345 (0) ANSX5 And to Storage Index 5

346 (0) ANSX6 And to Storage Index 6

347 (0) ANSX7 And to Storage Index 7

360 (0) ANXO And to Index 0

361 (0) ANX1l And to Index 1

362 (0) ANX2 And to Index 2

363 (0) ANX3 And to Index 3

364 (0) ANX4 And to Index 4

365 (0) ANXS5 And to Index 5

366 (0) ANX6 And to Index 6

367 (0) ANX7 And to Index 7

054 (0) A0S Add One to Storage

540 (1) ARAO ARO to Alphanumeric Descriptor
541 (1) ARAl ARl to Alphanumeric Descriptor
542 (1) ARA2 AR2 to Alphanumeric Descriptor
543 (1) ARA3 AR3 to Alphanumeric Descriptor
544 (1) ARA4 AR4 to Alphanumeric Descriptor
545 (1) ARAS AR5 to Alphanumeric Descriptor
546 (1) ARA6 AR6 to Alphanumeric Descriptor
547 (1) ARA7 AR7 to Alphanumeric Descriptor
771 (0) ARL Accumulator Right Logical

640 (1) ARNO ARO to Numeric Descriptor

641 (1) ARN1 ARl to Numeric Descriptor

642 (1) ARN2 AR2 to Numeric Descriptor

643 (1) ARN3 AR3 to Numeric Descriptor

644 (1) ARN4 AR4 to Numeric Descriptor

645 (1) ARNS AR5 to Numeric Descriptor

646 (1) ARNG6 AR6 to Numeric Descriptor

647 (1) ARN7 AR7 to Numeric Descriptor

731 (0) ARS Accumulator Right Shift

055 (0) AsA Add Stored to Accumulator

056 (0) AsSQ Add Stored to Quotient

040 (0) ASXO0 Add Stored to Index 0

041 (0) AsSXl Add Stored to Index 1

042 (0) AsX2 Add Stored to Index 2

043 (0) ASX3 Add Stored to Index 3

044 (0) ASX4 Add Stored to Index 4

Page 59

Instruction

045 (0) ASX5 Add Stored to Index 5

046 (0) ASX6 Add Stored to Index 6

047 (0) ASXx7 Add Stored to Index 7

071 (0) AwcA Add with Carry to Accumulator
072 (0) AWCQ Add with Carry to Quotient

507 (1) AwWD Add Word Displacement to AR
505 (0) BCD Binary to Binary-Coded-Decimal
301 (1) BTD Binary to Decimal Convert

713 (1) CALL6 Call

532 (1) CAMP Clear Associative Memory Paged
532 (0) cCAaMS Clear Associative Memory Segmented
315 (0) CANA Comparative And With Accumulator
317 (0) CANAQ Comparative And With A-Q

316 (0) CANQ Comparative And With Quotient
300 (0) CANXO Comparative And With Index 0
301 (0) CANX1 Comparative And With Index 1
302 (0) CANX2 -Comparative And With Index 2
303 (0) CANX3 Comparative And With Index 3
304 (0) CANX4 Comparative And With Index 4
305 (0) CANXS Comparative And With Index 5
306 (0) CANX6 Comparative And With Index 6
307 (0) CANX7 Comparative And With Index 7
015 (0) cCIOC Connect I/0 Channel

405 (0) CMG Compare With Magnitude

211 (0) CMK Compare Masked

115 (0) CMPA Compare With Accumulator

066 (1) CMPB Compare Bit Strings

106 (1) cCMPC Compare Alphanumeric Character String
117 (0) CMPAQ Compare with A-Q

303 (1) CMPN Compare Numeric

116 (0) CMPQ Compare With Quotient Register
100 (0) CMPXO Compare With Index 0

101 (0) CMPX1 Compare With Index 1

102 (0) CMPX2 Compare With Index 2

103 (0) CMPX3 Compare With Index 3

104 (0) CMPX4 Compare With Index 4

105 (0) CMPX5 Compare With Index 5

106 (0) CMPX6 Compare With Index 6

107 (0) CMPX7 Compare With Index 7

215 (0) CNAA Comparative Not With Accumulator
217 (0) CNAAQ Comparative Not With A-Q

216 (0) CNAQ Comparative Not With Quotient

200 (0) CNAXO Comparative Not With Index
201 (0) CNAXl Comparative Not With Index
202 (0) CNAX2 Comparative Not With Index
203 (0) CNAX3 Comparative Not With Index
204 (0) CNAXx4 Comparative Not With Index
205 (0) CNAXS Comparative Not With Index
206 (0) CNAX6 Comparative Not With Index
207 (0) CNAX7 Comparative Not With Index

SNSNonnd W KO

Instruction
111 (0) cwL
060 (0) CsL
061 (0) CSR
477 (0) DFAD
427 (0) DFCMG
517 (0) DFCMP
527 (0) DFDI
567 (0) DFDV
433 (0) DFLD
463 (0) DFMP
473 (0) DFRD
577 (0) DFSB
457 (0) DFST
472 (0) DFSTR
616 (0) DIS
506 (0) DIV
002 (0) DRL
305 (1) DTB
437 (0) DUFA
423 (0) DUFM
537 (0) DUFS
207 (1) DV2D
227 (1) DV3D
507 (0) DVF
635 (0) EAA
636 (0) EAQ
311 (0) EASPO
310 (1) EASP1
313 (0) EASP2
312 (1) EASP3
331 (0) EASP4
330 (1) EASPS
333 (0) EASP6
332 (1) EASP7?7
310 (0) EAWPO
311 (1) EAWP1l
312 (0) EAWP2
313 (1) EAWP3
330 (0) EAWP4
331 (1) EAWPS
332 (0) EAWP6
333 (1) EAWP?
620 (0) EAXO
621 (0) EAX1
622 (0) EAX2
623 (0) EAX3
624 (0) EAX4
625 (0) EAXS
626 (0) EAX6
627 (0) EAX7
213 (0) EPAQ

Compare With Limits
Combine Bit Strings Left
Combine Bit Strings Right

Double
Double
Double
Double
Double
Double
Double
Double
Double
Double
Double

Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision
Precision

Floating
Floating
Floating
Floating
Floating
Floating
Floating
Floating
Floating
Floating
Floating

Page 60

Add

Compare Magnitude

Compare

Divide Inverted
Divide

Load

Multiply

Round

Subtract

Store

Store Round

Delay Until Interrupt Signal
Divide Integer

Derail

Decimal to Binary Convert

Double Precision Unnormalized Floating Add

Double Precision Unnormalized Floating Multiply
Double Precision Unnormalized Floating Subtract
Divide Using 2 Decimal Operands
Divide Using 3 Decimal Operands
Divide Fraction

Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective
Effective

Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Address
Pointer

to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to
to

Accumulator

Q
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Word
Word
Word
Word
Word
Word
Word
Word
Index
Index
Index
Index
Index
Index
Index
Index
A-Q

Nounnbdwhe=HO

Number
Number
Number
Number
Number
Number
Number
Number

Number
Number
Number
Number
Number
Number
Number
Number

Field
Field
Field
Field
Field
Field
Field
Field

Field
Field
Field
Field
Field
Field
Field
Field
of
of
of
of
of
of
of
of

of
of
of
of
of
of
of
of
PRO
PR1
PR2
PR3
PR4
PR5
PR6
PR7

PRO
PR1
PR2
PR3
PR4
PR5
PR6
PR7

Instruction

350 (1) EPBPO Effective Pointer at Base to PRO
351 (0) EPBP1 Effective Pointer at Base to PRl
352 (1) EPBP2 Effective Pointer at Base to PR2
353 (0) EPBP3 Effective Pointer at Base to PR3
370 (1) EPBP4 Effective Pointer at Base to PR4
371 (0) EPBPS Effective Pointer at Base to PRS
372 (1) EPBP6 Effective Pointer at Base to PR6
373 (0) EPBP7 Effective Pointer at Base to PR7
350 (0) EPPO Effective Pointer to PRO

351 (1) EPP1 Effective Pointer to PR1

352 (0) EPP2 Effective Pointer to PR2

353 (1) EPP3 Effective Pointer to PR3

370 (0) EPP4 Effective Pointer to PR4

371 (1) EPP5 Effective Pointer to PR5

372 (0) EPP6 Effective Pointer to PR6

373 (1) EPP7 Effective Pointer to PR7

675 (0) ERA Exclusive Or to Accumulator

677 (0) ERAQ Exclusive Or to A-Q

676 (0) ERQ Exclusive Or to Quotient

655 (0) ERSA Exclusive Or to Storage Accumulator
656 (0) ERSQ Exclusive Or to Storage Quotient
640 (0) ERSXO0 Exclusive Or to Storage Index 0
641 (0) ERSX1 Exclusive Or to Storage Index 1
642 (0) ERSX2 Exclusive Or to Storage Index 2
643 (0) ERSX3 Exclusive Or to Storage Index 3
644 (0) ERSX4 Exclusive Or to Storage Index 4
645 (0) ERSX5 Exclusive Or to Storage Index 5
646 (0) ERSX6 Exclusive Or to Storage Index 6
647 (0) ERSX7 Exclusive Or to Storage Index 7
660 (0) ERXO Exclusive Or to Index 0

661 (0) ERX1l Exclusive Or to Index 1

662 (0) ERX2 Exclusive Or to Index 2

663 (0) ERX3 Exclusive Or to Index 3

664 (0) ERX4 Exclusive Or to Index 4

665 (0) ERX5 Exclusive Or to Index 5

666 (0) ERX6 Exclusive Or to Index 6

667 (0) ERX7 Exclusive Or to Index 7

475 (0) FAD Floating Add

425 (0) FCMG Floating Compare Magnitude

515 (0) FCMP Floating Compare

525 (0) FDI Floating Divide Inverted

565 (0) FDV Floating Divide

431 (0) FLD Floating Load

461 (0) FMP Floating Multiply

513 (0) FNEG Floating Negate

573 (0) FNO Floating Normalize

471 (0) FRD Floating Round

575 (0) FsSB Floating Subtract

455 (0) FST Floating Store

470 (0) FSTR Floating Store Rounded

430 (0) FSzZN Floating Set Zero and Negative Indicators
774 (0) GTB Gray to Binary

Page 61

Instruction
760 (1) LARO
761 (1) LAR1
762 (1) LAR2
763 (1) LAR3
764 (1) LAR4
765 (1) LARS
766 (1) LAR6
767 (1) LAR7
463 (1) LAREG
230 (0) LBAR
335 (0) Lca
337 (0) LCAQ
674 (0) LCPR
336 (0) LCQ
320 (0) LCXO
321 (0) LCXxl
322 (0) LCXx2
323 (0) LCX3
324 (0) LCX4
325 (0) LCX5
326 (0) LCX6
327 (0) LCX7
235 (0) LDA
034 (0) LDAC
237 (0) LDAQ
232 (0) LDBR
411 (0) LDE
634 (0) LDI
236 (0) LDQ
032 (0) LDQC
627 (0) LDT
220 (0) LDXO
221 (0) LDX1l
222 (0) LDX2
223 (0) LDX3
224 (0) LDX4
225 (0) LDXS
226 (0) LDX6
227 (0) LDX7
777 (0) LLR
737 (0) LLS
467 (1) LPL
173 (0) LPRI
760 (0) LPRPO
761 (0) LPRP1l
762 (0) LPRP2
763 (0) LPRP3
764 (0) LPRP4
765 (0) LPRPS
766 (0) LPRP6
767 (0) LPRP?

Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load
Long
Long
Load
Load
Load
Load
Load
Load
Load
Load
Load
Load

ARO
ARl
AR2
AR3
AR4
AR5
ARG
AR7

Address Registers
Base Address Register
Complement into A
Complement into A-Q

Central Processor Registers
Complement
Complement
Complement
Complement
Complement
Complement
Complement
Complement
Complement

into
into
into
into
into
into
into
into
into

Accumulator
Accumulator and
A-Q Register
Descriptor Base
Exponent Register
Indicator Register
Quotient Register

Q and
Timer
Index
Index
Index
Index
Index
Index
Index
Index

NSOk Wwihe=O

Clear
Register

Left Rotate
Left Shift
Pointers and Lengths

Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer

Register
Register
Register
Register
Register
Register
Register
Register
Register

Q
Index

Index
Index
Index
Index
Index
Index
Index

NSOt wh KO

Clear

Register

From ITS
Packed
Packed
Packed
Packed
Packed
Packed
Packed
Packed

SNoounndsdbWwWwNNHO

Page 62

Page 63

Instruction

257 (1) LPTP Load Page Table Pointers

173 (1) LPTR Load Page Table Registers

774 (1) LRA Load Ring Alarm

073 (0) LREG Load Registers

773 (0) LRL Long Right Logical

733 (0) LRS Long Right Shift

257 (0) LSDP Load Segment Descriptor Pointers
232 (1) LSDR Load Segment Descriptor Registers
720 (0) LXLO Load Index 0 from Lower

721 (0) LXLl1 Load Index 1 from Lower

722 (0) LXL2 Load Index 2 from Lower

723 (0) LXL3 Load Index 3 from Lower

724 (0) LXL4 Load Index 4 from Lower

725 (0) LXL5 Load Index 5 from Lower

726 (0) LXL6 Load Index 6 from Lower

727 (0) LXL7 Load Index 7 from Lower

100 (1) MLR Move Alphanumeric Left to Right
001 (0) MME1l Master Mode Entry 1

004 (0) MME2 Master Mode Entry 2

005 (0) MME3 Master Mode Entry 3

007 (0) MME4 Master Mode Entry 4

206 (1) MP2D Multiply Using 2 Decimal Operands
226 (1) MP3D Multiply Using 3 Decimal Operands
401 (0) MPF Multiply Fraction

402 (0) MPY Multiply Integer

101 (1) MRL Move Alphanumeric Left to Right
020 (1) MVE Move Alphanumeric Edited

300 (1) MVN Move Numeric

024 (1) MVNE Move Numeric Edited

160 (1) MVT Move Alphanumeric with Translation
660 (1) NARO Numeric Descriptor to ARO

661 (1) NAR1 Numeric Descriptor to ARl

662 (1) NAR2 Numeric Descriptor to AR2

663 (1) NAR3 Numeric Cescriptor to AR3

664 (1) NAR4 Numeric Descriptor to AR4

665 (1) NARS Numeric Descriptor to AR5

666 (1) NARG6 Numeric Descriptor to AR6

667 (1) NAR7 Numeric Descriptor to AR7

531 (0) NEG Negate Accumulator

533 (0) NEGL Negate Long

011 (0) NOP No Operation

275 (0) ORA Or to Accumulator

277 (0) ORAQ Or to A-Q

276 (0) ORQ Or to Quotient

255 (0) ORSA Or to Storage Accumulator

256 (0) ORSQ Or to Storage Quotient

240 (0) ORSXO0 Or to Storage Index 0
241 (0) ORSX1l Or to Storage Index 1
242 (0) ORSX2 Or to Storage Index 2

Instruction
243 (0) ORSX3
244 (0) ORSXx4
245 (0) ORSX5
246 (0) ORSX6
247 (0) ORSX7
260 (0) ORXO
261 (0) ORX1
262 (0) ORX2
263 (0) ORX3
264 (0) ORX4
265 (0) ORXS
266 (0) ORX6
267 (0) ORX7
776 (0) QLR
736 (0) QLS
772 (0) QRL
732 (0) QRS
633 (0) RCCL
613 (0) RCU
630 (0) RET
233 (0) RMCM
560 (0) RPD
500 (0) RPL
520 (0) RPT
413 (0) RSCR
231 (0) RswW
610 (0) RTCD
522 (1) S4BD
521 (1) S6BD
520 (1) S9BD
740 (1) SARO
741 (1) SAR1
742 (1) SAR2
743 (1) SAR3
744 (1) SAR4
745 (1) SARS
746 (1) SAR6
747 (1) SAR7
440 (1) SAREG
203 (1) sB2D
223 (1) sB3D
175 (0) sSBA
350 (0) SBAR
177 (0) SBAQ
523 (1) SBD
135 (0) SBLA
137 (0) SBLAQ
136 (0) SBLQ

Page 64

Or to Storage Index
Or to Storage Index
Or to Storage Index
Or to Storage Index
Or to Storage Index
Or to Index
Or to Index
Or to Index
Or to Index
Or to Index
Or to Index
Or to Index
Or to Index
Quotient Left Rotate

Quotient Left Shift

Quotient Right Logical

Quotient Right Shift

Read Calendar Clock

Restore Control Unit

Return

Read Memory Controller Mask

Repeat Double

Repeat Link

Repeat

Read System Controller Registers

Read Switches

Return Control Double

Subtract 4-bit Character Displacement from AR
Subtract 6-bit Character Displacement from AR
Subtract 9-bit Character Displacement from AR
Store ARO

Store ARl

Store AR2

Store AR3

Store AR4

Store ARS

Store AR6

Store AR7

Store Address Registers

Subtract Using 2 decimal operands

Subtract Using 3 decimal operands

Subtract from Accumulator

Store Base Address Register

Subtract From A-Q

Subtract Bit Displacement from AR

Subtract Logical from Accumulator

Subtract Logical from A-Q

Subtract Logical from Quotient

Sovnt b Ww

NSO W - O

Instruction

120 (0) SBLXO Subtract Logical from Index 0

121 (0) sBLX1 Subtract Logical from Index 1

122 (0) SBLX2 Subtract Logical from Index 2

123 (0) SBLX3 Subtract Logical from Index 3

124 (0) SBLX4 Subtract Logical from Index 4

125 (0) SBLX5 Subtract Logical from Index 5

126 (0) SBLX6 Subtract Logical from Index 6

127 (0) SBLX7 Sbutract Logical from Index 7

176 (0) SBQ Subtract From Quotient

160 (0) SBXO Subtract From Index 0

161 (0) sBX1 Subtract From Index 1

162 (0) SBX2 Subtract From Index 2

163 (0) sSBX3 Subtract From Index 3

164 (0) sBx4 Subtract From Index 4

165 (0) SBX5 Subtract From Index 5

166 (0) SBX6 Subtract From Index 6

167 (0) sSBX7 Subtract From Index 7

120 (1) scp Scan Character Double

121 (1) SCDR Scan Character Double in Reverse
124 (1) scM Scan with Mask

125 (1) SCMR Scan with Mask in Reverse

452 (0) SCPR Store Control Processor Register
657 (0) SscuU Store Control Unit

154 (0) SDBR Store Descriptor Base Register
553 (0) sMCM Set Memory Controller Mask

451 (0) SMIC Set Memory Interrupt Cells

250 (1) SPBPO Store Segment Base Pointer of PRO
251 (0) sSpBP1 Store Segment Base Pointer of PRl
252 (1) SPBP2 Store Segment Base Pointer of PR2
253 (0) SPBP3 Store Segment Base Pointer of PR3
650 (1) SPBP4 Store SEgment Base Pointer of PR4
651 (0) SPBPS Store Segment Base Pointer of PR5
652 (1) SPBP6 Store Segment Base Pointer of PR6
653 (0) SPBP7 Store Segment Base Pointer of PR7
447 (1) SPL Store Pointer and Lengths

254 (0) SPRI Store Pointer Register as ITS

250 (0) SPRIO Store Pointer Register 0 as ITS
251 (1) SPRI1 Store Pointer Register 1 as ITS
252 (0) SPRI2 Store Pointer Register 2 as ITS
253 (1) SPRI3 Store Pointer Register 3 as ITS
650 (0) SPRI4 Store Pointer Register 4 as ITS
651 (1) SPRIS Store Pointer Register 5 as ITS
652 (0) SPRIG6 Store Pointer Register 6 as ITS
653 (1) SPRI17 Store Pointer Register 7 as ITS
540 (0) SPRPO Store Pointer Register 0 Packed
641 (0) SPRP1 Store Pointer Register 1 Packed
542 (0) SPRP2 Store Pointer Register 2 Packed
543 (0) SPRP3 Store Pointer Register 3 Packed
544 (0) SPRP4 Store Pointer Register 4 Packed
545 (0) SPRP5 Store Pointer Register 5 Packed
546 (0) SPRP6 Store Pointer Register 6 Packed
547 (0) SPRP7 Store Pointer Register 7 Packed

Page 65

Instruction
557 (1) SPTP
154 (1) SPTR
754 (1) SRA
753 (0) SREG
155 (0) ssa
057 (0) SSCR
557 (0) SSsDP
254 (1) SSDR
156 (0) SsQ
140 (0) sSsXo0
141 (0) ssXxl1l
142 (0) ssx2
143 (0) ssX3
144 (0) ssx4
145 (0) SSX5
146 (0) SSX6
147 (0) ssX7
755 (0) sTA
354 (0) STAC
654 (0) STACQ
757 (0) STAQ
551 (0) STBA
552 (0) STBQ
554 (0) STCl
750 (0) STC2
751 (0) STCA
357 (0) STCD
752 (0) STCQ
456 (0) STE
754 (0) STI
756 (0) STQ
454 (0) STT
740 (0) STXO
741 (0) STX1
742 (0) STX2
743 (0) STX3
744 (0) STX4
745 (0) STXS
746 (0) STX6
747 (0) STX7
450 (0) STZ
171 (0) swca
172 (0) SWCQ
440 (0) SXLO
441 (0) SXL1l
442 (0) SXL2
443 (0) SXL3
444 (0) SXL4
445 (0) SXLS
446 (0) SXLe6
447 (0) SXL7

Page 66

Store Page Table Pointers

Store Page Table Registers

Store Ring Alarm Register

Store Registers

Subtract Stored from Accumulator
Set System Controller Register
Store Segment Descriptor Pointers
Store Segment Descriptor Registers
Subtract Stored from Quotient
Subtract Stored from Index
Subtract Stored from Index
Subtract Stored from Index:
Subtract Stored from Index
Subtract Stored from Index
Subtract Stored form Index
Subtract Stored from Index
Subtract Stored from Index
Store Accumulator

Store A Conditional

Store A Conditional on Q
Store A-Q

Store 9 Bit Character of A
Store 9 Bit Character of Q
Store Instruction Counter + 1
Store Instruction Counter + 2
Store 6 bit Character of A
Store Control Double

Store 6 bit Character of Q
Store Exponent Register

Store Indicators

Store Quotient

Store Timer Register

Store Index
Store Index
Store Index
Store Index
Store Index
Store Index
Store Index
Store Index
Store Zero
Subtract with Carry from Accumulator
Subtract with Carry from Quotient

NoounbewN O

NOUds WO

Store Index 0 in Lower
Store Index 1 in Lower
Store Index 2 in Lower
Store Index 3 in Lower
Store Index 4 in Lower
Store Index 5 in Lower
Store Index 6 in Lower
Store Index 7 in Lower

Instruction
234 (0) S2ZN
214 (0) S2ZNC
064 (1) SzTL
065 (1) SZTR
164 (1) TCT
165 (1) TCTR
614 (0) TEO
615 (0) TEU
604 (0) TMI
604 (1) TMOZ
602 (0) TNC
601 (0) TNZ
617 (0) TOV
605 (0) TPL
602 (1) TPNZ
710 (0) TRA
603 (0) TRC
601 (1) TRTF
600 (1) TRTN
270 (0) TSPO
271 (0) TSPl
272 (0) TSP2
273 (0) TsSp3
670 (0) TSP4
671 (0) TSP5
672 (0) TSPeé
673 (0) TsSP7
715 (0) TSSs
700 (0) TSXO0
701 (0) Tsx1l
702 (0) TSX2
703 (0) TSX3
704 (0) TSx4
705 (0) TSX5
706 (0) TSX6
707 (0) TSX7
607 (0) TTF
606 (1) TTN
600 (0) TZE
435 (0) UFA
421 (0) UFM
535 (0) UFS
716 (0) XEC

717

(0)

XED

Set Zero
Set Zero
Set Zero
Left
Set Zero
Right

Page 67

and Negative Indicators
and Negative Indicators and Clear
and Truncation Indicators with Bit String

and Truncation Indicators with Bit String

Test Character and Translate
Test Character and Translate in Reverse

Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer

on Exponent Overflow

on Exponent Underflow

on Minus

on Minus or Zero

on No Carry

on Not Zero

on Overflow

on Plus

on Plus and Nonzero
Unconditionally

on Carry

on Truncation Indicator OFF
on Truncation Indicator ON
And Set Pointer Register
And Set Pointer Register
And Set Pointer Register
And Set Pointer Register
And Set Pointer Register
And Set Pointer Register
And Set Pointer Register
And Set Pointer Register
And Set Slave
And Set Index
And Set Index
And Set Index
And Set Index
And Set Index
And Set Index
And Set Index
And Set Index
On Tally Indicator Off
On Tally Indicator On
on Zero

NSounbdwhhHOoO

NoOoubkwNhH-HO

Unnormalized Floating Add
Unnormalized Floating Multiply
Unnormalized Floating Subtract

Execute

Execute Double

Q

Page 69

APPENDIX B

Map Bit 27=0

Operation Code

JTeH 3ybty JTeH 3391

4TI 10 Y 419 T T™0 TV (La9dT) | (9qudT) | (S4¥dT) | (vaudT) | (€d¥dT) | (zdudT) | (Ta¥dT) (oquat) |09y
OviLs 0Ls Y1S 11S oS 0oLs YOLS ZoLs LXLS 9X1LS SX1LS YXLS £XLS ZXLS IXLS 0XLS {0¥L
ST1 S0 STV sy S¥d s¥v LIXT 9IXT SIXT vIXT £IX1 (420,98 TIX1T 0IX1 | 0z
aax oax ssL (911YD) VaL LXSL 9XSIL SXSI yXSL £XSL ZXSL TXSL 0XSL |00/
oA ouda wad 4do1 (LdSL) (94S1L) (gds1) (pdsi) LX9d 9xXy¥a SxXyd yxyud Dt [4 ¢ kcd 9 &5k 0xX¥3 | 099
(nds) Os¥d | vsyd (Lagds) |(914ds) | (sd€ds) | (yI1uds) LXs9d 9xXsud sXsyud yxsua £Xsyua Zxsya TXSya 0XS¥d | 09
a1 ova g 101 (100Y) I3 LXVH 9xXVd SXVI Pxva £XVI TXvg XVa 0Xva | 029
AOL SsIa nayL 04y (ndy¥) (ao1y) dLL 1dL INL for: A ONIL ZNL, azL | 009
gsda asd ONJ AQdd AQd ady | 099
(dass) 10LS WOWS 0dLS YaLs yves (Lauds) | (9quds) | (sdauds) | (vauds) | (eduds) | (zduas) (1quds) (0d¥ds) | ovs|
sana sdn TOAN (SWYD) 94N Iadda Ia4 1d¥ | 02§
dWDJIa dWod 2aNd JAad AId aod 1a¥ | 00¢
avaa avd @iaa ¥Lsda Qyd ¥Lsd dWda dnd 09¥
LSda aLs Lsd ILS ddos JDINS ZLS L'IXS 9IXS STIXS vIXS €IXS TIXS TIXS 0IXS | OPbY)
viana van a1aa a1d NZSd OWOJIa OWOd wana Wan oz
Iav ¥osy aa1 R) e} XdW Jdn 004
DYNY ONV YNV (Lagad) (9ddd) | (sd€gad) (pdad) LXNY 9XNY SXNV YNV €XNY TXNY TXNY OXNY | 09¢
(adis) OSNV | V¥SNY | (OviLs) | (g£d€gdd) (zadd) | (1dddd) (044ad) LXSNY 9XSNV SXSNY PXSNY £XSNY ZXSNV TXSNY OXSNY | ov¢
Ovo1 001 vo1 (9dsva) | (9amvd) | (pasvd) | (vamvd) LXD1T 9X01 SXO1 X1 £X01T X1 X011 0XOT | 0Z¢
OUNYD | ONVYD | WNWD (zasvd) | (zdmvd) | (0dsvd) | (0dMvd) LXNYD 9XNVD SXNVYD ¥ XNVO €XNYD TXNVD TXNYD OXNYD | 00€
fo)'a3(s) o¥o w40 (€dSL) (zdasi) (Tdsi) (0dsi) LX¥0 9X40 SXA0 X490 £X90 X490 TX40 0X¥0 | 092
(ddsT) 0S¥0 | VsS40 | (Tuds) | (cdgds) | (z1uds) | (tdgas) | (oruas) LXS¥0 9XS40 $XS40 pXS™0 £XS¥0 ZXs90 TXS¥0 0XS¥0 | 0be
ova1 oan ¥a1 NZS WOW (9€9aT) MS¥ gveT LxXa1 9Xa1 $Xa1 yxa1 £Xa1 ZXa1 TXaT 0Xa1 | 02z,
OW¥YND | O¥ND | WUNO ONZS (Ovaa) (¥sav) MO LXVYND 9XVND SXVND ¥ XUYND E£XUND TXYND TXYND O0X¥ND | 002
ovas ogs vas| __ (T39d7) 0oMs YOMS LXdS 9xXds sxXds yxds £X4s ZXgs Xds 0X€s | 09T
0ss ¥SS| (¥9as) | (Lamav) | (94mav) | (sdmav) | (pamav) LXSS 9XSS GXSS ¥Xss £XSS ZXSs TXSS 0XSS |0vT
ovids | 01ds | vids LX1dS 9x14s $X1dS vX1ds £X119S ZX1gs TX19S 0X78S | 02T
O¥dWO | DdWd | VdwWd MO LXdWO 9XdWd SXdWD (2.Gi%) E€XdWD ZXdWd TXdWD 0XdWd | 00T
ovay oav vav Rty OoMY YOMY LxXav 9Xav $Xav yxav £XQv ZxXav xav 0Xavy {090
¥oss osv VSY SO¥| (€amav) | (zamav) | (Tamav) | (odmav) LXsy 9XSY SXSY XSy EXSY TXSY TXSY 0XSY | 0%0
owiav | otav | viav ovaT Tav 20aT Lx1av 9XIav SXTIAV yx1av £X1aY ZxX1av X1av 0X71av |0z0
201D zs1nd 1s10d dON (7 IWW) (€TWW) (ZIWR) T4a IWH 000

LT0 9T0 STO vT0 €10 Z10 1T0 010 LOO 900 S00 v00 €00 200 T00 000

¢

.&\

Page 71

APPENDIX C

Map B

Operation Code

JTeH 3IybTy JTeH 3391

(W) LYY 94V'1 SYVI yuvI €9V Zav1 TavT 0dVT | 09L
(41ds) (Was) L9YS 94VS SYUVS yuvs £YVS Zyvs THVS 04d¥S | O¥L
0zL
00
LN 9UYN SUUN PUUN £UYN TUYN TYYN 0¥YN | 099
. (L14dS) (94d4ds) (s19ds) |(vdads) LNV 9INIY SNIY YNNIV ENIY NIV NV ON¥Y | 0%9
029
NLL ZNdL ZOWL JINL NI¥L | 009
— LIy 9YVY SUVV 12504 4 €AYV [A:0s 4 TIVY 0¥YY | 09§
(d1ds) LEY IV | SWNV Y £V [ACA4 VY oOWIY | 0¥S
(dWeDd) ams ags agys ag9s ageés | 0ZS
amy agv agyy ag9v agey | 005
a1 OFUVT 09¥]
1ds OTIVS ovY
(1144
00¥
(Lddd) (ydgad) (sddd) | (vdedd) 09¢€
(€ddd) (zdg4d) (1a43) | (od€dd) ¥anda ovel
(Ldmvd) (Lds¥3) (sdmva) | (sdsva) 0zZ¢
(€dmvd) (€dsvd) (Tamvd) | (Tdsvd) q5d NaWo aLd NAKW | 00€
R — 092
(dLd'T) (aass) (€£14ds) (zdgds) (TIyds) | (odeds) (24
(4asT) acada acaw acgs acay 0ze]
azad azaw azsgs azav 00¢
(4147) qILOL IOL IAW | 09T
(41ds) 0¥%T]
UHOS WOS uans ass | ozt
DduWd TIW 4TW | 00T
gdnd ¥lL2S 1128 qsd IS0 | 090
00
ANAW IAW | 020
000

LTO 910 ST0 ¥10 €10 Z10 110 010 L00 900 S00 ¥00 €00 200 100 000

P

