LEVEL 68
MULTICS PROGRAMMER’'S MANUAL

SUBJECT
Introduction to Programming in the Multics Operating System Environment

SPECIAL INSTRUCTIONS

This manual presupposes some basic knowledge of the Multics operating system.
This information can be found in the 2-volume set, New Users’ Introduction to
Multics.

SOFTWARE SUPPORTED
Multics Software Release 8.0

ORDER NUMBER
AG90-02 - May 1980

Honeywell

PREFACE

The Multics Programmers' Manual (MPM) is the primary reference manual for
user and subsystem programming on the Multics system. The MPM consists of the
following:

Reference Guide Order No. AG91
Commands and Active Functions Order No. AG92
Subroutines Order No. AG93
Subsystem Writers' Guide Order No. AK92
Peripheral I/0 Order No. AXY49
Communications I/0 Order No. CC92

This document provides an introduction to programming in the Multics
environment. It is directed at persons who wish to develop programs which take
advantage of the special features of the Multics System. For example, accessing
of storage system segments and protocols for writing programs to be used as
commands are discussed.

This document assumes knowledge of programming, specifically, in the PL/I
language, 1in which all of its examples are coded. Only knowledge of (ANSI)
standard PL/I 1is assumed; PL/I idioms peculiar to Multics are pointed out and
discussed in the sample programs as they are encountered. The PL/I language as
implemented on Multics 1is defined by the Multics PL/I Language Specification
Order No. AG94. '

Throughout this manual, the term Multics 1is used to refer to the Multics
operating system.

Some general familiarity with the fundamental concepts and facilities of
the Multics system 1is assumed as a prerequisite to this material. This
information is available in the following publications:

New User's Introduction to Multics, Part I Order No. CH24
New User's Introduction to Multics, Part II Order No. CH25

C) Honeywell Information Systems Inc., 1980 File No.: 1L13

AG90-02

Section

Section

Section
Section
Section
Section
Section
Section

Index

=

o U

o

CONTENTS

Programming in the Multics Environment
Basic Addressing Techniques

Dynamic Linking . . .
Binding Related Subprograms

The Multies PL/I Compiler
Multics Debugging Tools
Performance Measurement Tools
A Simple Text Editor « « « . .
Absentee Facility . . . « ¢« « « o « « &
Large Files in Multics .

.

iii

Page

_
[}
—_

]
w —

AG90-02

SECTION 1

PROGRAMMING IN THE MULTICS ENVIRONMENT

A programmer may, if he wishes, treat Multics as simply a PL/I, FORTRAN,
APL, BASIC, COBOL, or Lisp machine, and contain his activities to just the
features provided in his preferred programming language. On the other hand,
much of the richness of the Multics programming environment involves use of
system facilities for which there are no available constructs in the usual
languages. To se these features, it is generally necessary to call upon
library and supervisor subroutines. Unfortunately, a simple description of how
to call a subroutine may give little clue to how it is intended to be used. The
purpose of this document is to illustrate typical ways in which many of the
properties of the Multics programming environment may be utilized.

The programmer choosing a language for his implementation should carefully
consider the extent to which he will want to go beyond his 1language and use
system facilities of Multics which are missing from his language. As a general
rule, each of the Multics language implementations matches some well-known
standard for completeness of that language (e.g., ANSI or 1IBM). However, in
going beyond the standard languages, the programmer will find that Multics tends
to be biased towards convenience of the PL/I programmer. For example, if a
programmer plans to write programs which directly call the Multics storage
system privacy and protection entries, he must supply arguments which are, in
PL/I, structures. If he is writing in FORTRAN or BASIC, he has no convenient
way to express such structures. Note that the situation is not hopeless,
however. Programs which stay within the original language can be written with

no trouble. Also, in many cases, a trivial PL/I interface subroutine can be
constructed, which is callable from, say, a FORTRAN program, and goes on to
reinterpret arguments and invoke the Multics facility desired. Using such

techniques, almost any program originally prepared for another system can be
moved into the Multics environment.

BASIC ADDRESSING TECHNIQUES

The most significant difference between the Multics programming environment
and that of most other contemporary computer programming systems lies in its
approach to addressing online storage. Most computer systems have two sharply
distinct environments: a resident file storage system in which programs are
created, and translated programs and data are stored, and an execution
environment consisting of a processor (actually allocated in short time bursts)
and a "core image", which contains the instructions and data for the processor.
Supervisor procedures provide subroutines for physically moving copies of
programs and data back and forth between the two environments.

In Multics, the 1line between these two environments has been deliberately
blurred, so as to simplify program construction: most programs need to be
cognizant of only one environment rather than two. This blending of the two
environments is accomplished by extending the processor/core-image environment.
In Multics, the share of the processor is termed a process, and the core image
is abstracted into what is called an address space. Each user when he logs in
is assigned one newly created address space, and a single process which can
execute in it.

1-1 AG90-02

A Multics address space is not like the usual core image, however: it is
larger, and it 1is segmented. A segment may be of any size between 0 and 256K
36-bit words and an address space may have a large number of segments -- a
typical Multics process has about 200 segments. (The hardware places a limit of
4094 distinct segments, but table sizes in the current software limit an address
space to a number closer to 2000.) Typically, each separately translated
program resides in a different segment; collections of data which are large
enough to be worthy of a separate name are placed in a segment by themselves.

The segment is also the wunit of storage of the Multics catalogued file
storage (the Multics storage system.) These two environments, distinct in many
other systems, are automatically mapped together on demand, by the Multics
virtual memory system. When a program already appearing in the current address
space calls to another one which is not yet there, a 1linkage fault occurs, the
supervisor locates the needed procedure, and maps it into the current address
space, assigning it some as yet unused segment number. Similarly, data segments
are mapped into the address space. This property eliminates the need for
explicitly programmed overlays, chain links, or memory loads, and also reduces
the number of explicitly programmed input and output operations.

In contrast to many other systems, this address space is retained
throughout the 1login session, and 1its contents gradually are increased as
different programs and data objects are accessed. (Facilities are also
available for starting over with a new address space, or removing items no
longer needed in the address space.) Finally, all supervisor procedures and
commands called by the user are mapped into the very same address space. Thus,
there 1is a great uniformity+ of access methods, to wuser-written programs, to
data, to library or supervisor programs, and to items never Dbefore used but
catalogued in the storage system.

As will be seen in the examples which follow, the effect of the mapping
together of these two environments can range from the negligible (programs can
be written as though there were a traditional two-environment system, if
desired) to a significant simplification of programs which make extensive use of
the storage system. We begin with seven brief examples of programs which are
generally simpler than those encountered in practice, but which illustrate ways
in which on-line storage is accessed in Multiecs.

1. Internal Automatic Variables. The following program types the word "Hello"
on four successive lines of terminal output:

a: procedure;
declare i fixed binary;
do i = 1 to u4;
put list ("Hello");

put skip;
end;
return; .
end a;
The variable 1i is by default of PL/I storage class "internal automatic": in
Multics it 1is stored in the stack of the current process and 1is available by
name only to program "a" and only until "a" returns to its caller. It is

declared binary for «clarity: although the default base for the representation
of arithmetic data is binary, according to the PL/I standard, as well as in
Multics PL/I, some other popular implementations have a decimal default. There
is no need for decimal arithmetic in this program, and binary arithmetic is
faster.

1-2 AG90-02

2. Internal Static Variables. The following program, each time it is called,
types out the number of times it has been called since its user has logged
in:)

b: procedure;
declare j fixed binary internal static initial(0);
J= 3+ 1;
put list (j, "calls to b.");
put skip;
return;
end b;

The variable j 1is of PL/I storage class "internal static"; in Multies it is

stored in b's static section and is available by name only to program b. I?s
value is preserved for the 1life of the process, or until procedure b is
recompiled, whichever time is shorter. The "initial™ declaration causes the

value of j to be initialized at the time this procedure is first wused in a
process.

3-4, External Static. Suppose we wish to set a value from one program and have
it printed by some other program in the same process:

c: procedure;
declare z fixed binary external static;
z = Ly
return;
end c;

d: procedure;
declare z fixed binary external static;
put list (z);
put skip;
return;
end d;

In both programs, the variable z is of PL/I storage class "external static"; in
Multics it is stored in a particular segment where all such variables are
stored, and is available to all procedures in a particular process, until the
process is destroyed. External static 1is analogpus to COMMON in FORTRAN, but
with the important difference that data items are accessed by name rather than
by relative position in a declaration. Multics calls such data items "external
variables". There are commands (for example, list_external_variables) to list,
reinitialize, and otherwise deal with all the external variables used by a
process.

Each variable which is accessed in this form generates a linkage fault the first
time it is used. Later references to the variable by the same procedure in that
or subsequent calls do not generate the fault. A more complete discussion of
dynamic linking appears in a later section of this document.

5. Direct Intersegment References. The following program prints the sum ofp
the 1000 integers stored in the segment w: ’

e: procedure;
declare w$(1000) fixed binary external static;
declare (i, sum) fixed binary; .
sum = 0O;
do i = 1 to 1000;
sum = sum + w$(i);
end;
put list (sum);
put skip;
return;
end e;

1-3 AG90-02

The dollar sign is recognized as a special identifier by the PL/I compiler, and
code for statement 6 is constructed which anticipates dynamic 1linking to the

segment named w. Upon first execution, a linkage fault is triggered, and a
search undertaken for a segment named w. If one is found, the 1link is
"snapped," which means that all future references will occur with a single

machine instruction. The storage for array "w$" is the segment w.

If no segment named w is found, the dynamic linker will return to command level
and report an error to the user. At this point, it is possible to create an
appropriate segment named w, and then continue execution of the interrupted
program, if such action is appropriate.

6. Reference to Named Offsets. The following procedure calculates the sum of
1000 integers stored in segment x starting at the named offset u:

f: procedure;
declare x$u(1000) fixed binary external static;
declare (i, sum) fixed binary;
sum = O;
do i = 1 to 1000;
sum = sum + x$u(i);
end;
put list (sum);
put skip;
return;
end f;

The difference between this example and the previous one is that segment x is
presumed to have some substructure, with named internal locations, called "entry
points". To initially create a segment with such a substructure, the compilers
and assemblers are used, since information must be placed in the segment to
indicate where within it the entry points may be found. Unfortunately, the PL/I
language permits specification of such structured segments only for procedures,

not for data. The create_data_segment command and create_data_segment
subroutine (see the MPM Commands, Order No. AG92, and MPM Subroutines, Order
No. AG93) are designed to be used to create such data segments. The ALM

assembler can also be used for creating structured data segments.

7. External Reference Starting With a Character String. In many cases, a
segment must be accessed whose name has been supplied as a character
string. 1In those cases, a call to the Multics storage system is required
in order to map the segment into the virtual memory and to obtain a pointer
to it. The following program uses the supervisor entry hcs_$make ptr to
perform a search for a segment of a given name, identical to that
undertaken by the linker in the previous examples.

g: procedure(string);
declare string character(*) parameter;
declare hcs_$make ptr entry (pointer, character (¥*),
character (*), pointer, fixed binary (35));
declare null builtin;
declare p pointer;
declare (i, sum) fixed binary;
declare v(1000) fixed binary based(p);
call hcs_$make ptr (null (), string, "", p, (0));
sum = 0;
do i =1 to 1000;
sum = sum + v(i);
end;
return;
end g;

1-4 AG90-02

The PL/I null string value ("") indicates that it is not a named entry point in
the segment to which a pointer is wanted, but a pointer to its base. Perhaps
the segment does not even have named entry points. The PL/I null pointer value
(null()) and the zero passed by value ((0)) in the call to hcs $make ptr are
relevant to its handling of error conditions and some of the parameters of the
search for the segment. We will not deal with them here, although we will
consider some of these issues in later sections. See the MPM Subroutines, Order
No. AG93, for a full description of the hcs_$make_ptr subroutine.

Another method of accessing storage system segments 1is by means of the
subroutine hecs_$initiate. When using hcs_$initiate, the pathname of the segment
desired 1is specified directly. one directly specifies the path name of the
segment desired: no search is undertaken for the segment as in the case of a
linkage fault. This procedure differs greatly from the examples above, in which
a search is involved. An intermediate situation, in which library routines are
used to construct a pathname starting with an entry name, is found 1in the
"simple text editor" example, which appears later in this book.

1-5 AG90-02

SECTION 2

DYNAMIC LINKING

A particularly potent programming tool of Multics is the dynamic linking
facility. Dynamic linking consists of delaying the search for and mapping of a
subroutine (or data segment) until the first call for that subroutine (or use of
that data segment) occurs. Dynamic 1linking 1is accomplished by having the
compiler leave 1in the object code of a compiled program a special bit pattern
which, if used 1in an indirect address reference, causes a machine fault (trap)
to the dynamic linker. The linker inspects the location causing the fault, and
from pointers found there, locates the symbolic name of the program being called

or the data segment being referenced. It then locates the appropriate segment,
maps it into the current address space, and replaces the indirect word with a
new one containing the address of the program or data entry point, so that
“future references will not cause a dynamic linking fault.

There are many ways in which dynamic linking can be used, but the following
three are probably most significant:

» to permit initial debugging of collections of programs before the
entire collection is completely coded.

» to permit a program to include a conditional call to an elaborate
error handling or other special-case handling program, without
invoking a search for or mapping of that program unless the condition
arises in which it is actually needed.

] to permit a group of programmers to work on a collection of related
programs, such that each one obtains the 1latest copy of each
subroutine as soon as it becomes available.

The use of dynamic linking in program development can be shown by the
following script. When the script starts, the program "k" and subprogram "y"
have been written already and compiled.

k: procedure;

declare (x, y, z) entry;
declare i fixed binary;
declare (sysprint, sysin) file;

put list ("Which option?");
get list (i);
if i = 1 then call x;
else if i = 2 then call y;
else if i = 3 then call z;
else put list ("Bad option ");
return;

end k;

y: procedure;
declare sysprint file;
put list ("y has been called.");
put skip;
end y;

2-1 AG90-02

In the§e and all examples in this manual, typing by the user is prefaced by
an exclamation point. The user does not type the exclamation point, nor did
Multics. It serves only to distinguish typing by the wuser from typing by
Multics.

Comments on the script are interspersed with the script itself, enclosed in
square brackets.

[The program "k" is invoked by typing its name. The user calls for option 2,
and the program "y" is called.]

!' k
Which option? 12
y has been called.
r 17:11 0.123 11

[The program ran even though two of the three subroutines it could call do not
exist, because the subroutine it did need was in existence. Since linking is
done on demand, and no demand for "x" or "z" occurred, their nonexistence did
not keep the program from running.

In the next use of "k", the user asks for an option corresponding to the
program "z ," which doesn't exist. 1]

! k
Which option? !3
Error: Linkage error by >udd>States>Jackson>ki{152 (line 11)
referencing z|z
Segment not found.
r 17:11 0.283 90 level 2

[The attempt to call the nonexistent subroutine "z" failed. The linkage error
handler has invoked a second, recursive 1invocation of command 1level, as
indicated by the field "Level 2" in the ready message. The error message shows
the full pathname of the program attempting to locate "z," and gives the name of
the program that could not be found. The notation "z|z" means entry point "z"
in segment "z." It is necessary to separate entry point name from segment name,
since a PL/I program in a segment could have several entry points with different
namesé¢

Execution of "k" is suspended, since it cannot continue with the call. The
user has the choice of giving up, or creating "z." The user invokes the qedx
editor, creates the segment, and compiles it.]

! qgedx

! a

! z: procedure;

! declare sysprint file;
! put list ("This is Z");
! put skip;

! end z;

! \f

! w z.pl1

]

< q
r 17:12 0.382 48 level 2

2-2 AG90-02

[The source segment has been created, now it must be compiled to create a
callable object segment.]

! pl1 z -table
PL/I 25c

[Now that an object segment "z" has been created, the call from "k" <can be
restarted. This is done with the "start" command.]

! start
This is Z
r 17:12 0.166 27

[The program successfully finishes. It can now be run with option 3 without
any additional intervention.]

'k

Which option? !3
This is Z

r 17:13 0.075 18

BINDING RELATED SUBPROGRAMS

Whenever related subprograms are separately translated, they are normally
linked by the Multics dynamic linker at the time they are executed. If a set of
related programs is known to always require certain links, then a program known
as the binder may be used to pack them into a single segment, permanently link
any cross references, and condense any common outward references into a single
outbound 1link. In return for the loss of flexibility which comes with such
permanent binding, one reduces both the space required for the programs and the
number of library searches which must be undertaken to run the collection of
programs. In addition, binding of separately translated subroutines retains
most of the advantages of separate translation. (An alternative scheme would be
to collect the procedures together into a single giant procedure, and then
recompile. This alternate scheme has the disadvantage that a very long
recompilation is needed for every one-line change to any part of the collection
of programs.)

For more information on the details of dynamic linking and binding see the
MPM Reference Guide (Order No. AG91) sections on object segments, system
libraries and search rules, and the description of the "bind" command in MPM
Commands, Order No. AG92.

2-3 AG90-02

SECTION 3

THE MULTICS PL/I COMPILER

Multics has one of the most powerful and complete implementations of PL/1
available. The PL/I language is especially important to Multics, as most of the
Multics system 1is written in PL/I. Almost without exception, all Multics
commands are written in PL/I.

The most important service of the PL/I compiler is, of course, translation
of the source program to produce machine code. On Multics, the machine code is
placed into an object segment. An object segment is a segment like any other,
but has a special format. One portion of it - the text section - contains
instructions. Other portions describe the object segment itself. The most
important of these descriptions is the definition section, which defines the
names and locations of entry points present in the segment, and the names of
external entry points used by the segment. Other sections contain templates for
impure data used by the program (the static section) and the indirect words
(links) used to implement dynamic linking (the linkage section).

A second service of the compiler is the creation of 1listing segments. A
listing segment has the same name as the source segment, with the suffix "pli"
changed to "list". A listing segment contains a numbered list of the source
program and information that is wuseful for understanding, debugging, and
improving the performance of the program.

The PL/I compiler is invoked 1like any other command. The compiler takes
one argument, the name of the source segment to translate. It also accepts
several control arguments. The most common are:

-table

augments the object segment with a symbol section. A symbol section

is essential for debugging. It contains detalled information about
the program in a form suitable for the Multics debugging tools.

-map
causes a listing to be created.

-optimize

causes the compiler to go to extra work to generate highly efficient
code. Programs should only be optimized after they are fully
debugged, since there 1is no reason to expend computer resources
creating a highly efficient, yet faulty, program. It should also be
mentioned that optimization reorganizes program and data flow in ways
that may interfere with debugging; this 1is another reason why
undebugged code should not be optimized.

For full information on the control arguments accepted by the PL/I
compiler, see the discussion of the pll command in the MPM Commands manual.

The 1listing begins with a five-line summary of the circumstance of the
compilation., For example, the following is extracted from the listing header of
the compilation of the simple editor discussed in a chapter below.

3-1 AG90-02

COMPILATION LISTING OF SEGMENT eds
Compiled by: Multics PL/I Compiler, Helease 25c, of February 18, 1980
Compiled at: Honeywell LISD Phoenix, System M
Compiled on: 04/21/80 1433.6 mst Mon
Options: optimize map

The compiler both records here and encodes into the binary object program
the date and time of compilation and the version ot the compiler used. The
date time compiled (dtc) command may be used to print the date and time of
compilation stored 1in the object program. If that date and time are not
identical to those printed at the top of a given listing, then that listing is
for a different compilation, and should be suspected as being possibly for a
different program.

A line-numbered listing of the source program follows the header. The line
numbers are used by error diagnostics, and also by the Multics debugging aids.

Following the source listing is information about the program,

First comes a 1list of all the source files wused in the compilation. This
listing includes the full pathname of each file and the date and time that the
file was last modified. This list can be used to verify that the most recent
and proper versions of include files were used in the compilation.

The 1listing next gives a cross reference of all variables used 1in the
program. This cross-reference listing may be used to discover unnecessary
variables, which are set and never referenced, or perhaps never referenced at
all. Any variable which is referenced only once is suspect, except for external
subroutines which may happen to be called only once. Variables never referenced
at all appear in the immediately following list.

For each variable, this listing gives 1its attributes such as data type,
storage class, and the line numbers of all statements where it was referenced or
set.

If there were any variables declared but unused, the compiler places their
names in a separate section of the listing, under the heading "NAMES DECLARED BY
DECLARE STATEMENT AND NEVER REFERENCED". No well-written program should declare
unused names. The presence of a name here indicates the possibility of a bug.

The next section gives all "NAMES DECLARED BY EXPLICIT CONTEXT". This
includes all the label and entry constants used in the program. The PL/I
language considers the use of a name in the context of a label (on a statement
or an entry) as an explicit declaration of the name.

The most significant warning in the listing 1is provided by the section
"NAMES DECLARED BY CONTEXT OR IMPLICATION". This section lists every name that
was used without being declared by either declare statement or explicit context.
When a name is wused without being declared, PL/I declares it with default
attributes. Often, these will be inappropriate, since the compiler 1is only
guessing. No well-written program should contain any names declared by
implication. This is such a likely cause of error that the compiler will also
issue a warning on the terminal when compiling a program that requires implicit
declaration. If the program contains no implicitly defined names, then the
section will be replaced by the message "THERE WERE NO NAMES DECLARED BY CONTEXT
OR IMPLICATION".

3-2 AG90-02

The listing next gives information about the size ot the qugct sepment,
under the headinpg "STORAGE REQUIREMENTS FOk THIS PROGRAM" . Typical storape
requirements might be:

Ob ject Text Link Symbol Defs Static
Start 0 0 4276 §352 4044 4306
Length 4570 4ou4s 54 201 231 0

All of the numbers describing storage requirements are printed in ocpal,
so, for example, the binary machine instructions occupy 4o45 (octal) locations
or 2085 (decimal) locations.

Following the object segment description is a list of each block detined in
the program. Internal procedures that are not recursive, and meet a few other
requirements, can be called in a very efficient manner. These procedures are
called quick procedures. A quick procedure shares the stack frame of some
other, non-quick procedure. The block 1list tells why each block that is
non-quick is non-quick (or, if the block is quick, which stack frame it shares).
Significant performance gains can accrue if the programmer is able to make
often-called internal procedures quick.

Following the block list are details about automatic storage allocation.
"STORAGE FOR AUTOMATIC VARIABLES" describes the layout of the "stack frames"
(procedure activation records, in which automatic variables are stored) of all
of the non-quick procedures (including the main procedure itself). This
information is useful in machine-level debugging.

The next section begins with "THE FOLLOWING EXTERNAL OPERATOKS AKE USED BY
THIS PROGRAM." Many frequently used PL/I features are implemented in a library
segment named pll operators , and are used by fast “operator" calls compiled
into the program.” Certain PL/I constructs can only be 1implemented by using
(comparatively) expensive operators. When performance is of great importance,
the wuser should 1inspect this 1list for expensive operators. (See Section b,
"Performance Measurement Tools" for applicable performance evaluation
techniques). It may be possible to avoid them by re-writing portions of the
source code.

Following the operators used is a 1list of external entries called and
external variables used. This information is also present in the symbol
listing.

The final section gives the octal 1location of the first instruction
generated for each statement. This section 1is known as the statement map. The
statement map is also stored in the symbol section of the object map, when the
-table control argument is given. It is this which allows the Multics debugging
aids to determine the source line corresponding to an instruction when a fault
occurs executing that instruction,

If the -list control argument is given, then the statement map is followed
by an assembly-like listing of the detailed machine language program which it
generated. Such a printout is wuseful for reviewing the performance of a
program, since it may provide clues about wuse of PL/I constructs which are
inherently expensive to implement.

3-3 AGG0-02

SECTION 4

MULTICS DEBUGGING TOOLS

A variety of debugging tools are available on Multies. The most powerful
of these is a program named probe, which permits source-language breakpoint
debugging of PL/I, FORTRAN, and COBOL programs.

To understand the examples given below, one must first know a little about
the Multics stack. The stack is essentially a push down list which contains the
return points from a series of outstanding interprocedure calls. It also holds
storage for automatic variables. If one were to stop a running program and
trace its stack, he would find, starting at the oldest entry in the stack, a
record of the procedures used to initialize the process, followed by the command
language processor, followed by the procedure most recently called at command
level and any procedures it has called. If an unexpected error occurs (or the
user presses the "Quit" button), the system will save the current environment,
mark the stack at its current level, push it down, and create a new activation
of the command processor.

The new activation of the command processor accepts commands just as the
original one did. It 1is possible to restart the suspended program, or to
discard the saved environment, or to use one of the Multics debugging tools to
examine the saved environment.

The release command causes the command processor to unwind the stack back
to its own previous activation, and discard the intervening stack contents. The
suspended programs cannot be resumed or examined after the stack has been
released.

To attempt to resume execution of the suspended program, use the start
command. The command processor then attempts to continue execution of the
suspended program at the point of interruption. Depending on the nature of the
error, and what the user has done since the error occurred, the restart attempt
may or may not succeed. Programs may always be restarted after a QUIT, but only
seldom after an error. If the program cannot be restarted, the error message
will usually be repeated. An unsuccessful attempt to restart a program is
usually harmless.

The probe command can be used to examine the saved stack and the current
state of suspended programs. Probe <can print the values of program variables
and arguments, as well as reporting the last program location to be executed.

41 AG90-02

The use of probe 1is shown in a series of examples, first by the following
program, blowup.pll. This program has an illegal reference to the array a, and
the subscriptrange condition occurs when it 1is run. Since subscriptrange
checking is disabled by default, the error manifests itself as an out_of bounds
condition instead of a subscriptrange. Although this error is easy to spot, the
behavior of the program is typical of other, harder to spot errors.

! print blowup.pli1

blowup.pl1 04/17/80 1332.0 est Thu
blowup: procedure;
del J fixed binary;
del a (10) fixed binary;
del sum fixed binary;
a (*) = 1;
do j = -1 to -100000 by -1;

sum = a (j);
end;
end blowup;

r 13:32 0.110 20

pl1 blowup -table
PL/I 25c
r 13:32 0.675 174

[The program is compiled with the -table control argument. This action causes
a symbol table to be created and stored with the program 1in the executable
object segment. This information is wused by the Multics debugging aids. A
symbol table should always be created while debugging, so that errors may easily
be found.]

! blowup

Error: out of bounds at >udd>States>Grant>blowupi{24 (line 9)
referencing stack 41777777 (in process dir)

Attempt to access beyond end of segment.

r 13:32 0.228 32 level 2

[The program is invoked by typing its name. It takes an 'out_of bounds' fault,
because the subscript used 1in the reference to array "a" is invalid. The
program does not use PL/I subscriptrange checking, so it attempt to calculate
the address of the (nonexistent) element of "a" referenced. The resulting
address does not exist, so the fault occurs.

This message shows the name of the error condition, the pathname of the
program, the octal location in the object segment where the error occurred, the
line number, and an additional message about the error. If the program had not
included a symbol table, the 1line number would not have been part of the
message.

The ready message has a new component. It says level 2. This number gives
the number of activations of the command processor. There is always one command
processor, and a second was added when the error occurred.]

! probe -
Condition out_of bounds raised at line 9 of blowup (level 7).

y_p AG90-02

[The user invokes the probe command. A message is given about the most recent
error found in the user's process. The word "level" here refers not to command
processor level, but to the number of programs saved on the stack. The error
occurred in "blowup" which was the seventh program on the stack.]

! stack

read list{ 13400

command processor_{10301
abbrev_17507
release_stacki 7355
unclaimed_signali24512
wallildu10

blowup (line 9) out of bounds
read list} 13400
command_processor_}10301
abbrev_|7507
listen_}7355
process_overseer_}35503
user_init_admin_j40100

S PDWEUVONOOO =MW

[The stack 1is displayed by the "stack" request. This request shows every
program on the stack, in the order invoked. The numbers on the left show the
order of activation. The entry for "blowup" shows the source 1line number
corresponding to the 1last location executed, and the name of the error that
occurred. The line number can be determined because "blowup" was compiled with
a symbol table. The other programs have no symbol table, so the display shows
the octal offset of the last instruction executed.]

! source
sum = a (j);

[Using the "source" command, the source statement for line 9 is displayed.
This 1is the 1line that was being executed when the error occurred. More
precisely, the error occurred executing the object code <corresponding to this
source line.]

! value j
j = -2689
! symbol a
fixed bin (17) automatic dimension (10)
Declared in blowup

[The value of the variable "j" is displayed with the '"value" request. This
request takes as its argument the name of a variable, and prints the value of
the variable. Next, the "symbol" request is used, to show the attributes of
"a."]

! quit
r 13:33 1.080 129 level 2

[The last probe request used is "quit," which exits probe, and returns the the
command level. The user is still at command level two, and the program is still
intact. The next command typed is the "release" command, which discards the
saved frames, returning to level one.]

! release
r 13:33 0.057 16

4-3 AG90-02

SECTION 5

PERFORMANCE MEASUREMENT TOOLS

After a program 1is written and debugged it is often desirable to increase
its efficiency. The first step in improving efficiency is to remove all PL/I
condition checking prefixes and to compile with the -optimize control argument.
Beyond that, Multics provides tools which identify the most expensive and most
frequently executed programs in a given collection. Within these crucial
programs, the most costly lines are found by using the "profile" facility.

To measure the performance of a program, compile it with the -profile
control argument. This control argument causes the compiler generates special
code for each statement, recording the cost of execution on a statement by
statement basis.

The example that follows shows the use of profile with a very small sample
program:

primep : procedure (trial_prime) returns (bit (1) aligned);

declare trial_prime fixed binary (35) parameter;
declare trial_ factor fixed binary,

last_factor fixed binary;
declare (mod, sqrt) builtin;

last_factor = sqrt (trial_prime);
do trial_factor = 2 to last_factor;
if mod (trial_ prime, trial_ factor) = 0
then return ("0"b);
end;
return ("1"b);
end primep_;

This subroutine cannot be called directly from command 1level, since only
programs whose arguments are nonvarying character strings may be called
directly. It is to be used with other programs. To test 1it, a simple command
was written which accepts one argument, converts it to binary, and calls the
"primep " subroutine. The testing command is called "primep." It is not shown
here.

! pl1 primep_ -profile
PL/I 25c
r 17:44 0.699 140

[The profile control argument is used. Next the program is invoked, by means
of a command "primep," which accepts one argument, converts it to binary, and
calls the subroutine primep_ with it.] .

! primep 3

3 is a prime.
r 1744 ,110 23

5-1 AG90-02

[To evaluate the performance of the subroutine, several hundred calls to it
should be made, over a wide range of values. The next command line invokes
primep 500 times, with values from 1 to 500. The "index_set" active function
returns the numbers from 1 to 500, and the parentheses invoke primep once for
each value.

The output from the program 1is not interesting, so the discard output
command is used. This command causes output from the program to be discarded,
instead of printed on the terminal.]

! discard output "primep ([index_set 5001)"
r 17:45 5.103 54
! discard_output "primep ([index_set 500]1)"

r 17:45 5.088 40
[While the program was run, performance statistics were saved. Now the
"profile™ command 1is used to display those statistics. For each 1line, it
displays the total times executed, an estimate of the cost, and the PL/I
operators used.]
! profile primep_

Program: primep

LINE STMT COUNT COST STARS OPERATORS
8 1000 34000 *#**# fx1_to f12, dsqrt, fl2_to_fx1
9 1000 3000
9 4418 13254 ***
10 4218 59052 ¥*%¥¥% mod_fx1
10 800 8800 ¥*¥ return
12 3418 6836 ¥¥
13 200 2600 return
Totals: 15054 127542

r 17:46 0.368 51

[Note that some statements (those in the loop) were executed more than others.
The COST for a statement is the product of the number of instructions for the
statement and the number of times the statement was executed. This cost does
not take into account the fact that some instructions are faster than others, or
the time spent waiting for missing pages (page faults). The STARS column gives
a rough indication of the relative cost of each statement.

The names of the PL/I operators used are also given. The operator
fx1_to_fl2 is used to convert the fixed point number to float, so that its root
may be taken. The dsqrt operator takes the square root. Finally the operator
fl12 to fx1 converts the result back to integer. The PL/I mod builtin is
impIemented by the mod_fx1 operator. These operators are the most expensive
things in the program. Occasionally a program can be re-written to not require
expensive operators.

When profiling large programs it is usually desirable to 1look only at the
most expensive 1lines, since they are the only ones of interest. The profile
command can be instructed to sort the 1lines by cost, and display them in order.
The next command displays the five most costly lines.]

! profile primep_ -sort cost -first 5

Program: primep

LINE STMT CTOUNT COST STARS OPERATORS
10 4218 59052 **** mod fx1 .
8 1000 34000 *%*xx* fx1 to fl12, dsqrt, fl2 to fx1
9 4418 13254 *%% - - -
10 800 8800 *¥* return
12 3418 6836 %%
Totals: 15054 127542

r 17:46 0.205 49

5-2 AG90-02

More detailed records of execution are available when the program is
compiled with the -long profile control argument. When this is done, the
program samples the Multics clock before every instruction, so the total time
per statement is available to the profile command. The performance data from a
program compiled with -long profile is displayed with the profile command. For
further information, see the MPM Commands description of the profile and pl1
commands.

Other Multics performance measurement tools include the "trace" command,
which provides a record of procedures called, and time spent in their execution;
the "page trace" command, which lists page faults.

5-3 AG90-02

SECTION 6

A SIMPLE TEXT EDITOR

Our next sample program is a printing-terminal text editor similar to, but
simpler than, the standard "edm" command (See MPM Commands for a description of
the edm command.) It is a typical example of an interactive program which makes
use of the Multics storage system via the virtual memory. In overview, the
editor creates two temporary storage areas, each large enough to hold the entire
text segment being edited. It copies the segment into one of these areas, so as
not to harm the original; and then, as the user supplies successive editing
requests, constructs in the other area an edited version of the segment. When
the user finishes a pass through the segment, the editor interchanges the roles
of the two storage areas for the next editing pass. When finished the
appropriate temporary storage area is then copied back over the original
segment. This example 1is not intended to be a model for designing or
implementing text editors, but rather, an illustration of the techniques used in
interactive Multics PL/I programs, particularly commands.

For this example, we have available a program listing as produced by the
PL/I compiler. The program itself is derived from the edm command of Multics,
and it exhibits several different styles of coding and commenting, since it has
had many different maintainers.

The program is preceded by several pages of comments on the program. The
comments appear in the same order as the item(s) in the program that they
comment on. Where possible, they refer to line numbers in the program listing.
Unfortunately, programs do not always invoke features in the Dbest order for
understanding, so the following strategy may be useful: as you read each
comment, if its implications are clear and you feel you understand it, check it
off. If you encounter one which does not fit in to your mental image of what is
going on, skip it for the moment. Later comments may shed some 1light on the
situation, as will 1later reference to other Multics documentation. Finally, a
hard core of obscure points may remain unexplained, in which case the advice of
an experienced Multics programmer is probably needed. Be warned that the range
of comments is very wide, from trivial to significant, from simple to
sophisticated, and from obvious to extremely subtle.

Finally, some comments provide suggestions for "good programming practice."
Such suggestions are usually subjective, and often controversial. Nonetheless,
the concept of choosing among various possible implementation methods one which
has clarity, is consistent, and minimizes side effects 1is valuable, so the
suggestions are provided as a starting point for the reader who may wish to
develop his own style of good programming practice.

The reader will also notice that some comments appear to be critical of the
program style or of interfaces to the Multics supervisor. These comments should
be taken in the spirit of illumination of the mechanisms involved. Often they
refer to points which could easily be repaired, but which have not been in order
to provide a more interesting illustration. Most of the points criticized are
minor in impact.

The program listing appears below, following the commentary.

6-1 AG90-02

Line number

fifth unnumbered line
The command "pl1 eds -map -optimize" was typed at the terminal. This
line records the fact that the map and optimize options were used.
The map 1line option caused a 1listing and variable storage map to be ""
produced. A source segment named eds.pll was used as input; the
compiler constructed output segments named eds.list (containing the
listing) and eds (containing the compiled binary program.)

1 No explicit arguments are declared here, even though eds should be
called with one argument. Instead, the keyword "options (variable)"
appears, which indicates that this program «can be <called with a
variable number of arguments. This is a Multics extension to ANSI
PL/I. Since eds is used as a command, it is a good human engineering
practice to check explicitly for missing arguments; the PL/I language
has no feature to accomplish this check gracefully. Library
facilities are available to determine the number and type of arguments
supplied (See lines 91-95). All Multics commands are declared in this
way.

5 To avoid errors when program maintenance is performed by someone other
than the original coder, all variables are explicitly declared. This
practice not only avoids surprises, but also gives an opportunity for
a comment to indicate how each variable is used.

6 One default which is used here (and is subject to some debate) is that
the precision of fixed binary integers is not specified, leading to
use of fixed binary(17). This practice has grown up in an attempt to
allow the compiler to choose a hardware supported precision, and in
fear that an exact precision specification might cause generated code
to check and enforce the specified precision at (presumably) great
cost. In fact, the PL/I 1language does not require such checks by
default (although they can be specified). Thus, it is usually wise to
specify data precision exactly. In some cases (for instance, all of
the fixed binary (21) variables wused to hold string 1lengths) the g/
compiler might attempt to hold these values in half-length registers
were this precision not specified.

However, a 1large class of variables which will contain "small or
reasonable size integers" can still be conveniently declared with the
implementation's default precision.

7 All character strings 1in this program are declared wunaligned, by the
defaults of the language. Given the fact that the Multics hardware
has extremely powerful and general string manipulation instructions,
no advantage is to be gained in speed or length of object code by
declaring strings (when they are over two words, or eight characters,
long) with the aligned attribute.

Therefore, almost all supervisor and library subroutines which accept
character string arguments require unaligned strings. By the rules of
PL/I, aligned and wunaligned strings may not be interchanged as
parameters, and thus, there is incentive to avoid aligned character
strings in all cases.

7 All 1line Dbuffers are designed to hold one long typed 1line (132
characters for input terminals with the widest lines) plus a moderate
number of Dbackspace/overstrike characters. To support memorandum

typing, the buffers permit a 70-character line which is completely
underlined. '

By use of temporary segments as work areas (see 1line 120), an almost
unlimited number of nearly infinite work-variables can be constructed,
virtually avoiding the "fixed length buffer problem." However, the
acquisition and maintenance of such segments are not as cheap as PL/I
automatic variables, and Jjudgement should be exercised as to where ~
traditional "fixed length" variables are appropriate.

6-2 AG90-02

10

18,19

19

38

51

59

60

The variable named code has precision 35 bits, since it is used as an
output argument for several supervisor entries which return a fixed
binary(35) value. Almost all supervisor and library subroutine
entries return an "error code" value, which indicates the degree of
success of the operation requested. The values of system error codes
require 35 bits. It would seem appropriate, on a 36-bit machine, to
use fixed binary(35) declarations everywhere. However, use of fixed
binary(35) variables for routine arithmetic should be avoided since,
for example, addition of two such variables results in a fixed
binary(36) result, forcing the compiler to generate code for double
precision operations from that point on. One must be careful of the
PL/I 1language rule which requires the compiler to maintain full
implicit precision on intermediate results.

Legal PL/I overlay defining can be an extremely powerful tool for
increasing the readability and maintainability of code. The variable
"commands" is declared here as occupying the same storage as the
variable "buffer", but only being as long as that part of it which
contains valid characters, as defined by the value of "count". Thus,
we need only write "commands" when we want the portion of "buffer"
that has valid data in it, instead of "the substring of 'buffer’
starting at the first character for 'count' characters."

All editing is done by direct reference to virtual memory locations.
The variable from ptr is set to point to a source of text, and the
based variable from_seg is used for all reference to that text. The
number 1048576 (two to the twentieth power) is the largest possible
number of characters in a segment.

The general operation of the editor is to copy the text from one
storage area to another, editing on the way. The names from_seg and
to_seg are used for the two storage areas.

One set of supervisor interfaces calls for 24 bit integers; this
declaration guarantees that no precision conversion is necessary when
calling these interfaces. (See line 104.)

The PL/I 1language provides no direct way to express literal control
characters. The technique used here, while it clutters the program
listing, at least works.

PL/I does not provide any "named constant" facility, either. The
Multiecs PL/I implementation allows the "options (constant)" attribute
for internal static variables, which instructs the compiler to
allocate the variable in the pure (unmodifiable) portion of the object
segment. This 1is advantageous for three reasons: First, if an
attempt is made to modify such a variable, the hardware will detect an
error, thus checking and enforcing 1its "constant" wuse. Second, it
allows the variable to be shared between processes, conserving
storage. Third, it 1is an indication to others reading the program
that a "named constant" is intended.

Subroutines com_err_ and ioa_ are called with a different number of
arguments each time, a feature not normally permitted 1in PL/I. The
Multics implementation, however, has a feature to permit such calls.
The "options" clause warns the compiler that the feature is used for
this external subroutine.

All subroutines other than com_err_ and ioa_ are completely declared
in order to guarantee that the compiler can check that arguments being
passed agree 1in attribute with those expected by the subroutine.
Warning diagnostics are printed if the compiler finds argument
conversions necessary.

6-3 AG90-02

60

61

6uU

83

84

91

92

93

94

99

The procedure cu_ (short for command utility) has several different
entry points. The Multics PL/I compiler specially handles names of
external objects which contain the dollar sign character. The dollar
sign is taken to be a separator between a segment name and an entry
point name in the compiled external linkage. Thus, this line declares
the entry point name arg_ptr in the segment name cu_.

For many procedures, the segment name and entry point name are
identical, so the compiler also permits the briefer form cv_dec_,
which is handled identically to cv_dec_$cv_dec .

The hardcore (ring zero) supervisor entries ("hardcore gates") are all
easily identifiable since they are entered through a single interface
segment named hcs_. Segment hes consists of just a set of transfers
to the subroutine wanted. A transfer vector is used to isclate, in
one easily available location, all gates into the Multics supervisor.
Also, it is in principle possible to replace a supervisor routine
dynamically, by changing a single transfer instruction. (There are in
fact hardcore gate segments other than hes_, but you will probably not
have occasion to deal with them.)

The program will need to know what I/0 switches will be used in order
to perform certain I/0 operations. I/0 switches are the general
source/sink I/0 facility of Multics. Multics PL/I programs manipulate
I/0 switches as PL/I pointer values. The two external variables
declared on this line contain the pointer values identifying the
standard terminal input and terminal output switches.

As mentioned above, system error codes are returned by most supervisor
and library subroutine entries. 1In one case, we Will need to know if
a specific error (see line 107) was returned by a supervisor entry. A
segment (error_table) exists which has entry point definitions for
extzrnal static variables (see Section 1) containing all the possible
values that can be returned as errors by system routines. The
variable error_table $noentry contains the value returned as an error
code by system routines to indicate that "the entry you specified in
the directory you specified does not exist."

The first order of business is to access the command's argument. As
was pointed out above, this is done via library subroutine rather than
PL/I parameter passing in order to diagnose the case of a missing
argument. - .

Since the command argument is nominally unlimited 1in 1length,
cu_$arg_ptr returns a pointer to the argument as stored by the command
processor, and 1its length. The based variable "sname" will describe
the argument once this pointer and length are obtained.

If for any reason the argument to the command cannot be accessed (most
typically, because it does not exist), a nonzero value of "code" will
be returned.

The subroutine com err is <called to print out the error message

associated with the returned error code. This subroutine produces an
English explanation of the error obtained from the value of the error
code. It also causes terminal output to be produced even if the user
is temporarily diverting output to a file. In general, com_err_
should be used to report all command usage and storage system errors.
A Multics command exits by simply returning to its caller. (See also
line 432.)

Assuming that a pointer to an argument was returned, we must now
convert that argument to a standard (directory name, entry name) pair.
The subroutine expand_pathname_ implements the system-wide standard
practice of interpreting the typed argument as either a pathname
relative to the current working directory, or an absolute pathname
from the root, as appropriate.

6-4 AG90-02

104

106

108

116

17

The supervisor entry point hcs $initiate_count is 1invoked to map the
segment specified by the (directory name, entry name) pair into the
process's virtual memory. It returns a pointer to the segment, which
it constructs from the segment number by which the segment was mapped
into the virtual memory of the process (made known). If the segment
was already "known", i.e., in the process' address space, the segment
number from the existent mapping will be used to create a pointer to
return.]

The PL/I null string ("") 1is a special signal that no (possibly
additional) reference name is to be initiated for the segment.

Unfortunately, the zero/nonzero value of the return code from
hes $initiate_count cannot be wused to check whether the initiation
(mapping into the address space) succeeded. In the particular case of
this subroutine and hcs_$initiate, a nonzero error code is returned in
the ostensibly successful case of the segment having already been in
the address space or the process, a case which is rarely an error.

These two subroutines are documented to return a nonnull pointer value
if and only if the segment has been successfully mapped 1into the
address space, whether by prior act or anew. Thus, testing the return
pointer for the PL/I null pointer value 1is an adequate test of
success.

The program will soon acquire (on line 124) a process resource, namely
two temporary segments from the process' pool of temporary segments.
When the program is finished executing, it will return them (line 565)
to the pool. However, the program may be interrupted (perhaps by a
QUIT, or a record quota overflow), and the wuser may abandon its
execution (perhaps via the "release" command). In this case, it would
seem that the program would not get a chance to return its "borrowed"
resources. However, Multics defines the "cleanup" condition, which is
signalled in all procedures when their execution is about to be
irrevocably abandoned. The handler for the cleanup condition invokes
the procedure "cleanup", which relinquishes these resources.

The array "temp_segs" is initialized to null pointer values before
establishing the cleanup handler, so that the contents of the array is
well defined at all times. (The release_temp_segments_ subroutine
checks for null pointer values, and performs no action if it
encounters them.) Otherwise, if the <cleanup handler were invoked
before the temporary segments were acquired, the pointer array would
have undefined, probably invalid values, and the call to release the
temporary segments would have unpredictable results.

The cleanup handler is established before the temporary segments are
reserved. This sequence guarantees that there will be no "window" in
which the program can be abandoned between the time that the segments
were acquired and the time that the cleanup handler was set up.

The editor (eds) will create a new segment (see 1line 471) if an
attempt is made to edit a segment which does not exist. By comparing
the value of the error code returned from hes_$initiate_count with the
system error code stored in the variable error table $noentry, we can
differentiate the case of failure to initiate simply because the
segment did not exist from all others (e.g., 1incorrect access to the
segment specified).

The com_err_ subroutine (as well as the ioa_ subroutine, see line 137)
allows conditional substitution of parameters. The construct "“[>"]"
is wused to prevent error messages containing two sequential >'s in
error messages describing segments stored 1in the root directory whose
name is (">").

6-5 AG90-02

124

136

137

140

140

141

A pool of segments in a process directory is maintained by the
get_temp_segments_ and release_temp segments_ subroutines. These
segments are doled out to commands and subsystems which request them
(via get_temp segments) and it is expected that they will be returned
to the pool “when there 1is no further use for them. This facility
avoids the need for user programs to create and delete (or attempt to
manage or share) segments needed on a "scratch" or "temporary" basis
(for work areas, buffers, etc). Segments obtained from this facility
are guaranteed to contain all zeros (truncated) when obtained.

The number of segments to Dbe obtained is determined by
get_temp segments_ from the extent of the pointer array parameter.
The name of the subsystem 1is passed to get_temp segments_ both to
facilitate additional <checking by release_temp_ segments, and to
support the 1list_temp_ segments command, which describes which
subsystems in a process are using temporary segments.

If the segment specified on the command line did not exist, the editor
is to assume that it is creating an new segment, and go into input
mode. The value of the variable '"source_ptr" will be null if this is
the case.

The ioa_ subroutine is a handy 1library output package. It provides a
format facility similar to PL/I and FORTRAN format statements, and it
automatically writes onto the I/0 stream named user_output, which is
normally attached to the interactive wuser's terminal. When used as
shown, it appends a newline character to the end of the string given.
Programmers who are more concerned about speed and convenience than
about compatibility with other operating systems use ioa_ in
preference to PL/I "put" statements, because 1ioa_ is cheaper, easier
to use, and far more powerful.

The formatting facilities of ioa_ are used in a simple way in this
example. The circumflex (""") in the format string indicates where a
converted variable 1is to be inserted; the character following the
circumflex indicates the form (in this case, a character string) to
which the variable should be converted. The first argument is the
format string, remaining arguments are variables to be converted and
inserted in the output 1line.

The storage system provides for every segment a variable named the bit
count. For a text segment, by convention, the bit count contains the
number of information bits currently stored in the segment. The bit
count of the segment being edited was returned by hcs_$initiate_count
(hence its name) on line 113.

This statement converts the bit count to a character count. Note that
we have here embedded knowledge of the number of hardware bits per
character in this program. If the system-wide standard had been to
store a character count with a segment instead, it would not have been
necessary to have an implementation-dependent statement here.
Unfortunately, a stored character count would get the system into the
business of maintaining an interpretation of the segment's contents,
which it currently does not do.

The PL/I language specifies that the result of a divide operation
using the division sign is to be a scaled fixed point number. To get
integer division, the divide built-in function is used instead. Note
that the precision of the quotient is specified to match its size.

Here, we invoke some of the most powerful features of the Multics
virtual memory. This simple assignment statement copies the entire
source segment to be edited into the temporary buffer named from_seg.
A single powerful hardware string-copy instruction 1is generated for

this code, copying data at processor speed. Note that we are
regarding the entire text segment as a simple character string of
length csize. We may regard it this way because the storage

representation for permanent text segments is chosen to be identical
to that of a PL/I nonvarying character string.

6-6 AG90-02

141

150

14y

151

155

157

159

164

175

182

200

Be sure to read the comments embedded in the program, too.

The user-ring I/0 system is being invoked to read a 1line from the
user's terminal. The 1line is read from the 1I/0 switch identified by
the external pointer iox_$user input. Although passing the buffer to
be used as a character ~string would be more convenient this set of
interfaces was designed with maximal efficiency in mind, and this form
of call is more efficient. Note it would also be safer than passing a
pointer to the character string, since that would allow PL/I to check
that an appropriate character string was being passed, as opposed to a
pointer, which can point to any data type. This design demonstrates
the frequent tradeoff between efficiency and convenience.

Subroutine iox_$get line is often used for input rather than the PL/I

statement "read file (sysin) into ..." again because of efficiency
and error-handling considerations. The PL/I facility ultimately calls
on the Multics iox_ package anyway. (Again, if one wished to write a

program which would also work on other PL/I systems, he would be
better advised to use the PL/I I/0 statements instead.)

It is highly unlikely that a call to read a line from the terminal
will fail. Nevertheless, in cases of people debugging their own
extensions to the Multies I/0 system (a practice intended by the
designers of the I/0 system), it can occur. It is reasonable to abort
the entire editor in this wunlikely case rather than repeating the
call: presumably that would repeat the error too.

For the sake of human engineering, the editor ignores blank lines.
Since complete input 1lines from the typewriter end with a new line
character, the length of a blank line is one, not zero.

The code to isolate a string of characters on the typed input line 1is
needed in four places, so an internal subroutine 1is used. This
subroutine is not recursive, which makes it possible for the compiler
to construct a one-instruction <calling sequence to the internal

procedure. Certain constructs (e.g., variables of adjustable size
declared within the subroutine) will force a more complex calling
sequence. For details, one should review the documentation on the

Multics PL/I implementation.

Although the dispatching technique used here appears costly, it is
really compiled into very quick and effective code -- 2 machine
instructions for each 1line of PL/I. For such a short dispatching
table, there is really no point in developing anything more elaborate.
If the table were larger, one might use subscripted label constants
for greater dispatching speed.

Human engineering: the typist is forced to type out the full name of
the one "powerful" editing request which, if typed by mistake, could
cause overwriting of the original segment before that overwriting was
intended.

Whenever a message 1is typed which the typist 1is probably not
expecting, it is good practice to discard any type-ahead, so that he
may examine the error message, and redo the typed 1lines in the light
of this new information.

The general strategy of the editor is as follows: lines from the
typewriter go 1into the variable named "buffer" (accessed as
"commands") until they can be examined. Another buffer, named
"line_buffer" (accessed as "line") holds the current 1line being

"pointed at" by the eds conceptual pointer. Subroutine "put" copies
the current line onto the end of to_seg, while subroutine "get" copies
the next line in from_seg into the current line buffer.

The procedure get_num sets up the variable n to <contain the value of

the next typed integer on the request 1line. Such side-effect
communication is not an especially good programming practice.

6-7 AG90-02

201

212

229,240

259

397

4o2

431

443

4y

476

514-516

527

539

The delete request is accomplished by reading lines from from_seg, but
failing to copy them into to_seg. If deletion were a common
operation, it might be worthwhile to use more complex code to directly
push ahead the pointer in from seg, and thus avoid a wasted copy
operation. -

More side-effect communication: the variable edct is always pointing
at the last character so far examined in the typed request line.

All movement of parts of the material being edited is accomplished by
a simple string substitution, using appropriate indexes.

The 1locate request 1is accomplished by wuse of the index built-in
function, used on whatever is still unedited in from_seg.

A negative number in the "next" request results 1in moving the
conceptual pointer backward. The resulting code is quite complex
because the eds editing strategy requires interchanging the input and
output segments before backward scanning, so that the backward scan is
with regard to the latest edited version of the segment.

This code to search a character string backward 1is recognized by the
compiler as such. Extremely efficient object code to search the
substring backward is generated, wusing a single hardware instruction.
No copies are made in this fairly expensive-looking statement: it is
in fact cheap. Combinations of reverse, 1index, substr, search,
verify, etc. that seem that they ought to generate efficient code in
fact usually do.

Before exiting from the weditor, the temporary segments should be
returned to the temporary segment manager, and the segment that was
initiated terminated.

Another human engineering point: since the wuser may have typed
several lines ahead, the error message includes the offending request,
so that he can tell which one ran 1into trouble and where to start
retyping.

Note a small "window" in this sequence of code. If the editor is
delayed (by "time-sharing") between lines 443 and UU4, it is possible
that the message on line U443 will be completed, and the user will have
responded by typing one or more revised input 1lines, all before line
4yy discards all pending input. Although in principle fixable by a
reset option on the write call, Multics currently provides no way to
cover this timing window. Fortunately, the window 1is small enough
that most interactive wusers will go 1literally for years without
encountering an example of a timing failure on input read reset.

Note that we copy data into the original segment, set its bit count,
and truncate it in that order. This provides for maximal data being
saved should their be a system failure between any two lines. Common
sense seems to indicate this order as "maximally safe", and analysis
of the data involved will demonstrate this as well.

The input and output editing buffer areas are 1interchanged by these
three statements. Here is an example of localizing the use of pointer
variables to make <clear that they are being used as escapes to allow
interchange of the meaning of PL/I identifiers.

The I/0 system provides this entry point to perform control operations
(e.g., "resetread") upon the objects represented by I/0 switches.

This editor considers typed-in tab characters to be just as suitable
for token delimiters as are blanks. Ideally, tab characters would
never reach the editor, instead having been replaced by blanks by the
typewriter input routines. Such complete <canonicalization of the
input stream would result in some greater simplicity, but would
require a more sophisticated strategy to handle editing of text typed
in columns.

6-8 AG90-02

539

556

565

566

The PL/I search and verify builtins, which are very useful in
circumstances 1like this (parsing lines) are compiled into very
efficient single-instruction hardware operations by the Multics PL/I
compiler.

The cv dec 1library routine is used here rather than a PL/I language
feature, because cv_dec_ will always return a value, even 1if the
number to be converted is ill-formed (in which case it returns zero.)
Thus the editor chooses not to handle ill-formed numbers. Had it
wished to check, for them, it could have used the cv_dec_check_
subroutine. PL/I language conversion would cause an error signal
which must be caught and interpreted lest PL/I's runtime diagnostic
appear on the user's console. Thus, eds retains complete control over
the error comments and messages which will be presented to the user.
Such control is essential if one 1is to construct a well-engineered
interface which uses consistent and relevant error messages.

The cleanup procedure calls the release_temp_segments_ subroutine to
release the temporary segments acquired earlier. A binary zero is
passed to release_temp_segments_ by value (by enclosing it in
parenthesis) because the cleanup handler has no use for an error code.
Cleanup procedures should never print messages, even error messages,
because they are only invoked when exiting a procedure. There is no
corrective action the user can take.

If the segment edited was not known before editing it, it should be
unknown after the editor finishes as well. The supervisor maintains a
reference count for each segment in the process. This count is
incremented by the call to hes_$initiate and decremented by the call
to hcs_$terminate_noname. If~ the count goes to zero (i.e. the

segment was made known by the editor) then the segment is made
unknown.

6-9 AG90-02

VMEWN 20000 UVTEZWN —

N = =
[@ANeNe RN Ne)Y

[ASHICIIV]
w N =

n N
~Nou &

wWwwwww
VEWN = OWwOo

Fwwww
OW OO

EEEEEEEEELE
WOV EWN —

(RS R0,
N — o

(S108]
=W

COMPILATION LISTING OF SEGMENT eds
Compiled by: Multics PL/I Compiler, Release 25c, of February 18, 1980
Compiled at: Honeywell LISD Phoenix, System M
Compiled on: 05/06/80 1456.1 edt Tue
Options: map optimize

eds: procedure options (variable);
/¥ internal variable declarations. #*/
declare break character (1); /* Holds break char for change */
declare brk1 fixed binary;
declare buffer character (210); /*¥ Typewriter input buffer. ¥/
declare changes occurred bit (1);
declare code fixed binary (35);
declare commands character (count) based (addr (buffer));
/*¥ Valid portion of buffer ¥/
declare count fixed binary (21); /* Valid length of data in "buffer " ¥/
declare csize fixed binary (21);
declare edct fixed binary;
declare dir_name character (168); /* Directory containing segment ¥/
declare entry name character (32);
declare exptr pointer; /* Temporary pointer holder. */
declare from ptr pointer; /* Pointer to current from_seg. ¥/
declare from seg character (1048576) based (from_ptr);
- /% Edltlng is from this segment. */
declare globsw bit (1);
declare i fixed binary (21);
declare ij fixed binary (21);
declare 1indf fixed binary (21);
declare indt fixed binary (21);
declare j fixed binary (21);
declare k fixed binary (21);
declare 1 fixed binary (21);
declare 1line character (linel) based (addr (line_buffer));
declare 1line buffer character (210); /* Holds line currently being edited. ¥/
declare 1lineTl fixed binary; /* length of "line" ¥/
declare 1located fixed binary;
declare m fixed binary (21);
declare n fixed binary (21);
declare sname character (sname lth) based (sname_ptr); /* Source name ¥/
declare sname 1lth fixed binary (21); /¥ Length of source segment name. ¥/
declare sname ptr pointer; /*¥ Pointer to source segment name. ¥/
declare source count fixed binary (2U4); /%* Holds segment bit length. ¥/
declare source ptr pointer; /¥ Pointer to source seg. ¥/
declare source seg character (1048576) based (source ptr);
- /% Outside segment for read or write. ¥/

declare temp segs dimension (2) pointer;
declare tlin character (210); /* Buffer to hold output of change. ¥/
declare tkn character (8); /*¥ Holds next item on typed line ¥/
declare to seg character (1048576) based (to ptr);

- /¥ Edltlng is to this segment */
declare to_ptr pointer; /* Pointer to to_seg.
/* Constants ¥/
declare NL character (1) static options (constant) initial ("
")-
deélare WHITESPACE character (3) static options (constant) initial ("

"); /% NL SP TAB ¥/

6-10 AG90-02

declare
VA,

declare
declare
declare
declare
declare
declare

declare

declare
declare
declare
declare
declare
declare
declare
declare

declare
declare

myname character (3) static options (constant) initial ("eds");

external subroutine declarations. */
com_err entry options (variable);
cu $arg ptr entry (fixed binary, pointer, fixed binary (21), fixed binary (35));
ev_dec entry (character (*)) returns (fixed binary(35));
expand_pathname entry (character (*), character (*), character (*), fixed binary (35));
get temp_segments entry (character (*), pointer dimension (*), fixed binary (35));
hes $initiate_count entry (character (*), character (*), character (*), fixed binary (24),
- - fixed binary, pointer, fixed binary (35))
hes_$make_seg entry (character (*), character (*), character (¥*),

fixed bin (5),

ptr, fixed binary (35));

hcs $set bec seg entry (pointer, fixed binary (24), fixed binary(35));
hes_$terminate_noname entry (pointer, fixed binary (35));

hes_$truncate_seg entry (pointer, fixed binary (19), fixed binary(35));

ioa entry options (variable);

iox:$control entry (pointer, character (*), pointer, fixed binary (35));
iox_$get_line entry (pointer, pointer, fixed binary (21), fixed binary (21),
iox_$put_chars entry (pointer, pointer, fixed binary (21), fixed binary (35))
release_temp_segments_ entry (character (¥), pointer dimension (*), fixed binary (35)

cleanup condition;
(addr, divide, index, length, null,
builtin;

/% External data */

declare (iox_$user_output, iox_$user_input)

declare

error_table_$noentry

reverse,

search,

substr,

verify)

pointer external static;
fixed bin (35) external static;

AG90-02

fixed binary

E

(35));

86 /% . . . PROGRAM . . . */

88

gg /* Check to see if an input argument was given %/

91 call cu_$arg_ptr (1, sname ptr, sname_lth, code);

92 if code "= 0 then do; - -

93 call com_err_ (code, myname, "Usage: “a <PATH>", myname);

94 return;

95 end;

96

gg /* Now get a pointer to the segment to be edited */

99 call expand_pathname_ (sname, dir_name, entry name, code);

100 if code "= T then doj - /* Bad pathname */

101 call com_err_ (code, myname, ""a", sname);

102 return;

103 end;

104

102 /* Set up a cleanup handler in case the program is aborted */

10

107 source_ptr = null ();

108 temp segs (*) = null (); /* Make sure handler has valid data */
109 on condition (cleanup) call clean_up;

110

111 /* Initiate the source segment. */
112 ’
113 call hes_$initiate_count (dir_name, entry name, "", source_count, 0, source_ptr, code);
114 /* Initiate the segment ¥7

115 if source ptr = null ()

116 then if code "= error_table_$noentry then do;/* Problem or just new seg? */

17 call com_err_ (code, myname, "Cannot access “a”[>"]1"a",

118 dir_name, (dir_name "= ">"), entry name);

19 return;

120 end;

121

122 /* Set up Buffer segments. #*/

123

124 call get temp_segments_ (myname, temp segs, code);

125 if code,™= 0 then do;

126 call com_err_ (code, myname, "Cannot get temporary segments.");

127 call clean_up;

128 return;

129 end;

130 from _ptr = temp_segs (1);

131 to_ptr = temp_segs (2);

132

133 /* Check to see that the segment is there */

134

135 csize, indf, indt = 0; /% Initialize buffer control vars. %/
136 if source ptr = null then do;

137 call_ioa_ ("Segment “a not found.", entry name);

138 go to pinput;

139 end;

140 csize = divide (source_count, 9, 21, 0); /* change bit count to char count ¥/
141 substr (from seg, 1, csize) = substr (source_seg, 1, csize);

142 - /* Move source segment into buffer. */
143

144 /* Main editing loop #/

6-12 AG90=-2

145

146

147 pedit:

148 call ica_ ("Edit.");

149 next:

150 call iox $get line (iox_$user_input, addr (buffer), length (buffer), count, code);
151 if code "= 0 then do;

152 call com_err_ (code, myname, "Error reading input line");

153 go to fifish;

154 end; X .
155 if count = 1 then go to next; /% if null line then get another line, don't print error */
156 edct = 1; /* Set up counter to scan this line. */
157 call get token; /* Identify next token. */

158

159 if tkn = "i" then go to insert;

160 if tkn = "r" then go to retype;

161 if tkn = "1" then go to locate;

162 if tkn = "p" then go to print;

163 if tkn = "n" then go to nexlin;

164 if tkn = "save" then go to file;

165 if tkn = "c" then go to change;

166 if tkn = "d" then go to dellinj

167 if tkn = "w" then go to wsave;

168 if tkn = "t" then go to top;

169 if tkn = "b"™ then go to bottom;

170 if tkn = "." then go to pinput;

171

172 /* If none of the above then not a request */

173

174 call ioa_ ("'"a' Not an edit Request", substr (commands, 1, length (commands) - 1));
175 call resetread;

176 go to next;

177

178 /* ERERRRRNR input mode ERRERRRNR X/

179

180 pinput:

181 call ioa_ ("Input."); /* print word input ¥/

182 input:

183 call iox_$get_line (iox_$user_input, addr (buffer), length (buffer), count, code);
184 if code ®= 0 then do;

185 call com_err_ (code, myname, "Error reading input-mode line.");

186 go to fifishy

187 end;

188

189 if substr (commands, 1, 1) = "." & count = 2

190 then go to pedit; /* check for mode change */

191 call put;

192 linel = length (commands);

193 line = commands; /* move line inputted into intermediate storage */
132 go to input; /* repeat 'til "." %/

]

196

107 /% REEEEERER Golote RENRAEEEN ¥/

198

199 dellin:

200 call get_num;

201 doi=1ton-1; /* do for each line to be deleted */
202 call get;

203 end;

204 linel = 0; /* nullify last line ¥/

6-13 G90-02

205
206
207
208
209
210
21
212
213
214
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231

232
233
234
235
236
237
238
239
240
241

242
243
2uy
245
246
247
248
249
250
251

252
253
254
255
256
257
258
259
260
261
262
263
264

go to next;

/% EHERERRER [nsort HAEEEREEE &/

insert:
call put; /%
retype: /%
linel = length (commands) - edct;
line = substr (commands, edct + 1); /%
g0 to next;
/% RERRERE RN next WHEEEREER */
nexlin: call get_num;
if n < 0 then go to backup;
m, j = indf; /%
call put;
de i = 1 to n; /%
if j >= csize then go to n_eof; /%
k = index (substr (from_seg, j + 1, csize - j),
VAd
if k = 0 then do; /%
n_eof: if indf >= csize then go to eof;
linel = 0; VA
substr (to_seg, indt + 1, csize - m) =
/l’
indf = ecsize;
indt = indt + csize - m; /¥
go to eof;
end;
jo= i+ k; /%
end;
indf = j; /%
linel = k;
line = substr (from_seg, j - k + 1, linel); /%
substr (tco_seg, indt + 1, indf - linel - m) = substr
/*
indt = indt + indf - linel - m;

go to next;

/¥ RERRRERRR | nogte HEEEEENENR */

locate:

Add current line to output segment %/
This is alsc the retype request. #/

add replaced line %/

save where you are %/

once for each nl */
check for eof ¥/

NL);

locate end of line %/

no nl (eof) print eof */

set tc no line */

substr (from_seg, m + 1, csize - m);

move in top of file %/

set pointers %/

increment j by length of line */

set pointers and move in top of file */
put working line in line ¥/

(from_seg, m + 1, indf - linel - m);
fill rest of file */

if edct = length (commands) then go to bad_syntax; /* check for plain "1 NL" ¥/
edct = edct + 1; /% Skip delimiter. %/
J = indt; /% initialize pointers for index type search */
m = indf;
n = csize - indf;
call put;
if (ecsize = 0) | (n <= 0) then do;
call switch;
if j > 0 thenn = j - 1;
else n = 0;
m, j = 0;
end;
i = index (substr (from_seg, indf + 1, n), substr (commands, edct, length (commands) - edct));
if i "= 0 then do; /* if found then do */
k = index (reverse (substr (from seg, 1, indf + 1)), NL);
if k "= 0 then k = indf + i - k + 1; /* k = index of NL */
J = index (substr (from_seg, k + 1, csize - k), NL); /* fifd end of line */
if j = 0 then indf = csize;

6-14

AG90-02

265
266
267
268
269
270
271
272
273
274
275
276
271
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

else indf = j + k;

substr (to_seg, indt + 1, k - m) = substr (from_seg, m + 1, k - m);

linel = indf - k;
indt = indt + k - m;
line = substr (from_seg, k + 1, linel);
n = 1;
go to printi;
end;
call copy;
call switch;
go to next;

/% KERKRXRER pring KEERERERX X/

print:

print1:

noline:

call get num;

if linel™= O then do;
call ioa_ ("No line.");
go to noline;

end;

/* move in top of file ¥/

/* put found line in line */

/* print found line if wanted */

/* get next command */

/% print indication of no lines */

call iox $put chars (iox_$user_output, addr (line), length (line), code);

if code ™= 0 Then do;

call com_err_ (code, myname, "problem writing editor output");

go to fifish;
end;

n=mn-1;

if n = 0 then go to next;
call put;

call get;

go to printi;

/% REEEREERE Change ARARRRARERE X/

change:

located = 03
if count = 2 then do;

bad_syntax:

nxarg:

count = count - 1;
call ioa_ ("Improper:
call resetread;
go to next;

end;

brkl = edct + 2;

break = substr (commands, edct + 1, 1);

i = index (substr (commands, brk1), break);

if i = 0 then go to bad_syntax;

j = index (substr (commands, i + brk1), break);

~a", commands);

/* write the line */

/* any more to be printed? */

/* Strip NL off "commands " ¥/

/* Pick up the delimiting character. ¥/

if j = 0 then j = length (commands) - i - brkl + 1;

edet = edet + 1 + j + 1,
globsw = "0"b;
n=1;

call get_token;

if tkn "= "™ " then do;
if tkn = "g" then globsw = "1"b;
else call cv_num;
go to nxarg;

end;

if linel = O then go to skipch;

/* Continue scanning edit line. */
/* Assume only one change. %/
/* Assume only one line changed. ¥/

/% If token there, process it. ¥/
/* Change all occurrances. ¥/
/* Try for another argument. */

/* Skip changing empty line. ¥/

AG90-02

325
326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341

342
343
344
345
346
347
348
349
350
351

352
353
354
355
356
357
358
359
360
361

362
363
361
365
366
367
368
369
370
371

372
373
374
375
376
377
378
379

381
382
383
384

chi:

ch2:

cprt:

skipch:

changes_occurred = "Q"b;

m, ij, 1 = 1; /* indexes to strings */
if i = 1 then do; /* add to beginning of line #*/
changes occurred = "1"b;

located = 1;
substr (tlin, 1, j - 1) = substr (commands, brk1 + i, j - 1);
/* copy part to be added */
substr (tlin, j, length (line)) = line; /* copy old line %/
ij = j + linel - 1;
1 = j + linel + 1;
go to cprt;
end;
k = index (substr (line, m), substr (commands, brk1, i - 1));
/* locate what is to be changed */
if k "= 0 then do;
substr (tlin, ij, k - 1) = substr (line, m, k - 1);
/% copy line up to change */
substr (tlin, ij + k - 1, j - 1) = substr (commands, brk1 + i, j - 1);
/* put in change */

m=m+ k + i - 2; /* increment indexes ¥/

ij =1 + k + j - 2

1 =14+k+ j=-2;

changes_occurred = "1"b; /* indicate that you did someting */
located = 1;

if globsw then go to ch2;
end;
substr (tlin, ij, length (line) - m + 1) = substr (line, m);
/* copy rest of line */
ij = ij + length (line) - m;
1 =1+ length (line) - m;

if changes_occurred then do; /* Write changes */
call Tox_sput_chars (iox_$user_output, addr (tlin), 1, code);
if code "= 0 then do;
call com_err_ (code, myname, "Error writing change line");
go to fifishj
end;
end;
linel = ij;
line = substr (tlin, 1, ij);

if n <= 1 then do; /* fifished ¥/
if located = 0 then do;
count = count - 1; /* Get rid of NL i "commands" */

call ioa_ ("Nothing changed by: “a", commands);
- /% if not located ¥/
call resetread;
end;
go to next;
end;
n=mn-1;
call put;
call get;
go to chi;

/¥ RRRERERER top HREEREERR ¥/

6-16 AGY90-02

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
4ol
405
406
407
408
409
410
411
412
413
w1y
415
416
417
413
419
420
u21
422
423
u2u
425
426
427
428
429
430
431
u32
433
434
435
u36
437
438
439
440
441
uy2
443
uyy
uys
uu6
uu7

top: call copy;
call switch;
go to next;

/% ERERERERE pottom ERRARRRER X/
bottom: call copy;
linel = 0;
go to pinput;

/% RREERRERE packup KRRRARXXX X/

backup: i = indt;
call copy;
call switch;
indf i+ 1
do n n to 0;

if j "= 0 then indf =

else do;
linel = 0;
n = 1;

indt, indf = 0;
go to eof;
end;
end;
indt = indf;
substr (to_seg, 1, indt) =

do indf = indt + 1 by 1 to
substr (line, indf -

if substr (from_seg,
then go to 1ine_end;
end;
indf = csize;
line_end:
linel = indf - indt;
n=1;
go to printl;

/* RERKERERRR

file: call copy;
call save;
fifish: call clean_up;

return;

J% EXRREEREER ,rite save REEEEEXXEX

wsave: call copy;

call save;
go to next;

/% AEERRERER onf ERERRERRE ¥/

eof: count = count - 1;

call ica_ ("End of File reached by:"/"a",

call resetread;
go to next;

3 - index (reverse (substr (from_seg, 1
indf - J
else if n = 0 then indf H

substr (from_seg,

[>]

indt,

indf,

Mfile" request ¥RRARRRRXX X/

x/

substr

NL

6-17

/% No line buffer */

/% save ptrs ¥/

/% restore ptrs */
/% Note that "n" starts negative.
, indf - 1)), NL);

/% First line case */

/% went off top of file */

/% line starts as indt */
1, indt);
/% move in top of file */
/% fifd end of line */
(from_seg, indf, 15
/* move into line */

/% search for end of line */

/% Finish copy. */
/% Save it. */

*/

/% Terminate source and release temp segs */

/% Return to command processor */

/% Finish copy. */
/% Save it. */
/% Continue accepting requests.

/* Remove NL */

commands) ;

*/

AGG0-02

LU /¥ ®xxxx##%% T N TE RNAL PROCEDUPRES ¥tsrsxxss »/

449
450
451
452 copy:
453
45y
455
456
457
458
459
460
461
462
463
4oy
465
466
467
468
469 save:
470
471
472
473
47y
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491 put:
492
493
49y
495
496
497
498
499
500 get:
501
502
503
504
505
506

procedure; /* copy rest of file into to file */

substr (to_seg, indt + 1, length (line)) = line;
/* Copy current line. */
indt = indt + length (line);

end copy;

linel = 0; /* No more line */
if csize = 0
Fhen return; /* If new input, then no copy needed. ¥/
ij = csize - indf; /* do rest of file */
if ij > 0
then substr (to_seg, indt + 1, ij) = substr (from_seg, indf + 1, ij);
indt = indt + iJ; /* set counters ¥/
indf = csize;
return;
procedure; /* Procedure to write out all or part of "to" buffer.
if source_ptr = null then do; /* Must be a new segment */

call hcs_$make_seg (dir_name, entry name, "", 01010b, source_ptr, code);
if code "= 0 then do;
call com_err_ (code, myname, "Cannot create “a~[>"]"a.",
dir_name, (dir_name "= ">"), entry name);
return;
end;
end;
substr (source_seg, 1, indt) = substr (to_seg, 1, indt);
call hes_$set_bc_seg (source_ptr, indt * 9, code);
if code = 0
then call hes_$truncate_seg (source_ptr, divide (indt + 3, 4, 19, 0), code);
if code "= 0 then doj;
call com_err_ (code, myname, "Cannot truncate/set bit count (°d) on "a”[>"]"a",
indt * 9, dir_name, (dir_name "= ">"), entry_name);

end save;

procedure;

procedure;

end;

return;

substr (to_seg, indt + 1, length (line)) = line; /* do move */

indt = indt + length (line); /* set counters %/

linel = O; /* Discard old line. ¥/

return;

linel = 0; /* Reset current line length. #*/

if indf >= csize then go to eof; /% If no input left, give up. */

linel = index (substr (from_seg, indf + 1, csize - indf), NL);
/* Find the next new line. */
if linel = 0 then linel = csize - indf; /% If no nl found, treat end of segment as one. ¥*/

*/

507 line = substr (from_seg, indf + 1, linel); /% Return the line to caller. */

508 indf = linel + indf; /% Move the "from" pointer ahead cne line. */
509 return;

510 end;

511

512 switch:

513 procedure; /% make from-file to file, and v.v. */
514 exptr = from_ptr;

515 from ptr = to _ptr;

516 to ptr = exptr;

517 csize = indt;

518 indt, indf = 0;

519 linel = 0;

520 return;

521

522 end switchy

523

524 resetread:

£25 procedure; /% Cz11 i/o system reset read entry. */
526 /% 1[n one place to centralize error handling */
527 call iox $control (iox_$user_input, "resetread", null (), code)

528 if code ™= 0O then call—com“eFrm (code, myname, "Cannot resetread user_input");

529 return;

530

531 end resetread;

532

533 get_token:

534 procedure;

535

536 declare (tcken_lth, white_lth) fixed binary (21);

537

538 thn = " ", /* Set for easy failure */
539 white lth = verify (substr (commands, edct), WHITESPACE) - 1;

540 if white_lth < O then return; /* Only whitespace left ¥/
5101 edct = edct + white 1lth;

542 token lth = search (substr (commands, edect), WHITESPACE) - 1;

543 if to?en_lth < 0 then token_lth = lergth (commands)- edct;

544 tkn = substr (commands, edcz, token_lth); /* Extract token */

545 edet = edct + token lth; -

546 return; -

547

548 end get_token;

549

550

551 get_num:

552 procedure; /* Routine to convert token to binary integer.
553 call get_token; /% Delimit the token. */
554 cv_num:

555 entry; /* Enter here if token already available. */
556 n = cv_dec_ (tkn); /* Convert it. */

557 if n = 0 then n = 1; /* Default count is 1. */
558 return;

559

560 end get _num;

561 -

562 clean_up:

563 procedure;

564

565 call release_temp_segments_ (myname, “emp_segs, (0));

566 if source_ptr "= null then call hes_$terminate_noname (source_ptr, (0));

*/

6-19 AG90-02

567
568
569
570

end clean_up;

end eds;

6-20

AG90-02

LINE

SOURCE FILES USED IN THIS COMPILATION.
NUMBER DATE MODIFIED NAME
0 05/06/80 1456.1 eds.pll

PATHNAME
>user_dir_dir>Multics>JRDavis>doc>ag90>eds.p11

AG90-02

NAMES DECLARED IN THIS COMPILATION.

IDENTIFIER OFFSET LOC STORAGE CLASS

NAMES DECLARED BY DECLARE STATEMENT.
NL

003750 constant
WHITESPACE 000001 constant
addr
break 000100 automatic
brk1 000101 automatic
buffer 000102 automatic
changes_occurred 000167 automatic
cleanup 000470 stack reference
code 000170 automatic
com_err_ 000010 constant
commands based
count 000171 automatic
csize 000172 automatic
cu_sarg_ptr 000012 constant
cv_dec_ 000014 constant
dir_name 000174 automatic
divide
edct 000173 automatic
entry name ° 000246 automatic
error_table_gnoentry 000052 external static
expand_pathname_ 000016 constant
exptr 000256 automatic
from_ptr 000260 automatic
from_seg based
get_temp_segments_ 000020 constant
globsw 000262 automatic
hes_$initiate_count 000022 constant
hes_$make_seg 000024 constant
hcs_$set_be_seg 000026 constant
hcs_sterminate_noname 000030 constant

DATA TYPE

char(1)
char(3)
builtin function

char(1)
fixed bin(17,0)
char(210)

bit(1)
condition
fixed bin(35,0)

entry

char

fixed bin(21,0)

fixed bin(21,0)

entry
entry
char(168)

builtin function
fixed bin(17,0)

char(32)

fixed bin(35,0)
entry

pointer

pointer

char(1048576)

entry
bit(1)
entry
entry
entry
entry

ATTRIBUTES AND REFERENCES
(* indicates a set context)

initial unaligned dcl 51 ref 224 261 263 402 418 504

initial unaligned del 53 ref 539 542

del 78 ref 149 149 174 174 174 174 182 182 189 192
193 193 211 213 213 239 247 259 259 270 286 286
286 286 286 286 304 309 310 312 313 331 333 333
338 338 341 343 352 352 354 355 358 358 365 370
416 443 453 453 455 493 493 494 507 539 542 543
544

unaligned decl 5 set ref 309* 310 312

dcl 6 set ref 308* 310 312 313 331 338 343

unaligned dcl 7 set ref 149 149 149 149 174 174 174
174182 182 182 182 189 192 193 211 213 247 259
259 304 309 310 312 313 331 338 343 370 443 539
542 543 544

unaligned dcl 8 set ref 326% 329% 348% 356

del 77 ref 109

del 9 set ref 91% 92 93% 9g* 100 101% 113% 115 117#%
T24% 125 126% 149% 151 152% 182% 184 135% 286% 287
288% 358% 359 360% 4T1% 472 4T73% 4T9* 48O UBO* 482
483% 527% 528 528%

external decl 59 ref 93 101 117 126 152 185 288 360
473 483 528

unaligned dcl 10 set ref 174 174 174 174 189 192 193
211 213 247 259 259 304% 309 310 312 313 331 338
343 370% 443% 539 542 543 544

del 12 set ref 149% 155 174 174 174 174 182% 189 189
192 193 211 213 247 259 259 301 302* 302 304 304
309 310 312 313 331 338 343 369*% 369 370 370 4y2*
442 443 443 539 542 543 544

del 13 set ref 135% 140% 141 141 223 224 227 229 229
231 232 251 253 263 264 415 421 457 459 463 503
504 506 517%

external decl 60 ref 91

external dcl 61 ref 556

unaligned dcl 15 set ref 99% 113% 117% 117 471% 473%
473 483* u483

del 78 ref 140 480 480

del 14 set ref 156% 211 213 247 2u8% 248 259 259 308
309 314% 314 539 541% SU1 542 543 544 545% 545

unaligned dcl 16 set ref 99* 113% 117% 137% y471%
473% ug3%

dcl 84 ref 115

external dcl 62 ref 99

del 17 set ref 514% 516

del 18 set ref 130% 141 224 229 239 240 259 261 263
266 270 402 413 416 418 460 504 507 514 515%

unaligned dcl 19 set ref 141% 224 229 239 240 259
261 263 266 270 402 413 416 418 460 504 507

external dcl 63 ref 124

unaligned dcl 21 set ref 315% 320% 350

external dcl 64
external decl 66
external dcl 68
external dcl 69

ref 113
ref 471
ref 479
ref 566

AGS0-02

hes_$truncate_seg
i

iJ

index
indf

indt

ica_
iox_$control
iox_$get_line
iox_$put_chars
iox_$user_input
iox_$user_output
J

1

length

line
line_buffer
linel
located

m

myname

n

null

release_temp_segments_

reverse
search

sname
sname_lth
sname_ptr
source_count
source_ptr

source_seg

000032
000263

000264

000265

000266

000034
000036
000040
0ooou2
000050
000046
000267

000270

000271

000272

000357

000360

000361

000000

000362

000044

000363
000364
000366
000370

constant
automatic

automatic

automatic

automatic

constant
constant
constant
constant
external
external
automatic

automatic

automatic

based

automatic

automatic

automatic

automatic

constant

automatic

constant

based

automatic
automatic
automat:ic
automat:ic

based

static
static

entry
fixed bin(21,0)

fixed bin(21,0)

builtin function
fixed bin(21,0)

fixed bin(21,0)

entry

entry

entry

entry

pointer

pointer

fixed bin(21,0)

fixed bin(21,0)
fixed bin(21,0)

builtin function

char

char(210)

fixed bin(17,0)

fixed bin(17,0)
fixed bin(21,0)

char(3)

fixed bin(21,0)

builtin function
entry

builtin function
builtin function
char

fixed bin(21,0)
pointer

fixed bin(24,0)
pointer

char (1048576)

external dcl 70 ref 480

del 22 set ref 201% 222% 259% 260 261 262 310% 311
312 313 314 328 331 338 343 345 397* LOO

del 23 set ref 327*% 334*% 341 343 346%* 346 352 354%
354 364 365 459% U460 460 460 462

del 78 ref 224 259 261 263 310 312 338 402 504

del 2U set ref 135% 220 227 231* 237% 240 240 242
250 251 259 261 262 264* 265% 268 400* 402 4O3*
403 4OL¥ L4O8¥ 412 U15% 416 416 413% 421% 422 459
460 463* 503 504 504 506 507 508% 508 518*

dcl 25 set ref 135% 229 232% 232 240 2U2% 242 249
266 269% 269 397 LO8* U412* 413 413 415 416 422 453
455% 455 460 462* 462 UTB 478 479 480 480 48B3 493
u94* 494 517 518*%

external del 71 ref 137 147 174 180 282 304 370 443

external dcl 72 ref 527

external dcl 73 ref 149 182

external dcl 7U ref 286 358

del 83 set ref 149% 132% 527*

decl 83 set ref 286* 358%

del 26 set ref 220% 223 224 224 235% 235 237 239
2649% 255 255 257*% 263% 264 265 312% 313 313% 314
331 337 333 334 335 343 343 3u6 347 U4O2* 403 403

del 27 set ref 22u4% 226 235 238 239 261% 262 262*
262 263 263 265 266 266 268 269 270 338% 340 341
341 343 345 346 347

del 28 set ref 327% 335% 347% 347 355% 355 358%

del 78 ref 149 149 174 174 182 182 192 211 247 259
286 286 313 333 352 354 355 453 455 U493 49U 5U3

unaligned del 29 set ref 193* 213% 239% 270% 286 286
286 286 333 333 338 341 352 352 354 355 365% 416*
453 453 455 493 493 494 507*

unaligned dcl 30 set ref 193 213 239 270 286 286 286
286 333 333 338 341 352 352 354 355 365 416 453
453 455 493 493 U94 507

dcl 31 set ref 192% 193 204% 211%* 213 228% 238* 239
239 240 240 242 268% 270 270 281 286 286 286 286
324 333 333 334 335 338 341 352 352 354 355 364*
365 392% L4O6* 416 422% U53 453 455 US56* U493 U493
494 L4g5* 502% 504% 506 506* 507 507 508 519*%

del 32 set ref 300* 330% 349% 368

del 33 set ref 220% 229 229 229 232 240 240 240 242
250% 257% 266 266 266 269 327* 338 341 3U5* 345
352 352 354 355

initial unaligned dcl 55 set ref 93* 93*% 101* 117*
T24% 126% 152% 185% 288*% 360% 473* 483* 528% 565*

del 34 set ref 201 219 222 251% 253 255% 256% 259
271% 292% 292 293 316* 367 376* 376 4O1* 401% 404
HOT* U2U® 556% 557 557*

del 78 ref 107 108 115 136 U470 527 527 566

external decl 75 ref 565

dcl 78 ref 261 402

dcl 78 ref 542

unaligned dcl 35 set ref 99* 101%*

dcl 36 set ref 91% 99 99 101 101

decl 37 set ref 91* 99 101

dcl 38 set ref 113% 140

del 39 set ref 107% 113% 115 136 141 470 471% 478
479% uBO* 566 566%

unaligned decl 40 set ref 141 478%

AG90-02

subsir

temp_segs 000372
tkn 000464
tlin 000375
to_ptr 000466
to_seg

token_lth 000554
verify

white_1lth 000555
NAMES DECLARED BY EXPLICIT CONTEXT.
backup 002353
bad_syntax 001656
bottom 002350
ch1 002017
ch2 002064
change 001652
clean_up 003301
copy 002527
cprt 002227
cv_num 003254
deTIlin 001221
eds 000231
eof 002500
file 002466
fifish 002470
get 003040
get_num 003251
get_token 003172
input 001131
insert 001237
line_end 002460
locate 001401
n_eof 001312
nexlin 001253
next 000706
noline 001643
nxarg 001775
pedit 000673
pinput 001116
print 001554
print1 001573
put 003025
resetread 003110
retype 001240
save 002565
skipch 002304
switch 003073
top 002345
wsave 002475

automatic
automatic

automatic
automatic
based

automatic

automatic

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant
constant

builtin function

pointer
char(8)

char(210)

pointer

char(1048576)

fixed bin(21,0)
builtin function
fixed bin(21,0)

label
label
label
label
label
label
entry
entry
label
entry
label
entry
label
label
label
entry
entry
entry
label
label
label
label
label
label
label

label
label
label
label
label
label
entry
entry
label
entry
label
entry
label
label

decl 78 set ref 141% 141 174 174 189 213 224 229% 229
239 240% 240 259 259 261 263 266* 266 270 309 310
312 331% 331 333% 338 338 341% 347 343 343 352#%
352 365 402 413% 413 416% 416 418 453% 460% 460
478% 478 493* 504 507 539 542 544

array del 42 set ref 108% 124% 130 131 565#%

unaligned dcl 44 set ref 159 160 161 162 163 164 165
166 167 168 169 170 319 320 538*% 544% 556%

unaligned dcl 43 set ref 331% 333% 341% 343% 350%

358 358 365

dcl 47 set ref 131% 229 240 266 413 453 460 478 493

515 516%

unaligned dcl 45 set ref 229% 240% 266% 413% 453%

460% 478 493*

del 536 set ref 542% 543 543% 544 545

dcl 78 ref 539
del 536 set ref 539% 540 541

del 397 ref 219

del 302 ref 247 311

del 391 ref 169

del 326 ref 37

decl 338 ref 350

del 300 ref 165

internal dcl 562 ref 109 127
internal dcl 452 ref 274 385
del 356 ref 336

internal dcl 554 ref 321

del 199 ref 166

external del 1

decl 442 ref 227 233 409 503

decl 429 ref 164

del 431 ref 153 186 289 361

internal dcl 500 ref 202 295
internal decl 551 ref 199 218
internal decl 533 ref 157 317
decl 182 ref 194

del 209 ref 159

del 422 ref 418

del 247 ref 161

del 227 ref 223

del 218 ref 163

431
391

378
280
553

398 429 436

del 149 ref 155 176 205 214 243 276 293 306 374 387

438 uus
del 292 ref 283
del 317 ref 322
decl 147 ref 189
del 180 ref 138 170 393
del 280 ref 162
del 286 ref 272 296 425

internal del 491 ref 191 209 221 252 294 377
internal dcl 524 ref 175 305 372 4uy

del 211 ref 160
internal dcl 469 ref 430 437
del 367 ref 324

internal dcl 512 ref 254 275 386 399

del 385 ref 168
del 436 set ref 167

AGg0-02

S

THERE WERE NO NAMES DECLARED BY CONTEXT

STORAGE REQUIREMENTS FOR THIS PROGRAM.

Object Text Link Symbol

Start 0 0 4204 4260
Length 4n7h 3752 54 200
BLOCK NAME STACK SIZE TYPE
eds 574 external
on unit on line 109 64 on unit
copy internal
save internal
put internal
get internal
switch internal
resetread internal
get token internal
get num internal
clean_up 80 internal
STORAGE FOR AUTOMATIC VARIABLES.
STACK FRAME LOC IDENTIFIER
eds 000100 break

000101 brk1

000102 buffer

000167 changes_occurred

000170 code

000171 count

000172 csize

000173 edct

000174 dir_name

000246 entry_name

000256 exptr

000260 from_ptr

000262 globsw

000263 i

000264 ij

000265 indf

000266 indt

000267 J

000270 k

000271 1

000272 line_buffer

000357 linel

000360 located

000361 m

000362 n

000363 sname_lth

000364 sname_ptr

000366 source_count

000370 source_ptr

000372 temp_segs

000376 tlin

000464 tkn

000466 to_ptr

000554 token 1lth

000555 white_lth

OR IMPLICATION.

Defs
3752
231

procedure

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

Static
4214
0

WHY NONQUICK/WHO SHARES STACK FRAME
is an external procedure.

stack
stack
stack
stack
stack
stack

shares
shares
shares
shares
shares
shares
shares stack
shares stack
is called by

BLOCK NAME
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
eds
get token
get_token

frame
frame
frame
frame
frame
frame
frame
frame

of
of
of
of
of
of
of
of

external
external
external
external
external
external
external
external

procedure eds.
procedure eds.
procedure eds.
procedure eds.
procedure eds.
procedure eds.
procedure eds.
procedure eds.

several nonquick procedures.

AG90-02

THE FOLLOWING EXTERNAL OPERATORS ARE USED BY THIS PROGRAM.

r_ne_as alloc_cs call _ext_out_desc call_ext_out call _int_this call_int_other
return enable shorten_stack ext_entry int_entry set ¢s eis
index_cs_eis - - - T

THE FOLLOWING EXTERNAL ENTRIES ARE CALLED BY THIS PROGRAM.

com_err_ cu_$arg ptr cv_dec expand_pathname
get_temp_segments_ hes_s$initiate_count hcs_gmake_seg hes_$set_be seg
hes_$terminate_noname hes_$truncate”seg ioa - iox_g$control
iox_$get_line iox_$put_chars rel?ase_temp_segments_ -
THE FOLLOWING EXTERNAL VARIABLES ARE USED BY THIS PROGRAM.
error_table_$noentry iox_$user_input iox_$user_output
LINE LOC LINE LoC LINE LOC LINE LOC LINE LoC LINE LoC LINE LOC
1 000230 91 000236 92 000254 93 000256 94 000310 99 000311 100 000341
101 000343 102 000375 107 000376 108 000400 109 000413 113 000435 115 000477
117 000507 119 000553 124 000554 125 000575 126 000577 127 000623 128 000627
130 000630 131 000632 135 000634 136 000637 137 000643 138 000663 140 000664
141 000667 147 000673 149 000706 151 000731 152 000733 153 000757 155 000760
156 000763 157 000765 159 000766 160 000773 161 001000 162 001005 163 001012
164 001017 165 001024 166 001031 167 001036 168 001043 169 001050 170 001055
174 001062 175 001113 176 001115 180 001116 182 001131 184 001154 185 001156
186 001202 189 001203 191 001212 192 001213 193 001215 194 001220 199 001221
201 001222 202 001232 203 001233 204 001235 205 001236 209 001237 211 001240
213 001243 214 001252 218 001253 219 001254 220 001256 221 001261 222 001262
223 001271 224 001274 226 001311 227 001312 228 001315 229 001316 231 001333
232 001335 233 001340 235 001341 236 001342 237 001344 238 001346 239 001350
240 001357 242 001374 243 001400 247 001401 248 001404 249 001405 250 001407
251 001411 252 001414 253 001415 254 001421 255 001422 256 001427 257 001430
259 001432 260 001451 261 001453 262 001467 263 001474 264 001510 265 001514
266 001516 268 001532 269 001535 270 001541 271 001546 272 001550 274 001551
275 001552 276 001553 280 001554 281 001555 282 001557 283 001572 286 001573
287 001614 288 001616 289 001642 292 001643 293 001645 294 001647 295 001650
296 001651 300 001652 301 001653 302 001656 304 001660 305 001706 306 001707
308 001710 309 001713 310 001720 311 001736 312 001737 313 001757 314 001765
315 001772 316 001773 317 001775 319 001776 320 002003 321 002013 322 002014
324 002015 326 002017 327 002020 328 002024 329 002027 330 002031 331 002033
333 002047 334 002054 335 002060 336 002063 338 002064 340 002110 341 002112
343 002130 345 002147 346 002154 347 002161 348 002166 349 002170 350 002172
352 002174 354 002217 355 002223 356 002227 358 002231 359 002250 360 002252
361 002276 364 002277 365 002301 367 002304 368 002307 369 002311 370 002313
372 002336 374 002337 376 002340 377 002342 378 002343 379 002344 385 002345
386 002346 387 002347 391 002350 392 002351 393 002352 397 002353 398 002355
399 002356 400 002357 401 002362 402 002366 403 002403 404 002407 406 002413

6-26 AG90-02

.

002414
002442
002466
002500
002540
002565
002707
003034
003062
003100
003143
003221
003253
003347

408
413
430
443
usT
470
480
495
507
517
529
543
556

002416
002450
002467
002502
002541
002566
002725
003036
003066
003102
003171
003240
003255

409
420
431
Lyy
L59
471
482
496
508
518
533
544
557

002420
002454
no2470
002525
002544
002572
002746
003037
003071
003104
003172
003244
003274

411
421
u32
uys
460
472
483
500
509
519
538
545
558

002421
002456
002474
002526
002546
002631
002750
003040
003072
003106
003173
003247
003277

412
422
u36
us52
u62
473
u86
502
512
520
539
546
562

002423
002460
002475
002527
002560
002633
003024
003041
003073
003107
003175
003250
003300

413
424y
437
453
463
475
491
503
514
524
540
551
565

002425
002463
002476
002530
002562
002700
003025
003042
003074
003110
003214
003251
003306

415
425
438
us5
46y
u78
493
504
515
527
541
553
566

002432
002465
002477
002536
002564
002701
003026
003045
003076
003111
003220
003252
003330

AG90-02

SECTION 7

ABSENTEE FACILITY

A common programming pattern is to develop a program online, using
debugging tools and the ability to interactively try a variety of test cases to
check on a program's correctness. After the program is working, one may wish to
do a large ‘'“production" run. Since the production run may produce much output
or take much time, the programmer does not wish to wait at his terminal for the
results. Production runs on Multics are best done using "absentee" jobs.

An absentee job uses Multics in the same way that a person does, except
that instead of being associated with a terminal, its 1input comes from a file,
and its output goes to a file. It is 1like "batch" jobs provided by other
systems. The language used in absentee jobs is the same as the interactive
command language. No special knowledge is required to write absentee job
control files. At its simplest, an absentee Jjob 1is just a collection cf
commands to be executed.

An absentee job runs in an environment similar to that of an interactively
logged-in wuser. The job logs in in the user's home directory, and runs the
user's start up.ec, 1if any. This must be kept 1in mind when writing a
start up.ec, and when submitting absentee jobs: beginning users often err in
falsely assuming that absentee jobs log in to the directory from which they were
submitted.

An absentee control file has the suffix "absin." An absentee job is
submitted by supplying the name of the absin file to the enter abs request
command. The absentee job is placed in a queue and run as background to the
normal interactive work of the system. This technique allows the system to
utilize its resources most effectively, by keeping a queue of jobs that can
always be run, and preempted for serving interactive users. For these reasons,
the charging rate for absentee jobs is normally substantially lower than for
interactive work.

Output from the absentee job goes into a file whose name is the same as the
absin segment with the suffix "absout" instead of "absin". When the job
completes, this segment may be printed by the user.

For example, suppose that the prime program used in the section on
performance is to used to check the prime-ness of the first five integers.

!

primep ([index set 51])
1 is a prime

2 is a prime

3 is a prime

4 is not a prime

5 is ~“a prime

1

r 16:33 0.119 17

7-1 AG90-02

[The correct operation of the primep command is shown by brief testing, using
the index_set active function, which returns the numbers from 1 to 5. The
primep command is invoked with each of these values, and seems to work.

Next, an absin file is created using the qedx editor.]

qedx

!
! a
! primep ([index set 5])
1 \f -
! w t5,absin

!

q
r 1640.4 0.218 39

L Now that the absin has been created, it is submitted for execution.]

! enter_abs request t5
ID: 21080571; 5 already requested

r 1641.3 0.450 63

[Multics confirms the submission, giving the request id and the number of
previously submitted jobs in the absentee queue. Often, many of these jobs may
be "deferred,” which is to say, they will not be run until a later time. Thus,
"5 already requested" does not necessarily mean that five jobs must be run and
completed before the newly-submitted job will run.,]

! who -absentee

Absentee users 3/9
Franklin.Mint#®
Gibson,.YORMA®*
Grant.States®
r 1642.1 0.272 22

[The who command is used to print a list of all absentee jobs. It shows that
there are three running, and a total of nine can run at the time. Absentee
users are identified by the asterisk after their project.

When the job is done, the user prints the output file.]

! print t5.absout
t5.absout 04/20/80 1643.6 est Sun

Absentee user Grant States logged in: 04/20/80 1641.4 mst Sun
r 16:41 2.364 55

primep ([index set 5])
1 is a prime
2 is a prime
3 is a prime
4 is not a prime
5 is "a prime
r 16:42 0.198 20

abs_io_: Input stream exhausted.

Absentee user Grant States logged out 04/20/80 1643.1 mst Sun
CPU usage 3 sec, memory usage 1.0 units

With more advanced use of the absentee facility, the wuser can also supply
arguments to be substituted inside the absentee control segment, make absentee
job steps conditional, delay absentee work until a chosen time, and develop a
periodic absentee job which is run, say, once every two days. This is possible
because the absin segment is interpreted like an exec com segment. All the
power of the Multics command interpreter 1is available. The user can verify the
correctness of the absentee job by running it as an exec_com,

7=-2 AG90-02

The next example shows how absentee jobs can accept arguments.
! print p.absin
p.absin 04/20/80 1655.7 est Sun
primep (lindex_set &11))
r 16:55 .110 19

[This absentee segment accepts one argument. The character string "&1" is
replaced by the argument wherever it occurs. To test this absin segment, tbe
user invokes it as an exec com. In order to use the segment as an exec_com, it
must have a name with suffix "ec" added to it.]

! add name p.absin p.ec
r 1656.3 0.100 5

! exec com p 2
primep ([index_set 2])
1 is a prime
2 is a prime
r 1700.1 0.210 30

[The exec_com is invoked with the argument 2. As it runs, it prints the
commands in the file. The argument mechanism seems to work, so the user submits
an absentee job.]

! enter abs_request p -arguments 100
ID: 227023.4; 6 already requested.
r 17:05 0.273 50

{ Here, the argument 100 is passed to the absentee job. The user goes about
other business while the request runs.]

For further information, see the MPM Commands manual description of the
enter_abs_request and exec_com commands. The exec_com command is also discussed
in Part IT of the New User's Introduction to Multies.

7-3 AG90-02

SECTION 8

LARGE FILES IN MULTICS

A frequent point of confusion about Multics concerns the handling of 1ayge
data files within the segmented virtual memory environment. A f;le, in Multlcs
terminology, is a (usually structured) collection of data of arbitrary size. A
file which happens to require less than 256K words of storage is usually stoyed
in a single segment of the Multics storage system, and is addressed by mapping
the segment containing the entire file into the current address space. Sogrce
and object programs, and small, linear ASCII text files are examples of files
handled this way. A file which is larger than 256K words (or which is smaller
but may someday grow that large) is usually stored in several segments in a
single directory in the Multiecs storage system, and is addressed by mapping
relevant parts (records) of the file into the current address space. The
directory contains, in addition to the raw data of the file, any maps or indexes
needed to maintain its internal organization. Three file management facilities
(sometimes called Access Methods on IBM systems) are available to handle the
details of setting up, indexing, and searching of files. These are:

1. Multisegment files (MSF's): There is a system-wide standard format
for ASCII text files which require more than 256K words of storage.
Most translators, for example, are prepared to produce very long
output listings for the printer using this format; the high speed line
printer facilities also recognize the format. Other system facilities
use multisegment files for objects other than ASCII text files. See
the description of the msf manager subroutine in the MPM Subsystem
Writer's Guide, Order No. AK92. -

2. vfile : A general purpose file manipulation system that provides
sequential record files, indexed (keyed) record files, and stream
(unstructured) files. vfile is an "I/O module" (see the MPM
Reference Guide) and is not <called directly, but rather through the
Multics I/0 system, and its interface, the iox_ subroutine.

The size of files managed by vfile_ is practically limitless. The
files are accessed using the virtual memory: one calls the I/0 system
giving the index or key of the record desired; vfile_ (via the I/0
system) can either return the contents of the record into a buffer, or
return a pointer to the location of that record in the address space,
and the program then can manipulate the contents of the record using,
for example, a PL/I based structure. vfile provides interlocking
facilities for multiple users, and also guarantees integrity of a file
in the case where a system failure occurs while the user is updating
the file. For further information, see the descriptions in the MPM
Reference Guide and the vfile_ I/0 module in the MPM Subroutines
Guide.

3. PL/I record-oriented I/O0: The full ANSI standard PL/I I/0 system is
implemented on Multics, allowing construction of a data manipulation
system which is in principle system independent. Since the PL/I I/O
system uses vfile_ (2, above) very large files can be efficiently set
up, updated, and searched using only the PL/I 1language. For further
information, one should consult the Multics PL/I 1language
specification, Order No. AG9..

8-1 AG90-02

In addition, wusers with unusually sophisticated needs such as completely
inverted files, files with indexes on different elements, etc., will find that
appropriate facilities can easily be developed using the virtual memory combined
with techniques similar to those used by vfile . It is important to realize
that vfile , while organized as a subsystem, is written in PL/I, using only
Multics facilities which are also available to the user. Thus, a user could
construct his own file management facility, providing facilities not offered by
vfile without recourse to special privileges or need to modify the Multics
supervisor.

Finally, the Multics I/0 system, which is organized to allow attachment of
arbitrary source-sink I/0 devices, may be used to read and write magnetic tape
in any of several formats, or detachable disk packs, for applications in which
permanent on-line storage is not appropriate. See the "Multics Peripheral I/0"
manual, order No. AX49, for further details on these matters.

8-2 AG90-02

INDEX

MISCELLANEOUS

-long_profile control argument 5-3
-optimize control argument 5-1

-table control argument 4-2

absentee facility 7-1
absentee control file T7-1
absin. suffix 7-1
absout. suffix 7-1
accepting arguments T7-3
example T7-3
capabilities 7-3
comparison of absentee facility and
exec_coms T7-3
enter_abs_request 7-1, T7-3
example T7-2
interactive command language T7-1
output file 7-2
production runs 7-=1
who command 7-2

accessing on-line storage
hcs_g$initiate 1-5

address space 1-1, 6-5
addressing on-line storage 1-1, 1-2
address space 1-1
other systems 1-1
process 1-1
program examples 1-2
segments 1-2
segments as storage units 1-2
alignment of variables 6-2

ALM assembler 1-4

binary object program 3-2
binding 2-3

binding related subprograms 2-3
bit count 6-6, 6-8
builtin functions 6-8

byte size 6-6

canonicalization 6-8

character strings, length of 6-2

cleanup condition 6-5, 6-9
cleanup handler 6-5

command processor 4
release command 4

commands 6-4
arguments to 6-l

com_err_ 6-3, 6-4, 6-5

constants, named 6-3

control characters 6-3

core image 1-2

create_data_segment command 1-4
create_data_segment_ subroutine 1-4
cu_ 6-l

cv_dec_ 6-9

cv_dec_$cv_dec_ 6-1

debugging tools U-1
probe 4-1, 4-3
examples U4-2, U4-3
source command 4-3
stack request 4-3
symbol request U4-3
value request 4-3
restarting suspended programs U4-1
direct intersegment references 1-3
discard_output command 5-2
division 6-6
dynamic linking 1-4, 2-1, 2-3
related subprograms 2-3

usage 2-1
program development 2-1

edm command 6-1

enter_abs_request 7-1, 7-3

entry points 1-4

error code (status code) 6-3, 6-4
error handling 6-7

exec_com command 7-3

external reference string with a
character string 1-4

) AG90-02

external static variables 1-3

files

large 8-1

storage 8-1
Multics I/0 system
multisegment 8-1
PL/I record-oriented I/0 8-1
vfile 8-1

size of files 8-1

8-2

gates 6-4
get_temp_segments_ 6-6

good programming practices 6-1

hes_ 6-4

hes _$initiate 1-5

hes_$initiate_count 6-4, 6-5, 6-6

hes_g$make_ptr 1-4, 1-5

hes_$terminate_noname 6-9

I/0 6-7

I/0 switches 6-4, 6-7
index builtin 6-8

internal automatic variables 1-2
internal static variables 1-3
ioa_ 6-3, 6-5, 6-6

iox_ 6-7

iox_ subroutine 8-1

iox_g$get_line 6-7

library subroutines 1-1
linkage fault 1-2

listing segments 3-1

Multics
address space 1-2
addressing-on-line storage
examples 1-2
catalogued file 1-2
storage system 1-2, 1-4
8-2

Multics I/0 system 8-1,

Multics PL/I compiler 3-1

i-2

Multics programming environment 1-1
choosing a language 1-1
library subroutines 1-1
PL/I 1-1
supervisor subroutines 1-1

multisegment files 8-1

object segment 3-1
definition segment 3-1
text section 3-1

options (constant) 6-3

options (variable) 6-2

output reset 6-8

overlay defining 6-3

page_trace command 5-3

pathnames, as control arguments 6-4
performance measurement tools 5-1
-optimize control argument 5-1
page_trace command 5-3
profile facility 5-1
-long_profile control argument
5-3
-profile control argument 5-1
discard_output command 5-2
examples 5-1, 5-2

trace command 5-3
PL/I1
compiler 3-1, 6-1

binary object program 3-2
compilation info 3-2
declare statement 3-2
explicit context 3-2
invoking 3-1
control arguments 3-1
label and entry constants 3-2
object segment 3-1
pl1_operators_ 3-3
quick procedures 3-3
source files 3-2
statement map 3-3
-list control argument 3-3
storage allocation 3-3
symbol listing 3-3
variable info 3-2
direct intersegment references 1-3
dollar sign 1-4
entry points 1-4
external reference starting with a
character string 1-4
external static 1-3
good programming practices 6-1
I/0 6-6, 6-7
interface subroutine 1-1
internal automatic variables 1-2
internal static variables 1-3
null string 1-5
record-oriented I/0 8-1
reference to named offsets 1-4
text editor sample program 6-1

PL/I compiler

compilation listing 3-1

creation of listing segments 3-1
pl1_operators_ 3-3

precision of variables 6-2, 6-3, 6-6

AG90-02

/ N

/ N

process 1-1

profile facility 5-1
-long_profile control argument 5-3
-profile control argument 5-1
discard output command 5-2
examples 5-1, 5-2

programming on Multics 1-1
choosing a language 1-1
good programming practices 6-1
PL/I 1-1, 1=2
PL/I compiler 3-1

quick procedure 3-3, 6-7

reference to named offsets 1-4
release command 4-1

restarting suspended programs 4-1
start command 4-1

reverse builtin 6-8

search builtin 6-9

segment
size of 6-3

segments 1-2
structured data 1-U4

segments as storage units 1-2
side-effects 6-7, 6-8

source command 4-3

stack 4-1

stack request 4-3

start command 4-1

statement map 3-3
list control argument 3-3

storage allocation 3-3
substr builtin 6-8
supervisor subroutines 1-1
symbol listing 3-3

symbol request U4-3

symbol table U4-2

tab character 6-8

temporary segments (temp segs) 6-5,
6-6, 6-8, 6-9

terminal output 6-6

text editor sample program 6-1
comments 6-1

i-3

text editor sample program (cont)
program listing 6-1

trace command 5-3
translators 8-1

type-ahead 6-7

value request 4-3
variables
external static 1-3
internal automatic 1-2
internal static 1-3
verify builtin 6-9
vfile_ 8-1

virtual memory 1-2, 6-3, 6-6, 8-1
vfile_ 8-1

who command 7-2

AG90-02

) -

)

4

————————————- CUT ALONG LINE ——"

HONEYWELL INFORMATION SYSTEMS
Technical Publications Remarks Form

R

LEVEL 68
TITLE | MULTICS PROGRAMMER'S MANUAL

ERRORS IN PUBLICATION

ORDERNO. | AG90-02

DATED | MAY 1980

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

and action will be taken as required. Receipt of all forms will be

D Your comments will be investigated by appropriate technical personnel
acknowledged; however, if you require a detailed reply, check here.

FROM: NAME

TITLE

COMPANY

ADDRESS

DATE

PLEASE FOLD AND TAPE -
NOTE: U. S. Postal Service will not deliver stapled forms

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 39531 WALTHAM, MA02154

POSTAGE WILL BE PAID BY ADDRESSEE

HONEYWELL INFORMATION SYSTEMS
200 SMITH STREET
WALTHAM, MA 02154

ATTN: PUBLICATIONS, MS486

A———

Honeywell

- CUT ALONG LIN(—————

___‘_______________‘..___.______._

(

rg

<

(

