o

MULTICS PROGRAMMERS’ MANUAL
H oneywell COMMANDS AND ACTIVE FUNCTIONS
ADDENDUM C

SERIES 60 (LEVEL 68)

SOFTWARE

SUBJECT:

Additions and Changes to the Standard Multics Commands.

SPECIAL INSTRUCTIONS:
This is the third addendum to AG92, Revision 1, dated January 1975.

Insert the attached pages into the manual according to the collating
instructions on the back of this cover. The following commands and
preaccess requests are new and, therefore, do not contain change bars:

attach_1v
copy_file
detach_1v
repeat_query
hello

slave

The code command has been renamed encode and does not contain change bars.
Throughout the rest of the manual, change bars in the margins indicate
technical additions and changes; asterisks denote deletions. These changes
will be incorporated into the next revision of the manual.

NOTE: Insert this cover after the manual cover to indicate the updating of
the document with Addendum C.

SOFTWARE SUPPORTED:

Multics Software Release 4.0

DATE:

July 1976

ORDER NUMBER:
AG92C, Rev. 1
15787

1576
Printed in U.S.A.

To update this manual, remove old pages and insert new pages as follows:

(:) 1976, Honeywell Information Systems Inc.

T/76

Remove

v through viii

1-1 through 1-7.1
3-7, 3-8

3-11, 3-12

3-24.1, 3-24.2

3-45, 3-46

3-49, 3-50

3-54.1 through 3-56.2
3-87 through 3-96
3-99 through 3-104
3-111, 3-112

3-125, 3-126

3-131, 3-132

3-183 through 3-185.1
3-193 through 3-200
3-202.1, blank

3-203 through 3-208.2
3-211 through 3-216
3-229, 3-230

3-305 through 3-308
3-318.3 through 3-326
3-333.1 through 3-334.2

COLLATING INSTRUCTIONS

Insert

v through viii

1-1 through 1-7.1
3-7, 3-8

3-11, 3-12

3-24.1 through 3-24.4
3-45, 3-46

blank, 3-50

3-54.1 through 3-56.2
3-87 through 3-96
3-99 through 3-104
3-111 through 3-112
3-125, 3-126

3-131, 3-132

3-183 through 3-185.3
3-193 through 3-200
3-202.1, 3-202.2
3-203 through 3-208.2
3-211 through 3-216
3-229, 3-230

3-274.1, blank

3-305 through 3-308
3-318.3, 3-326
3-333.1 through 3-334.2

File No.:

1L13
AG92C

L 3

é/

A)

7/76

3-337 through 3-340
4-5, L4-6

4-9 through 4-11
A-1, A-2

3-337 through 3-340
4-5, 4-6
4-9 through U4-13

AG92C

This page intentionally left blank.

7/76 AG92C

N

MULTICS PROGRAMMERS’ MANUAL

Honeywell COMMANDS AND ACTIVE FUNCTIONS

ADDENDUM B

SERIES 60 (LEVEL 68)

SOFTWARE

SUBJE

SPECI

'SOFTW

CT:

Additions and Changes to the Standard Multics Commands.

AL INSTRUCTIONS:
This is the second addendum to AG92, Revision 1, dated January 1975.

Insert the attached pages into the manual according to the <collating
instructions on the back of this cover. The help and list commands have

been totally revised and, therefore, do not contain change bars; the
vfile _adjust and vfile_status commands are new and also do not contain
change bars. Throughout the rest of the manual, chanege bars in the mareins

indicate technical additions and changes; asterisks denote deletions.
These changes will be incorporated into the next revision of the manual.

NOTE: 1Insert this cover after the manual cover to indicate the undatine of
the document with Addendum R.

ARE SUPPORTED:

Multics Software Release 3.1

DATE:

March 1976

ORDER

NUMBER:

AG92B, Rev. 1

15033
1276
Print

ed in U.S.A.

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

iii through viii

1-3 through 1-6

1-8 through 1-18

2-25, blank

3-3 through 3-6

3-11, 3-12

3-19 through 3-22
3-43, 3-u4

3-59, 3-60

3-85, 3-86

3-113, 3-114

3-119 through 3-124
3-141, 3-142

3-149, 3-150

3-153 through 3-164
3-167 through 3-170

3-173 through 3-176
3-183, 3-184
3-187 through 3-190

3-193, 3-194
3-213 through 3-216

3-219 through 3-222

Insert

iii, iv
v, vi
vii, blank

1-3 through 1-6

2-25, 2-26

3-3 through 3-6

3-11, 3-12

3-19 through 3-22
3-43, 3-44

3"59’ 3-60

3_85, 3_86

3-113, 3-114

3-119 through 3-124
3-141, 3-142

3-149, 3-150

3-153 through 3-164
5-167, 3-168

3-169, 3-170
3-170.1, 3-170.2
3-170.3, 3-170.4
3-173 through 3-176
3-183, 3-184

3-187, 3-188

3‘1897 3-190
3-190.1, 3-190.2
3-190.3, 3-190.4
3-190.5, 3-190.6
3-190.7, 3-190.8
3-193, 3-194

3-213 through 3-216

3-219 through 3-222

(:) 1976, Honeywell Information Systems Inc. File No.: 1L13

3/76

AG92B

3/76

3-225, 3-226
3-301 through 3-30U4
3-318.1, 3-318.2

4-5 through 4-8

3-225, 3-226
3-301 through 3-304
3-318.1, 3-318.2

3-334.1, 3-334.2
3-334.3, blank

4-5 through 4-8

AG92B

This page intentionally left blank.

3/76 AG92B

Honeywell

SERIES 60 (LEVEL 68)

MULTICS PROGRAMMERS’ MANUAL
COMMANDS AND ACTIVE FUNCTIONS
ADDENDUM A

SOFTWARE

SUBJECT:

Additions and Changes to the Standard Multics Commands, Including a New

Section on Access to the System.

SPECIAL INSTRUCTIONS:

This is the first addendum to AG92, Revision 1, dated January 1975.

Insert the attached pages

instructions on the back

Section IV plus the following

the manual according to the collating

this cover. The prelogin requests in

commands and active function reflect new

information issued in this addendum and do not contain change bars.

assign_resource
cancel_cobol_program
cobol

copy_cards
cumulative_page_trace
dial
display_cobol_run_unit
display_pliio_error
format_cobol_source:
list_resources
page_trace

print_auth_names
print_proc_auth
print_request_types
probe

run_cobol

set_tty

sort

stop_cobol_run
trace
unassign_resource
have_mail (active function)

Throughout the rest of the manual, change bars in the margins indicate

technical additions and changes;

asterisks denote deletions. These

changes will be incorporated into the next revision of the manual.

NOTE: 1Insert this cover after the manual cover to indicate the updating of
the document with Addendum A.

SOFTWARE SUPPORTED:

Multics Software Release 3.0

DATE:

September 1975

ORDER NUMBER:
AG92A, Rev. 1
13935

1975
Printed in U.S.A.

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

mov

title, preface
iii through vii
1-1 through 1-8

2-1, 2-2
2-25

3-39 through 3-42

3-55, 3-56

3-99, 3-100

3-105 through 3-110

3-123 through 3-126

3-145, 3-146
3-177 through 3-186

3-195, 3-196

nsert

title, preface
iii through viii
1-1 through 1-6
1=7, 1=-T7.1
blank, 1-8

2-1, 2=2

2-25

3-24.1, 3-24.2

3-39, blank
3-3901’ 3‘“0
3-41, 3-k2

3-48.1, 3-48.2
3-48.3, blank

3-54.1, blank

3-55, 3-56
3-56.1 through 3-56.4
3-991 3-99.1

3-99.2, 3-100

3-105 through 3-110
3-110.1, blank

3-123 through 3-126
3-138.1, blank
3-145, 3-146

3-177 through 3-184
3-185, 3-185.1
blank, 3-186

3-195, 3-196

(:) 1975, Honeywell Information Systems Inc.

9/75

1L13

AG92A

9/75

3-203 through 3-208

3-215 through 3-218

3-223, 3-224
3-227, 3-228

3-323 through 3-326

3-333, 3-334

02.1, 3-203/3-204
05 through 3-208
08.1, 3-208.2

-227, blank
3-227.1, 3-228

3-230.1, 3-230.2
3-232.1 through 3-232.30
3-278.1, 3-278.2

3-318.1, 3-318.12
318.13, blank

323 through 3-326
326.1, blank

333, blank
333.1, 3-334

3-
3=
3-
3-328.1 through 3-328.10
3=
3-
4-1 through U4-11

AG92A

This page intentionally left blank.

9/75 AG92A

March 28? 1975

Massachusetts Institute of Technology
Information Processing Center
Cambridge, Massachusetts 02139

" Publications

39-483

This manual (MPM Volume 3) 1s part of a rather extensive revision

of the Honeywell MPM.

It is meant to replace the following sec-

tions of Part 2 of the M.I.T. MPM:

1.5 Constructing and Interpreting Names

1.6 Command and Active Function Name Abbreviations
1.8 = 1.15 Active Functions

9 Commands

Note the following command writeups which were in revision 15

of the MPM have been removed for the reason given.

The user

may wish to retain these writeups until they are published else-

set search dirs

sort_file
vSbasic

where.
Command Reason#

2lm SWG

. alm_abs SWG
archive-sort SWG
basic_run MIT-Dartmouth
decam o MIT
display_component_name SWG
endfile Obsolete (Use close file)
hold Obsolete
iomode Obsolete
1lisp MIT-LISP
lisp_compiler MIT-LISP
make_peruse text SWG
names SWG
page_trace SWG
peruse_text SWG
print_| bind _map SWG
print_ “dartmouth _library MIT-Dartmouth
print entry _usage Obsolete
print__ Tlink info SWG
print linkage _usage SWG
reorder archive SWG
set dartmouth _llbrary MIT-Dartmouth

Obsolete (Use set_search_rules or

add search rules)
Obsolete (Use sort_seg)
MIT-Dartmouth

%*SWG means moved to the Subsystem Writers' Guide (Vol. 5); MIT
means the documentation is for MIT users only.

MULTICS PROGRAMMERS’ MANUAL

H oneywell COMMANDS AND ACTIVE FUNCTIONS

SOFTWARE

SERIES 60 (LEVEL 68)

SUBJECT:

Description of Standard Multics Commands, Including Details of Their
Calling Sequence and Usage.

SPECIAL INSTRUCTIONS:

This manual is one of four manuals that constitute the Multics Programmer's
Manual (MPM).

Reference Guide Order No. AG91
Commands and Active Functions Order No. AG92
Subroutines Order No. AG93
Subsystem Writers' Guide Order No. AK92

This manual supersedes AG92, Rev. 0, and its Addendum A. The manual has
been extensively revised; therefore, marginal change indicators have not
been included in this edition.

SOFTWARE SUPPORTED:

DATE:

Multics Software Release 2.0

January 1975

ORDER NUMBER:

AG92, Rev. 1

PREFACE

Primary reference for user and subsystem programming on the Multiecs system
is contained in four manuals. The manuals are collectively referred to as the
Multics Programmers' Manual (MPM). Throughout this manual, references are

frequently made to the MPM. For convenience, these references will be as
follows:

Document Referred To In Text As
Reference Guide MPM Reference Guide

(Order No. AG91)

Commands and Active Functions MPM Commands
(Order No. AG92))

Subroutines ‘ MPM Subroutines
(Order No. AG93)

Subsystem Writers' Guide MPM Subsystem Writers' Guide
(Order No. AK92)

The MPM Reference Guide contains general information about the Multics
command and programming environments. It also defines items used throughout the
rest of the MPM. And, in addition, describes such Subjects as the command
language, the storage system, and the input/output system.

The MPM Commands is organized into four sections. Section I contains a
list of the Multics command repertoire, arranged functionally. It also contains
a discussion on constructing and interpreting names. Section II describes the
active functions. Section III contains descriptions of standard Multics
commands, including the calling sequence and usage of each command. Section IV
describes the requests used to gain access to the system.

The MPM Subroutines is organized into three sections. Section I contains a
list of the subroutine repertoire, arranged functionally. Section II contains
descriptions of the standard Multics subroutines, including the declare
statement, the calling sequence, and usage of each. Section III contains the
descriptions of the I/0 modules.

The MPM Subsystem Writers' Guide is a reference of interest to compiler
writers and writers of sophisticated subsystems. It documents user-accessible
modules that allow the user to bypass standard Multics facilities. The
interfaces thus documented are a level deeper into the system than those
required by the majority of users.

9/75 AG92A
(:) 1975, Honeywell Information Systems Inc. File No: 1L13

9/75

Examples of specialized subsystems for which construction would reauire
reference to the MPM Subsystem Writers' Guide are:

A subsystem that precisely imitates the command environment of some
system other than Multics.

A subsystem intended to enforce restrictions on the services available
to a set of users (e.g., an APL-only subsystem for use in an academic
class).

A subsystem that protects some kind of information in a way not easily
expressible with ordinary access control lists (e.g., a proprietary
linear programming system, or an administrative data base system that
permits access only to program-defined, aggregated information such as
averages and correlations).

Several cross-reference facilities help locate information:

Each manual has a table of contents that identifies the material
(either the name of the section and subsection or an alphabetically
ordered list of command and subroutine names) by page number.

Each manual contains an index that lists items by name and page number.

iii AG92A

CONTENTS

)
[
[0,]
o

Section I Multics Command Environment . . . « e e e
Reference to Commands by Function o e e e e

Y
i1
-—

Section II Active Functions . . e .

. . . 2-1

Grouping of Actlve Functlons .« o 2-1
Logical Active Functions 2=-2
and 0 0 v e e e e . e . 2-2
equal e . e e 2-3
exists e P 2-3
greater 0 0 ... e e . -4
1ess . . . i e e e e e e e e e e e e e e -1
nequal L . 0 . e e e e e e e e e -4
ngreater 0. .. -4

N1ESS & & v v v v v e e e e e e e e e e e e

not . . . L L s s s e e e e e e e e e e -
or . e e e e e e e e -

Arlthmetlc Actlve Functions e e e e e e e
ceil . . . L. . . 000 e e e e e e
divide 000 0. .

floor . o v v v v v v v e e e e e e e . -
MAX & v o o o o o o o o o o o o o o o o o o -
min 0 0 e e e e e e e e e e -

minus v e d e e e .

NNN'\)'\)NNNI\)%\)NNNNNNNN

Mmod e e e e e e e e e e -
Plus o e e e e e e e e e e e e -
quotient « o e e e -
times 0000 0. . . -
trunc« . . .
Character Strlng Actlve Functlons . . -
format_line . . -

index .« . . v v 0 0 e e e e e e e e e
index_set
length . o s e e e e 4 4 e e e
search ¢ vt i e e e e e e e
string 0 o 0 . 0 0 0w 0.
substr0 . .. 0.,
verify . e e e

Segment Name Actlve Functlons . e .
directories
directory
entry . . . e e e e e e e e e e e e e e
files . . . e e e e e e e e e e e e e e
get_ pathname e e e e e e e e e
home_dir
links . . . [
nondlrectories e e e e e e e e e e e
nonlinks0 0. .
nonsegments
path . e e e e e e e e e e e e e e e
pd e
segments . e
strip

1
i T G S S S NS Vo Vo e - Yo o X o - Bt R DAC I JRCIFS o W's We o U XU, RS I

[I I N A IO B B |
ALV EEFEEZTWWLWWNLNDLNINN20000

DEUSIOSINVENVBRVELNVDVINVENVIDVIDVINVINVINVIGV IV VIV VIV SIS VI

3/76 iv AG92B

‘l\

e

Section III

T7/76

Contents (cont)

strip_entry .

suffix .

unique

wd 0 e e e e
Date and Time Active Functions

date ..

date_time

day

day_name

hour . .

long_date

minute

month

month_name

time

year . . . v v e e e e e e o
Question Asking Active Functions

query ..

response . . .« .« o+ o+ e o« . .
User Parameter Active Functions.

system

user

have_mail

Command Descriptions.

abbrev, ab . .
accept_messages, am.
add_name, an e e e s
add_search_rules, asr.
adjust_bit_count, abec.
answer

apl. -

archive, ac. . .
assign_resource, ar.
attach_1lv, alv

basic.

basic_system, bs
bind, bd
cale

cancel_abs_request, car.
cancel_cobol_program, ccp.
cancel_daemon_request, cdr
change_default_wdir, cdwd.
change_error_mode, cem
change_wdir, cwd e e e e e e e
check_info_segs, cis
close_file, cf .

cobol.

compare. . e
compare_ascii, cpa

copy, cp

copy_cards

copy_file.

create, cr

create_dir, cd e e e e .
cumulative_page_trace, cpt
debug, db.

decode : : .
defer_messages, dm
delete, dl

delete_acl, da

==
whowoccUvIOooOVWNTEEMTEN-=2O

wwwwwwwwww&i\)wwwwwwwwww
FLWWWNHNLNNLIND = OooW -

]
=
=

3-45
3-48
3-48.
3-50
3-51
3-53
3-54,
3-54.
3-55

.- 3-56

3-56.
3-57
3-87
3-88
3-89
3-90

AG92C

7/76

Contents (cont)

delete_dir, dd .
delete_force, df . .
delete_iacl_dir, did
delete_iacl_seg, dis
delete_name, dn. .
delete_search_rules, dsr
detach_1lv, dlv

display_cobol run.u51t dér:

display_plilio_error, dpe

do

dprint, dp .

dpunch, dpn. .

dump_segment, ds

edm. - ..

encode . .

enter_abs request ear

exec_com, ec . . .

file_output, fo. .
console_output, co.

format_cobol_source, fecs

fortran, ft. .

fortran_abs, fa.

fs_chname.

gcos, gc . .

gcos_card utlllty, gecu

gcos_sysprint, gsp

gcos_syspunch, gspn.

get_com_line, gcl.

get_quota, gq.

help . . .

how_many_ users, hmu.

immediate_messages, im

indent, ind.

initiate, in

io_call, io. . .

line_length, 11.

link, 1lk e e .

list, 1s . . .

list_abs requests, lar

llst_acl la e e e e .

list_daemon_requests, ldr.

list_iacl_dir, 1lid

list_iacl_seg, lis

list_ref_names, 1lrn.

list_resources, 1r

logout

mail, ml

memo

merge

move, mv .

move_quota, mq

new_proc . .

page_trace, pgt

pl1. . . .

pli_abs, pa

print, pr. . ..

print_attach table, pat.

print_auth_names, pan .

print_default_wdir, pdwd

print_messages, pm

print_motd, pmotd.

.
t

vi

Page

[I R I B |]
OO0OWVWWOWWOWOWoOOEWN

1
[N - A Yo Ve Ve Ve JVe Ve Ve IV e JNo]

ww*wwwwwwwwwwwww
]]

—_

N

()]

AG92C

wWwWN —

4/

it}

Section IV

7/76

Contents (cont)

print_proc_auth, ppa .

print_request_types, prt

print_search_rules, psr.

print_wdir, pwd.

probe.

profile. . ..

program_ 1nterrupt pi.

progress, pg

gedx, qx .

ready, rdy . .

ready_off, rdf

ready_on, rdn.

release, rl.

rename, rn

repeat_query .

reprint_error, re.

resource_usage, ru

run_cobol, rc.

runoff, rf ..

runoff_abs, rfa. .

safety_sw_off, ssf

safety_sw_on, ssn.

send_message, sm

set_acl, sa. .

set_bit_count, sbc

set_cc . . .

set_com_line, scl.

set_iacl_dir, sid.

set_iacl_seg, sis. . .

set_search_rules, ssr.

set_tty, stty

sort . ..

sort_seg, ss

start, sr.

status, st .

stop_cobol_run, scr

terminate, tm. v e e e
terminate_segno, tms.
terminate_refname, tmr.

terminate_single_refname, tmsr.

trace

trace stack ts.
truncate, tc . .
unassign_resource, ur.
unlink, ul
vfile_adjust, vfa
vfile_status, vfs
walk_subtree, ws
where, wh.

who.

Access to the System

dial
enter, e

enterp, ep
login, 1 . .
preaccess requests

vii

[I S B B | 1
WLwLwwwwwwwwww
PN = — 3 v 3 a3

wwwwwwkf)wwwwww

]
w
n
-

AG92C

WO EWN —

n
[ep)

ey

Index

7/76

Contents (cont)

viii

AG92C

)

SECTION I

MULTICS COMMAND ENVIRONMENT

The Multics command environment discussion, presented in this section,
consists of two major parts. The first part of the discussion lists the Multics
command repertoire arranged according to function and described briefly. The
second part of this section establishes rules for constructing and interpreting
the various types of names used on Multics and details the several standard
conventions for using these names.

REFERENCE TO_COMMANDS BY FUNCTION

The Multics command repertoire is divided according to the command function
into the following 18 groups:

Access to the System

Storage System, Creating and Editing Segments
Storage System, Segment Manipulation

Storage System, Directory Manipulation

Storage System, Access Control

Storage System, Address Space Control

Formatted Output Facilities

Language Translators, Compilers, Assemblers, and Interpreters
Object Segment Manipulation

Debugging and Performance Monitoring Facilities
Input/Qutput System Control

Command Level Environment

Communication Among Users

Communication with the System

Accounting

Control of Absentee Computations

GCOS Environment

Miscellaneous Tools

Since many commands can perform more than one function, they are listed 1in
more than one group.

Detailed descriptions of the commands are given in Section III, arranged in
alphabetical rather than functional order. Detailed descriptions of the
requests used to gain access to the system are given in Section IV. Many of the
commands in Section III also have online descriptions, which the user may obtain
by invoking the help command.

9/75 1-1 AG92A

Access to the System

Stora

(preaccess requests)
dial

enter

enterp

login

logout

stem, Creatin

adjust_bit_count
basic_system
compare_ascii

edm

indent
program_interrupt
gedx

runoff

runoff_abs
set_bit_count

sort_seg

and Editin

used to inform system of special terminal
attributes

connects an additional terminal to an
existing process

connects an anonymous user to the system
(used at dialup only)

connects registered user to the system (used
at dialup only)

disconnects user from the system

ments

sets bit count of a segment to last nonzero
word or character

provides a standard source editor and run
dispatcher for interactive use with BASIC

compares ASCII segments, reporting
differences

allows inexpensive, easy editing of ASCII
segments

indents a PL/I source segment to make it more
readable

provides for command reentry following a quit
or an unexpected signal

allows sophisticated editing, including macro
capabilities

formats a text segment according to internal
control words

invokes the runoff command in an absentee job

sets the bit count of a segment to a
specified value

sorts ASCII segments according to ASCII
collating sequence

Storage System, Segment Manipulation

7/76

adjust_bit_count
archive

compare
compare_ascii

copy

“copy_file

create
delete

delete_force

link

move

sets bit count of a segment to 1last nonzero
word or .character
packs segments together to save physical

storage

compares segments word by word, reporting
differences

compares ASCII segments, reporting
differences

copies a segment or multisegment file and its
storage system attributes

copies records from an input file to an
output file)

creates an empty segment

deletes a segment or multisegment file and
questions user if it is protected

deletes a segment or multisegment file
without question

creates a storage system 1link to another
segment, directory, link, or multisegment
file

moves segment or multisegment file and its
storage system attributes to another
directory

1=2 AG92C

Storage System

Storage System, Access Control

set_bit_count
sort_seg
truncate

unlink
vfile_adjust

Director

add_name

create_dir
delete_dir

delete_name

fs_chname

link

list
rename

safety_sw_off
safety_sw_on
status

unlink
vfile_status

delete_acl
delete_iacl_dir
delete_iacl_seg
list_acl
list_iacl_dir
list_iacl_seg
set_acl
set_iacl_dir

set_iacl_seg

sets the bit count of a
specified value
sorts ASCII segments

collating sequence
truncates a segment to a specified length
removes a storage system link
adjusts structured and unstructured files

segment to a

according to ASCII

Manipulation

adds a name to a segment, directory, link, or
multisegment file
creates a directory

destroys a directory and its contents after
questioning user

removes a name from a segment, directory,
link, or multisegment file

renames a segment, directory, link, or
multisegment file, bypassing naming
conventions

creates a storage system 1link to another
segment, directory, link, or multisegment
file

prints directory contents

renames a segment, directory, link, or
multisegment file

turns safety switch off for a segment,
directory, or multisegment file

turns safety switch on for a segment,

directory, or multisegment file
prints all the attributes of an entry 1in a

directory
removes a storage system link
prints the apparent type and 1length of

storage system files

removes an ACL entry

removes an initial ACL for new directories
removes an initial ACL for new segments
prints an ACL entry '

prints an initial ACL for new directories
prints an initial ACL for new segments
adds (or changes) an ACL entry

adds (or changes) an initial ACL for new
directories

adds (or changes) an initial ACL for new
segments

Storage System, Address Space Control

T7/76

add_search_rules
attach_1lv
change_default_wdir

change_wdir
delete_search_rules

allows users to change (insert) search rules
dynamically
calls the resource control package to attach

a logical volume
sets the default working directory
changes the working directory
allows users to delete current search rules

1-3 AG92C

Form

detach_1lv
initiate
list_ref_names
new_proc

print_default_wdir
print_proc_auth

print_search_rules
print_wdir
set_search_rules
terminate
terminate_refname
terminate_segno

terminate_single_refname
where

ted Qutput Faciljties
cancel_daemon_request
dprint

dpunch

dump_segment
list_daemon_requests

print
runoff

runoff_abs

angua Translators, Compi

T7/76

apl

basic

basic_system

bind
cancel_cobol_program

cobol
display_cobol_run_unit

format_cobol_source

fortran
fortran_abs

indent
pli
pli_abs
profile

gedx

detaches logical volumes attached by the
resource control package

adds a segment to the address space of a
process

prints all names by which a segment is known'

to a process
creates a new process with a new address
space
prints name of default working directory
prints access authorization of the current
process and current system privileges
prints names of directories searched for
segments referenced dynamically
prints name of current working directory
allows users to modify search rules

removes a segment from process address space

prints absolute pathname of a segment

cancels a previously submitted daemon request

queues a segment or multisegment file for
printing on the high-speed printer

queues a segment or multisegment file for
card punching

prints segment contents in octal, ASCII, or
BCD

prints 1list of print and punch requests
currently queued

prints an ASCII segment

formats a text segment according to internal
control words

invokes the runoff command in an absentee job

embler nd Interpreter

invokes the APL interpreter

compiles BASIC programs

provides a standard source editor and run
dispatcher for interactive use with BASIC

packs two or more object segments into a
single executable segment

cancels one or more programs in the current
COBOL run unit

compiles COBOL programs

displays the current state of a COBOL run
unit

converts free-form COBOL source to
fixed-format COBOL source

compiles FORTRAN programs

invokes the FORTRAN compiler in an absentee
job

indents a PL/I source segment to make it more
readable

compiles PL/I programs

invokes the PL/I compiler in an absentee job

prints information about execution of
individual statements within program

allows sophisticated editing, including macro
capabilities

1-1 AG92C

Object Segment Manipulation

Debu

Inpu

T7/76

run_cobol
runoff

runoff_abs
set_cc

stop_cobol_run

archive

bind

ing and Performance Monitorin

change_error_mode
cumulative_page_trace
debug
display_pl1lio_error
dump_segment

page_trace

probe
profile

progress
ready
ready_off
ready_on

repeat_query

reprint_error
trace

trace_stack

u ste ontr
assign_resource
cancel_daemon_request
close_file
console_output
copy_cards
copy_file
display_pl1lio_error
dprint
dpunch

file_output

executes a COBOL run unit in a main program

formats a text segment according to internal
control words

invokes the runoff command in an absentee job

sets the carriage control transformation for
FORTRAN files

terminates the current COBOL run unit

packs segments together to save physical
storage

packs two or more object segments into a
single executable segment

Facilities

adjusts 1length and content of
condition messages

accumulates page trace data

permits symbolic source language debugging

displays diagnostic information about PL/I
I/0 errors

prints segment contents in octal, ASCII, or
BCD

prints a history of system events within
calling process

permits program debugging online

prints information about execution of
individual statements within program

prints information about the progress of a
command as it is being executed

prints the ready message: a summary of CPU
time, paging activity, and memory usage

suppresses the printing of the ready message

restores the printing of the ready message

repeats the last query by the command_query_
subroutine

reprints an earlier system condition message

permits the user to monitor all calls to a
specified set of external procedures

prints stack history

system

assigns peripheral equipment to user

cancels a previously submitted print or punch
request

closes open PL/I and FORTRAN files

restores terminal output to the terminal

copies card decks read by I/0 Daemon

copies records from an input file to an
output file

displays diagnostic information about PL/I
I/0 errors

queues a segment or multisegment file for
printing on the high-speed line printer

queues a segment or multisegment file for
card punching

directs terminal output to a segment

1-5 AG92C

Command Level Environment

T7/76

io_call

line_length
list_daemon_requests
list_resources

print

print_attach_table

print_request_types
set_cc

set_tty
unassign_resource

vfile_adjust
vfile_status

abbrev
add_search_rules

answer
basic_system

change_default_wdir
change_error_mode

change_wdir
console_output
delete_search_rules
do

exec_com
file_output
get_com_line
line_length

memo

new_proc

print_default_wdir
print_search_rules

print_wdir
program_interrupt

ready
ready_off
ready_on
release

repeat_query

allows direct calls to input/output system
entries .

allows users to control maximum 1length of
output lines

prints 1list of print and punch requests
currently queued

lists peripheral equipment assigned to user

prints an ASCII segment

prints list of current input/output system
switch attachments

prints available I/0 Daemon request types

sets the carriage control transformation for
FORTRAN files

prints and sets modes associated with user's
terminal

unassigns peripheral equipment assigned to
user

adjusts structured and unstructured files

prints the apparent type and 1length of
storage system files

allows user-specified abbreviations for
command lines or parts of command lines

allows users to change (insert) search rules
dynamically

answers questions normally asked of the user

provides a standard source editor and run
dispatcher for interactive use with BASIC

sets the default working directory

adjusts 1length and content of
condition messages

changes the working directory

restores terminal output to the terminal

allows users to delete current search rules

expands a command line with argument
substitution

allows a segment to be treated as a 1list of
executable commands

directs terminal output to a segment

prints the maximum length of the command line

allows users to control maximum 1length of
output lines

allows wusers to set reminders for later
printout

creates a new process with a new address
space

prints name of default working directory

prints names of directories searched for
segments referenced dynamically

prints name of current working directory

provides for command reentry following a quit
or an unexpected signal

prints the ready message: a summary of CPU
time, paging activity, and memory usage

suppresses the printing of the ready message

restores the printing of the ready message

discards process history retained by a quit
or an unexpected signal interruption

repeats the last query by the command_query_
subroutine

system

1-6 AG92C

reprint_error
set_com_line
set_search_rules
start

Communication Amo sers

accept_messages
defer_messages

immediate_messages
mail
print_auth_names

print_messages
send_message
who

Communication with the System

check_info_segs
help
how_many_users
print_motd

who

Accounting

Control of Absentee Computations

7/76

get_quota
move_quota

resource_usage

cancel_abs_request

enter_abs_request
fortran_abs

how_many_users
list_abs_requests

pli_abs
runoff_abs
who

reprints an earlier system condition message

sets the maximum length of the command line

allows users to modify search rules

continues process at point of a quit or an
unexpected signal interruption

initializes the process to accept messages
immediately

inhibits the normal printing of received
messages '

restores immediate printing of messages

prints or sends mail

prints names of sensitivity levels and access
categories for an installation

prints any pending messages

sends message to specified user

prints 1list of users and absentee jobs
currently logged in

checks information (and other) segments for
changes

prints special information segments

prints the number of logged-in users

prints the portion of the message of the day
that changed since last printed

prints 1list of wusers and absentee jobs
currently logged in

prints secondary storage quota and usage

moves secondary storage quota to another
directory

prints resource consumption for the month

cancels a previously submitted absentee job
request

adds a request to the absentee job queue

invokes the FORTRAN compiler in an absentee
Jjob

prints the number of logged-in users

prints 1list of absentee job requests
currently queued

invokes the PL/I compiler in an absentee job

invokes the runoff command in an absentee job

prints 1list of wusers and absentee Jjobs
currently logged in

1=7 AG92C

GCOS_Environment

gcos
gcos_card_utility

gcos_sysprint

gcos_syspunch

Miscellaneous Tools

calc
decode
encode
memo
progress

walk_subtree

7/76

invokes GCOS environment simulator to run one
GCOS job

copies card image files, translating from
GCOS format to ASCII or vice-versa

converts GCOS BCD sysout print file to ASCII
file suitable for use with the dprint
command

converts GCOS BCD sysout punch file to file
suitable for use with the dpunch command

performs specified calculations

deciphers segment, given proper coding key

enciphers segment, given a coding key

allows wusers to set reminders for later
printout

prints information about the progress of a
command as it is being executed

executes a command line in all directories
below a specified directory

1-7.1 AG92C

—

SECTION II

ACTIVE FUNCTIONS

GROUPING QF ACTIVE FUNCTIONS

This section describes the active functions of interest to most Multics
users. The active functions have been divided into seven operational groupings:
Logical Active Functions, Arithmetic Active Functions, Character String Active
Functions, Segment Name Active Functions, Date and Time Active Functions,
Question Asking Active Functions, and User Parameter Active Functions. "The
Command Language" in Section I of the MPM Reference Guide describes the purpose
of active functions and illustrates their use.

In the usage lines throughout this section, any argument preceded and
followed by a minus sign (=) is an optional argument. For more information on
usage formats used in this manual, see "Command Descriptions” in Section III.

The following alphabetical 1list of active functions indicates which
grouping contains each description.

Active Function Group Page
and logical 2-2
ceil arithmetic 2-6
date date and time 2-18
date_time date and time 2-18
day date and time 2-18
day_name date and time 2-19
directories, dirs segment name 2-12
directory segment name 2-12
divide arithmetic 2-6
entry segment name 2-12
equal logical 2-3
exists logical 2-3
files segment name 2-13
floor arithmetic 2-6
format_line character string 2-8
get_pathname, gpn segment name 2-13
greater logical 2=4
have_mail user parameter 2-25
home_dir segment name 2-13
hour date and time 2-19
index character string 2-9
index_set character string 2-9
length character string 2-10
less logical 2-4
links segment name 2-14
long_date date and time 2-19
max arithmetic 2-6
min arithemtic 2-6
minus arithemtic 2-7
9/75 2-1 AG92A

Active Function Group Page

minute date and time 2-19
mod arithmetic 2-7

month date and time 2-19
month_name date and time 2-20
nequal arithmetic 2-4

ngreater arithmetic 2-4

nless arithmetic 2-4

nondirectories, nondirs segment name 2-14
nonlinks, branches segment name 2-14
nonsegments, nonsegs segment name 2-14
not logical 2-5

or logical 2-5

path segment name 2-15
pd ‘ segment name 2-15
plus arithmetic 2=T7

query question asking 2-21
quotient arithmetic 2-7

response question asking 2=-21
search character string 2-10
segments, segs segment name 2-15
string character string 2-10
strip segment name 2-16
strip_entry, spe segment name 2-16
substr character string 2-10
suffix segment name 2-16
system user parameter 2-22
time date and time 2-20
times arithmetic 2=-7

trunc arithmetic 2-8

unique segment name 2-17
user user parameter 2-24
verify character string 2-11
wd segment name 2-17
year date and time 2-20

"LOGICAL ACTIVE FUNCTIONS

The logical active functions described below return a character string
value of either true or false. They are intended to be used with the &if
control statement of the exec_com command.

In the descriptions of logical active functions, the term decimal number is
used. This includes integers (such as 5 and 1024), real numbers (such as 1.37
and .5), and floating point numbers (such as -1.3e+4 and 12.556e+0).

Name: and
Usage
[and args]

where args are character strings that must have one of the values true or false
(if not, an error diagnostic is issued and the value is undefined). If all the
args = true, then true is returned; otherwise, false is returned.

9/75 2-2 AG92A

N

Name: equal

Usage

[equal A B]

where A and B are any character strings. The value true is returned if A = B;
otherwise false is returned.

Name: exists

[exists KEY arg]

The exists active function checks for the existence of various types of

items depending

values:

entry

branch

segment

directory

link

non_null_link

argument

msf

file

the value of KEY, where KEY may have one of the following

returns true if an entry with pathname arg exists;
otherwise it returns false.

returns true if a Dbranch with pathname arg exists;
otherwise it returns false.

returns true if'a nondirectory segment with pathname arg
exists; otherwise it returns false.

returns true if a directory with pathname arg exists;
otherwise it returns false.

returns true if a link with pathname arg exists; otherwise
it returns false.

returns true if a link with pathname arg exists and points
to an existing segment, directory, or multisegment file;
otherwise it returns false.

returns true if it has been passed an argument arg;
otherwise it returns false.

returns true if a multisegment file with pathname arg
exists; otherwise it returns false.

returns true if a segment or multisegment file with
pathname arg exists; otherwise it returns false.

2-3 AG92

Name: greater

Usage

[greater A B]

where A and B are character strings. If A > B, then true is returned;

otherwise, false is returned.

Usage
[less A B]
where A and B are character strings. If A < B, then true 1is vreturned;

‘otherwise, false is returned.

—

Name: nequal

Usage

[nequal A B]

where A and B are the character string representation of decimal numbers.

A = B, the value true is returned; otherwise, false is returned.

Name: ngreater

[ngreater A B]

where A and B are the character string representation of decimal numbers.
A > B, then true is returned; otherwise, false is returned.

[nless A B]

where A and B are the character string representation of decimal numbers.

A < B, the value true is returned; otherwise, false is returned.

2-4

If

If

If

AG92

Usage
[not A]
where A is a character string. If A = true, then false 1is returned. If

A = false, then true is returned; otherwise, an error diagnostic is issued.

[or args]

where args are character strings that must have one of the values true or false,
(if not, an error diagnostic is issued and the value is undefined). If any arg
= true, then true is returned; otherwise false is returned.

Example

The following example illustrates the use of one of the active functions
discussed in this description. It involves the use of the &if control statement
of the exec_com command. (See the description of the exec_com command.)

&if [equal [wd] [home_dir]]

&then &goto elsewhere

&else change_wdir [home_dir]

This example compares the pathname of the working directory with the
pathname of the home directory, and if they are not the same, changes the
working directory to be the home directory.

ARITHMETIC ACTIVE FUNCTIONS

The following active functions all perform some arithmetic operation on
their arguments and return the character string representation of the result.

In the descriptions of arithmetic active functions, the term decimal number
is used. This includes integers (such as 5 and 1024), real numbers (such as
1.37 and .5), and floating point numbers (such as -1.3e+4 and 12.556e+0).

2-5 AG92

ame: ceil

1

Usage
[ceil A]

where A 1is the character string representation of a decimal number. The value
returned is the smallest integer > A.

Name: divide
Usage
[divide A B]

where A and B are the character representations of decimal numbers. The value
returned is the integer part of the value of A/B. '

Usage
[floor A]

where A 1is the character string representation of a decimal number. The value
returned is the largest integer < A.

Usage
[max args]
where args are character strings representing decimal numbers. The value

returned is the numerical maximum of args.

[min args]

where args are character strings representing decimal numbers. The value
returned is the numerical minimum of args.

2-6 AG92

s

Name: minus

Usage

[minus A B]

where A and B are character strings representing decimal numbers. The value
returned is A - B.

Name: mod

Usage

[mod A B]

where A and B are character strings representing decimal numbers. The value
returned is A modulo B.

[plus args]

where args are character strings representing decimal numbers. The value
returned is the sum of args.

Name: quotient

Usage

[quotient A B]

where A and B are character strings representing decimal numbers. The value
returned is A / B.

[times A B]

where A and B are character strings representing decimal numbers. The value
returned is A * B.

2=7 AG92

[trunc A]

where A 1is the character string representation of a decimal number. The value
returned is the largest integer whose absolute value is < absolute value of A.

Example

The following -example illustrates the use of one of the active functions
described above.

set_bit_count my_seg [times 672 36]

This example sets the bit count of my_seg (assumed to contain 672 words of
information) to 24,192 which is the product of 672 and 36.

CHARACTER STRING ACTIVE FUNCTIONS

The following active functions return the results of various operations on
one or more character strings.

Name: format_line, fl

This active function returns a formatted character string that is
constructed from a control string and other optional arguments. Quotes are
placed around the return value so that the command processor treats it as a
single argument. Any quotes contained in the return value itself are doubled
when the value is placed in quotes, as required by the Multics command language
convention for quoted strings.

2-8 AG92

N

Usage

[format_line control_string -args-]

where:

1. control_string is an ioa_ control string that is used to format the return

value of the active function. It can contain control
characters within it. If no control characters occur, the
string itself is returned as the value of the active
function. If control characters exist, they govern the
conversion of successive additional arguments that are
expanded into the appropriate characters and inserted into
the return value. The description of the ioa_ subroutine in
the MPM Subroutines lists the control characters that can be
used with ioa_. of these, “d, "o, °f, "e, "p, "w, and "A
cannot be used with the format_line active function, because
they control the conversion of argument types that cannot be
processed by the command processor, and hence, cannot be
input to an active function.

are optional arguments that are substituted in the formatted
return value, according to the ioa_ control string.

[index STRING STR]

where STRING and STR are character strings. The value returned is the character

representation of
(STRING, STR).

Name: 1index_set

[index_set N]

the number returned by the PL/I builtin function index

where N is a character representation of a decimal integer. The string returned

is the sequence of

numbers from 1 through N, separated by spaces; e.g.,

index_set 4 returns "1 2 3 4v.

2-9 AG92

[length STRING]

where STRING is any character string. The value returned is the character
representation of the number of characters in STRING.

Name: search

Usage

[search STRING STR]

where STRING and STR are character strings. The value returned is the character
representation of the number returned by the PL/I builtin function search
(STRING, STR).

[string -args-]

where args are optional arguments that are to be returned as a single character
string. If no arguments are present, then the active function string returns a
null character string. If one or more arguments are present, then any quotes in
these are doubled when the argument is placed in the quoted return string, as
required by the Multics command language convention for quoted strings.

Name: substr

Usage

[substr STRING A -B-]

where STRING is any character string. A and B are character strings (B 1is
optional) representing decimal integers. The value returned is the value of the
PL/I builtin function substr (STRING, A, B). "Stringrange" is not enabled.

2-10 AG92

[verify STRING STR]

where STRING and STR are character strings. The value returned is the character
string representation of the number returned by the PL/I builtin function verify
(STRING, STR).

Examples

The following examples illustrate the use of two of the active functions
discussed in this description. One of the examples involves the use of the &if
control statement of the exec_com command. (See the description of the exec_com
command.)

delete seg([index_set 15])

This example is equivalent to the command line:

delete seg(1 2 3 456 7 8 9 10 11 12 13 14 15)

to delete the 15 segments segl, seg2, ..., segib.

&if [query [format_line "Is "a a good date?" [long_date]]]
&then &print Beginning execution.
&else &quit

This example might result in the following dialogue. The user’s response
has been underlined for the sake of clarity.

Is November 22, 1975 a good date? yes
Beginning execution.

2-11 AG92

SEGMENT NAME ACTIVE FUNCTIONS

The following active functions return a pathname or entryname or some part
thereof. Some of them perform manipulations on an input string to produce the
output string. One returns a unique character string that is commonly used as
the entryname of a segment.

Name: directories, dirs

This active function returns the names (separated by blanks) of all
directories matching starname.

Usage

[directories starname]

where starname is a pathname for which the entryname portion (optionally)
contains stars to be interpreted according to the star convention. (See
Constructing and Interpreting Names" in Section I.)

Name: directory

This active function returns the directory portion of the absolute pathname
of the specified segment.

Usage

[directory arg]

where arg is the segment’s pathname.

This active function returns the entryname portion of the absolute pathname
of the specified segment.

Usage

[entry arg]

where arg is the segment’s pathname.

2-12 AG92

o

Name: files

This active function returns the names (separated by blanks) of all
segments, directories, links, and multisegment files matching a given starname.

Usage

[files starname]

where starname is as described above for the directories active function.

Name: get_pathname, gpn

This active function returns the absolute pathname of the segment that is
designated by the reference name or segment number specified. Reference names
are discussed in the '"Constructing and Interpreting Names" in Section I.

Usage

[get_pathname -control_arg- arg)

where:

1. control_arg if present, can be -name, in that case the following
argument (which looks like an octal segment number) is to be
interpreted as a segment name.

2. arg is a reference name or segment number (octal) known to this

process.

Name: home_dir

This active function returns the pathname of the user’s home directory
(usually of the form >user_dir_dir>Project_id>Person_id).

Usage

[home_dir]

2-13 AG92

Name: . links

This active function returns the names (separated by blanks) of all 1links
matching a given starname.

Usage

[links starname]

where starname is as described above for the directories active function.

Name: nondirectories, nondirs

This active function returns the names (separated by blanks) of all
segments, links, and multisegment files matching a given starname.

Usage
[nondirectories starname]

where starname is as described above for the directories active function.

Name: nonlinks, branches

This active function returns the names (separated by blanks) of all
segments, directories, and multisegment files matching a given starname.

Usage
[nonlinks starname]

where starname is as described above for the directories active function.

Name: nonsegments, nonsegs

This active function returns the names (separated by blanks) of all
directories, links, and multisegment files matching a given starname.

Usage
[nonsegments starname]

where starname is as described above for the directories active function.

2-14 AG92

jame: path

This active function returns the absolute pathname of the specified
segment.

Usage

[path arg]

where arg is the segment s pathname.

This active function returns the pathname of the process directory (see
#“The Storage Systems Directory Hierarchy" in Section II of the MPM Reference
Guide) of the process in which it is invoked.

Usage

[pdl

Name: segments, segs

This active function returns the names (separated by blanks) of all
segments matching a given starname.

Usage

[segments starname]

where starname is as described above for the directories active function.

2-15 AG92

Name: strip

This active function forms the absolute pathname of the specified entry.
If the entryname portion has more than one component, then the last component is
removed and the resulting pathname is returned. If the last component matches a
specified string, then it is removed and the resulting pathname is returned. If
the entryname has only one component or if the last component does not match the
specified character string, then the absolute pathname is returned.

Usage

[strip argl -arg2-]

where:
1. arg1l is a pathname (absolute or relative).
2. arg2 is an optional character string that, if present and if it

matches the last component of the entryname portion of argil,
is removed from that entryname. If arg2 is not given, any
last component is removed from the entryname portion of
argl, assuming argt! has more than one component in its
entryname. If arg2 is not matched, then the full pathname
of arg1 is returned.

Name: strip_entry, spe

This active function returns the entryname portion of the absolute pathname
returned by the strip active function.

Usage

[strip_entry argl -arg2-]

where:
1. argi is the segment’s pathname.
2. arge2 is as described above under the strip active function.

Name: suffix

This active function returns the last component of the entryname portion of
the specified segment. If that entryname has only one component, it returns the
null string.

Usage

[suffix arg]

where arg is the segment’s pathname.

2-16 AG92

Name: unique

This active function returns a wunique character string as generated by
unique_chars_ (see the unique_chars_ description in the MPM-Subroutines manual).

Usage
[unique]
Name wd

This active function returns the pathname of the working directory of the
process in which it is invoked.

Usage

[wd]

Examples

The following examples illustrate the use of three of the active functions
discussed in this description.

status [get_pathname refname]

This example invokes the status command with the pathname of the segment
that is known to the process by the reference name, refname.

list *#.pl1 -p [directory [wd]]

This example 1lists PL/I source segments in the directory immediately
superior to the working directory. The same list could also be obtained by the
command list ¥.pl1 -p <.

copy ([segs *.pl1]) sub_dird>==

This example invokes the copy command to make a copy of all two-component
PL/I source segments in the working directory .and place it in the sub_dir
directory.

2-17 AG92

DATE AND TIME ACTIVE FUNCTIONS

The following active functions return information about dates and times.
All these active functions return their answers with quotes around the returned
information.

Name: date

This active function returns a date abbreviation in the form "mm/dd/yy";
e.g., "02/20/74".

Usage

[date -args-]

where args are optional arguments that determine the date and time for which
information is returned. These arguments must be in a form acceptable to the
convert_date_to_binary_ subroutine (see the description of this subroutine in
the MPM Subroutines manual). If no arguments are specified, information about
the current date and time is returned.

Name: date_time

This active function returns a date abbreviation, a time from 0000.0 to
2359.9, a time zone abbreviation, and a day of the week abbreviation in the
form: '"mm/dd/yy hhmm.m zzz www"; e.g., "08/07/74 0945.7 est Mon.

Usage

[date_time -args-]

where args are as described above under the date active function.

Name: day

This active function returns the one- or two-digit number of a day of the
month, from 1 to 31; e.g., "7".

Usage

[day -args-]

where args are as described above under the date active function.

2-18 AG92

Name: day_nane

This active function returns the name of a day of the week; e.g., 'Monday".
Usage
[day_name -args-]

where args are as described above under the date active function.

This active function returns the one- or two-digit number of an hour of the
day, from 0 to 23; e.g., "9".

Usage
[hour -args-]

where args are as described above under the date active function.

Name: 1long_date

This active function returns a month name, a day number, and a year in the
form: “month day, year". e.g., "August 7, 1974".

Usage

[long_date -args-]

where args are as described above under the date active function.

Name: minute

This active function returns the one- or two-digit number of a minute of
the hour, from 0 to 59; e.g., “u5".

Usage

[minute -args-]

where args are as described above under the date active function.

2-19 AG92

Name: month

This active function returns the one- or two-digit number of a month of the
year, from 1 to 12; e.g., "8".

Usage

[month -args-]

where args are as described above under the date active function.

Name: month_name

This active function returns the name of a month of the year; e.g.,
"August".

Usage
[month_name -args-]

where args are as described above under the date active function.

Name: time

This active function returns a four-digit time of day in the form "hh:mm"
where 00 < hh < 23 and 00 < mm £ 59; e.g., "09:45",

Usage

[time -args-]

where args are as described above under the date active function.

Name: year

This active function returns the two-digit number of a year of the century;

e.g., "Th.

o]

Usage
[year -args-]

where args are as described above under the date active function.

2-20 AG92

Example

The following example illustrates the use of one of the active functions
discussed in this description.

enter_abs_request abs_seg -time [date [month 1 month]/1]

This example enters an absentee request for deferred execution to start at
the beginning of the next month. The arguments to the month active function
indicate that "1 month'" should be added to the current date to get the date from
which the month is to be calculated. The "/1" when concatenated with the
calculated month forms the date string "2/1".

QUESTION ASKING ACTIVE FUNCTIONS

The following active functions return the answer given by a user in
response to a specified question. :

Name: query

This active function asks the user a specified question and returns the
value true if the user’s answer was "yes" or the value false if the user’s
answer was "no'. query continues to ask questions until a "yes" or 'no" answer
is given by the user.

Usage

[query arg]

where arg is a question to be asked. If arg contains blanks, it must be
enclosed in quotes. It should be worded so as to require a "yes" or '"no"
answer.

Name: response

This active function asks the user a specified aquestion and returns the
answer typed by the user in response.

Usage

[response arg]

where arg is a question to be asked the user.

2-21 AG92

Example

The following example illustrates the use of one of the active functions
discussed in this description. It involves the use of the &if control statement
of the exec_com command. (See the description of the exec_com command.)

&if [query "Do you wish to continue? "]
&then
&else &quit

This example causes the exec_com to continue or quit depending on the
user’s answer.

USER _PARAMETER ACTIVE FUNCTIONS

The following active functions return user parameters obtained from system
data bases. :

Name: system

This active function returns various installation-dependent system
parameters.

Usage
[system arg]
where arg may have one of the following values:

company returns the per-system parameter company name.

date;up returns the date that the system was brought up, in the
form '"mm/dd/yy'.

department returns the per-system parameter computer center
department name.

down_until_date returns the date that the system will next be brought
up, 1if specified by operator, in the form "mm/dd/yy".

down_until_time returns the time that the system will next be brought
up, if specified by operator, in the form "hhmm.t'.

ds_company returns the per-system parameter company name, with the
characters of the name double spaced.

ds_department returns the per-system parameter computer center
department name, with the characters of the name double
spaced.

installation_id returns the per-system parameter installation
identification.

last_down_date returns the date that service was 1last interrupted,

whether by shutdown or crash.

2-22 AG92

last_down_reason

last_down_time

max_units

max_users

n_units

n_users

next_down_date

next_down_time

next_shift

reason_down

shift

shift_change_date

shift_change_time

sysid

time_up

Example

returns the reason for the last system service
interruption, if known. The reason may be:

shutdown if the system shutdown normally
crash if the system crashed
a number if the system crashed
Not all crashes can be assigned a crash number.
returns the time that service was last interrupted.

returns the current maximum number of load wunits, in
the form Ynnn.n".

returns the current maximum number of users.

returns the current number of logged-in load units
including daemon and absentee, in the form "nnn.n".

returns the current number of logged-in users including
daemon and absentee.

returns the date that system will next be shut down, if
specified by operator.

returns the time that system will next be shut down, if
specified by operator.

returns the next shift number.

returns the reason for next shutdown, if specified by
operator.

returns the current shift number.

returns the date on which current shift number will
change to next_shift.

returns the time at which current shift number will
change to next_shift.

returns the version number of the hardcore system tape
currently running.

returns the time that system was brought wup, in the
form "hhmm.t'.

The following example illustrates the use of one of the arguments described

in the above discussion.

ioa_ [system sysid]

This example causes the current system version number of the supervisor to
be printed on the user’s terminal.

2-23 AG92

Name: wuser

This active function returns various user parameters.

Usage

[user arg]

where arg can have one of the following values:

name
project

login_date
login_time
anonymogs
secondary
absentee
term_id

term_type

cpu_secs

log_time

returns the user’s User_id at login time.
returns the user’s Project_id.

returns the date at login time. The date is of the form
"mm/dd/yy".

returns the time of login. The time is of the form
"hhmm.t".

returns true if the user is an anonymous user; otherwise
it returns false.

returns true if the wuser is currently subject to
preemption; otherwise it returns false.

returns true if the user is an absentee user; otherwise it
returns false.

returns the user's terminal ID code. It is '"none" if the
user’s terminal does not have the answerback feature.

returns the user’s terminal type. It can have one of the
following values:

"Absentee"
"Network"
" 1050"
Il27}4 ‘I "
"IBM2T741"
"TTY33"
"TTY37"
IITN300"
"ARDS"
WASCII"

The terminal types "2741" and "IBM2741" differ in that
"IBM2741" designates a standard IBM 2741 terminal, and
"2741" designates a 2741 terminal that has been modified
to prevent keyboard 1locking after a carriage return. A
"2741" terminal can be made to look exactly 1like an
"IBM2741" terminal by placing its INHIBIT AUTO EOT switch
in the off position.

returns the user’s CPU usage, in seconds, since 1login.
The wusage 1is of the form '"sss.t" with leading zeros
suppressed.

returns the user connect time, in minutes, since 1login.
The time is of the form "mmm.t".

o-24h AG92

preemption_time if the user is a priméry user, returns the time at which
: he becomes eligible for group preemption. The time is of
the form "hhmm.t".

brief bit returns true if the wuser specified the -brief control
argument in his login line; otherwise, returns false.

protected if the user is currently a primary user and protected from
preemption, returns true; otherwise, returns false.

absin if the user is an absentee user, this returns the absolute
pathname of his absentee input segment including the absin
suffix; otherwise returns a null string.

absout if the user is an absentee user, returns the absolute
pathname of his absentee output segment; otherwise,
returns a null string.

outer_module returns the initial outer module for the terminal channel.
process_id returns the user's process identification in octal.
auth returns the short string for the authorization of the

user's process or system_low.

auth_long returns the long string (in quotes) for the authorization
of the user's process or "system_low".

max_auth returns the short string for the max authorization of the
user's process or system_low.

max_auth_long returns the 1long string (in quotes) for the max
authorization of the user's process or "system_low".

Example

The following example illustrates the use of one of the active functions
described above.

ioa_ [user login_time]

This example causes the time the user logged in to be printed at the user's
terminal.

Name: have_mail

The have_mail active function returns the value true if there 1is mail in
the wuser's current default mailbox or in a specified mailbox; otherwise, false
is returned.

3/76 2-25 AG92B

Usage

have_mail -path-

where path is the pathname of a mailbox. If path 1is not specified, the
have_mail active function looks at the user's ring 1 default mailbox. If this
mailbox does not exist, the active function looks at the user's ring 4 default
mailbox. If neither mailbox exists, the active function returns the value
false.

3/76 2-26 AG92B

SECTION III

COMMANDS

COMMAND DESCRIPTIQNS

This section contains descriptions of the Multics commands, presented in

alphabetical order. Each description contains the name of the command
(including the abbreviated form, if any), discusses the purpose of the command,
and shows the ' correct wusage. Notes and examples are included when deemed

necessary for clarity. The discussion below briefly describes the content of
the various divisions of the command descriptions.

Name

The 'Name" heading 1lists the full command name and its abbreviated form.
The name is usually followed by a discussion of the purpose and function of the
command and the expected results from the invocation.

Usage

This part of the command description first shows a single line that
demonstrates the proper format to use when invoking the command and then
explains each element in the line. The single line contains the full command
name (or its abbreviated form) followed by the valid arguments. Some commands
have required arguments; some commands have optional arguments. Most commands
have both required and optional arguments; in general, the required arguments
precede the optional arguments.

Any argument preceded and followed by a minus sign (-) is an optional
argument. Any other argument is a required argument. Anything specifically
identified as "control_arg" in the usage line must be preceded by a minus sign
in the actual invocation of the command. For example, the usage line:

commandname path -control_arg- -xxx-

means that the command has one required argument and two optional arguments.
Therefore, any of the following command lines are valid:

commandname path

commandname path -control_arg
commandname path xxx

commandname path -control_arg xxx

3-1 AG92

If a command accepts more than one of a specific type of argument, an 's"
is added to the argument name. For example, the usage line:

commandname paths -control_args-

means that the user must specify at least one pathname and may specify none,
one, or several control arguments.

If a command accepts multiple arguments that must be in a specific order,
the usage line is as follows:

commandname xxx1 yyy1l ... XXxn yyyn

to show that although several xxx and yyy arguments can be given, they must be
given in pairs.

Notes

Comments or clarifications that relate to the command as a whole are given
under the "Notes'" heading. Also, where applicable, the required access modes,
default condition (invoking the command without any arguments), and any special
case information are included.

Examples

The examples show different valid invocations of the command. The results
of each example command line are either shown or explained.

Other Headings

Additional headings are used in some descriptions, particularly the more
lengthy ones, to introduce specific subject matter. These additional headings
may appear in place of, or in addition to, the notes.

3-2 AG92

abbrev abbrev

Name: abbrev, ab

The abbrev command provides the user with a mechanism for abbreviating
parts of (or whole) command lines in the normal command environment.

When it is invoked, the abbrev command sets up a special command processor
that is called for each command line input to the system. The abbrev command
processor checks each input 1line to see if it is an abbrev request line
(recognized by a period (.) as the first nonblank character of the line) and, if
so, acts on that request. (Requests are described below under "Control
Requests.") If the input line is not an abbrev request line and abbreviations
are included in the line, the abbreviations are expanded once and the expanded
string is passed on to the normal Multics command processor. The abbrev command
processor is, therefore, spliced in between the listener and the normal command
processor. Note that abbreviations are expanded only once; i.e., abbreviations
cannot be nested.

Usage

abbrev

Notes

The abbrev command is driven by a user profile segment that contains the
user's abbreviations and other information pertinent to execution on his behalf.

The profile segment resides (by default) in the user's home directory. If the
profile segment is not found, it 1is created and initialized with the name
Person_id.profile where Person_id is the login name of the user. For example,

if the user Washington logged in under the States project, the default profile
segment would be:

>user_dir_dir>States>Washington>Washington.profile

The profile segment being used by abbrev can be changed at any time with
the .u control request (see below) to any profile segment in the storage system
hierarchy to which the user has appropriate access. The entryname of a profile
segment must have the suffix profile. A new profile segment can be created by
specifying a nonexistent segment to the .u control request. The segment is then
created and initialized as a profile segment, assuming the wuser has the
necessary access. The user must be careful not to delete or terminate the
segment that is currently being used as his profile unless he first quits out of
abbrev by issuing the .q control request (see below).

The user can suppress expansion of a particular string in a command line by
enclosing it within quotes ("). To suppress expansion of an entire command
line, see the .<space> control request.

A user might want to include the invocation of the abbrev command in a
start_up.ec segment so that he is automatically able to abbreviate whenever he

is logged 1in. See Section I of the MPM Reference Guide for a definition of
start_up.ec.

3/76 3-3 AG92B

abbrev abbrev

Control Requests

An abbrev request line has a period (.) as the first nonblank character of
the 1line. An abbrev request line, with the exception of the .s and .<space>
requests, is neither checked for embedded abbreviations nor (even in part)
passed on to the command processor. If the command line is not an abbrev
request line, abbrev expands it and passes it on to the current command
processor.

The character immediately after the period of an abbrev request line is the
name of the request. The following requests are recognized:

.a <abbr> <rest of line> add the abbreviation <abbr> to the current
profile segment. It 1is an abbreviation for
<rest of line>. Note that the <rest of 1line>
string can contain any characters. If the
abbreviation already exists, the user is asked
if he wishes to redefine it. The user must
respond with "yes" or "no". The abbreviation
must be no longer than eight characters and
must not contain break characters.

.ab <abbr> <rest of line> add an abbreviation that is expanded only if
found at the beginning of a line or directly
following a semicolon (;) in the expanded
line. 1In other words, this is an abbreviation
for a command name.

.af <abbr> <rest of line> add an abbreviation to the profile segment and
force it to overwrite any previous
abbreviation with the same name. The user 1is
not asked if he wants the abbreviation
redefined.

.abf <abbr> <rest of line> add an abbreviation that is expanded only at
the beginning of a 1line and force it to
replace any previous abbreviation with the
same name. The user is not asked if he wants
the abbreviation redefined.

.d <abbrl> ... <abbrn> delete the specified abbreviations from the
current profile segment.

.f enter a mode (the default mode) that forgets
each command line after executing it. See the
.r and .s requests.

.1 <abbrl> ... <abbrn> list the specified abbreviations and the
strings they stand for. If no abbreviations
are specified, all abbreviations in the
current profile segment are listed.

3/76 3-4 AG92B

abbrev

.la <letter]l> ... <lettern>

.8 <rest of line>

.u <profile>

.<{space> <rest of line>

Break Characters

abbrev

list all abbreviations starting with the
specified letters. <letterid> is expected to be
a single character. If no 1letters are
specified, all abbreviations in the current
profile segment are listed.

gquit using the abbrev command processor. This
request resets the command processor to the
one in use before invoking abbrev and, hence,
prevents any subsequent action on the part of
abbrev until it is explicitly invoked again.

enter a mode that remembers the 1last 1line
expanded by abbrev. See the .f and .s
requests.

show the user how <rest of line> would be
expanded but do not execute it. The .s
request with no arguments shows the user the
last line expanded by abbrev and is valid only
if abbrev is remembering lines. See the .f
and .r requests.

specify to abbrev the pathname of a profile
segment to use. <profile segment> becomes
the current working profile segment. The user
needs "r" access to use the profile segment
and "w" access to add and delete
abbreviations.

print the name of the profile segment being
used.

pass <rest of line> on to the current command
processor without expanding it. Using this
request, the user can 1issue a command line
that contains abbreviations that are not to be
expanded.

When abbrev expands a command line, it treats certain characters as special
eak characters. Any character string that is less than or equal to eight
characters long and is bounded by break characters is a candidate for expansion.
The string is looked up in the current profile segment and, if it is found, the
ed form is placed in (a copy of) the command line to be passed on to the

or br

expand
normal

3/76

command processor.

3-5 AG92B

abbrev abbrev

The characters that abbrev treats as break characters are:

tab
newline
space
quote "
dollar sign $
apostrophe
grave accent
period
semicolon
vertical bar
parentheses
less than
greater than
brackets
braces

AN A AN ——— o

Example

Suppose that a user notices that he is typing the segment name suffixes
fortran and incl.fortran often as he edits his FORTRAN source segments (e.g.,
alpha.fortran and alpha.incl.fortran). He might wish to abbreviate them to "ft"
and "ift" respectively. He then types the lines specified to accomplish the
following objectives:

1. Invoke the abbrev command:
abbrev

2. Define the two abbreviations:

.a ft fortran
.a ift incl.fortran

3. Now that "ft" and "ift" are defined, invoke the text editor, edm, to
create or edit his source segments:

edm sample.ft
edm insert.ift

4. Print the include file:
print insert.ift
If the wuser chooses to write out one of the segments from edm by a
different name, he must type the expanded name since the edm command (and not
the abbrev command processor) is intercepting all terminal input. For example,

after editing sample.fortran he might wish to write out the changed version as
example.fortran. He would type to edm:

w example.fortran

3/76 3-6 AG92B

abbrev : abbrev

If he instead types:

w example.ft

he creates a segment by exactly that name (example.ft). 1In this case, if the
user tries to print the segment while at command 1level (by typing ‘'print
example.ft"), the abbrev processor expands the command 1line and the print
command looks for a segment named example.fortran; since no such segment exists,
the print command responds with an error message.

3-7 AG92

accept_messages accept_messages

Name: accept_messages, am

The accept_messages command initializes or reinitializes the user's process
for accepting messages sent by the send_message command. If the mailbox:

>udd>Project_id>Person_id>Person_id.mbx

does not exist, the accept_messages command creates it. A channel is created to
receive wakeups from send_message so that when a message 1is received, it is
printed on the user's terminal immediately. Messages sent when the user is not
logged in or when he is deferring messages (see the defer_messages command) are
saved in the mailbox and can be read later by invoking the print_messages
command. The mail command stores mail in the same mailbox. See "Extended
Access" in the mail command description for an explanation of mailbox access.

Usage
accept_messages -control_args-

where control_args can be chosen from the following list:

-brief, -bf prevents accept_messages from informing the user that it is
creating a mailbox. This control argument also causes
messages to print in short format (see the -short control
argument below).

-long, -1g precedes every message printed by the sender's Person_id and
Project_id. This is the default mode.

-print, -pr prints all messages that were received since the last time the
user was accepting messages.

-short, =-sh precedes consecutive messages from the same sender by "=:"
instead of the Person_id and Project_id.

Notes

The user should not give conflicting control arguments in the same
invocation of the command (i.e., -long and -short or -long and -brief).

Channel and process identifiers are stored in the wuser's mailbox. Since
only one process can receive a wakeup when a message is placed in the mailbox,
it is not advisable for several users to share the same mailbox.

T7/76 3-8 AG92C

add_name add_name

Name: add_name, an

The addTname command adds an alternate name to the existing name(s) of a
segment, multisegment file, directory, or link. See also the descriptions of
the delete_name and rename commands.

Usage

add_name path names

where:

1. path is the pathname of the segment, multisegment file, directory, or
link to which an additional name is to be added.

2. names are additional names to be added to the segment, multisegment file,
directory, or link.

Notes

The wuser must have modify permission on the directory that contains the
entry receiving the additional name.

The equal and star conventions can be used. See '"Constructing and
Interpreting Names" in Section I.

Two entries in a directory cannot have the same entryname; therefore,
special action is taken by this command if the added name already exists in the
directory that contains the path argument. If the added name is an alternate
name of another entry, the name is removed from this entry, added to the entry
specified by path, and the user is informed of this action. If the added name
is the only name of another entry, the user is asked if he wishes to delete this
entry. If he answers "yes", the entry is deleted and the name is added to the
entry specified by path; if he answers 'no", no action is taken.

Example
add_name >my_dir>example.pl1 sample.pl]i

adds the name sample.pll to the segment example.plil1 in the directory >my_dir.
add_name >udd>¥*# .private ==.public

adds to every entry having a name with private as the last component a similar
name with public, rather than private, as the last component.

3-9 AG92

add_search_rules add_search_rules

Name: add_search_rules, asr

The add_search_rules command allows the user to change his search rules
dynamically. The search rules to be added may be inserted at any point in the
current search rules.

Usage

add_search_rules path1l -control_arg path2i- ... pathln -control_arg path2n-

where:
1. pathii is usually a pathname (relative or absolute) representing a
directory to be added to the current search rules. It may be
a keyword (see "Notes" below).
2. control_arg may be one of the following:
-before place pathi1i before the current search rule identified by
pathai.
-after place path1i after the current search rule identified by
path2i.
3. path2i is usually a pathname (relative or absolute) representing a
current search rule. It may be a keyword (see "Notes'" below).
Notes

If the add_search_rules command is invoked without the control_arg and
path2i arguments, the pathname or keyword specified by path1i is appended to the
end of the user’s current search rules.

Any representation of a current search rule 1is acceptable for the
path2i argument. It is not necessary to use the same name that appears when the
print_search_rules command is invoked.

In addition to pathnames, both the path1 and path2 arguments accept the
keywords initiated_segments, referencing_dir, and working dir. The path2
argument also accepts the keywords home_dir, process_dir, and system_libraries.

3-10 AG92

adjust_bit_count adjust_bit_count

Name: adjust_bit_count, abec

The adjust_bit_count command is used to set the bit count of a segment that
for some reason does not have its bit count set properly (e.g., the program that
was writing the segment got a fault before the bit count was set, or the process
terminated without the bit count being set). The adjust_bit_count command looks
for the last nonzero 36-bit word or (if specified) ‘the last nonzero character in
the segment and sets the bit count to indicate that the word or character is the
last meaningful data in the segment.

Usage

adjust_bit_count paths -control_args-

where:
1. paths are the pathnames of segments whose bit counts are to
be adjusted. The star convention is allowed.
2. control_args are as follows and apply to all path arguments:
-character, -ch set the bit count to the last nonzero character.
-long, -1g print a message when the bit count of a segment is
changed, giving the old and new values.
Notes

If the bit count of a segment can be computed but cannot be set (e.g., the
user has improper access to the segment), the computed value is printed so that
the user can use the set_bit_count command after resetting access or performing

other necessary corrective measures. See the description of the set_bit_count
command.

The user must have write access on the segment whose bit count 1is being
adjusted. He need not have modify permission on the directory containing that
segment.

The adjust_bit_count command should not be used on segments in structured
files.

7/76 3-11 AG92C

answer answer

Name: answer

The answer command provides a preset answer to a question asked by another
command . It does this by establishing an on wunit for the condition
command_question, and then executing the designated command. If the designated
command calls the command_query_ subroutine (described in the MPM Subroutines)
to ask a question, the on unit is invoked to supply the answer. The on unit is
reverted when the answer command returns to command level. See "“List of System
Conditions and Default Handlers" in Section VI of the MPM Reference Guide for a
discussion of the command_question condition.

Usage

answer ans -control_args- commandline

where:

1. ans is the desired answer to any question. If the answer 1is
more than one word, it must be enclosed in quotation marks.

2. control_args can be chosen from the following list of control arguments:

-brief, -bf suppress printing (on the user’s terminal) of both the
guestion and the answer.

-times n give the prespecified answer n times only (where n 1is an
integer); then act as if the answer command had not been
called. The default action is to answer the question as
often as it is asked.

3. commandline is any Multics command line. It can contain any number of
separate arguments (i.e., have spaces within it) and need
not be enclosed in quotation marks.

Note

If a question is asked that requires a yes or no answer, and the preset
answer is neither '"yes' nor '"no", the on unit is not invoked.

Examples

To delete the test_dir directory without ©being interrogated by the
delete_dir command, type:

answer yes -bf delete_dir test_dir

-12 AG92

(W8]

answer answer
To automatically see the first three blocks of an info segment named
fred.info and then be interrogated about seeing any more blocks, type:
answer yes -times 2 help fred
To see only the first three blocks of that info segment, type:
answer no answer yes -times 2 help fred

In the above example, the answer command is invoked twice. The first invocation
is to answer "no" to the command line

answer yes -times 2 help fred
The second invocation is to answer 'yes" twice to the command line
help fred

The help command prints the first block of fred.info and gets the answer

"yes" from the second invocation of the answer command. It repeats this process
and again obtains a ‘'Yyes" answer. After help prints the third block of
fred.info, however, the second invocation of the answer command has had its
count run out and behaves as if it had not been called. Hence, the first

invocation of the answer command supplies the answer 'no" and execution ends.

3-13 AG92

apl apl

The apl command invokes the Multics APL interpreter, which 1is completely
described in the Multies APL User’'s Guide, Order No. AK95. The Multics APL
language is nearly identical to the APL/360 language; differences are noted in
the above mentioned document.

APL can be characterized as a line-at-a-time desk calculator with many
sophisticated operators and a limited stored-program capability. Little or no
prior acquaintance with digital computers is needed to make use of it. After
invoking APL, one types an expression to be evaluated. The APL interpreter
performs the calculations, prints the result, and awaits a new input line. The
result of an expression evaluation can also be assigned to a variable and
remembered from line to line. 1In addition, there is a capability for storing
input lines and giving them a name, so that a later mention of the name causes
the 1lines to be brought forth and interpreted as if they had been entered from
the terminal at that time. Finally, there is also the ability to save the
entire state of an APL session, complete with all variable values and stored
programs, so that it can be taken up later.

Usage

apl

There are no arguments. The interpreter responds by typing six spaces and
awaiting input. For further information, consult the Multics APL User’s Guide.

3-14 AG92

archive archive

Name: archive, ac

An archive segment is formed by combining an arbitrary number of separate
segments into one single segment. The constituent segments that compose the
archive are called components of the archive segment. The process of placing
segments in an archive is particularly useful as a means of eliminating wasted
space that occurs when individual segments do not occupy complete pages of
storage. Archiving is also convenient as a means of packaging sets of related
segments; it is used this way when interfacing with the Multics binder (see the
bind command description in this document).

The archive command performs a variety of operations that the Multics user
can employ to create new archive segments and to maintain existing ones. The
operations are:

1. Table of contents operation; print a table of contents of an archive
segment.

2. Append operation; append components to, or create a new archive
segment.

3. Replace operation; replace components in, add to, or create a new

archive segment.

4, Update operation; update an archive segment by replacing components
with more recently modified ones.

5. Delete operation; delete specified components of an archive segment.

6. Extract operation; extract components fromv an archive segment and
place them in segments in the storage system.

Each of these general operations can be specialized to perform several
functions and, in many cases, can be combined with the copy and deletion
features described below. Such combinations give the user extensive control
over the maintenance of his archive segments.

The table of contents operation and the extract operation use the existing
contents of an archive segment; the other operations change the contents of an
archive segment. A new archive segment can be created with either the append or
replace operation. In each of the operations that add to or replace components
of the archive, the original segment is copied and the copy written into the
archive, leaving the original segment untouched unless deletion is specified as
part of the operation. Use of the various operations is illustrated in the
"Examples" at the end of this description.

The table of contents operation is used to list the contents of an archive
segment. The table of contents operation can be made to print information in
long or brief form with or without column headings. '

The append operation is used to add components to the archive segment and
to create new archive segments. When adding to an existing archive, if a
component of the same name as the segment requested for appending 1is already
present in the archive segment, a diagnostic message is printed on the user s
terminal and that segment is not appended. When several segments are requested

3-15 AG92

archive archive

for appending, only those segments whose names do not match existing components
of the archive segment are added to the archive.

The replace operation is similar to the append operation in that it can be
used to add components to the archive segment, and therefore, is also used to
create new archive segments. However, wunlike the append operation, if a
component of the same name as the segment requested for replacing is already
present in the archive segment, the requested replace operation is performed by
overwriting the existing component. When several segments are requested for
replacing, those segments whose names do not match existing components of the
archive segment are added to the archive, as in the append operation.

The wupdate operation replaces existing components only if the date-time
modified of a segment requested for wupdating is later than that of .the
corresponding component currently in the archive segment. When a segment whose
name does not match an existing component of the archive segment 1is requested
for updating, it is not added to the archive segment.

The delete operation 1is used only to delete components from archive
segments. It cannot delete segments from the storage system and 1is not
analogous to the deletion feature described below.

The extract operation 1is wused to create copies of components from the
archive segment elsewhere in the storage system. The extract operation performs
a function opposite to the append operation.

In addition to the operations described above, there are two features, copy
and deletion, that can be combined with certain operations in order to
specialize their performance. Since copy and deletion are features and not
operations, they cannot stand alone, but must always be combined with those
operations that permit their wuse. The deletion feature is distinct from the
delete operation, as noted below.

The copy feature can be combined with the append, replace, update, and
delete operations. Since an archive segment can be located anywhere in the
storage system, it occasionally is convenient to move the segment during the
maintenance process, or to modify the original segment while temporarily
retaining an unmodified version. When the copy feature is wused, the original
archive segment is copied from its location in the storage system, updated, and
placed in the user’s working directory.

The deletion feature can be combined with the append, replace, and update
operations to delete segments from the storage system after they have been added
to or replaced in an archive segment. The deletion can be forced to bypass the
system’s safety function, i.e., the user is not asked whether he wants to delete
a protected segment before the deletion is performed. (This is analogous to the
operation of the delete_force command.) Nothing 1is deleted wuntil after the
archive segment has been successfully updated.

Deletion of segments (deletion feature) is not to be confused with deletion
of components from archive segments. The delete operation is a stand-alone
function of the archive command that operates only on components of archive
segments, deleting them from the archive. The deletion feature, on the other
hand, performs deletions only when combined with an operation of the archive

3-16 AG92

archive archive

command, and then deletes only segments from the storage system after copies of
those segments have been added to, or used to update archive segments.

The archive command can operate in two ways: if no components are named on
the command 1line, the requested operation 1is performed on all existing
components of the archive segment; if components are named on the command 1line,
the operation is performed only on the named components.

The star convention can be used in the archive segment pathname during
extract and table of contents operations; it cannot be wused during append,
replace, update and delete operations. Component names cannot be specified
using the star convention. See '"Constructing and Interpreting Names" in
Section I of this document for a discussion of the star convention.

No commands other than archive, archive_sort, and reorder_archive should be
used to manipulate the contents of an archive segment; using a text editor or
other command might result in unspecified behavior during subsequent
manipulations of that archive segment. See the descriptions of the archive_sort
command and the reorder_archive command in the MPM Subsystem Writers’ Guide.

Usage
archive key archive_path paths

where:

1. archive_path is the pathname of the archive segment to be created or
used. The suffix archive is added if the user does not
supply 1it.. If the archive segment does not exist, it
is created for replace and append operations as
described above. The star convention can be used with
extraction and table of contents operations.

2. paths are the components to be operated on by table of
contents and delete operations. For append, replace,
update and extract operations, each path specifies the
pathname of a segment corresponding to a component
whose name is the entryname portion of the pathname.
The star and equal conventions cannot be used. .

3. key is one of the key functions listed below.

3-17 AG92

archive

archive

Table of Contents Operation:

tl

tb

tlb

print the entire table of contents if no coﬁponents are named by
the path arguments; otherwise print information about the named
components only. A title and column headings are printed at the
top.

print the table of contents in 1long form; operates 1like ¢,
printing more information for each component.

print the table of contents, briefly; operates 1like t, except
that the title and column headings are suppressed.

print the table of contents in long form, briefly; operates 1like
tl, except that the title and column headings are suppressed.

Append Operation:

ad

adf

ca

cad

cadf

append named components to the archive segment. (The segments
corresponding to the appended components are not affected.) If a
named component is already in the archive, a diagnostic is issued
and the component is not replaced. At least one component must
be named by the path arguments. If the archive segment does not
exist, it is created.

append and delete; operates like a and then deletes all segments
that have been appended to the archive. If the safety switch is
on for any of the corresponding segments, the user is asked
whether he wishes to delete the segment.

append and deleteforce; operates like a and then forces deletion
of all segments that have been appended to the archive.

copy and append; operates like a, appending components to a copy
of the new archive segment created in the wuser’s working
directory.

copy, append, and delete; operates like ad, appending components
to a copy of the archive segment and deleting the appended
segments.

copy, append, and deleteforce; operates 1like adf, appending
components to a copy of the archive segment and forcibly deleting
the segments requested for appending.

3-18 AG92

archive

archive

Replace Operation:

rd

rdf

cr

crd

crdf

replace components in, or add components to the archive segment.
When no components are named in the command line, all components
of the archive for which segments by the same name are found in
the user's working directory are replaced. When a component is
named, it is either replaced or added. If the archive segment
does not exist, it is created.

replace and delete; operates 1like r, replacing or adding
components, then deletes all segments that have been replaced or
added.

replace and deleteforce; operates like r and forces deletion of
all replaced or added segments.

copy and replace; operates like r, placing an updated copy of the
archive segment in the wuser's working directory instead of
changing the original archive segment.

copy, replace and delete; operates like rd, placing an updated
copy of the archive segment in the user's working directory.

copy, replace, and deleteforce; operates like rdf, placing an
updated copy of the archive segment in the user's working
directory.

Update Operation:

ud

udf

cu

cud

update; operates like r except it replaces only those components
for which the corresponding segment has a date-time modified
later than that associated with the component in the archive. If
the component is not found in the archive segment, it is not
added.

update and delete; operates 1like u and deletes all updated
segments after the archive has been updated.

update and deleteforce; operates like u and forces deletion of
all updated segments.

copy and update; operates like u, placing an updated copy of the
archive segment in the user's working directory.

copy, update, and delete; operates like ud, placing an wupdated
copy of the archive segment in the user's working directory.

3-19 AG92

archive archive

cudf copy, update, and deleteforce; operates 1like udf, placing an
updated copy of the archive segment in the user's working
directory.

Delete Operation:

d delete from the archive those components named by the path
arguments.
cd copy and delete; operates 1like d, placing an updated copy of

the archive segment in the working directory.

Extract Operations:

X extract from the archive those components named by the path
arguments, placing them in segments in the storage system. The
directory where a segment is placed is the directory portion of

the path argument. The access mode stored with the archive
component is placed on the segment for the user performing
extraction. If a segment already exists, it observes the

duplicated name convention in a manner similar to the copy
command. If no component names are given, all components are
extracted and placed in segments in the working directory. The
archive segment is not modified.

xf extract and deleteforce; operates like x, forcing deletion of any
duplicate names or segments found where the new segment is to be
created.
Notes

Each component of an archive segment retains certain attributes of the
segment from which it was copied. These consist of a single name, the effective
mode of the user who placed the component in the archive, the date-time the
segment was last modified, and the bit count of the segment. In addition, the
date-time that the component was placed in the archive segment is maintained.
When a component is extracted from an archive segment and placed in the storage
system, the new segment is given the mode associated with the archive component
for the user performing the extraction, the name of the component, and the bit
count of the component.

The date-time-modified value of a component has a precision of one tenth of
a minute. This means that a copy of a component less than a tenth of a minute
more recent than the archived copy is not updated. Users who update archives in
exec_com segments should be aware of this limitation.

3/76 3-20 AG92B

archive archive

The archive command maintains the order of components within an archive
segment. When new components are added, they are placed at the end. The
archive_sort or reorder_archive commands (described in the MPM Subsystem
Writers' Guide) can be used to change the order of components in an archive
segment.

The archive command cannot be used recursively. Checks are made to prevent
the misuse of the command in this fashion. The user is asked a question if the
command detects an attempt to use the archive command prior to its completing
the last operation.

Because the replacement and deletion operations are not indivisible, it is
possible for them to be stopped before completion and after the original segment
has been truncated. This can happen, for example, if one gets a record quota
overflow. When this situation occurs, a message is printed informing the user
of what has happened. In this case, the only good copy of the updated archive
segment is contained in the process directory.

Archive segments can be placed as components inside other archive segments,
preserving their identity as archives, and can later be extracted intact.

When the archive command detects an internal inconsistency, it prints a
message and stops the requested operation. For table of contents and extraction
operations, it will have already completed requests for those components
appearing before the place where the format error is detected.

For segment deletions after replacement requests, if the specified
component name was a link to a segment, the segment linked to is deleted. The
link is not unlinked.

The archive command observes segment protection by interrogating the user
when he requests (unforced) deletion of a segment to which he does not have
write permission. If he could have given himself write permission (i.e., he has
modify permission on the superior directory) and he replies that he wants the
segment deleted, the segment is deleted.

Examples

Assume that the user has several short segments and wishes to consolidate
them to save space. His directory might initially look like the following:

list

Segments= 5, Records= 5.

rw 1 epsilon
rw 1 delta
rw 1 gamma
rw 1 beta

rw 1 alpha

3/76 3=-21 AG92B

archive

adds
also

archive

He creates an archive segment (using the append key) containing four of the
five segments.

archive a greek alpha beta gamma
archive: Creating greek.archive

delta

His directory then has one more segment (the archive segment), and a
of contents of the new archive segment shows the four components.

list

Segments= 6, Records= 6.

rw 1 greek.archive
rw 1 epsilon

rw 1 delta

rw 1 gamma

rw 1 beta

rw 1 alpha

archive tl greek

greek.archive

name updated

alpha 09/12/74 1435.0
beta 09/12/74 1435.0
gamma 09/12/74 1435.0
delta 09/12/74 1435.0

mode

rw
rw
rw
rw

modified

09/12/74
09/12/74
09/12/74
09/12/74

1434,
1434,
1434
1434,

length
2 iy
2 257
2 694
2 109

table

Aftef changing the segment delta, he replaces it in the archive segment and
(using the replace key) the segment epsilon to the archive segment. He

deletes the component gamma.

archive r greek delta epsilon

archive: epsilon appended to greek.archive

archive d greek gamma

3-22

AG92

/

~u’

archive archive

N
A table of contents now shows a different set of components.
archive t greek
greek.archive
updated name
09/12/74 1435.0 alpha
09/12/74 1435.0 beta
09/12/74 1437.5 delta
09/12/74 1437.5 epsilon
He later replaces the component alpha with an updated copy and deletes the
storage system segment alpha, causing the updated column of a table of contents
to change and a list of his directory to show one less segment.
archive rd greek alpha
archive t greek
— greek.archive
updated name
09/12/74 1641.5 alpha
09/12/74 1435.0 beta
09/12/74 1437.5 delta
09/12/74 1437.5 epsilon
list
Segments= 5, Records= 5.
rw 1 greek.archive
rw 1 epsilon
rw 1 delta
rw 1 gamma
rw 1 beta
In another directory (which contains a different version of the segment
alpha), he copies and updates the archive segment, causing the component alpha
to be replaced and the updated archive segment to be placed in the working
directory.
archive cu orig_dird>greek
archive: Copying greek.archive
archive: alpha updated in greek.archive
PN

3-23 AG9z2

archive archive

list

Segments= 2, Records= 2.
rw 1 greek.archive
rw 1 alpha

archive t greek

greek.archive

updated name
09/12/74 1641.5 alpha
09/12/74 1435.0 beta
09/12/74 1437.5 delta
09/12/74 1437.5 epsilon

ac t dorig_dird>greek

greek.archive

updated name

09/12/74 1439.1 alpha
09/12/74 1435.0 beta
09/12/74 1437.5 delta
09/12/74 1437.5 epsilon

Notice that the entry in the updated column for the component alpha differs
in the two tables of contents. Lastly, the user extracts two components into
his new working directory, presumably to work on them.

archive x greek beta delta

list

Segments= 4, Records= 4.

rw 1 delta
rw 1 beta
rw 1 greek.archive
rw 1 alpha

3-24 AG92

assign_resource assign_resource

Name: assign_resource, ar

The assign_resource command calls the resource control package (RCP) to
assign a resource to the user's process. Currently, only device resources can
be assigned. An assigned device still must be attached by a call to some I/0

module. If a device is successfully assigned, the name of the device is
printed. (If the user requests a specific device that is successfully assigned,
the name of the device is not printed unless the user asks for 1it. See the

-device and -long control arguments below.)

Usage

assign_resource resource_type -control_args-

where:
1. resource_type specifies the type of resource to be assigned.
Currently, only device types may be specified. The
-device control argument is used to name a specific
device to assign. Other control arguments are used to
specify characteristics of the device to be assigned.
The following device type keywords are supported:
tape
disk
console
printer
punch
reader
special
2. control_args may be chosen from the following:
-device XX, specifies the name of the device to be assigned. If
-dv XX this control argument is specified, other control

arguments that specify device characteristics are
ignored. (See "Examples" below.) If the -long control
argument (see below) is used in conjunction with this
control argument, a message containing the name of the
assigned device is printed on the wuser's terminalj;
otherwise, no message is printed.

-model n specifies the device model number characteristic. Only
a device that has this model number is assigned.

-track n, -tk n specifies the track characteristic of a tape drive.
The value may be either 9 or 7. A track value of 9 is
used by default when assigning a tape type device, if
this control argument is not specified and if the
-volume control argument is not specified.

T/76 3-24.1 AG92C

assign_resource assign_resource

-density n, specifies the density capability characteristic of a
-den n tape drive. There may be more than one instance of
this argument. A tape drive is assigned that is
capable of being set to all of the specified densities.
The acceptable values for this argument are:
200
556
800
1600

"

-train n, -tn n specifies the print train characteristic of a printer.

-line_length n, specifies the line length of a printer. 1Its value must

=11 n be one that is found in the "line length" field of a
printer PRPH configuration card. If this field is not
specified on a printer PRPH configuration card, this
device characteristic is ignored for this printer.

-volume XX, specifies the name of a volume. If possible the device

-vol XX assigned is one on which this volume has already been
placed.

-number n, -nb n specifies the number of resources to assign. A1l of

the resources assigned have the device characteristics
specified by any other arguments passed to this
command. If this control argument is not specified,
one resource is assigned.

-comment XX, is a comment string that is displayed to the operator
-com XX when the resource is assigned. If more than one string
is required, the entire string must be in quotes. Only
printable ASCII characters are allowed. Any

unprintable characters (also tabs or new lines) found
in this string are converted to blanks.

-long, -1g specifies that all of the device characteristics of the
assigned device should be printed. If this argument is
not supplied, only the name of the assigned device is
printed.

-system, -sys specifies that the user wants to be treated as a system
process during this assignment. If this argument is
not specified or 1if the user does not have the
appropriate access, then the RCP assumes that this
assignment is for a nonsystem process.

-wait -n-, specifies that the user wants to wait if the assignment
-wt -n- cannot be made at this time because the resources are
assigned to some other process. The value n specifies
the maximum number of minutes to wait. If n minutes

elapse and a vresource is not yet assigned, an error
message is printed. If n is not specified, it 1is
assumed that the user wants to wait indefinitely.

7/76 3-24.2 AG92C

()

assign_resource assign_resource

Examples

In the example below, the user issues the assign_resource command with the
"tape" keyword and the -model control argument. The system responds with the
name of the assigned device.

assign_resource tape -model 500
Device tape_O4 assigned

In the next example, the user issues the assign_resource command with the
"tape" keyword and the -device and -long control arguments. The system responds
with the name of the assigned device and the model number, track, and density
characteristics.

assign_resource tape -device tape_05 -long

Device tape_05 assigned

Model = 500

Tracks = 9

Densities = 200 556 800 1600

T7/76 3-24.3 AG9zC

attach_1v attach_1lv

Name: attach_1lv, alv

The attach_lv command calls the resource control package (RCP) to attach a
logical volume. Attaching a 1logical volume involves informing the storage
system that a particular volume is attached for a particular process. A logical
volume (unless it is a public logical volume) must be attached for each process
that wishes to wuse it. To be attached, ,the logical volume must first be
physically mounted. This mounting involves mounting all of the physical volumes
that comprise the logical volume. Mounting must be completed by the system
operators before the logical volume may be attached by any process.

A user must have rw access to the logical volume he wishes to attach. This
access 1is defined by the access control segment (ACS) associated with the
logical volume.

Qsagg

attach_lv volume_name

where volume_name specifies the name of the volume to be attached.

The status command issued with the -device control argument prints the name
of the logical volume on which a segment resides.

7/76 3-24.4 AG92C

basic basic

Name: basic

The basic command invokes the BASIC compiler to translate a segment

containing BASIC source code. If the -compile control argument is not
specified, the compiled code is then executed and not saved for future
execution. If the -compile control argument is specified, a standard object

segment is created for subsequent execution.

For a description of the BASIC language on the Multics system, consult the
Multics BASIC manual, Order No. AM82.

Usage

basic path -control_arg-

where:

1. path is the pathname of the segment to be translated. The suffix
basic need not appear as part of the pathname. It must,
however, be the last component of the name of the source
segment.

2. control_arg can be one of the following:

-compile requests BASIC to compile the program and generate a Dbindable
Multics standard object segment. The resulting object segment
is placed in the user’s working directory. For a .description
of the features common to all Multics programming languages,
see "Programming Languages" in Section II of the MPM Reference
Guide, and for a description of object segments see '"Standard
Segment Formats'" in Section V of the MPM Reference Guide.

-time N where N is the character-string representation of a decimal
number that requests a limit of N seconds on the execution of
the BASIC program. If the limit is exceeded, the user is asked
if he wishes to continue.

3-25 AG92

basic_system basic_system

Name: basic_system, bs

The basic_system command is the standard BASIC source editor and run
dispatcher. A BASIC source segment pathname must be specified. If the segment
exists, it is picked up; otherwise a new segment is expected to be input.

This is an interactive BASIC, as opposed to the baéic command, which only
compiles a program.

Usage
basic_system -path-

where path 1is the pathname of a BASIC source segment. If path does not have a
suffix of basic, one is assumed; however, the basic suffix must be the last
component of the name of the source segment. If path does not exist, or if no
path argument is specified, input is assumed.

Requests

The basic_system editing requests are:

line_number source_line
adds or replaces a BASIC source line (source_line) in proper sequence.
The line number (line_number) must be either 0 or a positive integer
less than 10,000.

line_number

deletes that source line if such a line number exists.

quit
exits from Dbasic_system and returns to command level. The current
internal segment is lost unless a save request is issued before this.
list
prints the entire current internal segment.
run

calls the BASIC compiler to run the current internal source segment.

3-26 AG92

basic_system basic_system

exec

time

rseq

command_line

passes the command_line argument to the Multics command processor.
This argument can be any valid Multics command line.

n

establishes a time 1limit of n CPU seconds on the execution of the
program. Since this does not take effect until the run request 1is
given, a time request can be overridden by a subsequent time request.
The time limit feature can be turned off by giving a subsequent time
request with n = 0.

-first- -increment-

resequences the line numbers so that they differ by a fixed increment.
If increment is not given, it is 10 by default. If first is not
given, it is 100 by default. The first and increment arguments must
be in the order shown above; therefore increment may not be given
without first. Both must be positive integers.

delete all

or

delete first -last-

deletes the specified lines. If all is specified, every 1line is
deleted; otherwise, the 1lines between first and last inclusive are
deleted. If last is not given, only the 1line number identified by
first is deleted.

get -path-

save

clears the internal buffers so that the user can work on a different
program. If path is given, it is the pathname of the new source
segment. If path is not given here, the internal buffers are cleared
and input is assumed. (Issuing a get request without the path
argument is equivalent to invoking the basic_system command without
the path argument.)

-path-

stores the current internal source segment in the segment whose
pathname is specified by path. If no path is given, the current
internal source segment is stored as specified by the path argument
given in an earlier save request, a get request, or the invocation of
the basic_system command, whichever is most recent. If none of these
conditions can be met (e.g., the most recent request was a get request
issued without a path argument), the basic_system command returns an
error message and the user will have to specify a path argument in
order to save the current internal source segment. To make sure an
internal source segment is stored with the pathname intended, it is a
good practice to specify the path argument in the save request.

3-27 AG92

basic_system basic_system

Notes

If the wuser issues a quit signal out of a BASIC compilation or execution
run, he can immediately issue the program_interrupt (pi) command in order to get
back to basic_system. Otherwise, any unsaved BASIC program within basic_system
is lost.

Refer to the Multics BASIC manual, Order No. AM82, for detailed information
on the BASIC language syntax. '

3-28 AG92

bind bind

This command produces a single bound object segment from one or more
unbound object segments that are called the components of the bound segment.
(Compilers and the assembler produce unbound object segments.) A reference: in
one component to an external symbol defined in another component may be resolved
during the binding. This prelinking avoids the cost of dynamic linking, and it
also ensures that the reference is linked to the component regardless of the
state of a process at the moment that dynamie 1linking would take place.
References to a symbol are prelinked unless the contrary is specified by an
instruction in the bindfile. The bindfile is a segment containing instructions
that control various aspects of the binding operation (see "The Bindfile"
below).

Usage:

bind archive_paths -update- -update_paths- -control_arg-

where:

1. archive_paths are the pathnames of archive segments containing one or more
component object segments to be bound. Up to 16 input
archive segments can be specified. They are logically
concatenated in a left-to-right order to produce a single
sequence of input component object segments. The specified
pathname of the archive segment need not contain an explicit
archive suffix.

2. -update, -ud is an optional functional argument to the binder indicating
that the following 1list of archive segments (update_paths)
specifies update rather than input object segments. If this
optional argument is used, it must be preceded by a hyphen.

3. update_paths are pathnames of optional archive segments containing update
object segments. Up to a combined total of 16 input and
update segments can be specified. The contained update
object segments are matched against the input object segments
by object segment name. Matching update object segments
replace the corresponding input object segments; unmatched
ones are appended to the sequence of input object segments.
If several update object segments have the same name, only
the 1last one encountered is bound into the bound segment.
The specified pathname of the archive segment need not
contain an explicit archive suffix.

g, control_arg can be one of the following two optional <control arguments:

-list, -1s produces a listing segment whose name is derived from the
name of the bound object segment plus a suffix of list. The
listing segment is generated for the purpose of dprinting; it
contains the bound segment’s bind control segment (see "The
Bindfile" below), its bind map, and that information from the
bound object segment that would be printed by the
print_link_info command. (See the description of the dprint
command in this document and the print_link_info command in
the MPM Subsystem Writers® Guide.)

3-29 AG92

bind bind

-map produces a listing segment (with the suffixes list and map)
that contains only the bind map information.

In the absence of these control arguments, no 1listing
segment is generated.

Qutput

The binder produces as its output two segments: an executable bound
procedure object segment and an optional, printable ASCII listing segment. The
name of the bound object segment is, by default, derived from the entryname of
the first input archive segment encountered by stripping the archive suffix from
it. The name of the listing segment is derived from the name of the bound
segment by adding the list suffix to it. Use of the Objectname master statement
in the bindfile (see '"Master Key Words" below) allows the name of the bound
object segment to be stated explicitly. 1In addition, use of the Addname master
statement in the binding instructions causes additional segment names to be
added to the bound segment. The primary name of the bound object segment must
not be the same as the name of any component.

The Bindfile

The bindfile is a segment containing symbolic instructions that control the
operation of the binder. Its entryname must contain the suffix bind and it must
be archived into any one of the input archive segments (at any 1location within
that archive segment) where it is automatically located and recognized by the
binder.

In case two bindfiles are specified, one in an input archive segment and
the other in an update archive segment, the 1latter takes precedence and an
appropriate message is printed to that effect.

The binder’s symbolic instructions have their own syntax that allows for
statements consisting of a key word followed by zero or more parameters and then
delimited by a statement delimiter. Master statements pertain to the entire
bound object segment; normal statements pertain to a single component object
within the bound object segment. Master statements are identified by master key
words that are distinet from normal key words in that they begin with a capital
letter; normal key words begin with a lowercase letter. A key word designates a
certain action to be undertaken by the binder pertaining to parameters following
the keyword.

3-30 AG92

bind

bind

Following is a list of the delimiters used:

.o

/%

*/

Normal Key Words

objectname

synonym

key word delimiter. It is used to identify a key word
followed by one or more parameters. A key word that is
followed by no parameters 1is delimited by a statement
delimiter.

statement delimiter.

parameter delimiter (the last parameter is delimited by a
statement delimiter).

begin comment.

end comment.

the single parameter is the name of a component object as it
appears in the archive segment. The objectname statement
indicates that all following normal statements (up to but
not including the next objectname statement) pertain to the
component object whose name is the parameter of the
objectname statement. :

the parameters are symbolic segment names declared to be
synonymous to the component object’s objectname. When b is
declared to be a synonym for a, references (in the Dbound
components) of the form b or b$x (any x) are resolved during
binding by searching for a definition of b or x in component
a. A synonym instruction must be given if such references
are to be prelinked. The synonym instruction also affects
dynamic linking so that if b is a reference name for the
bound segment, then references of the form b or b$x are
resolved by searching component a. In this case, the
synonym instruction may reduce the cost of dynamic 1linking,
and it avoids possible ambiguities when two components

contain definitions for the symbol b. Users should take
care to state explicitly in a synonym statement all the
normally used segment names of a component object. For
example, the commands list, list_names, and list_totals are
all implemented in one procedure, and all have

abbreviations; thus a bindfile for the bound segment in
which this procedure resides would contain:

objectname: list;

synonym: ls, list_names, 1ln, list_totals, 1t;

Failure to state segment names results in inefficient linker
performance.

3-31 AG92

bind

retain

delete

no_1link

global

table

Master Key Words

Objectname

Order

Force_Order

bind

the parameters are the symbolic names of external symbols
defined within the component object segment that the user
wishes to retain as external symbols of the bound object
segment.

the parameters are the symbolic names of external symbols
defined within the component object segment that the user
does not wish to be retained as external symbols of the new
bound segment.

The retain and delete statements are considered exclusive.
An error message is displayed if the binder recognizes that
two or more such statements were made regarding any single
external symbol.

the parameters are the symbolic names of external symbols
that are not to be prelinked during binding. The no_1link
statement implies a retain statement for the specified
symbols.

the global statement can have as its parameter either
retain, delete, or no_link. The parameter selected becomes
effective for all external symbols of the component object.
An explicit retain, delete, or no_link statement concerning
a given external symbol of the component object overrides
the global statement for that specific external symbol. A
global no_link causes all external references to the
component object to be regenerated as links to external
symbols; this allows execution time substitution of such a
component by a free standing version of it, for example for
debugging purposes.)

does not require parameters. It causes the symbol table for
the component to be retained and is needed to override the
No_Table master key word, which is described below.

the parameter is the segment name of the new bound object.

the parameters are a list of objectnames in the desired
binding order. In the absence of an order statement,
binding is done in the order of the input sequence. The
order statement requires that there be a one-to-one
correspondence between its 1list of parameters and the
components of the input sequence.

same as Order, except that the list of parameters can be a
subset of the input sequence, allowing the archive segments
to contain additional segments that are not to be bound
(e.g., source programs).

3-32 AG92

bind bind

Global is the same as the global statement except that it pertains
to all component object segments within the bound segment.
A global or explicit statement concerning a single component
object or a single external symbol of a component object
overrides the Global statement for that component object or
symbol.

Addname the parameters are the symbolic names to be added to the
bound segment. If Addname has no parameters, it causes the
segment names and synonyms of those component objects for
which at 1least a single external symbol was retained to be
added to the bound object segment.

No_Table does not require parameters. It causes the symbol tables
from all the component symbol sections containing symbol
tables to be omitted from the bound segment. If this key

word is not given, all symbol tables are kept.

If no bindfile is specified, the binder assumes default parameters
corresponding to the following:

Objectname: segment name of the first input archive file.

Global: retain; /¥*regenerate all definitions*/

Error Messages

The binder produces three types of error messages. Messages beginning with
the word "Warning:" do not necessarily represent errors, but warns the user of
possible inconsistencies in the input components or Dbindfile. Messages
beginning with the word ‘'binder_:" normally represent errors in the input
components. Errors detected during the parsing of the bindfile have the format:

Bindfile Error Line #n

where n is the line number of the erroneous statement. If an error is detected
during parsing, the binder aborts because it would not be able to bind according
to the user’s specifications.

The message

"binder_: Fatal error has occurred; binding unsuccessful."

indicates that it was impossible for the binder to produce an executable object
segment because of errors detected during binding. The bound object segment 1is
left in an unpredictable state.

3-33 AG92

bind

Examples

The bindfile
follows:

Objectname:
Global:

objectname:
retain:

bind

for the apl command, which is named bound_apl.bind, is as

bound_apl;

delete; /*delete all old definitions*/

apl;

apl; /%*retain definition for single entry¥*/

The bindfile for the debug command, which is named bound_debug.bind, is as

follows:

Objectname:
Global:

Addname;

objectname:
synonym:
retain:

objectname:
retain:
objectname:
retain:

bound_debug;
delete; /*¥delete all old definitions*/

/*add names debug, db, list_arg_
and gr_print to bound segment
bound_debug_¥*/

debug;

db; /*indicate db is synonymous to debug¥/

debug,

db; /%*retain entrynames debug$debug and
debug$db#*/

list_arg_;

list_arg_; /*retain entryname list_arg_$list_arg_¥%*/
gr_print;
gr_print; /*retain entryname gr_print$gr_print#*/

3-34 AG92

calc calc

Name: calc

The calc command provides the user with a calculator capable of evaluating
arithmetic expressions with operator precedence, a set of often-used functions,
and a memory that is symbolically addressable (i.e., by identifier).

Usage

calc

initiates the command. The user can then type in expressions, assignment
statements, 1list requests, or a quit request, separated from each other by one
or more newline characters. All of these operations are described below.

Expressions

Arithmetic expressions involving real values and the operands +, -, ® /,
and ** (addition, subtraction, multiplication, division, and exponentiation) can
be typed in. A prefix of either plus or minus is allowed. Parentheses can be
used, and blanks between operators and values are ignored. Calc evaluates the
expression according to rules of precedence and prints out the results.

The order of evaluation is as follows:

1. expressions within parentheses
2. function references
3. prefix +, prefix -
4, L
LI
+, -

For example, if the user types:

2 + 3 ¥ |

calc responds:

= 14

Operations of the same level are processed from left to right except for
the prefix plus and minus, which are processed from right to left. This means
ok%3#%L is evaluated as (2#*3)¥¥L,

3-35 AG92

calc calc

Numbers can be integers (123), fixed point (1.23) and floating point
(1.23e+2, 1.23e2, 1.23E2, or 1230E-1). All are stored as float bin(27). An
accuracy of about seven figures is maintained. Variables (see below) can be
used in place of constants, e.g., pi # p %% 2

Seven functions are provided: sin, cos, tan, atan, abs, 1ln, and log (ln is
base e, log is base 10). They can be nested to any level, e.g.,
sin(1ln(var).5%pi/180).

Assignment Statement

The value of an expression can be assigned to a variable. The name of the
variable must be from one to eight characters in length and must be made up of
letters (uppercase and/or lowercase) and the underscore character (_). The form
is:

<variable>=<expression>

For example, the following are legal assignment statements:

Rho = sin(2%theta)

The calc command does not print any response to assignment statements. The
variables "pi" and "e" have preassigned values of 3.14159265 and 2.7182818,
respectively.

List Request

If "list" is typed, calc prints out the names and values of all the
variables that have been declared so far. The value of any individual variable
can be displayed by typing the name of the variable followed by a newline.

Quit Request

Typing "q" causes calc to return to the calling program, i.e., to command
level.

3-36 AG92

calce

Examples

The lines typed by the user are preceded by an exclamation mark (!).

!

calc

2+2

= y

r = 1.5

pl#pr##2

= 7.068583
sin(0.01)

= 9.999832E-3
143e11+(12e13
too few)

143e11+(12e13)

= 1.343E+14

list

r = 1.5

e = 2.718282
pi = 3.141592
q

3-37

calc

AG92

cancel_abs_request cancel_abs_request

Name: cancel_abs_request, car

The cancel_abs_request command allows a user to delete a request for an
absentee computation that is no longer required. Normally the deletion can be
made only by the user who originated the request.

Usage

cancel_abs_request path -control_args-

where:

1. path is the pathname of the absentee control segment
associated with this request.

2. control_args are selected from the following list of control arguments
and can appear anywhere on the command line:

-queue n, -q n indicates which priority queue is to be searched. It
must be followed by a decimal integer specifying the
number of the queue. If this control argument is
omitted, the third priority queue is searched unless the
-all control argument is provided. (See below.)

-all, -a indicates that all priority queues are to be searched
starting with the highest priority queue and ending with
the lowest priority queue.

-brief, -bf indicates that the message "Absentee request path
cancelled" is omitted.

Notes

The last request for an absentee computation is deleted if there is more
than one request associated with the same absentee control segment in the same
queue.

The segment name, path, must be specified in the same way it was at the
time the absentee request was submitted. That is, >udd>Multics>Jones is not the
same as >user_dir_dir>Multics>Jones. The list_abs_requests command may be used
to ascertain the form in which path was originally given.

If the request refers to an absentee process that is already logged in,
this command is not effective in stopping the absentee computation.

3-38 AG92

cancel_abs_request cancel_abs_request

Example

cancel_abs_request >udd>Multics>Jones>dump>translate

would delete the last absentee request that the user had made in gqueue 3 that
was associated with the control segment >udd>Multics>Jones>dump>translate.absin.

3-39 AG92

This page intentionally left blank.

9/175 AG92A

cancel_cobol_program cancel_cobol_program

Name: cancel_cobol_program, ccp

The cancel_cobol_program command causes one or more programs in the current
COBOL run unit to be cancelled. Cancelling ensures that the next time the
program is invoked within the run unit, its data is in its initial state. Any
files that have been opened by the program and are still open are closed and the
COBOL data segment is truncated. Refer to the run_cobol command for information
concerning the run unit and the COBOL runtime environment.

Usage

cancel_cobol_program names -control_arg-

where:

1. names are the reference names of COBOL programs that are active
in the current run unit. If the name specified in the
PROG-ID statement of the program 1is different from its
associated namei argument, namei must be in the form
refname$prog-id.

2. control_arg may be -retain_data or -retd to leave the data segment
associated with the program intact for debugging purposes.
(See "Notes" below.)

Notes

The results of the cancel_cobol_program command and the execution of the
CANCEL statement from within a COBOL program are similar. The only difference
is that if a namei argument is not actually a component of the current run unit,
an error message is issued and no action is taken; for the CANCEL statement, no
warning is given in such a case.

To preserve program data for debugging purposes, the -retain_data control
argument should be used. The data associated with the cancelled program is in
its 1last used state; it is not restored to its initial state until the next
time the program is invoked in the run unit.

Refer to the following related commands:

display_cobol_run_unit, der -
stop_cobol_run, scr
run_cobol, rc

9/75 3-39.1 AG92A

cancel_daemon_request cancel_daemon_request

Name: cancel_daemon_request, cdr

) The cancel_daemon_request command deletes a dprint or dpunch request that
is no longer required. Normally the deletion can be made only by the user who
orlgingted the request. See the descriptions of the dprint and dpunch
commands.

Usage

cancel_daemon_request path -control_args-

where:

1. path is the pathname of the segment or
multisegment file for which the dprint or
dpunch request is to be cancelled.

2. control_args are selected from the following 1list of

control arguments and can appear anywhere in
the command line:

-request_type XX, -rqt XX indicates that the request to be cancelled
is to be found in the queue for the request
type identified by the string XX. If this
control argument is not given, the default
request type is ‘"printer". Request types
can be 1listed by the print_request_types
command.

-queue n, -q n indicates which priority queue is to be
searched. It must be followed by an integer
specifying the number of the queue. If this
control argument is omitted, only the third
priority queue is searched unless the -all
control argument is provided (see below).

-all, -a indicates that all priority queues for the
specified device class are to be searched
starting with the highest priority queue and
ending with the lowest priority queue.

-brief, -bf indicates that the message "dprint (dpunch)
of path cancelled" is to be omitted.

Notes

The 1last request to print or punch a path is deleted if there is more than
one request associated with the same user for that path in the same queue.

Only request types of generic type "printer" or "punch" can be specified by
the -request_type control argument. These request types can be 1listed by
invoking the print_request_types command.

9/75 3-40 AG92A

cancel_daemon_request cancel_daemon_request

If the request refers to a path that the I/0 daemon is already processing,
this command is not effective in stopping the print or punch operation.

Examples

cancel_daemon_request >udd>Alpha>Jones>dump>translate.1ist

deletes the last request that the user made in queue 3 (for the default request
type) to print the segment >udd>Alpha>Jones>dump>translate.1ist.

cancel_daemon_request >udd>Alpha>Jones>dump>probe.pl] -request_type punch

deletes the 1last request that the user made in queue 3 (for the request type
"punch") to punch the segment >udd>Alpha>Jones>dump>probe.pli.

9/75 3-41 AG92A

change_default_wdir change_default_wdir

Name: change_default_wdir, cdwd

The change_default_wdir command records a specified directory as the user's
default working directory for the duration of the current process or until the
next change_default_wdir command is issued.

. Usage

change_default_wdir -path-

where path is the pathname of the directory that is to become the default
working directory. If path is not given, the current working directory becomes
the default working directory.

Notes

The change_default_wdir command is used in conjunction with the change_wdir
command. When the change_wdir command is issued with no argument, the default
working directory becomes the current working directory.

The original default working directory is the user's home directory upon
logging in.

See also the descriptions of the change_wdir and print_default_wdir
commands.

3-42

change_error_mode change_error_mode

Name: change_error_mode, cem

This command is used to control the amount of information printed by the
default handler for system conditions. It determines the length of messages for
the life of a process or until it is invoked again in the process.

Usage

change_error_mode -control_args-

where control_arg can be chosen from the following list:
-brief, -bf prints only the condition name.

-long, -1lg prints more complete messages. In particular, if the
condition was detected in a support procedure, the name
of that procedure is printed in addition to the name of
the most recent user procedure. If a segment that
signalled a condition (or caused it to be signalled) is
bound, both the offset relative to the base of the
procedure and the offset relative to the base of the
segment are printed.

Notes

If this command is not issued the message is in normal mode. If this
command is issued with no argument, normal mode is the default. It can be used
to return the value -long or -brief to the default value. The normal mode
prints a message intermediate in length between the brief and long messages.

For a complete discussion of conditions and their handling see Section VI
of the MPM Reference Guide. Refer to the description of the reprint_error
command for a similar, but more selective, capability.

3-43 AG92

change_wdir change_wdir

Name: change_wdir

The change_wdir command changes the user's working directory to the
directory specified as an argument. A working directory is a directory in which
the wuser's activity 1is centered. Its pathname is remembered by the system so
that the user need not type the absolute pathname of segments inferior to that
directory.

Usage
change_wdir -path-

where path 1is the pathname of the directory that is to become the working
directory. 1If path is not given, the default working directory is assumed.

ote

If path specifies a nonexistent directory, an error message is printed on
the user's terminal and the current working directory is not changed.

A user must have status permission on the directory containing path, but no
access to path 1is required for the command to be employed. However, once the
working directory has been changed, the user can proceed only according to his
access to path. That 1is, to effectively use path as a working directory, he
must have sma access permission for path. Restricted uses are possible in
accordance with the mode attributes on the directory. For example, the user
must have at least status permission to list the directory.

See also the descriptions of the change_default_wdir and print_default_wdir
commands.

3/76 3- 11 AG92B

check_info_segs check_info_segs

Name: check_info_segs, cis

The check_info_segs command prints a list of new or modified segments. ;t
saves the current time in the user profile, so that when it is invoked again, it
lists segments created or modified since the last invocation.

Optional control arguments allow check_info_segs to be used to perform a
specified command on each modified segment, or to search any directory for
modified segments, or to use a time other than that of the last invocation for
the comparison.

Usage
check_info_segs -control_args-

where control_args can be selected from the following:

-date date_string, If this argument is given, check_info_segs uses the

-dt date_string date specified by date_string instead of the date in
the wuser profile. The date_string argument must be
acceptable to the convert_date_to_binary_ subroutine
(described in the MPM Subroutines). The time of last
invocation in the user profile is not updated to the
current time.

-long, -1lg If this argument is specified, check_info_segs 1lists
the date-time-entry-modified as well as the name of any
segment selected as having been created or modified
during the interval in question.

-brief, -bf If this argument is specified, check_info_segs does not
print the names of selected segments and suppresses the
comment "no change" if no segments are selected as
having been created or modified during the interval in
question. This control argument is intended for use
with the -call control argument described below.

-no_update, -nud If this argument is specified, check_info_segs does
not place the current time into the user profile.

-call cmdline If this argument is specified, check_info_segs calls
the command processor with a string of the form
"cmdline path" for each =selected segment, after the
name of the segment 1is typed; path is the absolute
pathname of the segment. The cmdline must be enclosed
in quotes if it contains blanks.

-pathname spath, If this control argument is specified, check_info_segs

-pn spath assumes that spath is a pathname with one or more
asterisks (stars) in the entryname portion. All new or
modified segments that match spath are selected. Refer
to "Constructing and Interpreting Names" in Section III
of the MPM Reference Guide for a discussion of star
names.

7/76 3-45 AG92C

check_info_segs check_info_segs

Up to 10 occurrences of this argument can appear in a
call to check_info_segs. All specified directories are
searched, in the order that the arguments were given.
If the -pathname argument is not specified, the
defaults are -pn >documentation>info>**_ info and -pn
>documentation>iml_info>¥*#¥ info.

Notes

The first time check_info_segs is invoked by a particular user, it just
initializes the time in the user profile to the current time, prints a comment,
and does not list any segments. If a profile does not exist, check_info_segs
creates one in the wuser's home directory. The profile segment has the name
Person_id.profile, where Person_id is the Person_id given at login time.

The check_info_segs command checks the date-time-entry-modified for any
segment pointed to by a link, not the time the link was modified.

The check_info_segs command cannot detect that a segment has been deleted
since the last invocation of the command.

Examples
To check for info segments modified since the specified date, type:
check_info_segs -date "07/01/74 0900."
To print all modified info segments, type:
check_info_segs -call print -bf

The "-bf" argument 1is given to check_info_segs to =suppress duplicate
printing of segment names since the print command types the segment name in the
heading.

To print just the first block of any modified info segment, type:
check_info_segs -call "answer no help -pn"

The -pn argument must be given to the help command, since check_info_segs
supplies an absolute pathname as the last argument in the command line.

T7/76 3-46 AG92C

check_info_segs check_info_segs

To check for all modified segments in a project-maintained directory
well as the system directories, type:

check_info_segs -nud -pn >udd>Project_id>documentation>¥*.info
check_info_segs

The use of the -nud argument prevents the time of last invocation
being updated in the first command line.

3-47

as

from

AG92

close_file close_file

Name: close_file, cf

The close_file command closes specified FORTRAN and PL/I files. It closes
all open FORTRAN and PL/I files if the =-all control argument is specified.

Usage

close_file -control_arg- filenames

where:

1. control_arg can have the value -all to close all open files. In this
case, no filename appears.

2. filenames are the names of open FORTRAN or PL/I files.

Notes

The format of a FORTRAN file name is filenn where nn is a two-digit number
other than 00; e.g., file05. PL/I file names are selected by the user and can
have any format.

If a specified file cannot be found, an error message is printed indicating
the name of the file. The rest of the specified files are closed.

For each filename, all PL/I files of that name and, if applicable, the
FORTRAN file of that name are closed.

The command "close_file . -all" does not affect I/0 switches that are not
associated with FORTRAN or PL/I files.

3-48 AG92

cobol cobol

ame: cobol

The cobol command invokes the COBOL compiler to translate a segment
containing the text of a COBOL source program into a Multics object segment. A
listing segment can also be produced. These segments are placed in the wuser's
working directory. This command cannot be called recursively. For information
on COBOL, refer to the Multics COBOL Users' Guide, Order No. AS43 and the
Multics COBOL Reference Manual, Order No. AS4l.

Usage

cobol path -control_args-

where:

1. path is the pathname of a COBOL source segment that is to be
translated by the COBOL compiler. If path does not have
a suffix of cobol, then one 1is assumed. However, the
suffix cobol must be the last component of the name of
the source segment.

2. control_args may be chosen from the following list:

-source, =-sc produces a line-numbered, printable ASCII listing of the

program.

-symbols, -sb ‘produces a source program listing (like the -source
control argument), followed by a cross-reference listing
of all data names defined in the program.

-map produces a source program listing with symbols (like the
-symbols control argument), followed by a map of the
object code generated by this compilation. The -map
control argument produces sufficient information to allow
the user to debug most problems online.

-list, -1s produces a source program listing with symbols (like the
-symbols control argument), followed by an assembly-like
listing of the compiled object program. Use of the -list
control argument significantly increases compilation time
and should be avoided whenever possible by using the -map
control argument.

-brief, -bf causes error messages written to the user_output I/0
switech to contain only an error number and statement
identification once the full message has been given on
the first occurrence. In the normal, nonbrief mode, an
explanatory message is always written.

-severityi, causes error messages whose severity is less than i

-svi (where i is 1, 2, 3, or 4) to not be written to the
user_output I/O switch although all errors are written
into the listing. If this control argument is not given,
a severity level of 2 is assumed. See the description of
severity levels under "Error Diagnostics" below.

9/75 3-48.1 AG92A

cobol cobol

-check, -ck is used for syntactic and semantic checking of a COBOL
program. No code is generated.

-table, -tb generates a full symbol table for use by symbolic
debuggers; the symbol table is part of the symbol
section of the object program and consists of two parts:
a statement table that gives the correspondence between
source line numbers and object locations and an
identifier table that contains information about every
identifier actually referenced by the source program.
The table appears in the symbol section of the object
segment produced by the compilation. This control
argument wusually causes the object segment to become
significantly longer.

~-format, -fmt accepts source segment in the format acceptable to the
format_cobol_source command.

The following control arguments are available, but are probably not of
interest to every user.

-debug, -db leaves the work files generated by the compiler intact
after a compilation. This control argument is used for
debugging the compiler. The command cobol$clean_up may
be used to discard these files. Also, this causes
severity 4 errors to not unwind and abort the
compilation, but rather to invoke a new level of the
command processor at the point of the error.

-time, -tm prints the time (in seconds) and the number of page
faults taken by each phase of the compiler; prints the
total time at the end of the compilation. This is
directed to the user_output I/0 switch.

ote

The only result of invoking the cobol command without control arguments is
to generate an object segment.

A normal compilation produces an object segment and leaves it in the user's
working directory. If an entry with that name existed previously in the
directory, its access control list (ACL) is saved and given to the new copy of
the object segment. Otherwise, the user is given re access to the segment with
ring brackets v,v,v where v is the validation level of the process that is
active when the object segment is created.

If the user specifies the -source, -symbols, -map, or -1list control
arguments, the cobol command creates a listing segment named path.list. The ACL
is set as described for the object segment except that the user is given rw
access to it when newly created. Previous copies of the object segment and the
listing segment are replaced by the new segments created by the compilation.

9/75 3-48.2 AG92A

cobol cobol

Error Diagnostics

The COBOL compiler can diagnose and issue messages for about 800 different
errors. These messages are graded in severity as follows:

1 Warning only. Compilation continues without i1l effect.

2 Correctable error. The compiler attempts to remedy the
situation and continues, possibly without ill effect. The
assumptions the compiler makes in remedying the situation,
however, do not necessarily guarantee the right results.

3 Uncorrectable but recoverable error. That is, the program
is definitely in error and no meaningful object code can be
produced, but the compiler can continue executing and
diagnosing further errors.

y Unrecoverable error. The compiler cannot continue beyond
this error. A message is printed and control is returned to
the cobol command. The command writes an abort message on
the error_output I/0 switch and returns to its caller.

As indicated above, the user can set the severity level so that he is not
bothered by minor error messages. He can also specify the -brief control
argument so that the message is shorter. Since the default severity level is 2,
the user must explicitly specify the -severity! (or =-sv1) control argument when
he invokes the cobol command to have observation messages printed. Neither the
-severityi nor -brief control argument has any effect on the contents of the
listing segment if one is produced.

An example of an error message in its long form is:

22 use after error procedure on extend.
1
##% 1 5-.250 A use procedure has already been associated with this processing
mode.

If the -brief control argument is specified and message 5-250 has
previously been given in its long form, the user instead sees:

22 use after error procedure on extend.
1
#*% 1 5-250

In the second case, the user could look up error number 5-250 in Appendix A
of the Multics COBOL Users' Guide and get the full message (or of course he
could refer to the previously printed message). If the user had set his
severity level to 3, he would have seen no message at all. Notice that the
number of asterisks immediately preceding the error indicator corresponds to the
severity level of the error.

9/75 3-48.3 AG92A

This page intentionally left blank,

9/75 AG92A

This page intentionally left blank.

T7/76 AG92C

compare compare

Name: compare

The compare command compares two segments and lists their differences. The
comparison 1is a word-by-word check and can be made with a mask so that only
specified parts of each word are compared.

Usage

compare pathi1joffset1 path2|offset2 -control_args-

where:

1. path1, path2 are the pathnames of the segments to be compared. The
equal convention is allowed for path2.

2. offset1, offset2 are octal offsets within the segments to be compared.
The comparison begins at the word specified or at the
first word of the segment if no offset 1is specified.
If an offset is omitted, the vertical bar should also
be omitted.

3. control_args can be chosen from the following control arguments:

-mask n the octal mask n is to be used in the comparison. If n

is less than 12 octal digits, it is padded on the left
with zeros.

-length n, -1ln n the comparison should continue for no more than n
(octal) words.

Notes

The maximum number of words to be compared is the word count of the first
segment minus its offset or the word count of the second segment minus its
offset, whichever 1is greater. If the -length control argument is supplied,
comparison stops after the specified number of words. If the segments are of
unequal 1length, the remaining words of the 1longer segment are printed as
discrepancies. The word count of a segment is computed by dividing the bit
count plus 35 by 36. If the word count minus the offset is less than zero, an
error message is printed and the command is aborted.

Any discrepancies found by the command are listed in the following format:

offset contents offset contents
4 404000000002 y 000777000023
6 404000000023 6 677774300100

To compare segments containing only ASCII character-string data, use the
compare_ascii command.

3-50 AG92

N

compare_ascii ' compare_ascii

Name: compare_ascii, cpa

This command compares two ASCII segments and prints the changes made to the
segment specified by pathA to yield the segment pathB. The output is organized
with the assumption that the pathA segment was edited to produce pathB. This
command prints lines that were added, replaced, or deleted; it identifies each
line by line number within the respective segment and also by the letter A or B
to indicate which segment the line is from (A for pathA and B for pathB).

Usage

compare_ascii pathA pathB -minchars- -minlines-

where:

1. pathA is the pathname of the segment that 1is identified by the
letter A in the command output.

2. pathB is the pathname of the segment that is identified by the
letter B in the command output (presumably the result of
editing the first segment).

3. minchars is an optional decimal number specifying the minimum number
of characters that must be identical before compare_ascii
assumes the segments are again synchronized ("in synec")
after a difference in the two segments. See "Notes" below.

y, minlines is an optional decimal number analogous to minchars
specifying the minimum number of 1lines that must be
identical. It is required that minchars be specified 1in
order to use this argument.

Notes

The equal convention can be used.

The defaults for minchars and minlines are 50 and 5 respectively. This
means that if a difference between the segments is encountered, at least five
lines must be identical before the segments are considered to be back in sync
again, and if a group of five lines contains less than 50 characters, then at
least 50 characters must be identical before the segments are considered to be
in sync again. (Thus, both minima must be met or exceeded.)

When compare_ascii detects a difference (the next 1line in pathA 1is not
equal to the next 1line 1in pathB), it attempts to get the segments back in
sync--that is, to find the line in each segment where the difference ends and
the next several lines in pathA are equal to the next several lines in pathB.
The number of lines required to be equal is given by minlines, as described
above.

3-51 AG92

compare_ascii compare_ascii

The requirement that the number of identical lines specified by minlines
appear in the two segments decreases the probability of the comparisons getting
out of sync in segments where the same line or sequence of lines occurs at
several different places. (For example, if minlines were set to 1, then any two
blank lines would cause the program to assume that it had found the end of the
difference--but blank 1lines occur at many different places in some ASCII
segments.)

The requirement that minchars identical characters appear serves the same
purpose for segments where the same sequence of short lines is repeated several
times--for example, multiple blank lines, or a series of control 1lines that
precedes each paragraph in a runoff segment, or a series of end statements
terminating nested do’s in a PL/I program. If a group of minlines 1lines is
equal in both segments, but the group contains a total of fewer than minchars
characters, the command adds enough additional characters to the group (possibly
ending it with part of a line) so that the the group contains exactly minchars
characters, and it requires that this group be identical in both segments before
it assumes that the segments are back in sync.

From the above discussion, it can be seen that, if minchars or minlines is
set too low, the command assumes that it has found the end of a difference when
it is not really looking at the same spot in both segments. Once out of sync,
compare_ascii probably never gets back into sync, and thus it reports that the
remainder of pathA was completely replaced by the remainder of pathB.

On the other hand, if minchars and minlines are set too high (in comparison
with the frequency of differences between the segments), then the command gets
back into sync infrequently, if ever, and thus reports complete replacement of
large sections, or of the entire segment. For example it every fifth line of
pathA were replaced to produce pathB, then the pattern of four lines equal, one
line unequal occurs throughout the segments. Using the default of minlines = 5,
the command would never find five consecutive lines that match, and would thus
report that pathA was completely replaced by pathB.

The user should understand how minlines and minchars are used in the
comparison algorithm and choose values for them that are likely to give the most
useful results for the particular segments being compared, considering both the
nature of the differences between the segments and the 1likelihood of line
sequences occurring repeatedly in the segments.

Example
compare_ascii oldprog.pl1 prog.pli1 20 2

This command line requests a comparison between the source segment prog.pl1
and a (presumably) old version of the same program, named oldprog.pl1l, both in
the user’s working directory. The values for minchars and minlines (20 and 2,
respectively) mean that the command assumes that it has found the end of a
difference when it finds two consecutive 1lines that are the same in both
segments--provided that the two lines contain a total of at least 20 characters.
If they do not, then the command does not assume it has found the end of the
difference unless there are enough additional matching characters in subsequent
lines to make 20 characters the same.

3-52 AG92

copy copy

Name: copy, cp

The copy command causes copies of specified segments and multisegment files
to be created in the specified directories with the specified names. Access
control lists (ACLs) and multiple names are optionally copied.

Usage

copy pathi1l path2l1 ... pathin -path2n- -control_args-

where:

1. pathii is the pathname of a segment or multisegment file to be
copied.

2. path2i is the pathname of a copy to be created from pathli. If
the last path2 argument is not given, the copy is placed
in the working directory with the entryname of pathin.

3. control_args can be chosen from the following 1ist of control
arguments:

-name, -nm copies multiple names.

-acl copies the ACL.

-all, -a copies multiple names and ACLs.

-brief, -bf suppresses the warning messages "Bit count inconsistent

with current length..." and "Current length is not the
same as records used...".

The control arguments can appear once anywhere in the command line after
the command name and apply to the entire command line.

Notes

Read access is required for pathli. Status permission is required for the
directory containing pathi1i. Append permission is required for the directory
containing path2i. Modify permission is required if the -name, -acl, or -all
control argument is used. '

The star and equal conventions can be wused. See "Constructing and
Interpreting Names" in Section I for a description of the star and equal
conventions.

If the ACL of a segment or multisegment file is being copied, then the
initial ACL of the target directory has no effect on the ACL of the segment or
multisegment file after it has been copied into that directory. The ACL remains
exactly as it was in the original directory.

3-53 AG92

copy copy

Since two entries in a directory cannot have the same entryname, special
action 1is taken by this command if the name of the segment or multisegment file
being copied (specified by path1i) already exists in the directory specified by
path2i. If the entry being copied has an alternate name, the entryname that
would have resulted in a duplicate name is removed and the user is informed of
this action; the copying operation then takes place. If the entry being copied
has only one entryname, the entry that already exists in the directory must be
deleted to remove the name. The user is asked if the deletion should be done;
if the user answers "no", the copying operation does not take place.

The copy command prints a warning message if the bit count of pathi1i is
less than its current length or if the current length is greater than the number
of records used. These warnings are suppressed by the use of the -brief control
argument.

Example

copy >old_dir>fred.list george.=

The segment or multisegment file named fred.list in the directory >old_dir
is copied into the working directory as george.list.

3-5U AG92

e e .

copy_cards copy_cards

P

Name: copy_cards

The copy_cards command copies specified card image segmgnts from system
pool storage into a user's directory. The segments to be copied must pave begn
created using the Multics Card Input Facility. The user process executing this
command must have the proper access to the card image segment in order to
perform the copy. When there are multiple copies of the same deck in pool
storage, all are copied.

Usage

copy_cards deck_name -new_deck_name-

1. deck_name is the name that was entered on the deck_id card when the
card deck was submitted for reading.

2. new_deck_name is the pathname of the segment in which the matching card
image segment is to be placed. If omitted, the working
directory and deck_name are assumed.

Notes

The deck_name may use the star convention, and when there are matching
card image segments in pool storage to which the user has access, all are
copied. Similarly, new_deck_name may use the equal convention.

When an attempt is made to read a card deck having the same name as some
previously read deck still in pool storage, a numeric suffix is added to the
name of the new deck, e.g., "deck_name.1". Repeated name duplications cause
successively 1larger numeric suffixes to be used. (Name duplicatons can only
occur for decks of the same access class submitted by the same user.) The
copy_cards command informs the user of such duplications (if any) and retrieves
all copies of the specified deck.

Only those card decks having an access class equal to the wuser's current
authorization can be copied. Other decks will not be found.

See the description of the’ card input facility in Section V of the MPM
Reference Guide for the format of the control cards needed when submitting a
card deck to be read by system operations.

Example

copy_cards my_deck

copies the wuser's card image segment named my_deck from the card pool storage
into the user's current working directory.

9/75 3-54.1 AG92A

copy_file copy_file

Names: copy_file, cpf

The copy_file command copies records from an input file to an output file.
The input and output file records must be Structured. (See "Unstructured Files"
below for an explanation of how unstructured files can be copied.) The input
file can be copied either partially or in its entirety.

Tpe copy command makes an exact duplicate of the input file, whereas
copy_file produces an output file that has been restructured for maximum
compactness. (See the description of the copy command in this manual.)

Usage

copy_file in_control_arg out_control_arg -cpf_control_args-

where:

1. in_control_arg is one of two input control arguments that
specifies the input file from which records are
read. It may be either an I/0 switch name or
an attach description. (See "Notes" below.)

-input_switch XX, specifies the input file by means of an already

-isw XX attached I/0 switch name, where XX is the
switch name.

-input_description "XX", specifies the input file by means of an attach

-ids "Xxv description, where XX is the attach
description. The attach description string
must be enclosed in quotes.

2. out_control_arg is one of two output control arguments that
specifies the output file to which these
records are written. It may be either an I/0
switch name or an attach description. (See
"Notes" below.)

-output_switch XX, specifies the output file by means of an

-osw XX already attached I/0 switch name, where XX is
the switch name.

-output_description "XX", specifies the output file by means of an attach

~ods "XX" description, where XX is the attach
description. The attach description string
must be enclosed in quotes.

3. cpf_control_args may be one or more of the following control
arguments. (See "Notes" below.)

-keyed copies both records and keys from a keyed

sequential input file to a keyed sequential
output file. The default is to copy records
from an input file (either keyed or not) to a
sequential output file. (See "Keyed Files"
below.)

7/76 3-54.2 AG92C

copy_file copy_file

-from n, -fm n copies records beginning with the nth record of
the input file, where n is a positive integer.
The default is to begin copying with the "next
record." (See "Notes" below.)

-start XX, -sr XX copies records beginning with the record whose
key is XX, where XX 1is 256 or fewer ASCII
characters. The default is to begin copying
with the "next record."

-to n copies until the nth record has been copied or
the input file is exhausted, whichever occurs
first, where n is a. positive integer greater
than or equal to the n given with the -from
control argument. This control argument can
only be specified if -from is also specified.
The default is to perform copying wuntil the
input file is exhausted.

-stop XX, -sp XX copies until the record whose key is XX has
been copied or the input file is exhausted,
whichever occurs first, where XX 1is 256 or
fewer ASCII characters. This control argument
can be specified without specifying the -start
control argument. However, if -start is
specified, the XX given with -stop must be
greater than or equal to (according to the
ASCII collating sequence) the XX given with
-start. The default 1is to perform copying
until the input file is exhausted.

-count n, -ct n copies until p records have been copied or the
input file 1is exhausted, whichever occurs
first, where n 1is a positive integer. The

default is to perform copying until the input
file is exhausted.

-all, -a copies until the input file is exhausted. This
is the default.

-brief, =-bf- suppresses an 1informative message indicating
the number of records actually copied.

-long, -lg prints an informative message indicating the
number of records actually copied. This 1is the
default.

Unstructured Files

The copy_file command operates by performing record I/0 on structured
files. If it is desired to copy from/to an unstructured file, the
record_stream_ I/0 module can be used, e.g.,

cpf -ids "record_stream_ -target vfile_ pathname" -osw OUT

The effect is to take lines from the file specified by pathname via the vfile_
I1/0 module, transform them into records via the record_stream_ I/0 module, and
then copy them to the I/0 switch named OUT.

7/76 3-54.3 AG92C

copy_file copy_file

Keyed Files

The copy_file command can copy a keyed sequential file either as such, or
as though it were purely sequential. By default, the command copies only
records and does not place keys in the output file. To copy the keys, the
-keyed control argument must be used. When -keyed is used, the input file must
be a keyed sequential file. Whether keys are copied or not, control arguments
can be used to delimit the range of records to be copied (i.e., -start, -stop,
-from, -to, -count). Copying is always performed in key order.

Notes

If either the input or output specification is an attach description, it is
used to attach a uniquely named I/0 switch to the file. The switch is opened,
the copy performed, and then the switch is closed and detached. Alternately,
the input or output file may be specified by an I/0 switch name. Either the
io_call command or iox_ subroutine may be used to attach the file prior to the
invocation of the <copy_file command. (See the description of the io_call
command in this manual and the iox_ subroutine in the MPM Subroutines.)

If the input file is specified by an I/0 switch name and the switch is not
open, the copy_file command opens it for (keyed_)sequential_input, performs the
copy, and closes it. If the switch is already open when the copy_file command
is invoked, the opening mode must be sequential_input, sequential_input_output,
keyed_sequential_input, or keyed_sequential_update. The switch is not closed
after the copy has been performed.

The '"next record" must be defined if neither the -start nor -from control
argument is used to specify an absolute starting position within the input file.
If the I/0 switch is opened by the copy_file command, the next record is the
first record of the file; otherwise, the next record is that record at which
the file is positioned when the copy_file command is invoked.

If the output file is specified by an I/0 switch name and the switch is not
open, the copy_file command opens it for (keyed_)sequential_output, performs the
copy, and closes it. 1If the switch is already open when the copy_file command
is invoked, the opening mode must be sequential_output, sequential_input_output,
keyed_sequential_output, keyed_sequential_update, direct_output, or
direct_update. (In update mode, output file records with keys that duplicate
input file records are rewritten.) The switch is not closed after the copy has
been performed.

The -from and -start control arguments are mutually exclusive. The -to,
-stop, =-count, and -all control arguments are mutually exclusive. The =-brief
and -long control arguments are mutually exclusive. The informative message,
printed by default, appears as follows:

345 records copied.

7/76 3-54.4 AG92C

copy_file copy_file
o
Examples

Copy an entire file from an already attached file to the segment in_copy:

cpf -isw in -ods "vfile_ in_copy"

Copy the first 13 records from a tape file to an output file. The normal
result of this command would be to print the first 13 records on the user's
terminal. (The two lines below would actually be typed as only one line.)

epf -ct 13 -ids "tape_ansi_ 887677 -name TEST21 -ret all"
-ods "record_stream_ user_output”

Copy 13 records from an already attached file to another already attached
file, starting with the 56th record of the input file:

cpf -isw in -osw out -from 56 -ct 13

Copy records 43 through 78 from an already attached file to an already
attached file:

—~ cpf -isw in -osw out -from 43 -to 78

Copy all but the first seven records from segment testdata.11 to an already
attached file:

cpf -ids "vfile_ testdata.11" -osw out -fm 8

Copy an entire keyed sequential file with keys:

cpf -isw in -osw out -all -keyed

Copy 13 records of a keyed sequential file starting with the record whose
key is ASD66 to a sequential output file. No keys are copied.

cpf -isw in -osw out -sr ASD66 -ct 13

Copy the records and keys from a keyed sequential file up to and including
the record whose key is bb"bb:

cpf -keyed -isw in -osw out -sp "bb""bb"

i

7/76 3-54.5 AG92C

This page intentionally left blank.

7/76 AG92C

create create

Name: create, cr

The create command causes a storage system segment to be created in a
specified directory (or in the working directory). That is, it creates a
storage system entry for an empty segment. See the description of the
create_dir and 1link commands for an explanation of the creation of directories
and links, respectively.

Usage

create paths

where paths are the pathnames of the segments to be created.

Notes

The user must have append permission for the directories in question.

If the creation of a new segment would introduce a duplication of names
within the directory, and if the old segment has only one name, the user is
interrogated as to whether he wishes the segment bearing the old instance of the
name to be deleted. If the old segment has multiple names, the conflicting name
is removed and a message to that effect is issued to the user. 1In either case,
since the directory is being changed, the user must also have modify permission
for the directory.

The user creating the new segment 1is given rw access to the segment
created.

A1l directories specified in paths must already exist. That is, only a
single level of the storage system hierarchy can be created with one invocation
of this command.

If any one of the paths 1is the name of an existing link, a segment is
created in the place specified by that link. The user must have append access
for the directory containing the link in order to create this segment.

Example

create first_class_mail >new_dir>alphad>beta

would cause the segment first_class_mail to be created in the working directory
and the segment beta to be <created in the directory >new_dir>alpha. As
explained above, the directories new_dir and alpha must already exist.

3-55 AG92

create_dir create_dir

Name: create_dir, cd

The create_dir command causes a specified storage system directory branch
to be created in a specified directory (or in the working directory). That is,
it creates a storage system entry for an empty subdirectory. See the
description of the create command for information on the creation of segments.

Sage

create_dir paths -control_args-

where:
1. paths specify the names of the subdirectories to be created.
2. control_args may be chosen from the following:

-access_class XX, applies to each pathi and causes each directory

-acec XX created to be upgraded to the specified access class.
The access class may be specified with either long or
short names.

-logical_volume V, specifies that each directory created is to be a

-lv V master directory whose segments are to reside on
logical volume named V.

-quota n specifies the quota to be given to the directory when
it 1is created. This argument must be specified if
either the -access_class or -logical_volume control
argument is given. If omitted, the directory is given
zero quota. The value of n must be a positive
integer, and applies to each pathi.

Notes

The user must have append permission on the directories in question.

If a quota is specified and the directory being created is not a master
directory, the containing directory must have sufficient quota to move quota to
the directory being created. (See the move_quota command for additional
information.)

If the creation of a new subdirectory would introduce a duplication of
names within the directory, and if the old subdirectory has only one name, the
operation 1is not performed. If the o0ld subdirectory has multiple names, the
conflicting name is removed and a message to that effect issued to the user.

The user is given sma access on the created subdirectory.

T7/76 3-56 AG92C

-create_dir create_dir

All superior directories specified in pathi must already exist. That 1is,
only a single level of storage system directory hierarchy can be created in a
single invocation of the create_dir command.

In order to create a master directory, the user must have a quota account
on the 1logical volume with sufficient volume quota to create the directory. A
master directory must always have a nonzero quota; therefore, the -quota control
argument must always be given when creating a master directory. A master
directory can be created even though the logical volume is not mounted.

Each upgraded directory must have a quota greater than zero and must have
an access class that is greater than its containing directory. The specified
access class must also be less than or equal to the maximum access authorization
of the process.

When the -access_class control argument is specified, the command does not
create a new directory through a link. Creating through links is allowed only
when the access class of the containing directory is taken as the default.

Examples
create_dir sub >my_dir>alphad>new

creates the subdirectory sub immediately inferior to the current working
directory and the subdirectory new immediately inferior to the directory
>my_dir>alpha. As noted above, the directories my_dir and alpha must already
exist. Both directories are assigned the access class of their containing
directory.

create_dir subA -access_class a,cl1,c2 -quota 5

creates the subdirectory subA with an access class of a,c1,c2 and a quota of 5
pages. The directory subA would be created immediately inferior to the working
directory. (The access class names a, cl1, and c¢2 used in the example represent
possible names defined for the site. See the print_auth_names command for more
details on access class names.)

create_dir subB -logical_volume volz -quota 100

creates a master directory subB immediately inferior to the working directory.
Segments created in this new directory will reside on the logical volume named
volz. The directory subB is given a quota of 100 records.

7/76 3-56.1 AG92C

cumulative_page_trace cumulative_page_trace

Name: cumulative_page_trace, cpt

The cumulative_page_trace command accumulates page trace data so that the
total set of pages used during the invocation of a command or subsystem can be
determined. The command accumulates data from one invocation of itself to the
next. Output from the command is in tabular format showing all pages that have
been referenced by the user's process. A trace in the format of that produced
by the page_trace command can also be obtained.

The cumulative_page_trace command operates by sampling and reading the
system trace array after invocation of a command and at repeated intervals.
Control arguments are given to specify the detailed operation of the
cumulative_page_trace command.

The command line used to invoke the cumulative_page_trace command includes
the command or subsystem to be traced as well as optional control arguments.

Usage

cumulative_page_trace command_line -control_args-

where:

1. command_line is a character string to be interpreted by the command
processor as a command line. If this character string
contains blanks, it must be surrounded by quotes. All
procedures invoked as a vresult of processing this
command line are metered by the cumulative_page_trace
command.

2. control_args may be chosen from the following:

-reset, -rs resets the table of accumulated data. If the table is
not reset, data from the current use of

cumulative_page_trace is added to that obtained earlier
in the process.

-flush clears primary memory before each invocation of the
command 1line and after each interrupt. This helps the
user determine the number of page faults but increases
the cost.

-loop n calls the command to be metered n times.

-sleep n waits for n seconds after each call to the command

being metered.

-interrupt n, interrupts execution every n virtual CPU milliseconds

-int n for page fault sampling.

-timers includes all faults between signal and restart.

-trace path writes the trace on the segment path using I/0 switch
named cpt.out; cumulative_page_trace attaches and

detaches this switch.

9/75 3-56.2 AG92A

~

cumulative_page_trace cumulative_page_trace

-print, =-pr prints the accumulated results, giving the number of
each page referenced.

-total, -tt prints the total number of page faults and the number
of pages referenced for each segment.

-count, -ct prints the accumulated results, giving the number of
each page and the number of faults for each page.

-long, -1lg produces output in long format, giving full pathnames.

-short, -sh formats output for a line length of 80.

Notes

At least one of three generic operations must be requested. They may all
be combined and, if so, are performed in the following order: resetting the
table of accumulated data, calling the command to be metered applying the
specified options, and printing the results in the specified format.

The default mode of operation permits no interrupts for page fault
sampling. If the command or subsystem to be metered will take more than several
hundred page faults, linkage faults, or other system events that are indicated
in the page trace array, it is recommended that interrupts be requested. If the
user does not know a suitable value for the -interrupt control argument, the
value recommended is U400 milliseconds. If this figure is too large, messages
indicate that some page faults may have been missed; a smaller value can then be
chosen. The cost of a smaller value is high and may cause additional side
effects. If the command or subsystem to be metered includes the taking of CPUT
interrupts, then the -timers control argument should be given. This control
argument causes some of the page faults of the metering mechanism to be included
as well.

Only one of the control arguments -print, -count, or -total may be given.
Each of these control arguments produces printed output in a different format.
If more than one format is desired, the command must be invoked once for each
format.

Examples
cpt "pll test" -interrupt 400 -trace trace_out

calls the pll command to compile the program named test, requesting an interrupt
every 400 milliseconds to obtain page trace information. Trace information is
placed in a segment named trace_out.

9/75 3-56.3 AG92A

cumulative_page_trace cumulative_page_trace

cpt "list -pn >udd>Multics" -loop 2 -sleep 10

calls the list command twice, and sleeps for ten seconds between calls.

ept -print

prints the accumulated results of previous metering.

9/75 3-56.4 AG92A

N

debug debug

Name: debug, db

The debug command is an interactive debugging aid to be used in the Multiecs
environment. It allows the user to look at or modify data or code. The user
may stop execution of his program and examine 1its state by inserting
"breakpoints" in the program before and/or during execution. A concise syntax
for user requests, coupled with a complete system of defaults for unspecified
items, allows the user to make many inquiries with 1little effort. Symbolic
references permit the user to retreat from the machine-oriented debugging
techniques of conventional systems and to refer to variables of interest
directly by name.

The command, debug, uses a segment in the home directory to keep track of
information about breaks. The segment is created if not found. If the segment
cannot be created, the break features of debug are disabled and unusable. The
name -of the break segment is Person_id.breaks where Person_id is the login name
of the user.

Usage
debug
Notes

Through the debug command, the user can:

1. Look at data or code;

2. Modify data or code;

3. Set a break;

4. Perform (possibly nonlocal) transfers;
5. Call procedures;

6. Trace the stack being used;

7. Look at procedure arguments;

8. Control and coordinate breaks;

9. Continue execution after a break fault;

10. Change the stack reference frame;
11. Print machine registers; and

12. Execute commands.

3-57 AG92

debug debug

These functions are provided by two types of debug requests: data requests
and control requests. The first five functions above are performed by data
requests; the others, by control requests. Several debug requests (either data
or control) can be placed on a line separated by semicolons (;).

Number Representation Conventions

Debug uses both octal and decimal representation of numbers. In general,
machine-dependent numbers such as pointers, offsets, and registers are assumed
to be octal, while counting arguments (e.g., specifying a source 1line number,
printing the first 20 lines) and variables referenced by name are assumed to be
decimal.

A decimal default can be changed to octal by preceding the number with the
escape sequence "&o". An octal default can be changed to decimal by preceding
the number with "&d".

Example Description
x = 8 assign the value 8 to the program variable x. Program

variables referenced by name are assumed to be decimal; if
octal representation is preferred, type:
x = &010
$q = 77 assign the value of 77 to the g-register. Register values are
machine dependent and assumed to be octal; if decimal
representation is preferred, type:
$q = &d63
"/test/&a19 print line 19 of the source segment for test.

&a19,s8 print 8 source lines, beginning at line 19.

Data Requests
Data requests consist of three fields and have the following format:
<generalized address> <operator> <operands>

The generalized address defines the actual data or code of interest. It is
ultimately reduced to segment number and offset by debug before being used. The

operator field indicates to debug which function to perform, e.g., print or
modify the data referenced by the generalized address. The operands field may
or may not be necessary, depending on the operator. When these fields are

specified, they are separated by blanks or commas.

3-58 AG92

debug debug

As debug decodes a data request, it parses the generalized address and
generates a pointer to the data being referenced. This pointer, called the
working pointer, is changed whenever the generalized address is changed. It
points into either the working segment, its stack frame, or its linkage section.
The actual segment depends on the most recent specification in a generalized
address. The form for a generalized address is as follows:

[/segment name/] [offset] [segment ID] [relative offset]

(The brackets are not part of the debug syntax.) The segment name is either a
pathname, a reference name, or a segment number, and defines what is called the
working segment. The segment ID specifies which of the data bases associated
with the working segment is to be used in setting the working pointer. The
segment ID can be one of the following:

&s refers to the stack frame if the working segment is a procedure
segment with an active stack frame

&l refers to an active linkage section (i.e., one with an entry in the
linkage offset table (LOT) for the user's ring)

&t refers to the working segment itself
&a refers to the source program for the working segment
&p refers to the parameters of an active invocation of a procedure

&i refers to an active internal static section (i.e., one with an entry
in the internal static offset table (ISOT) for the user's ring)

The offset field is used as an offset within the segment referenced by the
working pointer. For the working segment, this offset is relative to the base
of the segment. 1If the working pointer points into an active stack frame, the
offset is relative to the base of that frame. If the working pointer points
into an active linkage section, the offset is relative to the beginning of that
linkage section.

The offset can be either a number or a symbolic name. If a symbolic name
is specified, a symbol table must exist for the working segment. See the pl1
command for a description of symbol table creation. If a symbolic name begins
with a numeric character, the escape characters &n (for name) must precede the
name, to avoid interpreting the name as a number. For example:

/test/&n10&t

might be used to specify the location associated with FORTRAN line number (i.e.,
label) 10 in a debug request.

3/76 3-59 AG92B

debug debug

The relative offset field allows the user to relocate the working pointer
by a constant value or register. For example, if the user wished to reference
the fourth word after the stack variable i he could use:

/test/i+l

as the generalized address. The relative offset can also assume the value of a
register. For example, if the a-register contained the value Y4 at the time of a
break, then:

/test/100&s$a

would set the working pointer to offset 104 from the base of the stack frame.
It is important to note that a + sign is not present when a register 1is used.
(See "Registers" below.)

The three most common values for the segment ID field are &t, &s, and &l.
These designate that the working pointer is to refer to, respectively, the
working segment itself, its active stack frame, or its active linkage section.
In addition, two other possible values of segment ID allow alternate methods of
referring to locations in either the working segment or its stack frame.

A segment ID of &a refers to the ASCII source program for the working
segment. Associated with this segment ID is a decimal line number, which must
immediately follow the &a. This 1line number is used to generate a working
pointer to the first word of code compiled for that line. A relative offset can
follow the line number. Note that the line-number/code-location association can
only be determined if a symbol table exists for the working segment. This
example:

/test_seg/&a219+36

would generate a working pointer that points to the thirty-sixth (octal) word in
the text after the first word of code generated for line 219 in the source for
the segment test_seg. If an offset field is given before &a, the offset is
ignored. The offset of the working pointer is generated solely from the line
number and the relative offset.

A segment ID of &p refers to the parameters of an active invocation of a
procedure. If the current defaults specify an active stack frame, a number
following the &p specifies the parameter that is to be addressed. The offset
field is ignored, but a relative offset can be specified. This example:

/test_seg/&s;&pl+36,a1l

causes the stack frame for test_seg to be the working segment, and the first 14
characters of the data contained at a location 36 words after the beginning of
the fourth parameter are printed in ASCII format.

3-60 AG92

~’

S~

debug debug

It is not necessary to specify all four fields of a generalized address.
In fact, every field is optional. If a field is not specified, a default value
is assumed that is frequently the last value that the field had. For example:

/test_seg/lineé&s+3

followed by the generalized address:
+U

would be acceptable. The latter request would have been equivalent to:
/test_seg/lineé&s+7

One time that the defaults assumed are not the values of the previous data
request is when a symbolic variable name or label is specified that would cause
some field to change. If this is the case, debug might recognize that the
segment ID, for example, of the previous data request is not valid and set it
appropriately. For example:

/test_seg/760&s
followed by:

regp

would cause the defaults to be changed to:
/test_seg/140&1

if regp is found at a relative offset of 140 (octal) in the linkage section.
Note that the segment ID was changed to &l where it remains until explicitly or
implicitly changed again.

Defaults are also reset to values different from the previous values when
the segment name field is specified in a generalized address. In this case, the
following actions are taken:

1. If the segment name begins with &n, take the rest of the characters
composing the segment name and go to step 3 below, treating the string
as a name. This convention allows the use of debug on segments whose
names are composed of numeric characters. .

3-61 AG92

debug

debug

If the segment name is really a segment number, this number is used in
a search of all active stack frames to see 1if one exists for this
segment. The search 1is from- the highest stack depth (deepest in
recursion) to the base of the stack so that if an active stack frame
is found, it is the one most recently used. If an active stack frame
is found, the generalized address defaults are set as follows:

a. working segment the one specified by the given segment
number

b. offset zero

c. segment ID &s, i.e., the working pointer points

into the 1latest stack frame for the
working segment

d. relative offset Zero

If no active stack frame is found, the defaults are set as above
except that the segment ID is &t instead of &s, i.e., the working
pointer points into the working segment itself.

If the segment name is a reference name known in this ring, the
segment number for the segment being referenced is found, and then the
defaults are calculated as if this segment number were given directly.

If the segment name is a pathname, the specified segment is initiated
(it can already have been known) and the returned segment number is
used as above.

If the segment name is of the form segname$entname, the stack is
searched from the highest active frame (as in step 2) for the most
recent frame associated with the entry point entname in the segment
segname. The working segment becomes segname, and the remaining
defaults are set as described in step 2.

The entire set of defaults that apply to a debug data request can be

determined

at any time by issuing the control request to print defaults. For

the format and use of this request, see the description under "Control Requests"

below.

Operator Field of Data Requests

After decoding the generalized address and determining the working pointer,
debug checks the operator. The following five operators are recognized:

, print

= assign

< set a break

> alter program control (i.e., "go to")

t= call a procedure

3-62 AG92

debug debug

If a debug request is terminated before an operator is encountered either
by a semicolon or a newline character, the default operator used is ",", i.e.,
print. The one exception is that a blank line is ignored. The first, second,
and fifth operators above have operands.

Print Request

For the print request, there are two operands (both optional). The first
operand is a single character specifying the output mode desired. The second
operand is a number indicating how much output is being requested. For example:

/test_seg/142&t,i12

requests that 12 (decimal) words starting at 142 (octal) in the text of test_seg
be printed in instruction format.

The following odtput modes are available for print requests (see "Output
Modes" below for a full description):

o octal

h half-carriage octal

d decimal

a ASCII

i instruction

p pointer

s source statement

1 code for line number

n no output (just change defaults)
e floating point with exponent
f floating point

b bit string

g graphic

3-63 AG92

debug debug

The request:
+36,a16

requests that 16 (decimal) characters starting at 36 (octal) words after the
current working pointer be printed in ASCII format. The output might be:

1416 1416 ">user_dir_dir>"

The two numbers printed in most output modes should be interpreted as
follows: :

1. If the data is from a stack frame, the first number is the relative
offset from the base of the stack segment and the second number is the
relative offset within the stack frame. If the second number is
negative, the variable does not exist in the current stack frame and
is a parameter or a global variable.

2. If the data is from a linkage section, the first number is the offset
within the combined 1linkage segment and the second number is the
offset within the linkage section.

3. For all other segments, both numbers are the same and represent the
offset within the segment.

If a mode is not specified for output, the last specified mode is used
unless debug realizes another mode is more appropriate (e.g., when a symbol
specifies a variable of a different type). If the amount of output is not
specified, it is assumed to be one unit, i.e., one word for octal output, one
line for source output, one character for ASCII output, etc.

Assign Request

When modifying data or code, the operands (at least one is expected)
specify the new values to use. For example:

i =8; p(1) = 20610, 206!32

would assign the decimal value 8 to i and the values 206/10 and 206}32 to p(1)
and p(2), respectively. (It is assumed that both are variables that are defined
for the current working segment.) If more than one operand is specified in an
assignment request, consecutive words starting at the working pointer are
changed. This is illustrated by the assignment to the pointer array p.

*

3-6U AG92

debug debug

There are nine acceptable forms for assignment operands:

1. octal number
decimal number

character string

= w N

register value (see "Registers" below)
instruction format input

floating point number

pointer

bit string

O o0 =N o WU

variable

Whether a number is assumed to be octal or decimal on input depends on the
target. A variable referenced by name 1is assumed to be decimal wunless
overridden by "&o". Assignment to a location by using an offset is assumed
octal unless overridden by "&d".

X
+2

99 (decimal)
77 (octal)

Character strings being input must be bracketed by quote characters (").
Bit strings being input must be bracketed by quote characters and followed by a
b. Floating point numbers must not have exponents.

The word-offset portion of a pointer value being input can optionally be
followed by either a decimal bit offset in parentheses, a ring number in square
brackets, or both. If both a bit offset and a ring number are specified, the
ring number must follow the bit offset, with no intervening blanks. For
example:

p = 206125(29); q = 252} 104[5]; rp = 2111200(3)[4]
The format for instruction input is:
(opcode address,tag)
The address can specify a base register or a number. For example:
/test/lab2 = (lda pr6}20) (sta pr0i{2,%¥0) (nop 0)

Some value must be given for the address field. The zero opcode is specified by
the opcode arg.

3-65 AG92

debug debug

Input of bit strings and character strings changes only those bits or
characters specified, i.e., a full word might not be completely changed.

Several types of input can be interspersed in the same assignment request.
For example:

/145/13000 = "names" &d16 126

When different types of input are specified in one request, the user should be
aware that the bit offset of the temporary working pointer might be ignored for
certain types of input. In the example above, the ASCII for "name" was placed
at 145/13000 and the ASCII for "s" was placed in the first character position of
145}113001. The next assignment argument (&d16) fills in 145113001 with the
decimal 16 and hence overwrites the "s" of the previous argument.

In order to Dbetter specify more complicated assignments, a repetition
factor is provided. If a single number (decimal) appears in parentheses in an
assignment, the next data item is assigned repeatedly (i.e., the specified
number of times), updating the working pointer each time. An example of this
might be:

string = (32)" " "alpha"

which results in string being modified so that the first 32 (decimal) characters
are blanks, and the 33rd through the 37th would get the string "alpha".

Set Break Reguest

A Dbreakpoint is a special modification to the code of a program that, when
executed, causes control to pass to debug. The user is then free to examine and
change the states of variables, set other breaks, continue execution, etc. When
setting a break, the working pointer is used directly unless it points into the
stack. In that case, the working pointer is temporarily forced to the text. To
set a break at the label loop_here in the program parse_words, one would say:

/parse_words/loop_here<

One could also say:

/parse_words/loop_here+23<

to set the breakpoint 23 (octal) locations after the first word of code for the
statement labelled loop_here in the text segment.

3-66 AG92

debug debug

One could also set a break by specifying a line number. For example:

/rand/&a26<

would set a break at the first word of code generated for line 26 (decimal) of
the source program.

The break number printed by debug when setting a breakpoint is used as the
name of the break when referring to breaks. After a break is reset, the break
number is reused. (Resetting a break restores the code to its previous value.)

Once a break has been set at a given location, another break cannot be set
there. To find which breaks are set, the user can use the list breaks control
request (see "Control Requests" below).

A program with breakpoints in it must be run from inside debug. See
"Control Requests" below for executing Multics commands.

Alter Program Control Reqguest

To alter program control by issuing an explicit transfer, one might say

/216/2176>

to cause debug to search the stack for an active stack frame for the segment 216
(octal) and set the stack pointer to this frame. It then transfers to 2176
(octal) in the text associated with this stack frame.

If no active stack frame is found, debug prints a message and waits for
further requests.

Call a Procedure Request

The user can cause debug to call a specified procedure and return values
into specified 1locations. This is done by specifying := as the operator in a
data request. This operator expects one operand that is a procedure name with
its associated arguments. There are two slightly different ways to invoke this
feature: first, to invoke a procedure as a function call (with the argument n+1
being the returned value); and second, to explicitly call a procedure. When a
procedure is invoked as a function reference, the current working pointer is
used as the last argument in the argument list and, hence, the procedure returns
a value into wherever the working pointer is pointing. For example:

/test/fi := sqrt_(2.0)

3-67 AG92

debug debug

~
This causes the sqrt_ function to be called with the first argument 2.0 and the
return argument of fi; debug converts the 2.0 into a floating point number
before the call.

If no fields are present before the := 1is encountered, debug does not
specify a return argument in the call. (The := can be thought of as "call" in a
PL/I program.) For example:

:= who
sets up a call to who$who with no arguments. The call:

:= rename ("foo","moo")
and:

..rename foo moo
are functionally equivalent. (See Multics command execution under "Control
Requests" below.)

The method debug uses in setting up the call is to use ten temporary -’
storage areas, one for each of ten possible arguments. debug converts the
arguments appropriately and stores the values in these areas. Each area starts
on an even location and consists of eight words. These temporary storage areas
can be 1looked at or altered with standard data requests. They are named %1,

..y %$10. For example:

:= cpu_time_and_paging_(0,0,0)

%1,d

%2,d

%3,d
prints three decimal numbers, all being return values from hecs_$usage_values.
The actual call that debug made had three arguments that were all 0. (The first
words of the first three storage areas were zeroed out prior to the call.) The
above call could also have been made as follows:

%3 := cpu_time_and_paging_(0,0)

If this were done, the third argument would not have been 2zeroed before the
call.
e’

3-68 AG92

debug debug

Variables can also be used as arguments. For example:
sum := sqrt_(n)

No conversion would be done by debug if n were fixed and saqrt_ expected a
floating argument.

The above mentioned temporaries can be used to do simple mode conversion.
For example, to get the floating point representation of 3.7 (in octal) one
could say:

%1 = 3.7; ,0
To find the ASCII value for 137 (octal) one could type:
%1 = 137137137137 ; ,ak

A reference to one of these storage areas causes the working segment to be
changed to the stack segment.

If one of the arguments in a procedure call is the character %, then the
temporary storage for that argument is not changed (e.g., overwritten with the
usual argument value). Results from some previous work can be passed in that
argument position. For example:

%2 := sqrt_(2.0)
1= ioa_(""e",%)

Registers

The hardware registers at the time of a fault (in particular a break fault)
are available to the user for inspection or change. These registers are
referenced by preceding the register name immediately by a dollar sign ($). The
register can be looked at by merely typing the register name. For example:

$a

prints the contents of the a-register at the time of the last fault. If the
user would like the value in the a-register to be changed, he might type:

$a = 146
for example. Decimal input is allowed also:

$a = &d19

3-69 AG92

debug

debug

The predefined register names used by debug are:

—_

—_
—_

12.
13.
4.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.

o W 0O =N O v = Ww

pro
pri
pr2

pr3

pri

prs5
pré
pr7
prs
x0
x1
x2
x3
x4
x5
x6
x7

a

q

aq
exp
tr
ralr
eaq
regs
ppr
tpr
even

odd

pointer register 0
pointer register 1
pointer register
pointer register
pointer register

pointer register

SN Ul EWwWw N

pointer register
pointer register 7
all pointer registers
index register 0
index register 1
index register
index register
index register
index register

index register

~N O U EFE W N

index register
a-register
q-register

the a- and g-registers considered as a single register
exponent register

timer register

ring alarm register

the exponent, a- and g-registers in floating point format
all of 10) through 23)

procedure pointer register

temporary pointer register

even instruction of Store Control Unit (SCU) data

odd instruction of SCU data

3-70 , AGY2

debug debug

30. ind the indicator register
31. scu all SCU data
32. all all machine conditions

The user can change the above registers at will (with the exception of
"ind" and "eaq") with the understanding that if he continues execution after the
break or transfers directly (via > in a data request), the values of the
hardware registers are set to those of the above registers.

The values in the registers are automatically filled in by debug (when it
is called or faulted into) with those associated with the last fault found in
the stack. The user can override these values with the fill registers and
crawlout registers control requests. See "Control Requests" below.

The user can also define his own registers and use them as a small symbolic
memory. For example:

$stal = 600220757100; $nop = 11003
would allow the user to later say:
/test/210&t = $stal $nop $nop

To print out the contents of all user-defined registers, the user can type:

$user

The setting and displaying of registers follows the syntax of data
requests. However, only the register name and a possible new value can appear
in a register request. Registers can be specified in a general data request
only in the relative offset field and as operands in assignment requests.
Register names must be less than or equal to four characters in length. Some
examples of the use of registers follow:

/test/i =$q
/test/0 = $x0
/test/U6%$x0,a5

Control Regquests

Control requests provide the user with useful functions not necessarily
related to any specific data. The format for a control request is:

.<request name>

3=71 AG92

debug debug

Control requests and data requests can be freely mixed on a command line if
separated by semicolons. However, certain control requests use the entire input
line and hence ignore any semicolons found therein. Spaces are not allowed in
most control requests.

The following is a list of all control requests and the functions they
perform. See "Summary of Data and Control Requests" below for a complete review
of all requests.

TRACE STACK
The general form is:
i,

The stack is traced from frame i (counting from 0 at the base of the stack) for
J frames, where i and j are decimal integers. If i is 1less than 0, tracing
begins at 0; if i is greater than the last valid frame, then only the last frame
is traced. If i is not specified, it 1is assumed to be 0; if j is not
specified, all valid stack frames from i on are traced. The name printed in the
stack trace is the primary segment name unless the segment is a PL/I or FORTRAN
program in which case it is the entryname invoked for the stack frame (i.e., the
label on the entry or procedure statement).

Examples:

.t2,3
.t100

POP OR PUSH STACK
The general form is:
.+i or .-1i

The working segment is changed by moving up or down the stack i frames, where i
is a decimal integer. For example, if the working segment’s active stack frame
is at depth 4 in the stack, then:

.+3

changes the working segment to the segment whose stack frame is at depth 7 in
the stack. The defaults for working pointer, segment 1ID, and offset are
reinitialized to the base of the stack frame, &s, and 0, respectively.

\

3-72 AG92

debug debug

SET STACK
The general form is:
i

The working segment is set to that of stack frame i (starting at 0), where i is
a decimal integer. The defaults are set as in pushing or popping the stack.

EXECUTE MULTICS COMMAND
The general form is:
..<Multics command line>

The rest of the input line after the .. is interpreted as a standard Multics
command line and is passed to the standard command processor with any preceding
characters blanked out. Any valid Multics command 1line can be given. When
setting breaks, the program being debugged must be called in this manner because
debug sets up a condition handler (for break faults) that is active only as long
as debug’s stack frame is active.

PRINT DEFAULTS

The general form is:

The output might look like:

3 /test_seg/14(0)&t,i 212
or:
3 />udd>m>foo>test_seg/14(0)&t,i 212

3-73 AG92

debug debug

The first number (3 above) is the stack frame depth in decimal, unless there is
no stack frame for the working segment, in which case the number is -1. The
name of the working segment appears between the slashes (test_seg above); if .D
is used, the full pathname occurs here. The offset appears next (14 above); the
bit offset (in decimal) of the working pointer appears next; the segment ID (&t
above) appears next; the operator appears next (, for print); the output mode
appears next (i for instruction); finally the segment number of the working
segment appears (212 above). To find the name/segment number association for a
given segment, the user might type:

/206/,n;.d

yielding:

60 /test_caller/0(0)&s,o 206

If he knew the name, he could obtain the same output by typing:

/test_caller/,n;.d

CONTINUE EXECUTION AFTER A BREAK

The general form is:

.c,i
or:

.ct,i
or:

.cr,i

If i is not specified, it is assumed to be 0. If i 1is specified, the next i
break faults for the current break are skipped. The first instruction executed
upon continuation is the instruction on which the break occurred. If a t
follows the ¢, debug continues in temporary break mode (see "Break Requests"
below). If an r follows the ¢, debug resets the mode to normal (not temporary).

Examples:
.C continue execution

.C,3 continue execution, but skip the next three break faults for
the current break

.ct continue execution in temporary break mode

3-TU A AG92

debug debug

QUIT
The general form is:
-q

This request returns from debug to its caller. Note that if debug was entered
via a break, then typing .qg returns to the last procedure that explicitly called
debug.

CHANGE OUTPUT MODE
Requests pertaining to debug’s terminal output begin with ".m".

1. Enter brief output mode:
.mb

This request places debug in brief output mode, which is somewhat
less verbose than 1its normal output mode. In particular,
assignment requests and the resetting of breaks are not
acknowledged on the user’s terminal; the column headings are not
printed for a stack trace; the printing of register contents is
somewhat more compact; some error messages are abbreviated.

2. Enter long output mode:
.ml
This returns debug to long output mode, which results in fuller

and more explicit terminal output. Long mode is the initial
default.

SET I/0 SWITCH NAMES

These requests allow a user to debug a program that is run with file output
because it generates extensive output or a program that is run from within an
exec_com after "&attach" because it requires much input. The general form is:

.si switch_name
.50 switch_name

where switch_name identifies the switch_name to use for input (.si) or output
(.s0). The named switch must be attached by the user before the request is
made. If no switch name is given, debug creates one (either debug_input or
debug_output).

3-75 AG92

debug

debug

User makes a switch request but does not give a switch name:

.si
.so

debug creates a switch named debug_input or debug_output and attaches
it to the user_i/o switch. This would be the wusual request for
debugging programs that require the user_input or user_output switches
to be attached to a file unstead of to user_i/o. Debug detaches the
debug_input and debug_output switches when the user quits debug.

User makes a switch request and gives the switch name:

.8i input_switch
.80 output_switch

The user must attach the switch_name before making the request. This
could be used when the user wants to read debug requests from a file.
The switches can be restored by typing:

.si user_input
.80 user_output

Examples:

The user has directed the output switch named user_output to a
segment, but wants debug diagnostics to be printed on the terminal.

debug
.S0

Since a switch name was not given with the request, debug sets up a
new I/0 switch named debug_output as a synonym for user_i/o, which 1is
the terminal in this case. When the user quits debug, the switch
named debug_output is detached.

The user wants to debug a procedure that wuses the user_input
switech and has a set of debug requests in another segment named
debug_macro. - An input switch named macro has been attached to the
segment of debug requests.

debug
.s8i macro

debug will take requests from the switch named macro and will not
detach the switch when the user exits debug. An attempt by debug to
read beyond the end of the macro input stream results in an exit from

debug.

3-76 AG92

debug debug

BREAK REQUESTS

The following control requests are specific to breaks and are recognized by
having a "b" immediately following the ".". Reference is made to the default
object segment, which is merely that segment that debug is currently working
with when performing break requests. The default object segment 1is generally
specified implicitly when a break 1is set or hit. It can be changed and
determined on request. The default object segment used for break requests is
not necessarily the same as the segment addressed by the working pointer used in
data requests.

Breaks are numbered (named) sequentially starting at 1 but the numbers are
unique only for the object segment in which the break resides. A user can have
several breaks with the same number defined in different object segments.

There are two types of global requests that can be performed on breaks.
The first, or subglobal requests, refer to all breaks within the default object
segment. The second, or global requests, refer to all breaks set by the user
(as determined from the break segment in the home directory). The subglobal
request 1is specified by omitting the break number in a break request. The
global request is specified by a "g" immediately after the "b" of all break
requests (see below).

The general form of all break requests is:

.bgxi args

where the "g", the number i, and the arguments are optional. The "x" is
replaced by the control character for the break request desired. The following
break requests are currently defined:

1. Reset a break (or breaks). The forms of the requests are:
.bri to reset break i of the default object segment
.br to reset all breaks of the default object segment
.bgr to reset all breaks known to debug
2. List (print information about) a break. The forms of the request are:
.bli to list break i of the default object segment

.bl to 1list all breaks of the default object segment
.bgl to 1list all breaks known to debug

3=-77 AG92

debug

debug

Execute a debug request at break time. The forms for this request

are:

.bei <rest of line>
.be <rest of line>
.bge <rest of line>

Specifying the above request causes <rest of line> to be interpreted
as a debug input 1line whenever the appropriate break(s) is
encountered. If <rest of 1line> is null, the specified breaks
have this execute feature reset to normal.

Disable a break (or breaks). The forms of this request are:

.boi disable (turn off) break i of the default break segment
.bo disable all breaks in the default break segment
.bgo disable all breaks known to debug

Disabling a break has the effect of preventing the break from being
taken without discarding the information associated with it. A user
might disable a break if he wishes not to use it for the moment but
thinks he might want to restore it later. A disabled break can be
eliminated altogether by the .br request, or reenabled by the .bn
request. If the break was already disabled, the request has no
effect.

Enable a break or breaks. The forms of this request are:

.bni enable (turn on) break i of the default break segment
.bn enable all breaks in the default break segment
.bgn enable all breaks

This request restores a previously disabled break. If the break was
not disabled, the request has no effect.

Establish a temporary command line to be executed whenever breaks are
hit. This request is of the form:

.bgt <rest of line>

This causes <rest of line> to be executed as a debug request whenever
any break is hit during the current process. The difference between
this request and .bge is that when .bge is typed, the associated line
remains associated with all breaks until they are reset, or until they
are changed by .be requests. It 1is possible to have a temporary
global command without removing request 1lines associated with
individual breaks. If <rest of line> is null, a
previously-established temporary command line is disestablished.

Break conditionally. The following requests allow the user to change

a break into a conditional break, i.e., a break that stops only if a
certain condition is met.

3-78 AG92

debug

10.

debug
.bci argl -rel- arg?
.be argl =-rel- arg?2
argl and arg?2 can be constants or variables; -rel- can be = or "=,

Whenever a specified break is encountered, a test is made to see if
the equality exists and breaks according to whether the user specified
= or "= in setting up the conditional break. For example:

.be3 i "=0

causes break 3 to fault whenever it is encountered and the value of i
is nonzero. Also:

.be3 i = j
causes break 3 to fault whenever it is encountered and the value of i
is the same as the value of j. The comparison is a bit by bit
comparison with the number of bits to compare being determined by the
size and type of the second argument.

If no arguments are given to a set conditional request, the specified
break is set back to a normal break. For example:

.be

would cause all breaks of the default object segment to fault
normally. :

Specify the number of times a break should be ignored (skipped). The
general form is:

.bsi n

This causes the number of skips to be assigned to break i of the
default object segment to be n.

Print or change the default object segment. The form for this request
is:

.bd name
where name is the (relative) pathname or segment number of the segment
to become the default object segment. If name is not specified,
the pathname of the default object segment is printed.

List the current segments that have breaks. The form for this request
is:

.bp

This request merely interprets the break segment in the initial
working directory.

3-79 AG92

debug debug

PRINT ARGUMENTS

The general form is:

.ai,m

Argument i for the current stack frame is printed in the mode specified by m.

If i is not specified, all arguments are printed. If m is not specified, debug
decides the output mode. Valid values for m are:

1. o full word octal
2. p pointer
3. d decimal
4, a ASCII
5 b bit string
6. 1 location of argument
7 e,f floating point
? debug decides (the default value for m)

Examples:
.a3
ARG 3: ">user_dir_dir"
.a3,0
ARG 3: 076165163145

GET FAULT REGISTERS

The general form is:

For register requests debug uses the machine registers of the last fault found
in the stack starting at the frame currently being looked at. (This is the
default when debug is entered as a result of a break fault.)

3-80 AG92

debug debug

CRAWLOUT REGISTERS

The general form is:

For register requests debug uses the fault data associated with the 1last
crawlout (abnormal exit from an inner ring).

Program Interrupt Feature

The user can interrupt debug by hitting the quit button at any time, in
particular during unwanted output. To return to debug request level (i.e., to
where debug waits for a new request), the user should type:

program_interrupt

which 1is the standard program interrupt manager. (See the description of the
program_interrupt command).

Temporary Break Mode

When debug is in temporary break mode (placed there via a .ct control
request), the following actions are taken automatically:

1. When the user continues any break, another (temporary) break is set at
the first word of code for the next line of source code after the
source statement containing the break being continued. If debug
cannot determine the 1location of the next line of source code, the
temporary break is set at the word of object code immediately
following the break being continued.

2. A temporary break is restored automatically whenever it is continued.
A temporary break must be explicitly reset by the user only when it is
not continued.

Since temporary breaks are set sequentially in a program (i.e., at the next
statement in the source program), any transfers within a program can either skip
a temporary break or cause code to be executed that was stopped earlier with a
temporary break. Temporary break mode is designed to be used in programs that
are fairly uniform and sequential in their flow of control. A user should list
his breaks after using temporary break mode to see if any breaks remain active.

3-81 AG92

debug debug

Indirection

It is quite often desirable to reference the data pointed to by the pointer
that is pointed to by the working pointer, i.e., to go indirect through the
pointer. The user can instruct debug to do this by typing * instead of the
segment name, offset, and segment ID in a generalized address. For example:

/test/regp

might print:

1260 110 21472360

To find what is at 214}/2360, the user need type only (assuming he wanted two
octal words):

¥ 02

This causes the working pointer to be set to 214}2360 and not necessarily into
the same segment as before the request.

Implementation of Breakpoints

Breakpoints are implemented by using a special instruction (mme2) that
causes a hardware fault whenever it is executed. 1In effect, debug sets itself
up as the handler for this fault and, whenever a break word is executed, debug
gains control. When debug is entered via a break, it does the following:

1. fills the registers with those of the break fault;

2. prints the location of the break fault;

3. waits for requests.

When continuing after a break fault, debug changes the control wunit

information so that when it is restarted, it executes the instruction that used
to exist where the break word was placed.

The debug command keeps track of a default object segment. All Dbreak
requests made are relative to the default object segment. For example, any
reference to break 3 really means break 3 of the default object segment. To
change (or find out) the value of the default object segment, the .bd request
should be used.

3-82 AG92

debug debug

Variable Names for PL/I and FORTRAN Programs

If a symbol table was created for a PL/I or FORTRAN program using the table
option, then names of labels, scalars, structures, and arrays can be used. The
only restrictions are: 1) that the entire structure name must be specified; 2)
the only expressions that are allowed for subscripts are of the form:

variable + constant

where variable can be an arbitrary reference as above; and 3) all subscripts
must appear last. If a variable is based on a particular pointer, that pointer
need not be specified. Some examples of valid variable references are:

p-; a.b.c(j,3)
a.
p(3,i+2) => gp.a.b(x(x(4)+1))->j.a

Bit Addressing

When a working pointer is generated to a data item that is based on or is a
part of a substructure, a bit offset might be required. This bit offset is
indeed kept and used. When making references to data relative to a working
pointer with a bit offset, the relocated addresses c¢an still contain a bit
offset. For example, if the working pointer has the value:

15113706(13)

then the request:

+16,b3

sets the working pointer to:

15113724(13)

and prints the three bits at this location.

Output Modes

The following output modes are acceptable to debug:

1. o octal
The data pointed to by the working pointer is printed in full word
octal format, eight words per line.

3-83 AG92

debug

2.

10.

11.

debug

h half carriage octal
The data is printed as in o format except that only four words per
line are printed.

d decimal
The data is printed in decimal format, eight words per 1line.

a ASCII
The data 1is interpreted as ASCII and printed as such. No more than
256 characters are printed in response to a single request.

i instruction
The data is printed in instruction format.

) pointer

The data is printed in pointer format, i.e., segment number and offset
(and bit offset if it is nonzero).

s source statement

One or more source statement lines are printed starting with the 1line

of source code that generated the code pointed to by the working
pointer (assumed to be pointing into the text). For example:

/test/loop_here+32,s2

prints two lines of source code starting with the line that generated
the code, 32 (octal) words after the label loop_here.

Another example:

/test/&a219,s

prints 1line number 219 (decimal) of test.lang where lang is the
appropriate language suffix. Note that if there was no code generated
for the specified line, debug prints a message, increments the 1line
number, and tries again for up to 10 lines.

1 code for line number
The code associated with the specified 1line number is printed in

instruction format. The line number 1is determined as in s type
output. For example:

/test/&a27,1
prints the code generated for line 27 (decimal) of test.lang. Note

that any number following the 1 is ignored.

n no output-
No output. This is used to suppress output when changing defaults.

e floating point with exponent

f floating point

3-8Y4 AG92

debug debug
12. b bit string
The data is printed as if it were a bit string. No more than 72 bit
positions are printed in response to a single request.
13. g graphic
The specified number of characters are interpreted as graphic
characters (this is assumed to start in typewriter mode).
mmar n on
DATA REQUESTS
/seg name/ offset seg ID rel offset operator operands
pathname number &t number ’ operands
ref name symbol &s register = input 1list
seg number &1 < function list
&n seg name &an >
seg$entry &pn HE
Segment ID rator Registers Qutput Modes
&t text , print $a o octal
$q h half-carriage octal
&s stack = assign - ., $aq d decimal
. : $eaq a ASCII
$x0
&1 linkage < set break . i instruction
&i 1internal static : p pointer
&an source line > transfer $x7 s source statement
$pro 1 code for line number
&pn parameter := call . n no output
. e floating point
$pr7 f floating point
$exp b bit string
$tr g graphic
$ralr
$ppr
$tpr
$even
$odd
$ind
$prs
$regs
$scu
$all
3/76 3-85 AG92B

debug

.bgl
.bei <line>
.be <line>

.bge <line>

.boi

.bo

.bgo

.bni

.bn

.bgn

.bgt <line>

.bei a1l -rel- a2
.bc al -rel- a2
.bsi n

.bd name/no.

.bp

.ai,m

.f
.C
.mb
.ml

debug

CONTROL REQUESTS

trace stack from frame i for j frames

pop or push stack by i frames

set stack to i'th frame

Multiecs command

print default values

continue after break fault (ignore next i break fault
continue, in temporary break mode

continue, in normal mode

return from debug to caller

reset break i

reset the breaks of the default object segment
reset all breaks

list break i

list the breaks of the default object segment
list all breaks

execution line for break i

execution line for all breaks of the

default object segment

execution line for all breaks

disable break i

disable the break of the default object segment
disable all breaks

enable break i

enable the breaks of the default object segment
enable all breaks

establish a temporary global command

make conditional break i

make conditional all breaks of default object segment
set skips of break i ton

set (or print) default object segment

print names of all segments with breaks

print argument i in mode m

(modes: o, p, d, a, b, 1, e, f, ?)

use registers from last fault

use crawlout registers

change to brief output mode

change to long output mode

3-86 AG92

/ N

decode decode

Name: decode

The decode command is used to reconstruct an original segment from an
enciphered segment according to a key that need not be stored in the system.
The original segment has the same length as the enciphered segment. (See the
encode command.)

Usage

decode path1 -path2-

where:

1. pathi is the pathname of the enciphered segment. The code suffix
should not be specified because the command attaches the code
suffix to the path1l argument (e.g., if the user types
alpha_x.code as the path1l argument, the command attaches the
suffix and looks for a segment named alpha_x.code.code).

2. path2 is the pathname of the deciphered segment to be produced. If no
path2 argument 1is given, the command constructs a pathname from
the path1 argument (see "Notes" below).

Notes

The decode command requests the key from the terminal only once, and
produces path2 from the enciphered segment named pathl.code. (For more
information on the key, see the encode command.)

If the path2 argument is not given, the command places the deciphered
segment in a segment whose name is the path1 argument. The command strips the
code suffix from the path?1 entryname and uses that as the entryname for path2.
For example, if the user types the command line:

decode alpha_x

the command looks for an enciphered segment named alpha_x.code and places the
deciphered segment produced in a segment named alpha_x.

7/76 3-87 AG92C

defer_messages defer_messages

Name: defer_messages, dm

The defer_messages command prevents messages sent by the send_message
command from printing on the user's terminal. Instead, these messages are saved
in the user's mailbox. For a description of the mailbox, refer to the
accept_messages and mail commands.

Usage

defer_messages

Notes

The print_messages command prints messages that have been deferred.

The 1immediate_messages command restores the printing of messages as they
are received.

T/76 3-88 AG92C

delete delete

Name: delete, dl

The delete command causes the specified segments and/or multisegment files
to be deleted. See also the descriptions of the delete_dir and delete_force
commands (for deleting directories and deleting protected segments or
multisegment files without being interrogated, respectively).

Usage

delete paths

where paths are the pathnames of the segments or multisegment files to be
deleted.

In order to delete a segment or multisegment file with the delete command,
the entry must have its safety switch off and the wuser must have modify
permission for the directory. If the safety switch 1is on, the user is
interrogated as to whether he wishes to delete the entry. See also the

description for the delete_force command to delete without interrogating the
user.

If any one of the paths is a link, delete prints a message; it does not
delete either the path in question or the link. (See the description of the
unlink command.) If any one of the paths is a directory, delete prints a
message; 1t does not delete the directory. (See the description of the
delete_dir command.)

The star convention can be used.

3-89 AG92

delete_acl

Name: delete_acl, da

delete_acl

The delete_acl command removes entries from the access control lists (ACLs)

of segments, multisegment files, and directories. For a

Usage

delete_acl -path- -User_ids- -control_args-

description of ACLs,
see "Access Control" in Section VI of the MPM Reference Guide.

where:

1. path is the pathname of a segment, multisegment file, or
directory. If it is -wd, -working_directory, or
omitted, the working directory is assumed. If path is
omitted, no User_id can be specified. The star
convention can be used.

2. User_ids are access control names that of the form
Person_id.Project_id.tag. All ACL entries with matching
names are deleted. (For a description of the matching
strategy, refer to the set_acl command.) If no User_id
is given, the user's Person_id and current Project_id
are assumed.

3. control_args can be chosen from the following:

-all, -a causes the entire ACL to be deleted with the exception
of an entry for ¥*,SysDaemon.¥*.

-directory, -dr specifies that only directories affected. The
default is segments, multisegment files, and
directories.

-segment, -sm specifies that only segments and multisegment files are
affected.

-brief, -bf suppresses the message "User name not on ACL."

Notes

If the delete_acl command 1is invoked with no arguments,

it deletes the

entry for the user's Person_id and current Project_id on the ACL of the working

directory.

T7/76 3-90

AG92C

delete_acl delete_acl

An ACL entry for ¥_.SysDaemon.¥ can be deleted only by specifying all three
components. The user should be aware that in deleting access to the SysDaemon
project he prevents Backup.SysDaemon.* from saving the segment or directory
(including the hierarchy inferior to the directory) on tape, Dumper.SysDaemon.¥*
from reloading it, and Retriever.SysDaemon.¥* from retrieving it.

The user needs modify permission on the containing directory.

Examples

delete_acl news .Faculty. Jones

deletes from the ACL of news all entries with Project_id Faculty and the entry
for Jones.¥. ¥,

da beta.¥** .

deletes from the ACL of every segment, multisegment file, and directory (in the
working directory) whose entryname has a first component of beta all entries
except the one for ¥,SysDaemon.#¥.

da beta.** ., -sm

deletes from the ACL of only all segments and multisegment files (in the working
directory) whose entryname has a first component of beta all entries except the
one for ¥,SysDaemon.¥.

3-91 AG92

delete_dir delete_dir

Name: delete_dir, dd

The delete_dir command causes the specified directories (and any segments,
links, and multisegment files they contain) to be deleted. All inferior
directories and their contents are also deleted. See the descriptions of the
delete and delete_force commands for an explanation of deleting segments and
deleting protected segments, respectively.

Usage

delete_dir paths

where paths are the pathnames of the directories to be deleted.

Notes

The user must have modify permission for both the directory and 1its
superior directory. The star convention can be used. Before deleting each
specified directory, delete_dir asks the wuser if he wants to delete that
directory. It is deleted only if the user types "yes".

When deleting a nonempty master directory, or a directory containing
inferior nonempty master directories, the user must have previously mounted the
logical volume(s). If a nonempty master directory for an unmounted volume is
encountered, no subtrees of that master directory are deleted, even if they are
mounted.

Warning: Protected segments in pathi or any of its subdirectories are not
deleted. Segments whose write bracket is less than the current
ring (except for mailboxes and message segments) are also not
deleted. Consequently, the subtree is not completely deleted if
it contains any such segments. For a discussion of protected
segments, see the safety switch attribute in Section II of the
MPM Reference Guide. For a discussion of ring brackets, see
"Intraprocess Access Control" in Section VI of the MPM Reference
Guide.

T/76 3-92 AG92C

delete_force delete_force

Name: delete_force, df

The delete_force command causes the specified segments or multisegment
files to be deleted, regardless of whether or not the safety switch is on.

Usage
delete_force paths

where paths are the pathnames of the segments and/or multisegment files to be
deleted.

Notes

In order to delete a segment or multisegment file using the delete command,
the safety switch must be off and the user must have modify permission on its
containing directory. However, the delete_force command requires only that the
user have modify permission on the directory containing an entry in order to
delete the entry. Since the user could turn off the safety switch of the entry
by virtue of his modify permission to the directory, he has the power to delete
the entry. Thus, this command provides a more convenient way of deleting the
entry if the safety switch is on.

If path is a link, delete_force prints a message; it does not delete either
the path in question or the link. (See the description of the unlink command.)
If path is a directory, delete_force prints a message; it does not delete the
directory. (See the description of the delete_dir command.)

The star convention can be used.

3-93 AG92

delete_iacl_dir delete_iacl_dir

Name: delete_iacl_dir, did

This command deletes entries from a directory initial access control 1list
(initial ACL) in a specified directory. A directory initial ACL contains the
ACL entries to be placed on directories created in the specified directory. For
a discussion of initial ACLs, see "Access Control" in Section III of the MPM
Reference Guide.

Sage

delete_iacl_dir -path- -User_ids- -control_args-

where:

1. path specifies the pathname of the directory in which the
directory initial ACL should be changed. If path is -wd,
-working_directory, or omitted, the working directory is
assumed. If path is omitted, no User_id can be specified.
The star convention can be used.

2. User_ids are access control names that must be of the form

Person_id.Project_id.tag. All entries in the directory
initial ACL that match User_id are deleted. (For a
description of the matching strategy, refer to the set_acl
command.) If no User_id is specified, the user's Person_id
and current Project_id are assumed.

3. control_args can be chosen from the following:

-all, -a deletes the entire initial ACL with the -exception of an
entry for ¥ ,SysDaemon.¥*,

-ring n, identifies the ring number whose directory initial ACL

-rg n should be deleted. 1If it is present, it must be followed by
n (where wuser's ring < n £ 7). It can appear anywhere on
the line and affects the whole line. If this argument is
not given, then the user's ring is assumed.

-brief, -bf causes the message "User name not on ACL of path" to be
suppressed.

If the delete_iacl_dir command 1is given without any arguments, the ACL
entry for the user's Person_id and current Project_id 1is deleted from the
initial ACL of the working directory.

7/76 3-94 AG92C

delete_iacl_dir delete_iacl_dir

Examples

delete_iacl_dir news .Faculty Jones..

deletes from the directory initial ACL of the news directory all entries ending
in .Faculty.* and all entries with Person_id Jones.

delete_iacl_dir -a

deletes all entries from the directory initial ACL of the working directory.

delete_iacl_dir store Jones -rg 5

deletes the entry for Jones.¥*.* from the ring 5 directory initial ACL of the
store directory.

3-95 AG92

delete_iacl_seg delete_iacl_seg

Name: delete_iacl_seg, dis

This command deletes entries from a segment initial access control 1list
(initial ACL) in a specified directory. A segment initial ACL contains the ACL
entries to be placed on segments created in the specified directory. For a
discussion of 1initial ACLs, see '"Access Control" in Section III of the MPM
Reference Guide.

Usage
delete_iacl_seg -path- -User_ids- -control_args-

where:

1. path specifies the pathname of the directory in which the segment
initial ACL should be changed. If path is -wd,
-working_directory, or omitted, the working directory is
assumed. If path is omitted, no User_id can be specified.
The star convention can be used.

2. User_ids are access control names that must be of the form
Person_id.Project_id.tag. All entries in the directory
initial ACL that match the given User_ids are deleted. (For
a description of the matching strategy, refer to the set_acl
command.) If no User_id is specified, the user's Person_id
and current Project_id are assumed.

3. control_args can be chosen from the following:

-all, -a deletes the entire initial ACL with the exception of an
entry for *_.SysDaemon.¥.

-ring n, identifies the ring number whose segment initial ACL should

-rg n be deleted. If it is present, it must be followed by n
(where wuser's ring < n £ 7). It can appear anywhere on the
line and affects the whole line. If this argument 1is not
given, the user's ring is assumed.

-brief, -bf causes the message "User name not on ACL of path" to be
suppressed.

If the delete_iacl_seg command 1is given without any arguments, the ACL
entry for the user's Person_id and current Project_id 1is deleted from the
segment initial ACL of the working directory.

T7/76 3-96 AG92C

delete_iacl_seg delete_iacl_seg

Examples

delete_iacl_seg news .Multics. Jones

deletes from the segment initial ACL of the news directory all entries with
Project_id Multics and the entry for Jones.¥*.¥,

delete_iacl_seg -a

deletes all entries from the segment initial ACL of the working directory.

delete_iacl_seg store Jones.. -rg 5

deletes all entries with Person_id Jones from the ring 5 segment initial ACL of
the store directory.

3-97 AG92

delete_name delete_name

Name: delete_name, dn

The delete_name command deletes specified names from segments, multisegment
files, 1links, or directories that have multiple names. See the descriptions of
the add_name and rename commands for adding and changing names, respectively, on
storage system entries.

Usage

delete_name paths

where paths are the pathnames that are to be deleted.

Notes

In keeping with standard practice, each path can be a relative pathname or
an absolute pathname; its final portion (the storage system entryname in
question) is deleted from the segment or directory it specifies, provided that
doing so does not leave the segment or directory without a name. 1In this case,
the user is interrogated as to whether or not he wishes the segment or directory
in question to be deleted.

The user must have modify permission on the containing directory.

The star convention can be used.> For a description of the star convention,
see "Constructing and Interpreting Names" in Section I.

Example

delete_name alpha >my_dir>beta

deletes the name alpha from the list of names for the appropriate entry in the
current working directory and also deletes the name beta from the list of names
for the appropriate entry in the directory >my_dir. Neither alpha nor beta can
be the only name for their respective entries.

3-98 ' AG92

.

delete_search_rules delete_search_rules

Name: delete_search_rules, dsr

The delete_search_rules command allows the user to delete current search
rules.

Usage

delete_search_rules paths

where paths are usually directory pathnames (relative or absolute) to be deleted
from the current search rules. One of the paths may be the keyword
working_dir (see "Notes" below).

Note

The keywords home_dir, process_dir, and system_libraries
are not accepted by delete_search_rules although they are accepted by the
add_search_rules command. Deletion of the keywords initiated_segments and

referencing_dir is discouraged and may lead to unpredictable results.

3-99 AG92

detach_1lv detach_lv

Name: detach_1lv, dlv

The detach_lv command detaches one or more logical volumes that have been
attached for the wuser's process by the resource control package (RCP). The
detaching of a logical volume involves telling the storage system that this
logical volume is no longer attached for this process. The detaching of a
logical volume does not affect the attached/detached state of the logical volume
for any other process.

Usage
detach_lv volume_names

where volume_names specify the volumes to be detached. A user may detach all
logical volumes attached for the process by specifying the keyword "all".

7/76 3-99.1 AG92C

display_cobol_run_unit display_cobol_run_unit

Name: display_cobol_run_unit, der

The display_cobol_run_unit command displays the current state of a COBOL
run unit. The minimal information displayed tells which programs compose the
run unit. Optionally, more detailed information can be displayed concerning
active files, data 1location, and other aspects of the run unit. Refer to the
run_cobol command for information concerning the run unit and the COBOL runtime
environment.

Usage
display_cobol_run_unit -control_args-

where control_args may be chosen from the following list:

-long, -lg causes more detailed information about each COBOL program in
the run unit to be displayed.

-files displays information about the current state of the files
that have been referenced during the execution of the
current run unit.

-all, -a prints information about all programs in the run unit,
including those that have been cancelled.

Refer to the following related commands:

run_cobol, rc
stop_cobol_run, scr
cancel_cobol_program, ccp

9/75 3-99.2 AG92A

This page intentionally left blank.

7/76 AG92C

display_pltlio_error display_pltio_error

Name: display_pltlio_error, dpe

The display_pllio_error command is designed to be invoked after the
occurrence of an I/0 error signal during a PL/I I/0 operation. It describes the
most recent file on which a PL/I I1I/0 error was raised and displays diagnostic
information associated with that type of error.

Usage

display_pltio_error

Example

The command:

display_pltio_error

might respond with the following display:

Error on file afile

Title: vfile_ afile

Attributes: open input keyed record sequential

Last i/0 operation attempted: write from

Attempted "write" operation conflicts with file "input" attribute.
Attempted "from" operation conflicts with file "input" attribute.

9/75 3-99.3 AG92A

do do

Name: do

The do command expands a command line according to the arguments supplied
following the command string. The expanded command line is then passed to the
current Multics command processor for execution. If abbreviations are being
expanded in the user's process, any abbreviations in the expanded command line
are expanded. (Since the command line supplied to the do command is enclosed in
quotation marks, abbreviations in it are not expanded before do operates on it.
See the description of the abbrev command.) Control arguments can be used to
set the mode of operations.

The do command can also be invoked as an active function. See "Active
Function Usage" below.

Usage

do "command_string" -args-
or
do control_args

where:

1. command_string is a command 1line enclosed 1in quotation marks. Each
instance of the parameter designator &i (where i1 is a
number from 1 to 9) found in command_string is replaced by
argi. If any argi is not supplied, each instance of &i in
command_string is replaced by the null string. Each
instance of the parameter designator &fi is replaced by
the arguments argi through the 1last argument supplied.
Each instance of the string &n is replaced by the number
of arguments supplied. The parameters &qi, &ri, &qfi, and
&rfi are replaced by quoted arguments. (See
"Quote-Doubling and Requoting" below.) Each instance of
the unique-name designator &! found in command_string is
replaced by a 15-character identifier wunique to the
particular invocation of the do command. Finally, each
instance of the ampersand pair && is replaced by a single
ampersand. Any other ampersand discovered in
command_string causes an error message to be printed and
the expansion to be terminated.

2. argi is a character string argument. Any argument supplied but
not referenced in a parameter designator is ignored.

3. control_args set the mode of operation of the do command. Control
arguments can only be specified if neither a
command_string nor args are given. Control_args can be:

-long, -1lg prints the expanded command line on error_output before it
is executed or passed back.

-brief, -bf suppresses printing of the expanded command line. This is
the default.

-nogo does not pass the expanded command line to the command

processor. This control argument 1is ignored if do is
invoked as an active function.

T7/76 3-100 AG92C

do do

-go passes the expanded command line to the command processor.
This is the default. This control argument is ignored if
do is invoked as an active function.

-absentee establishes an on unit for the any_other condition during
the execution of the expanded command line. See "Modes™"
below for additional information about the -absentee
control argument.

-interactive does not catch any signals. This is the default. (See
"Modes" below.)

Active Function Usage

The active function:

[do "command_string" args]

evaluates to the expanded command line, without executing it.

Modes

The do command has three modes, the long/brief mode, the nogo/go mode, and
the absentee/interactive mode. These modes are kept in internal static storage
and are thus remembered from call to call within a process. The modes are set
by invoking the do command with control arguments and are described under
"Usage" above.

The absentee mode is mainly of use in an absentee environment, in which any
invocation of the default any_other on unit terminates the process. 1In the
absentee mode, any signal caught by the do command merely terminates execution
of the command line, not the process. A number of conditions, however, are not
handled by the do command but are passed on for their standard Multics
treatment; they are quit, program_interrupt, command_error, command_query_error,
command_question, and record_quota_overflow. (For a description of these
conditions see "List of System Conditions and Default Handlers" in Section VII
of the MPM Reference Guide.)

Quote-Doubling and Requoting

In addition to the parameter designators &1 ... &9, the do command also
recognizes two more sets of parameter designators. They are &q1 ... &q9, to
request quote-doubling in the actual argument as it is substituted into the
expanded command line, and &rt ... &r9, to request that the actual argument be
requoted as well as have its quotes doubled during substitution.

T7/76 3-101 AG92C

do do

Quote-doubling can be described as follows. Each parameter designator in
the command_string to be expanded is found nested a certain level deep in
quotes. If a designator is found to not be within quotes, then its quote-level
is zero; if it is found between a single pair of quotes, then its quote-level is
one; and so on. If the parameter designator &qi is found nested to quote-level
L, then, as argi is substituted into the expanded command 1line each quote
character found in argi is replaced by 2%¥L quote characters during insertion.
This permits the quote character to survive the quote-stripping action to which
the command processor subsequently subjects the expanded command line. If &qi
is not located between quotes, or if argi contains no quotes, then the
substitutions performed for &qi and for &i are identical. The string &qfi is
replaced by a list of the ith through last arguments with their quotes doubled.

If the parameter designator &ri is specified, the substituted argument argi
is placed between an additional 1level of quotes before having its quotes
doubled. More precisely, if the parameter designator &ri is found nested to
quote-level L, 2%*¥], quotes are inserted into the expanded 1line, argil is
substituted into the expanded 1line with each of 1its quotes replaced by
2%%¥(L+1)quotes, and 2**L more quotes are placed following it. If argument argi
is not supplied, nothing is placed in the expanded line; this provides a way to
distinguish between arguments that are not supplied and arguments that are
supplied but are null. If argument argi is present, the expansions of &ri, and
of &qi written between an additional level of quotes, are identical. The string
&rfi is replaced by a list of the ith through last arguments, requoted.

Accessing More than Nine Arguments

In addition to the normal parameter designators in which the argument to be
substituted is specified by a single integer, the do command accepts the
designators &(d...d), &f(d...d), &r(d...d), and &q(d...d) where d...d denotes a
string of decimal digits. An error message is printed and the expansion is
terminated if any character other than 0 ... 9 is found between the parentheses.

Examples

The do command is particularly useful when used in conjunction with the
abbreviation processor, initialized by the abbrev command. Consider the
following abbreviations:

ADDPLI do "fo &1.listj;ioca_ “|;pli &1;co"

AUTHOR do "ioa_$nnl &1;status -author &1"

CREATE do "cd &1;sis &1 re *.Demo rew Jay.*"

LIST do "fo Jay.list;LISTAB;ws &1 LISTAC;co;dp =-dl Jay.list"
LISTAB do ".1"

LISTAC "la;ls -dtem -a"

P do "pl1 &1 -list &2 &3"

P2 do "pl1 &1 -list &f2"

7/76 3-102 AG9aC

do do

The command line:

ADDPLI alpha

expands to:

fo alpha.list;ioa_ ~1i;pli alphajco

The command line:

AUTHOR beta

prints the author of segment beta.

The command line:

CREATE games

expands to:

cd games;sis games re ¥*.Demo rew Jay.¥*

This shows an easy method of automatically setting initial access on the
segments that will be cataloged in a newly created directory.

The command line:

LIST >udd>Demo>Jay

expands to:

fo Jay.list;LISTAB;ws >udd>Demo>Jay LISTACjco;dp ~-dl Jay.list

that is expanded by abbrev to:

fo Jay.listj;do ".1";ws >udd>Demo>Jay "la;ls -dtem -a";co;dp -dl Jay.list

This shows how do can be used at several levels and how abbreviations can be
used within abbreviations.

T7/76 3-103 AG92C

do do

The command line:

P alpha

generates the expansion:

pl1 alpha =-list

while the command line:

P alpha -table

expands to:

pl1 alpha -list -table

This shows how references to unsupplied arguments get deleted.

The abbreviation P2 is equivalent to P for three or fewer arguments. The
command line:

P2 alpha -table -sv3 -optimize

executes the pll command with the -list, -table, -sv3, and -optimize control
arguments, whereas:

P alpha -table -sv3 -optimize

omits the -optimize control argument.

T7/76 3-104 AG92C

dprint dprint

Name: dprint, dp

The dprint (daemon print) command gqueues specified segments and/or
multisegment files for printing on one of the Multies line printers. The output
is identified by the requestor's User_id.

Usage

dprint -control_args- -paths-

where:

1. control_args may be chosen from the following 1list of
control arguments and can appear anywhere in
the command line:

-brief, -bf suppresses the message "j requests
signalled, k already queued. (request_type
queue)", This control argument cannot be
overruled later in the command 1line. (See
the -request_type and -queue control
arguments below.)

-copy b, =Cp 1 prints n copies (n < 4) of specified paths.
This control argument can be overruled by a
subsequent -copy control argument, If pathi
is to be deleted after printing, all n
copies are printed first. If this control
argument is not given, one copy is made.

-queue n, -9 n prints specified paths in priority queue 1n
(n £ 3). This control argument can be
overruled by a subsequent -queue control
argument. If this control argument is not
given, queue 3 is assumed. (See "Notes"
below.)

-delete, -dl deletes (after printing) specified paths.

-header XX, -he XX identifies subsequent output by the string

XX. If this control argument is not given,
the default is the requestor's Person_id.
This argument can be overruled by a
subsequent -header control argument.

-destination XX, -ds XX labels subsequent output with the string XX,
which is used to determine where to deliver
the output. If this control argument is not
given, the default is the requestor's
Project_id. This argument can be overruled
by a subsequent -destination control
argument.

9/75 3-105 AG92A

dprint

-request_type XX, -rat XX

-indent n, -in n

-line_length -11

I
I

-page_length n, -pl

=]

-no_endpage, -nep

-single, -sg

-truncate, -tc

-label XX, -1bl XX

-top_label XX, -tlbl XX

-bottom_label XX, -blbl XX

-access_label, =-albl

-no_label, -nlbl

2. paths

9/75

dprint

places specified paths in the queue for
requests of the type identified by the
string XX (see "Notes" below). If this
control argument is not given, the default
request type is "printer".

prints specified paths so that the 1left
margin is indented n columns. If this
control argument is not given, no
indentation occurs.

prints specified paths so that lines longer
than n characters are continued on the
following line, 1i.e., no 1line of output
extends past column n. If this control
argument is not given, a line length of 136
characters is used.

prints specified paths so that no more than

h lines are on a page. If this control

argument is not given, a page length of 60
lines is used.

prints specified paths so that the printer
skips to the top of a page only when a
form-feed character is encountered in the
input path. This argument causes the
-page_length control argument, if present,
to be ignored.

prints specified paths so that any form-feed
or vertical-tab character in any of the
paths 1is printed as a single newline
character.

prints specified paths so that any 1line
exceeding the 1line 1length is truncated
rather than "folded" onto subsequent lines.

uses the specified string as a label at the
top and bottom of every page (see "Notes"
below).

uses the specified string as a label at the
top of every page (see "Notes" below).

uses the specified string as a label at the
bottom of every page (see "Notes" below).

for each pathi specified, uses the access
class of that segment as a label at the top
and bottom of every page (see "Notes"
below).

does not place any labels on the printed
output.

are the pathnames of segments to be queued
for printing.

3-106 AG92A

dprint dprint

Notes

If the dprint command is invoked without any arguments, the system prints a
message giving the status of queue 3.

If control arguments are present, they affect only paths specified after
their appearance in the command line. If control arguments are given without a
following pathi argument, they are ignored for this invocation of the command
and a warning message is returned.

The -queue 1 control argument places requests in the top priority queue,
-queue 2 places them in the second priority queue, and -queue 3 (or not
specifying a queue) places them in the lowest priority queue. All requests in
the first queue are processed before any requests in the other gueues, and so
on. Higher priority queues usually have a higher cost associated with them.

The -brief, -delete, -single, -truncate, and -no_endpage control arguments
cannot be reset in a given invocation of the command; e.g., once -delete appears
in a line, all subsequently specified paths are deleted after printing.

The -request_type control argument is used to ensure that a request is
performed by a member of a particular group of printers, e.g., to distinguish
between onsite printers and remote printers at various locations, or between
printers being charged to different projects. Only request types of generic
type "printer" may be specified. Request types <can be listed by the
print_request_types command.

The -label, -top_label, -bottom_label, and -access_label control arguments
allow the user to place labels on each page of printed output. The default
labels are access labels, i.e. the -access_label control argument is assumed.
(Note, however, that if the access class of pathi is system_low and the access
class name defined for system_low is null, then the default access label is
blank.) The default access label may be overridden by the -no_label control
argument if labels are not wanted or by one of the other label-related control
arguments. The top and bottom labels are treated independently. Thus, use of
the -top_label control argument alone will leave an access label as the default
bottom 1label. A page label that exceeds 136 characters will be truncated to
that length. Only the first line of a page label will be printed, i.e., a new
line terminates the page label. Form feeds and vertical tabs are not permitted.
The various label control arguments are incompatible with the -no_endpage
control argument. If both are specified, -no_endpage overrides.

Paths cannot be printed unless appropriate system processes have sufficient
access. The process that runs devices of the specified class (normally
I10.SysDaemon) must have read access to all paths to be printed and status
permission on the containing directory. Pathi cannot be deleted after printing
unless its safety switch is off and the system process has at least sm access on
the containing directory. Also, pathi will not be deleted if it has a
date-time-modified value later than the date-time-modified value at the time-of
the dprint request.

The dprint command does not accept the star conventionj it prints a
warning message if a name containing asterisks is encountered and continues
processing its other arguments.

9/75 3-107 AG92A

o AN

dprint dprint

Example

The command:
dp -he Jones -cp 2 -dl test] test7 -he Doe -ds BIN-5 text.runout

causes two copies of each of the segments named testl and test7 in the current
working directory to be printed with the header "Jones" and then deleted; it
also causes two copies of the segment named text.runout in the current worklng
directory to be printed with the header "Doe" and destination "BIN- 5", then
deleted.

9/75 3-108 AG92A

dpunch

ame: dpunch, dpn

The dpunch (daemon
multisegment files for punc
dprint command.

dpunch

punch) command queues specified segments and/or
hing by the Multics card punch. It is similar to the

See Section IV, "Input and Output Facilities," in the MPM Reference Guide
for information on the input/output system.

Usage

dpunch -control_args- -paths-

where:

1. control_args

-brief, -bf

-copy n, -c¢p

I

-queue n, -9 n

-delete, -dl

-header XX, -he XX

-destination XX,
-ds XX

9/75

may be chosen from the following list of control
arguments and can appear anywhere in the command
line after the command:

suppresses the message "J requests signalled,
k already queued. (request_type queue)" This
control argument cannot be overruled later in the
command line. (See the -request_type and -queue
control arguments below.)

punches n copies (n < W) of all specified
paths., This control argument can be overruled by
a subsequent -copy control argument. If pathi is
to be deleted after punching, all n copies are
punched first. If this control argument 1is not
given, one copy is made.

punches specified paths in priority aqueue n
(n £ 3). This control argument can be overruled
by a subsequent -queue control argument. If this
control argument is not given, queue 3 is assumed.
(See "Notes" below.)

deletes (after punching) all specified paths.

identifies subsequent output by the string XX. If
this control argument is not given, the default is
the requestor's Person_id. This control argument
can be overruled by a subsequent -header control
argument.

uses the string XX to determine where to deliver
the deck. 1If this control argument is not given,
the default is the requestor's Project_id. This
control argument can be overruled by a subsequent
-destination control argument.

3-109 AG92A

dpunch dpunch

-request_type XX, places specified paths in the queue for requests
-rqt XX of the type identified by the string XX (see
"Notes" below). If this control argument is not

given, the default request type is "punch",

-mce punches the specified paths in the command line
using character conversion. This control argument
can be overruled by either the -raw or -Tpunch
control arguments.

-raw punches the specified paths in the command line
using no conversion. This control argument can be
overruled by either the -mcc or ~Tpunch control
arguments.

-Tpunch, =Tp punches the specified paths in the command line
using 7-punch conversion. This 1is the default
conversion mode and need only be specified when a
number of segments are being requested by one
invocation of dpunch and other modes (-mcec or
-raw) have been specified earlier in the command
line. For a description of conversion modes, see
"Bulk Input/Output" in Section IV of the MPM
Reference Guide.

2. paths are the pathnames of segments and/or multisegment
files to be queued for punching.

Notes

If the dpunch command is invoked without any arguments, the system prints a
message giving the status of queue 3.

If control arguments are present, they affect only paths specified after
their appearance on the command line. If control arguments are given without a
following pathi argument, they are ignored for this invocation of the command
and a warning message is returned.

The -queue 1 control argument places requests in the top priority queue,
-queue 2 places them in the second priority queue, and -queue 3 (or not
specifying a queue) places them in the lowest priority queue. All requests in
the first queue are processed before any requests in the other queues, and so
on. Higher priority queues usually have a higher cost associated with them.

The -delete control argument is the only control argument affecting
segments that cannot be reset in a given invocation of the command. Once
-delete appears in a line, all subsequent segments are deleted after punching.

The -request_type control argument is wused to ensure that a request is
performed by a member of a particular group of punches, for example, to
distinguish between onsite punches and remote punches at various locations, or
between punches being charged to different projects. Only request types of
generic type "punch" may be specified. Request types can be listed by the
print_request_types command.

9/75 3-110 AG92A

dpunch dpunch

A pathi cannot be punched wunless appropriate system processes have
sufficient access. The process (normally 10.SysDaemon) that runs devices of the
specified class must have read access to all paths to be punched and status
permission on the containing directory. A pathi cannot be deleted after
punching unless its safety switch is off and the system process has at least sm
permission on the containing directory. Also, pathi will not be deleted 1if it
has a date-time-modified value later than the date-time-modified value at the
time of the dpunch request.

The dpunch command does not accept the star convention; it prints a warning
message if a name containing asterisks is encountered and continues processing
its other arguments.

It is suggested that the user, before deleting the pathi that was punched,
read the deck back in and compare it with the original (using the compare
command) to ensure the absence of errors.

Example

The command:
dpunch a b -mcc -he Doe c.pl1l -dl -Tp -he "J. Roe" alpha

causes segments a and b in the current working directory to be punched using
7-punch conversion (the default conversion mode); segment c.pl1 to be punched
using character conversion with "for Doe" added to the heading; and segment
alpha to be punched using 7-punch conversion (and then deleted) with "for J.
Roe" added to the heading.

9/75 3-110.1 AG92A

This page intentionally left blank.

9/75 AG92A

dump_segment

ame: dump_segment, ds

dump_segment

The dump_segment command prints, in octal format, selected portions of a

segment. It prints out
instructed to print out an

Usage

either four or eight words per 1line and can be
edited version of the ASCII or BCD representation.

dump_segment path -first- -n_words- -control_args-

where:

1. path

2. first

3. n_words

i, control_args
-long, -1lg
-character, -ch
-bed
-short, -sh
-name, -nm

7/76

is the pathname or (octal) segment number of the
segment to be dumped. If path is a pathname, but
looks like a number, the preceding argument should be
-name or -nm.

is the (octal) offset of the first word to be dumped.
If both first and n_words are omitted, the entire
segment is dumped.

is the (octal) number of words to be dumped. If
first is supplied and n_words 1is omitted, 1 is
assumed.

can be chosen from the following 1list of control
arguments:

prints eight words on a line. Four is the default.
This control argument cannot be used with -character,
-bed, or -short. (Its use with -bed or -character
would result in a line longer than 132 characters.)

prints the ASCII representation of the words 1in
addition to the octal dump. Characters that cannot
be printed are represented as periods.

prints the BCD representation of the words in

addition to the octal dump . There are no
nonprintable BCD characters, so periods can be taken
literally. The -bed control argument cannot be used

with the -character control argument.

compacts lines to fit on a terminal with a short line
length. Single spaces are placed between fields, and
only the two low-order digits of the address are
printed, except when the high-order digits change.
This shortens BCD output 1lines to 1less than 80
characters.

indicates that the following argument is a pathname
even though it may look like an octal segment number.

3-111 AG92C

dump_segment

7/76

-header, -he

-no_header, -nhe

-address, -addr

-no_address, -nad
-offset n, -ofs n
-no_offset, -nofs

-block n, -bk n

dump_segment

prints a header 1line containing the pathname (or
segment number) of the segment being dumped as well
as the date-time printed. The default is to print a
header only if the entire segment is being dumped,
i.e., neither the first nor the n_words arguments is
specified.

suppresses printing of the header 1line even though
the entire segment is being dumped.

prints the address (relative to the base of the
segment) with the data. This is the default.

does not print the address.

prints the offset (relative to n words before the
start of data being dumped) along with the data. If
n is not given, 0 is assumed.

does not print the offset. This is the default.
dumps words in blocks of n words separated by a blank

line. The offset, if ©being printed, 1is resct to
initial value at the beginning of each block.

3-111.1 AG92C

This page intentionally left blank.

7/76 AG92C

edm edm

Name: edm

The edm command invokes a simple Multics context editor. It is used for
creating and editing ASCII segments. This command cannot be called recursively.
See Section VI of the Multics User's Guide (Order No. ALY40) for an introduction
to the use of edm. '

Sage

edm -path-

where path specifies the pathname of the segment to be created or edited. The
path argument can be either an absolute or a relative pathname. If path is not
given, edm begins in input mode (see "Notes" below), ready to accept whatever is
subsequently typed as input. If path is given, but the segment does not yet
exist, edm also begins in input mode. 1If path specifies a segment that already
exists, edm begins in edit mode.

Notes

This command operates in response to requests from the user. To 1issue a
request, the user must cause edm to be in edit mode. This mode is entered in
two ways: 1if the segment already exists, it is entered automatically when edm
is invoked; if dealing with a new segment (and edm has been in input mode), the
mode change character must be issued. The mode change character is the period
(.), 1issued as the only character on a line. The command announces its mode by
typing "Edit." or "Input." when the mode is entered. From edit mode, input
mode is also entered via the mode change character.

The edm requests are predicated on the assumption that the segment consists
of a series of lines to which there is a conceptual pointer that indicates the
current line. (The "top" and "bottom" 1lines of the segment are also
meaningful.) Various requests explicitly or implicitly cause the pointer to be
moved; other requests manipulate the line currently pointed to. Most requests
are indicated by a single character, generally the first letter of the name of
the request. For these requests only the single character (and not the full
request name) is accepted by the command. Four requests have been considered
sufficiently dangerous, or likely to confuse the unwary user, that their names
must be specified in full.

If the user issues a quit signal while in edit mode and then invokes the
program_interrupt command, the effect of the last request executed on the edited
copy 1is nullified. (See the description of the program_interrupt command in
this document.) In addition, any requests not yet executed are lost. If
program_interrupt is typed after a quit in comment or input modes, then all
input since last leaving edit mode is lost. If the wuser wishes to keep the
input, he must invoke the start command following the quit.

In the examples that follow, the pointer that indicates the current line is
represented by an arrow (->).

T7/76 3-112 AG92C

edm edm

Requests

The requests are as follows (detailed descriptions follow the list, in the
same order):

- backup
= print current line number
R comment mode

mode change

b bottom

c change

d delete

E execute

f find

i insert

k kill

1 locate

merge insert segment
move move lines within segment
n next

p print

q quit

qf quitforce

r retype

s substitute

t top

updelete delete to pointer
upwrite write to pointer (upper portion of segment)
v '~ verbose

W write

3-113 AG92

edm edm

Format: . = n
Purpose: Move pointer backwards (toward the top of the segment) the number
of lines specified by the integer n.
Spacing: A space is optional between the request and the integer argument.
Pointer: Set to the nth line specified before the current line.
Default: If n is null, the pointer is moved up only one line.
Example: Before: a: procedure;
X =Y;
qQ =r;
s = t;
-> end a;
Request: -2
After: a: procedure;
X =Y
-> q =r;
s = t;
end a;
rin rr in mber (=
Format: =
Purpose: Print current line number.
Pointer: Unchanged.

3-114 AG92

edm

Comment Mode (,

edm

)

Format:

Purpose:

Pointer:

Mode Change (.)

Format:

Purpose:

Pointer:

Bottom (b

Format:

Purpose:

Pointer:

Change (¢

Format:

Purpose:

Spacing:

Establish a special inputting mode in which the 1lines, starting
with the current one, are successively treated as follows. The
line is printed without a carriage return and anything then typed
by the user (e.g., comment, newline, etc.) 1is appended to the
line. If the user types the mode change character (".") as his
comment, the last line typed 1is wunchanged and edit mode 1is
reentered.

Left pointing to the last line printed.

Allow user to enter edit mode from input mode or vice versa.
This request is also used to terminate the comment mode request
and return edm to edit mode.

Left pointing to the last line input, edited, or printed.

Move pointer to the end of the segment and switch to input mode.

Set after the last line in the segment.

¢ n /stringi1/string2/

Replace every instance of stringl1 by string2 in the n consecutive
lines beginning with the current 1line, where n must be an
integer. If the user is in verbose mode, edm prints each 1line
that is changed (see the v request). If no line is changed, then

edm prints "edm: Substitution failed.”

A space before n and between n and the stringl delimiter 1is
optional.

3-115 AG92

edm

Pointer:

Delimiters:

Default:

Example:

Note:

Delete (d)
Format:

Purpose:

Spacing:

Pointer:

Default:

Note:

edm

Set to the last line scanned.

Any character not appearing in stringl1 or string2 can delimit the
strings (/ is used as the delimiter in the format line). A
delimiter following string2 is optional.

If the integer n is absent, only the current line is treated. If
string1 is absent, string2 is inserted at the beginning of the
line.

Before: a: procedure;
=> x =Y.
q =7r.
s = t;
end a;
Request: c2/./;/
Response: X = Y3
qQ =r;
After: a: procedure;
X =755
=> q =r;
s = t;
end a;

For compatibility with qedx, this request can also be given as s
(for substitute).

dn

Cause n lines to be deleted where n 1is an integer. Deletion

begins at the current line.

A space is optional between d and n.

Set to "no line" following the 1line deleted. That is, an i
(insert) request or a° change to input mode would take effect
before the next nondeleted line.

If n is null, only the current line is deleted.

The requests ¢, d, n, and p count "no 1line" when issued
immediately after a delete request.

3-116 AG92

()

edm

Execute (E
Format:

Purpose:

Spacing:

Pointer:

Find (f

Format:

Purpose:

Spacing:

Pointer:

Default:

Insert (i)

Format:
Purpose:

Spacing:

Pointer:

edm

E commandline

Pass commandline to the command processor for execution as a
command line.

A single space following E is not significant.

Unchanged.

f string

Search segment for a line beginning with string. Search starts
at the line following the current line and continues around the
entire segment until the string is found or wuntil the pointer
returns to the current line. The current line is not searched.
If the string is not found, the error message "edm: Search
failed." is printed. If the string is found and the user is in
verbose mode, the line containing the string is printed.

A single space following f is not significant. All other leading
and embedded spaces are used in searching.

Set to the line found, or remains at the current line if the line
is not found.

If the string is null, the string used by the last £ or 1
(locate) request is used.

i newtextline

Insert newtextline after the current line.

The first space following i 1s not significant. All other
leading and embedded spaces become part of the text of the
newtextline.

Set to the inserted line.

3-117 AG92

edm

Default:

Note:

Kill (k)

Format:

Purpose:

Pointer:

Note:

Locate (1

Format:

Purpose:

Spacing:

Pointer:

Default:

edm

If newtextline is null, a blank line is inserted.

Immediately after a t (top) request, an i request causes the
newtextline to be inserted at the beginning of the segment.

To inhibit (kill) responses following a ¢, f, 1, n, or s request.

Unchanged.

See v (verbose) request for restoring responses.

1 string

Search segment for a line containing string. Search starts at
the 1line following the current 1line and continues around the
entire segment until the string is found or until the pointer
returns to the current line. The current line is not searched.
If the string is not found, the error message "edm: Search
failed." is printed. 1If the string is found and the user is in
verbose mode, the line containing the string is printed.

A single space following 1 is not significant. All other leading
and embedded spaces are used in searching.

Set to the line found, or remains at the current line if the line
is not found.

If the string is null, the string used by the last 1 or f (find)
request is used.

3-118 AG92

edm

Example:

Mer mer

Format:

Purpose:

Spacing:

Pointer:

Default:

Move (move

Format:

Purpose:

Spacing:

Pointer:

3/76

Before: a: procedure;
X =Y
q=r;

-> 8 = t;
end a;
Request: 1l x =

Response: X = Y;

After: a: procedure;
-> X =Y
q=7r;
s = t;
end a;
merge path

Insert the segment specified by the pathname path after the
current 1line. The pathname specified by path can be either an
absolute or a relative pathname.

A single space following merge is not significant.

Set to "no line" following the last line of the inserted segment.

If path is not given, the pathname given in the invocation of edm
is used. If a pathname is given neither in this request nor in
the invocation of edm, an error message is printed and edm looks
for another request.

move m n

Insert n lines beginning at line m after the current 1line and

delete them from their original location.

A space is optional before m.

Set to "no line" following the 1lines moved. That is, an i
request or change to input mode would take effect immediately
following the moved text.

3-119 AG92B

edm

Default:

Note:

ext (n

Format:

Purpose:

Spacing:

Pointer:

Default:

Note:

Print (p)

Format:

Purpose:

Spacing:

Pointer:

Default:

Note:

3/76

If n is null, only the single line m is moved.

The requests ¢, d, n, and p count "no 1line" when issued
immediately after a move request.

nn

Move pointer down the segment n lines. The line so 1located is
printed if the user is in verbose mode.

A space is optional between n and the integer n.

Set to the nth line specified after the current line.

If the integer n is null, the pointer is moved down only one
line.

The printed response to this request can be shut off using the k
(kill) request.

pn

Print n lines beginning with the current line.

A space is optional between p and the integer n.

Left pointing to the last line printed.

If n is null, the current line is printed.

A print request in edm can be aborted by issuing a quit signal
and typing pi or program_interrupt. This puts edm in a state
where it 1is ready to accept another request. (See the
description of the program_interrupt command.)

3-120 AG92B

N

edm

Quit (g)

Format:

Purpose:

Pointer:

Quitforce (gaf)

Format:

Purpose:

Format:

Purpose:

Spacing:

Pointer:

Default:

ubstitute

Note:

3/76

Exit edm and return to the caller, usually command level. If no
write request has been made since the last change to the edited
text, edm warns the user that the changes will be lost and asks
if he still wishes to quit.

If the user is queried and answers no, then the pointer is
unchanged.

qf

Exit from edm directly without either warning or querying the
user.

r newtextline
Replace current line with newtextline.

One space between r and newline is not significant. All other
leading and embedded spaces become part of the text of the
newtextline.

Unchanged.

If newtextline is null, a blank line replaces the current line.

This request is identical to the c¢ (change) request.

3-121 AG92B

edm edm

Top (t)
Format: t
Purpose: Move pointer to the top of the segment.
Pointer: At "no line" immediately above.the first line of text.
Noteﬁ An i (insert) request immediately following a t request causes
insertion of a text line at the beginning of the segment.
elet o _Pointer delete
Format: updelete
Purpose: Delete all lines above (but not including) the current line.
Pointer: Unchanged.

rite to Pointer (upwrite

Format: upwrite path

Purpose: Save all the lines above the current line (but not including the
current 1line) in the segment whose name is specified by path.
The lines written out are deleted from the edit buffers and thus
are no longer available for editing. They will replace the
previous contents of path. The pathname specified by path can be
either an absolute or a relative pathname.

Spacing: A single space following upwrite is not significant.
Pointer: Unchanged.
Default: If path is not given, the pathname given in the invocation of edm

is used. If a pathname is given neither in this request nor 1in
the invocation of edm, an error message is printed and edm looks
for another request.

3/76 3-122 AG92B

N

edm

rb

Format:

Purpose:

Pointer:

Note:

rite

Format:

Purpose:

Spacing:

Pointer:

Default:

Note:

3/76

edm

Cause edm to print responses following a ¢, f, 1, n, or s
request. This is the default mode.

Unchanged.

See k (kill) for inhibiting verbose mode.

w path

Write out (save) the edited copy in the segment specified by
path. The pathname specified by path can be either an absolute
or a relative pathname.

A space between w and path is not significant.

If the w request is successful, set to "no line" at the end of
the segment.

If path is not given, the pathname given in the invocation of edm
is used. If a pathname is given neither in this request nor in
the invocation of edm, an error message is printed and edm 1looks
for another request.

To terminate editing without saving the edited copy, see the gf
(quitforce) request.

3-123 AG92B

This page intentionally left blank.

9/75 3-124 AG92A

encode encode

Name: encode

In order to provide additional security for data stored in a Multics
segment, the encode command is provided to encipher a segment's contents
according to a key that need not be stored in the system. The enciphered
segment has the same length as the original segment.

Sage

encode pathl1 -path2-

where:

1. pathi is the pathname of the segment to be enciphered.

2. path2 is the pathname of the enciphered segment to be produced. If
path2 is not provided, it is taken to be the same as pathi1. This
command always appends the code suffix to path2 to produce the
name of the enciphered segment.

Notes

The encode command requests an encipherment key (1-11 characters not
including space, semicolon, or tab) from the terminal. Printing on the terminal
is suppressed (the printer is turned off) while the key is typed. The command
then requests that the key be typed again, to guard against the possibility of
mistyping the key. If the two keys do not match, the key is requested twice
again.

To reconstruct the original segment from the enciphered segment see the
decode command.

T7/76 3-125 AG92C

enter_abs_request enter_abs_request

Name: enter_abs_request, ear

The enter_abs_request command allows a user to request that an absentee
process be created for him. An absentee process executes commands from a
segment and places the output in another segment. The user can delay the
creation of the absentee process until a specified time.

The principal difference between an absentee process and an interactive one
is that the I/0 switch user_input is attached to an absentee control segment
containing commands and control 1lines, and the I/O switch user_output is
attached to an absentee output segment. The absentee control segment has the
same syntax as an exec_com segment. (See the description of the exec_com
command.)

Usage
enter_abs_request path -control_args- -ag -optional_args-

where:

1. path specifies the pathname of the absentee control
segment associated with this request. The
entryname must have the suffix absin although it
can be omitted in the command. The first argument
to the command must be path.

2. control_args are selected from the following 1list of control
arguments and can appear in any position:

-output_file path, indicates that the user wishes to specify the

-of path pathname of the output segment. It must be
followed by the pathname of the absentee output
segment. (See "Notes" below.)

-restart, -rt indicates that the computation specified by this
request should be started over again from the
beginning if interrupted (e.g., by a system
crash). The default is not to restart the
computation.

-limit n, -1i n indicates that the user wants to place a CPU limit
on the time the absentee process uses. It must be
followed by a positive decimal integer specifying
the limit, in seconds. The default is no
user-supplied limit. There is an
installation-defined 1limit to the amount of time
that an absentee process can use that overrides
the time 1limit given by the user.

-queue n, -q n indicates in which priority queue the request is
to be placed. It must be followed by a decimal
integer specifying the number of the queue. If

this option is omitted, the request is placed in
the third queue. While the total number of queues
is determined by the site, the default queue is 3.

3-126 AG92

enter_abs_request enter_abs_request

-time dtime, indicates that the user wishes to delay creation

-tm dtime of the absentee process until a specified time.
It must be followed by a character string
representing this time. The format of the
deferred time 1is any character string acceptable
to the convert_date_to_binary_ subroutine
(described in Section II of the MPM Subroutines).
If the time string contains blanks, it must be
enclosed in quotes.

-brief, -bf indicates that the message "j already requested."
is to be suppressed.

3. -arguments, -ag is an optional control argument that indicates
that the absentee control segment requires
arguments. If present, it must be followed by at
least one argument. All arguments following -ag
on the command line are taken as arguments to the
absentee control segment. Thus -ag, if present,
must be the 1last control argument to the
enter_abs_request command.

4, optional_args are arguments to the absentee control segment.

Notes

If the pathname of the output segment is not specified, the output of the
absentee process is directed to a segment whose pathname 1is the same as the
absentee control segment, except that it has the suffix absout instead of absin.
If the pathname of the output segment is specified, the named segment may or may
not already exist and it need not have the suffix absout.

The command checks for the existence of the absentee input segment and
rejects a request for an absentee process if it is not present.

The effect of specifying the -time option is as if the enter_abs_request
command were issued at the deferred time.

See also the descriptions of the commands list_abs_requests and
cancel_abs_request for information on displaying and cancelling outstanding
absentee requests.

3-127 AG92

enter_abs_request enter_abs_request

Examples

Suppose that a wuser wants to request anloffline compilation. A control
segment could be constructed called absentee_pli.absin containing:

change_wdir current_dir

pl1 x -table -symbols

dprint -delete x.list

logout
The command line:
enter_abs_request absentee_pl1.absin
causes an absentee process to be created (some time in the future) that:
1. sets the working directory to the directory named current_dir, which
is inferior to the user’s normal home directory
2. compiles a PL/I program named x.pl1 with two control arguments
3. dprints one copy of the listing segment and then deletes it
y, logs out

The output of these tasks would appear in the directory containing
absentee_pl1.absin in a segment called absentee_pl1.absout.

Suppose that an absentee control segment, trans.absin, contained the
following: :

change_wdir &1

&2 &3 -map &4

dprint -delete &3.1list

&goto &2.b

&label pl1.b

&3

&label fortran.b

logout

3-128 AG92

enter_abs_request enter_abs_request

The command:

ear trans -1i 300 -rt -ag work pl1 x -table

causes a request for a restartable absentee process (having a CPU limit of 300
seconds) to be made in queue 3 that:

1. sets the working directory to the directory named work, which 1is
inferior to the normal home directory

2. compiles a PL/I program x.pl1 in that directory

3 produces a listing segment containing a map

4. issues a dprint request for the listing segment

5. executes the program x just compiled in the absentee process
6 logs out

The command:

ear trans -rt -tm "Monday 2300.00" -q 2 -ag comp fortran yz

causes a request for a restartable absentee process to be created at the first
occurrence of Monday, 11 P.M., and placed in queue 2 that:

1. sets the working directory to the directory named comp, which is
inferior to the home directory

2. compiles a FORTRAN program named yz.fortran

3. produces a listing segment
y, issues a dprint request for the listing segment
5. logs out

All of the commands used in the above examples are described in this
document under the name of the particular command.

3-129 ’ AG92

exec_com exec_com

Name: exec_com, ec

The exec_com command is used to execute a series of command lines contained
in a segment. This command allows the user to construct command sequences that
are invoked frequently without retyping the commands each time. In addition,
the segment can contain control statements that permit more flexibility than the
simple execution of commands. Facilities exist for:

o substitution of arguments to the command for special strings in the
exec_com segment

. control of I/O0 switches
° generating command lines, control statements, and input lines
conditionally
° combining several exec_com sequences into one segment
° altering the flow of control
Usage

exec_com path -optional_args-

where:

1. path is the pathname of the segment containing the commands to be
executed and control statements to be interpreted. The
entryname of the segment must have the suffix ec, although
the suffix can be omitted in the command invocation.

2. optional_args are character strings to be substituted for special strings

in the exec_com segment.

Input Segment

The exec_com segment should contain only command lines, input lines, and
control statements. Normally it is created using a text editor, such as edm or
qedx. The exec_com command can be used in conjunction with the abbrev command
to form abbreviations for command sequences that are used frequently.

When the character & appears in the exec_com segment, it is interpreted as
a special character. It is wused to denote a string used for argument
substitution and to signify the start of a control statement.

3-130 AG92

exec_com exec_com

Argument Substitution

Strings of the form &i in the exec_com segment are interpreted as dummy
arguments and are replaced by the corresponding argument to the exec_com
command. For instance, optional_argil is substituted for the string &1 and
optional_argl10 is substituted for &10.

The strings &qi, &ri, &fi, &qfi, and &rfi also indicate argument
substitution. The string &qi is replaced by the ith argument to the exec_com
command with quotes doubled. The string &ri is replaced by the ith argument,
requoted. Refer to the do command for a description of quote doubling and
requoting and for examples of the use of &qi, &ri, &fi, &qfi, and &rfi. The
string &fi is replaced by a string of +the ith through 1last arguments to
exec_com, separated by blanks. Likewise, &qfi is replaced by a string of the
ith through last arguments with quotes doubled and &rfi is replaced by a string
of the ith through last arguments, requoted.

The string &n 1is replaced by the number of arguments to the exec_com
command. The string &ec_name is replaced by the entryname portion of the
exec_com pathname without the ec suffix. The string &0 is replaced by the
pathname argument to the exec_com command just as it was typed.

Argument substitution can take place in command lines, input 1lines or in
control statements, since the replacement of arguments is done before the check
for a control statement.

Control Statements

Control statements permit more variety and control in the execution of the
command sequences. Currently the control statements are: &label, &goto,
&attach, &detach, &input_line, &command_line, &ready, &print, &quit, &if, &then,
and &else. :

Control statements generally must start at the beginning of a line with no
leading blanks. Exceptions to this rule are the &then and &else statements,
that can appear elsewhere. Also when a control statement is part of a
THEN_CLAUSE or an ELSE_CLAUSE, it does not have to start at the beginning of a
line.

1. &label and &goto

These statements permit the transfer of control within an exec_com segment.

&label location identifies the place to which a goto control
statement transfers control. location 1is any
string of 32 or fewer characters identifying the

label.

&goto location causes control to be transferred to the place in
the exec_com segment specified by the 1label
location. Execution then continues at the 1line

immediately following the label.

7/76 3-131 AG92C

exec_com

exec_com

2. &attach, &detach, and &input_line

These statements allow the control of the user_input I/0 switch.

&attach

&detach

&input_line on

&input_line off

causes the user_input I/0 switch to be attached to
the exec_com segment. This means that if this
control statement is executed, all input read by
subsequent commands is taken from the segment
rather than from the previous source of data to
which the user_input I/0 switch was attached.

causes the user_input I/0 switch to be reverted to
its original value. By default, the user_input
I/0 switch 1is 1left attached to its original
source.

causes input lines returned when using the attach
feature to be written on the wuser_output I/0
switch. This is the default condition.

causes input lines not to be written out.

3. &command_line, &ready, and &print

These statements allow the control of the user_output I/0 switch. They are
useful as tools in observing the progress of the exec_com execution and 1in

printing messages.

&command_line on

&command_line off

&ready on

&ready off

&print char_string

T7/76

causes subsequent command lines to be written on
the user_output I/0 switch before they are
executed. This is the default condition.

causes subsequent command lines not to be written
out.

causes the invocation of the user's ready
procedure after the execution of each command
line.

causes the user's ready procedure not to be
invoked. This is the default condition.

causes the character string following &print to be

written out on the user_output I/0 switch. The
character " is treated as a special character in a
print statement. The following 1is a 1list of

strings that can appear and the characters that
replace them:

string replacement

"/ or "n/ newline character

“{ or "ni form feed (new page)
"= or "n- horizontal tab

where n expresses the number of special characters
to be written out.

3-132 AG92

¢

exec_com exec_com

~

No other characters should appear following the
character in the print statement.

L, &quit causes the current invocation of exec_com to
return to its caller and not to execute subsequent
command lines.

5. &if, &then, and &else

These statements provide the ability to have command lines, input lines,
"and control statements interpreted conditionally. ’

The form of these control statements is:

&if [ACTIVE_FUNCTION -argl- ... -argn-].
&then THEN_CLAUSE
&else ELSE_CLAUSE

The active function reference in an &if control statement is evaluated. If
the value of the active function is the string true, THEN_CLAUSE is executed.
If the value is false, ELSE_CLAUSE is executed.

&if [ACTIVE_FUNCTION -argl- ... -argn-]

This statement must start at the beginning of a
line. The active function is any active function
(user-provided or system-supplied) that returns as
its value a varying character string with the
value true or false. The arguments to the active
function can themselves be active functions.
(Nesting of active functions is permitted.) The
active function and its optional arguments,
enclosed in brackets, must be on the same line as
the &if string.

&then THEN_CLAUSE This statement must immediately follow the &if
statement; it can appear on the same line or on
the following line. THEN_CLAUSE 1is an exec_com
statement, and can include a command line, an
input line, the null statement and most control
statements. The exceptions are &label, &if,
&then, and &else. (Nesting of &if statements is
not permitted.) THEN_CLAUSE must be on the same
line as the &then string.

&else ELSE_CLAUSE This statement is optional. When it appears, it
must immediately follow the &then statement; it
can appear on the same line or on the following
line. ELSE_CLAUSE is an exec_com statement and can
include a command line, an input line, the null
statement and most control statements. The
exceptions are &label, &if, &then and &else.

) ELSE_CLAUSE must be on the same line as the &else
string.

3-133 AG92

exec_com exec_com

The active functions described in "Logical Active Functions" in Section II
are frequently used in the &if control statement.

Notes

If a line begins with the & character but is not one of the current control
statements, the entire line is ignored. This is one way of including comments
in the exec_com segment. The user is cautioned to leave a blank immediately
following the & to ensure compatibility with control requests to be added to
exec_com in the future.

The segment executed by exec_com can contain calls to exec_com. The user
must exercise caution when invoking this feature in conjunction with the &attach
feature. When exec_com is called from an exec_com using this feature, the input
read by commands in the second exec_com is read from the first exec_com segment.
Generally if the &attach feature is wused, all calls to exec_com should be
preceded by &detach control statements.

Several exec_coms can be combined into one segment, by using the dummy
argument &ec_name together with the &label and &goto statements. If exec_coms
are grouped together, the exec_com segment should have all the names
(concatenated with an ec suffix) on its storage system entry that can replace
&ec_name.

Examples

Assume that the segment a.ec in the user’s working directory contains:

pl1 &1 -table ~list
dprint -delete &1.list
&quit

The command:
exec_com a foo
would cause the following commands to be executed:

pl1 foo -table -list
dprint -delete foo.list

3-134 AG92

exec_com exec_com

Assume that the segment b.ec in the user’'s working directory has an
additional name a.ec and contains:

&goto &ec_name

&

&label b
print &1 1 99
&quit

&

&label a

pl1 &1 -table -1list
dprint -delete &1.list
&quit

The command:

exec_com b my_file

would cause the following command to be executed:

print my_file 1 99

The command:

exec_com a foo

would cause the following commands to be executed:

pl1 foo -table -list
dprint -delete foo.list

Assume that the segment d.ec in the user’s working directory contains the
following:

&if [exists segment &1.pl1] &then
&else &goto not_found

pl1 &1 -table -list

dprint -delete &1.list

&quit

&label not_found

&print &1.pl1 not found

&quit

3-135 AG92

exec_com exec_com

If the segment foo.pl1 exists, the command:
exec_com d foo
would cause the following commands to be executed:

pl1 foo -table -list
dprint -delete foo.list

If the segment foo.pl1 did not exist, the command:
exec_com d foo
would output the following:
foo.pl1 not found
Assume that the segment test.ec in the user’s working directory contains:

&print begin &ec_name exec_com
&command_line off

create &1.pl1

&command_line on

&attach

edm &1.pl1

i &1: proc;

&input_line off

i end &1;

w

q

&detach

&goto &2

&label compile

pl1 &1

&label nocompile

&print end &ec_name &1 &2 exec_com

3-136 AG92

exec_com exec_com

The command:
exec_com test x compile

produces the following output:

begin test exec_com
edm x.pl1

Edit.

i x: proc;

pl1 x

PL/I
end test x compile exec_com

3-137 AG92

file_output : file_output

Names: file_output, fo
console_output, co

The file_output command allows the user to direct the 1I/0 output switch
user_output to a specified file. The console_output command allows the user to
direct it back to the terminal.

Usage

file_output -path-
console_output

where path is an optional file pathname. If is not present, the file_output
command directs output to the file, output_file, in the wuser’s working
directory. If the specified file does not exist (pathname or output_file), it
is created. If it does already exist, subsequent output is appended to the end
of the file.

To avoid getting ready messages in the output file, the file_output and
console_output commands should appear on the same line of terminal input. (See
the second example below.)

Examples

The sequence of commands:

file_output my_info

list -a

list -pn >sample_dir =-dr
console_output

places in the file my_info, in the user’s working directory, a listing of all
entries 1in his working directory and a listing of all directories contained in
the directory >sample_dir. If they have not been turned off, the ready messages
from the file_output command and the two invocations of the list command also
appear in my_info. (See the ready_off command.)

The command line:
fo my_info; list -a; list -pn >sample_dir -dr; co

has the same result as the first example except that no ready messages appear in
my_info.

3-138 AG92

format_cobol_source format_cobol_source

Name: format_cobol_source, fecs

The format_cobol_source command converts pseudo free-form COBOL source
programs to the standard fixed-format COBOL source programs processed by the

COBOL compiler.

Usage

format_cobol_source path1 path2

where:

1. pathi is the pathname of the input segment containing pseudo free-form
COBOL source code. If path does not have a suffix of cobol, one
is assumed. However, the suffix cobol must be the last component
of the name of the input segment.

2. path2 is the pathname of the output segment that contains the converted
fixed-format COBOL source. The cobol suffix is optional for the
path2 argument; however, the output segment will have the cobol
suffix. If the specified path2 argument is not found, a segment
is created and given the path2 argument plus the cobol suffix as
its name. If path2 is the same segment as pathi, the converted
output does not replace the input and an error message 1is
printed.

Note

The free-form COBOL format is fully described in the Multics COBOL Users'
Guide, Order No. ASH3. The pseudo free-form COBOL source statements are
translated as follows:

Pseudo free-form COBOL Qutput
lcolumni 'column7 icolumnil2
XXX ®YXX

a¥XXX XXX

d*¥xXxX d XXX
da*XXX dXXX

/XXX /XXX

-XXX -XXX
YYYXXX YYYXXX

where X is any character and YYY is any three characters except:

®¥XX
a¥x
d*Xx
da¥*
/XX
-XX

OVl EWN =

9/75 3-138.1 AG92A

This page intentionally left blank.

9/75 AG92A

fortran fortran

Name: fortran, ft

The fortran command invokes the FORTRAN compiler to translate a segment
containing the text of a FORTRAN source program into a Multics object segment.
A listing segment 1s optionally produced. These results are placed in the
user’s working directory. This command cannot be called recursively. For
information on FORTRAN, refer to the Multics FORTRAN manual, Order No. AJ28.

Usage

fortran path -control_args-

where:

1. path is the pathname of a FORTRAN source segment that
is to be translated by the FORTRAN compiler. If
path does not have a suffix of fortran, then one
is assumed. However, the suffix fortran must be
the 1last component of the name of the source
segment.

2. control_args can be chosen from the following list of control
arguments:

-source, -scC produces a line-numbered, printable ASCII
listing of the source program.

-symbols, -sb produces a source program listing (like the
-source control argument), followed by a list of
all the names declared in the program with their
attributes.

-map produces a source program listing with symbols
(like the -symbols control argument), followed
by a map of the object code generated by the
compilation. The -map control argument produces
sufficient information to allow the user to
debug most problems online.

-list, -1s produces a source program listing with symbols
(like the -symbols control argument), followed
by an assembly-like 1listing of the compiled
program. Use of the -=list control argument
significantly increases compilation time and
should be .avoided whenever possible by using the
-map control argument.

-brief, -bf causes error messages written into the I/0
switech error_output to contain only an error
number, statement identification, and, when
appropriate, the identifier or constant in
error. In the normal, nonbrief mode, an
explanatory message of one or more sentences is
also written, followed, in most cases, by the
text of the erroneous statement.

3-139 AG92

fortran

-severityi, -svi

-check, -ck

-optimize, -ot

-table, -tb

-brief_table, -bftb

-subscriptrange, -subrg

-profile, -pf

fortran

causes error messages whose severity 1is 1less
than i (where i is 1, 2, 3, or 4) to not be
written into the error_output switch although
all errors are written into the listing. The
default value for i is 1. See the description
of severity levels under "Error Diagnostics"
below.

is used for syntactic and semantic checking of a
FORTRAN program. Only the first phase of the
compiler is executed. Code generation is
skipped as is the manipulation of the working
segments used by the code generator.

invokes an extra compiler phase just before code
generation to perform certain optimizations such
as the removal of common subexpressions, which
reduce the size and execution time of the object
segment. Use of this control argument adds 10%
to 20% to the compilation time.

generates a full symbol table for use by
symbolic debuggers; the symbol table is part of
the symbol section of the object program and
consists of two parts: a statement table that
gives the correspondence between source line
numbers and object locations and an identifier
table that contains information about every
identifier actually referenced by the source
program. This control argument usually causes
the object segment to become significantly
longer.

generates a partial symbol table consisting only
of statement labels for use by symbolic
debuggers. The table appears in the symbol
section of the object segment produced for the
compilation. This control argument does not
significantly increase the size of the object
program.

causes extra code to be produced for all
subscripted array references, all computed goto
statements, and all alternate return statements
to check for subscript values exceeding the
declared dimension bounds. Such an error causes
the subscriptrange condition to be signalled.

generates additional code to meter the execution
of individual statements. Each statement in the
object program contains an additional
instruction to increment an internal counter
associated with that statement. After a program
has been executed, the profile command can be
used to print the execution counts.

3-140 AG92

fortran

The following two control arguments are available for wusers who wish to
maintain their FORTRAN source segments in ANSI card format. For a definition of

fortran
}A\
card-image format,
-card
-convert
/!
N

refer to the Multics FORTRAN manual, Order No. AJ28.

specifies that the source segment is in
card-image format. No converted segment 1is
produced.

specifies that the source segment is in
card-image format. The compiler generates a
segment, path.converted, in the wuser's working
directory, in Multiecs FORTRAN format. All
alphabetic characters that are not part of
character strings are mapped into their
lowercase equivalent. The listing segment
displays the segment as it appears after this
mapping. Error messages refer to only the
modified segment.

The segment produced by -convert differs from
the source segment as follows:

1. Alphabetic characters not 1in character
strings are mapped to lowercase.

2. Columns 73-80 of the card image are
deleted. Trailing blanks that are not part
of a character string are eliminated.

3. Columns 1-6 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>