Hone well MULTICS PROGRAMMERS'’
y MANUAL — SUBROUTINES

ADDENDUMC

SERIES 60 (LEVEL 68)

SOFTWARE

SUBJECT:

Additions and Changes to the Standard Multics Subroutines.

SPECIAL INSTRUCTIONS:
This is the third addendum to AG93, Revision 1, dated May 1975.
Insert the attached pages into the manual according to the collating

instructions on the back of this cover. The following new subroutines have
been added to Section II and do not contain change bars:

get_line_length_
get_temp_segments_
release_temp_segments_
send_mail_

Throughout the vrest of the manual, change bars in the margins indicate
technical additions and changes; asterisks denote deletions. These changes
will be incorporated into the next revision of the manual.

NOTE: 1Insert this cover after the manual cover to indicate the
updating of the document with Addendum C.

SOFTWARE SUPPORTED:

Multics Software Release 4.0

DATE:

July 1976

ORDER NUMBER:
AG93C, Rev. 1
15828

2576
Printed in U.S.A.



COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove Insert

iii through vi iii through vi
1-1 through 1-4 1-1 through 1-U4
2-7, 2-8 2-7, 2-8

2-25.1 through 2-28 2-25.1 through 2-28
2-69 through 2-72 2-69 through 2-T72
2-81, 2-862 2-81, 2-82

2-84.1 through 2-88 2-84.1 through 2-88
2-99 through 2-101 2-99 through 2-101

2-110.1 through 2-110.3

2-126.1 through 2-126.4 2-126.1 through 2-126.4
3-4.5, 3-4.6 3-4.5, 3-4.6
3-13 through 3-20.1 3-13 through 3-24

(:) 1976, Honeywell Information Systems Inc.

File No.:

AG93C
1L13

-«



MULTICS PROGRAMMERS'
Honeywell MANUAL — SUBROUTINES

ADDENDUM B
N
SERIES 60 (LEVEL 68)
SOFTWARE
SUBJECT:
Additions and Changes to the Standard Multics Subroutines.
SPECIAL INSTRUCTIONS:
— This is the second addendum to AG93, Revision 1, dated May 1975.
Insert the attached pages into the manual according to the collating
instructions on the back of this cover. The vfile_status_ subroutine is
new and does not contain change bars. Throughout the rest of the manual,
change bars in the margins indicate technical additions and changes;
asterisks denote deletions. These changes will be incorporated into the
next revision of the manual.
NOTE: Insert this cover after the manual cover to indicate the updating of
the document with Addendum B.
SOFTWARE SUPPORTED:
Multics Software Release |} 3.1
DATE:
March 1976
ORDER NUMBER:
AG93B, Rev. 1
s
15009
1276

Printed in U.S.A.



COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

iii through vi
1-3, 1-4
2-9, 2-9.1

2-81, 2-82
2-84,1, 2-84,2

2-67 through 2-90
2-93 through 2-100
2-125, 2-126

3-13 through 3-16
3-17 through 3-20

A-1 through A-16

B-1 through B-7

Insert

iii through vi
1-3, 1-4
2-9, 2-9.1

2-81, 2-82
2-84.1, 2-84,2

2-8T7 through 2-90
2-93 through 2-100
2-125, 2-126
2-126.1, 2-126.2
2-126.3, blank
3-13 through 3-16
3-17, 3-18

3-18.1, 3-18.2

3-19, 3-20
3-20.1, blank

(:) 1976, Honeywell Information Systems Inc.

3/76

File No.:

1L13
AG93B



Honeywell MULTICS PROGRAMMERS'

MANUAL — SUBROUTINES
ADDENDUM A

SERIES 60 (LEVEL 68)

SOFTWARE

SUBJECT:

Additions and Changes to the Standard Multics Subroutines.

SPECIAL INSTRUCTIONS:

This is the first addendum to AG93, Revision 1, dated May 1975.

Insert the attached pages into the manual according to the collating
instructions on the back of this cover. The following new subroutines and
I/0 moduiles have been added to Sections II and III respectively and do not
contain change bars.

convert_authorization_ hes_$get_access_class_seg
get_authorization_ print_cobol_error_
get_max_authorization_ rdisk_ (I/0 module)
hes_$create_branch_ tape_ansi_ (I/0 module)
hes_$get_access_class tape_ibm_ (I/0 module)

Throughout the rest of the manual, change bars in the margins indicate
technical additions and changes; asterisks denote deletions. These changes
will be incorporated into the next revision of the manual.

NOTE: Insert this cover after the manual cover to indicate the updating of
the document with Addendum A.

SOFTWARE SUPPORTED:

DATE:

Multics Software Release 3.0

September 1975

ORDER NUMBER:

AG93A, Rev. 1

13904D

1875

Printed in U.S. A.



(:) 1975, Honeywell Information Systems Inc.

9/75

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove

iii through vi
1-1 through 1-4
2-9, 2-10

2-21, 2-22

2-25, 2-26

2-29 through 2-32
2-41 through 2-U44

2-53 through 2-58

2-61, 2-62
2-73, 2-T4
2-79, 2-84

2-85, 2-86
2-91, 2-92

2-99 through 2-102

3;1, 3-2

Insert

iii through vi

1-1 through 1-U4

-24.1, blank

2-25, blank
2-25.1, 2-26

2-29 through 2-32
2-41, blank
2-41.1, 2-41.2
2-41.3, 2-42
2-43, 2-44
2-52.1, 2-52.2
2-53, 2-54
2-54,1, 2-54,2
2-55 through 2-58
2-61, 2-62

2-73’ 2-7“

2-79 through 2-84
2-84.1, 2-84.2

File No.: 1L13

AG93A



3-10.1 through 3-10.58

3-11 through 3-17 3-11 through 3-20
A-1 through A-U A-1 through A-4
A-T7, A-8 A-7, A-8

9/75 AG93A






P

Massachusetts Institute of Technology
Information Processing Center
Cambridge, Massachusetts 02139

August 24, 1975

Publications
39-483

This manual (MPM Volume 4, AGY93-1) is part of a rather extensive
revision of the Honeywell MPM. It is meant to replace Section 19
(Subroutines) of Part 2 of the M.I.T. MPM.

Note that the following subroutine writeups which were in
revision 15 of the MPM have been removed for the reason given.
The user may wish to retain these writeups until they are
published elsewhere.

Subroutine Reason~*
active_fnc_err_ SWG
broadcast_ obsolete (ios_)
check_star_name_ SWG
condition_ obsolete
convert_binary integer_ obsolete?
copy_acl_ ANo7
Copy_names__ ANG7
copy_seg_ ANo7
cu_ (most entry points moved to SWG)
cv_acl_ ANO67
cv_bin_ SWG
cv_dec_ obsolete
cv_dir_acl_ AN67
cv_dir_mode_ ANG67
cv_float_ obsolete
cv_mode_ ANG7
cv_oct_ SWG
cv_userid ANb67
decode_descriptor_ SWG
decode_entryname__ AN67

discard_output_
encipher_

obsolete (ios_)
AN51 (not included yet)

*SWG means moved to the Subsystem Writers' Guide (Vol. 5).

(over)



flle

find condition info_

get_ default wdlr
get equal name
ncs_sdel_dir_tree
hcs_Sstar_

ios_
match_star_name_
move_
move_names_
nstd_
object_info_
parse_file_
plot_

read_list_
reversion_
signal_

stu_
suffixed_name_
syn

tape_
timer_manager_
total _cpu_ t1me
tw

unpack_system_code_

write_list_

obsolete
SWG
SWG
SWG
SWG
SWG
obsolete
SWG
SWG
SWG
obsolete
SWG
ANS1
GUS (not
obsolete
obsolete
SWG
SWG
AN67
obsolete
obsolete
SWG

AN51 (not included yet)

obsolete
obsolete
obsolete

(ios_)

(ios_)

included yet)

(ios_)
(ios_)

(ios_)



7~

MULTICS PROGRAMMERS’

Honeywell MANUAL

SUBROUTINES

SERIES 60 (LEVEL 68)

SUBJECT :

Description of Standard Multics Subroutines, Including Details of Their
Calling Sequence and Usage.

SPECIAL INSTRUCTIONS:

This manual is one of four manuals that constitute the Multiecs Programmers'
Manual (MPM).

Reference Guide Order No. AG91
Commands and Active Functions Order No. AG92
Subroutines Order No. AG93
Subsystem Writers’ Guide Order No. AK92

This manual supersedes AG93, Rev. 0, and its Addendum A. The manual has
been extensively revised; therefore, marginal change indicators have not
been included in this edition.

Appendix A of this document contains input/output (I/0) system information
that properly belongs in Section IV of the MPM Reference Guide. In the
interest of providing the information to Multics users at an early date,
the I1/0 system discussion is contained in this document temporarily; most
of the material in the appendix will be moved to the MPM Reference Guide
when that document is next revised.

SOFTWARE SUPPORTED:

DATE:

Multics Software Release 2.1

May 1975

ORDER NUMBER:

AG93, Rev. 1



PREFACE

Primary reference for user and subsystem programming on the Multies system
is contained in fgur manuals. The manuals are collectively referred to as the
Multics Programmers’ Manual (MPM). Throughout this manual, references are
freguently made to the MPM. For convenience, these references will be as
follows:

Document Referred To In Text As
Reference Guide MPM Reference Guide

(Order No. AG91)

Commands and Active Functions MPM Commands
(Order No. AG92)

Subroutines MPM Subroutines
(Order No. AG93)

Subsystem Writers’ Guide MPM Subsystem Writers’ Guide
(Order No. AK92)

The MPM Reference Guide contains general information about the Multics
command and programming environments. It also defines items used throughout the
rest of the MPM, And, in addition, describes such subjects as the command
language, the storage system, and the input/output system.

The MPM Commands is organized into three sections. Section I contains a
list of the Multics command repertoire, arranged functionally., It also contains
a discussion on constructing and interpreting names. Section II describes the
active functions. Section III contains descriptions of standard Multies
commands, including the calling Sequence and usage of each command.

The MPM Subroutines is organized into three sections. Section I contains a
list of the subroutine repertoire, arranged functionally. Section II contains
descriptions of the standard Multiecs subroutines, including the declare
statement, the calling sequence, and usage of each. Section III contains the
descriptions of the I/0 modules.

The MPM Subsystem Writers’ Guide is a reference of interest to compiler
writers and writers of sophisticated subsystems. It documents user-accessible
modules that allow the user to bypass standard Multiecs facilities. The
interfaces thus documented are a level deeper into the system than those
required by the majority of users.

AG93

(:) 1975, Honeywell Information Systems Inc. File No: 1L13



Examples of specialized subsystems for which construction would require
reference to the MPM Subsystem Writers' Guide are:

A subsystem that precisely imitates the command environment of some
system other than Multics.

A subsystem intended to enforce restrictions on the services available
to a set of users (e.g., an APL-only subsystem for use in an academic
class).

A subsystem that protects some kind of information in a way not easily
expressible with ordinary access control lists (e.g., a proprietary
linear programming system, or an administrative data base system that
permits access only to program-defined, aggregated information such as
averages and correlations).

Several cross-reference facilities help loecate information:

Each manual has a table of contents that identifies the material
(either the name of the section and subsection or an alphabetically
ordered list of command and subroutine names) by page number.

Each manual contains an index that lists items by name and page number,

iii AG93



Section I

Section II

7/76

CONTENTS

Reference to Subroutines by Function

Subroutine Descriptions. . . . . . .+ . o . .
adjust_bit_count_ . . . . . < < o 0 0

change_wdir_. . . <« « « « « « . . P
CloCK_ v v & & « & & 4 4 & e e 4 .«
COM_EPrr_u & o« o o o o o o s o o & .
COM_€rr_ . . . = f e e e e e e s
com_err $suppress name e e e e e e e
command _query_. . « 4 e e e s e e e e
convert_. authorlzatlon . .

convert authorization $from strlng - .
convert_author1zat10n_$to_str1ng .« e e
convert_authorization_$to_string_short
convert_authorization_$minimum
convert_authorization_$encode. .
convert_authorization_$decode. . . .

convert_ date to_binary_ . . . :
convert date to b1nary_$relat1ve
cpu_tlme_and_paglng_ e e e e e e e

CU_ '« 4 & o o s o & « o o o« =
cu_$arg_count. .
cu_$arg_ptr.
cu_$¢cp . .« o+ . . .

date_time_. . . “ e e e e e e s
date_time $fst1me e e e e e e e

decode_. clock _value_

delete_ . . e 4 e e e e e e e e e e
delete $path e e ee e e e e e e e e
delete_$ptr. . e e e e e . . .

expand_path_. . . « « . « < . .

get_authorization_ e e e e e e e e .

get_group_id_ . . e e e e e e
get_group_id $tag_star e e e e e e

get_line_length_ . . e e e e e e e

get_max authorlzatlon_. . e .

get_pdir_ e e e e e e e

get_process_ 1d e 4 e e e e e

get_temp_ segments

get_wdir_

hes_$add_acl_ entrles .
hcs_$add_d1r_acl entries.
hes_$append_branch.
hes_$append_branchx
hes_$append_link. .
hes_$chname_file.
hes_$chname_seg
hes_$create_branch_
hes_$delentry_file.
hes_$delentry_seg .
hes_$delete_acl_entries
hes_$delete_dir_acl entrles

iv

Page

-
]
—_

]
[\ NN P QU S SN r g Ve A Vo ANe IVo Ve RVo RVe J o o Lo le )W e )R U1 BN —g WS Pt

OWOoOOOUVITUIUTEWO:s » = = & »

[ I R N N N RO I N R B O |
FELWWINVN - -

PPN NN NN NN
|

!
n
-

n
1

n

w

AG93C



7/76

Contents (cont)

hes_$fs_get_mode. . .
hes_$fs_get_path_name
hes_$fs_get_ref_name.
hes_$fs_get_seg_ptr
hes_$fs_move_file
hes_$fs_move_seg.
hcs_$get_access_class
hcs_$get_access_class_seg
hes_$initiate .
hes_$initiate_. count
hes_$list_acl
hes_$list_dir_acl
hes_$make_ptr
hcs_$make_seg
hes_$replace_acl.
hcs_$replace_dir_acl.
hes_$set_be .
hes_$set_be_seg
hes_$status_ .
hes_$status long
hcs_$status_m1nf
hcs_$status_mins
hes_$terminate_file
hes_$terminate_name
hes_$terminate_ noname
hes_$terminate_seg.
hes_$truncate_file.
hes_$truncate_seg
ioca_ e e e e e
ioa_, ioa_$nnl

ioa_¢$ioa_stream, ioa_$ioa_stream_nnl
ioa_$ioa_switch, ioa_$ioa_switch_nnl
ioa_¢$rs, ioa_$rsnnl, ioa_$rsnp,

ioa_$rsnpnnl.
ioa_$general_rs.
Summary of Entry P01nts

iox_.

iox_$attach_iocb
iox_$attach_ioname
iox_$close
iox_$control
iox_¢$delete_record
iox_¢$detach_iocb
iox_¢$find_iochb
iox_$get_chars
iox_$get_line.
iox_¢$modes
iox_$move_attach
iox_¢$open. .
iox_¢$position.
iox_$put_chars .
iox_$read_key. .
iox_$read_length
iox_$read_record .
iox_$rewrite_ record .
iox_¢$seek_key. . . . .
iox_$write_record.

Summary of Entry P01nts.

print_cobol_error_.

print_ cobol _error $sw1tch

random_ . . . . . . .

e e e« o @

| L O O O O |

OWO~NONUIVTEN=2 =2 200w 000UTU =00

NNI\)NNNNI\)I\)I\)I\)NN!})I\)I\)I\)NNl\)l\)l\)f\)l\)l’\)l\)
=W WO WYY 0000 0o 0o 0o 0o o oo~

-_
o
-

o
o

.1
2=-101.1
2-102

AG9§C



Section III

Index

T7/76

Contents (cont)

random_$uniform.
random_$uniform_seq.
random_$uniform_ant.
random_$uniform_ant_seq.
random_¢$normal
random_$normal_seq
random_$normal_ant
random_¢$normal_ant_seq
random_g$exponential.
random_$exponential_seq.
random_$get_seed
random_$set_seed

release_temp_segments_

send_mail_

set_lock_ .
set lock $lock
set_lock_$unlock

term_ .
term $refname
term_$seg_ptr.
term_$unsnap . . .
term_$single_ refname . .

unique_bits_. . .

unique_chars_

user_info_
user_ 1nfo
user_info $absentee queue
user_info_$absin . . .
user_info_$absout. .
user_info_$attributes. .
user_info_$homedir
user_info_$limits. .
user_info_$load_ctl_ 1nfo
user_1nfo_$log1n_data
user_info_$logout_data
user_info_$outer_module.
user_info_$responder
user_info_$tty_data. .
user_info_$usage_data.
user_info_¢$whoami.

vfile_status_

virtual_cpu_time_

Input/Output Modules .

discard_. . . . .
ntape_. . . . . .
rdisk_. . . o« .

record. stream e e e e
SYN_v o o ¢ o ¢ o o o o o
tape_ansi_. . . . . . . .
tape_ibm_ . . . . .

vi

n

I I I | ]

-

[\ N -
OWVWWOWWONUITUITUI W= - o
-

PRI N NPT U\ T (U W U U T T QY

DD NOLPDPDNLNDNDNDNDNDNDN NN NN
1 !

RN

n NN

—_—_m00

_ e e D a UTEWN -
~N-2000 .

« o —_

w =

n

AG93C



7N

SECTION I

INTRODUCTION TO STANDARD SUBROUTINES

The subroutines described in this document are the basic set included in
the standard Multics system, Many of the functions described here are also
provided as runtime features of Multics-supported programming languages. ‘The
user is encouraged to use language-related facilities wherever possible.

Most 1local installations maintain a library of additional procedures that
augment the standard repertoire. The user should consult the list of items in
the Installation Maintained Library at the local installation. (Documentation
of these procedures is supplied by the local installation.)

This section presents the subroutine repertoire, organized by function into
the following categories:

Storage System, Utility Procedures

Storage System, Access Control and Rings of Protection

Storage System, Supervisor Entries for Manipulating Directories and
Segments

Storage System, Supervisor Entries for Manipulating an Address Space

Clock and Timer Procedures

Subroutine Call and Argument Procedures

Command Environment Utility Procedures

Input/Qutput System Procedures

Error Handling Procedures

Data Type Conversion Procedures

Miscellaneous Procedures

Section II provides a detailed description of all subroutines except the
I/0 modules, which are presented in Section III. The descriptions in both of
these sections are presented alphabetically for ease of reference.

Storage System, Utility Procedures

change_wdir_ changes user's current working directory

delete_ deletes segments and directories and wunlinks
links

expand_path_ converts relative pathname to absolute
pathname

get_pdir_ returns pathname of process directory

get_temp_segments_ acquires temporary segments in the process
directory

get_wdir_ returns pathname of current working directory

release_temp_segments_ returns temporary segments to the free pool

term_ removes a segment from the address space,

unsnapping any subroutine linkage to it

7/76 1-1 AG93C



Storage System, Access Control and Rings of Protection

convert_authorization_

get_authorization_
get_group_id_
get_max_authorization_

hes_$add_acl_entries
hes_$add_dir_acl_entries
hes_$delete_acl_entries
hes_¢$delete_dir_acl_entries
hes_$fs_get_mode

hes_$get_access_class }_
hes_$get_access_class_seg
hes_$1list_acl
hes_$list_dir_acl
hes_$replace_acl
hcs_$replace_dir_acl

Storage System, Supervisor Entries

hes_$append_branch }_
hes_$append_branchx
hes_$append_link
hes_$chname_file
hes_$chname_seg
hes_$create_branch_

hcs_$delentry_file}_
hes_$delentry_seg
hes_$fs_move_file
hes_$fs_move_seg
hes_$make_seg
hes_$set_be
hes_$set_be_seg
hes_$status_

hcs_$truncate_file}_
hes_$truncate_seg

See also the "Storage System,

Storage System, Supervisor Entries
hes_$fs_get_mode

hes_$fs_get_path_name
hes_$fs_get_ref_name

hes_$fs_get_seg_ptr

97175

converts’ an authorization back and forth
between its binary and character-string
representation

returns authorization value of the process

returns access control name of current useB"

returns maximum authorization value of the
process

adds or changes ACL entries on a segment

adds or changes ACL entries on a directory

deletes all or part of an ACL on a segment

deletes all or part of an ACL on a directory

returns access control mode for a given
segment relative to the current
validation level

returns access class for a segment or a
directory

returns all or part of an ACL on a segment

returns all or part of an ACL on a directory

replaces one ACL on a segment with another

replaces one ACL on a directory with another

for Manipulating Directories and Segments

creates a segment or a directory

creates a directory link

adds, deletes, and changes names found in a
directory

creates a segment or directory, sets a number
of attributes

deletes a single entry in a directory

moves contents of one segment to another

creates a new segment and then initiates it
sets the bit count of a segment

returns information about a given segment,
directory, or link
truncates a file or segment to a given length

Utility Procedures" category.

for Manipulating an Address Space

returns access control mode for a given
segment relative to the current
validation level

returns pathname for a segment specified by
segment number

returns a reference name for a segment
specified by segment number

returns a segment number for a segment
specified by a reference name

1-2 AG93A



hes_$initiate
hes_$initiate_count
hes_$make_ptr
hes_$terminate_file
hcs_$terminate_seg

hes_$terminate_name
hes_$terminate_noname

initiates a segment and returns its segment
number

same as hes_g¢$initiate but also returns the
segment's bit count

returns a pointer to a segment entry point,
following search rules and link
conventions

removes a segment from the address space of
the current process

removes a reference name from the address
space

See also the term_ and change_wdir_ subroutines in the "Storage System,

Utility Procedures" category.

Clock and Timer Procedures

clock_
convert_date_to_binary_
cpu_time_and_paging_

date_time_
decode_clock_value_

virtual_cpu_time_

reads calendar clock

converts an ASCII string to binary time

returns virtual CPU time used and paging
activity of the process

converts binary time to an ASCII string

converts a binary time value into an ASCII
string

returns virtual CPU time used by this process

Command Environment Utility Procedures

cu_$arg_count
cu_$arg_ptr
cu_$cp

change_wdir_
expand_path_

get_pdir_
get_temp_segments_

get_wdir_
release_temp_segments_

Input/Qutput System Procedures

discard_
get_line_length_
ioa_

iox_

ntape_

rdisk_
record_stream_

syn

7/76

returns number of arguments supplied to the
called procedure

returns a pointer to a specified argument in
current argument list

calls the command processor to execute a
command line

changes user's current working directory

expands a relative pathname into an absolute
pathname

returns pathname of process directory

acquires temporary segments in the process
directory

returns pathname of current working directory

returns temporary segments to the free pool

provides infinite sink for output (1/0
module)

returns the line length of an I/0 switch

produces formatted printed output

interfaces with the Multics I/0 system

supports I/0 from/to files on tape (I/0
module)

supports I1/0 from/to removable disk packs
(I/0 module)

maps stream calls into record calls or vice
versa (I/0 module) .

makes one switch name equivalent to another
(I/0 module)

1-3 AG93C



tape_ansi_
tape_ibm_
tty_

vfile_

vfile_status_

Error Handling Procedures

com_err_

command_query_
print_cobol_error_

Date Conversion Procedures

convert_date_to_binary_
date_time_
decode_clock_value_

Miscellaneous Procedures

adjust_bit_count_
get_process_id_
random_
send_mail_

set_lock_

unique_bits_
unique_chars_

user_info_

T/76

supports I/0 from/to tapes written in
proposed American National Standards
Institute (ANSI) format (I/0 module)

supports I/0 from/to tapes written in IBM
standard format (I/0 module)

supports I/0 from/to terminals (I/0 module)

supports I/0 from/to segments and
multisegment files in the storage system
(I/0 module)

returns information about a storage system
file supported by the vfile_ I/0 module

prints a standard status message for common
errors

handles questions generated by commands

prints error messages produced by COBOL
programs

\

converts ASCII string to binary clock reading

convert clock reading to ASCII string

converts a binary time value into an ASCII
string

sets bit count of a segment to 1last nonzero
character

returns identification of current process

returns random numbers

sends a message and an optional wakeup to a
user

allows multiple processes to synchronize
their use of shared data

returns a unique bit string

converts a unique bit string to a unique
character string

returns miscellaneous information about the
current user

1-4 AG93C



SECTION II

SUBROUTINE DESCRIPTIONS

This section contains descriptions of the Multics subroutines, presented in
alphabetic order. Each description contains the name of the subroutine,
discusses the purpose of the subroutine, lists the entry points, and describes
the correct usage for each entry point. Notes and examples are included when
deemed necessary for clarity. The discussion below briefly describes the
context of the various divisions of the subroutine descriptions.

The "Name" heading shows the acceptable name by which the subroutine is
called. The name is wusually followed by a discussion of the purpose and
function of the subroutine and the results that may be expected from calling it.

Entry

Each "Entry" heading lists an entry point of the subroutine call. This
heading may or may not appear in a subroutine description; its use is entirely
dependent upon the purpose and function of the individual subroutine.

Usage

This part of the subroutine description first shows the proper format to
use when calling the subroutine and then explains each element of the call.
Generally, the format is shown in two parts: a declare statement that gives the
number and describes (in PL/I notation) the arguments that can be used and the
subroutine call 1line(s) that gives an example of correct use. Each variable
element or control argument of the subroutine call is then explained. Arguments
can be assumed to be required unless otherwise specified. Arguments that must
be defined before calling the subroutine are identified as Input; those
arguments defined by the subroutine are identified as Output.

Notes

Comments or clarifications that relate to the subroutine as a whole (or to
an entry point) are given under the "Notes" heading.

2-1 AG93



Other Headings

Additional headings are used in some descriptions, particularly the more
lengthy ones, to introduce specific subject matter. These additional headings
may appear in place of, or in addition to, the notes.

Status Codes

The standard status codes returned by the subroutines are further
identified, when appropriate, as either storage system or I/0 system. For
convenience, the most often encountered codes are listed in Appendix B in three
categories: storage system, I/0 system, and other. Certain codes have been
included in the individual subroutine description if they have a special meaning
in the context of that subroutine. The reader should not assume that the
code(s) given in a particular subroutine description are the only ones that can
be returned.

Treatment of Links

Generally, whenever the programmer references a link, the subroutine
action is performed on the entry pointed to by the link. If this is the case,
the only way the programmer can have the action performed on the link itself is
if the subroutine has a chase switch and he sets the chase switch to O.

2-2 AG93

~



adjust_bit_count_ adjust_bit_count_

Name: adjust_bit_count_

The adjust_bit_count_ subroutine performs the basic work of the
adjust_bit_count command (described in the MPM Commands). The adjust_bit_count_
subroutine is called to find the last nonzero word or character of a segment or
multisegment file and set the bit count accordingly.

Usage

declare adjust_bit_count_ entry (char(168) aligned, char(32) aligned,
bit(1) aligned, fixed bin(24), fixed bin(35));

call adjust_bit_count_ (dir_name, entryname, char_sw, bit_count, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment. (Input)

3. char_sw is the character switch. (Input)
"O"b adjusts to last bit of last nonzero word
"1"b adjusts to last bit of last nonzero character

y, bit_count is the computed bit count for the segment. If the value
is 1less than 0, it indicates that no attempt to compute
the count was made (code is nonzero). If the value is
greater than or equal to 0, the computed value is
correct, whether or not the bit count could be set.
(Output)

5. code is a standard status code. It is 0 if the operation was

successful. (Output)

2-3 AG93



change_wdir_ change_wdir_

Name: change_wdir_

The change_wdir_ subroutine changes the user’s current working directory to
the directory specified.

Usage

declare change_wdir_ entry (char(168) aligned, fixed bin(35));

call change_wdir_ (path, code);

where:

1. path is the pathname of the directory that is to become the user’s
working directory. (Input)

2. code is a storage system status code. (Output)

2.l AG93



N

clock_ clock_

The clock_ subroutine reads the system clock and returns a fixed binary
number equal to the number of microseconds since 0000 hours Greenwich mean time
January 1, 1901. The returned time is suitable for input to the date_time_ or
decode_clock_value_ subroutines, which convert the clock reading to an ASCII
representation.

Usage

declare clock_ entry returns (fixed bin(T71));

date_time = clock_ ();

where date_time is the number of microseconds since January 1, 1901, 0000 hours
Greenwich mean time. (Output)

2-5 AG93



com_err_ com_err_

Name: com_err_

The com_err__ subroutine is the principal subroutine used by commands for
printing error messages. It 1is usually called with a nonzero status code to
report an unusual status condition. It may also be called with a code of 0 to
report an error not associated with a status code.

Since this subroutine can be called with a varying number of arguments, it
is not permissible to include a parameter attribute list in the declaration.,

See also "Strategies for Handling Unusual Occurrences" in Section VI of the
MPM Reference Guide.

Entry: com_err_

This entry point formats an error message and then signals the condition
command_error. The default handler for this condition simply returns control to
the com_err_ subroutine, which then writes the error message on the I/0 switch
error_output,

Usage

declare com_err_ entry options (variable);

call com_err_ (code, caller, control_string, argl, ..., argn);

where:

1. code is a standard status code (fixed bin(35)). (Input)

2. caller is the name (char(#)) of the procedure calling the
com_err_ subroutine. It can be either varying or
nonvarying. (Input)

3. control_string is an ioa_ subroutine control string (char(¥%)). This
argument is optional. See "Notes" below. (Input)

y, argi are ioa_ subroutine arguments to be substituted into

control_string. These arguments are optional. (However,
they can only be used if the control_string argument is
given first.) See "Notes" below. (Input)

2-6 AG93

~/



com err com_err__

Notes

The error message prepared by the com_err_ subroutine has the following
format:

caller: system_message user_message

where:

1. caller is the name of the program detecting the error.

2. system_message is a standard message from the system data base
error_table_ corresponding to the value of code. If code
is equal to 0, no system_message is printed.

3. user_message is constructed by the ioa_ subroutine from the

control_string and argi arguments., If the control_string
and argi arguments are not given, user_message is omitted.

If the com_err_ subroutine is passed a nonzero code that does not correspond
to a standard format error table entry, the system message is of the form:

Code ddd.

where ddd is the decimal representation of code. The argument caller must not be
null or blank; if it is, the handlers for command_error cannot identify the
signalling procedure.

Entry: com_err_$suppress_name

The com_err_$suppress_name entry point should be used when the caller name
and colon are not wanted. The caller name is still passed to the command_error
condition handler. Otherwise, this entry point is the same as the com_err_
entry point.

Usage
declare com_err_$suppress_name entry options (variable);
call com_err_$suppress_name (code, caller, control_string, argl, ooy

argn);

where all of the arguments are the same as in the com_err_ entry point.

7/76 2-7 AG93C



command_query_ command_query_

Name: command_query_

The command_query_ subroutine is the standard system procedure invoked to
ask the user a question and to obtain an answer. It formats the question and
then signals the condition command_question. See "List of System Conditions and
Default Handlers" in Section VI of the MPM Reference Guide. The default handler
for this condition simply returns control to the command_query_ subroutine,
which writes the question on the I/0 switch user_i/o. It then reads the I/0
switch wuser_input to obtain the answer. Several options have been included in
the commmand_query_ subroutine to support the use of a more sophisticated
handler for the command_question condition.

Since this procedure can be called with a varying number of arguments, it
is not permissible to include a parameter attribute list in the declaration.

Usage

declare command_query_ entry options (variable);

call command_query_ (ptr, answer, caller, control_string, argl, ..., argn);

where:
1. ptr is a pointer to the following structure. (Input)
del 1 query_info aligned,
2 version fixed bin init(2),
2 yes_or_no_sw bit (1) unaligned,
2 suppress_name_sWw bit(1) unaligned,
2 code fixed bin(35),
2 query_code fixed bin(35);
where
version is the version number of this structure.
The version number identifies the format
of the structure. (Input)
yes_or_no_sw indicates that an answer of a particular

form is expected. (Input)

"O"b accepts any answer

"1"b does not return until a yes or no
answer is read

suppress_name_sw controls whether the name of the calling
procedure appears in the question. See
"Note" below. (Input)
"0"b includes name
"1vp omits name

2-8 AG93

QO



command_query_ command_query_

code is either the standard status code that
prompted the question or 0. (Input)

query_code is currently ignored. It 1is 1intended
for use by specialized handlers for
command_question. (Input)

2. answer is the response (char(¥*) varying) read from the I/0 switch
user_input. Leading and trailing blanks plus the newline
character have been removed. (Output)

3. caller is the name (char(*)) of the calling procedure. It can be
either varying or nonvarying. (Input)

4, control_string is an ioa_ subroutine control string (char(¥)). This
argument is optional. See "Note" below. (Input)

5. argi are ioa_ subroutine arguments to be substituted into
control_string. These arguments are optional. (However,

they can only be used if the control_string argument is
given first.) See "Note" below. (Input)

Notes
The question prepared by the command_query_ subroutine has the format:
caller: message

The message 1is constructed by the ioa_ subroutine from the control_string and
argi arguments. If the control_string and argi arguments are not given, the
message portion of the question is omitted. If the suppress_name_sw switch is
on, the name of the calling procedure and the colon are omitted.

If the user issues a quit signal before responding to the question and then
invokes the program_interrupt command, the question is repeated. This feature
is useful in case the original question was garbled.

3/76 2.9 AG93B



convert_authorization_ convert_authorization

Name: convert_authorization_

The convert_authorization_ subroutine is provided to convert an
authorization in the Multics Access Isolation Mechanism (AIM) back and forth
between its binary and character-string representations. Additional entries
provide  the ability to encode an authorization as a short character string for
use in entrynames.

Entry: convert_authorization_¢$from_string

Usage

declare convert_authorization_$from_string entry (bit(72) aligned, char(¥),
fixed bin(35));

call convert_authorization_$from_string (authorization, string, code);

where:

1. authorization is the binary representation of string. (Output)

2. string is the character string to be converted. (Input)
3. code is a standard status code. (Output)
0 no errors in conversion
error_table_$ai_invalid_string one or more namei is misspelled (See
"Notes" below.)
error_table_$ai_above_allowed_max no error in conversion; but the
resulting authorization class is
greater than the system_high
authorization

Notes

The convert_authorization_$from_string entry point accepts a character
string of the form:

name]l,nameZ,...,namen

where namei represents the mnemonic for a sensitivity level or access. category.
This entry point converts this string to an encoded binary form suitable for
storage in system tables and as input to the various modules that accept the
binary form. The print_auth_names command (described in the MPM Commands) may
be used to obtain a list of acceptable mnemonics.

9/175 2-9.1 AG93A



convert_authorization_ convert_authorization_

If the string argument is null or system_low, the resulting. authorization
is level 0 and no categories. If the string is system_high, the system
access_ceiling is returned (the maximum authorization or access class allowed).

Entry: convert_authorization_$to_string

This entry point accepts a binary form of an authorization and returns it
as a printable string. This output string is suitable for input to the
convert_authorization_$from_string entry point. Each level/category name has a
maximum length of 32 characters.

Usage

declare convert_authorization_$to_string entry (bit(72) aligned, char(¥),
fixed bin(35));

call convert_authorization_$to_string (authorization, string, code);

where:
1. authorization is the binary representation of string. (Input)
2. string is the character string to be converted. (Output)
3. code is a standard status code. (Output)
0 no errors in conversion
error_table_¢$smallarg supplied output is too short to hold
the converted result (See "Note"
below.)
error_table_$ai_invalid_binary either the level number or category
set is invalid; the resulting output
is also invalid
Note

When the error_table_$smallarg code is returned, as much of the resulting
conversion as fits in the output string is returned. However, since the results
are not complete, they should not be used as input to the
convert_authorization_$from_string entry point.

Entry: convert_authorization_$to_string_short

This entry point is identical to the convert_authorization_$to_string entry
point, except that the short level/category names are returned. Each short name
has a maximum length of eight characters. This output 1is also suitable for
input to the convert_authorization_$from_string entry point.

9/75 2-9.2 AG93A



convert_authorization_ convert_authorization

Usage

declare convert_authorization_$to_string_short entry (bit(72) aligned,
char(*), fixed bin(35));

call convert_authorization_$to_string_short (authorization, string, code);

where authorization, string, and code are the same as above.

Entry: convert_authorization_¢$minimum

This entry point accepts an array of authorizations or access classes and a
binary number indicating how many elements to process from the array. It
returns an authorization/access class whose category set is the intersection of
all input category sets and whose sensitivity level is the minimum of all input
sensitivity levels. The returned value need not equal any of the input values.

Usage

declare convert_authorization_¢$minimum entry (dim(¥*¥) bit(72) aligned, fixed
bin, bit(72) aligned);

call convert_authorization_$minimum (auth_array, n_elements, minimum_auth);

where:
1. auth_array are the input authorizations. (Input)

2. n_elements is the number of elements to be processed in the auth_array
argument. (Input)

3. minimum_auth is the result. (Output)
Entry: convert_authorization_$encode

This entry point encodes an authorization or access class into a short
character string, suitable for 1inclusion in entrynames. If the input
authorization represents system_low, the returned string is blank.

9/75 2-9.3 AG93A



convert_authorization_ convert_authorization

Usage

declare convert_authorization_$encode entry (bit(72) aligned, char(¥*));

call convert_authorization_$encode (authorization, encoded_string);

where:
1. authorization is the input authorization. (Input)

2. encoded_string 1is a short string (maximum of 15 characters) that wuniquely
represents the input authorization/access class. (Output)

Entry: convert_authorization_$decode

This entry point takes the character string produced by the
convert_authorization_$encode entry point and returns the original authorization
or access class. The null string is converted to the system_low authorization.

Usage

declare convert_authorization_$decode entry (bit(72) aligned, char(¥));

call convert_authorization_$decode (authorization, decoded_string);

where:
1. authorization is the decoded authorization. (Output)
2. decoded_string is a short string (maximum of 15 characters) that uniquely

represents the input authorization/access class. (Input)

9/75 2-9.4 AG93A



convert_date_to_binary_ convert_date_to_binary_

Name: convert_date_to_binary_

The convert_date_to_binary_ subroutine converts a character representation
of a date and time into a 72-bit clock reading (see the clock_ subroutine). It
accepts a wide variety of date and time forms, including the output of the
date_time_ subroutine.

Usage

declare convert_date_to_binary_ entry (char(¥*), fixed bin(71),
fixed bin(35));

call convert_date_to_binary_ (string, clock, code);

where:

1. string is the character representation of the clock reading
desired. (See "Format of Clock Reading" below.) (Input)

2. clock is set to the computed clock value. It is unchanged in the
event of an error. (Output)

3. code is a standard status code. It is either 0 (no errors) or

error_table_$date_conversion_error. (Output) The latter is
returned in all of the following cases:

General syntax error.

Unrecognized alphabetic field.

Two or more dates, times, etc.

Month without a date number.

Year not in the twentieth century.

Day of month does not exist (e.g., 35 March).
Midnight and noon preceded by an hour other than 12.
Minutes greater than 59.

Seconds greater than 59.

24-hour time after 2400.0 specified.

Zero hours in meridional time.

Month greater than 12 in slash time.

Minutes or seconds not two decimal places in length.
Day of week and date conflict.

Improper use of comma.

24-hour time less than three places in length.
Improper use of offset.

QUOSEHKRNGH IR O QOO

Format of Clock Reading

The character representation of the clock reading has up to five parts
(date, time, day-of-week, offset, and time zone), all of which are optional.
They can appear only once and in any order. If all of them are omitted, the
current time is returned. Each part can be made up of alphabetic fields,
numeric fields, and special characters. An alphabetic field is made up of
letters and must contain a whole word or an abbreviation made up of the first
three letters of the word. That means that Jan and January are equivalent. No
distinction is made between uppercase and lowercase. A numeric field consists

2-10 AG93



/‘\

convert_date_to_binary_ convert_date_to_binary_

of an integer of one or more decimal digits. In addition, there are four
special characters: the slash (/), the period (.), the colon (:), and the
comma (,). A blank must be used to separate two numeric fields. A blank is
optional between an alphabetic and numeric field.

The five parts of the clock reading are as follows:

date is the day of the year. The year is optional and, if
omitted, is assumed to be the year in which the date will
occur next. That is, if today is March 16, 1975, then March
20 is equivalent to March 20, 1975, while March 12 is the
same as March 12, 1976. There are three forms of the date,
illustrated by the examples below:

16 March 1975 or 16 March

March 16, 1975 or March 16 1975 or March 16
(The comma is optional.)

3/16/75 or 3/16

time is the time of day. If omitted, it is assumed to be the
current time. It has two basic formats, 24-hour and
meridional time. The 2U-hour time format consists of a
four-digit number, hhmm (where hh represents hours, and mm
represents minutes), followed by a period. This number
(hhmm. ) may be followed by an optional decimal
fraction-of-a-minute field. Also acceptable are hours,
minutes, and seconds fields separated by colons (the seconds
field is optional). The minutes and seconds fields must
each be two digits in length. Examples of 24-hour time are:

1545.
1545.715
15:45:08

Meridional time must end with a meridional designator (i.e.,
am, pm, noon (or n), midnight (or m)). Midnight and noon
can be indicated by simply giving the meridional designator.
The designator can be preceded by time expressed as hours,
hours:minutes, or hours:minutes:seconds. The minutes and
seconds fields, if present, must each be two digits in
length. Examples of meridional time are:

midnight

5 am

5:45 am
11:07:30 pm

day-of-week is the day of the week (e.g., Monday). If the day of the
week 1is present along with a date, the date must fall on
that day of the week or else a standard nonzero status code
is returned. If a date is not present, the next occurance
of that day (after the current date) 1is wused; that means
that Tuesday is interpreted as the next Tuesday.

2-11 AG93



convert_date_to_binary_ convert_date_to_binary_

offset is an amount of time to be added to the clock value
specified by the other fields. Offsets can be specified in
any and all of the following units:

seconds (second, sec)
minutes (minute, min)

hours (hour)
days (day)
weeks (week)

months (month)

Only one occurrence of each unit can be present, each
preceded by an integer. The singular version can only be
used with 1, the plural for any other value. If the offset
field 1is the only field present, the offset is added to the
current time.

If the month offset results in a nonexistent date (e.g.,
"Jan 31 3 months" would yield April 31), the lasi date of
the resulting month is used (e.g., April 30). The month
offset 1is applied before the other offsets and must not be
abbreviated nor used with the zone field. Examples of
offset fields are:

1 hour 5 minutes (an hour and five minutes from now)
Monday 6 am 2 weeks (two weeks from the next occurrence
of Monday 6:00 am)

zone is the time zone to be used in making the conversion to
Greenwich mean time. It currently can be any of the
following:

GMT, gmt (Greenwich mean time)
EST, est (eastern standard time)
EDT, edt (eastern daylight time)
CST, ecst (central standard time)
CDT, cdt (central daylight time)
MST, mst (mountain standard time)
MDT, mdt (mountain daylight time)
PST, pst (pacific standard time)
PDT, pdt (pacific daylight time)

or the current time zone used by the system (this is the
default).

Note

If the date and day of the week portions of the string argument are not
present, the time returned is the next instance of that time after (or equal to)
the current time. For example, if it is currently 3 pm, April 15, then 2 pm
means 2 pm on the 16th, while 7 pm means 7 pm on the 15th (i.e., tonight).

2-12 AG93



N

convert_date_to_binary convert_date_to_binary_

Examples

March 23
17 May 1975 EST 8:30 pm
03/28/75  2252.9 est Fri

Entry: convert_date_to_binary_g$relative

This entry point is similar to the convert_date_to_binary_ entry point,
except that the clock reading returned is computed relative to an input clock
time rather than the current clock time. Thus the clock reading returned for
the string "March 26" is the clock reading for the first March 26 following the
irput clock time, rather than the clock reading for the first March 26 following
the current clock time. Given a 72-bit clock time to use, this entry point
converts a character representation of a date and time to the equivalent 72-bit
clock reading.

Usage

declare convert_date_to_binary_g$relative entry (char (%), fixed bin(71),
fixed bin(71), fixed bin(35));

call convert_date_to_binary_g$relative (string, clock, clock_in, code);

where:

1. string is the same as above. (Input)

2. clock is the computed clock value relative to the clock_in argument.
(Output)

3. clock_in is the clock time used to compute the clock value. (Input)

y, code is the same as above. (Output)

2-13 AG93



cpu_time_and_paging_ cpu_time_and_paging_

Name: cpu_time_and_paging_

This procedure returns the virtual CPU time used by the calling process
since it was created as well as two measures of the paging activity of the
process.

Usage

declare cpu_time_and_paging_ entry (fixed bin, fixed bin(71), fixed bin);

call cpu_time_and_paging_ (pf, time, pd_faults);

where:

1. pf is the total number of page faults taken by the calling
process. (Output)

2. time is the virtual CPU time (in microseconds) used by the calling

process. (Output)

3. pd_faults is the total number of page faults from the paging device for
the calling process. (Output)

2-14 AG93



N

The cu_ (command wutility) subroutine provides several short entry points
that provide functions not directly available in the PL/I language. Although
these entry points are designed primarily for the use of command writers, many
may prove useful to Multiecs users and subsystem developers. (Most of the entry
points to the cu_ subroutine are described in the MPM Subsystem Writers’® Guide.)

Entry: cu_$arg count

The cu_$arg_count entry point can be used by any procedure to determine the
number of arguments with which it was called.

Usage

declare cu_$arg_count entry (fixed bin);

call cu_s$arg_count (nargs);

where nargs 1is the number of arguments passed to the caller of cu_$arg_count.
(Output)

Entry: cu_$arg_ptr

The cu_$arg_ptr entry point is used by a command or subroutine that can be
called with a varying number of arguments, each of which is an adjustable length
unaligned character string (i.e., declared char(%*)). This entry point returns a
pointer to a specified character-string argument and also returns the length of
this argument.

Usage

declare cu_sarg_ptr entry (fixed bin, ptr, fixed bin, fixed bin (35));

call cu_$arg_ptr (arg_no, arg ptr, arg_len, code);

where:

1. arg_no is an integer specifying the number of the desired argument.
(Input)

2. arg_ptr is a pointer to the wunaligned character-string argument

specified by arg_no. (Output)

2-15 AG93



cu_ cu_

3. arg_len is the length (in characters) of the argument specified by
arg_no. (Output)

y, code is a standard status code. (Output) The code can be one of
the following:

0 normal return
error_table_g$noarg argument specified by arg_no does not exist (if

error_table_$noarg is returned, the values of
arg_ptr and arg_len are undefined)

The command or subroutine that uses this entry point must be called with
data descriptors for its arguments. Otherwise, the returned value of arg_len is
0. If the argument specified by arg_no is not a character string, arg_len is
the value of the "size" field of the descriptor (the rightmost 24 bits). This
entry point must not be called from an internal procedure that has its own stack
frame or from within a begin block (because cu_$arg_ptr does not check for a
display pointer).

Entry: cu_$cp

Some standard Multics commands (e.g., edm, described in the MPM Commands)
permit the wuser to escape from them to execute other commands. In this case,
the escapable command passes the execute request line.to the command processor.

The cu_$cp entry point is called by any standard command that recognizes other
Multics command lines. When a Multics command line is recognized, a call 1is

made to cu_$cp to pass the command 1line to the currently defined command
processor for processing.

Usage

declare cu_$cp entry (ptr, fixed bin, fixed bin(35));

call cu_$cp (line_ptr, line_len, code);

where:

1. line_ptr is a pointer to the beginning of an aligned character string
containing a command line to be processed. (Input)

2. line_len is the length of the command line in characters. (Input)

2-16 AG93



s

cu_

3.

code

0

nonzero

cu

is a standard status code. (Output) It can be one of the

following:
normal return

an error has been detected;

however, the caller of the

cu_s$cp entry point is not expected to print a diagnostic at

this time since it can be

processor has already done so

expected that the command

AG93



date_time date_time_

Name: date_time_

The date_time_ subroutine converts a system clock reading to_ ASCII
representation. The clock reading is assumed to be in microseconds relative to
January 1, 1901, 0000 Greenwich mean time. The time returned is local standard
time.

Usage

declare date_time_ entry (fixed bin(71), char(¥));

call date_time_ (time, string);

where:
1. time is the clock reading. See the clock_ subroutine. (Input)

2. string is the ASCII string equivalent of time. (Output) The string
format is:

MM/DD/YY hhmm.m zzz www
where:

MM/DD/YY identifies the month, day, and year using two
characters per field

hhmm.m is hours and minutes (including tenths of minutes)
given in 24-hour time

z222 is a three-letter abbreviation for the time zone

WWW is a three-letter abbreviation for the day of the week

Notes

If the string declared by the caller has a length less than 24, the string
is truncated on the right; if greater than 24, the string is padded on the right
with blanks. :

Clock readings not corresponding to dates in the twentieth century (before
01/01/1901 or after 12/31/2000) are converted as "01/01/01 0000.0".

2-18 AG93

~/



.

P

date_time_ date_time_

Entry: date_time_¢$fstime

This entry point performs the same function as the above entry point but
accepts a 36-bit time, as used internally in the storage system (file system),
as input.

Usage

declare date_time_¢$fstime entry (bit(36) aligned, char(¥));

call date_time_g$fstime (time, string);

where:
1. time is a 36-bit internal storage system time. (Input)

2. string 1is the same as above. (Output)

2-19 AG93



decode_clock_value_ decode_clock_value_

Name: decode_clock_value_

The decode_clock_value_ subroutine takes a given system clock reading and
returns the month, the day of the month, the year, the time of day, the day of
the week, and the local time zone.

Usage

declare decode_clock_value_ entry (fixed bin(71), fixed bin, fixed bin,
fixed bin, fixed bin(71), fixed bin, char(3) aligned);

call decode_clock_value_ (clock, month, dom, year, tod, dow, zone) ;

where:

1. clock is the system clock value to be decoded. (Input)

2. month is the month (January = 1, ..., December = 12). (Output)

3. dom is the day of the month, e.g., 1 to 31. (Output)

y, year is the year, e.g., 1975. (Output)

5. tod is the time of day (number of microseconds since midnight).
(Output) ~

6. dow is the day of the week (Monday = 1, ..., Sunday = 7).
(Output)

7. zone is a three-character lowercase abbreviation of the current

time zone used by the system. (Output)

2-20 AG93



—

delete_ delete

Name: delete_

The delete_ subroutine deletes segments, directories, and multisegment
files and unlinks links. If the segment, directory, or multisegment file to be
deleted is protected (i.e., the safety switch is on), the subroutine requires
user verification before attempting to remove the protection. There are two
entry points: one called with a pathname, the other with a pointer to a
segment. Both have a set of switches that specify the actions to be taken by
the subroutine. If the specified entry is a segment, it is terminated using the
term_ subroutine. In general, users should call the delete_ subroutine to
delete segments, directories, and multisegment files, rather than directly
addressing entry points in hes_.

Entry: delete_¢$path

This entry point is called with the pathname of the segment, directory,
multisegment file, or link to be deleted.

Usage

declare delete_g$path entry (char(¥*), char(*), bit(6), char(*), fixed
bin(35));

call delete_$path (dir_name, entryname, switches, caller, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment, directory, multisegment file,
or link. (Input)

3. switches are six switches that specify the actions to be taken. The

switches must be given in the order listed below. (Input)

force_sw
"1"b deletes the entry even if it is protected
"O"b examines the next switch

question_sw

"1"b asks the wuser 1if a protected entry should be
deleted 1if the force_sw is off ("0"b); if the user
gives a negative response, the subroutine returns
the code error_table_$action_not_performed. If
force_sw is on ("1"b) and the entryname argument is
the name of a directory, delete_ prints a message
for the first entry under the directory that cannot
be deleted

"O"b deletes the entry without interrogating the user;
if unable to delete the entry, the subroutine
returns an appropriate storage system status code

9/75 2-21 AG93A



e ——

delete_ delete_

directory_sw
"1"b deletes directories
"0"Db examines the next switch; if the entryname argument
refers to a directory and the directory_sw switch
is "O"b, the subroutine returns the code
error_table_$dirseg

segment_sw
"1"b deletes segments and multisegment files
"0"b examines the next switch; if the entryname argument
refers to a segment or multisegment file and the
segment_sw switch is "0"b, the subroutine returns
the code error_table_$nondirseg

link_sw
""p deletes (i.e., unlinks) links
"o"b examines the next switch; if the entryname argument
refers to a link and the link_sw switech is "O0"b,
the subroutine returns the code
error_table_$not_a_branch

chase_sw
"1"b "chases" the link and deletes the segment the 1link
points to, if the link_sw is also "1"b
"O"b no action

4, caller is the name of the calling procedure, to be used when questions
are asked. (Input)

5. code is a storage system status code. (Output)

Entry: delete_$ptr

The delete_¢$ptr entry point is similar to the delete_$path entry point,
except that the caller has a pointer to the actual segment to be deleted.
Directories, multisegment files, and 1links cannot be deleted with the
delete_¢$ptr entry point. The directory_sw, link_sw, and chase_sw switches are
not examined by this entry point, but must be present.

Usage

declare delete_$ptr entry (ptr, bit(6), char(*), fixed bin(35));

call delete_$ptr (seg_ptr, switches, caller, code);

where:

1. seg_ptr is a pointer to the segment to be deleted. (Input)
2. switches are the same as above. (Input)

3. caller is the same as above. (Input)

g, code is the same as above. (Output)

9/75 2-22 AG93A



expand_path_ expand_path_

Name: expand_path_

The expand_path_ subroutine expands a relative pathname into an absolute
pathname. See '"Constructing and Interpreting Names" in Section I of the MPM
Commands.

Usage

declare expand_path_ entry (ptr, fixed bin, ptr, ptr, fixed bin(35));

call expand_path_ (pathp, pathl, dir_namep, entrynamep, code);

where:

1. pathp is a pointer to the pathname to be expanded. It
must point to a nonvarying character string, which
may be aligned or unaligned. (Input)

2. pathl specifies the length of the pathname. If the value
is 0, the pathname is assumed to be that of the
current working directory. (Input)

3. dir_namep is a pointer to a character string in which either
the directory portion of the pathname or the entire
pathname is stored. (See below.) It 1is assumed
that dir_namep points to an aligned character string
that is 168 characters long. (Input)

y, entrynamep is a pointer to a string in which the entryname
portion of the pathname 1is to be stored. If
entrynamep is null, then the entire pathname is
stored in the string pointed to by dir_namep. It is
assumed that entrynamep points to an aligned
character string that 1is 32 characters long.
(Input)

5. code is a standard status code. (Output) It may have
the following values:

error_table_¢$badpath bad syntax in the pathname

error_table_$dirlong the directory pathname is 1longer than 168
characters

error_table_$entlong the entryname is longer than 32 characters

error_table_$lesserr too many less-than characters (<) 1in the
pathname

error_table_g$pathlong the absolute pathname 1is longer than 168
characters

2-23 AGI93



expand_path_

Examples

In all of the following examples, assume that the user’s current working
directory is >udd>Alpha>Day and that dir_name and entryname stand for the

strings pointed to by dir_namep and entrynamep, respectively.

Input (pathname) Output
if entrynamep is null otherwise

dir_name dir_name entryname
work >udd>Alphad>Day>work >udd>Alpha>Day work
< >udd>Alpha >udd Alpha
<< >udd > udd
<<Beta >udd>Beta >udd Beta
<<Beta>Jones >udd>Beta>Jones >udd>Beta Jones
>udd>Gamma>Smith >udd>Gamma>Smith >udd>Gamma Smith

2-24 AG93

expand_path_



get_authorization_

Name: get_authorization_

get_authorization_

The get_authorization_ subroutine returns the authorization value of the

process.

Usage

declare get_authorization_ entry returns (bit(72) aligned);

authorization = get_authorization_ ();

where authorization is the returned authorization.

9/75 2-24 .1

(Output)

AG93A



This page intentionally left blank.

9/75 AG93A



get_group_id_ get_group_id_

Name: get_group_id_

The get_group_id_ subroutine returns the 32-character access identifier of
the process in which it is called. The access identifier is of the form:

Person_id.Project_id.tag

Usage

declare get_group_id_ entry returns (char(32));

user_id = get_group_id_ ();

where wuser_id contains the access identifier that is returned to the user. It
is a left-justified character string, padded with trailing blanks. (Output)

ntry: get_group_id_$tag_star

This entry point returns the access identifier of its caller with the
instance component replaced by an asterisk (¥),

Usage

declare get_group_id_$tag_star entry returns (char(32));

user_id = get_group_id_$tag_star ();

where user_id is the same as above.

2-25 AG93



This page intentionally left blank.

9/175 AG93A



N

get_line_length_ get_line_length_

Name: get_line_length_

The get_line_length_ subroutine returns the line length currently in effect
on a given I/0 switch. If the line length is not available (for any reason), a
status code is returned, and a default line length is returned.

Entry: get_line_length_¢$stream

This entry point returns the line length of a given I/0 switch, identified
by name.

Usage

declare get_line_length_¢$stream entry (char(*), fixed bin(35)) returns
(fixed bin(17));

line_length = get_line_length_¢$stream (switch_name, code);

where:

1. switch_name is the name of the switch whose line length is desired. If
switch_name is null, the user_output I/0 switch is assumed.
(Input)

2. code is a standard status code. (Output)

3. line_length is the line length of switch_name. (Output)
Entry: get_line_length_g$switch

This entry point returns the line length of a given I/0 switch, identified
by pointer.

T7/76 2-25.1 AG93C



get_line_length_

Usage

get_line_length_

declare get_line_length_$switch entry (ptr, fixed bin(35)) returns (fixed

bin(17));

line_length =

where:

1. switch_ptr

2. code

3. line_length

T7/76

get_line_length_g$switch (switch_ptr, code);

is a pointer to the I/0 control block of the switch whose
line length 1is desired. If switch_ptr is null, the
user_output I/0 switch is assumed. (Input)

is as above. (Output)

is as above. (Output)

2-25.2 AG93C



N

get_max_authorization_ get_max_authorization

Name: get_max_authorization_

The get_max_authorization_ subroutine returns the maximum authorization of
the process. (See "Access Control" in Section III of the MPM Reference Guide.)

Usage

declare get_max_authorization_ entry returns (bit(72) aligned);

max_authorization = get_max_authorization_ ();

where max_authorization is the returned maximum authorization. (Output)

9/75 2-25.3 AG93A



get_pdir_ get_pdir_

Name: get_pdir_

The get_pdir_ subroutine returns the absolute pathname of the user's
process directory. For a discussion of process directories, see "Storage System
Directory Hierarchy" in Section III of the MPM Reference Guide.

Usage

declare get_pdir_ entry returns (char(168));

process_dir = get_pdir_ ();

where process_dir contains the absolute pathname of the wuser's process
directory. It is assigned a left-justified character string, padded with
trailing blanks. (Output)

2-26 AG93



U

get_process_id_ get_process_id_

Name: get_process_id_

The get_process_id_ subroutine returns the 36-bit identifier of the process
in which it is <called. The identifier 1is generated by the system when the
process is created.

Usage

declare get_process_id_ entry returns (bit(36));

proc_id = get_process_id_ ();

where proc_id contains the 36-bit identifier of the process. (Output)

2-27 AG93



7/76

This page intentionally left blank.

AG93C

—~



Yo

~

get_temp_segments_ get_temp_segments_

Name: get_temp_segments_

The get_temp_segments_ subroutine puts temporary segments in the process
directory for whatever purpose the caller may have. The segments returned to
the caller are zero-length.

A free pool of temporary segments is associated with each wuser process,
The pool concept makes it possible to use the same temporary segment more than
once during the 1life of a process. Reusing temporary segments in this way
avoids the cost incurred in creating a segment each time one is needed.

Usage

declare get_temp_segments_ entry (char (*), (*) ptr, fixed bin (35));

call get_temp_segments_ (program_name, ptrs, code);

where:

1. program_name is the name of the program requesting temporary segments.
(Input)

2. ptrs is an array of returned pointers to the requested temporary
segments. (Output)

3. code is a standard system status code. (Output)

Notes

This subroutine assigns temporary segments to its caller. It creates new
temporary segments and adds them to the free pool if there currently are not
enough available to satisfy the request. The temporary segments are created in
the process directory with a unique name including the temp.xxxx suffix, where
xxxx 1is the segment number of the segment in octal. See the description of the
release_temp_segments_ subroutine for a description of how to return temporary
segments to the free pool.

The number of segments returned to the caller is determined by the bounds
of the ptrs array above.

7/76 2-27.1 AG93C



get_wdir_

Name: get_wdir_

get_wdir_

The get_wdir_ subroutine returns the absolute pathname of the user’s
current working directory. For a discussion of working <directories, see
"Storage System Directory Hierarchy" in Section III of the MPM Reference Guide.

Usage

declare get_wdir_ entry returns (char(168));

working _dir = get_wdir_ ();

where working_dir
directory. (Output)

contains the absolute pathname of the user’s current working

2-28 AG93

O



hes_$add_acl_entries hes_$add_acl_entries

Name: hcs_$add_acl_entries

The hes_$add_acl_entries entry point adds specified access modes to the
access control 1list (ACL) of the specified segment. If an access name already
appears on the ACL of the segment, its mode is changed to the one specified by
the call.

Usage

declare hecs_g$add_acl_entries entry (char(*), char(*), ptr, fixed bin,
fixed bin(35));

call hes_$add_acl_entries (dir_name, entryname, acl_ptr, acl_count, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment. (Input)

3. acl_ptr points to a user-filled segment_acl structure. See "Notes"
below. (Input)

4, acl_count contains the number of ACL entries in the segment_acl structure.
See "Notes" below. (Input)

5. code is a storage system status code. (Qutput)

Notes

The following structure is used for segment_acl:

del 1 segment_acl (acl_count) aligned based (acl_ptr),
2 access_name char(32),
2 modes bit(36),
2 zero_pad bit(36),
2 status_code fixed bin(35);

where:

1. access_name is the access name (in the form Person_id.Project_id.tag)
that identifies the processes to which this ACL entry
applies.

2. modes contains the modes for this access name. The first three
bits correspond to the modes read, execute, and write. The
remaining bits must be O0's. For example, rw access is

expressed as "101"b.

9/75 2-29 AG93A



hcs_$add_acl_entries hes_$add_acl_entries

3. zero_pad must contain the value zero. (This field is for wuse with
extended access and can only be used by the system.)

y, status_code is a storage system status code for this ACL entry only.

If code is returned as error_table_$argerr, then the erroneous ACL entries
in the segment_acl structure have status_code set to an appropriate error code.
No processing is performed.

If the segment 1is a gate (see "Intraprocess Access Control--Rings" in
Section III of the MPM Reference Guide) and if the validation level is greater
than ring 1, then access is given only to names that contain the same project as
the user or to the SysDaemon project. If the ACL to be added is in error, no
processing is performed and the subroutine returns the code
error_table_$invalid_project_for_gate.

9/75 2-30 AG93A

e’



hes_¢$add_dir_acl_entries hes_$add_dir_acl_entries

ame: hes_$add_dir_acl_entries

The hes_$add_dir_acl_entries entry point adds .specified directory access
modes to the access control 1list (ACL) of the specified directory. If an
access name already appears on the ACL of the directory, its mode is changed to
the one specified by the call.

Usage

declare hes_$add_dir_acl_entries entry (char(¥), char(¥*), ptr, fixed bin,
fixed bin(35));

call hes_$add_dir_acl_entries (dir_name, entryname, acl_ptr, acl_count,
code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the directory. (Input)

3. acl_ptr points to a user-filled dir_acl structure. See "Notes"
below. (Input)

, acl_count contains the number of ACL entries in the dir_acl structure.
See "Notes" below. (Input)

5. code is a storage system status code. (Output)

ote

The following structure is used for dir_acl:

del 1 dir_acl (acl_count) aligned based (acl_ptr),
2 access_name char(32),
2 dir_modes bit(36),
2 status_code fixed bin(35);
where:
1. access_name is the access name (in the form Person_id.Project_id.tag)
that identifies the process to which this ACL entry applies.
2. dir_modes contains the directory modes for this access name. The
first three bits correspond to the modes status, modify, and
append. The remaining bits must be O0's. For example,

status permission is expressed as "100"b.

3. status_code is a storage system status code for this ACL entry only.

9/75 2-31 AG93A



hes_$add_dir_acl_entries hes_$add_dir_acl_entries

If code is returned as error_table_g$argerr, then the erroneous ACL entries
in the dir_acl structure have status_code set to an appropriate error code. No
processing is performed.

9/75 2-32 AG93A



—

hes_$append_branch hes _$append_branch

Name: hecs_$append_branch

The hes_$append_branch entry point creates a segment in the specified
directory, initializes the segment s access control 1list (ACL) by adding
% ,SysDaemon.* with a mode of rw and adding the initial ACL'for segments found in
the containing directory, and adds the user to the segment’s ACL with the mo@e
specified. ACLs and initial ACLs are described in "Access Control" in
Section III of the MPM Reference Guide.

Usage

declare hes_$append_branch entry (char(¥*), char (%), fixed bin(5),
fixed bin(35));

call hes_gappend_branch (dir_name, entryname, mode, code) ;

where:
1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment. (Input)

3. mode is the user’s access mode. See "Notes" below. (Input)
4, code is a storage system status code. (Output)
Notes

Append permission on the containing directory is required to add a segment
to that directory.

A number of attributes of the segment are set to default values as follows:

1. Ring brackets are set to the user’s current validation 1level. See
"Intraprocess Access Control (Rings)" in Section III of the MPM
Subsystem Writers’ Guide.

2. The User_id of the ACL entry specifying the given mode is set to the

Person_id and Project_id of the user, with the instance tag set to an
asterisk (¥*).

3. The copy switch in the branch is set to O.

L, The bit count is set to 0.

See the description of the hes_$append_branchx entry point to create a
storage system entry with values other than the defaults listed above.

2-33 AG93



hes_$append_branch hes_$append_branch

The mode argument is a fixed binary number where the desired mode is
encoded with one access mode specified by each bit. For segments the modes are:

read the 8-bit is 1 (i.e., 01000b)
execute the 4-bit is 1 (i.e., 00100b)
write the 2-bit is 1 (i.e., 00010b)

The unused bits are reserved for unimplemented attributes and must be 0. For
example, rw access is 01010b in binary form, and 10 in decimal form.

2-34 AG93



hes_¢$append_branchx hes_$append_branchx

Name: hes_$append_branchx

The hes_g$append_branchx entry point creates either a subdirectory or a
segment in a specified directory. It is an extended and more general form Qf
hes_$append_branch. If a subdirectory is created, then the subdirectory s
access control list (ACL) is initialized by adding #.SysDaemon.* with a mode of
sma and adding the initial ACL for directories that is stored in the containing
directory; otherwise the segment s ACL is initialized by adding # ,SysDaemon. ¥
with a mode of rw and adding the initial ACL for segments. The input User_id
and mode are then merged to form an ACL entry that is added to the ACL of the
subdirectory or segment.

Usage
deciare hcs_$append_branchx entry (char(¥), char(#*), fixed bin(5),
(3) fixed bin(3), char(*), fixed bin(1), fixed bin(1), fixed bin(24),
fixed bin(35));
call hes_$append_branchx (dir_name, entryname, mode, rings, user_id,
dir_sw, copy_sw, bit_count, code);
where:
1. dir_name is the pathname of the containing directory . (Input)
2. entryname is the entryname of the segment or subdirectory. (Input)
3. mode is the user’s access mode. See "Notes" below. (Input)
y, rings is a three-element array that specifies the ring brackets
of the new segment or subdirectory. See "Intraprocess
Access Control (Rings)"™ in Section III of the MPM
Subsystem Writers’® Guide. (Input)
5. user_id is an access control name of the form
Person_id.Project_id.tag. (Input)
6. dir_sw is the branch’s directory switch. (Input)
1 if a directory is being created
0 if a segment is being created
T. COpYy_SW is the value of the copy switch to be placed in the
branch. See "Segment, Directory, and Link Attributes" in
Section III of the MPM Reference Guide for an explanation
of the copy switch. (Input)
8. bit_count is the segment length (in bits). (Input)
9. code is a storage system status code. (Output)

2-35 AG93



hes_$append_branchx hes_$append_branchx

Notes

Append permission is required on the containing directory to add an entry
to that directory.

The mode argument is a fixed binary number where the desired mode is
encoded with one access mode specified by each bit. For segments the modes are:

read the 8-bit is 1 (i.e., 01000Db)
execute the 4-bit is 1 (i.e., 00100b)
write the 2-bit is 1 (i.e., 00010b)

For directories, the modes are:

status the 8-bit is 1 (i.e., 01000b)
modify the 2-bit is 1 (i.e., 00010b)
append the 1-bit is 1 (i.e., 00001b)

If modify permission is given for a directory, then status must also be given;
i.e., 01010b.

The unused bits are reserved for unimplemented attributes and must be 0.
For example, rw access is 01010b in binary form, and 10 in decimal form.

2-36 AG93



/’\

hes_$append_link hes_$append_link

Name: hes_$append_link

The hes_$append_link entry point is provided to create a link in the
storage system directory hierarchy to some other directory entry in the
hierarchy. For a discussion of 1links see "Segment, Directory, and Link
Attributes" in Section III of the MPM Reference Guide.

Usage

declare hes_g$append_link entry (char(*), char(#*), char(*), fixed bin(35));

call hes_$append_link (dir_name, entryname, path, code) ;

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the link. (Input)

3. path is the pathname of the directory entry to which the entryname
argument points. The pathname may be a maximum of 168

characters. (Input)

4, code is a storage system status code. (Output)

Notes

Append permission is required in the directory in which the link is being
created.

tTge entry pointed to by the link need not exist at the time the link is
created.

The hes_$append_branch and hes_$append_branchx entry points can be used to
create a segment or directory entry in the storage system hierarchy.

2-37 AG93



aw

hes_$chname_file hes_$chname_file

Name: hecs_¢$chname_file

The hes_g$chname_file entry point changes the entryname on a specified
storage system entry. If an already existing name (an old name) is specified,
it is deleted from the entry; if a new name is specified, it is added. Thus, if
only an o0ld name is specified, the effect is to delete a name; if only a new
name is specified, the effect is to add a name; and if both are specified, the
effect is to rename the entry.

Usage

declare hes_g$chname_file entry (char(#*), char(¥*), char (%), char(#),
fixed bin(35));

call hes_$chname_file (dir_name, entryname, oldname, newname, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment, directory, multisegment
file, or link. (Input)

3. oldname is the name to be deleted from the entry. It can be a
null character string ("") in which case no name is
deleted. If oldname is null, then newname must not be
null. (Input)

4, newname is the name to be added to the entry. It must not already
exist in the directory on this or another entry. It can
be a null character string ("") in which case no name is
added. If it is null, then oldname must not be the only
name on the entry. (Input)

5. code is a storage system status code. (Output) It can have
the values:

error_table_$nonamerr attempting to delete the only name of a
directory entry

error_table_¢$namedup attempting to add a name that exists on another
entry

error_table_$segnamedup attempting to add a name that already exists on
this entry

Notes

The hes_$chname_seg entry point performs a similar function using a pointer
to a segment instead of its pathname.

The wuser must have modify permission on the directory containing the entry
whose name is to be changed. .

2-38 AG93

~



hes_$chname_file hes_$chname_file

Examples

Assume that the entry >my_dir>alpha exists and that it also has the
entryname beta. Then the following sequence of calls to hes_$chname_file would
have the effects described.

call hes_$chname_file (">my_dir", "alpha", "beta", "gamma", code) ;

The above call changes the entryname beta to gamma. The entry now has the names
alpha and gamma.

call hes_gchname_file (">my_dir", "gamma", "gamma", "", code) ;

The above call removes the entryname gamma. Either alpha or gamma could be used
in the second argument position. The entry now has only the name alpha.

call hes_$chname_file (">my_dir", "alpha", "", "delta", code);

The above call adds the entryname delta. The entry now has the names alpha and
delta.

2-39 AG93



hes_$chname_seg hes_$chname_seg

Name: hes_$chname_seg

The hes_$chname_seg entry point changes an entryname on a segment, if a
pointer to the segment is given., If an already existing name (an old name) is
specified, it 1is deleted from the entry; if a new name is specified, it is
added. Thus, if only an old name is specified, the effect is to delete a name;
if only a new name is specified, the effect is to add a name; and if both are
specified, the effect is to rename the entry.

Usage

declare hes_$chname_seg entry (ptr, char(*), char(*), fixed bin(35));

call hes_$chname_seg (seg_ptr, oldname, newname, code);

where:
1. seg_ptr is a pointer to the segment whose name is to be changed. (Input)

2. oldname is the name to be deleted from the entry. It can be a null
character string ("") in which case no name is to be deleted. If
oldname is null, then newname must not be null. (Input)

3. newname is the name to be added to the entry. It must not already exist
in the directory on this or another entry. It can be a null
character string ("") in which case no name is added. If it is
null, then oldname must not be the only name on the entry.

(Input)
y, code is a storage system status code. (Output) It can have the
values:
error_table_$nonamerr attempting to delete the only name of a
directory entry
error_table_$namedup attempting to add a name that exists on another

entry

error_table_$segnamedup attempting to add a name that already exists on
this entry

Notes

The hes_$chname_file entry point performs the same function if the pathname
of the segment is given instead of a pointer.

The wuser must have modify permission on the directory containing the
segment whose name is to be changed.

2-40 AG93



hes_$chname_seg hes_$chname_seg

Examples

Assume that the user has a pointer, seg_ptr, to a segment that has two
entrynames, alpha and Dbeta. Then the following sequence of calls to
hcs_$chname_seg would have the effects described.

call

The above

call

The above

call

The above
delta.

hes_$chname_seg (seg_ptr, "beta", "gamma", code);
call changes the entryname beta to gamma.
hes_¢$chname_seg (seg_ptr, "gamma", "", code);
call removes the entryname gamma.

hes_$chname_seg (seg_ptr, "", "delta", code);

call adds the entryname delta. The entry now has the names alpha and

2-U41 AG93



This page intentionally left blank.

9/75 AG93A



hcs_$create_branch_ hes_$create_branch_

Name: hes_$create_branch_

The hes_$create_branch_ subroutine creates either a subdirectory or a
segment in the specified directory. (This entry point is an extended and more
general form of the hes_¢$append_branchx subroutine.) If a subdirectory is
created, then the subdirectory's access control list (ACL) is initiated by
copying the initial ACL for directories that 1is stored in the specified
directory; otherwise, the segment's ACL is initiated by copying the initial ACL
for segments. The access_name and mode items from the create_branch_info
structure (see "Notes" Dbelow) are then added to the ACL of the created
subdirectory or segment.

Usage

declare hcs_$create_branch_ entry (char(¥*), char(*), ptr, fixed bin(35));

call hes_gcreate_branch_ (dir_name, entryname, info_ptr, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment or subdirectory to be created.
(Input)

3. info_ptr is a pointer to the information structure described below.
(Input)

L, code is a storage system status code. (Output)

Notes

The user must have append permission on the containing directory to add an
entry to that directory.

The pointer info_ptr points to a structure of the following form:

decl 1 create_branch_info aligned,

2 version fixed bin,

2 switches unaligned,
3 dir_sw bit(1) unaligned,
3 copy_sw bit(1) unaligned,
3 chase_sw bit(1) unaligned,
3 priv_upgrade_sw bit(1) unaligned,
3 mbz1 bit(32) unaligned,

9/75 2-41.1 AG93A



hes_$create_branch_

where:

1.

10.

1.

9/75

2 mode
2 mbz2
2 rings
2 access_name
2 bitent
2 quota
2 access_clas
version
dir_sw
COpYy_SW
chase_sw
priv_upgrade_sw

mbz1

mode

mbz?2

rings

access_name

bitent

hes_¢$create_branch_

bit(3) unaligned,
bit(33) unaligned,
(3) fixed bin(3),
char(32),
fixed bin(24),
fixed bin(18),

s bit(72);

is a number representing the version of the
create_branch_info structure being used. The structure
described above is version 1.

controls whether a directory or nondirectory segment is to
be created.

"1"b create a directory segment

"0"b create a nondirectory segment

is the created segment's copy switch.
"1"b make a copy whenever the segment is initiated
"O"b do not make a copy--use original

allows creation through links.

"1"b chase entryname if it is a 1link and create the
desired segment in the final directory

"O"b do not chase links

allows creation of upgraded ring 1 nondirectory segments
(i.e., with an access class higher than the containing
directory's access class). The use of this switch 1is
limited to ring 1 programs, and it should normally be
"O"b'

must be (32)"0"b.
is the ACL mode desired for access_name. The meanings of

the bits are as follows. For directory segments:
"100"Db status

"010"b modify

"001"b append

For nondirectory segments:
"100"Db read

"010"b execute

"001"b write

must be (33)"0"b.

are the desired ring brackets; see "Intraprocess Access
Control--Rings" in Section III of the MPM Reference Guide.

is the access control name of the form
Person_id.Project_id.tag to be added to the ACL.

is the segment's length (in bits).

2-41.2 AG93A



hcs_$create_branch_

I"-\

12. quota

13. access_class
—
Van

9/75

hcs_¢$create_branch_

is the desired quota to be moved to the directory created.
(It must be 0 for nondirectory segments.) If access_class
is not equal to the access class of dir_name, quota must
be greater than 0.

is the desired access class of the directory. For
nondirectory segments, access_class must be equal to the
access class of dir_name unless the priv_upgrade_sw switch
is set. (See the hcs_$get_access_class subroutine.)

2-41.3 AG93A



hes_$delentry_file hes_$delentry_file

Name: hecs_g$delentry_file

The hcs_g$delentry_file entry point, given a directory name and an
entryname, deletes the given entry from its containing directory. This entry
may be a segment, a directory, or a link. If the entry is a segment, the
contents of the segment are truncated first. If the entry specifies a directory
that contains entries, the code error_table_$fulldir is returned and
hes_$del_dir_tree must be called to remove the contents of the directory. See
the description of hcs_¢$del_dir_tree in the MPM Subsystem Writers' Guide.
Generally, programmers should use the delete_ subroutine rather than this entry
point in order to ensure that their address space is properly cleaned up.

Usage

declare hcs_$delentry_file (char(¥*), char(¥), fixed bin(35));

call hcs_g$delentry_file (dir_name, entryname, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment, directory, or link. (Input)
3. code is a storage system status code. (Output)

Notes

The hecs_¢$delentry_seg entry point performs the same function on a segment,
given a pointer to the segment instead of the pathname.

The wuser must have modify permission on the containing directory. 1If
entryname specifies a segment or directory (but not a link), the safety switch
of the entry must be off.

2-42 AG93



hes_$delentry_seg hcs_¢$delentry_seg

Name: hecs_$delentry_seg

The hcs_g$delentry_seg entry point, given a pointer to a segment, deletes
the corresponding entry from its containing directory. The contents of the
segment are truncated first. Generally, programmers should use the delete_
subroutine rather than this entry point in order to ensure that their address
space is properly cleaned up.

Usage

declare hcs_g$delentry_seg (ptr, fixed bin(35));

call hes_$delentry_seg (seg_ptr, code);

where:

1. seg_ptr is the pointer to the segment to be deleted. (Input)
2. code is a storage system status code. (Output)

Notes

The hcs_¢$delentry_file entry point performs the same function, given the
pathname of the segment instead of the pointer.

The user must have modify permission on the containing directory. The
safety switch of the segment must be off.

2-43 AG93



hes_$delete_acl_entries hes_$delete_acl_entries

Name: hcs_$delete_acl_entries

The hcs_$delete_acl_entries entry point is called to delete specified
entries from an access control list (ACL) for a segment.

Usage

declare hes_$delete_acl_entries entry (char(¥), char(¥*), ptr, fixed bin,
fixed bin(35));

call hes_¢$delete_acl_entries (dir_name, entryname, acl_ptr, acl_count,
code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment. (Input)

3. acl_ptr points to a user-filled delete_acl structure. See "Notes" below.
(Input)

L. acl_count is the number of ACL entries in the delete_acl structure. See
"Notes" below. (Input)

5. code is a storage system status code. (Qutput)

Notes

The following is the delete_acl structure:

del 1 delete_acl (acl_count) aligned based (acl_ptr),
2 access_name char(32),
2 status_code fixed bin(35);
where:
1. access_name is the access name (in the form of Person_id.Project_id.tag)
that identifies the ACL entry to be deleted.
2. status_code is a storage system status code for this ACL entry only.

If code is returned as error_table_$argerr, then the erroneous ACL entries
in the delete_acl structure have status_code set to an appropriate error code.
No processing is performed.

If an access name cannot be matched to a name already on the segment's ACL,
then the status_code for that ACL entry in the delete_acl structure is set to
error_table_$user_not_found. Processing continues to the end of the delete_acl
structure and code is returned as 0.

9/75 2-44 AG93A



~

hes_$delete_dir_acl_entries hes_¢$delete_dir_acl_entries

Name: hes_$delete_dir_acl_entries

The hes_g$delete_dir_acl_entries entry point is wused to delete specified
entries from an access control 1list (ACL) for a directory. The delete_acl
structure used by this subroutine is discussed in the description of the
hes_$delete_acl_entries entry point.

Usage

declare hes_¢$delete_dir_acl_entries entry (char(#*), char(¥*), ptr,
fixed bin, fixed bin(35));

call hes_$delete_dir_acl_entries (dir_name, entryname, acl_ptr, acl_count,

code) ;
where:
1. dir_name is the pathname of the containing directory. (Input)
2. entryname is the entryname of the directory. (Input)
3. acl_ptr points to a user-filled delete_acl structure. (Input)
by, acl_count is the number of ACL entries 1in the delete_acl structure.
(Input)
5. code is a storage system status code (see "Note" below). (Output)

The storage system status code 1is interpreted as described in the
hes_$delete_acl_entries entry point.

2-45 AG93



hes_$fs_get_mode hes_$fs_get_mode

Name: hes_$fs_get_mode

The hes_$fs_get_mode entry point returns the access mode of the user on a
specified segment at the current validation level. For a discussion of access
modes, see "Access Control" in Section III of the MPM Reference Guide.

Usage

declare hes_¢$fs_get_mode entry (ptr, fixed bin(5), fixed bin(35));

call hes_$fs_get_mode (seg_ptr, mode, code);

where:

1. seg_ptr is a pointer to the segment whose access mode is to be returned.

(Input)
2. mode is the access mode returned (see "Notes" below). (Output)
3. code is a storage system status code. (Output)

Notes

The mode and ring brackets for the segment in the user’s address space are
used in combination with the user’s current validation level to determine the
mode the user would have if he accessed this segment. For a discussion of ring
brackets and validation level, see "Intraprocess Access Control (Rings)" in
Section III of the MPM Subsystem Writers’® Guide.

The mode argument 1is a fixed binary number where the desired mode is
encoded with one access mode specified by each bit. The modes are:

read the 8-bit is 1 (i.e., 01000Db)
execute the 4-bit is 1 (i.e., 00100Db)
write the 2-bit is 1 (i.e., 00010Db)
The unused bits are reserved for unimplemented attributes and must be 0. For

example, rw access is 01010b in binary form, and 10 in decimal form.

2-46 AG93



P

hes_$fs_get_path_name hes_$fs_get_path_name

Name: hecs_$fs_get_path_name

The hes_$fs_get_path_name entry point, given a pointer to a segment,
returns a pathname for the segment, with the directory and entryname portions of
the pathname separated. The entryname returned is the primary name on the
entry. See "Segment, Directory, and Link Attributes" in Section III of the MPM
Reference Guide for a discussion of primary names.

Usage
declare hcs_$fs_get_path_name entry (ptr, char(*), fixed bin, char(#),
fixed bin(35));

call hes_$fs_get_path_name (seg_ptr, dir_name, ldn, entryname, code);

where:

1. seg_ptr is a pointer to the segment. (Input)

2. dir_name is the pathname of the containing directory. If the 1length of
the pathname to be returned 1is greater than the length of
dir_name, the pathname is truncated. To avoid this problem, the
length of dir_name should be 168 characters. (Output)

3. ldn is the number of nonblank characters in dir_name. (Output)

4, entryname is the primary entryname of the segment. If the length of the
entryname to be returned is greater than the length of entryname,
the entryname is truncated. To avoid this problen, the length of
entryname should be 32 characters. (Output)

5. code is a storage system status code. (Output)

2-47 AG93



hes_$fs_get_ref_name hes_$fs_get_ref_name

Name: hes_$fs_get_ref name

The hes_$fs_get_ref name entry point returns a specified (i.e., first,
second, etc.,) reference name for a specified segment. See "Constructing and
Interpreting Names" in Section I of the MPM Commands.

Usage

declare hes_$fs_get_ref_name entry (ptr, fixed bin, char (%), fixed
bin(35));

call hes_$fs_get_ref_name (seg_ptr, count, ref_name, code);

where:

1. seg_ptr is a pointer to the segment whose reference name is sought.
(Input)

2. count specifies which reference name is to be returned, where 1 is
the name by which the segment has most recently been made
known, 2 is the next most recent name, etec. (Input)

3. ref_name is the desired reference name. (Output)

y, code is a storage system status code. (Output)

Note

If the count argument is larger than the total number of names, the name by
which the segment was originally made known is returned and code is set to
error_table_g$ref_name_count_too_big.

2-48 AGY3



S~

hes_$fs_get_seg_ptr hes_$fs_get_seg_ptr

Name: hecs_$fs_get_seg_ptr

The hes_$fs_get_seg_ptr entry point, given a reference name of a segment,
returns a pointer to the base of the segment. For a discussion of reference
names, see "Constructing and Interpreting Names" in Section I of the MPM
Commands.

Usage

declare hecs_$fs_get_seg_ptr entry (char(¥), ptr, fixed bin(35));

call hes_$fs_get_seg _ptr (ref_name, seg_ptr, code);

where:

1. ref_name 1is the reference name of a segment for which a pointer is to be
returned. (Input)

2. seg_ptr is a pointer to the base of the segment. (Output)

3. code is a storage system status code. (Output)

If the reference name is accessible from the user’s current validation
level, seg_ptr is returned pointing to the segment; otherwise, it is null. For
more information on rings and validation levels refer to "Intraprocess Access
Control (Rings)" in Section III of the MPM Subsystem Writers’® Guide.

2-49 AG93



hes_$fs_move_file hes_$fs_move_file

Name: hes_$fs_move_file

The hes_$fs_move_file entry point moves the data associated with one
segment 1in the storage system hierarchy to another segment given the pathnames
of the segments in question. The old segment remains, but with a zero 1length.

Usage

declare hcs_$fs_move_file entry (char(*), char(*), fixed bin(2), char(¥),
char(*), fixed bin(35));

call hes_$fs_move_file (from_dir, from_entry, at_sw, to_dir, to_entry,

code);
where:
1. from_dir is the pathname of the directory in which from_entry
resides. (Input)
2. from_entry is the entryname of the segment from which data is to be
moved. (Input) v
3. at_sw is a 2-bit append/truncate switch. (Input)
append (first bit)
0 if to_entry does not exist, the code
error_table_$noentry is returned
1 if to_entry does not exist, it is created
truncate (second bit)
0 if to_entry is not a zero 1length segment, the
code error_table_$clnzero is returned
1 if to_entry is not a zero length segment, it is
truncated before moving
y, to_dir is the pathname of the directory in which to_entry
resides. (Input)
5. to_entry is the entryname of the segment to which data is to be
moved. (Input)
6. code is a storage system status code. It can have the value

error_table_$no_move if either entry is not a segment, or
one of the values described in "Notes" below.

2-50 AG93



hes_$fs_move_file

hes_$fs_move_file

N
Notes
The hes_$fs_move_seg entry point performs the same function given
to the segments in question instead of pathnames.
The code error_table_g$no_move is returned if:
1. The user does not have rw access to to_entry.
2. The user does not have read access to from_entry.
3. The max_length of to_entry is less than the length of from_entry.
4, There is not enough quota in to_dir to perform the move.
N
N

pointers

AG93



hcs_$get_access_class_seg

Name: hcs_$get_access_class_seg

The hcs_$get_access_class_seg subroutine, given
access class of that pointer's corresponding segment.

Usage

declare hcs_$get_access_class_seg entry (ptr,
bin(35));

hes_$get_access_class_seg

a pointer, returns the

bit(72) aligned, fixed

call hes_$get_access_class_seg (seg_ptr, access_class, code);

where:

1. seg_ptr is the pointer to the segment. (Input)

2. access_class 1is the access class of the segment. (Output)
3. code is a storage system status code. (Qutput)

9/75 2-52.2

AG93A

!



hes_$initiate hes_$initiate

Name: hcs_$initiate

The hes_$initiate entry point, given a pathname and a reference name,
causes the segment defined by the pathname to be made known and the given
reference name initiated. If the reserved segment switch is on, then the
segment pointer is input and the segment is made known with that segment number.
In this case, the wuser supplies the initial segment number. If the reserved
segment switch is off, a segment number is assigned and returned as a pointer.

Usage

declare hes_$initiate entry (char(*), char(¥), char(¥), fixed bin(1),
fixed bin(2), ptr, fixed bin(35));

call hes_$initiate (dir_name, entryname, ref_name, seg_sw, copy_ctl_sw,
seg_ptr, code);

where:
1. dir_name is the pathname of the containing directory. (Input)
2. entryname is the entryname of the segment. (Input)
3. ref_name is the reference name. If it is zero length, the segment
is initiated with a null reference name. (Input)
4. seg_sw is the reserved segment switch. (Input)
0 if no segment number has been reserved
1 if a segment number was reserved
5. copy_ctl_sw specifies whether or not a copy of the segment is
generated. (Input)
0 create a copy of the specified segment (in the process
directory) if the segment has its copy switch on (1)
1 do not create a copy even if the segment has its copy
switch on
2 create a copy even if the segment has its copy switch
off
6. seg_ptr is a pointer to the segment. (Input or Output)
Input if seg_sw is on (1)
Output if seg_sw is off (0)
7. code is a storage system status code. (Output)

9/175 2-53 AG93A




hes_$initiate_count hes_$initiate_count

system-defined ceiling. If entryname is not already known, and no problems are
encountered, seg_ptr contains a valid pointer and code is 0. If ref_name has
already been initiated in the current ring, the code is returned as
error_table_¢$namedup and the seg_ptr argument contains a valid pointer to the
segment already initiated. If the seg_ptr argument contains a nonnull pointer,
.the bit_count argument is set to the bit count of the segment to which seg_ptr
points.

9/175 2-54.2 AG93A

«

(C

((



~

hes_$list_acl hes_$1list_acl

Name: hes_$1list_acl

The hes_$list_acl entry point is used either. to 1list the entire access
control 1list (ACL) of a segment or to return the access modes of specified ACL
entries. The segment_acl structure used by this entry point is discussed in the
description of hes_$add_acl_entries.

Usage

declare hes_$list_acl entry (char(¥*), char(%*), ptr, ptr, ptr, fixed bin,
fixed bin(35));

call hes_$list_acl (dir_name, entryname, area_ptr, area_ret_ptr, acl_ptr,
acl_count, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment. (Input)

3. area_ptr points to an area in which the list of ACL entries, which
make up the entire ACL of the segment, is allocated. If
area_ptr is null, then the user wants access modes for
certain ACL entries; these will be specified by the
structure pointed to by acl_ptr (see below). (Input)

4. area_ret_ptr points to the start of the allocated list of ACL entries.
(Output)

5. acl_ptr if area_ptr is null, then acl_ptr points to an ACL
structure, segment_acl, into which mode information is
placed for the access names specified in that same
structure. (Input)

6. acl_count is the number of entries in the ACL structure. (Input or
Qutput)

Input is the number of entries in the ACL structure
identified by acl_ptr

Output is the number of entries in the segment_acl
structure allocated in the area pointed to by
area_ptr, if area_ptr is not null

7. code is a storage system status code. (Output)

Note

If acl_ptr is used to obtain modes for specified access names (rather than
for all access names on a segment), then each ACL entry in the segment_acl
structure either has status_code set to 0 and contains the segment's mode or has
status_code set to error_table_g$user_not_found and contains a mode of O.

9/75 2-55 AG93A



This page intentionally left blank.

9/75 2-56 AG93A



hes_$list_dir_acl hes_$1list_dir_acl

Name: hecs_$list_dir_acl

The hes_$list_dir_acl entry point is used either to list the entire access
control 1list (ACL) of a directory or to return the access modes for specified
entries. The dir_acl structure described in hes_$add_dir_acl_entries is used by
this entry point.

Usage
declare hes_$list_dir_acl entry (char(*), char(¥*), ptr, ptr, ptr,
fixed bin, fixed bin(35));
call hes_$list_dir_acl (dir_name, entryname, area_ptr, area_ret_ptr,
acl_ptr, acl_count, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the directory. (Input)

3. area_ptr points to an area in which the list of ACL entries, which
make up the entire ACL of the directory, is allocated. If
area_ptr is null, then the user wants access modes for
certain ACL entries; these will be specified by the
structure pointed to by acl_ptr (see below). (Input)

g, area_ret_ptr points to the start of the allocated list of ACL entries.
(Output)

5. acl_ptr if area_ptr is null, then acl_ptr points to an ACL
structure, dir_acl, into which mode information is placed
for the access names specified in that same structure.
(Input)

6. acl_count is the number of entries in the ACL structure. (Input or
Output)

Input is the number of entries in the ACL structure
identified by acl_ptr

Output is the number of entries in the dir_acl structure
allocated in the area pointed to by area_ptr, if
area_ptr is not null

7. code is a storage system status code. (Output)

Note

If acl_ptr is used to obtain modes for specified access names (rather than
for all access names on a directory), then each ACL entry in the dir_acl
structure either has status_code set to 0 and contains the directory's mode or
has status_code set to error_table_$user_not_found and contains a mode of O.

9/75 2-57 AG93A



This page intentionally left blank.

9/75 2-58 AG93A



//' SN

hes_¢$make_ptr hes_$make_ptr

Name: hecs_$make_ptr

The hes_$make ptr entry point, when given a reference name and an entry
point name, returns a pointer to a specified entry point. If the reference name
has not yet been initiated, the search rules are used to find a segment with a
name the same as the reference name. The segment 1is made known and the
reference name initiated.

Usage

declare hes_s$make_ptr entry (ptr, char(*), char(*), ptr, fixed bin(35));

call hcs_j$make_ptr (ref_ptr, entryname, entry_point_name, entry_point_ptr,

code) ;

where:

1. ref_ptr is a pointer to the segment that 1is considered the
referencing procedure. See "Notes" below. (Input)

2. entryname is the entryname of the segment. (Input)

3. entry_point_name is the name of the entry point to be located. (Input)

4, entry_point_ptr is the pointer to the segment entry point specified by
entryname and entry_point_name. (Output)

5. code is a storage system status code., (Output)

Notes

The directory in which the segment pointed to by ref_ptr is located is used
as the referencing directory for the standard search rules. If ref_ptr is null,

then the standard search rule specifying the referencing directory is skipped.

See "System Libraries and Search Rules" in Section III of the MPM Reference
Guide. Normally ref_ptr is null.

The entryname and entry_point_name - arguments are nonvarying character
strings with a length of up to 32 characters., They need not be aligned and can
be blank padded.

If a null string is given for the entry_point_name argument, then a pointer
to the base of the segment is returned. In any case, the segment identified by
entryname is made known to the process with the entryname argument initiated as
a reference name. If an error is encountered upon return, the entry_point_ptr
argument is null and an error code is given.

To invoke the procedure entry point pointed to by entry_point_ptr, use
cu_$gen_call or cu_$ptr_call. (See the description of the cu_ subroutine in the
MPM Subsystem Writers’ Guide.)

2-59 AG93



hes_$make_seg hcs_$make_seg

Name: hecs_$make_seg

The hes_$make_seg entry point creates a segment with a specified entryname
in a specified directory. Once the segment is created, it is made known to the
process and a pointer to the segment is returned to the caller. If the segment
already exists or is already known, a nonzero code is returned; however, a
pointer to the segment is still returned.

Usage

declare hcs_$make_seg entry (char(*), char(*), char(¥), fixed bin(5), ptr,
fixed bin(35));

call hes_$make_seg (dir_name, entryname, ref_name, mode, seg_ptr, code);

where:
1. dir_name 1is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment. (Input)

3. ref_name is the desired reference name or a null character string ("").
(Input)
4, mode specifies the mode for this user. See "Notes" in the description

of hes_$append_branch for more information on modes. (Input)
5. seg_ptr is a pointer to the created segment. (Output)

6. code is a storage system status code. (Output) It may be one of the
following:

error_table_$namedup if the specified segment already exists or the
specified reference name has already been
initiated

error_table_g$segknown if the specified segment is already known

Notes

If dir_name is null, the process directory is used. If the entryname is
null, a unique name is generated. The segment is made known and the reference
name, ref_name, is initiated.

See also "Constructing and Interpreting Names" in Section I of the MPM
Commands.

2-60 AG93



hes_$replace_acl hes_$replace_acl

Name: hcs_$replace_acl

The hes_$replace_acl entry point replaces an entire access control 1list
(ACL) for a segment with a user-provided ACL, and can optionally add an entry
for *.SysDaemon.¥* with mode rw to the new ACL. The segment_acl structure
described in hes_$add_acl_entries is used by this entry point.

Usage

declare hcs_$replace_acl entry (char(¥), char(¥*), ptr, fixed bin, bit(1),
fixed bin(35));

call hcs_$replace_acl (dir_name, entryname, acl_ptr, acl_count,
no_sysdaemon_sw, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment. (Input)

3. acl_ptr points to the user supplied segment_acl structure that is
to replace the current ACL. (Input)

by, acl_count is the number of entries in the segment_acl structure.
(Input)

5. no_sysdaemon_sw 1is a switch that indicates whether an rw *,SysDaemon.¥
entry is to be put on the ACL of the segment after the
existing ACL has been deleted and before the user-supplied
segment_acl entries are added. (Input)

"0"b adds rw ¥.SysDaemon.¥ entry
"{"p  replaces the existing ACL with only the
user-supplied segment_acl

6. code is a storage system status code. (Output)

Notes

If acl_count is zero, then the existing ACL is deleted and only the action
indicated (if any) by the no_sysdaemon_sw switch is performed. If acl_count is
greater than zero, processing of the segment_acl entries is performed top to
bottom, allowing later entries to overwrite previous ones if the access_name in
the segment_acl structure is identical.

If the segment is a gate (see "Intraprocess Access Control--Rings" in
Section III of the MPM Reference Guide) and if the validation level 1is greater
than ring 1, access is restricted to the same project as that of the user or to
the SysDaemon project. If the replacement ACL is in error, then no processing
is performed and the subroutine returns the code
error_table_$invalid_project_for_gate.

9/75 2-61 AG93A



hes_$replace_dir_acl hes_$replace_dir_acl

Name: hes_$replace_dir_acl

The hes_$replace_dir_acl entry point replaces an entire access control list
(ACL) for a directory with a user-provided ACL, and can optionally add an entry
for *.SysDaemon.* with mode sma to the new ACL. The dir_acl structure
described in hes_$add_dir_acl_entries is used by this entry point.

:
:

declare hcs_$replace_dir_acl entry (char(¥), char(¥), ptr, fixed bin,
bit(1), fixed bin(35));

call hes_$replace_dir_acl (dir_name, entryname, acl_ptr, acl_count,
no_sysdaemon_sw, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the directory. (Input)

3. acl_ptr points to a user-supplied dir_acl structure that 1is to
replace the current ACL. (Input)

4, acl_count contains the number of entries in the dir_acl structure.
(Input)

5. no_sysdaemon_sw 1is a switch that indicates whether the sma *.SysDaemon.¥
entry is put on the ACL of the directory after the
existing ACL of the directory has been deleted and before
the user-supplied dir_acl entries are added. (Input)

"0"b adds sma ¥*.SysDaemon.¥* entry
"1"b replaces the existing ACL with only the
user-supplied dir_acl

6. code is a storage system status code. (Output)

Notes

If acl_count is zero, then the existing ACL is deleted and only the action
indicated (if any) by the no_sysdaemon_sw switch is performed. If acl_count is
greater than zero, processing of the dir_acl entries is performed top to bottom,
allowing 1later entries to overwrite previous ones if the access_name in the
dir_acl structure is identical.

If the replacement ACL is in error, no processing is performed for that ACL
entry in the dir_acl structure and the subroutine returns the code
error_table_$nam_err or error_table_$invalid_ascii, whichever is appropriate.

9/75 2-62 AG93A



s

hes_$set_be hes_$set_be

Name: hecs_$set_be

The hes_$set_bec entry point sets the bit count of a specified segment. It
also sets the bit count author of that segment to be the user who called it.

Usage

declare hes_$set_be entry (char(*), char(¥*), fixed bin(24), fixed bin(35));

call hes_¢$set_be (dir_name, entryname, bit_count, code) ;

where:

1. dir_name is the pathname of the containing directory. (Input)
2. entryname is the entryname of the segment. (Input)
3. bit_count is the new bit count of the segment. (Input)

y, code is a storage system status code. (Output)

Notes

The user must have write access on the segment, but does not need modify
permission on the containing directory.

The hcs_$set_be_seg entry point performs the same function, when a pointer
to the segment is provided instead of the pathname.

2-63 AG93



hes_$set_be_seg hes_$set_be_seg

Name: hes_$set_be_seg

The hecs_$set_bce_seg entry point, given a pointer to the segment, sets the
bit count of a segment in the storage system. It also sets that segment “s bit
count author to be the user who called it.

Usage

declare hecs_$set_be_seg entry (ptr, fixed bin(24), fixed bin(35));

call hes_$set_be_seg (seg_ptr, bit_count, code);

where:

1. seg_ptr is a pointer to the segment whose bit count is to be changed.
(Input)

2. bit_count is the new bit count of the segment. (Input)
3. code is a storage system status code. (Output)

Notes

The wuser must have write access on the segment, but does not need modify
permission with respect to the containing directory.

The hcs_$set_be entry point performs the same function, when provided with
a pathname of a segment rather than a pointer.

2-64 AG93



o~

hes_$status_ hes_$status_

Name: hes_$status_

The hes_$status_ entry point returns various items of information about a
specified directory entry.

The main entry point (hes_$status_) returns the most often needed
information about a specified entry.

Usage
declare hes_$status_ entry (char(¥*), char(*), fixed bin(1), ptr, ptr,
fixed bin(35));

call hes_$status_ (dir_name, entryname, chase, entry_ptr, area_ptr, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment, directory, or link. (Input)

3. chase indicates whether the information returned is about a 1link or
about the entry to which the link points. (Input)
0 returns link information
1 returns information about the entry to which the link points

4, entry_ptr is a pointer to the structure in which information is returned.
See "Entry Information" below. (Input)

5. area_ptr 1is a pointer to the area in which names are returned. If the
pointer is null, no names are returned. See "Notes" below.
(Input)

6. code is a storage system status code. See "Access Requirements"

below. (Output

2-65 AG93



hes_$status_

Entry Informati

hes_$status_

on

The argume
segment or dire

del 1 bran
(2 type
nnam
nrp
dtm
dtu
mode
pad
reco

PPN DN

where:

1. type

2. nnames

3. nrp

4, dtm

5. dtu

6. mode

7. pad

8. records

nt entry_ptr points to the following structure if the entry is a
ctory:

ch based (entry_ptr) aligned,
bit(2),
es fixed bin(15),
bit(18),
bit (36),
bit(36),
bit(5),
bit(13),
rds fixed bin(17)) unaligned; :

specifies the type of entry:
"00"b 1link

"01"b segment

"10"b directory

specifies the number of names for this entry.

is a pointer (relative to the base of the segment containing the
user-specified free storage area) to an array of names.

contains the date and time the segment or directory was last
modified.

contains the date and time the segment or directory was last
used.

contains the effective mode of the segment with respect to the
current user’s validation level. See the hes_$append_branchx
entry point for a description of modes. For directory entries,
the 4-bit is 1 (i.e., 00100Db).

is unused space in this structure.

contains the number of 1024-word records of secondary storage
assigned to the segment or directory.

2-66 AG93

o~



~~

hes_$status_ hes_$status_

The argument entry_ptr points to the following structure if the entry is a

link:
del 1 link based (entry_ptr) aligned,
(2 type bit(2),
2 nnames fixed bin(15),
2 nrp bit(13),
2 dtem bit (36),
2 dtd bit(36),
2 pnl fixed bin(17),
2 pnrp bit(13)) unaligned;
where:
1. t ype is as above.
2. nnames is as above.
3. nrp is as above.
g, dtem contains the date and time the link was last modified.
5¢ dtd contains the date and time the link was last dumped.
6. pnl specifies the length in characters of the link pathname.
7. pnrp is a pointer (relative to the base of the segment containing
the user-specified free storage area) to the link pathname.
Notes

The user must provide the storage space required by the above structures.
The hes_$status_ entry point merely fills them in.

If the area_ptr argument is not null, entrynames are returned in the
following structure allocated in the user-specified area:

declare names (nnames) char(32) aligned based (np);
where np is equal to ptr (area_ptr, entry_ptr->entry.nrp).

The first name in this array is defined as the primary name of the entry.

2-67 AG93



hes_$status_ hes_$status_

Link pathnames are returned in the following structure allocated in the
user-specified area:

declare pathname char(pnl) aligned based (lp);

where 1lp is equal to ptr (area_ptr, entry_ptr->link.nrp).

The wuser must provide an area that is 1large enough to accommodate a
reasonable number of names.

Access Requirements

The user must have status permission on the containing directory in order
to obtain complete information.

If the wuser lacks status permission but has nonnull access to a segment,
the following per-segment attributes can be returned: type, effective mode, bit
count, records, and current length. In this instance, if either the
hes_¢$status_ or hes_$status_long entry point is called, the code
error_table_$no_s_permission is returned to indicate that incomplete information
has been returned.

Entry: hes_$status_long

This entry point returns most user-accessible information about a specified
entry. The access required to use this entry point is the same as that required
by hes_$status_ and described in "Access Requirements" above.

Usage
declare hecs_$status_long entry (char(*), char(*), fixed bin(1), ptr, ptr,
fixed bin(35));
call hes_$status_long (dir_name, entryname, chase, entry_ptr, area_ptr,

code) ;

where the arguments are the same as in the hes_$status_ entry point.

2-68 AG93



P~~~
:

A~

hes_¢$status_

Notes

hes_$status_

The entry_ptr argument points to the same structure as described under Fhe
hes_$status_  entry point if the entry is a link. It points to the following

structure if the entry is a segment or directory:

del 1 branch based (entry_ptr) aligned,
(2 type bit(2),
2 nnames fixed bin(15),
2 nrp bit(18),
2 dtm bit(36),
2 dtu bit(36),
2 mode bit(5),
2 raw_mode bit(5),
2 padi bit(8),
2 records fixed bin(17),
2 dtd bit(36),
2 dtem bit(36),
2 pad? bit(36),
2 cur_len fixed bin(11),
2 bit_count bit(24),
2 did bit(4),
2 pad3 bit (4),
2 copy_sw bit (1),
2 tpd_sw bit(1),
2 padl bit(9),
2 rbs (0:2) fixed bin(5),
2 uid bit(36)) unaligned;
where:

1. type is as above.

2. nnames is as above.

3. nrp is as above.

dtm is as above.

5. dtu is as above.

6. mode is as above.

7. raw_mode is the mode of the segment with respect to
without regard to ring brackets,
hcs_$append_branchx entry point for a description
For directory entries, the 4-bit is 1 (i.e.,

8. padil is unused space in this structure.

9. records is as above.

10. dtd is the data and time the segment was last dumped.
11. dtem is the date and time the entry was last modified.
12. pade is unused space in this structure.
13. cur_len is the current length of the segment in

records.,
T7/76 2-69

current user

See the
of modes.

00100b).

of 1024-word

AG93C



hes_$status_

4.
15.

16.
17.
18.

19.
20.

21.

Entry:

a directory and entryname.

bit_count

did

pad3
COopy_sw

tpd_sw

padi

rbs

uid

is the bit count associated with the segment.

specifies the secondary storage device (if any) on
segment currently resides.

is unused space in this structure.

contains the setting of the segment copy switch.
contains the setting of the segment
switch. If set, no pages
device.

is unused space in this structure.

contains the ring brackets of the segment right
the 6-bit field.

is the segment unique identifier.

hes_$status_minf

which

hes_$status_

the

transparent_paging_device
of the segment go on the paging

justified in

The hes_$status_minf entry point returns the bit count and entry type given

on the entry is required to use this entry point.

Usage

declare

hes_$status_minf

entry (char(¥*), char (%),

fixed bin(2), fixed bin(24), fixed bin(35));

call hes_$status_minf (dir_name, entryname, chase, type, bit_count,

where:

1.

T7/76

dir_name
entryname
chase

type

bit_count

code

is the same as for

is the same as for

is the same as for the hcs_$status_ entry point above.

specifies the type of entry. (Output) It can be:
0 1link

1 segment

2 directory

is the bit count. (Output)

is a storage system status code. (Output)

fixed

the hes_$status_ entry point above.

the hes_$status_ entry point above.

Status permission on the directory or nonnull access

bin(1),

code);

(Input)
(Input)

(Input)

AG93C



hes_$status_ hes_$status_

Entry: hes_$status_mins

This entry point returns the bit count and entry type given a pointer to
the segment. Status permission on the directory or nonnull access to the
segment is required to use this entry point.

Usage

declare hes_$status_mins entry (ptr, fixed bin(2), fixed bin(24),
fixed bin(35));

call hes_$status_mins (seg_ptr, type, bit_count, code) ;

where:

1. seg_ptr points to the segment about which information is desired.
(Input)

2. type is as above. (Output)

3. bit_count is as above. (Output)

y, code is as above. (Output)

7/76 2-T1 AG93C



hes_$terminate_file hes_$terminate_file

Name: hes_$terminate_file

The hes_$terminate_file entry point, given the pathname of a segment,
terminates all the reference names of that segment and then removes the segment
from the address space of the process (makes the segment unknown). For a
discussion of reference names, see "Constructing and Interpreting Names" in
Section I of the MPM Commands.

Usage

declare hecs_$terminate_file entry (char(¥*), char(¥*), fixed bin(1),
fixed bin(35));

call hes_$terminate_file (dir_name, entryname, seg_sw, code);

where:

1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment. (Input)

3. seg_sw is the reserved segment switch. (Input)
1 saves segment number in the reserved segment list
0 does not save segment number

y, code is a storage system status code. (Output)

Notes

The hes_$terminate_seg entry point performs the same operation given a
pointer to a segment instead of a pathname; the hecs_$terminate_name and
hes_$terminate_noname entry points terminate a single reference name.

The term_ subroutine performs the same operation as the hes_$terminate_file
entry point, but, in addition, causes links to the entry’s linkage section to be
unsnapped. Use of the term_ subroutine is recommended.

The reference names that are removed are those for which the ring level
associated with the name is greater than or equal to the validation level of the
process. If any reference names exist that are associated with a ring level
less than the validation level of the process, the segment is not made unknown
and the code is returned as error_table_$bad_ring brackets. For a discussion of
rings, refer to "Intraprocess Access Control (Rings)" in Section III of the MPM
Subsystem Writers” Guide.

2=T2 AGI93

W



—~

hes_$terminate_name hes_$terminate_name

Name: hecs_$terminate_name

The hes_$terminate_name entry point terminates one reference name from a
segment and decrements a count of initiated reference names for the segment. If
the count of initiated reference names for the given segment is at a
system-defined ceiling, the entry point returns the status code
error_table_$usage_count_too_large and does not decrement the count of initiated
reference names for the given segment. If the hcs_$terminate_name entry point
reduces the count of initiated reference names for that segment to zero, the
segment is removed from the address space of the process (made unknown). For a
discussion of reference names, see "Constructing and Interpreting Names" in
Section I of the MPM Commands.

Usage

declare hes_$terminate_name entry (char(*), fixed bin(35));

call hcs_$terminate_name (ref_name, code);

where:

1. ref_name 1is the reference name to be terminated. (Input)
2. code is a storage system status code. (Output)

Notes

The hes_$terminate_noname entry point terminates a null reference name from
a specified segment; the hes_$terminate_file and hes_$terminate_seg entry
points terminate all reference names of a segment and make the segment unknown,
given its pathname or segment number, respectively.

The term_$single_refname entry point (see the description of the term_
subroutine) performs the same operation as the hcs_$terminate_name entry point,
unsnapping links as well. Use of the term_ subroutine is recommended.

9/75 2-73 AG93A



hes_$terminate_noname hes_$terminate_noname

Name: hecs_$terminate_noname

The hcs_$terminate_noname entry point terminates a null reference name from
the specified segment and decrements a count of initiated reference names for
the segment. If the count of initiated reference names for the given segment is
at a system-defined ceiling, the entry point returns the status code
error_table_$usage_count_too_large and does not decrement the count of initiated
reference names for the given segment. If the hes_$terminate_noname entry point
reduces the count of initiated reference names of the segment to zero, the
segment is removed from the address space of the process (made unknown). This
entry point is used to clean up after making a segment known and initiating a
single null reference name; see also the hes_$initiate, hes_$initiate_count,
and hcs_$make_seg entry points. For a discussion of reference names, see
"Constructing and Interpreting Names" in Section I of the MPM Commands.

Usage

declare hes_$terminate_noname entry (ptr, fixed bin(35));

call hes_$terminate_noname (seg_ptr, code);

where:
1. seg_ptr is a pointer to the segment. (Input)

2. code is a storage system status code. (Output)

Note

The hes_$terminate_name entry point terminates a specified nonnull
reference name; hes_$terminate_file and hes_$terminate_seg entry points
terminate all reference names of a segment and make the segment unknown, given
its pathname or segment number, respectively.

9/75 2-Th AG93A



~~

hes_$terminate_seg hes_$terminate_seg

Name: hcs_$terminate_seg

The hes_$terminate_seg entry point, given a pointer to a segment in the
current process, terminates all the reference names of that segment and then
removes the segment from the address space of the process (makes it unknown).
For a discussion of reference names, see the "Constructing and Interpreting
Names" in Section I of the MPM Commands.

Usage

declare hes_$terminate_seg entry (ptr, fixed bin(1), fixed bin(35));

call hes_$terminate_seg (seg_ptr, seg_sw, code);

where:
1. seg_ptr is a pointer to the segment to be terminated. (Input)
2. seg_sw is the reserved segment switch. (Input)
1 saves segment number in reserved segment list
0 does not save segment number
3. code is a storage system status code. (Output)
Notes

The hes_$terminate_file entry point performs the same operation given the
pathname of a segment instead of a pointer; the hcs_$terminate_name and
hes_$terminate_noname entry points terminate a single reference name.

The term_$seg_ptr entry point (see the term_ subroutine description)
performs the same operation as the hes_$terminate_seg entry point, wunsnapping
links as well. Use of the term_ subroutine is recommended.

The only reference names that are removed are those for which the ring
level associated with the name is greater than or equal to the validation level
of the process. If any reference names exist that are associated with a ring
level less than the validation level of the process, the segment is not made
unknown and the code is returned as error_table_$bad_ring_brackets. For a
discussion of rings refer to "Intraprocess Access Control (Rings)" in
Section III of the MPM Subsystem Writers’” Guide.

2-75 AG93



hes_$truncate_file hes_$truncate_file

Name: hes_$truncate_file

The hes_$truncate_file entry point, given a pathname, truncates a segment
to a specified length, If the segment is already shorter than the specified
length, no truncation is done. The effect of truncating a segment is to store
0°s in the words beyond the specified length.

Usage

declare hes_$truncate_file entry (char(#*), char(¥*), fixed bin(18), fixed
bin(35));

call hcs_$truncate_file (dir_name, entryname, length, code);

where:
1. dir_name is the pathname of the containing directory. (Input)

2. entryname is the entryname of the segment. (Input)

3. length is the new length of the segment in words. (Input)
4, code is a storage system status code. (Output)
Notes

The user must have write access on the segment in order to truncate it.

A directory cannot be truncated.

A segment 1is truncated as follows: all full pages after the page
containing the last word of the new length segment (as defined by the length
argument) are discarded. The remainder of the page containing the last word is
converted to 0's.

Bit count is not automatically set by the hes_$truncate_file entry point.
If desired, bit count may be set by using hes_$set_be.

The hes_$truncate_seg entry point performs the same function when given a
pointer to the segment instead of the pathname.

2-76 - AG93



7~

hes_$truncate_seg hes_$truncate_seg

Name: hes_$truncate_seg

The hes_$truncate_seg entry point, given a pointer, truncates a segment to
a specified length. If the segment is already shorter than the specified
length, no truncation is done., The effect of truncating a segment is to store
0’s in the words beyond the specified length.

Usage

declare hes_$truncate_seg entry (ptr, fixed bin(18), fixed bin(35));

call hes_$truncate_seg (seg _ptr, length, code);

where:

1. seg_ptr is a pointer to the segment to be truncated. Only the segment
number portion of the pointer is used. (Input)

2. length is the new length of the segment in words. (Input)

3. code is a storage system status code, (Output)

Notes

The user must have write access on the segment in order to truncate it.

A directory cannot be truncated.

A segment 1is truncated as follows: all full pages after the page
containing the last word of the new length (as defined by the 1length argument)
segment are discarded. The remainder of the page containing the last word is
converted to 0 s.

Bit count is not automatically set by the hecs_$truncate_seg entry point.
If desired, bit count may be set by using hcs_$set_bc_seg.

The hes_$truncate_file entry point performs the same function when given
the pathname of the segment instead of the pointer.

2=TT AG93



ioa_ ioa_

Name: ioa_

The ioa_ subroutine is wused for formatting a character string from
fixed-point numbers, floating-point numbers, character strings, bit strings, and
pointers. The character string 1is constructed according to the control
characters entered in a "control string", and a variable list of arguments that
are either edited into the output string in character form, or are used in some
way to control the formatting of the string. The entire procedure is similar to
formatted output in PL/I or FORTRAN.

Several entry points are provided in the ioa_ subroutine to provide various
options concerning the formatting and disposition of the resulting string.
Since all of the entry points can be called with a variable number of arguments,
they must be declared with the following attributes:

declare ioa_ entry options (variable);

This entry declaration is assumed in all of the entries discussed.

Calls to the ioa_ subroutine normally append a newline character to the end
of the string created. 1In order to be able to suppress this, each type of ioa_
call has a corresponding entry point (with "nnl", for no newline character, at
the end of the name) that does the same editing, but does not append the newline
character.

Entries: ioa_, ioa_$nnl

These two entry points format the input data according to the control
string and write the resulting string on the I/0 switch wuser_output. The
resulting string is truncated if it exceeds 256 characters.

Usage

call ioa_ (control_string, argl, ..., argn);

where:

1. control_string 1is a character string (char(*)) of text and control
characters that determines how the resulting string is to
be formed. (Input)

2. argi are a variable number of arguments (possibly none) that are

either edited into the resulting string, or used to control
the formatting of it. (Input)

2-78 AG93

)



ioa_ ioa_

Entries: ioa_$ioa_stream, ioa_$ioa_stream_nnl

These two entries format the resulting string as above, but the strigg is
then written to an I/0 switch specified by the switchname argument in the
parameter list.

Usage

call ioa_$ioa_stream (switchname, control_string, argl, ..., argn);

where:

1. switchname is the name of the 1I/0 switch (char(*)) to which the
resulting character string is to be written. (Input)

2. control_string is as above. (Input)

3. argi are as above. (Input)

Entries: 1ioa_$ioa_switch, ioa_$ioca_switch_nnl

These two entry points are identical to the ioa_$ioa_stream and
ioa_$ioa_stream_nnl entry points except that the I/0 switch is specified by a
pointer to its control block, rather than by name. Since this saves an extra
call in the I/0 system to locate the control block, these calls are more
efficient than ioa_¢$ioa_stream calls.

Usage

call ioa_$ioa_switch (iocb_ptr, control_string, argl, ..., argn);

where:

1. iocb_ptr is a pointer to the switch's control block. (Input)

2. control_string is as described in the ioa_ entry point above. (Input)
3. argi are as described in the ioa_ entry point above. (Input)

Entries: ioa_$rs, ioa_¢$rsnnl, ioa_$rsnp, ioa_$rsnpnnl

These entry points edit the resulting string as in the above calls, but
instead of being written to an I/0 switch as the other ioca_ entry points, the
string 1is passed back to the caller. The user program must provide a character
string variable into which the string can be returned. This variable may be
varying or nonvarying, aligned or unaligned, and of any length. The resulting
string is truncated if it exceeds the length of the character string provided.

9/75 2-79 AG93A



ioa_ ioa_

If the output string is nonvarying, it is padded on the right with spaces if it
is not completely filled; however, if the call is to either the ioa_$rsnp or
ioa_$rsnpnnl entry points, the padding is not done. Both the ioa_¢$rsnnl and
ioa_$rsnpnnl entry points omit the newline character in the normal way. All of
these entry points also return the length of the significant data edited into
the string.

Usage
call ioa_$rs (control_string, ret_string, len, argl, ..., argn);

where:

1. control_string is as described in the ioa_ entry point above. (Input)

2. ret_string is a string (char(*) or char(*) varying) into which the
output string will be edited. (Output)

3. len is the 1length of the returned string (fixed bin(17)).
(Output)

4, argi are as described in the ioa_ entry point above. (Input)

Entry: ioa_¢$general_rs

This entry point 1is wused to provide the ioa_ subroutine with a control
string and format arguments taken from a previously created argument 1list to
which a pointer has been obtained.

Usage

declare ioa_g$general_rs entry (ptr, fixed bin, fixed bin, char(¥*), fixed
bin, bit(1) aligned, bit(1) aligned);

call ioa_$general_rs (arglist_ptr, cs_argno, ff_argno, ret_string, len,
pad_sw, nl_sw);

where:

1. arglist_ptr is a pointer to the argument 1list from which the control
string and format arguments are to be taken. (Input)

2. cs_argno is the argument number of the control string in the argument
list pointed to by arglist_ptr. (Input)

3. ff _argno is the argument number of the first format argument in the
argument list pointed to by arglist_ptr. (Input)

g, ret_string contains the formatted string. It should be large enough to

allow for expansion. (Output)

9/75 2-80 AG93A



ioa ioa_

5. len specifies the number of significant characters in ret_string.
(Output)

6. pad_sw is a switch to indicate whether the formatted string is
padded. (Input)
"Ollb no
nqnp yes

7. nl_sw is a switch to indicate whether a newline character is
appended to the formatted string. (Input)
"O!lb no
"1"b yes

Control Strings

A1l calls to the ioa_ subroutine require a control-string argument. This
is a character string consisting of either text to be copied, ioa_ control
codes, or both. The control codes are always identified by a leading circumflex
character ("). Processing by the ioa_ subroutine begins by scanning the control
string until a circumflex is found or the end of the string is reached. Any
text (including any blanks) passed over is then copied to the output string.
The control code is then interpreted and executed. Generally, this results in
the next argument being edited into the output string in some character format.
The scan then begins again for the next control code. Editing stops when the
end of the control string is reached.

The ioa_ subroutine recognizes the following control codes:

~d nd edit a fixed-point number
“i “ni edit a fixed-point number (same as "d)
“f “nf edit a floating-point number
“n.df
©.df
"e “ne edit a floating-point number in exponential form
"o “no edit a fixed-point number in octal
“w “nw edit a full machine word in octal
"a “na edit a character string in ASCII
“b “nb edit a bit string
"n.db
~.db
“A edit an acc string (ALM ASCII with count)
“p edit a pointer
"1 “ni insert formfeed character(s)
"/ “n/ insert newline character(s)

3/76 2-81 AG93B



10a ioa

“- “n- insert horizontal tab character(s)
“x  “nx insert space character(s)

T "n” insert circumflex character(s)

"R insert red ribbon shift character
"B insert black ribbon shift character
"s “ns skip argument(s)

“( “n( start an iteration loop

™) end an iteration loop

When n and/or d appear in a control code, they generally refer to a field
width or a repetition factor, although the exact meaning depends on the control
code with which they appear (see the detailed explanations that follow). The n
or d must be specified as unsigned decimal integers, or as the letter "vy". If
"v" is used, the next argument in the argument list (which must be fixed binary)
is used to obtain the actual value. If this argument happens to be negative, 0
is assumed.

When no field width is specified, the ioa_ subroutine uses a field large
enough to contain the data to be edited. If a field size is specified that is
too small to contain the data, the ioa_ subroutine ignores it and selects a
field width of the appropriate size.

The control codes in the control string must correspond to the types of
arguments 1in the argument 1list. For example, a "d control code requires a
corresponding numeric argument. If there is a mismatch between a control code
and the type of the associated argument, the output for that field is a string
of asterisks.

An invalid control code, an isolated circumflex character ("), or a control
code that requires an argument after the argument list is exhausted, is inserted
into the output string unchanged.

The numeric control codes ("d, "i, "f, and "e) take any PL/I numeric data
type and use standard PL/I conversion routines, if necessary. (If the argument
is complex, only the real part of the argument is used.) It should be
understood that these control codes, although similar to standard PL/I and
FORTRAN format codes, do not, in general, give the same result. Also, most
control codes ignore the field width if the argument is too large to fit into
the field provided.

T7/76 2-82 ‘ AG93C



—~

v
/

ioa_

9/75

ioa_

Each of the control codes that result in an argument being edited is
explained in detail in the following paragraphs.

~d

takes any numeric argument and edits it as a decimal integer. If n is
not specified, the number is printed with no leading spaces or 0's.
Negative numbers have a leading minus sign. If n is specified, the
number is right justified with leading spaces. If the number is too
large to fit in the specified field width, the field width is ignored.

is the same as "d, for compatibility with FORTRAN and PL/I formats.

takes any numeric argument and edits it as a floating-point number
with a decimal point. If n is omitted, P+1 is assumed, where P is the
precision of the argument and the extra space is for the decimal
point. If the number requires more than n-1 digits to express, it is
edited using “e format. The value d represents the number of digits
after the decimal point. If d is omitted, any significant digits
after the decimal point are printed, with trailing 0's omitted. If d
is specified, the fractional part of the number is truncated, or
padded with extra 0's to achieve the desired result. If n is not
specified, the number is printed with no leading spaces or 0's (except
for a 0 before the decimal point for numbers less than 1). If n is
specified, the number is right justified with leading spaces.

takes any numeric argument and edits it in floating-point exponential
format. The number is always left justified in the field provided,
using a standard format. The value n, if used, only has meaning if
the edited number is less than n characters in length. 1In this case,
spaces are added to the end of the edited number to fill the field.
The standard format that is always used is:

+n.dddde+nn

The first character is a space for positive numbers, or "-" for
negative numbers. There is always one digit before the decimal point.
The number of digits after the decimal point are enough to express the
full precision of the argument. Trailing 0's in the mantissa are
omitted. The exponent sign is omitted if positive. Leading 0's in
the exponent are also omitted.

takes a fixed-point argument and edits it in octal. The format is the
same as explained for "d.

takes any argument and edits one machine word in octal. Leading O0's
are printed. The word is interpreted as an unsigned 36-bit quantity.
If n is omitted, 12 1is assumed. If n>12, the number is
right-justified with 1leading spaces. If n<12, the ioa_ subroutine
attempts to suppress the first 12-n digits. If any of these digits
are nonzero, the ioa_ subroutine chooses a value of pn such that all
significant digits are printed.

edits a character string in ASCII. Trailing spaces in the argument
are 1ignored. If n is specified, the string is left justified and
padded on the right with spaces. If the string (without any trailing
spaces) is larger than n characters, the field width is ignored.

2-83 AG93A



ioa_

9/75

ioa_

assumes bit string input and converts it to character form. The value

d, when specified, is the byte size expressed in bits. It may take on

only the values 1 through 4. If d is omitted or less than 1, 1 1is
assumed. If d is greater than 4, 4 is assumed. A d of 1 results in
the string being output in binary; a d of 2 results in quarternary
(base 4) output; a d of 3 results in octal output; and a d of 4
results in hexadecimal output. If the field width, n, is omitted, the
length of the string divided by d is used. If n is specified, the
string is truncated on the right, or padded on the right with spaces,
whichever is appropriate.

edits an acc string (ALM ASCII with count). The parameter
corresponding to the "A should be a pointer to the string. Trailing
Spaces are not omitted, and no field width is accepted. This control
code is used to print characters in the ALM acc format.

edits a pointer, entry variable, or label variable in a standard
format, as follows:

sss|ooo(bb)

where sss is the segment number in octal, ocoo is the offset in octal,
and bb is the bit offset in decimal, all with leading 0's suppressed.
If the bit offset is 0, the (bb) portion of the pointer is omitted.

causes the next argument in the parameter list to be ignored. A “ns
causes the next n arguments to be ignored; "0s does nothing. If n is
greater than or equal to the number of arguments remaining, the rest
of the argument list is ignored.

starts an iteration loop, which must be ended by a corresponding ~).
A "n( specifies that the loop 1is to be repeated n times. The ~(
specifies an indefinite iteration that is repeated until the argument
list 1is exhausted. A “0( causes everything in the control string up
to the corresponding ") to be ignored. Iterations may be nested up to
four deep. The exact rules under which an iteration terminates are
explained under 7).

marks the end of an iteration loop and either terminates the iteration
or causes it to be repeated, depending on the following rules:

1. If n is not specified (the iteration is indefinite), then it is
only repeated if there is something in the control string between
the “( and the ") that requires an argument to be processed
(such as "a, "v/, etc.), and there are arguments remaining that
have not been processed. If either of these conditions are not
met, the loop terminates.

2. If n is specified and there is nothing in the control string
between the ~“( and the ") that requires an argument to be
processed, the iteration is repeated until the repetition count
is exhausted. If another repetition requires an argument, the
loop is repeated only if arguments remain to be processed,
regardless of the value of n.

2-84 AG93A



7

~

ica_ ioa

Array Parameters

The arguments that are edited into the control string by .the ioa_
subroutine may be arrays. If this is the case, the ioa_ subroutine selects
elements from the array until all array elements are used before going to the
next argument in the argument list. All conventions apply to elements of arrays
that apply to simple scalar arguments. In particular, the s control code skips
the next element of an array if the ioa_ subroutine is currently in the process
of selecting elements from an array. The arrays are scanned in the order that
PL/I allocates the elements, i.e., row major order. :

Examples

The following examples illustrate many, but not all, of the features of the
ioa_ subroutine. The symbol ¥ is used to represent a space in places where the
space is significant.

Source: call ioa_("This is "a the third of "a","Mon","July");

Result: This is Mon the third of July

Source: call ioa_("date "d/"d/"d, time "d:"d",6,20,74,2014,36);
Result: date 6/20/T74, time 2014:36

Source: call ioa_("overflow at “p",ptr);

Result: overflow at 2714671

Source: call ioa_(""2("2("w 7)7/7)",w1l,w2,w3,wl);
Result: 112233445566 000033004400

000000000001 7TTTTTTTTTTT
Source: bit="110111000011"Db;

call ioa_(""vxoct=".3b hex=".4pb",6,bit,bit);

Result: BBBPBBr¥oct=6703¥hex=DC3

~

Source: call ioa_(""f e "f "5.2f",1.0,1,1e-10,1);
Result: 1. B1.e0 B1.e-10 ¥1.00

Source: call ioa_(""("d ")",1,2,56,198,U456.7,3e6);
Result: 1 2 56 198 456 3000000

3/76 2-84,1 AG93B



Source: abs_sw=0;
call ioa_$rsnnl(""v(Absentee user ")"a "a logged out.",
out_str,out_cnt,abs_sw,"LeValley","Shop");

Result: out_cnt=25;
out_str="LeValley Shop logged out "

Source: abs_sw=1; /% Using same call to ioa_$rsnnl */
call ioa_$rsnnl(""v(Absentee user ")"a "a logged out.",
out_str,out_cnt,abs_sw,"LeValley","Shop");

Result: out_cnt=39;
out str:"Absentee user LeValley Shop logged out."
Source: del a(2,2)fixed bin init(1,2,3,4);
call ioca_(""d"s "d "w",a);
Result: 1 3 000000000004
Source: del b(6:9)fixed bin init(6,7 8,9);
call ioa_(""v("3d ")",dim(b,1),b);

Result: 6 7 8 9

Summary of Entry Points

ica_, ioa_$nnl

call ioa_ (control_string, argl, ..., argn);

ioa_$ioca_stream, ioa_$ioca_stream_nnl

call ioa_¢$ioa_stream (switchname, control_string, argl, ..., argn);

ica_$ioa_switch, ioca_$ioa_switch_nnl

call ioa_$ioa_switeh (iocb_ptr, control_string, argl, ..., argn);

ioa_$rs, ioa_$rsnnl, ioa_$rsnp, ioa_$rsnpnnl

call ioca_$rs (control_string, ret_string, len, argl, ..., argn);
ioa_$general_rs

call ioa_$general_rs (arglist_ptr, as_argno, ff_argno, ret_string,
len, pad_sw, nl_sw);

7/76 2-84 .2 AG93C



P

iox_

Name: 1iox

This subroutine performs I/0 operations and some related functions. The
user should be familiar with the contents of "Multics Input/Output System" and
"File Input/Output" in Section V of the MPM Reference Guide. Most of the entry
points to the iox_ subroutine are described in the following pages; however,
those entry points generally needed only by users who are writing their own I/0
modules are described in Section VII of the MPM Subsystem Writers' Guide.

Each entry point documented here has an argument denoting the particular
I/0 switch involved in the operation. For an entry point that requires the 1I/0
switches to be in the attached state, the description of the entry point's
function applies only when the switch is attached to a file or is attached to a
device via the I/0 module tty_. For the meaning of operations on a switch
attached as a synonym, see "Multics Input/Output System" in Section V of the MPM
Reference Guide. For other attachments, see the description of the particular
I/0 module. (The standard system I/0 modules are described in Section III of
this document.)

When an entry point requires the I/0 switch to be opened, and it 1is not
open, the state of the switch is not changed, and the code error_table_$not_open
is returned. If the I/0 switch is open but not in one of the allowed opening
modes, the state of the switch 1is not changed, and the code that is returned 1is
error_table_$no_operation.

Operations pertaining to files use four position designators for reference:
the next byte, the next record, the current record, and the key for insertion.
Their use is explained in "File Input/Output" in Section V of the MPM Reference
Guide. (Refer to Section V of the MPM Reference Guide for more information on
opening modes and how they relate to other I/0 operations, file attachments,
position designators, file types, and I/0 modules.)

Several operations involve the use of a buffer. A buffer is a block of
storage provided by the caller of the operation as the target for input or the
source for output. A buffer must be byte aligned; i.e., its bit address and bit
length must both be evenly divisible by 9.

The code returned by an entry point may be other than a standard status
code in cases where the I/0O switch is attached via a nonstandard 1I/0 module.
(For a list of the most often encountered standard status codes, see Section VII
of the MPM Reference Guide.)

Entry: iox_$attach_ptr

This entry point attaches an I/0 switch in accordance with a specified
attach description. The form of an attach description is given in "Multics
Input/Output System" in Section V of the MPM Reference Guide. If the switch is
not in the detached state, its state is not changed, and the code,
error_table_$not_detached is returned.

T7/76 2-85 AG93C



iox_

iox_

Usage

declare iox_$attach_ptr entry (ptr, char(¥), ptr, fixed bin(35));

call iox_$attach_ptr (iocb_ptr, atd, ref_ptr, code);
where:
1. iocb_ptr points to the switch's control block. (Input)
2. atd is the attach description. (Input)
3. ref_ptr is a pointer to the referencing procedure, used by the search

rules to find an I/0 module. (Input)

y, code is an I/0 system status code. (Output)

Entry: iox_$attach_name

This entry point is the same as the iox_$attach_ptr entry point except that
the I/0 switch 1is designated by name and a pointer to its control block is
returned. The control block is created if it does not already exist.

Usage

declare iox_$attach_name entry (char(*), ptr, char(*), ptr, fixed bin(35));

call iox_$attach_name (switchname, iocb_ptr, atd, ref_ptr, code);

where:

1. switchname 1is the name of the I/0 switch. (Input)

2. iocb_ptr points to the switch's control block. (Output)
3. atd is the attach description. (Input)

4, ref_ptr is a pointer to the referencing procedure, used by the search
rules to find an I/0 module. (Input)

5. code is an I/0 system status code. (Output)

Entry: iox_$close

This entry point closes an 1/0 switch. If the switch is not open, its
state is not changed, and the code error_table_$not_open is returned.

T7/76 2-86 AG93C



o~

iox iox_

Usage

declare iox_$close entry (ptr, fixed bin(35));

call iox_g$close (iocb_ptr, code);

where:
1. iocb_ptr points to the switch's control block. (Input)
2. code is an I/0 system status code. (Output)

Entry: iox_$control

This entry point performs a specified control order on an I/0 switch. The
allowed control orders depend on the attachment of the switch. If a control
order is not supported for a particular attachment, the code
error_table_¢$no_operation is returned if the switch is open. If the switch is
closed, the code error_table_$not_open or error_table_$no_operation is returned,
the latter code only by I/0 modules that support orders with the switch closed.
For details on control orders, see the description of the particular I/0 module
used in the attach operation.

Sage

declare iox_$control entry (ptr, char(*), ptr, fixed bin(35));

call iox_gcontrol (iocb_ptr, order, info_ptr, code);

where:

1. iocb_ptr points to the switch's control block. (Input)

2. order is the name of the control order. (Input)

3. info_ptr is null or points to data whose form depends on the attachment.
(Input)

4, code is an I/0 system status code. (Output)

Entry: 1iox_$delete_record

This entry point deletes the current record from the file to which an I/0
switch 1is attached. The switch must be open for sequential_update,
keyed_sequential_update, or direct_update. If the current record is null, the
file's position is not changed, and the code error_table_$no_record is returned.

2-87 AG93



iox .
- iox_

O

If the file is open for direct_update and the deletion takes place, the
current and next record positions are set to null. For keyed_sequential update,
the current and next record positions are set to the record folloﬁing the
deleted record or to end of file (if there is no such record).

Usage

declare iox_¢$delete_record entry (ptr, fixed bin(35));

call iox_$delete_record (iocb_ptr, code) ;

where:
1. iocb_ptr points to the switch's control block. (Input)
2. code is an I/0 system status code. (Output)

Entry: iox_$detach_ioch

This entry point detaches an I/0 switch. If the switch 1is already
detached, 1its state 1is not changed, and the code error_table_$not_attached is
returned. If the switch is open, its state is not changed, and the code J

error_table_$not_closed is returned.

Usage

declare iox_$detach_iocb entry (ptr, fixed(35));

call iox_g$detach_iocb (iocb_ptr, code);

where:
1. ioeb_ptr points to the switch's control block. (Input)
2. code is an I/0 system status code. (Output)

Entry: iox_¢$find_iocb

This entry point returns a pointer to the control block for an I/O switch.
The control block is created if it does not already exist.

T7/76 2-88 AG93C



iox iox_

Usage

declare iox_$find_iocb entry (char(*), ptr, fixed bin(35));

call iox_$find_iocb (switchname, iocb_ptr, code);

where:
1. switchname is the name of the I/0 switch. (Input)
2. iocb_ptr points to the switch's control block. (Output)

3. code is an I/0 system status code. (Output)

Entry: 1lox_$get_chars

This entry point reads 9-bit bytes from the unstructured file or device to
which an I/0 switch is attached. The switch must be open for stream_input or
stream_input_output. The desired number of bytes, n, is specified in the call.
Some I/0 modules may actually read fewer than n bytes into the buffer, even
though n bytes are available from the file or device. In this case the code
error_table_$short_record is returned. When this code is returned, the caller
may again call the iox_g$get_chars entry point to get more bytes. The contents
of the buffer beyond the last byte read are undefined.

If the switch is attached to a file, bytes are read beginning with the next
byte, and the next byte position designator is advanced by the number of bytes
read. If fewer than n bytes remain in the file, the code
error_table_¢$short_record is returned, and the next byte position is set to end
of file. If the next byte position 1is already at end of file, the code
error_table_$end_of_info is returned.

Usage

declare %oxy?get_chars entry (ptr, ptr, fixed bin(21), fixed bin(21), fixed
bin(35));

call iox_$get_chars (iocb_ptr, buff_ptr, n, n_read, code);

where:

1. iocb_ptr points to the switch's control block. (Input)

2. buff_ptr points to the byte-aligned buffer into which bytes are to be

read. (Input)

3. n is the number of bytes to be read where n > 0. (Input)

2-89 AG93



iox_ iox

y, n_read is the number of bytes actually read. If code 1is 0, n_read
equals n. (Output)

5. code is an I/0 system status code. (Output)

Entry: iox_$get_line

This entry point reads 9-bit bytes from the unstructured file or device to
which an I/0 switch is attached. The switch must be open for stream_input or
stream_input_output. Bytes are read until the input buffer is filled, a newline
character is read, or end of file is reached, whichever occurs first. A code of
0 1is returned if and only if a newline character is read into the buffer (it
will be the last character read). If the input buffer is filled without reading
a newline character, the code error_table_$long_record is returned. The
contents of the buffer beyond the last byte read are undefined.

If the switch is attached to a file, bytes are read beginning with the next
byte, and the next byte position designator is advanced by the number of bytes
read. If the next byte is initially at end of file, the code
error_table_$end_of_info is returned. Otherwise, if the end of file is reached
without reading a newline character, the next byte position designator is set to
end of file and the code error_table_$short_record is returned.

Usage
declare %oxT?get_line entry (ptr, ptr, fixed bin(21), fixed bin(21), fixed
bin(35));

call iox_$get_line (iocb_ptr, buff_ptr, buff_len, n_read, code);

where:

—_
.

iocb_ptr points to the switch's control block. (Input)

2. buff_ptr points to a byte-aligned buffer. (Input)

3. buff_len is the length of the buffer in bytes. (Input)

4, n_read is the number of bytes read into the buffer. (Output)
5. code is an I/0 system status code. (Output)

3/76 2-90 AG93B



jox_ iox_

Entry: iox_$modes

This entry point is used to obtain or set modes that affect the subsequent
behavior of an I1/0 switch. The switch must be attached via an I/0 module that
supports modes. If the switch is not attached, the code
error_table_$not_attached is returned. If the switch is attached, but modes are
not supported, the code error_table_$no_operation is returned for an open switch
and the code error_table_$not_open is returned for a closed switch. If the
switeh is attached and modes are supported, but an invalid mode is given, the
code error_table_$bad_mode is returned.

Each mode is a sequence of nonblank characters. A mode string 1is a
sequence of modes, separated by commas and containing no blanks. For a list of
valid modes, see the particular I/0 module involved.

Usage

declare iox_$modes entry (ptr, char(*), char(¥), fixed bin(35));

call iox_$modes (iocb_ptr, new_modes, old_modes, code);

where:

1. iocb_ptr points to the switch's control block. (Input)

2. new_modes is the mode string containing the modes to be set. Other modes
are not affected. If this argument is the null string, no modes
are changed. (Input)

3. old_modes is the string of modes in force when the call is made. If this
.argument has length =zero, this information is not returned.
(Output)

y, code is an I/0 system status code. (Output)

9/75 2-91 AG93A



This page intentionally left blank.

9/75 AG93A



iox_ iox_

Entrya iox_$move_attach

t

This entry point moves an attachment from one I/0 switch, s1, to ano@her
I/0 switch, s2. The s1 switch must be in the attached state and the s2 swltch
must be in the detached state when the entry point is called. If not, either
the code error_table_¢$not_attached (s1) or error_table_$not_detached (s2) is
returned and no change is made to either I/0 switch.

Moving the attachment moves the attach description and open description of
the s1 switch to the s2 switch. All pointer values and entry values are copied
from the control block of the s1 switch to the control block of the s2 switch.
(These values are 1listed in "I/O Control Block" in Section IV of the MPM
Subsystem Writers' Guide.) Attach and open data blocks maintained by the I/0
module (if the s1 switch is attached) are not affected. Finally, the s1 switch
is set to the detached state and iox_¢$propagate (described in the MPM Subsystem
Writers' Guide) is called for both I/0 switches.

\

|

Usage

declare iox_¢$move_attach entry (ptr, ptr, fixed(35));

call iox_¢$move_attach (ioeb_ptr_1, iocb_ptr_2, code);

where:

1. iocb_ptr_1 points to the control block for the I/0O switch that is
. currently attached. This switch is identified as s1 in the
: discussion above. (Input)

2. iocb_ptr_2 points to the control block for the I/0 switch that the wuser
! intends to attach. This switch is identified as s2 in the

discussion above. (Input)
3. code is an I/0 system status code. (Output)

Entry: iox_$open

This entry point opens an I/0 switch. The switch must be attached via an
I/0 module that supports the specified opening mode, and it must be in the
closed state. If the switch is not attached, its state is not changed, and the
code error_table_¢$not_attached is returned. If the switch is already open, the
code error_table_$not_closed is returned.

If the switch is attached to a file, the appropriate file position
designators are established, and an existing file may be replaced by an empty
file. This replacement may be avoided by specifying extension of the file 1in
the attach description. See "File Input/Output"” in Section IV of the MPM
Reference Guide for full details.

9/75 2-91.1 AG93A



iox_ iox

Usage

declare iox_$open (ptr, fixed bin, bit (1) aligned, fixed bin(35));

call iox_$open (iocb_ptr, mode, unused, code);

where:

1. iocb_ptr points to the switch's control block. (Input)

2. mode is the'number assigned to the mode as shown in Table A-1 in
Appendix A, e.g., 1 for stream_input, 2 for stream_output.
(Input)

3. unused must be "0"b. (Input)

y, code is an I/0 system status code. (Output)

Entry: iox_¢$position

For an I/0 switch attached to a file, this entry point positions to the
beginning or end of the file, or skips forward or backward over a specified
number of lines (unstructured files) or records (structured files). For an I/0
switch attached to a device, this operation reads and discards characters until
a specified number of newline characters have been skipped.

The switch must be opened in one of the following modes:

stream_input
stream_input_output
sequential_input
sequential_input_output
sequential_update
keyed_sequential_input
keyed_sequential_update

In addition, for keyed openings, the next record position should not be null.
If it is null, the code error_table_$no_record is returned.

2-92 AG93



iox_ iox_

Usage

declare iox_$position entry (ptr, fixed bin, fixed bin(21), fixed bin(35));

call iox_¢$position (ioeb_ptr, type, n, code);

where:
1. iocb_ptr points to the switch's control block. (Input)
2. type identifies the type of positioning. (Input)
-1 goes to the beginning of the file
+1 goes to the end of the file
0 skips newline characters or records
3. n is the number of lines or records to be skipped (forward skip) or
the negative of that number (backward skip). It may be 0.
(Input)
y, code is an I/0 system status code. (Output)
Notes

Positioning to the beginning of a nonempty file sets the next record
position at the first record in the file (sequential and keyed_sequential
openings) or sets the next byte position at the first byte in the file (stream
openings). Positioning to the end of a file, or to the beginning of an empty
file, sets the relevant position designator to the end-of-file position.

Successively skipping records (sequential and keyed_sequential openings)
moves the next record position forward or backward by the specified number of
records, n, provided that many records exist in the indicated direction. For
example, suppose that when the iox_$position entry point is called, the next
record is the mth record in the file, and n records are to be skipped. Then for
a successful forward skip, the file must contain at least (m+n-1) records, and
the next record will be set to record (m+n) (if there are at least m+n records
in the file) or to end of file (if there are m+n-1 or fewer records in the
file). For a successful backward skip, m must be greater than n, and the next
record position is set to record (m-n).

Successively skipping forward over newline characters (stream openings)
advances the next byte position over the specified number, n, of newline
characters, leaving it at the byte following the nth newline character or at end
of file (if the nth newline character is the last byte in the file).
Successively skipping backward over n newline characters moves the next byte
position backward to the nth preceding newline character and then moves it
further backward as far as is possible without encountering another newline
character. The effect is to set the next byte position to the first character
in a line.

If the relevant part of the file contains too few records or newline
characters, the next record position or next byte position is set to the first
record or byte (backward skip with nonempty file) or end of file (all other
cases), and the code error_table_$end_of_info is returned.

2-93 AG93



iox_ iox_

When a call to the iox_$position entry point specifies skipping zero lines
or records, the skip is successful, and the next record position is undisturbed.

In openings for update, the current record position is set to the resulting
next record or null if the next record is at end of file.

In the case of keyed_sequential_update, the key for insertion is set to
null.

Entry: iox_$put_chars

This entry point writes a specified number of 9-bit bytes to the
unstructured file or device to which an I/0 switch is attached. The switch must
be open for stream_output or stream_input_output.

In the case of a file, if the opening is for stream_output, the bytes are
simply added at the end of the file. However, if the opening 1is for
stream_input_output, and the next byte position is not at end of file, the file
is first truncated so that the byte preceding the next byte becomes the last
byte in the file. The bytes being written are then added at the end of the
file, and the next byte position is set to end of file.

Truncation can be suppressed in storage system files by specifying an
appropriate attach option. See the description of the vfile_ I/0 module in
Section III for details.

sSage

declare iox_$put_chars entry (ptr, ptr, fixed bin(21), fixed bin(35));

call iox_¢$put_chars (iocb_ptr, buff_ptr, n, code);

where:

1. iocb_ptr points to the switch's control block. (Input)

2. buff_ptr points to a byte-aligned buffer containing the bytes to be
written. (Input)

3. n is the number of bytes to be written where n > 0. (Input)

y, code is an I/0 system status code. (Output)

3/76 2-94 AG93B



iox_ iox_

Entry: iox_¢$read_key

This entry point returns both the key and length of the next record in an
indexed file attached to an I/0 switch. The switch must be open for
keyed_sequential_input or keyed_sequential_update. If the next record position
is at end of file, the code error_table_$end_of_info is returned. If the next
record position is null, the code error_table_$no_record is returned. The next
record position is unchanged and the current record position is set to the next
record if the operation is successful; otherwise, the current record position
is set to null.

Usage

declare iox_$read_key entry (ptr, char(256) varying, fixed bin(21), fixed
bin(35));

call iox_$read_key (iocb_ptr, key, rec_len, code);

where:
1. iocb_ptr points to the switch's control block. (Input)
key is the next record's key. (Output)

rec_len is the next record's length in bytes. (Output)

= w N

. code is an I/0 system status code. (Output)

Entry: iox_$read_length

This entry point returns the length of the next record in a structured file

attached to an I/0 switch. The switch must be opened in one of the following
modes:

sequential_input
sequential_input_output
sequential_update
keyed_sequential_input
keyed_sequential_update
direct_input
direct_update

3/76 2-95 AG93B



iox_ iox

If the next record position is at end of file, the code error_table_$end_of_info
is returned. If the next record position is null, the code
error_table_g$no_record is returned. The next record position is unchanged and
the current record position is set to the next record if the operation is
successful; otherwise, the current record position is set to null.

Usage

declare iox_$read_length entry (ptr, fixed bin(21), fixed bin(35));

call iox_¢$read_length (iocb_ptr, rec_len, code);

where:
1. iocb_ptr points to the switch's control block. (Input)
2. rec_len is the next record's length in bytes. (Output)

3. code is an I/0 system status code. (Output)

Entry: iox_$read_record

This entry point reads the next record in a structured file to which an I/0
switch is attached. The switch must be opened in one of the following modes:

sequential_input
sequential_input_output
sequential_update
keyed_sequential_input
keyed_sequential_update
direct_input
direct_update

The read is successful if the next record position is at a record. If the next
record position is at end of file, the code error_table_$end_of_info is
returned. If the next record position is null, the code error_table_$no_record
is returned.

In sequential and keyed_sequential openings, a successful read advances
the next record position by one record; an unsuccessful read leaves it at the
end of file or null. In direct openings, this operation always sets the next
record position to null. In openings for update, a successful read sets the
current record position to the record just read; an unsuccessful read sets it to
null. In openings for keyed_sequential_update and direct_update, the key for
insertion is always set to null.

If the record is too long for the specified buffer, the first part of the
record is read into the buffer, and the code error_table_$long_record is
returned. As far as setting position indicators is concerned, this is
considered a successful read. In all cases, the contents of the buffer beyond
the last byte read are undefined.

3/76 2-96 AGI93B



—~

/
/

iox_ iox_

Usage

declare iox_$read_record entry (ptr, ptr, fixed bin(21), fixed bin(21),
fixed bin(35));

call iox_$read_record (iocb_ptr, buff_ptr, buff_len, rec_len, code);

where:
1. iocb_ptr points to the switch's control block. (Input)

2. buff_ptr points to a byte-aligned buffer into which the record is to be
read. (Input)

3. buff_len is the length of the buffer in bytes. (Input)

y, rec_len is the length of the record in bytes. (Output)

5. code is an I/0 system status code. (Output)
Entry: iox_$rewrite_record

This entry point replaces the current record in a structured file to which
an I/0 switch is attached. The switch must be open for sequential_update,
keyed_sequential_update, or direct_update. If the current record position is
null, the code error_table_g$no_record is returned.

For keyed_sequential_update and sequential_update, this operation sets the
next record position to the record immediately following the current record or
to end of file (if no such record exists). (It is possible that the next record
position may already be at this point). For direct_update, the next record
position is set to null. No other changes are made to the position designators.

Usage

declare iox_$rewrite_record entry (ptr, ptr, fixed bin(21), fixed bin(35));

call iox_$rewrite_record (iocb_ptr, buff_ptr, rec_len, code);

where:
1. iocb_ptr points to the switch's control block. (Input)

2. buff_ptr points to a byte-aligned buffer containing the new record.
(Input)

3. rec_len is the length of the new record. (Input)

y, code is an I/0 system status code. (Output)

3/76 2-97 AG93B



iox__ iox_

Entry: iox_$seek_key

This entry point searches for a record with a given key in an indexed file
to which an I/0 switch is attached. It also serves to define the key for a
record to be added by a following write_record operation. The switch must be
opened in one of the following modes:

keyed_sequential_input
keyed_sequential_output
keyed_sequential_update
direct_input
direct_output
direct_update

For keyed_sequential_output, the given key should be greater (according to
the rules for character-string comparison) than the key of the last record in
the file. 1If it is, the code error_table_$no_record is returned, and the key
for insertion is set to the given key. Otherwise, the code
error_table_$key_order is returned, and the key for insertion is set to null.

For other openings, this entry point performs as follows:

1. If the file contains a record with the given key, a code of 0 is
returned, the record's 1length is returned, the next record position
and current record position are set to the record, and the key for
insertion 1is set to null. (Not all of these position designators are
applicable in all openings.)

2. If the file does not contain a record with the given key, the code
error_table_$no_record is returned, the next record position and
current record position are set to null, and the key for insertion is

set to the given key. (Not all of these position designators are
applicable in all openings.)

sSage

declare iox_¢$seek_key entry (ptr, char(256) varying, fixed bin(21), fixed
bin(35));

call iox_¢$seek_key (iocb_ptr, key, rec_len, code);

where:

1. iocb_ptr points to the switch's control block. (Input)

2. key contains the given key. All trailing blanks are removed from key
to obtain_ the given key, and the result may be the null string.
(Input)

3. rec_len is the length in bytes of the record with the given key.
(Output)

y, code is an I/0 system status code. (Output)

3/76 2-98 AG93B



.

7~

iox_ iox_

Entry: iox_$write_record

This entry point adds a record to a structured file to which an I/0 switch
is attached. The switch must be opened in one of the following modes:

sequential_output
sequential_input_output
keyed_sequential_output
keyed_sequential_update
direct_output
direct_update

If the switch is open for sequential_output, the record is added at the end
of the file. If the switch is open for sequential_input_output, and the next
record position is not at the end of the file, the file is truncated so that the
record preceding the next record becomes the last record in the file. The new
record is then added at the end of the file.

Truncation can be suppressed in sequential_input_output, and write
operations can be performed in sequential_update openings of storage system
files. See the description of the vfile_ I/0 module for details.

If the switch is open for keyed_sequential_output,
keyed_sequential_update, direct_output, or direct_update, the key for insertion
designator should designate a key. If it does not, the code error_table_$no_key
is returned and nothing is changed. If there is a key for insertion, the new
record is added to the file with that key and the key for insertion is set to
null. For keyed_sequential_update, and sequential_update, the next record
position is set to the record immediately following the new record or to end of
file (if there is no such record). ~For keyed_sequential_update,
sequential_update, and direct_update, the current record position is set to the
new record.

Usage

declare iox_$write_record entry (ptr, ptr, fixed bin(21), fixed bin(35));

call iox_$write_record (iocb_ptr, buff_ptr, rec_len, code);

where:
1. iocb_ptr points to the switch's control block. (Input)

2. buff_ptr ?oints)to a byte-aligned buffer containing the new record.
Input ’

3. rec_len is the length of the new record in bytes. (Input)

4, code is an I/0 system status ccde. (Output)

3/76 2-99 AG93B



iox_

iox

Summary of Entry Points

call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call
call

where:

11.
12.
13.

14.

/76

iocb_

atd

iox_gattach_ptr (ref_ptr, atd, ref_ptr, code);
iox_$attach_name (switchname, iocb_ptr, atd, ref_ptr, code);
iox_$close (iocb_ptr, code);

iox_$control (iocb_ptr, order, info_ptr, code);
iox_$delete_record (iocb_ptr, code);

iox_$detach_iocb (iocb_ptr, code);

iox_$find_iocb (switchname, iocb_ptr, code);

iox_$get_chars (iocb_ptr, buff_ptr, nl, n_readl, code);
iox_$get_line (iocb_ptr, buff_ptr, buff_len, n_read2, code);
iox_¢$modes (iocb_ptr, new_modes, old_modes, code);
iox_$move_attach (iocb_ptr1, iocb_ptr2, code);

iox_$open (iocb_ptr, mode, unused, code);

iox_$position (iocb_ptr, type, n2, code);

iox_s$put_chars (ioeb_ptr, buff_ptr, n3, code);

iox_$read_key (iocb_ptr, keyl, rec_lenl, code);
iox_$read_length (iocb_ptr, rec_len1, code);
iox_$read_record (iocb_ptr, buff_ptr, buff_len, rec_len2, code) ;
iox_¢rewrite_record (iocb_ptr, buff_ptr, rec_len2, code);
iox_¢$seek_key (iocb_ptr, key2, rec_len3, code);
iox_$write_record (iocb_ptr, buff_ptr, rec_lenl, code);

ptr points to the switch's control block. (Input or Output)

is the attach description. (Input)

ref_ptr is a pointer to the referencing procedure, used by the search

code

rules to find an I/0 module. (Input)

is an I/0 system status code. (Output)

switchname is the name of the I/0 switch. (Input)

order

info_

buff_

ni

is the name of the control order. (Input)

ptr is null or points to data whose form depends on the attachment.
(Input)

ptr points to the byte-aligned buffer. (Input)

is the number of bytes to be read where n1>0. (Input)

n_read1l is the number of bytes actually read. If code is 0, n_read]

equals n1. (Output)

buff_len is the length of the buffer in bytes. (Input)

n_read?2 is the number of bytes read into the buffer. (Output)

new_modes is the mode string containing the modes to be set. Other modes

are not affected. If this argument is the null string, no
modes are changed. (Input)

old_modes is the string of modes in force when the call is made. If this

argument has length zero, this information is not returned.
(Qutput)

2-100 AG93C

O



~~

iox_

15.

16.

17.

18.
19.

20.

21.
22.
23.
24,
25.
26.

27.

T7/76

iocb_ptr1

iocb_ptr2

mode

unused

type

n2

n3

key1
rec_lenl
rec_len2
rec_len3

key?2

rec_lend

iox_

points to the control block for the I/0 switch that is
currently attached. (Input)

points to the control block for the I/0 switch that the user
intends to attach. (Input)

is the number assigned to the mode as shown in Table A-1 in
Appendix A, e.g., 1 for stream_input, 2 for stream_output.
(Input)
must be "0"b. (Input)
identifies the type of positioning. (Input)
-1 goes to the beginning of the file
+1 goes to the end of the file

0 skips newline characters or records

is the number of lines or records to be skipped (forward skip)
or the negative of that number (backward skip). It may be O.
(Input)
is the number of bytes to be written where n320. (Input)
is the next record's key. (Output)
is the next record's length in bytes. (Output)
is the length of the record in bytes. (Output)
is the length of the new record.' (Output)
contains the given key. All trailing blanks are removed from
key to obtain the given key, and the result may be the null
string. (Input)

is the length in bytes of the record with the given key.
(Output)

2-101 AG93C



This page intentionally left blank.

T7/76 AG93C



print_cobol_error_ print_cobol_error_

Name: print_cobol_error_

The print_cobol_error_ subroutine allows the COBOL programmer to display
the cause and location of a runtime error. It is meaningful only when called
from within a USE procedure in the DECLARATIVE section of a COBOL program. The
error information displayed pertains to the error causing the current execution
of the USE procedure. This is identical to the messages that would have been
printed on the terminal before aborting the program (i.e., signalling the
"error" condition) had no USE procedure been provided.

If the main entry point is used, the error information is displayed through
the user_output I/0 switch.

Usage

call "print_cobol_error_".

Entry: print_cobol_error_$switch

This entry point outputs the error information to a specified I/O0 switch.

Usage

01 switch-name pic x(32).

call "print_cobol_error_$switch"™ using switch-name.
where switch-name is the name of an I/0 switch that is open for output. This
includes user_output and error_output, as well as the I/0O switch associated with

any open external COBOL file, i.e., the internal-file-name as specified in the
SELECT clause of the ENVIRONMENT DIVISION. (Input)

9/75 2-101.1 AG93A



random_ random_

Name: random_

The random_ subroutine is a random number generator with entry points that,
given an input seed, generate a pseudo-random variable with a uniform,
exponential, or normal distribution. The seed is an optional input argument; if
it is not included in the call, an internal static variable is used and updated.

There are two sets of entry points to the random_ subroutine. For one set
of entry points, each call produces a single random number. To obtain a
sequence of random numbers with the desired distribution, repeated calls are
made, each time using the value of the seed, returned from a call, as the input
value of the seed for the next call in the sequence.

The second set of entry points returns an array with a sequence of random
numbers. The first element of the array is generated from the input seed. The
returned value of the seed is used to generate the next random number of the
sequence. The modification of the input seed value occurs once for each element
in the array. The programmer can obtain the same result by making one <call to
an array entry point having n elements or by making n calls to the corresponding
single random number entry point.

In addition, for the wuniform and normal distributions, there are entry
points that produce the negative random variables, either singly or as a
sequence. For any given seed, the random variable produced is negatively
correlated with that produced at the corresponding entry point.

Entry: random_$uniform

The random_$uniform entry point generates a random number with a value
between 0.0 and 1.0. The sequence of random numbers has a uniform distribution
on the interval 0 to 1.

Usage

declare random_$uniform entry (float bin(27));
call random_$uniform (random_no);
or
declare random_g$uniform entry (fixed bin(35), float bin(27));

call random_$uniform (seed, random_no);

2-102 AG93



random_ random_

where:
1. seed is the optional seed (see "Notes"). (Input or Output)
Input must be a nonzero positive integer; wused to
generate the random number
Output is the new value (modification of input value);
used to generate the next random number of the
sequence
2. random_no is the random number that is generated. (Output)
Entry: random_$uniform_seq

This entry point returns an array of random numbers from the uniform
sequence.

Usage

declare random_$uniform_seq entry ((#) float bin(27), fixed bin);
call random_$uniform_seq (array, array_size);
or

declare random_$uniform_seq entry (fixed bin(35), (*) float bin(27), fixed
bin);

call random_$uniform_seq (seed, array, array_size);

where:
1. seed is the optional seed (see "Notes"). (Input or Output)
Input must be a nonzero positive integer; used to
generate the first random number in the array
OQutput is the new value (modification of input value);
used to generate the next random number of the
sequence; the modification of the input value
occurs array_size times
2. array (n) is an array of the generated random numbers where n is
greater than or equal to array_size. (Output)
3. array_size specifies the number of random variables to be returned in

array. (Input)

2-103 AGAR



random__ random__

Entry: random_$uniform_ant

This entry point generates a wuniformly distributed random number,
random_ant, that is negatively correlated with the random_no produced by the
random_$uniform entry point. For any particular value of the seed:

(random_ant + random_no) = 1.0

Usage

declare random_$uniform_ant entry (float bin(27));
call random_$uniform_ant (random_ant);
or
declare random_$uniform_ant entry (fixed bin(35), float bin(27));

call random_$uniform_ant (seed, random_ant);

where:

14 seed is the same as in the random_$uniform entry point above.
(Input or Output)

2. random_ant is the random number that is generated. (Output)

Entry: random_$uniform_ant_seq

The random_$uniform_ant_seq entry point returns an array, ant_array, of
uniformly distributed random numbers that are negatively correlated with the

array produced by the random_$uniform_seq entry point. For any particular value
of the seed:

(ant_array(i) + array(i)) = 1.0

where the range of values for i is from 1 to array_size.

Usage

declare random_$uniform_ant_seq entry ((#) float bin(27), fixed bin);

call random_$uniform_ant_seq (ant_array, array_size);

2-104 AG93



~

7~

random_ random_

or

declare random_$uniform_ant_seq entry (fixed bin(35), (¥) float bin(27),
fixed bin);

call random_$uniform_ant_seq (seed, ant_array, array_size);

where:

1e seed is the same as in the random_$uniform_seq entry point above.
(Input or Output)

2. ant_array (n) 1is the array of generated random numbers where n is greater
than or equal to array_size. (Output)

3. array_size is the number of values returned in ant_array. (Input)

Entry: random_$normal

The random_$normal entry point generates a random number greater than -6.0
and less than 6.0. The sequence of random numbers has an approximately normal
distribution with a mean of 0 and a variance of 1. The random number is formed
by taking the sum of 12 successive random numbers from the uniformly distributed
sequence and then adjusting the sum for a mean of O by subtracting 6.0.

Usage

declare random_g$normal entry (float bin(27));
call random_$normal (random_no);
or
declare random_$normal entry (fixed bin(35), float bin(27));
call random_$normal (seed, random_no);

where the seed and random_no arguments are the same as in the random_$uniform
entry point above.

Entry: random_$normal_seq

The random_$normal_seq entry point generates a sequence of random
variables with an approximately normal distribution. The sequence contains the
number of values specified in the array_size argument.

2-105 AG93



random_ randor_

declare random_$normal_seq entry ((#®) float bin(27), fixed bin);
call random_$normal_seq (array, array_size);

or

declare random_$normal_seq entry (fixed bin(35), (#*) float bin(27), fixed
bin);

call random_g$normal_seq (seed, array, array_size);

where the seed, array, and array_size arguments are the same as in the
random_$uniform_seq entry point above.

Entry: random_$normal_ant

The random_$normal_ant entry point generates a random number, random_ant,
that 1is negatively correlated with the random_no argument produced by the
random_$normal entry point. For any particular value of the seed:

(random_ant + random_no) = 0.0

Usage

declare random_$normal_ant entry (float bin(27));
call random_s$normal_ant (random_ant);
or
declare random_$normal_ant entry (fixed bin(35), float bin(27));
call random_$normal_ant (seed, random_ant);

where the seed and random_ant arguments are the same

as in the
random_$uniform_ant entry point above.

Entry: random_$normal_ant_seq

The random_$normal_ant_seq entry point generates a sequence of array_size,
of random variables with approximately normal distribution. The sequence
contains the number of values specified in the array_size argument. These

variables are negatively correlated with those produced by the
random_$normal_seq entry point.

2-106 AGI93



random__ random_

Usage

declare random_g$normal_ant_seq entry ((#*) float bin(27), fixed bin);
call random_$normal_ant_seq (ant_array, array_size);

or

declare random_g$normal_ant_seq entry (fixed bin(35), (#*) float bin(27),
fixed bin);

call random_$normal_ant_seq (seed, ant_array, array_size);

where the seed, ant_array, and array_size arguments are the same as in the
random_$uniform_ant_seq entry point above.

Entry: random_$exponential

The random_$exponential entry point generates a positive random number.
The sequence of random numbers has an exponential distribution with a mean of 1.
The random number 1is generated by taking successive random numbers from the
uniformly distributed sequence and applying the VonNeumann method for generating
an exponential distributed random variable.

Usage

declare random_$exponential entry (float bin(27));
call random_$exponential (random_no);
or
declare random_$exponential entry (fixed bin(35), float bin(27));

call random_$exponential (seed, random_no);

where the seed and random_no arguments are the same as in the random_$uniform
entry point above.

Entry: random_$exponential_seq

The random_$exponential_seq entry point produces an array of exponentially
distributed random variables.

2-107 AG93



random_ random_

Usage

declare random_$exponential_seq entry ((*) float bin(27), fixed bin);
call random_$exponential_seq (array, array_size);
or

declare random_$exponential_seq entry (fixed bin(35), (*) float bin(27),
fixed bin);

call random_$exponential_seq (seed, array, array_size);

where the seed, array, and array_size arguments are the same as in the
random_$uniform_seq entry point above.

Entry: random_$get_seed

The random_$get_seed entry point is used to obtain the current value of the
internal seed (see "Notes").

Usage

declare random_$get_seed entry (fixed bin(35));

call random_$get_seed (seed_value);

where seed_value is the current value of the internal seed. (Output)

Entry: random_$set_seed

The random_$set_seed entry point is used to set the value of the internal
seed. This internal seed is used as the seed for the next call to any random_
entry point in which the optional argument seed is not provided (see "Notes").

Usage

declare random_$set_seed entry (fixed bin(35));

call random_g$set_seed (seed_value);

where seed_value 1is the value to which the internal seed is set. This value
must be a nonzero positive integer. (Input)

2-108 AG93



random__ random__

Notes

For all entry points (except random_$set_seed and random_$get_seed), if the
optional argument, seed, is not provided in the call, an internal seed is wused
and updated in exactly the same manner as a seed provided by the caller. This
internal seed is maintained as an internal static variable. At the beginning of
a user’s process, it has a default value of 4084114320. Its value is changed
only by calls to random_$set_seed or by calls to other entry points in which the
optional argument, seed, is not included.

The value of a seed must be a nonzero positive integer so that a valid
value will be returned for the seed and the random numbers, If 0 is wused for
the value of seed, the new value of the seed and the random numbers will be 0.
If the value of a seed is negative, the low-order 35 bits of the internal
representation are wused as the seed. A given seed always produces the same
random number from any given entry point. Since all entry points use the same
basic method for computing the next seed, the distribution of the sequence
produced by calls to any given entry point is maintained, although the input
seed used may have been produced by a call to a different entry point. In other
words, the wuser need keep only a single value of the next seed even though he
calls more than one of the entry points. However, 1in general, the different
entry points, for any given input seed, produce different values for the next
seed.

The user may generate independent streams of random numbers by beginning
each stream with separate initial seeds and maintaining separate values for the
next seed.

The uniformly distributed random number sequence 1is generated using the
Tausworth method. The algorithm, in terms of the abstract registers A and B, is
described below.

The parameter n 1is one less than the number of used bits per word (for
Multics, wuse n=35). The parameter m is the amount of shift (for Multics, m=2).

Te Let register A initially contain the previous random number in bit
positions 1 to n with 0 in the sign bit (position 0).

24 Copy register A into register B and then right-shift register B m
places.
3. Exclusive-or register A into register B and also store the result back

into register A. (Registers A and B now have bits for the new random
number in positions m+1 to n, but still contain bits from the old
n-bit random number in positions 1 through m.)

g, Left-shift register B (n-m) positions. (This places m bits for the
new random number in ©positions 1 to m of register B and 0's in
positions m+a through n.)

54 Exclusive-or register B into register A and set register A s sign bit
to 0. (Register A now contains all n bits of the new random number.)

6. To obtain a random number between 0.0 and 1.0, divide the n-bit

integer in register A Dby 2%#¥n, The contents of register A must be
saved for use in generating the next random number.

2-109 AG93



random_

random_

In the random_ subroutine, a word is considered 36 bits long including the
This generates a 35-bit integer random number.

sign Dbit.
floating-point number has a 27-bit mantissa, this means different

produce

values of the integer seed is equal to the cycle length of
In the random_ subroutine,
The random number generating portion

number generator.
a cycle of (2#435)-1,

Since in Multics, a
seeds may

same floating-point value; however, the interval between identical

language code used by the random_ subroutine is given below.

equ
ldq
qrl
ersq
ldq
qls
erq
anqg
stq
lda
lde
fad
fst

shift,?2
seed
shift
seed

seed
35-shift
seed
=o37TTTTTTTTTT
seed

seed
0b25,du
=O.‘ ,du
random_no

use a shift of 2

seed into the Q register
shift the seed right
exclusive-or to the seed

put result in the Q register
shift left

exclusive-or the previous result
save only 35 bits

return the value of the seed
load the integer value
convert to floating point
normalize the floating point
return a random number

2-110

the
a shift of 2 is used,

random

which gives

assembly

AG93



release_temp_segments_ release_temp_segments_

Name: release_temp_segments_

The release_temp_segments_ subroutine is used to return temporary segments
(acquired with the get_temp_segments_ subroutine) to the free pool of temporary
segments associated with each user process, Through the pool concept, temporary
segments can be used more than once during the life of a process. Since the
process does not have to create a new segment each time one is needed, overhead
costs are decreased.

Usage

declare release_temp_segments_ entry (char (*), (*) ptr, fixed bin (35));

call release_temp_segments_ (program_name, ptrs, code) ;

where:

1. program_name is the name of the program releasing the temporary segments.

(Input)

2. ptrs is an array of pointers to the temporary segments being
released. (Input/Output)

3. code is a standard system status code. (Output)

Notes

A nonzero status code is returned if any segment being released was not
assigned to the given program. See the description of the get_temp_segments_
subroutine for a description of how to acquire temporary segments.

The pointers in the ptrs array above are set to the null value after the
segments are successfully returned to the free pool. This fact can be used by
callers to determine if a given temporary segment has been released.

7/76 2-110.1 AG93C



send_mail_

Name: send_mail_

The send_mail_ subroutine sends

optionally sends a wakeup with the message.

Usage

declare send_mail_ entry (char(¥)

call send_mail_ (destination, mes

where:
1. destination 1is a Person_id.Proje
2. message is the text of the m

3. info_ptr
del send_mail_info
version
sent_from
switches,
wakeup
mbz1
always_add
never_add
mbz2
acknowledge
mbz

NN =

wWuwwwwww

where:

version

sent_from

points to the following structure:

send_mail_
one message to a specified user and
, char(¥), ptr, fixed bin(35));
sage, info_ptr, code);
ct_id destination. (Input)
essage to be sent. (Input)
(Input)
aligned,
fixed bin,
char(32) aligned,
bit(1) unal,
bit(1) unal,
bit(1) unal,
bit(1) unal,
bit(1) unal,
bit(1) unal,
bit(30) unal;
identifies the version of the structure

being used.
1.

Currently this number must be

additional information about the sender,

e.g., name of anonymous user or name of
network site.
wakeup indicates whether a wakeup 1is sent with
the message.
ninp yes
llollb no
always_add indicates whether the message 1is to be
added even if a wakeup could not be sent.
"ninp yes
'lO"b no
T7/76 2-110.2 AG93C



send_mail_ send_mail_

never_add tests whether a wakeup can be sent,
without trying to add a message.
"qinp yes
"O"b no
acknowledge indicates whether an acknowledgement is
requested when the message is read.
nqnp yes
llollb no
mbz1, mbz2, mbz are not used and must be set to "0"b.
y, code is a standard status code. (Output) It may be one of the
following:
error_table_g$noentry if the mailbox is not found.
error_table_$no_append if the sending process has
insufficient access to add a
message.
error_table_$wakeup_denied if the sending process has
insufficient access to send a
wakeup.

error_table_$messages_deferred if the recipient process is
deferring messages.

error_table_¢$messages_off if the recipient is not logged
in or the recipient process
has not been initialized for
receiving messages.,

error_table_$no_info if the sending process is not
given any information because
it has a lower AIM
authorization than the

recipient process,.

T7/76 2-110.3 AG93C



This page intentionally left blank.

T7/76 AG93C



set_lock_ set_lock_

Name: set_lock_

The set_lock_ subroutine enables cooperating processes to coordinate their
use of shared resources. O0ften, it is necessary to ensure that only one of the
cooperating processes at a time executes a critical section of code with respect
to a shared resource. For example, if the steps used to modify a shared data
base leave it momentarily inconsistent, then while the data is being modified no
other process should attempt to modify or examine the data.

A caller-supplied 1lock word is used for mutual exclusion of processes.
This word should be declared as bit(36) aligned and should be set initially to
"0"b indicating the unlocked state. When the program is about to enter a
critical section of code, it calls the set_lock_$lock entry point. This entry
point places a wunique lock identifier for the process in the lock word if no
other process currently has its lock identifier in the lock word. If the 1lock
word already contains the 1lock identifier of some other process, the
set_lock_$lock entry point waits for that process to unlock the lock word.
Since only one process at a time can have its lock identifier in the lock word,
that process is assured (subject to the conditions stated below) that it is the
only process currently executing the critical section of code. If many critical
sections share the same lock word, then only one process can be executing in any
of them at a given time. Once the critical section has been completed, the
program calls the set_lock_$unlock entry point to reset the lock to "O0"b.

Successful use of this subroutine requires that all those processes
executing critical sections of code obey the necessary conventions. These
conventions are the following:

14 The set_lock_ subroutine is the only procedure that modifies the 1lock
word with the exception of the procedure that initializes the lock
word to "O"b before any call to the set_lock_ subroutine is made.

2. All processes issue calls to the set_lock_$lock entry point that
result in the 1lock identifier appearing in the lock word before
entering a critical section of code.

3 All processes issue a call to the set_lock_$unlock entry point that
results 1in the lock word being set to 0 after completing execution of
a critical section of code.

Entry: set_lock_$lock

This entry point attempts to place the 1lock identifier of the <calling
process in the given lock word. If the lock word contains "0"b, then the lock
word is set to the lock identifier of the calling process. If the 1lock word
contains a valid 1lock identifier of another existing process, then the
set_lock_$lock entry point waits for this other process to unlock the lock word.
If the other process does not unlock the lock word in a given period of time,
the set_lock_$lock entry point returns with status. If the lock word contains a
lock identifier not corresponding to an existing process, the lock word is
overwritten with the lock identifier of the calling process and an 1indication
that an overwriting has taken place is returned; the call is still successful,
however.

2-111 AG93



set_lock_ set_lock_

Relocking an invalid lock implies either a coding error in the use of locks
or that a process having a lock set was unexpectedly terminated. In either
case, the data being modified can be in an inconsistent state. If the lock word
already contains the 1lock identifier of the calling process, then the
set_lock_$lock entry point does not modify the 1lock word, but returns an
indication of the occurrence of this situation. The latter case may or may not
indicate a programming error, depending on the programmer’s conventions.

Usage

declare set_lock_$lock entry (bit(36) aligned, fixed bin, fixed bin);

call set_lock_$lock (lock_word, wait_time, code);

where:

1. lock_word is the word to be locked. (Input)

24 wait_time indicates the length of real time, 1in seconds, that the
set_lock_$lock entry point should wait for a validly locked
lock word to be unlocked before returning unsuccessfully. A
value of -1 indicates no time limit. (Input)

3. code is a standard status code. (Qutput) It may be one of the
following:

0 indicates that the 1lock word was
successfully locked Dbecause the
lock word was previously unlocked

error_table_$invalid_lock_reset indicates that the lock word was
successfully 1locked, but the lock
word previously contained an
invalid lock identifier that was
overwritten

error_table_$locked_by_this_process indicates that the lock word
already contained the lock
identifier of the calling process
and was not modified

error_table_$lock_wait_time_exceeded indicates that the lock word
contained a valid lock identifier
of another process and could not be
locked in the given time limit

2-112 AG93



o~

set_lock_ set_lock_

Entry: set_lock_s$unlock

This entry point attempts to reset a given lock word to "O"b and is
successful if the 1lock word contained the lock identifier of the calling

process.

Usage

declare set_lock_g$unlock entry (bit(36) aligned, fixed bin);

call set_lock_$unlock (lock_word, code);

where:
1e lock_word is the lock word to be reset. (Input)
24 code is a standard status code. (Output) It may be one of
following:
0 indicates successful unlocking
error_table_$lock_not_locked indicates that the 1lock was

locked
error_table_$locked_by_other_process indicates that the 1lock was

locked by this process
therefore was not unlocked

2-113

the

not

not
and

AG93



term_ term_

Name: term_

The term_ subroutine terminates the reference names of a segment and
removes the segment from the caller’s address space and the appropriate combined
linkage segment. It also wunsnaps any links in the combined linkage segments
that contain references to the segment.

declare term_ entry (char(*) aligned, char(*) aligned, fixed bin(35));

call term_ (dir_path, entryname, code);

where:
1. dir_path 1is the pathname of the containing directory. (Input)
2. entryname is the entryname of the segment. (Input)

3. code is a standard status code. (Output)

Entry: term_$refname

The term_$refname entry point performs the same function as the term_ entry
point given a reference name rather than a pathname.

Usage

declare term_$refname entry (char(#*) aligned, fixed bin(35));

call term_s$refname (ref_name, code);

where:
1. ref_name 1is the reference name of the segment. (Input)
2. code is a standard status code. (Output)

2-114 AG93



term_ term_

Entry: term_$seg_ptr

The term_$seg_ptr entry point terminates reference names for a segment and
makes the segment unknown given a pointer to the segment.

Usage

declare term_$seg_ptr entry (ptr, fixed bin(35));

call term_$seg ptr (seg_ptr, code);

where:
1. seg_ptr is a pointer to the segment. (Input)
2. code is a standard status code. (Output)

Entry: term_$unsnap

The term_$unsnap entry point unsnaps 1links to the segment but does not
terminate any reference names or make the segment unknown.

Usage

declare term_$unsnap entry (ptr, fixed bin(35));

call term_$unsnap (seg_ptr, code);

where the seg_ptr and code arguments are the same as above.

Entry: term_$single_refname

The term_$single_refname entry point allows termination of a single
reference name. The segment is not made unknown unless the specified reference
name was the only reference name initiated for the segment.

2-115 AG93



term_

Usage

declare term_$single_refname (char(#*) aligned, fixed bin(35));

call term_$single_refname (ref_name, code);

where:
1. ref _name 1is a reference name of the segment. (Input)

2. code is a standard status code. (Output)

The term_ subroutine performs the same operation as certain hes_

points; however, the term_ entry points also unsnap links. The term_

points and corresponding hcs_ entry points are:

term_ hes_$terminate_file
term_$seg_ptr hes_$terminate_seg
term_¢$single_refname hes_$terminate_name

Use of the term_ subroutine is preferred to the corresponding hecs_ entry

term_

entry
entry

points

since the term_ subroutine unsnaps links in addition to terminating the segment.

2-116

AG93

~



unique_bits_ unique_bits_

Name: wunique_bits_

The unique_bits_ subroutine returns a bit string that is useful as an
identifier. It is obtained by reading the system clock, which returns the
number of microseconds elapsed since January 1, 1901, 0000 hours Greenwich mean
time., The bit string is, therefore, unique among all bit strings obtained 1in
this manner in the history of this Multics installation.

Usage

declare unique_bits_ entry returns (bit(70));

bit_string = unique_bits_ ();

where bit_string is assigned the unique value. (OQutput)

2-117 AG93



unique_chars_ unique_chars_

Name: wunique_chars_

The unique_chars_ subroutine provides a character string representation of
a bit string. If the bit string is supplied by the unique_bits_ subroutine,
this character string 1is unique among all character strings generated in this
manner in the history of this Multics installation and is therefore useful as an
identifier.

Usage

declare unique_chars_ entry (bit(#*)) returns (char(15));

char_string = unique_chars_ (bits);

where:

1. char_string is a unique character string. (Output)

2. bits is a bit string of up to 70 bits. See "Notes" below. (Input)
Notes

If’the bits argument is less than 70 bits in length, unique_chars_ pads it
with 0°s on the right to produce a 70-bit string. If the bits argument equals
0, unique_chars_ calls unique_bits_ to obtain a unique bit string.

The first character in the character string produced 1is always an
exclamation point to identify the string as a unique identifier. The remaining
14 characters that form the unique identifier are alphanumeric, excluding

vowels.

2-118 AG93



~

user_info_ user_info_

Name: wuser_info_

The user_info_ subroutine allows the user to obtain information concerning
his login session. All entry points that accept more than one argument count
their arguments and only return values for the number of arguments given.

Entry: user_info_

This entry point returns the user’s login name, project name, and account
identifier.

Usage

declare user_info_ entry (char(#*), char(#), char(¥*));

call user_info_ (person_id, project_id, acct);

where:

1. person_id is the user’s name from the 1login 1line (maximum of 22
characters). (Output)

2. project_id is the user’s project identifier (maximum of 9 characters).
(Output)

3. acct is the user’s account identifier (maximum of 32 characters).
(Output)

Entry: wuser_info_$absentee_queue

This entry point returns the queue number of the absentee queue, for an
absentee process. For an interactive process, the number returned is -1.

Usage

declare user_info_$absentee_queue entry (fixed bin);

call user_info_$absentee_queue (queue);

where queue is the number of the absentee queue. (Output)

2-119 AG93



user_info_ user_info_

Entry: wuser_info_$absin

This entry point returns the pathname of the absentee input segment for an
absentee job. For an interactive user, the pathname is returned as blanks.

Usage

declare user_info_$absin entry (char(#));

call user_info_$absin (path);

where path 1is the pathname of the absentee input segment (maximum of 168
characters). (Output)

Entry: wuser_info_$absout

This entry point returns the pathname of the absentee output segment for an
absentee job. For an interactive user, the pathname is returned as blanks.

Usage

declare user_info_$absout entry (char(#%));

call user_info_$absout (path);

where path is the pathname of the absentee output segment (maximum of 163
characters). (Output)

Entry: user_info_$attributes

This entry point returns a character string containing the name of the
user’s attributes, each separated by a comma and a space, and ending in a
semicolon. Attributes control such things as the ways in which the user may log
in, and the arguments that he is permitted to give when logging in. They are
assigned by the project or system administrator. For more information on

attributes, see both the Multics Project Administrators’ Manual and the Multics

System Administrators’ Manual, Order Nos. AK51 and AK50 respectively.

2-120 AG93



user_info user_info_

Usage

declare user_info_g$attributes entry (char(300));

call user_info_$attributes (attr);

where attr is the string containing the names of the user’s attributes.
(Output)

Entry: user_info_$homedir

The user_info_$homedir entry point returns the pathname of the user’s
initial working directory.

Usage

declare user_info_$homedir entry (char(¥*));

call user_info_g$homedir (hdir);

where hdir is the pathname of the user’s home directory (maximum of 64
characters). (Output)

Entry: user_info_$limits

This entry point returns the limit values established for the user by the
project administrator and also returns the user’s spending against these limits.

If a limit is specified as open, the limit value returned is 1.0e37.

Usage

declare user_info_$limits entry (float bin, float bin, fixed bin(71),
fixed bin, (0:7) float bin, float bin, float bin, (0:7) float bin);

call user_info_$limits (mlim, clim, cdate, crf, shlim, msp, csp, shsp);

where:

1. mlim is the dollar amount the user can spend in the month.
(Output)

2. clim is the dollar amount the user can spend (cutoff 1limit).
(Output)

2-121 AG93



user_info_ user_info

3. cdate is the cutoff date. (Output)
y, crf is the cutoff refresh code. (Output) This indicates what
happens at the cutoff date:
0 permanent cutoff
1 add one day
2 add one month
3 add one year
4y add one calendar year
5 add one fiscal year
5. shlim is an array that shows the dollar amount the user can spend

per shift. (Output)

6. msp is the month-to-date spending in dollars. (Output)

7. ecsp is the spending against the cutoff 1limit in dollars.
(Ouput)

8. shsp is the array of spending against shift limits in dollars.
(Output)

Entry: wuser_info_$load_ctl_info

This entry point returns load control information for the user.

Usage

declare user_info_$load_ctl_info entry (char(#*), fixed bin, fixed bin(71),
fixed bin);

call user_info_$load_ctl_info (group, stby, preempt_time, weight);

where:

1. group is the name of the load control group. (Output)

2. stby indicates whether a user is a standby user (i.e., one who
can be preempted). (Output)
1 can be preempted
0 cannot be preempted

3. preempt_time is the clock time after which the user will become standby.
(Output)

4, weight is 10 times the user’s weight. Weight is a measure of the

load placed on the system by the user; most users have a
weight of 1. (Output)

2-122 AG93

)



.

user_info_ user_info_

Entry: user_info_$login_data

This entry point returns useful information about how the user logged in.

Usage

declare user_info_$login_data entry (char(*), char(*), char(¥*), fixed bin,
fixed bin, fixed bin, fixed bin(71), char(#*));

call user_info_$login_data (person_id, project_id, acct, anon, stby,
weight, time_login, login_word);

where:
1. person_id is the same as in the user_info_ entry point above. (Output)
2. project_id is the same as in the user_info_ entry point above. (Output)
3. acct is the same as in the user_info_ entry point above. (Output)
4, anon indicates whether a user is an anonymous user. (Output)
1 is anonymous
0 is not anonymous
54 s tby indicates whether a user is a standby user (i.e., one who can
be preempted). (Output)
1 can be preempted
0 cannot be preempted
6. weight is 10 times the user’s weight. See the

user_info_$load_ctl_info entry point above. (Output)

T. time_login is the time the user logged in. It is expressed as a calendar
clock reading in microseconds. (Output)

8. login_word is "login" or "enter", depending on which command was used to
log in. (Output)

Entry: user_info_$logout_data

This entry point returns information about how the user logs out.

2-123 AG93



user_info__ user_info_

Usage

declare user_info_$logout_data entry (fixed bin(71), bit(36) aligned);

call user_info_$logout_data (logout_channel, logout_pid);

where:

1. logout_channel is the event channel over which logouts are to be signalled.
(Output)

2. logout_pid is the process identifier of the answering service.
(Output)

Entry: user_info_$outer_module

This entry point returns the name of the user’s outer module.

Usage

declare user_info_$outer_module entry (char#));

call user_info_$outer_module (om);

where om is the name of the user’s outer module (maximum of 32 characters). The
outer module is the initial I/0 module attached to the user_i/o switch.
(Output)

Entry: user_info_$responder

The user_info_$responder entry point returns the name of the user’s login
responder.

Usage

declare user_info_$responder entry (char(#*));

call user_info_$responder (resp);

where resp is the name of the user’s login responder (maximum of 64 characters).
(Output)

2-124 AG93



user_info user_info_

Entry: user_info_$tty_data

This entry point returns information about the terminal on which the user
logged in.

Usage

declare user_info_$tty_data entry (char(¥*), fixed bin, char(¥*));

call user_info_$tty_data (id_code, type, channel);

where:

1. id_code is the identifier code of the user's terminal (maximum of four
characters). (Output)

2. type is the type of terminal. (Qutput) It can be:

0 absentee process or network user

1 device similar to IBM Model 1050
2 device similar to IBM Model 2741 (with special modifications)
3 device similar to Teletype Model 37
4 device similar to GE TermiNet 200
5 device similar to Adage, Inc. Advanced Remote Display Station
(ARDS) ‘
6 device similar to IBM Mcdel 2741 (standard)
7 device similar to Teletype Models 23 or 35
8 device similar to Teletype Model 38
9 unused
10 unused
11 device similar to a Computer Devices Inc. (CDI) Model 1030 or
Texas Instruments (TI) Model 725, or a device with an
unrecognized answerback, or a device without an answerback
(these devices are collectively termed "ASCII" devices)
3. channel is the channel identification (maximum of eight characters).
(Output)

2-125 AG93



user_info_ user_info

Entry: wuser_info_$usage_data

This entry point returns user usage data.

Usage
declare user_info_¢$usage_data entry (fixed bin, fixed bin(71),
fixed bin(71), fixed bin(71), fixed bin(71), fixed bin(71));

call user_info_g$usage_data (nproc, old_cpu, time_login, time_create,
old_mem, old_io_ops);

where:

1. nproc is the number of processes created for this 1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>