Honevwell MULTICS PROGRAMMERS’ MANUAL
y SUBSYSTEM WRITERS' GUIDE
ADDENDUM C

SERIES 60 (LEVEL 68)

SOFTWARE

SUBJECT:

Additions and Changes to the Reference Guide for Advanced Multics Users,
Writing Their Own Subsystems

SPECIAL INSTRUCTIONS:

This manual is one of five manuals that constitute the Multics.Programmers'’
Manual (MPM).

Reference Guide Order No. AG91
Commands and Active Functions Order No. AG92
Subroutines Order No. AG93
Subsystem Writers' Guide Order No. AK92
Peripheral Input/Output Order No. AX49

This is the third addendum to AK92, Revision 1, dated September 1975.

Insert the attached pages into the manual according to the collating
instructions on the back of this cover.

The major change to Section I is the addition of a "Definition Hash Table."
Section II has changes to the stack header.

Section IV has one major addition called "Performing Control Operations
from Command Level."

In order to consolidate subroutine descriptions into one manual, cu , iox_,
tty_, and vfile_ have been moved to the MPM Subroutines. The subroutine
stu_ has been taken out of this manual and will be in the next addendum for
the Multics System Programming Tools, Order No. AZO3. The items 1listed
below are new to this manual and do not contain change bars:

delete_volume_quota get_lock_id_
set_ttt_path hes_$get_link target
component_info_ hcs_$get_user_effmode
cross_ring_ mhcs_$get_seg usage
cross_ring_io_$allow_cross pl1_io_

cv_dec_ suffixed_name_
cv_dec_check ttt_info_

dump_segment_
Throughout the rest of the manual, change bars in the margins indicate
technical additions and changes; asterisks denote deletions. These
changes will be incorporated into the next revision of this manual.
Section VIII is a new section that has been created for data base
information. It contains a new data base, time_table_$zones, and also
sys_info, which was moved out of the subroutine section.

NOTE: Insert this cover after the manual cover to indicate the
updating of this document with Addendum C.

SOFTWARE SUPPORTED?

Multies Software Release 6.0
DATE:

November 1977
ORDER NUMBER:

AK92C, Rev. 1

Printed in U.S.A.

COLLATING INSTRUCTIONS

To update this manual, remove old pages and insert new pages as follows:

Remove
iii through ix

1-5 through 1-8

1-13 through 1-10
1-21 through 1-24
1-31

2-1 through 2-§
3-3

4-1 through 4-9
5-1 through 5-6
6-3, 6-4

6-11, 6-12

6-15 through 6-19

6‘35’ 6'36

7-3 through 7-160

© 1977, Honeywell Information Systems Inc.

11777

Insert

iii through ix
1-5 through 1-8

1-12.1, 1-12.2
1-12.3, blank

1-13 through 1-16
1-21 through 1-24
1-31

2-1 through 2-8
3-3

4-1 through 4-11
5-1 through 5-7
6-3, 6-4

6-11, 6-12
6-12.1, blank

6-15 through 6-19
6-19.1 through 6-19.11

6-26.1, blank
6-35, 6-36
6-56.1, blank

7-3 through 7-190

8-1 through 8-5

File No.: 1L13

AK92C

5

o

The MPM 1I/0 manual contains descriptions of commands and subroutines used
to perform peripheral I/0. Included in this nanual are conmmnands and subroutines
that manipulate tapes and disks as I/U devices. Special purpose communications
1/0, such as binary synchronous communication, is also included.

Examples of specialized subsystems for which construction would require
reference to the MPM Subsystem Writers' uuide are:

° A subsystem that precisely imitates the command environment of some
system other tnan Multics.

. A subsystem intended to enforce restrictions on the services available
to a set of users (e.g., an APL-only subsystem for use in an acadenmic
class).

° A subsystem that protects some kind of information in a way not easily
expressible with ordinary access cocntrol lists (e.g., 2 proprietary
linear programming system, or an administrative data base system that
permits access conly to program-defined, aggregated information such as
averages and corrslations).

The MPM Subsystem Writers' Guide provides the advanced Multics user with a
selection of some of the internal interfaces used to construct the standard
Multics user interface. It also describes some specialized tools helpful to the
advanced subsystem writer.

The facilities described here are subject to changes and improvements in
their interface specifications. Further, at the level of the system presented
by many of these interfaces, it is difficult to avoid far-reaching sybsysten
changes when these interfaces change. Thus, the sybsystem writer is cautioned
against the unnecessary use of the interfaces described in this manual.

Most interfaces described here should be used only if there is a need to
bypass normal Multiecs procedures; i.e., in using one of these interfaces, the
user risks giving up some of the desirable characteristics of Multiecs. For
example, the standard MNultics 1interface presents a consistency of style and
interpretation to the user that the subsystem writer may find difficult to
duplicate and maintain. Therefore, the subsystem writer should be cautious
about unintentionally introducing different, and possibly confusing, styles and
interpretations when bypassing a standard function.

However, one of the objectives of Multics is to allow the knowledgable user
to construct subsystems of almost any specification. The content of the MPM
Subsystem Writers' Guide, applied with care, is intended to help fulfill this
objective.

Several cross-reference facilities in the MPM help locate information:

® Each manual has a table of contents that identifies the material
(either the name of the section and subsection or an alphabetically
ordered list of command and subroutine names) by page number.

. Each manual contains an index that lists items by name and page number.

2/77 iii AK92B

Section I

Section II

1/77

CONTENTS

Multics Standard Object Segment
Format Of An Object Segment
Structure of the Text Section

Entry Sequence . . .
Gate Segment Entry P01nt Transfer
Vector .
Structure of the Deflnltlon Sectlon .
Definition Section Header
Expression Word
Type Pair « « « o .
Trap Pair . . .
Initialization Structure for Type
¥system and Type 6 links
Definition Hash Table
Structure of the Static Section
Structure of the Linkage Section
Linkage Section Header . . .
Internal Storage Area
Links . .
First- Reference Trap . . .
Structure of the Symbol Sectlon . .
Symbol Block Header
Source Map . . .« e e e .
Relocation Informatlon .
Structure of the Object Map
Generated Code Conventions
Text Section
Entry Sequence
Text Relocation Codes .
Definition Section e e e e
Definition Relocatlon Codes .
Implicit Definitions . . .
Linkage Section
Internal Storage
Links
Linkage Relocatlon Codes
Static Section
Symbol Section
Structure of Bound Segments . .
Internal Link Resolution
Definition Section
Binder Symbol Block
Bind Map

e o o o o e s o e o

e o o o o o o o o o o

Standard Execution Environment
Standard Stack and Link Area Formats
Multics Stack
Stack Header
"Multics Stack Frame . . .
Linkage Offset Table . .
Internal Static Offset Table
Subroutine Calling Sequences .
Call Operator

e o o o o o e o o o

e o o o o o o o o

Entry Operator

Push Operator

Return Operator
iv

e o o o o o

e o o o o

e o o o o s o o o o o o

Page

e o o o o o o

e o o o o o

RN NN
[I | LI I I |

]
A aNUE W - -

NN
| I |
w N
[@RNejVe)

NNNNNNI'\)I\)NI\JNI\)
-t = B O OCOOCOUIN) = b

- - OO0

AK92C

Section III

Section IV

Section V

Section VI

1/77

CONTENTS (cont)

Short Return Operator .
Pseudo-op Code Sequences
Register Usage Conventions .
Argument List Format . .

Subsystem Programming Environment

Writ

Implementation of Input/Output Modules

I/0

Writ

Referenc
Functio

ing a Process Overseer .
Process Initialization . . .
Process Overseer Functions
Handling of Quit Signals . .

Control Blocks . . .
I/0 Control Block Structure .
Attach Pointers
Open Pointers
Entry Variables
Synonyms . o« e e e
ing an I/0 Module e e e e
Design Considerations . .
Implementation Rules . . .
Attach Operation
Open QOperation
Close Operation
Detach Operation
Modes and Control Operatlons
Performing Control Operations

Command Level
Other Operations

e o & o o o o o

e to Commands and Subroutines
n . . e e e e e e e

Command Repert01re e e s e e e

Subr

Commands
Comm
alm
alm

arch

area

copy_names . . .

crea
dele
dele
disp
erro
list_
list™
mb x
mbx™—
mb x
mb x
mbx
mbx
mbx~
mbx
mbx
move

prlnf bind map, pbm .« e e .

prin
prin
reor

“delete, mbdl . . .
delete_acl, mbda .

outine Repertoire

and Descrlptlon Format
abs, aa . .
ive_sort, as .
status o . s

.

.
. .
. .

e o o o o
e o o o o o
e o o o o o o
e o o o o o o o

te area
te external varlables .
te volume quota, divg
lay component name, dcn . .
r_table_compiler, etc .

external variables . .
temp segments e e s e s
add _name, mban
create, mber

e« o o o

list acl, mbla . .
rename, mbrn . . .
set_acl, mbsa e . e
set max length mbsml
names . e e e e e e

delete” _name, mbdn :

e o o ® o o o o
e e o o o o o o

t- 11nk info, pli
t~ llnkage usage, plu . . .
der archive e s s e e e .

.

e o "o o o o o o o e o o o o

e o o o e o o o o o

e o e o o o

e o e o o o o o o o

e o e o o o o

e o ® ® © o ® © o o o o e o e © ° e e o o s o o o o o

e e e o o o

e o o o o

e o o o o o o o o e e o o o o

e o o o o o o

e o o o o

o
[\
o
(1)

EEEEEEEE wwwww n NN
[T T R O O I I | [I I I I | I T B}
NN — WN) = PR NN G

wwhn =

= &= P N
[I I | [| [} |
W = = —\0 VOO~ oOUn EFWwWwWw

!
DO E = -
£FwWMNO

(o, ¥ e Xe Neo Neo No Yo Neo e (G2 RV, R0]
L L L

n N

oun

6-26

Section VII

11777

CONTENTS (cont)

reset_external variables
set max length sml

set” rlng brackets, srb
set” system storage
set_ttt path
set_user_storage

Subroutine Description .

active fnc_err_
aim_ check .
aim check $equal
aim_ “check _$greater .

aim check _$greater_or equal

area_ inTo
a5011 to_ ‘ebedic

aSCll to_ ebcdlc $table'

assign_ . . e e e
check star name .
check star name $path
check star name $entry
component info
component Info $name
component 1nfo_$offset
condition_interpreter_
continue_to _signal
convert aim attrlbutes
convert dial message_
convert dial message_
$return io module
convert status code
cross rlng

cross ring io $allow cross

cv bin

T ev bin $dec

ev bin $oct

cv dec . .
cv dec” check . . .
cv entry e e e e e e
ev hex . . .« « < . .
cv _hex check
ev_oct . .U
cv oct check . .
cv ptr o o .

~ ev_ptr_ $term1nate
decode™ descrlptor .
deflne area_ . o« o+ o« .
dial manager

dial manager $allow dlals

.

dial™ _manager_ $reglstered server

dial™ _manager_ “$dial out

dial™ _manager_ “$release channel
dial™| _manager_ $shutoff dials
dial™ _manager $pr1v1leged attach
dial™ _Mmanager_ $term1nate d1a1 out

dprint_ . . . «
dump segment e e e e e .
ebedic to a5011 . e e

ebcdic to ascii _$ea_ table

find condition 1nfo
get_ default wd1r . .
get deflnltlon . .
get entry_ name . .
get equal name .

vi

.

e o o o o o o o o

.

.

.

.

.

/77

CONTENTS (cont)

get_lock id .

get pr1v11eges

get ring_ .

get system free area .

hes_ $add dir inacl entries

hes $add inacl entries

hes $del”dir tree .

hes $de1ete dir inacl entrles

hes $de1ete 1nacl entries

hes $get author

hes™ $get be author . .

hes™ $get dir ring brackets

hes $get 1ink target

hes™ $get max length e e e e e

hes $get max length SEE .« .« . e e

hes $get rlng brackets . .

hes™ $get safety SW . .

hes $get safety sw seg

hes™ $get search rules

hes™ $get system search_ rules

hes_$get_user effmode ~.

hes $1n1t1ate search_rules

hes™ $list_ dir inacl

hes $llst inacl

hes™ $quota MOVE « o« o o o o

hes™ $quota read

hes™ $rep1ace dir 1nacl .

hes $replace inacl

hcs $set_dir _ring_ brackets . .

hes™ $set entry bound .

hcs $set entry bound_seg

hes™ $set max 1ength .

hes $set max 1ength seg

hes $set rlng brackets

hes™ $set safety SW

hes $set safety sw_seg .

hes™ $star . e e e e e
“hes $star_ 11st e e e e e
hes $star dir_ llSt . e e

hes $wakeup . .

od info
Tiod info $generlc type .
1od info $dr1ver access name

ipec_ . . .
1pc $create ev chn o e e
ipe_ “$delete ev chn . . .
ipe_ “$decl event call channel
ipe_ $decl ev wa1t chn .
ipec_$drain_chn
ipe_ “$cutoff
ipe_ “$reconnect .
1pc “$set_wait_prior
ipc_ $set call prior
ipe_ $mask ev_ calls
ipec_ $unmask ev calls
ipe_ T$block . . . e e e e
ipc_$read_ev_chn

match star name e e e e e e e

mhes_3$get Seg usage . . e e
mhes _$get_seg_usage_ ptr - ..

e o o o o o o o o

vii

NN
|

AK92C

11777

CONTENTS (cont)

msf _manager__ . . e e e e e e e
“msf manager $open e e e e e .
msf _manager $get ptr
msf manager $ad3ust e e e e e W
msf _manager_ “$close . e e e e e
msf _manager_ $acl list
msf manager $acl replace
msf _manager_ $acl add
msf _manager_ $ac1 delete
obJect info . . e e e e e e
obJect info $br1ef e e e e e e
obJect info~ _$display
obJect info $long e e e e e . .
pl1l io . . e e e .
pl1 io $get 1ocb ptr . .
pl1_io_$error code
prepare me_ “restart o«
prepare me_ restart $retry
prepare_mc_ “restart” _$replace
prepare mc restart” _$tra . . .
read allowed
read_write_allowed_ . .
release area e s s s e s s
51gnal_ e e e s s e e e e e
sub err o 6 6 s e e s e e
suffixed_name_ . . .
suffixed name $f1nd
suffixed name $make . e .
suffixed_name_$new_suffix
system_info e e e e e .« e e
system_info $1nstallatlon id . .
system_info_$sysid . . .7. .
system info_ _$titles
system info $users . . .
system info~ _$timeup
system info _$next shutdown .
system info~ $pr1ces .
system info~ $device_ prlces .
system info $abs chn . . .
system info_ $next shift change
system info $sh1ft_table . . .
system info $abs prices .
system_info_$io_prices . . .
system info $last shutdown .
system info $access _ceiling .
system info $level names
system info $category names
system info™ _$ARPANET_ host number
timer _manager_ e e e e e
timer manager $sleep e e e e e
timer™ _Mmanager_ $a1arm call . .
timer™ _manager_ “$alarm call 1nh1b1t
timer™ _manager_ “$alarm wakeup e e e
timer™ _manager $cpu call
timer _manager $cpu call inhibit .
timer™ _Mmanager $cpu wakeup
timer™ _manager_ $reset cpu_call . .
timer _Mmanager__ “$reset” cpu_ “wakeup .
timer™ _Mmanager_ $reset alarm call .
timer™ _Mmanager_ $reset alarm_ _wakeup

.
e o o e o o o

e o o o o o o o

e o o o e o o o o

viii

e o o o o o o e o o o

e o o o o e o o

e o o o o o

e o o o o o o

* o o o o o

Page

7-132
7-132
7-133
T-134
7-134
7-135
7-136
7-137
7-138
T-140
T-140
7-140
T-141
T-146
T-146
T-146
T-148
T7-148
T-149
7-149
7-151
7-152
7-153
7-154
7-156
7-160
7-160
T=161
7-162
7-163
7-163
7-163
7-163
T-164
7-165
7-165
7-165
7-166
7-167
T-167
7-168
7-168
7-169
7-169
7-170
7-170
7-170
7-171
T-172
7-173
7-173
T-174
T-174
7-174
7-175
7-175
7-175
7-176
7-176
T-176

AK92C

Section VIII

Appendix A

Index . . .

Figure 1-1.
Figure 1-2.
Figure 1-3.
Figure 1-4.
Figure 2-1.
Figure 2-2.
Figure 2-3.

1/77

CONTENTS (cont)

£SS1 ¢ ¢ 6 e e e e e e e e s e
Tssi $get segment .
tssi” $get file . .
tssi $f1nlsh segment
tssi $f1nlsh file .
tssi $c1ean up_ segment . .
tssi $clean up_ “file

tee_ info . . .
Tttt info $term1nal data .o .
ttt info _$modes
ttt info $preaccess type .
ttt“info $additional_info .
ttt"info $initial string .
ttt_info_$dialup_Tlags
ttt"info $decode answerback
ttt info~ $encode type . . .
ttt” 1nfo $decode type . .

unwinder e e e e o

write_allowed_

Data Base Descriptions
sys_info . . e e e e e e e
tlme table_ $zones e e e s e e e

Approved Control Arguments

ILLUSTRATIONS

Sample Definition List .
Definition Hash Table
Structure of a Link
Structure of a.Bound Segment
Stack Header Format
Stack Frame Format . . .

Standard Argument Llst . .

ix

e o o o o o

e o o o o

e o o o o

e o o o o o

e o o o o o o

e o o o o o

e o o o o

o o o o o

Page

T=-1717
T=-177
7-178
7-178
7-179
7-181
7-181
7-182
7-182
7-184
T7T-184
7-185
7-185
7-186
7-187
7-187
7-188
7-189
7-190

oo o Co
|
=N -

AK92C

SECTION I

MULTICS STANDARD OBJECT SEGMENT

A Multics object segment contains object code generated by a translator and
linkage information that is used by the dynamic 1linking mechanism to resolve
intersegment references. (See "Dynamic Linking" in the MPM Reference Guide.)
The most common examples of object segments are procedure segments and data
segments.

Format requirements for an object segment are primarily associated with
external interfaces; thus, translator designers are permitted a great amount of
freedom in the area of code and data generation. The format contains certain
redundancies and unusual data structures; these are a byproduct of maintaining
upward compatibility with earlier object segment formats. The dynamic linking
mechanism and the standard object segment manipulation tools assume that all
object segments are standard object segments.

FORMAT OF AN OBJECT SEGMENT

An object segment is divided into six sections that usually appear 1in the
following order:

text

definition

linkage

static (if present)
symbol

break map (if present)

The type of information contained in each of the six sections is summarized
below:

1. text contains only pure parts of the object segment
(instructions and read-only data). It can also contain
relative pointers to the definition, linkage and symbol
sections.

2. definition contains only nonexecutable, read-only symbolic
information used for dynamic 1linking and symbolic
debugging. Since it is assumed that the definition
section 1is infrequently referenced (as opposed to the
constantly referenced text section), it should not be
used as a repository for read-only constants referenced
during the execution of the text section. The
definition section can sometimes (as in the case of an
object segment generated by the binder) be structured
into definition blocks that are threaded together.

1-1 AK92

3. linkage contains the impure (i.e., modified during the
program's execution) nonexecutable parts of the object
segment and may consist of two types of data:

a. links modified at run time by the Multies 1linker
to contain the machine address of external
references, and possibly

b. data items to be allocated on a per-process basis
such as the internal static storage of PL/I
procedures.

4, static contains the data items to be allocated on a

per-process basis. The static storage may be included
in the linkage section in which case there 1is no
explicit separate static section.

5. break map contains information used by the debuggers to locate
breakpoints in the object segment. This section is
generated by the debuggers rather than the translator
and only when the segment currently contains
breakpoints. Its internal format is of interest only
to the debuggers.

6. symbol contains all generated items of information that do not
belong in the first five sections such as the language
processor's symbol tree and historical and relocation
information. The symbol section may be further
structured into variable length symbol blocks threaded
to form a list. The symbol section contains only pure
information.

The text, definition, and symbol sections are shared by all processes that
reference an object segment. Usually, a copy of the linkage section is made
when an object segment is first referenced in a process. That is, the 1linkage
section is a per-process data base. The original linkage section serves only as
a copying template. An exception is made for some system programs whose link
addresses are filled in at system initialization time. Their 1linkage sections
are shared by everyone who wants to use the supplied addresses. When these
programs have data items in internal storage, they have a separate static
section template that is copied once per process. See "Dynamic Linking" in the
MPM Reference Guide and "Standard Stack and Linkage Area Formats" in Section II
of this document. Normally, a segment containing break map information is in
the state of being debugged and is not used by more than one process.

The object segment also contains an object map that contains the offsets
and 1lengths of each of the sections. The object map can be located immediately
before or immediately after any of the six sections. Translators normally place
it immediately after the symbol section. The last word of every object segment
must contain a left-justified 18-bit relative pointer to the object map.

ST RE THE TE SECTION

The text section is basically unstructured, containing the machine-language
representation of a symbolic algorithm and/or pure data. Its length is usually
an even number of words.

Two of the items that can appear within the text section have standard
formats: the entry sequence and the gate segment entry point transfer vector.

2/77 1=-2 AK92B

Entry Sequence

A standard entry
accessible procedure

sequence 1is usually provided for every externally

entry point in an object segment. A standard entry

sequence has the following format (the two structures are independent but are

normally contiguous):

del 1 parm_desc_ptrs aligned,
2 n_args bit(18) unaligned,
2 descriptor_relp(n_args) bit(18) unaligned;
del 1 entry_sequence aligned,
2 descr_relp_offset bit(18) unaligned,
2 reserved bit(18) unaligned,
2 def_relp bit(18) unaligned,
2 flags unaligned,
3 basic_indicator bit(1) unaligned,
3 revision_]1 bit(1) unaligned,
3 has_descriptors bit(1) unaligned,
3 variable bit (1) unaligned,
3 function bit(1) unaligned,
3 pad bit(13) unaligned,
2 code_sequence(n) bit(36) aligned;
where:

1. n_args

2. descriptor_relp

3. descr_relp_offset

4, reserved

5. def_relp

6. flags

2/77

is the number of arguments expected by this external
entry point. This item is optional and is valid only
if the flag has_descriptors equals "1"b.

is an array of pointers (relative to the base of the
text section) to the descriptors of the corresponding
entry point parameters. This item is optional and is
valid only if the flag has_descriptors equals "1"b.

is the offset (relative to the base of the text
section) of the n_args item. This item is optional and
is wvalid only if the flag has_descriptors equals "1"b.

is reserved for future use and must be "O0"b.

is an offset (relative to the base of the definition
section) to the definition of this entry point. Thus,
given a pointer to an entry point, it is possible to
reconstruct 1its symbolic name for purposes such as
diagnostics or debugging.

contains 18 binary indicators that provide information
about this entry point.

basic_indicator
"1"p this is the entry point of a BASIC program
"O"b this is not the -entry point of a BASIC
program

revision_1
"1"p all of the entry's parameter descriptor
information 1is with the entry sequence,
i.e., none is in the definition
"O"b parameter descriptor information, if any,
is with the definition

1-3 AK92B

|

has_descriptors
"1"p the entry has parameter descriptors; 1i.e.,
items n_args, descriptor_relp and
descr_relp_offset contain valid information
"O"b the entry does not have parameter
descriptors

variable
LA) the entry expects arguments whose number
and types are variable
"0"b the number and type of arguments, if any,
are not variable

function
"1"b the last parameter is to be returned by
this entry
"O"b the last parameter is not to be returned by
this entry
pad is reserved for future use and must be "0"b
7. code_sequence is any sequence of machine instructions satisfying

Multics standard calling conventions. See "Subroutine
Calling Sequences" in Section II.

The value (i.e., offset within the text section) of the -entry point
corresponds to the address of the code_sequence item. (The value is stored in
the formal definition of the entry point. See "Structure of the Definition"
below.) Thus, if entry_offset is the value of the entry point ent?l, then the
def_relp item pointing to the definition for entl 1is 1located at word
(entry_offset minus 1).

Gate Segment Entry Point Tran Vec

For protection purposes, control must not be passed to a gate procedure at
other than its defined entry points. To enforce this restriction, the first n
words of a gate segment with n entry points must be an entry point transfer
vector. That is, the kth word (0 < k < n-1) must be a transfer instruction to
the kth entry point (i.e., a transfer to the code_sequence item of a standard
entry sequence as described above). In this case, the value of the kth entry
point is the offset of the kth transfer instruction (i.e., word k of the
segment) rather than the offset of the code_sequence item of the kth entry
point.

To ensure that only these entries can be used, the hardware enforced entry

bound of the gate segment must be set so that the segment can be entered only at
the first n locations.

1-4 AK92

STRUCTURE OF THE DEFINITION SECTION

The definition section of an object segment contains pure information that
is used by the dynamic linking mechanism.

The definition section consists of a header pointing to a 1linked 1list of
items describing the externally accessible named items of the object segment,
followed by an unstructured area containing information describing the
externally accessible named items of other object segments referenced by this
object segment. The linked list is known as the definition list. The items on
the 1list are known as definitions. The unstructured area contains expression
words, type pairs, trap pairs, trap procedure information, and the symbolic
names associated with external references.

A definition specifies the name of an externally accessible named item and
its location in the object segment. The definition list consists of one or more
definition blocks each of which <consists of one or more class-3 definitions
followed by zero or more definitions that are not class-3 (see "Definition
Section Header" below for format). Normally, unbound object segments contain
one definition block, while bound segments contain one definition block for
every component object segment.

Optionally, the definition section can contain a definition hash table. If
present, the hash table is used by the linker to expedite the search for a
definition.

The information in the unstructured area of the definition section is wused
at runtime in conjunction with information in the linkage section to resolve the
external references made by the object segment. This information 1is
conceptually part of the linkage section, but 1is stored 1in the definition
section so it can be shared among all the users of the segment.

Figure 1-1 shows the structure of the definition section. For more
information concerning the interpretation of the information in the definition
section see "Dynamic Linking" in Section IV in MPM Reference Guide.

Character strings in the definition section are stored in ALM "acc" format.
This format is defined by the following PL/I declaration:

del 1 acc aligned,
2 length_of string fixed bin(8) unaligned,
2 string char(0 refer(length of string)) unaligned;

The first nine bits of the string contain the length of the string. Unused bits
of the last word of the string must be zero. Such a structure is referred to as
an acc string. .

The following paragraphs describe the formats of the various items 1in the
definition section.

11777 1-5 AK92C

11/77

def_list_rel
[] - P > Header
hash_table_relp
—_
- —1
forward backward Block 1
—— segname_thread class = 3
string_ ptr defblock _ptr
Y. _
> forward backward Block 2
segname_thread class = 3
string__ptr defblock_ptr
‘ [—
Lt forward backward
segname__thread class=3
string__ptr defblock__ptr
> forward backward
value class # 3
string_ptr segname_ ptr
Y.
> forward backward < Block 3
segname__thread class =3
string_ ptr defblock_ptr
- Y
= forward backward PR I —
value class # 3 /
string__ptr segname__ptr o
= forward backward -
value class # 3
string_ptr segname__ptr
Y Vv I all zero word J
Figure 1-1. Sample Definition List
AK92C

O

Definition Section Header

where

1.

11/77

The definition section header resides at the base of the definition section
and contains an offset (relative to the base of the definition section) to the
beginning of the definition list.

del

def

hash_table_relp

1 def_header aligned,
2 def list_relp bit(18) unaligned,
2 hash_table relp bit(18) unaligned,
2 unused bit(18) unaligned,
2 flags unaligned,
3 new format bit(1) unaligned initial ("1"b),
3 ignore bit(1) unaligned initial ("1'b),
3 unused bit(16) unaligned;
list_relp is a relative pointer to the first definition 1in the

definition list.

is a relative pointer to the beginning of the

definition

hash table. If no definition hash table is present, this

pointer must be "0"b.

unused is reserved for future use and must be "O0"b.

flags contains 18 binary indicators that provide

The

del

about this definition section:

new format

T omqup definition section has new format
"O"b definition section has old format

ignore

information

"1"b if new_format equals "1"b, the Multies linker

ignores this definition.
"0"b is an old format definition

unused is reserved for future use and must be "O0"b

format of a definition that is not class-3 is given below.

1 definition aligned,
2 forward_thread bit(18) unaligned,
2 backward_thread bit(18) unaligned,
2 value bit(18) unaligned,
2 flags unaligned,
3 new_format bit(1) unaligned,
3 ignore ‘bit(1) unaligned,
3 entry_ point bit(1) unaligned,
3 retain bit(1) unaligned,
3 argcount bit(1) unaligned,
3 has_descriptors bit(1) unaligned,
3 unused bit(9) unaligned,
2 class bit(3) unaligned,
2 symbol_relp bit(18) unaligned,
2 segname_relp bit(18) unaligned,
2 n_args bit(18) unaligned,
2 descriptor_relp (O refer(n_args))bit(18) unaligned;

AK92C

where:

1. forward_thread

2. backward_thread

3. value

4, flags

5. class

6. symbol_relp

2/717

is a thread (relative to the base of the definition
section) to the next definition. The thread terminates
when it points to a word that is 0. This thread provides
a single sequential list of all the definitions within the
definition section.

is a thread (relative to the base of the definition
section) to the preceding definition.

is the offset, within the section designated by the class
variable (described below), of this symbolic definition.

contains 15 binary indicators that provide additional
information about this definition:

new_format
LB AL) definition section has new format
"0"b definition section has old format

ignore
"i"b definition does not represent an external
symbol and 1is, therefore, ignored by the
Multics linker
"0"b definition represents an external symbol

entry_point
minp definition of an entry point (a variable
reference through a transfer of control
instruction)
"0"b definition of an external symbol that does not
represent a standard entry point

retain
"1"b definition must be retained in the object
segment (by the binder)
"0"b definition can be deleted from the object
segment (by the binder)

argcount
ninp (obsolete) definition includes a count of the
argument descriptors (i.e., item n_args below
contains valid information)
"O"b no argument descriptor information is
associated with the definition

has_descriptors
"1"b (obsolete) definition includes an array of
argument descriptor (i.e., items n_args and
descriptor_relp below contain valid
information)
"O0"b no valid descriptors exist in the definition

unused is reserved for future use and must be "0"b

this field contains a code indicating the section of the
object segment to which value is relative. Codes are:

0 text section

1 linkage section

2 symbol section

3 this symbol is a segment name

y static section

is an offset (relative to the base of the definition

section) to an aligned ace string representing the
definition's symbolic name.

1-8 AK92B

7.

9.

segname_relp

n_args

descriptor_relp

is an offset (relative to the base of the definition
section) to the first class-3 definition of this
definition block.

(obsolete) is the number of arguments expected by this
external entry point. This item 1is present only if
argcount or has_descriptors equals "1"b.

(obsolete) is an array of pointers (relative to the Dbase
of the text section) that point to the descriptors of the
corresponding entry point arguments. This item is present
only if has_descriptors equals "1"b.

The obsolete items are described here to illustrate earlier versions;
translators should
See "Entry Sequence" above.

put these items in the entry sequence of the text section.

In the case of a class-3 definition, the above structure is interpreted as

follows:
del 1 segname aligned,
2 forward_thread bit(18) unaligned,
2 backward_thread bit(18) unaligned,
2 segname_thread bit(18) unaligned,
2 flags bit(15) unaligned,
2 class bit(3) unaligned,
2 symbol_relp bit(18) unaligned,
2 first_relp bit(18) unaligned;
where:

1.

3 (o)) (%] =
. .

forward_thread
backward_thread

segname_thread

flags
class
symbol_relp

first_relp

is the same as above.
is the same as above.

is a thread (relative to the base of the definition
section) to the next class-3 definition. The thread
terminates when it points to a word that contains all O's.
This thread provides a single sequential 1list of all
class-3 definitions in the object segment.

is the same as above.

is the same as above (and has a value of 3).

is the same as above.

is an offset (relative to the base of the definition
section) to the first nonclass-3 definition of the
definition block. If the block contains no nonclass-3
definitions, it points to the first class-3 definition of

the next block. If there is no next block, it points to a
word that is all O0's.

1-9 AK92

The end of a definition block 1is determined by one of the following
conditions (whichever comes first):

1. forward_thread points to an all zero word;

2. the current entry's class is not 3, and forward_thread points to a
class-3 definition;

3. the current definition is class 3, and both forward_thread and
first_relp point to the same class-3 definition.

The threading of definition entries is shown in Figure 1-1 above. The
following paragraphs describe items 1in the unstructured portion of the
definition section.

X ssion Wor

The expression word is the item pointed to by the expression pointer of an
unsnapped link (see "Structure of the Linkage Section" below) and has the

following structure:

del 1 exp_word aligned,
2 type_pair_relp bit(18) unaligned,
2 expression fixed bin(17) unaligned;
where:

1. type_pair_relp is an offset (relative to the base of the definition
section) to the link's type pair.

2. expression is a signed value to be added to the offset (i.e., offset
within a segment) of the resolved link.

air

The type pair is a structure that defines the external symbol pointed to by
a link.

dcl 1 type_pair aligned,
2 type bit(18) unaligned,
2 trap_relp bit(18) unaligned,
2 segname_relp bit(18) unaligned,
2 offsetname_relp bit(18) unaligned;
where:
1. type assumes a value from 1 to 6:

1 is a self-referencing link (i.e., the segment in which
the external symbol 1is located is the object segment
containing this link or a dynamic related section of
the link) of the form:

myself|O+expression,modifier

2 unused; it was earlier used to define a now obsolete
ITP-type link.

2/717 1-10 AK92B

2. trap_relp

3. segname_relp

4, of fsetname_relp

2/77

3 is a link referencing a specified reference name but no
symbolic offset name, of the form:

refname | O+expression,modifier

4 is a link referencing both a symbolic reference name
and a symbolic offset name, of the form:

refname |of fsetname+expression,modifier

5 1is a self-referencing link having a symbolic offset
name, of the form:

myself|offsetname+expression,modifier

6 same as type 4 except that the external item is created
if it is not found. (See "Dynamic Linking" in the MPM
Reference Guide.) (Now Obsolete.)

is an offset (relative to the base of the definition
section) to either an initialization structure (if type
equals 5 and segname_relp equals 5 or if type equals 6) or
to a trap pair.

is a code or a pointer depending on the value of type.
For types 1 and 5, this item is a code that can assume one
of the following values, designating the sections of the
self-referencing object segment:

is a self-reference to the object's text section; such a
reference is represented symbolically as "¥*text".

is a self-reference to the object's linkage section; such
a reference is represented symbolically as "#¥#link".

is a self-reference to the object's symbol section; such a
reference is represented symbolically as "¥*symbol".

is a self-reference to the object's static section; such a
reference is represented symbolically as "¥static".

is a reference to an external variable managed by the
linker; such a reference is represented symbolically as
"¥#system".

For types 3, 4, and 6, this item is an offset (relative to
the base of the definition section) to an aligned acec
string containing the reference name portion of an
external reference. (See "Constructing and JInterpreting
Names" in Section III of the MPM Reference Guide.)

has a meaning depending on the value of type. For types 1
and 3, this value is ignored and must be zero. For types
4, 5, and 6, this item is an offset (relative to the base
of the definition section) to an aligned acc string of an
external reference. (See "Constructing and Interpreting
Names" in Section III of the MPM Reference Guide for a
discussion of offset names.)

1-11 AK92B

Tr Pair

The trap pair is a structure that specifies a trap procedure to be called
before the link associated with the trap pair is resolved by the dynamic linking
mechanism. It consists of relative pointers to two links. (Links are defined
under "Structure of the Linkage Section" below.) The first 1link defines the
entry point in the trap procedure to be called. The second link defines a block
of information that 1is passed as one of the arguments of the trap procedure.
For more detailed information on trap procedures see "Dynamic Linking" in the
MPM Reference Guide. The trap pair is structured as follows:

del 1 trap_pair aligned,
2 entry_relp bit(18) unaligned,
2 info_relp bit(18) unaligned;

where:

1. entry_relp is an offset (relative to the base of the linkage section) to a
link defining the entry point of the trap procedure.

2. info_relp is an offset (relative to the base of the linkage section) to a
link defining information of interest to the trap procedure.

Injtialization Structure for Type 5 ¥system and Type 6 Links

This structure specifies how a link target first referenced because of a
type 5 ¥system or a type 6 link should be initialized. It has the following
format:

del 1 initialization_info aligned,

2 n_words fixed bin,
2 code fixed bin,
2 info (n_words) bit(36) aligned;
where:
1. n_words is the number of words required by the new variable.
2. code indicates what type of initialization is to be performed. It
can have one of the following values:
0 no initialization is to be performed
3 copy the info array into the newly defined variable
4 initialize the variable as an area
3. info is the image to be copied into the new variable. It exists

only if code is 3.

STRUCTURE OF THE STATIC SECTION

The static section is unstructured.

2/77 1-12 AK92B

n entries)
- defp 0
B ——— defp 0
0 0
defp 0
0 0 definition name
< defp 0
hash table
defp 0
- defp 0
n_entries \
- defp block_hdrp -
0 0
¢ defp block_hdrp > co nent nam
- defp block _hdrp > mpo €
hash table
/
> n_dup_names
- defp block _hdrp .
= t tabl
- detp block_hdrp . duplicate name table
- defp block_hdrp -
> n_dup_names
B —— defp block _hdrp »+ duplicate name table
- defp block __hdrp »>
Figure 1-2. Definition Hash Table

11777

1-12.1

AK92C

Definition Hash Table

A definition hash table may be present in the definition section of an
object segment. In its basic form, the definition hash table contains an array

of pointers to definitions. The definition hashing algorithm selects a
particular pointer. If the selected pointer does not point to the desired
definition, a linear search is then performed until the appropriate definition
is found or a zero pointer is encountered. The initial hash code is generated

by taking the remainder of the first word of the definition name (the count and
first three characters of the "acc" format string) divided by the size of the
hash table. The hash table size is such that it is never more than 80% full.

In bound segments, different components may contain definitions with
identical names. In this <case, a second hash table is required in order to
resolve ambiguities. In addition to this second hash table, a duplicate name
table must be provided for each duplicated definition name.

The format of the tables described above is shown in Figure 1-2 and 1is
described below:

The definition name hash table is pointed to by a relative pointer in the
definition section header. It must contain one nonzero entry for each
non-class-3 definition name.

del 1 defht aligned,
2 n_entries fixed bin,
2 table (n refer (defht.n entries)),

(3 defp bit(18),
3 unused bit(18)) unal;

where:
1. n_entries is the number of elements in the hash table.
2. defp is an array of pointers to non-class-3 definitions. 1In

the case of a duplicated definition name, a particular
defp does not point directly to a definition, but
rather to a duplicate name table (see below).

A component name hash table is present only if duplicated definition names
are present in a bound segment. It must immediately follow the def;nition hash
table. There is one entry in this hash table for each bound segment component
name and synonym (i.e., for each class-3 definition).

decl 1 compht aligned,
2 n_entries fixed bin,
2 table (nrefer (compht.n_entries)),
(3 defp bit(18),
3 block_hdrp bit(18)) unaligned;
where:
1. n_entries is the number of elements in the component name hash
table.
2. table contains one nonzero element for each class=-3

definition.

3. defp is a relative pointer to a class-3 definition.

11/77 1-12.2 AK92C

4. block hdrp is a relative pointer to the first class-3 definition
- of the definition block containing the definition
pointed to by defp.

A duplicate name table must be supplied for each duplicated definition
name. Each table has one entry for each instance of the duplicated name. The
definition searching algorithm can determine whether the relative pointer
retrieved from the definition hash table points to a definition or to a
duplicate name table by examining the left half of the first word pointed to. A
definition never contains a zero forward_thread, while a duplicate name table is
never nonzero in the left half of the first word.

decl 1 dupt aligned,
2 n_dup_names fixed bin,
2 table (n refer (dupt.n dup names)),
(3 defp bit(18),
3 block hdrp bit(18)) unaligned;
where:
1. n_dup_names is the number of instances of a given duplicated name.
2. table contains one element for each instance of the
duplicated name.
3. defp is a pointer to a non-class-3 definition.
4, block hdrp is a pointer to the first <class-3 definition of the

definition block containing the non-class-3 definition.

Definition searching with a definition hash table 1is done by first
searching for the definition name. If no duplicate name table is encountered,
no ambiguity exists and the correct definition is quickly found. If a duplicate
name table is encountered, the component name hash table must be searched.
Then, a linear search is done on the duplicate name tatle to match a block hdrp
with the block _hdrp in the component name hash table.

STRUCTURE OF THE STATIC SECTION

The static section is unstructured.

11777 1-12.3 AK92C

This page intentionally left blank.

1/77 ‘ AK92C

STRUCTURE OF THE LINKAGE SECTION

The linkage section is subdivided into four distinct components:

1. A fixed-length header that always resides at the base of the linkage
section

2. A variable length area used for internal (static) storage (optional)
3. A variable length structure of links (optional)

y, First-reference trap (optional)

These four components are located within the linkage section in the following
sequence:

header

internal storage (if present)
links (if present)

trap (if present)

The length of the linkage section must be an even number of words and must
start on an even -word boundary; in addition, the link substructure must also
begin at an even location (offset) within the linkage section.

When an object segment is first referenced in a process, its linkage
section is copied into a per-process data base. At this time certain items in
the copy of the header are initialized. Items not explicitly described as being
initialized by the linker are set by the program that generates the object
segment. In addition, the first two words of the header (containing the items
pad, def_section_relp, and first_reference_relp) are overwritten with a pointer
to the beginning of the object segment's definition . section. For more
information see "Dynamic Linking" in the MPM Reference Guide and "Standard Stack
and Linkage Area Formats" in Section II of this manual.

Linkage Section Header

The header of the linkage section has the following format:

del 1 linkage_header aligned,

2 pad bit(36),

2 def_section_relp bit(18) unaligned,

2 first_reference_relp bit(18) unaligned,

2 symbol_ptr ptr unal,

2 original_linkage_ptr ptr unal,

2 unused bit(72),

2 links_relp bit(18) unaligned,

2 linkage_section_length bit(18) unaligned,

2 object_segno bit (18) unaligned,

2 static_length bit(18) unaligned;
where:
1. pad is reserved for future use and must be O.
2. def_section_relp is an offset (relative to the base of the object

segment) to the base of the definition section.

1-13 AK92B

3. first_reference relp is an offset (relative to the base of the linkage
section) to the first-reference trap. This trap is
activated by the linker when the first reference to
this object segment is made within a given process.
If the value of this item is "0"b, there is no
first-reference trap.

4, symbol_ ptr is a pointer to the object segment's symbol
section. It 1is wused by the linker to snap links
relative to the symbol section. It is initialized
by the linker when the header is copied.

5. original linkage ptr is a pointer to the original linkage section within
the object segment. It is wused by the link
unsnapping mechanism and 1is initialized by the
linker when the header is copied.

6. links relp is an offset (relative to the base of the linkage
section) to the first link (the base of the link
array).

7. linkage_ section_length 1is the entire length in words of the entire linkage
section.

8. object segno is the segment number of the object segment. It is
initialized by the 1linker when the header is
copied.

9. static_length is the length in words of the static section and is

valid even when static 1is part of the linkage
section. It 1is 1initialized by the linker if not
filled in by the translator.

Internal Storage Area

The internal storage area is an array of words used by translators to
allocate internal static variables and has no predetermined structure.

Links

A linkage section may contain an array of link pairs, each of which defines
an external name, referenced by this object segment, whose effective address is
unknown at compile time. Figure 1-2 illustrates the structure of a link.

A link must reside on an even location in memory, and must therefore be
located at an even offset from the base of the linkage section. The format of a
link is:

del 1 1link aligned,

2 header_relp bit(18) unaligned,

2 ignorel bit(12) unaligned,

2 ignoreil bit(6) unaligned,

2 run_unit_depth fixed bin(5) unaligned,
2 tag bit(6) unaligned,

2 expression_relp bit(18) unaligned,

2 ignore?2 bit(12) unaligned,

2 modifier bit(6) unaligned;

11777 1-14 AK92C

where:

1. header relp is an offset (relative to the link itself) to the head .of
- the 1linkage section. It is, in other words, the negative
value of the 1link pair's offset within the 1linkage

section.
2. ignorel is reserved for future use and must be "O0"b.
3. run_unit_depth must be O in a generated (unsnapped) link. When the 1link

is snapped, this field is filled in with the number of the
current run unit level.

y, tag is a constant (46)8 that represents the hardware
fault tag 2 and distinctly identifies an unsnapped link.
The snapped link (ITS pair) has a distinct (43)8 tag. See
"Simulated Fault" in Section VII of the MPM Reference

Guide.

5. expression_relp is an offset (relative to the base of the definition
section) to the expression word for this link.

6. ignore2 is reserved for future use and must be "O0"b.

7. modifier is a hardware address modifier.

First-Reference Trap

It is sometimes necessary to perform certain types of initialization of an
object segment when it is first referenced for execution (i.e., linked to) in a
given process--for example, to store some per-process information in the segment
before it is wused. The first-reference trap mechanism provides this facility
for use by various mechanisms, the status code assignment mechanism being an
example. See "Handling of Unusual Occurrences" in Section VII of the MPM
Reference Guide.

A first-reference trap consists of two relative pointers. The first points
to a link defining the first reference procedure entry point to be invoked. The
second points to a link defining a block of information to be passed as an
argument to the first-reference procedure. For more details on first-reference
traps, see "Dynamic Linking" in Section IV in MPM Reference Guide.

del 1 fr_traps aligned,
2 decl_vers fixed bin initial(1),
2 n_traps fixed bin,
2 call_relp bit(18) unaligned,
2 info_relp bit(18) unaligned;

where:

1. decl_vers is the version number of the structure.

2. n_traps specifies the number of traps; it must equal 1.

3. call relp is an offset (relative to the base of the linkage section)
to a link defining a procedure to be invoked by the linker
upon first reference to this object within a given
process.

4, info_relp is an offset (relative to the base of the linkage section)

to a link specifying a block of information to be passed
as an argument to the first reference procedure; if
info_relp is 0, there is no such block.

1777 1-15 AK92C

» to info link

—— ol — ——. —

» to call link

Link

expression relp

Linkage
Section

Expression Word

type_pair_relp

+ expression

Type Pair

type

trap_relp

Defintion
Section

Type=5Code=5 and Type=6

segname_relp

offsetname_relp

segname acc string

Type # 6

entryname acc string

Trap Pair

callrelp

info_relp

2/717

Figure 1-2.

=16

Structure of a Link

Init Structuny

nwords

action code

image

T~

AK92B

STRUCTURE OF THE SYMBOL SECTION

The symbol section consists of one or more symbol blocks threaded together
to form a single list. A symbol block has two main functions: to document the
circumstances under which the object segment was created, and to serve as a
repository for information (relocation information, compiler's symbol tree,
etc.) that does not belong in any of the other sections.

The symbol section must contain at least one symbol block, describing the
circumstances under which the object segment was created. A symbol section can
contain more than one symbol block. An example of multiple symbol blocks is the
case of a bound segment where in addition to the symbol block describing the
segment's creation by the binder, there is also a symbol block for each of the
component object segments.

A symbol block consists of a fixed length header and a variable length area
pointed to by the header. The contents of this area depend on the symbol block.
For example, a compiler's symbol block can contain a symbol tree, and the
binder's symbol block contains the bind map.

Symbol Block Header

All symbol blocks have a standard fixed-format header, although not all
items in the header have meaning for all symbol blocks. The description of a
particular symbol block 1lists items that have meaning for that symbol block.
The header has the following format:

del 1 symbol_block_header aligned,
2 decl_vers fixed bin initial(1),
2 identifier char(8) aligned,
2 gen_version_number fixed bin,
2 gen_creation_time fixed bin(T71),
2 object_creation_time fixed bin(71),
2 generator char(8) aligned,
2 gen_version_name_relp bit(18) unaligned,
2 gen_version_name_length bit(18) unaligned,
2 access_name_relp bit(18) unaligned,
2 access_name_length bit(18) unaligned,
2 comment_relp bit(18) unaligned,
2 comment_length bit(18) unaligned,
2 text_boundary bit(18) unaligned,
2 stat_boundary bit(18) unaligned,
2 source_map_relp bit(18) unaligned,
2 area_relp bit(18) unaligned,
2 section_relp bit(18) unaligned,
2 block_size bit(18) unaligned,
2 next_block_thread bit(18) unaligned,
2 text_relocation_relp bit(18) unaligned,
2 def_relocation_relp bit(18) unaligned,
2 link_relocation_relp bit(18) unaligned,
2 symbol_relocation_relp bit(18) unaligned,
2 default_truncate bit(18) unaligned,
2 optional_truncate bit(18) unaligned;
where:
1. decl_vers is the version number of the structure.
2. identifier is a symbolic name identifying the type of symbol
block.

1-17 AK92

10.

1.

12.

13.

14.

15.

16.

gen_version_number

gen_creation_time

object_creation_time

generator

gen_version_relp

gen_version_name_length

access_name_relp

access_name_length

comment_relp

comment_length

text_boundary

stat_boundary

source_map_relp

area_relp

is a code designating the version of the generator
that created this object segment. A generator's
version number is normally changed when the
generator or its output is significantly modified.

is a calendar clock reading specifying the date and
time when this generator was created.

is a calendar clock reading specifying the date and
time when this symbol block was generated.

is the name of the processor that generated this
symbol block.

is an offset (relative to the base of the symbol
block) to an aligned string describing the version
of the generator. For example:

"PL/I Compiler Version 7.3
of Wednesday, July 28, 1971"

The integer part of the version number embedded in
the string must be identical to the number stored
in gen_version_number.

is the length of the aligned string describing the
version of the generator.

is an offset (relative to the base of the symbol
block) to an aligned string containing the access
identification (i.e., the value returned by the
get_group_id_ subroutine described in the MPM
Subroutines) of the user for whom this symbol block
was created.

is the length of the aligned string containing the
access 1identification of the wuser for whom the
symbol block was created.

is an offset (relative to the base of the symbol
block) to an aligned string containing
generator-dependent symbolic information. For
example, a compiler might store diagnostic messages
concerning nonfatal errors encountered while
generating the object segment. A value of "0"b
indicates no comment.

is the length of the aligned string containing
generator-dependent symbolic information.

is a number indicating the boundary on which the
text section must begin. For example, a value of
32 would indicate that the text section must begin
on a 0 mod 32 word boundary. This value must be a
multiple of 2. It 1is wused by the binder to
determine where to locate the text section of this
object segment.

is the same as text_boundary except that it applies
to the internal static area of the linkage section
of this object segment.

is an offset (relative to the base of the symbol
block) to the source map (see "Source Map" below).

is an offset (relative to the base of the symbol
block) to the variable-length area of the symbol
block. The contents of this area depend on the
symbol block.

1-18 AK92

O

17. section_relp is an offset (relative to base of the symbol.block)
- to the base of the symbol section; that is, the
negative of the offset of the symbol block in the
symbol section.
2 18. Dblock_size is the size of the symbol block (including the
header) in words.

19. next_block_thread is a thread (relative to the base of tbe _symel
section) to the next symbol block. This item is
"O"b for the last block.

20. text_relocation_relp is an offset (relative to the base of the symbol
block) to text section relocation information (see
"Relocation Information" below).

21. def_relocation_relp is an offset (relative to the base of the symbol
block) to definition section relocation
information.

22. link_relocation_relp is an offset (relative to the base of the symbol
block) to linkage section relocation information.

23. symbol_relocation_relp is an offset (relative to the base of the symbol
block) to symbol section relocation information.

24, default_truncate is an offset (relative to the base of the symbol
block) starting from which the binder
systematically truncates control information (such
as relocation bits) from the symbol section, while
still maintaining such information as the symbol
tree.

25. optional_truncate is an offset (relative to this base of the symbol
block) starting from which the binder can

N optionally truncate nonessential parts of the
symbol tree in order to achieve maximum reduction
in the size of a bound object segment.

Source Map

The source map is a structure that uniquely identifies the source segments
used to generate the object segment. It has the following format:
decl 1 source_map aligned,
2 decl_vers fixed bin initial(1),
2 size fixed bin,
2 map (size) aligned,
3 pathname_relp bit(18) unaligned,
3 pathname_length bit(18) unaligned,
3 uid bit(36) aligned,
3 dtm fixed bin(71);

where:

1. decl_vers is the version number of the structure.

2. size is the number of entries in the map array; that is,
the number of source segments used to generate this
object segment.

PamS

1-19 AK92

3. pathname_relp is an offset (relative to the base of the symbol
block) to an aligned string containing the absolute
pathname of this source segment.

g, pathname_length is the length of the above string.

5. uid is the unique identifier of this source segment at
the time the object segment was generated.

6. dtm is the date-time-modified value of this source
segment at the time the object segment was created.

Relocation Information

. _Relocation information, designating all instances of relative addressing
within a given section of the object segment, enables the relocation of the

section (as in the case of binding). A variable-length prefix coding scheme is
used, where there is a logical relocation item for each halfword of a given
section. If the halfword is an absolute value (nonrelocatable), that item is a

single bit whose value is 0. Otherwise, the item is a string of either 5 or 15
bits whose first bit is set to "1"b. The relocation information is concatenated
to form a single string that can only be accessed sequentially. If the next bit
is a zero, it is a single-bit absolute relocation item; otherwise, it is either
a 5- or a 15-bit item depending upon the relocation codes defined below.

There are four distinct blocks of relocation information, one for each of
the four object segment sections: text, definition, linkage and symbol; these
relocation blocks are known as vrel_text, rel_def, rel_link and rel_symbol,
respectively.

The relocation blocks reside within the symbol block of the generator that
produced the object segment. The correspondence between the packed relocation
items and the halfwords in a given section 1is determined by matching the
sequence of items with a sequence of halfwords, from left-to-right and from
word-to-word by increasing value of address.

The relocation block pointed to from the symbol block header (e.g.,
rel_text) is structured as follows:

del 1 relinfo aligned,

2 decl_vers fixed bin initial(2),

2 n_bits fixed bin,

2 relbits bit(0 refer(n_bits)) aligned;
where:
1. decl_vers is the version number of the structure.
2. n_bits is the length (in bits) of the string of relocation

bits.

3. relbits is the string of relocation bits.

1-20 AK92

Following is a tabulation of the possible codes and their corresponding
relocation types, followed by a description of each relocation type.

l'ollb

"10000"b
"10001"b
"10010"b
"10011"b
"10100"b
"10101"b
"10110"b
"10111"b
"11000"b
"11001"b
"11010"b
"11011"b
"11100"b
"11101"b
"11110"b
"11111"b

where:
1. absolute
2. text
.3. negative text

1.

12.

link 18

negative link 18

link 15

definition

symbol
negative symbol

internal storage 13

internal storage 15

self relative

absolute

text

negative text
link 18
negative link 18
link 15

defi
symb

nition
ol

negative symbol
internal storage 18
internal storage 15
self relative
unused

unused

unused

expanded absolute
escape

does not relocate.
uses text section relocation counter.

uses text section relocation counter. The reason
for having distinct relocation codes for negative
quantities is that special coding might be
necessary to convert the 18-bit field in question
into its correct fixed binary form.

uses linkage section relocation counter on the
entire 18-bit halfword. This, as well as the
negative link 18 and the link 15 relocation codes
apply only to the array of links in the linkage
section (i.e., by definition, wusage of these
reloca%ion codes implies external reference through
a link).

is the same as link 18 above.

uses linkage section relocation counter on the
low-order 15 bits of the halfword. This relocation
code can only be used in conjunction with an
instruction featuring a base/offset address field.

indicates that the halfword contains an address
that 1is relative to the base of the definition
section.

uses symbol section relocation counter.

is the same as symbol above.

uses internal storage relocation counter on the
entire 18-bit halfword.

uses internal storage relocation counter on the
low-order 15 bits of the halfword.

indicates that the halfword contains a relocatable

address that is referenced using a location counter
modifier; the instruction is self-relocating.

1-21 AK92

13. expanded absolute allows the definition of a block of absolute
relocated halfwords, for efficiency reasons. It
has been established that a major part of an object
program has the absolute relocation code. The five
bits of relocation code are immediately followed by
a fixed length 10-bit field that is a count of the
number of contiguous halfwords all having an
absolute relocation. Use of the expanded absolute
code can be economically justified only if the
number of contiguous absolute halfwords exceeds 15.

14. escape reserved for possible future use.

STRUCTURE OF THE OBJECT MAP

The object map contains information used to locate the various sections of
an object segment. The map 1itself can be 1located immediately before or
immediately after any one of the five sections. Translators normally place it
immediately after the symbol section. The last word of the object segment (as
defined by the bit count of the object segment) must contain a left-justified
18-bit offset (relative to the base of the object segment) to the object map.
The object map has the following format:

dcl 1 object map aligned,
2 decl_vers fixed bin init(2),
2 identifier char(8) aligned,
2 text relp bit(18) unaligned,
2 text_length bit(18) unaligned,
2 def relp bit(18) unaligned,
2 def length bit(18) unaligned,
2 link_relp bit(18) unaligned,
2 link_length bit(18) unaligned,
2 static_relp bit(18) unaligned,
2 static_length bit(18) unaligned,
2 symb_relp bit(18) unaligned,
2 symb_length bit(18) unaligned,
2 bmap_relp bit(18) unaligned,
2 bmap_length bit(18) unaligned,
2 entry bound bit(18) unaligned,
2 text link relp bit(18) unaligned,
2 format aligned,
3 bound bit(1) unaligned,
3 relocatable bit(1) unaligned,
3 procedure bit(1) unaligned,
3 standard bit(1) unaligned,
3 separate_static bit(1) unaligned,
3 links_in_text bit(1) unaligned,
3 perprgcess_static bit(1) unaligned,
3 unused bit(29) unaligned;
where:
1. decl_vers is the version number of the structure.
2. lidentifier is the constant "obj_map".
3. text relp is an offset (relative to the base of the object segment)
- to the base of the text section.
4. text_length is the length (in words) of the text section.
5. def _relp is an offset (relative to the base of the object segment)

to the base of the definition section.

1/77 1=22 AK92C

10.
1.

12.
13.

14,
15.

16.

17.

18.

19.

20,

21.

22.

23.

24,

11/77

def length

link_relp

link length

static_relp

static_length

symb_relp

symb_length

bmap_relp

bmap_length

entry_bound

text_link_relp

bound

relocatable

procedure

standard

separate_static

links_in_text

is the length (in words) of the definition section.

is an offset (relative to the base of the object segment)
to the base of the linkage section.

is the length (in words) of the linkage section.

is an offset (relative to the base of the object segment)
to the base of the static section.

is the length (in words) of the static section.

is an offset (relative to the base of the object segment)
to the base of the symbol section.

is the length (in words) of the symbol section.

is an offset (relative to the base of the object segment)
to the base of the break map section.

is the length (in words) of the break map section.

is the offset of the end of the entry transfer vector if
the object segment is to be a gate.

is the offset of the first text-embedded link if
links_in_text equals "1"b.

indicates if the object segment is a bound segment.
"1"b the object segment is a bound segment
"0"b the object segment is not a bound segment

indicates if the object segment is relocatable; that 1is,
if it contains relocation information. This information
(if present) must be stored in the segment's first symbol
block. See "Structure of the Symbol Section" above.

"1"b the object segment is relocatable

“O0"b the object segment is not relocatable

indicates whether this is an executable object segment.
"1"p this is an executable object segment
"0"b this is not an executable object segment

indicates whether the object segment is in standard format.
"1"b the object segment is in standard format
"0"b the object segment is not in standard format

indicates whether the static section is separate from the

linkage section.

"1"p the static section 1is separate from the 1linkage
section

"0"b the static section is not separate from the linkage
section

indicates whether the object segment contains text-embedded

links.

"1"b the object segment contains text-embedded links

"0"b the object segment does not contain text-embedded
links

perprocess_static

unused

indicates whether the static section should be
reinitialized for a run unit.

"1np static section is used as is

"0"b static section is per run unit

is reserved for future use and must be "O0"b.

1-23 AK92C

GENERATED CODE CONVENTIONS

The following discussion specifies those portions of generated code that
must conform to a system-wide standard. For a description of the various
relocation codes see "Structure of the Symbol Section" above.

Text Section

are:

Those parts of the text section that must conform to a system-wide standard

entry sequence
text relocation codes.

ENTRY SEQUENCE

The entry sequence must fulfill two requirements:

1. The location preceding the entry point (i.e., entry point minus

1)

must contain a left adjusted 18-bit relative pointer to the definition

of that entry point within the definition section

2. The entry sequence executed within that entry point must store an

ITS

pointer to that entry point in the entry_ptr field in the stack frame

header (as described in the stack frame include file).
procedure's current stack frame can then be used to determine

The
the

address of the entry point at which it was invoked. That entry's
symbolic name can be reconstructed through use of its definition

pointer. (See "Entry Sequence" earlier in this section.)

TEXT RELOCATION CODES

conjunction with the text section.

The following list defines those relocation codes that can be generated

of the restrictions specified.

in

These can be generated only within the scope

absolute no restriction

text no restriction

negative text no restriction

link 18 can only be a direct (i.e., unindexed) reference to
a link.

link 15 can only appear within the address field of a
pointer-register/offset type instruction
(bit 29 = "1"b). The first two bits of the modifier
field of the instruction cannot be *10"b. If the
instruction uses indexing, the first two bits of the
modifier must be "11"b. Also the following

instruction codes cannot have tnis relocation code:

STBA (551)8
STBQ (552)8
STCA (751)8
STCQ (752)8

1-24

AK92

definition the offset to be relocated must be that of the
beginning of a definition (relative to the beginning
of the definition section).

symbol no restriction
internal storage 18 no restriction

internal storage 15 can only apply to the left half of a word. If the
word is an instruction, the first two bits of the
modifier must not be "10"b.

self relative no restriction

expanded absolute no restriction

The restrictions imposed upon the 1link 15 and internal storage 15
relocation codes stem from the fact that these vrelocation codes apply to
pointer-register/offset type address fields encountered in the address portion
of machine instructions. Since the effective value of such an address is
computed by the hardware at execution time, certain hardware restrictions are
imposed on instructions containing thenm. When the Multics binder processes
these instructions, it often resolves them into simple-address format and has to
further modify information in the opcode (right-hand) portion of the instruction
word. Therefore, these relocation codes must only be specified in a context
that is comprehensible to the Multics processor.

Defini n_Sectio

Those parts of the definition section that must conform to a system-wide
standard are:

general structure
definition relocation codes
implicit definitions

DEFINITION RELOCATION CODES

absolute no restriction
text no restriction
link 18 no restriction
definition no restriction
symbol no restriction
internal storage 18 no restriction
self relative no restriction
expanded absolute no restriction

2/717 1-25 AK92B

IMPLICIT DEFINITIONS

All generated object segments must feature the following implicit
definition:

symbol_table defines the base of the symbol block generated by the
current language processor, relative to the base of the
symbol section.

Linkage Section

Those parts of the linkage section that must conform to a system-wide
standard are:

internal storage
links
linkage relocation codes

INTERNAL STORAGE

The 1internal storage 1is a repository for items of the internal static
storage class. It may contain data items only; it cannot contain any executable
code.

LINKS

The link area can only contain a set of links. The 1links must be
considered as distinct unrelated items, and no structure (e.g., array) of links
can be assumed. They must be accessed explicitly and 1individually through an
unindexed internal reference featuring the link 18 or the link 15 relocation
codes. The order of links will not necessarily be preserved by the binder.

LINKAGE RELOCATION CODES

Only the linkage section header and the links can have relocation codes
associated with them (the internal storage area has associated with it a single
expanded absolute relocation item). They are:

absolute no restriction; mandatory for the internal storage
area
text no restriction
link 18 no restriction
negative link 18 no restriction
definition no restriction
internal storage 18 no restriction
expanded absolute no restriction

2/77 1-26 AK92B

> 4

Static Section

The static section does not have relocation codes associated with it.
Absolute relocation is assumed. See "Internal Storage Area" above.

Symbol Section

The symbol section can contain information related to some other section
(such as a symbol tree defining addresses of symbolic items), and therefore can
have relocation codes associated with it. They are:

absolute no restriction
text no restriction
link 18 no restriction
definition no restriction
symbol no restriction
negative symbol no restriction
internal storage 18 no restriction
self relative no restriction
expanded absolute no restriction

STRUCTURE OF BOUND SEGMENTS

A bound segment consists of several object segments that have been combined
so that all internal intersegment references are automatically prelinked and to
reduce the combined size by minimizing page breakage. The component segments
are not simply concatenated; the binder breaks them apart and creates an object
segment with single text, definition, static, linkage, and symbol sections as
illustrated in Figure 1-3 below. (When the static section is separate, it is
located before the linkage header rather than between the linkage header and the
links.) As explained below, the definition section and 1link array are
completely reconstructed while the text, internal static, and symbol sections
are the corresponding concatenations of the component segments' text, internal
static, and symbol sections with relocation adjustments. (See "Structure of
the Symbol Section" above.) If all of the components' static sections are
separate (i.e., not in 1linkage), the bound segment has a separate static
section; otherwise, all component static sections are placed in the bound
segment's linkage section.

2/77 =27 AK92B

text section

definition sectionJ

linkage section

symbol section

object map

Figure 1-3.

text for component 1
text for component 2

text for component n

f

\
(linkage header

{ .

Llinks

(first reference

.

\

-

\

int. static for component 1
int. static for component 2

int. static for component n

trap

symbol block for binder
{ symbol block for component 1

symbol block for component n

Structure of a Bound Segment

AK92

Internal Lin esolution

The primary distinction between bound and unbound groups of segments occurs
in the manner in which they reference external items and are themselves
referenced. Most references by one component to another component in the same
bound segment are prelinked; i.e., the link references are converted to direct
text-to-text references and the associated 1links are not regenerated. The
remaining external links are combined so that for the whole bound segment there
is only one link for each different target. Prelinking enables some component
segments to lose their identity in cases where the bound segment itself 1is the
main logical entity, having been coded as separate segments for ease of coding
and debugging. Definitions for external entries that are no 1longer necessary,
i.e., have become completely internal, can be omitted from the bound segment
(see the bind command described in MPM Commands).

Definition Section

The definition section of a bound segment is generally more elaborate than
that of an unbound object segment because it reflects both the combination and
deletion of definitions. There is a definition block for each component. It
contains the retained definitions and the segment names associated with the
component. This organization allows definitions for multiple entries with the
same name to be distinguished. The first definition block is for the binder and
contains a definition for bind_map, discussed below.

Binder m o¢

The symbol block of the binder has a standard header if all of the
components are standard object segments. The symbol block can be located using
the bind_map definition. Most of the items in the header are adequately
explained under "Structure of the Symbol Section" above; however, some have
special meaning for bound segments. The format of a standard symbol block
header is repeated below for reference, followed by the explanations specific to
the binder's symbol block.

del 1 symbol_block_header aligned,
2 decl_vers fixed bin initial(1),
2 identifier char(8) aligned,
2 gen_version_number fixed bin,
2 gen_creation_time fixed bin(71),
2 object_creation_time fixed bin(71),
2 generator char(8) aligned,
2 gen_version_name_relp bit(18) unaligned,
2 gen_version_name_length bit(18) unaligned,
2 access_name_relp bit(18) unaligned,
2 access_name_length bit(18) unaligned,
2 comment_relp bit(18) unaligned,
2 comment_length bit(18) unaligned,
2 text_boundary bit(18) unaligned,
2 stat_boundary bit(18) unaligned,
2 source_map_relp bit(18) unaligned,
2 area_relp bit(18) unaligned,
2 section_relp bit(18) unaligned,
2 block_size bit(18) unaligned,

2/T17 1-29 AK92B

2 next_block_thread bit(18) unaligned,
2 text_relocation_relp bit(18) unaligned,
2 def_relocation_relp bit(18) unaligned,
2 link_relocation_relp bit(18) unaligned,
2 symbol_relocation_relp bit(18) unaligned,
2 default_truncate bit(18) unaligned,
2 optional_truncate bit(13) unaligned;

where:

2. identifier is the string "bind_map".
6. generator is the string "binder".

11. comment_relp is always "O"b.

16. area_relp is an offset (relative to the base of the symbol block) to

the beginning of the bind map. (See "Bind Map" below.)

Bound segments currently are not relocatable, so none of the relocation
relative pointers or truncation offsets have any meaning.

Bi Ma

The bind map is part of the symbol block produced by the binder and
describes the relocation values assigned to the various sections of the bound
component object segments. It consists of a variable length structure followed
by an area 1in which variable length symbolic information is stored. The bind
map structure has the following format:

del 1 bindmap based aligned,

2 decl_vers fixed bin initial(1),

2 n_components fixed bin,

2 component(0 refer(n_components)) aligned,
3 name_relp bit(18)unaligned,
3 name_length bit(18) unaligned,
3 generator_name char(8) aligned,
3 text_relp bit(18) unaligned,
3 text_length bit(18) unaligned,
3 static_relp bit(18) unaligned,
3 static_length bit(18) unaligned,
3 symbol_relp bit(18) unaligned,
3 symbol_length bit(18) unaligned,
3 defblock_relp bit(18) unaligned,
3 number_of_blocks bit(18) unaligned,

2 bindfile_name aligned,
3 bindfile_name_relp bit(18)unaligned,
3 bindfile_name_length bit(18)unaligned,

2 bindfile_date_updated char(24),

2 bindfile_date_modified char(24);

where:
1. decl_vers is a constant designating the format of this

structure; this constant is modified whenever the
structure is, allowing system tools to -easily
differentiate between several incompatible
versions of a single structure.

2. n_components is the number of component object segments bound
within this bound segment.

1=-30 AK92

o

10.

11.

12.
13.

4.

15.

16.

17.

18.

11777

component

name _relp

name_length

generator_name

text_relp

text_length

static_relp

static_length

symbol relp

symbol length

defblock_relp

number_of blocks

bindfile_name_relp

bindfile name_length

bindfile_date_updated

bindfile_date_modified

is a variable-length array featuring one entry per
bound component object segment.

is the offset (relative to the base of the
binder's symbol block) of the symbolic name of the
bound component. This is the name under which the
component object was identified within the archive
file used as the binder's input (i.e., the name
corresponding to the object's objectname entry in
the bindfile).

is the length (in characters) of the component's

name.

is the name of the translator that created this
component object segment.

is the offset (relative to the base of the bound
segment) of the component's text section.

is the length (in words) of the component's text
section.

is the offset (relative to the base of the static

section) of the component's internal static.
is the length of the component's internal static.

is an offset (relative to the base of the
section) to the component's symbol section.

symbol

is the length of the component's symbol section.

if nonzero, this is a pointer (relative to the
base of the definition section) to the component's
definition block (first class-3 segname definition
of that component's definition block).

is the number of symbdl blocks in the
symbol section.

component's

is the offset (relative to the base of the
binder's symbol block) of the symbolic name of the
bindfile.

is the length (in characters) of the bindfile
name.
is the date, in symbolic form, that the bindfile

was updated in the archive (of object segments)
used as input by the binder.

is the date, in symbolic form, that the
was last modified before being put
binder's object archive.

bindfile
into the

1-31 AK92C

SECTION II

STANDARD EXECUTION ENVIRONMENT

TANDAR K _AND LI RMA

Because of the linkage mechanism, stack manipulations, and the complexity
of the Multics hardware, a series of Multiecs execution environment standards
have been adopted. All standard translators (including assemblers) adhere to
these standards as do all supervisor and standard storage system procedures.
Furthermore, they assume that other procedures do so as well.

Multics Stack

The normal mode of execution in a standard Multics process uses a stack
segment. There is one stack segment for each ring. The stack for a given ring
has the entryname stack_R, where R is the ring number, and is located in the
process directory. Each stack contains a "header" followed by as many "stack
frames" as are required by the executing procedures. A stack header contains
pointers to special code and data that are initialized when the stack is
created. Some of these pointers are variable and change during process
execution. They are included in the stack header so that they can always be
retrieved without supervisor intervention (for efficiency). The actual format
of the stack header is described under "Stack Header" below.

Stack frames begin at a location specified in the stack header, are
variable in length, and contain both control information and data for
dynamically active procedures. In general, a stack frame is allocated by the
procedure to which it belongs when that procedure is invoked. The stack frames
are threaded to each other with forward and backward pointers, making it an easy
task to trace the stack in either direction. The stack usage described below is
eritical to normal Multics operation; any deviations from the stated discipline
can result in unexpected behavior.

2-1 AK92

Stack Header

-about

Figure 2-1 gives the format of the stack header.

The stack header contains pointers (on a per-ring basis) to information
: the process, to operator segments, and to code sequences that can be used
to invoke the standard call, push, pop, and return functions (described

based on that figure and on the following PL/I declaration.

11777

del

below).

The following descriptions are

+0 | | T
i ' iCombined '
i Reserved 101d Lot iStatic i

+8 | iPointer {Pointer !
i Combined iMax | Run ! 1 !
iLinkage iLot | Unit iSystem Storage |User Storage
iPointer 1Size | Depth iPointer iPointer H
] 1 |] 1]
1 [}] I [|

+16} i i | i
iNull iStack Begin 1Stack End iLot H
iPointer iPointer iPointer iPointer i
] 1]]]
]] | |]

+24 i i i H
1Signal i BAR Mode iPL/I Operators |Call Operator
iPointer iStack Pointer i Pointer iPointer i
] 1]] |
] | | |]

+321 | i i i
i Push Operator |Return Operator |Short Return iEntry Operator |
{Pointer iPointer iOperator Ptr iPointer E
[}]]]
i | I 1 |

+407 i i i T
iTranslator iInternal Static |{System Condition|Unwinding i
iOperator 10ffset Table 1Table Pointer iProcedure
Pointer iPointer i iPointer '

+48 i | i 1
1 i Reference iEvent Channel {Assign '
{¥system Link |Name Table iTable iLinkage
Info Pointer |Pointer iPointer iPointer

+56 . Reserved !
]]
[} [}
| i
i i

+64

Figure 2-1. Stack Header Format

1 stack header based aligned,

2 pad1(%) fixed bin,

2 old lot ptr ptr,

2 combined_stat_ ptr ptr,

2 clr ptr ptr,

2 max_lot size fixed bin(17) unaligned,

2 run_unit depth fixed bin(17) unaligned,

2 cur lot size fixed bin(17) unaligned,

2 pad2 bit(18) unaligned,

2 system_storage ptr ptr,

2 user_storage ptr ptr,

2 null_ptr ptr,

2 stack_begin_ptr ptr,

2 stack_end_ptr ptr,

2 lot ptr ptr,

2 signal ptr ptr,

2 bar_mode_sp_ ptr ptr,

2 pl1_operators_ptr ptr,

2 call op_ptr ptr,

2-2 AK92C

-’

(

push_op_ptr
return_op_ptr
short_return_op_ ptr
entry op_ptr
trans_op_tv_ptr
isot_ptr

sct_ptr

unwinder_ ptr
sys_link_info_ptr
rnt_ptr

ect_ptr

assign linkage ptr
pad3(8)

NSNS IOSEIS ISV VR VR AR\

where:

1.
2.

10.

1.

12.

13.

1777

padl

old_ lot_ptr

combined_stat_ptr

clr_ptr

max_lot_size

run_unit_depth

cur_lot_size

pad2

system storage_ptr

user_storage_ptr

null ptr

stack_begin_ptr

stack_end_ptr

ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
fixed bin;

is unused.

is a pointer to the linkage offset table (LOT) for
the current ring. This field is obsolete.

is a pointer to the area in which separate static
sections are allocated.

is a pointer to the area in which linkage sections
are allocated.

is the maximum number of words (entries) that the
LOT and 1internal static offset table (ISOT) can
have.

is the current run unit level.

is the current number of words (entries) in the
LOT and ISOT.

is unused.

is a pointer to the area used for system storage,
which includes command storage and the ¥system
link name table.

is a pointer to the area used for user storage,
which includes FORTRAN common and PL/I external
static variables whose names do not include "$".

contains a null pointer value. In some
circumstances, the stack header can be treated as
a stack frame. When this is done, the null

pointer field occupies the same location as the
previous stack frame pointer of the stack frame.
(See "Multics Stack Frame" below.) A null pointer
indicates that there 1is no stack frame prior to
the current one.

is a pointer to the first stack frame on the
stack. The first stack frame does not necessarily
begin at the end of the stack header. Other
information, such as the linkage offset table, can
be located between the stack header and the first
stack frame.

is a pointer to the first unused word after the
last stack frame. It points to the location where
the next stack frame is placed on this stack (if
one is needed). A stack frame must be a multiple
of 16 words; thus, both of the above pointers
point to 0 (mod 16) word boundaries.

2-3 AK92C

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

2/77

lot_ptr

signal_ptr

bar_mode_sp_ptr

pl1_operators_ptr

call_op_ptr

push_op_ptr

return_op_ptr

short_return_op_ptr

entry_op_ptr

trans_op_tv_ptr

isot_ptr

sct_ptr

unwinder_ptr

is a pointer to the linkage offset table (LOT) for
the current ring. The LOT contains packed
pointers to the'dynamic linkage sections known in
the ring in which the LOT exists. The 1linkage
offset table is described below under "Linkage
Offset Table."

is a pointer to the signalling procedure to be
invoked when a condition is raised in the current
ring.

is a pointer to the stack frame in effect when BAR
mode was entered. (This is needed because typical
BAR mode programs can change the word offset of
the stack frame pointer register.)

is a pointer to the standard operator segment used
by PL/I. It 1is used by PL/I and FORTRAN object
code to locate the appropriate operator segment.

is a pointer to the Multics standard call operator
used by ALM procedures. It is used to invoke
another procedure in the standard way.

is a pointer to the Multies standard push operator
that is used by ALM programs when allocating a new
stack frame. All push operations performed on a
Multics stack should use either this or an
equivalent operator; otherwise results are
unpredictable. (The push operation was formerly
called save.)

is a pointer to the Multics standard return
operator used by ALM procedures. It assumes that
a push has been performed by the invoking ALM
procedure and pops the stack prior to returning
control to the caller of the ALM procedure.

is a pointer to the Multics standard short return
operator used by ALM procedures. It is invoked by
a procedure that has not performed a push to
return control to its caller.

is a pointer to the Multices standard entry
operator. The entry operator does little more
than find a pointer to the 1invoker's 1linkage
section.

points to a vector of pointers to special language
operators; this table can be expanded to
accommodate new languages without causing a change
in the stack header.

is a pointer to the internal static offset table
(ISOT). The ISOT contains packed pointers to the
dynamic internal static sections known in the ring
in which the ISOT exists.

is a_ pointer to the system condition table (SCT)
used by system code in handling certain events.

is a pointer to the unwinding procedure to be

invoked when a -nonlocal goto is executed in the
current ring.

2-4 AK92B

27. sys_link_info_ptr is a pointer to the *system link name table.

28. rnt_ptr points to the reference name table (RNT).
29. ect_ptr points to the event channel table (ECT).
30. assign_linkage_ptr points to the area used by certain critical system

programs whose operations must not be modified by
run unit. This pointer initially points to the
same area as stack header.clr_ptr but is not
changed by the run unit mechanism.

31. pad3 } is unused.

The call, push, return, short return, and entry operators are invoked by
the object code generated by the ALM assembler. Other translators that intend
to use the standard call/push/return strategy should either use these operators
or an operator segment with a set of operators consistent with these. For a
detailed description of what the operators do and how to invoke them, see
"Subroutine Calling Sequences" later in this section.

The PL/I and FORTRAN compilers use slightly different operators that
perform equivalent and compatible functions. All supported translators,
however, depend on the effects generated by these operators.

Multics Stack Frame

The format given below for a standard Multics stack frame must be strictly
followed because several critical procedures of the Multics system depend on it.
A bad stack segment or stack frame can easily lead to process termination,
looping, and other undesirable effects.

In the discussion that follows, the "owner" of a stack frame 1is the
procedure that created it (with a push operation). Some programs (generally ALM
programs) never perform a push and hence do not own a stack frame. If a
procedure that does not own a stack frame is executing, it can neither call
another procedure nor use stack temporaries; all stack information refers to the
program that called such a program.

Figure 2-2 illustrates the detailed structure of a stack frame. The
following descriptions are based on that diagram and on the following PL/I
declaration.

1777 2-5 AK92C

stack_frame +0

Pointer Register Storage

B o T T

+16| : : :
iPrevious Stack|{Next Stack i Return ! Entry
iFrame Pointer |Frame Pointer| Pointer i Pointer
]] 1 []
1 L L 1
+24} H] i] 1
iOperator i Argument iInternal| ** 1On Unit |Operator
iLinkage i Pointer ‘Static | {Relative! Return
iPointer] {Pointer | iPointer | Offset
H ! i H ;P
+32
Register Storage
+40

Temporaries

added e i oL D D e rtit st r el T T ——

¥* Reserved

Figure

2-2. Stack Frame Format

decl 1 stack_frame based (sp) aligned,
2 prs(16) fixed bin,
2 prev_stack_frame_ptr ptr,
2 next_stack_frame_ptr ptr,
2 return_ptr ptr,
2 entry_ptr ptr,
2 operator_link_ptr ptr,
2 argument_ptr ptr,
2 static_ptr ptr unaligned,
2 reserved fixed bin,
2 on_unit_rel_ptrs(2) bit(18) unaligned,
2 translator_id bit(18) unaligned,
2 operator_return_offset bit(18) unaligned,
2 regs(8) fixed bin;

where:
1. prs is used to save pointer registers of the calling

2.

2/77

prev_stack_frame_ptr

program when the ALM call operator is invoked.

is a pointer to the base of the stack frame of the
procedure that called the procedure owning the
current stack frame. This pointer may or may not
point to a stack frame in the same stack segment.

2-6 AK92B

3. next_stack_frame_ptr

.'/\\
4, return_ptr
5. entry_ptr
6. operator_link_ptr
7. argument_ptr
8. static_ptr
Py
9. reserved
10. on_unit_rel_ptrs
11. translator_id
12. operator_return_offset
13. regs
~~
2/717

is a pointer to the base of the next stack frame.
For the 1last stack frame on a stack, the pointer
points to the next available area in the stack
where a procedure can lay down a stack frame;
i.e., it has the same value as the stack_end_ptr
in the stack header. The previous stack frame
pointers and the next stack frame pointers form
threads through all active frames on the stack.
These two threads are used by debugging tools to
search and trace the stack as well as by the
call/push/return mechanism.

is a pointer to the location to which a return can
be made in the procedure that owns the given
frame. This pointer is undefined if the procedure
has never made an external call, and points to the
return location associated with the last external
call if the given procedure has been returned to
and is currently executing.

is a pointer to the procedure entry point that was
called and that owns the stack frame. The pointer
points to a standard entry point. See "Structure
of the Text Section™ in Section I.

is usually the operator pointer being used by the
procedure that owns the given stack frame. For
ALM programs, this points to the 1linkage section
of the procedure.

is a pointer to the argument list passed to the
procedure that owns the given stack frame.

is a pointer to the internal static storage for
the procedure owning the stack frame.

is reserved for future use.

is a pair of relative pointers to on unit
information cortained within the stack frame.
This on unit information is valid only if bit 29
of the second word of prev_stack_frame_ptr is a 1.
(This bit is automatically set to O when a push is
performed by the procedure that owns the stack
frame.) The first of the on_unit_rel_ptrs is a
pointer (relative to the stack frame base) to a
list of enabled conditions. The second of the
on_unit_rel_ptrs is obsolete.

is a coded number indicating the translator used
to generate the object code of the owner of the
stack frame.

contains a return location for certain
pli_operators_ functions. If it is nonzero, it is
a relative pointer to the return location in the
compiled program (return from plil_operators_). If
it is zero, a dedicated register (known by
pl1_operators_) contains the return location.

is wused to save arithmetic registers of the

calling program when the ALM call operator is
invoked.

2-7 AK92B

Two major areas of a stack frame not explicitly defined above are the first
16 words and words 32 through 39. The contents of these areas 1is not always
defined or meaningful, although they have a well-defined purpose for ALM
programs and are used internally by the PL/I and FORTRAN programs. The
procedure owning the stack frame can use these areas as it sees fit.

Linkage Offset Table

As described above, each stack header contains a pointer to the 1linkage
offset table (LOT) for the current ring. The LOT is an array, indexed by text
segment number, of packed pointers to the linkage sections for the procedure
segments known in the current ring.

The structure of the LOT is defined by the following PL/I declaration:

del 1 lot based (lot ptr) aligned,
2 linkage ptr (O: stack_header.cur_lot size-1) ptr unaligned;

where linkage_ ptr is the array of linkage section pointers.

If one of the slots in the linkage_ptr array contains all 0's, the segment
number associated with the slot either does not correspond to a known segment.

If one of the slots in the linkage_ptr array contains all 0's except for
"111"b in the high-order three bits (a lot fault), the segment number associated
with the slot corresponds to a known segment that either does not have a linkage
section or whose 1linkage section has not been combined (i.e., the segment has
not been executed).

Internal Static Offset Table

The stack header in each ring contains a pointer to the internal static
offset table (ISOT) for the current ring. The ISOT is an array, indexed by text
segment number, of packed pointers to the internal static sections for the
corresponding procedure segments known in the current ring. Since the ISOT
always immediately follows the LOT, the isot ptr is redundant but is retained
for efficiency. '

The internal static pointers are identical to the linkage section pointers
unless the corresponding object segment was generated with separate static. If
the static is separate, i.e., not allocated in the linkage section, the internal
static pointer either points to the allocated static or contains a value that
causes an "isot fault" if referenced.

The structure of the ISOT is defined by the following PL/I declaration:

del 1 isot based (isot_ptr) aligned,
2 static_ptr (0: stack header.cur_lot size-1) ptr unaligned;

where static_ptr is the array of static/linkage section pointers.

11777 2-8 AK92C

SUBROUTINE CALLING SEQUENCES

The Multics standard call and return conventions are described in the
following paragraphs. For information about the format of stack segments and
stack frames, see "Standard Stack and Linkage Area Formats" above.

The call and return from one procedure to another can be broken down into
seven separate steps. Operators to perform these steps have been provided in
the standard operator segment named pl1_operators_ (for PL/I, FORTRAN, and ALM
procedures). These operators are invoked when appropriate by the object code
generated by these translators.

The steps involved in a call and return and the associated operators are
listed below.

1. A procedure call, i.e., a transfer of control and passing of an
argument list pointer to the called procedure (call).

2. Generation of a linkage (and internal static) pointer for the called
procedure (entry).

3. Creation of a stack frame for the called procedure (push).

h, Storage of standard items to be saved in the stack frame of the called
procedure (entry and push).

5. Release of the stack frame of the called procedure just prior to
returning (return).

6. Reestablishment of the execution environment of the calling procedure
(return and short_return).

7. Return of control to the calling procedure (return and short_return).

Preparation of the argument list, although necessary, was not listed above
because the operators need know nothing about the format of an argument 1list.
See "Argument List Format" later in this section.

The following description is based on the operators used by ALM procedures.
The operators used by PL/I and FORTRAN procedures are basically the same but
differ at a detailed 1level due to: (1) slight changes in the execution
environment when PL/I and FORTRAN programs are running; and (2) simplification
and combination of operators made possible by the execution environment of PL/I.
The PL/I and FORTRAN operators are not described here other than to define a
minimum execution environment that must be established when returning to a PL/I
or FORTRAN program.

(The following description is given in terms of Honeywell hardware.)

2/T17 2-9 AK92B

all erator

The call operator transfers control to the called procedure. This operator
is invoked in two ways from ALM procedures. The first is a result of the call
pseudo-op, which invokes the call operator after saving the machine registers in
the calling program's stack frame and loading pointer register 0 with a pointer
to the argument list to be passed to the called procedure. Upon return to the
calling program, these saved values are restored into the hardware registers by
the calling procedure. The second way that ALM procedures can invoke the call
operator is through the short_call pseudo-op. This is used when the calling
procedure does not need all of the machine registers saved and restored across
the call. The ALM procedure can selectively save whatever registers are needed.

Neither the call nor the short_call pseudo-ops (nor the PL/I and FORTRAN
equivalents) require or expect the machine registers to be restored by the
called procedure. In fact, only the pointer registers 0 (operator segment
pointer) and 6 (stack frame pointer) are ever guaranteed to be restored across a
call. It is up to the calling procedure to save and restore any other machine
registers that are needed.

Entry Operator

The entry operator used by ALM programs performs two functions. It
generates a pointer to the linkage section of the called procedure (which it
leaves in pointer register 4) and it stores a pointer to the entry in what will
be the stack frame of the called procedure (if the procedure ever creates a
stack frame for itself). At the time the entry operator is invoked, a new stack
frame has not yet been -established. 1Indeed, the called procedure may never
create one. However, it is certainly possible to know where the stack frame
will go if and when it is created and this knowledge is used to store the entry
pointer.

The entry operator is invoked by an ALM procedure that transfers to a label
in another procedure that has been declared as an entry through the entry
pseudo-op. The transfer is made to a standard entry structure the first
executable word of which is (PR7 is assumed to point to the base of the current
stack segment):

tsp2 Tientry_op,#*

The operator returns to the instruction after the tsp2 instruction, which
may or may not be another transfer instruction. (A 1link to the entry, when
snapped, points to the tsp2 instruction.) See "Structure of the Text Section"
in Section I.

Some ALM programs may not require a linkage pointer. Such programs can
declare the 1label to which control should be transferred with a segdef
pseudo-op. This causes the appropriate definition and linkage information to be
generated so that other procedures can find the entry point. When called, the
transfer 1is straight to the code at the label and the normal entry structure is
not generated or used. No linkage pointer is found and no entry pointer is
saved. This technique is recommended only where speed of execution is of utmost
importance since it avoids calculation of useful diagnostic information.

2-10 AK92

Pu 0 r

The push operator used by ALM procedures is invoked as a result of the push
pseudo-op that 1is wused to create a stack frame for the called procedure. In
addition to creating a stack frame, several pointers are saved in the new stack
frame. They are:

1. Argument pointer
2. Linkage pointer (and internal static pointer)
3. Previous stack frame pointer

4, Next stack frame pointer

If the called procedure is defined as an entry (rather than segdef), the entry
pointer has already been saved in the new stack frame.

The push pseudo-op must be invoked if the called procedure makes further
calls 1itself or uses temporary storage. Due to their manner of execution, PL/I
and FORTRAN procedures combine the entry and push operators 1into a single
operator.

The push operator and the return operators are managers of the stack frames
and the stack segment in general. The push operator establishes the forward and
backward stack frame threads and updates the stack end pointer in the stack
header appropriately. The return operators use these threads and also update
the stack end pointer as needed. Any program that wishes to duplicate these
functions must do so in a way that is compatible with the procedures outlined in
this discussion and those described above under the heading "Standard Stack and
Linkage Area Formats".

Return er r

The return operator is invoked by ALM procedures that have specified the
return pseudo-op. The return operator pops the stack, reestablishes the minimum
execution environment, and returns control to the calling procedure. The only
registers restored are pointer registers 0 and 6, as mentioned above.

hort Return tor

The short_return operator is invoked by ALM procedures that have specified
the short_return pseudo-op. The short_return operator differs from the return
operator in that the stack frame is not popped. This return is used by ALM
procedures that did not perform a push.

2-11 AK92

Pseudo-o0 od

The following code

ne

sequences

specified pseudo-op.

OBJECT

call:
spri
sreg
eppO

epp2
tspl

lpri
lreg
short_call:
epp2
tspld

eppl

return:

tra

short_return:

tra

entry:

tsp2

tra

CODE

610

6132
arglist
entrypoint
Ticall_op,*

[oa¥ o))
w o
n

entrypoint
Ticall_op,*

spilp_ptr,*

Tireturn_op,*

are

Tishort_return_op,*

Tientry_op,*

executable_code

generated by the assembler for the
OPERATORS

spril 6ireturn_ptr

sti 6ireturn_ptr+1

epph 6ilp_ptr,*

callb 210

(as above)

sprib
eppb
epbp7
epp0
1di
rted

epbp7
epp0
1di
rted

epp2
epph
spriz2
epaq
lprp5
sprp5
lprpl
tra

Tistack_end_ptr
6iprev_sp,

610

6iop_ptr,*
6)return_ptr+1
6ireturn_ptr
610

6lop_ptr,*
6ireturn_ptr+1
6ireturn_ptr

21 =1
Tistack_end_ptr,#*
4ientry_ptr

210

Tiisot_ptr, ¥au
4istatic_ptr
Tilot_ptr,*au
211

AK92

push:

eax? stack_frame_size

tspe Tipush_op, ¥
spri2 Tistack_end_ptr,¥
epp2 Tistack_end_ptr,*
sprib 2iprev_sp
spri0 2larg_ptr
spril 2i1lp_ptr
eppb 2,0
epp2 6:10,7
spri2 7istack_end_ptr
spri2 6inext_sp
eax7 1
stxT 6itranslator_id
tra 610,%

Register Usage Conventions

The following conventions, used 1in the standard environment, should be
followed by any user-written translator.

1. The only registers that are restored across a call are the pointer
registers:

0 (ap) operator segment pointer
6 (sp) stack frame pointer

The operator segment pointer is restored correctly only if it is saved
at some time prior to the call (e.g., at entry time).

2. The code generated by the ALM assembler assumes that pointer register
4 (1p) always points to the 1linkage section for the executing
procedure and that pointer register T(sb) always points to the stack
header.

3. Pointer register 7 is assumed to be pointing to the base of the stack
when control is passed to a called procedure.

Argument List Format

When a standard call is performed, the argument pointer (pointer
register 0) is set to point at the argument 1list to be used by the called
procedure. The argument list is a sequence of pointers and control information
about the arguments. The argument list header contains a count of the number of
arguments, a count of the number of descriptors, and a code specifying whether
the argument 1list contains an extra stack frame pointer. The format of the
argument list is shown in Figure 2-3.

The argument list must begin on an even word boundary. The pointers in the
argument list need not be ITS pointers; however, they must be pointers through
which the hardware can perform indirect addressing. Packed (unaligned) pointers
cannot be used.

2/77 2-13 AK92B

0 E arg_count i code

] |

4 1 1

1 | desc_count i 0 i

H i L

| !

2 | Pointer to argument 1 i

t 1

| i

o [}

! :

4 | Pointer to argument 2 i

]]

E E

| |

2%n E Pointer to argument n i

; |

! !

| Optional pointer to stack frame i

i of containing block !

1 H

! !

i Pointer to descriptor 1 i

]]

: .'

1 1

] !

i Pointer to descriptor 2 i

] !

| |

A 1

| i

| Pointer to descriptor n |

|]

1 1

Figure 2-3. Standard Argument List
where:
n is the number of arguments passed to the called procedure.
arg_count is in the left half of word 0; it is two times the number of
arguments passed.

code is in the vright half of word O0; it is 4 for normal

desc_count

intersegment calls and 10 (octal) for calling sequences that
contain an extra stack frame pointer. This pointer occupies
the two words following the 1last argument pointer. It is
present for calls to PL/I internal procedures and for calls
made through PL/I entry variables.

is in the left half of word 1; it is two times the number of

descriptors passed. If this number is nonzero, it must be the
same as arg_count.

2-14 AK92

(\

)

An ar

gument

pointer points directly to an argument. A descriptor pointer
points to the descriptor associated with the argument.

The format of an argument descriptor is described by the following

declaration:
decl 1 descri
(2 flag
2 type
2 packed
2 number
2 size
where:
1. flag
2. type
3. packed

2/77

ptor aligned,
bit(1),
bit(6),
bit (1),

_dims bit(4),

bit(24)) unaligned;

PL/I

always has the value "1"b and is used to tell this descriptor
format from an earlier format. (Shown as 1 in the descriptor I

below.)

is the data type according to the following encoding:

1 real fixed binary short

2 real fixed binary long

3 real floating binary short
4 real floating binary long
5 complex fixed binary short
6 complex fixed binary long
7 complex floating binary short
8 complex floating binary long
9 real fixed decimal

10 real floating decimal

11 complex fixed decimal

12 complex floating decimal
13 pointer

14 of fset

15 label

16 entry

17 structure

18 area

19 bit string
20 varying bit string
21 character string
22 varying character string
23 file

has the value "1"b if the data item is packed. (Shown as
in the typical descriptor below.)

AK92B

4,

5.

2/77

number_dims is the number of dimensions in an array. (Shown as "m" in the

size

descriptor below.) The array bounds and multipliers follow the
basic descriptors in the following manner:

]
1
m | size basic descriptor
]
1

lower bound descriptive information

upper bound for the mth

p-————p-—————p————}————

multiplier (rightmost) dimension
i !
i lower bound i descriptive information
1 1
| i
i upper bound | for the first
; ‘E
5 multiplier i (leftmost) dimension
1 L

If the data 1is packed, the multipliers give the element
separation in bits; otherwise, they give the element separation
in words.

is the size (in bits, characters, or words) of string or area
data, the number of structure elements for structure data, or
the scale and precision (as two 12-bit fields) for arithmetic
data. For arithmetic data, the scale 1is recorded in the
leftmost 12 bits and the precision is recorded in the rightmost
12 bits. The scale is a 2's complement, signed value.

2-16 AK92B

The descriptor of a structure is immediately followed by descriptors of
each of its members. The example below shows a declaration (assuming that each
element of C or D occupies one word) and its related descriptor.

del ,
,

1
2
2

wwo>e»Wn

(5),
c,
D;

basic descriptor of S
basic descriptor of A
basic descriptor of B

1 lower bound of B

5 upper bound of B

2 element separation of B
basic descriptor of C

1 lower bound of C

5 upper bound of C

2 element separation of C
basic descriptor of D

1 lower bound of D

5 upper bound of D

2 element separation of D

Members of dimensioned structures are arrays, and their descriptor contains
copies of the bounds of the containing structure.

2/77 2=-17 AK92B

SECTION III

SUBSYSTEM PROGRAMMING ENVIRONMENT

WRITING A PROCESS OVERSEER

Almost every feature of the standard Multics system interface can be
replaced by providing a specially tailored process overseer procedure in place
of the standard version. The standard Multics process overseer procedure,
process_overseer_, 1is the initial procedure assigned to a user unless the
project administrator specifies otherwise by an initproc or Initproc statement
in the project master file (PMF). (See the Multics Administrators' Manual
Project Administrator, Order No. AK51.) If a user has the Vv_process_overseer
attribute, he may specify a different initial procedure when he logs in by using
the -process_overseer (-po) control argument as in the following example:

login Smith -po >udd>AEC>special_overseer_

If Smith does not have the v_process_overseer attribute, the system refuses the
login.

Process Initialization

When a process is created for a user when he logs in or 1in response to
either a new_proc command (described in the MPM Commands) or process termination
signal, the new process initializes itself, sets the default search rules, and
then calls one of the following three procedures in the user's initial ring:

user_real_init_admin_ for an interactive process
absentee_real_init_admin_ for an absentee process
daemon_real_init_admin_ for a system daemon process

These procedures first perform several initialization tasks and then call
the user's process overseer procedure, expecting that the process overseer will
not return. A return is treated as an error, and a report is made to the system
that the process cannot be initialized.

In order to initialize the process, several items of information must be
passed to the process by the system control process. The system places this
information in a special per-process segment, called the process initialization
table (PIT), that resides in the process directory. The user process may read
the contents of the PIT, but may not modify it. The wuser_info_ subroutine
(described in the MPM Subroutines) is used to extract information from the PIT.

2/77 3-1 AK92B

Before calling the process overseer, user_real_init_admin_ attaches the I/0
switch named user_i/o (through an I/0 system module named in the PIT) to the
target (also specified in the PIT). It then attaches the I/0 switches named
user_output, user_input, and error_output as synonyms of user_i/o. The 1I/0
module used for an interactive process is tty_, the Multics terminal device I/0
module. (This module is described in the MPM Subroutines.)

For an absentee process, the Multics absentee I/0 module, abs_io_, is used.
When an absentee process is being created, absentee_real_init_admin_ obtains the
arguments to the absentee process; it then makes them available to the abs_io_
I/0 module and informs this module of the locations of the input and output
segments. If a CPU time limit has been specified for the absentee process,
absentee_real_init_admin_ also starts a timer with this limit value; the process
is logged out when this value is reached.

The final action taken by the appropriate init_admin_ procedure is to
locate the process overseer procedure named in the PIT and to call it. If the
process overseer cannot be located or accessed, the appropriate init_admin_
procedure signals an error to the system control process, and the user is logged
out with the message "Process cannot be initialized".

Process Overseer Function

If an unclaimed signal reaches the appropriate init_admin_ procedure, the
user process 1is terminated on the assumption that the process could not be
initialized. Therefore, one of the first things that the process overseer
procedure does is establish an appropriate handler for all conditions that could
be specified. The standard system process overseer does this by executing:

call condition_ ("any_other", standard_default_handler_);

The standard_default_handler_ procedure is invoked on all signals not
intercepted by any subsequently established condition handler. In general, the
standard_default_handler_ procedure either performs some default action (such as
inserting a pagemark into the stream when an endpage condition is signalled) and
restarts execution, or else it prints a standard error message and calls the
current listener.

A process overseer procedure may perform many other actions besides those
executed by the system version. For example, initialization of special
per-project accounting procedures may be accomplished at this point or requests
issued for an additional password or any other administrative information
required by a project.

2/717 3-2 AK92B

The system process overseer terminates processing by calling the standard
listener in the following manner:

call listen_ (initial command_line);

The initial command line used by the system process overseer is:

exec_com home_dir>start_up start_type proc_type
where:

1. start_type
is either login or new proc, depending on which of these was invoked
to create the process.

2. proc_type
is either interactive, absentee, or daemon.

These arguments can be used by the start up.ec segment as described in
connection with the exec_com command in the MPM Commands.

The command line given above assumes that the no_start up flag is off and
that the . segment named start up.ec can be found in the user's home directory.
The no start up flag is off unless the project administrator has given the user
the no start up attribute and the user has included the proper control argument
(-no_start_up or -ns) in his login line.

If no start up.ec segment is provided, or if one 1is provided but the
no_start up flag 1is on, the standard Multics process overseer checks the brief
switch in the PIT. If this switch is off, and if the process was not created in
response to a new _proc command or process termination signal, the process
overseer prints the contents of the message of the day segment located in the
directory named >system control 1. -0~

The standard process overseer does not expect the listener to return. If
it does, the appropriate init_admin_ procedure is returned to and the process is
logged out with the message "Process cannot be initialized".

Handling of Quit Signals

A quit signal is indicated by pressing the appropriate key, such as ATTN or
BRK, on the terminal in use. When a terminal is first attached for interactive
processing, quit signals from the terminal are disabled. A user quit signal
issued at this time causes the flushing of terminal output buffers, but the quit
condition is not raised in the user ring. The recognition of quit signals is
enabled when the following call is made:

call iox_$control (iox_s$user_io, '"quit_enable", null(), status);

If a project administrator wishes to replace the standard user environment
with his own programs, he must find an appropriate place for the quit_enable
order, after the mechanism for handling quit signals has been established.

1M/77 3-3 AK92C

SECTION IV

IMPLEMENTATION OF INPUT/OUTPUT MODULES

This section contains information applicable to writing I/0 modules. It
describes the format and function of I/0 control blocks, provides a list of
implementation rules, and describes the use of certain iox_ subroutine entry
points necessary in I/0 module construction. These entry points are described
in more detail in Section VII. For descriptions of the other iox_ entry points,
refer to the MPM Subroutines.

Some instances in which a user might wish to create a new I/0 module are
given below:

1. Pseudo Device or File. An I/0 module could be used to simulate 1I/0
to/from a device or file. For example, it might provide a sequence of
random numbers in response to an input request. The discard_ system
I/0 module (described in the MPM Subroutines) is an example of this
sort of module.

2. New File Type. An I/0 module could be used to support a new type of
file in the storage system, such as a file in which records have
multiple keys.

3. Reinterpreting a File. An I/0 module could be designed to overlay a
new structure (relative to the standard file types) on a standard type
of file. For example, an unstructured file might be interpreted as a
sequential file by considering 80 characters as a record.

4, Monitoring a Switch. An I/0 module could be designed to pass
operations along to another module while monitoring them in some way
(e.g., by copying input data to a file).

5. Unusual Devices. Working through the tty I/0 module (described in
the MPM Subroutines) in the raw mode, another I/0 module might
transmit data to/from a device that is not a standard Multics device
type (as regards character codes, etc.).

The last three items listed illustrate a common arrangement. The wuser
attaches an I/0 switch, x, using an I/0 module, A. To implement the attachment,
module A attaches another switch, y, using another I/0 module, B. When the user
calls module A through the switch x, module A in turn calls module B through the
switch y. Any nonsystem I/0 module that performs true I/0 works in this way,
because it (or some module that it calls) must call a system I/0 module. There
are system I/0 routines at a more primitive level than the I/0 modules, but
user-written I/0 modules must not call these routines.

1M/77 41 AK92C

I/0 CONTROL BLOCKS

Each I/0 switch has an associated I/0 control block that is created the
first time a call to iox_$find iocb requests a pointer to the control block.
The control block remains in existence for the 1life of the process unless
explicitly destroyed by a call to iox_g$destroy iocb.

The principal components of an I/0 control block are pointer variables and
entry variables whose values describe the attachment and opening of the I/0
switch., There is one entry variable for each I/0 operation with the exception
of the attach operation, which does not have an entry variable since there can
be only one attach entry point in an I/0 module. To perform an I/0 operation
through the switch, the corresponding entry value in the control block is
called. For example, if iocb _ptr is a pointer to an I/0 control block, the
call:

call iox_$put_chars (iocb_ptr, buff ptr, buff len, code);
can be thought of as:
call iocb_ptr->iocb.put_chars (iocb_ptr, buff ptr, buff len, code);
Certain system routines make the latter call directly, without going through the

appropriate iox_ subroutine; all other routines must call the iox_ subroutine,
as the internal representation of the control block may change.

I/0 Control Block Structure

The declaration given below describes the first part of an I/0 control
block. Only those few 1I/0 system programs that use the remainder of the I/0
control block declare the entire block. Thus, all references to I/0 control
blocks here refer only to the first part of the control block. For example, the
statement "no other changes are made to the control block" means that no other
changes are made to the first part of the control block, and so on. The 1I/0
system might make changes to the remainder of the block, but these are of
interest only to the I/0 system. For full details on the entry variables, see
the descriptions of the corresponding entries in the iox_ subroutine in the MPM
Subroutines.

del 1 iocb aligned,
2 iocb_version fixed bin init(1),
2 name char(32),
2 actual _iocb_ptr ptr,
2 attach_descrip ptr ptr,
2 attach_data_ptr ptr,
2 open_descrip ptr ptr,
2 open_data_ptr ptr,
2 reserved bit(72),
2 detach_iocb entry (ptr, fixed bin(35)),
2 open entry (ptr, fixed bin, bit(1) aligned,
fixed bin(35)),
2 close entry (ptr, fixed bin(35)),
2 get line entry (ptr, ptr, fixed bin(21), fixed bin(21),
- fixed bin(35)),
2 get_chars entry (ptr, ptr, fixed bin(21), fixed bin(35)),
2 put chars entry (ptr, ptr, fixed bin(21), fixed bin(35)),
2 modes entry (ptr, char(*), char(*), fixed bin(35)),
2 position entry (ptr, fixed bin, fixed bin(21),

fixed bin(35)),

1/77 4-2 AK92C

2 control entry (ptr, char(*), ptr, fixed bin(35)),
2 read record entry (ptr, ptr, fixed bin(21), fixed bin(21),
- fixed bin(35)),

2 write record entry (ptr, ptr, fixed bin(21), fixed bin(35)),

2 rewrite_record entry (ptr, ptr, fixed bin(21), fixed bin(35)),

2 delete record entry (ptr, fixed bin(35)),

2 seek_key entry (ptr, char(256) varying, fixed bin(21),
fixed bin(35)),

2 read key entry (ptr, char(256) varying, fixed bin(21),
fixed bin(35)),

2 read _length entry (ptr, fixed bin(21), fixed bin(35));

Attach Pointers

If the I/0 switch is detached, the value of iocb.attach _descrip ptr is
null. If the 1I/0 switch is attached, the value is a pointer to the following
structure:

dcl 1 attach_descrip based aligned,
2 length fixed bin(17),
2 string char (0 refer (length));

The value of attach_descrip.string is the attach description. See "Multics
Input/Output System" in Section V of the MPM Reference Guide for details on the
attach description.

If the I/0 switch is detached, the value of iocb.attach_data ptr is null.
If the I/0 switch is attached, the value may be null, or it may be a pointer to
data used by the I/0 module that attached the switch. To determine whether the
I/0 switch 1s attached or not, the value of iocb.attach _descrip ptr should be
examined; if it is null, the switch is detached.

Open Pointers

If the I/0 switch is closed (whether attached or detached), the value of
iocb.open descrip ptr is null. If the switch is open, the value is a pointer to
the following structure:

dcl 1 open descrip based aligned,

2 length fixed bin(17),
2 string char (0 refer (length));

1/71 4-3 Ak92¢

The value of open_descrip.string is the open description. It has the
following form:

mode {info}

where:
1. mode is one of the opening modes (e.g., stream input) listed below. The
modes and their corresponding numbers are:
1 stream_input
2 stream_output
3 stream input output
4 sequential input
5 sequential output
6 sequential input output
7 sequential _update
8 keyed_sequential input
9 keyed sequential output
10 keyed sequential update
11 direct_input
12 direct_output
13 direct_update
2. info is other information about the opening. If info occurs in the
string, it is preceded by one blank character.
If the I/0 switch is closed, the value of iocb.open data ptr is null. If

the I/0 switch 1is open, the value may be null, or it may be a pointer to data
used by the I/0 module that opened the switch.

Entry Variables

The value of each entry variable in an I/0 control block is an entry point
in an external procedure. When the I/0 switch is in a state that supports a
particular operation, the value of the corresponding entry variable is an entry
point that performs the operation. When the I/0 switch is in a state that does
not support the operation, the value of the entry variable 1is an entry point
that returns an appropriate error code.

Synonyms

When an I/0 switch named x is attached as a synonym for an I/0 switch named
y, the values of all entry variables in the 1I/0 <control block for x are
identical to those in the 1I/0 control block for y with the exception of
iocb.detach. Thus a call:

call iocbx_ptr->iocb.op(ioebx ptr,...);

immediately goes to the correct routine.

1/77 4-4 AK92C

The values of iocb.open descrip ptr and iocb.open_data_ptr for x are also
the same as those for y. Thus, the I/0 routine has access to its open data (if
any) through the I/0 control block pointed to by iocbx_ptr.

The value of iocb.actual iocb ptr for x is a pointer to the control block
for the last switch in a chain of switches that have been connected to each
other by the syn 1I/0 module. (When the switch x is not attached as synonym,
this pointer points to the control block for x itself.) I/0 modules use this
pointer to access the actual I/0 control block whose contents are to be changed,
for example, when a switch is opened. The I/0 system then propagates the
changes to any other control blocks that have been attached as synonyms to the
actual I/0 control block.

WRITING AN I/0 MODULE

The information presented in the following paragraphs pertains to the
design and programming of an I/0 module. 1In particular, conventions are given
that must be followed if the I/0 module is to interface properly with the 1I/0
system. The reader should be familiar with the material presented under the
headings "Multics Input/Output System" and "File Input/Output" in Section V of
the MPM Reference Guide, the iox subroutine in the MPM Subroutines, and under
"I/0 Control Blocks" above. -

Design Considerations

Before programming begins on an I/0 module, the functions it is to perform

should be clearly specified. In particular, the designer should list the
opening modes to be supported and consider the meaning of each I/0 operation
supported for those modes. (See "Open Pointers" above for a list of opening

modes.) The specifications in the description of the iox_ subroutine must be
related to the particular I/0 module (e.g., what seek key means for the discard_
I1/0 module).

An I/0 module contains routines to perform attach, open, close, and detach
operations and the operations supported by the opening modes. Typically, though
not necessarily, all routines are in one object segment. If the module is a
bound segment, only the attach entry need be retained as an external entry.
Other routines are accessed through entry variables in I/0 control blocks.

An I/0 module may have several routines that perform the same function but
in different situations (e.g., one get line routine for stream_input openings,
another for stream_input_output openings). Whenever the situation changes
(e.g., at opening), the module stores the appropriate entry values in the I/0
control block.

11/77 4-5 AK92C

Implementation Rules

Additional

The following rules apply to the implémentation of all I/0 operations.

rules that are specific to a particular operation are given later.

In the rules, iocb is a based variable declared as described under "I/0 Control
Blocks" above, and iocb_ptr is an argument of the operation in question.

1/77

1.

Except for attach, the usage (entry declaration and parameters) of a
routine that implements an I/0 operation is the same as the usage of
the corresponding entry in the 1iox_ subroutine. See the MPM
Subroutines for details on the iox_ subroutine.

Except for attach and detach, the actual I/0 control block to which an
operation applies (i.e., the control block attached by the called 1I/0
module) must be referenced using the value of
iocb_ptr->iocb.actual_iocb ptr. It is incorrect to use just iocb ptr,
and it is incorrect to remember the location of the control block from
a previous call (e.g., by storing it in a data structure pointed to by
iocb.open_data ptr).

On entry to an I/0 module, the value of iocb ptr->iocb.open_data_ptr
always equals the value of:

iocb_ptr->iocb.actual_iocb ptr->iocb.open_data ptr

The value of iocb_ptr->iocb.open_descrip ptr always equals the value
of:

iocb_ptr->iocb.actual_ioecb_ptr->iocb.open_descrip ptr

Thus, the data structures related to an opening may be accessed
without going through iocb.actual iocb_ptr.

If an I/0 operation changes any values in an I/0 control block, it
must be the actual 1I/0 control block (Rule 1 above); and, before
returning, the operation must execute the call:

call iox_$propagate (p);
where p points to the changed control block. The routine
iox $propagate reflects changes to other control blocks attached as
synonyms. It also makes certain adjustments to the entry variables in
the control block when the I/0 switch is attached, opened, closed, or
detached.

All I/0 operations must be external procedures.

4-6 AK92C

Attach QOperation

The name of the routine that performs the attach operation is

discard_attach is the name of the attach routine for the discard_
Each attach routine has the following usage:

derived by
concatenating the word "attach" to the name of the 1I/0 module
I/0 module).

(e.g.,

declare module nameattach entry (ptr, (¥)char(¥*) varying, bit(1) aligned,

fixed bin(35));

to Dbe

call module nameattach (iocb_ptr, option_array, com_err_switch, code);
where:
1. iocb_ptr points to the control block of the 1I/0 switch
attached. (Input)
2. option array contains the options in the attach description. If

are no options, its bounds are (0:0). Otherwise,

there

its bounds

the

are (1:n) where n is the number of options. (Input)

3. com_err_switch indicates whether the attach routine should call
com_err_ subroutine (described in the MPM Subroutines) when
an error is detected. (Input)
ninp yes
llO"b no

4, code is a standard status code. (Output)

The following rules apply to coding an attach routine:

1. If the 1/0 switch is already attached (i.e.,
iocb_ptr->iocb.attach_descrip ptr is not null), return the
error table_$not_ detached; do not make the attachment.

2. If, for any reason, the switch is not and cannot be attached,
an appropriate nonzero code and do not modify the control block.

if
code

return

Call

the com err subroutine if, and only if, com_err_switch is "1"b. If
the attachment can be made, follow the remaining rules and return with

code set to 0.

3. Set iocb ptr->iocb.open and ioeb ptr->iocb.detach iocb

appropriate open and detach Toutines. In ~addition,

iocb_ptr->attach_descrip_ptr to point to a structure as

to

the
set

described in

"I/0 Control Blocks" above. The attach description in this structure
must be fabricated from the options in the argument option array, and
there may be some modification of options, e.g., expanding a pathname.

4, If desired, set iocb_ptr->iocb.attach_data ptr, iocb_ptr->iocb.modes,

and iocb ptr->1ocb control. Make no other modifications

control block.

5. Call iox_$propagate.

11777 b7

to the

AK92C

Open Operation

An open operation is performed only when the actual I/0 switch is attached
(through the I/0 module containing the routine) but not open. The following
rules apply to coding an open routine:

1. If, for any reason, the opening cannot be performed, return an
appropriate code and do not modify the I/0 control block. If the
opening can be performed, follow the remaining rules and return with
code set to 0.

2. Set iocb_ptr->iocb.actual_iocb ptr->iocb.op (where op is any operation
listed under "Open Pointers" above) to an appropriate routine. This
applies for each operation allowed for the specified opening mode.
The following is a list of possible I/0 operations:

detach_iocbhb
open

close

get _line

get chars
put_chars
modes
position
control
read_record
write record
rewrite record
delete_record
seek key
read_key
read_length

3. If either the modes operation or the control operation is enabled with
the I/0 switch attached but not enabled when the switch is open, set
iocb_ptr->iocb.actual_iocb_ptr->iocb.op (where op is modes or control)
to iox_$err_no operatlon

4, Set open_descrip ptr to point to a structure as described in "I/O
Control Blocks" above.

5. If desired, set iocb ptr->iocb.actual iocb_ptr->iocb.open_data_ ptr.
Do not make any other modifications to the control block.

6. Call iox_$propagate.

Close QOperation

A close operation is performed only when the actual I/0 switch is open, the
opening having been made by the I/0 module containing the close routine. The
following rules apply to coding a close routine:

1. Set the following to the appropriate open and detach routines:

ioeb_ptr->iocb.actual iocb ptr->iocb.open
iocb _ptr=>iochb. actual ioeb” _ptr->iocb.detach_iocb

Set iocb_ptr->iocb.actual_iocb_ptr->iocb.open_descrip ptr to null.
2. If either the modes operation or the control operation is not enabled

with the switch open and should be enabled with the switch closed, set
iocb_ptr->iocb.actual_iocb_ptr->iocb.op, where op is modes or control.

1777 4-8 AK92C

If the operation is not enabled with the switch closed, set the entry
variable to iox_ $err no_operation.

3. Do not make any other modifications to the control block.

4, The close routine should set the bit counts on modified segments of a
file, free any storage allocated for buffers, etc., and in general,
clean things up.

5. The close routine must not return without closing the switch.

6. Call iox_$propagate.

Detach Operation

A detach operation is performed only when the actual I/0 switch is attached
but not open, the attachment having been made by the I/0 module containing the
detach routine. The following rules apply to coding detach routines:

1. Set iocb_ptr->iocb.attach_descrip ptr to null.

2. Do not make any other modifications to the control block.

3. The detach routine must not return without detaching the switch.
y, Call iox_$propagate.

Modes and Control Operations

These operations can be accepted with the I/0 switch attached but closed;
however, it is generally better practice to accept them only when the switch is
open.

If the control operation 1is supported, it must return the code
error_table $no_operation when given an invalid order. 1In this situation, the
state of the I/0 switch must not be changed.

If the modes operation is supported, it must return the code
error_table $bad mode when given an invalid mode. In this situation, the state
of the I/0 switch must not be changed.

Performing Control Operations From Command Level

Most of the operations supported by an I/0 module may be used directly from
command level by using the io call command (see the MPM Commands). When a
control operation requires an info structure see iox_$control, MPM Subroutines.
A special interface the "io call" order, is wused to make these control
operations from command level possible. All standard I/0 modules that implement
control operations requiring info structures should implement this interface, as
described below.

When an io_call command of the form:

io_call control switch_name {optional_args}

11/77 4-9 AK92C

is issued, the io_call command performs an "io call"” control operation to the
switch
io_call _info.incl.pl1):

del

PPV =

where:

1.

10.

11777

versi

specified using the following info structure (found in
io_call_info aligned based (io call infop),
version fixed bin, - -
caller_name char(32),
order name char(32),
report entry options (variable),
error entry options (variable),
af returnp ptr,
af returnl fixed bin,
fiT1 (5) bit(36),
nargs fixed bin,
max_arglen fixed bin,
args (0 refer (io_call info.nargs))
char (0 refer (io_call_info.max_arglen))
varying; - -
on

is the version number of this structure, currently 1.

caller_name

order

repor

error

is the name of the caller (normally io_call) to be used in any error
message or output.

_name
is the order specified in the command line.

t
is an entry like ioa_ to be called to report the results of the
order.

is an entry like com_err to be called to report any errors.

af_returnp

af re

nargs

max_a

args

The 1

1.

is a pointer to the active function return string if the 1io_call
command was invoked as an active function.

turnl
is the maximum length of the active function return string.
is the number of optional args specified in the command line.
rglen
is the length of the longest argument.

is an array of the actual arguments from the command line.
/0 module, upon receipt of an io_call order, should do the following:

If io_call _info.order_name specifies an order that requires an info
structure with input values, the I/0 module should use
io_call info.args to determine what data should be placed into the
info structure. Once the structure is complete, the I/0 module should
call iox_$control, passing it io_call_info.order_name and a pointer to
the 1info structure just created. Exactly how io_call_info.args is to
be interpreted in order to build the info structure depends on the I/O
module and what order is being performed. This should be documented
along with the I/0 module.

4-10 AK92C

2. If io_call_info.order_name specifies an order that requires an info
structure “with output values, the I/0 module should call iox_ $control
passing it io call info.order name and a pointer to a structure of the
appropriate kind. ~Then, using 1io_call_info.report, the I/0 module
should display the results of the control operation in some meaningful
way. It is possible in this case that io_call_info.args could be used
for control arguments to determine exactly what will be displayed. As
in input type orders, the 1interpretation of these arguments is
completely at the discretion of the I/0 module.

3. If io_call info.order_name specifies an order that does not require an
info Structure, or is an invalid order, then the I/0 module should
return error_table $no_operation. The 1io_call command, seeing this

code, will call iox_$control again, this time passing the original
control order name, and a null info_ptr.

4, If the I/0 module detects an error in handling an 1io call order, it
must do one of two things. First, it may return an error code, in
which case io_call prints an error message. Secondly, it may call
io call info.error (used 1like the com err subroutine) to report the
error directly. In this case, a zero error code should be returned to
the caller. The 1latter choice is recommended, especially in cases
where the I/0 module can print a more informative error message.

I1/0 modules that do not support control operations that require info
structures need not implement the ioc call order at all. The io_call order can
be rejected along with all other invalid orders in which case the order is
performed with a null info ptr by the io_call command as described in item 3
above.

Control operations can also be performed through the active function
interface of the io call command. In this case, the mechanism is basically the
same with the following differences:

1. The order issued by the io_call command is io_call_af, not io_call.
2. Instead of printing a result, the I/0 module should store its result

in the varying string defined by io call info.af returnp and
io_call_info.af_returnl. - - -

The ioTcall_af order should only be supported for orders that have meaning
as an active function. As in the 1io_call order, the interpretation of
io_call_info.args is completely up to the I/0 module.

Other Operations

Routines for the other operations are called only when the actual 1I/0
switch is attached and open in a mode for which the operation is allowed, the
opening and attachment having been made by the 1I/0 module containing the
routine. The following modifications to the I/0 control block of the actual I/O
switch can be made.:.

1. Reset iocb_ptr->iocb.actual_iocb_ptr->iocb.open_data_ptr.

2. Reset an entry variable set by the open routine, e.g., to switch from
one put_chars routine to another.

3. Close the switch in an unrecoverable error situation. In this case,
the rules above for the close operation must be followed.

4-11 AK92

SECTION V

REFERENCE TO COMMANDS AND SUBROUTINES BY FUNCTION

COMMAND REPERTOIRE

The Multics commands described in this manual are organized by function
into the following categories:

Debugging and Performance Monitoring Facilities

Input/Output System Control

Language Translators, Compilers, Assemblers, and Interpreters
Object Segment Manipulation

Storage System, Access Control and Rings of Protection
Storage System, Directory Manipulation

Storage System, Logical Volumes

Storage System, Mailbox Manipulation

Storage System, Segment Manipulation

Detailed descriptions of these commands, arranged alphabetically rather
than functionally, are given in Section VI of this document. In addition, many
of the commands have online descriptions, which the user may obtain by invoking
the help command (described in the MPM Commands).

See "Reference to Commands By Function" in Section I of the MPM Commands
for the functional grouping of the commands described in that manual.

Debugging and Performance Monitoring Facilities

area_status displays information about an area

create_area creates an area and initializes it

delete_external variables deletes specified variables managed by the
system

display_ component_name converts bound segment offset into referenced
component object segment offset

list_external variables prints information about variables managed by
the system

list_temp_ segments lists segments in temporary segment pool

print_linkage_usage prints block storage wusage for combined
linkage regions

reset _external variables reinitializes system managed variables

set_system_storage establishes an area as the storage region for
normal system allocations

set_user_storage establishes an area as the storage region for

normal user allocations

1M/77 5-1 AK92C

Input/Output System Control

set_ttt path changes pathname of terminal type table

Language Translators, Compilers, Assemblers, and Interpreters

alm invokes ALM assembler .
alm_abs] invokes ALM assembler in absentee job
error_table compiler compiles table of status codes and messages

from ASCII source segments

Object Segment Manipulation

pr@nt_b?nd_map prints bind map of object segment
print_link info prints information about object segments

Storage System, Access Control and Rings of Protection

set_ring brackets changes ring brackets of segment

Storage System, Logical Volumes

delete_volume quota deletes a quota account for a logical volume
and is used by volume executives

Storage System, Directory Manipulation

copy_names copies names from one segment to another

move_names moves names from one segment to another

set_max_length specifies maximum 1length of nondirectory
segment

Storage System, Mailbox Manipulation

mbx_add_name adds alternate names to mailbox
mbx_create creates mailbox

mbx_delete deletes mailbox

mbx_delete_acl deletes entries from mailbox ACL
mbx_delete_name deletes name from mailbox

mbx_list acl lists ACL of mailbox

mbx_rename replaces one name with another on mailbox
mbx set acl adds and changes entries on mailbox ACL
mbx_set_max_length sets maximum length of a mailbox segment

11/77 5-2 AK92C

Storage System, Segment Manipulation

archive sort sorts components of archive segment
reorder archive orders components of archive segment

SUBROUTINE REPERTOIRE

The Multics subroutines described in this manual are organized by function
into the following categories:

Clock and Timer Procedures

Command Environment Utility Procedures

Condition Mechanism

Data Type Conversion Procedures

Formatted Output Facilities

Error Handling Procedures

Input/Output System Procedures

Miscellaneous Procedures

Object Segment Manipulation

Process Synchronization

Storage System, Access Control and -Rings of Protection
Storage System, Address Space

Storage System, Directory and Segment Manipulation
Storage System, Utility Procedures

Since many subroutines can perform more than one function, they are listed
in more than one group.

Detailed descriptions of these subroutines, arranged alphabetically rather
than functionally, are given in Section VII of this document. .

Many of the functions provided by these subroutines are also available as
part of the runtime facilities of Multics-supported programming languages; users
are encouraged to use the language-related facilities wherever possible.

See "Introduction to Standard Subroutines" in Section I of the MPM

Subroutines for the functional grouping of the subroutines described in that
manual.

Clock and Timer Procedures

timer_manager_ allows user process interruption after
specified amount of CPU or real-time
passes

Command Environment Utility Procedures

check_star_name_ verifies formation of entrynames according to
star name rules

get _default wdir_ returns pathname of wuser's current default
working directory
get_definition_ returns pointer to specified definition

within an object segment

1/77 5-3 AK92C

get_entry name
get_equal_name

get_system_free”area_

Condition Mechanism

condition_interpreter

continue_to signal

find_condition_info

prepare_mc_restart_

signal
unwinder_

Data Type Conversion Procedures

ascii_to_ebecdic_
assign_

cv_bin
cv_dec_

cv_dec_check
cv_entry
cv_hex_
cv_hex_check_
cv_oct_

cv_oct_check

cv_ptr_
ebcdic_to_ascii_

Error Handling Procedures

active_fnc_err_
convert status_code_

sub_err_

11/77

returns associated name of externally defined
location or entry point in segment

constructs target name by substituting from
entryname into equal name

returns pointer to system free area for
calling ring

prints formatted
conditions

enables on unit that cannot completely handle
condition to tell signalling program to

error message for most

search stack for other on units for
condition
returns information about condition when

signal occurs

checks machine conditions for restartability,
and permits modifications to them for
user changes to process execution, before
condition handler returns

signals occurrence of given condition

performs nonlocal goto on Multics stack

performs conversion from ASCII to EBCDIC

assigns specified source value to specified
target performing required conversion

converts binary representation of integer to
12-character ASCII string

converts an ASCII representation of a decimal
integer to fixed binary(35)

same as c¢v_dec_ except that a code is
returned indicating the possibility of a
conversion error

converts a virtual entry to an entry value

converts an ASCII representation of a
hexadecimal integer to fixed binary(35)

same as cv_hex_ except that a code is
returned indicating the possibility of a
conversion error

converts an ASCII representation of an octal
integer to fixed binary(35) of an octal

integer.
same as c¢v_oct except that a code is
returned indicating the possibility of a

conversion error
converts a virtual pointer to a pointer value
performs conversion from EBCDIC to ASCII

prints formatted error message and signals
active_function_error condition

returns short and long status messages for
given status code

reports errors detected by other subroutines

5-4 AK92C

Formatted Output Facilities

dump_segment_

Input/Qutput System Procedures

convert dial message_
dial manager_

dprint_

iod_info_

pl1_io_
ttt_info_

Miscellaneous Procedures

decode_descriptor_
get privileges_

system_info_

Object Segment Manipulation

component_info_

object info_

tssi_

Process Synchronization

get_lock id_

hes_$wakeup

ipe_

/17

prints a dump formatted the same way as
dump segment command

controls dialed terminals

interfaces the answering service dial
facility

adds segment print or punch request to
specified queue

extracts information from I/0 daemon tables
for commands and subroutines submitting
I/0 daemon requests

extracts information about PL/I

extracts information from the terminal type
table (TTT) files not available within
the language

extracts information from argument
descriptors
returns process' access privileges

provides user with information on system
parameters

returns information similar to object_info_
information about a component of a bound
segment

prints structural and identifying information
extracted from object segment

simplifies use of storage system by language
translators

returns a 36-bit unique identifier to be used
in setting locks
sends interprocess communication wakeup to

blocked process over specified event
channel
user interface to Multics interprocess

communication facility

5=5 AK92C

Storage System, Access Control and Rings of Protection

aim_check

convert aim_ attributes_

cross_ring

cross_ring_io_$allow_cross

get_privileges

get ring -

hes” $add dir inacl entries
hes $add inacl entries
hes $delete dir inacl entries
hes ™ $delete 1nacl entrles
hes $get dir rlng “brackets
hes” $get ring brackets

hes $1ist dir inacl

hes™ $llst inacl

hcs $replace dir inacl
hes™ $replace inacl

hes™ $set_dir ring brackets
hes_$set ring_brackets
read allowed

read write allowed

wrlte allowed

Storage System, Address Space

hes_$get search rules
hes™ $get system search rules
hes_$initiate search rules

determines relationship between two
attributes

converts representation of process'/segment's
access authorization/class into character
string of defined form

allows an outer ring to attach to a
preexisting switch 1in an inner ring and
perform I/0 operations

allows use of an I/0 switch via
attachments from an outer ring

returns process' access privileges

returns number of current protection ring

adds specified access modes to initial ACL
for segments or directories

deletes specified entries from
for segments or directories

returns ring brackets for specified segment
or subdirectory

returns all or part of
segments or directories

replaces initial ACL with user-provided one
for segments or directories

sets ring brackets for specified segment or
directory

determines if AIM allows specified operations
on object given process' authorization
and object's access class

access

cross_ring__

initial ACL

initial ACL for

returns user's current search rules
prints site-defined search rule keywords
allows user to specify search rules

Storage System, Directory and Segment Manipulation

hcs_$del dir tree
hcs_$get author
hes_g$get_be_author

hcs_$get _max_length
hes_$get max_length seg
hes™ —$get _safety sw

hes™ $get safety SW_seg
hes” $quota _move™

hes_$quota_read

hcs _$set entry bound
hes” $set _entry bound_seg
hes” $set _max_length

hes ™ $set max length _seg
hes $set safety sw
hcs_$set safety sw_seg
hes $star_

1/77

deletes subdirectory's contents

returns author of segment, directory, or link

returns bit-count author of a segment or
directory

returns maximum length of segment in words

returns safety switch value of directory or

segment

moves all or part of quota between two
directories

returns record quota and accounting

information for directory
sets entry point bound of segment

sets maximum length of segment
sets safety switch of segment

returns storage system type and all names

that match entryname according to star
name rules
5-6 AK92C

Storage System, Utility Procedures

area_info_
define_area_

get default_wdir_
get definition_
get entry_name_

get_equal_name_

hes_$get_link_target
hes_$get_user_effmode

mhcs_$get_seg_usage
match_star_name_

msf_manager_

release_area_
suffixed_name_
tssi_

1/77

returns information about an area

initializes a region of storage as an area

returns pathname of wuser's current default
working directory

returns pointer to specified definition
within an object segment

returns associated name of externally defined
location or entry point in segment

constructs target name by substituting from
entryname into equal name

returns the target pathname of a link

returns a user's effective access mode to a
branch

returns the number of page faults taken on a
segment since its creation

compares entryname with star name

provides the means for multisegment files to
create, access, and delete components,
truncate the file and control access

cleans up an area

aids in processing suffixed names

simplifies use of storage system by language
translators

5-7 AK92C

/’\

SECTION VI

COMMANDS

COMMAND DESCRIPTION FORMAT

This section contains descriptions of the Multics commands, presented in
alphabetical order. Each description contains the name of the command
(including the abbreviated form, if any), discusses the purpose of the command,
and shows the correct usage. Notes and examples are included when deemed
necessary for clarity. The discussion below briefly describes the content of
the various divisions of the command descriptions.

Name

The "Name" heading lists the full command name and its abbreviated form.
The name is usually followed by a discussion of the purpose and function of the
command and the expected results from the invocation.

Usage

This part of the command description first shows a single line that
demonssrates the proper format to use when invoking the command and then
explains each element in the line. The following conventions apply in the usage
line.

1. Optional arguments are enclosed in braces (e.g., {path}, {User_ids}).
All other arguments are required.

2. Control arguments are identified in the wusage 1line with a 1leading

hyphen (e.g., {-control_args}) simply as a reminder that all control
arguments must be preceded by a hyphen in the actual invocation of the
command.

3. To indicate that a command accepts more than one of a specific
argument, an "s" is added to the argument name (e.g., paths, {paths},
{-control_args}).

NOTE: Keep in mind the difference between a plural argument name that is
enclosed in braces (i.e., optional) and one that is not (i.e.,
required). If the plural argument is enclosed in braces, clearly no
argument of that type need be given. However, if there are no
braces, at least one argument of that type must be given. Thus
"paths" in a usage line could also be written as:

pathl {path2 ... pathn}
The convention of using "paths" rather than the above 1is merely a
method of saving space.

2/717 6-1 AK92B

4, Different arguments that must be given in pairs are numbered (e.g.,
xxx1 yyyl {... xxxn yyyn}).

5. To indicate that the same generic argument must be given in pairs, the
arguments are given 1letters and numbers (e.g., pathAl pathBl {...
pathAn pathBpn}).

6. To indicate one of a group of the same arguments, an "i" is added to
the argument name (e.g., pathi, User_idi).

To illustrate these conventions, consider the following usage line:
command {paths} {-control_args}
The lines below are just a few examples of valid invocations of this command:

command

command path path

command path -control_arg

command -control_arg -control_arg

command path path path -control_arg -control_arg -control_arg

In many cases, the control arguments take values. For simplicity, common
values are indicated as follows:

STR any character string; individual command descriptions indicate
any restrictions (e.g., must be chosen from specified list; must
not exceed 136 characters).

N number; individual command descriptions indicate whether it 1is
octal or decimal and any other restrictions (e.g., cannot be
greater than 4).

DT date-time character string in a form acceptable to the
convert_date_to_binary_ subroutine described in the MPM
Subroutines.

path pathname of an entry; wunless otherwise indicated, it may be

either a relative or an absolute pathname.

The lines below are samples of control arguments that take values:

-access_name STR, =-an STR
-ring N, -rg N

-date DT, -dt DT
~home_dir path, -hd path

Notes

Comments or clarifications that relate to the command as a whole are given
under the "Notes" heading. Also, where applicable, the required access modes,
the default condition (invoking the command without any arguments), and any
special case information are included.

2/77 6-2 AK92B

The examples show different valid invocations of the command. An
exclamation mark (!) is printed at the beginning of each user-typed line. This
is done only to distinguish user-typed lines from system-typed lines. The
results of each example command line are either shown or explained.

Other Headings

Additional headings are used in some descriptions, particularly the more
lengthy ones, to introduce specific subject matter. These additional headings
may appear in place of, or in addition to, the notes.

2/71 6-3 AK92B

alm

alm

Name: alm

ALM is the standard Multics assembly language. It is commonly wused for
privileged supervisor code, higher level support operators and utility packages,
and data bases. It is occasionally used for efficiency or for hardware features
not accessible in higher 1level languages; however, its routine use is
discouraged.

The alm command invokes the ALM assembler to translate a segment containing
the text of an assembly language program into a Multics standard object segment.
A listing segment can also be produced. These segments are placed in the user's
current working directory. :

The ALM language is described briefly in this command description. The
Multics Processor Manual, Order No. AL39, fully describes the instruction set.

Usage

alm path {-control_args}

where:

1. path
is the pathname of an ALM source segment that is to be translated by
the ALM assembler. If path does not have a suffix of alm, one is
assumed. However, the suffix must be the last component of the name
of the source segment.

2. control_args
are optional arguments that can only appear after the path argument.
The control arguments are:

-list, -1s
produces an assembly listing segment.

-no_symbols
suppresses the listing of a cross-reference table in the 1listing
segment. This cross-reference table is included by default in the
listing segment when the -list control argument is given.

-brief, -bf
prevents errors from being printed on the terminal. Any errors are
flagged in the listing (if one has been requested).

-arguments STR, -ag STR
indicates that the assembled program may expect arguments. If
present, it must be the last control argument to the alm command and
must be followed by at least one argument. See "Macros in ALM"
later in this description.

Notes

The only result of invoking the alm command without control arguments is to
generate an object segment.

1/77 6-4 AK92C

A successful assembly produces an object segment and leaves it in the
user's working directory. If an entry with that name existed previously in the
directory, its access control 1list (ACL) is saved and given to the new copy.
Otherwise, the user is given re access to the segment with ring brackets v,v,v
where v is the validation level of the process that is active when the object
segment is created.

If the user specifies the -list control argument, the alm command creates a
listing segment in the working directory and gives it a name consisting of the
entryname portion of the source segment with the suffix list rather than alm
(e.g., a source segment named prt_conv_.alm would have a listing segment named
prt_conv_.list). The ACL is as described for the object segment except that the
user is given rw access to the newly created segment. Previous copies of the
object segment and the listing segment are replaced by the new segments created
by the compilation.

The assembler is serially reusable and sharable, but cannot be reentered
once translation has begun; that is, it cannot be interrupted during execution,
invoked again, then restarted in its previous invocation.

Error Conditions

Errors arising in the command interface, such as inability to locate the
source segment, are reported in the normal Multics manner. Some conditions can
arise within the assembler that are considered malfunctions in the assembler;
these are reported by a line printed on the terminal and also in the 1listing.
Any of the above cases is immediately fatal to the translation.

Errors detected in the source program, such as undefined symbols, are
reported by placing one-letter error flags at the left margin of the erroneous
line in the listing segment. Any line so flagged is also printed on the user's
terminal, unless the -brief control argument is in effect. Flag letters and
their meanings are given below.

B mnemonic used belongs to obsolete (Honeywell Model ©645) processor
instruction set

E malformed expression in arithmetic field
error in formation of pseudo-operation operand field

F

M reference to a multiply defined symbol

N unimplemented or obsolete pseudo-operation
0

unrecognized opcode

P phase error; location counter at this statement has changed between
passes, possibly due to misuse of org pseudo-operation

R expression produces an invalid relocation type

S error in the definition of a symbol

T undefined modifier (tag field)

2/71 6-5 AK92B

alm alm

U reference to an undefined symbol

7 digit 8 or 9 appears in an octal field

The errors B, E, M, 0, P, and U are considered fatal. If any of them
occurs, the standard Multics "Translation failed" error message is reported
after completion of the translation.

ALM Language

An ALM source program is a sequence of statements separated by newline
characters or semicolons. The last statement must be the end pseudo-operation.

Fields must be separated by white space, which is defined to include space,
tab, new page, and percent characters.

A name 1s a sequence of uppercase and lowercase letters, digits,
underscores, and periods. A name must begin with a letter, period, or
underscore and cannot be longer than 31 characters.

Label

Each statement can begin with any number of names, each followed
immediately by a colon. Any such names are defined as labels, with the current
value of the 1location counter. A label on a pseudo-operation that changes
location counters or forces even alignment (such as org or its) might not refer
to the expected 1location. White space 1is optional. It can appear before,
after, or between labels, but not before the colon.

Opcode

The first field after any labels is the opcode. It can be any instruction
mnemonic or any one of the pseudo-operations listed later in this description
under "Pseudo-operations." The opcode can be omitted, and any labels are still
defined. White space can appear before the opcode, but is not required.

Operand

Following the opcode, and separated from it by mandatory white space, is
the operand field. For instructions, the operand defines the address, pointer
register,, and tag (modifier) of the instruction. For each pseudo-operation,
the operand field is described under "Pseudo-operations." The operand field can
be omitted in an instruction. Those pseudo-operations that use their operands
generally do not permit the operand field to be omitted.

2/717 6-6 AK92B

)

alm alm

Comments

Since the assembler ignores any text following the end of the ope?and
field, this space is commonly used for comments. In those psegdofoperatlons
that do not use the operand field, all text following the opcode is ignored and
can be used for comments. Also, a quote character (") in any field introduces a
comment that extends to the end of the statement. (The only exceptions are the
acc, aci, and bci pseudo-operations, for which the quote character can be used
to delimit literal character strings.) The semicolon ends a statement and
therefore ends a comment as well.

Instruction Operand

The operand field of an instruction can be of several distinct formats.
Most common is the direct specification of pointer register, address, and tag
(modifier). This consists of three subfields, any of which can be omitted. The
first subfield specifies a pointer register by number, user-defined name, or
predefined name (pr0O, prl, pr2, pr3, pr4, pr5, prb, pr7). The subfield ends
with a vertical bar. If the pointer register and vertical bar are omitted, no
pointer register is used in the instruction. The second subfield is any
arithmetic expression, relocatable or absolute. This is the address part of the
instruction, and its default is zero. Arithmetic expressions are defined below
under "Arithmetic Expressions." The last subfield is the modifier or tag. It
is separated from the preceding subfields by a comma. If the tag subfield and
comma are omitted, no instruction modification is used. (This is an all zero
modifier.) Valid modifiers are defined below under "Modifiers."

Other formats of instruction operands are used to imply pointer registers.
If a symbolic name defined by temp, tempd, or temp8 is wused in the address
subfield (it can be used in an arithmetic expression), then pointer register 6
is used if no pointer register is specified explicitly. This form can have a
tag subfield.

Similarly, if an external expression is used in the address subfield, then
pointer register U4 is implied; this causes a reference through a link. The
pointer register subfield may not be specified explicitly. If a modifier
subfield is specified, it is taken as part of the external expression; the
instruction has an implicit n* modifier to go through the link pair. External
expressions are defined below under "External Expressions."

A literal operand begins with an equal sign followed by a literal
expression. The 1literal expression can be enclosed in parentheses. It has no
pointer register but can have a tag subfield. A literal reference normally
causes the instruction to refer to a word in a literal pool that contains the
value of the literal expression. However, if the modifier du or dl is used, the
value of the literal is placed directly in the instruction address field.
Literal expressions are defined below under "Literal Expressions."

2/717 6-7 AK92B

alm alm

Speci Ins i For

Certain instructions assembled by the ALM assembler do not follow the
standard opcode-operand format as described above. These instructions fall into
three basic classes: the repeat instructions, special treatment of the index
and pointer register instructions, and EIS instructions. Each of these special
cases is described below.

REPEAT INSTRUCTIONS

The repeat instructions are used to repeat either one or a pair of
instructions wuntil specified termination conditions are met. There are two
basic forms:

rpt tally,delta,terml,term2,...,termn

generates the machine rpt instruction as described in the Multics Processor
Manual. Both tally and delta are absolute arithmetic expressions. The termi
specify the termination conditions as the names of corresponding conditional
transfer instructions. This same format can be used with the rpt, rpd, rpda,
and rpdb pseudo-operations.

rptx ,delta

generates the machine rpt instruction with a bit set to indicate that the tally
and termination conditions are to be taken from index register 0. This format
can be used with rplx and rpdx.

INDEX REGISTER INSTRUCTIONS

The opcodes for manipulation of the index registers have the general form
opxn, where pn specifies the index register to be used in the operation. ALM
allows the more general form:

opx index,operand

which assembles opxn, where index is an absolute arithmetic expression whose
value is n. This format can be used for all index register instructions.

2/77 6-8 AK92B

alm alm

POINTER REGISTER INSTRUCTIONS

As with the index register instructions, the opcodes for the manipulation
of the pointer registers have the general form oprn, where 1 specifies the
pointer register to be used. ALM extends this form to allow:

opr pointer,operand

which assembles as oprn, where n is found as follows: If pointer is a built-in
pointer name (pr0O, pri, etc.), that register is selected; otherwise, pointer
must be an absolute arithmetic expression whose value is n. This format can be

used with all pointer register instructions except spri.

EIS MULTIWORD INSTRUCTIONS

An EIS multiword instruction consists of an operation code word, followed

by one or more descriptor words. The descriptor words can be assembled by using
the "desc" pseudo-operations listed under "Pseudo-Operations" Dbelow. The
operation code word has the following general form:

eisop (MF1), (MF2),keywordl(octexpression),keyword2

where:

1. MF1,MF2 are EIS modification fields as described in "EIS Modifiers"
below.

2. keyword1 can be either fill, bool, or mask.

3. octexpression 1is a logical expression that specifies the bits to be placed
in the appropriate parts of the instruction.

4, keyword2 can be round, enablefault, or ascii; these cause single
option bits in the instruction to be set.

Keywords can appear in any order, before or after an MF field. This format
can be used for all Multics EIS multiword instructions.

2/717 6-9 AK92B

alm alm

EIS SINGLEWORD INSTRUCTIONS

The Multics processor contains a set of 10 instructions that may be used to
alter the contents of an address register. These instructions have the
following general form:

opcode prioffset,modifier

where:

1. pr selects the address register that is to be modified by the
instruction.

2. of fset is a value whose interpretation is dependent wupon the opcode

used.

3. modifier must be one of the register modifiers (au, ql, x0, etec.).

These 1instructions have two modes of operation depending on the setting of
bit 29 in the instruction. If bit 29 is 1, the current contents of the selected
address register are used in determining its new contents; if bit 29 is 0, the
contents of the word and bit offset portions of the selected address register
are assumed to be zero at the start of the instruction (this results in a 1load
operation into the selected address register). ALM normally sets bit 29 to 1,
unless the opcode ends in "x" (e.g., awdx is an awd instruction with bit 29 set
to 0). This format can be used with albd, abbd, a9bd, abd, awd, slbd, sbbd,

s9bd, sbd, and swd.

Examples of Instruction Statements

Six examples of instruction statements are shown below. A brief
description of each example follows the sample statements.

xlab: lda pr0j2,% " Example 1.
eaxT7 xlab-1
rcel <sys_info>i{[clock_1],* " Example 2.
segref sys_info,time_delta " Example 3.
adl time_delta+1
temp nexti " Example 4.
1x10 nexti,¥
link goto,<unwinder_>|[unwinder_] " Example 5.
tra priigoto,*
ana =oT7T777T77,du " Example 6.
ada =v36/1ist_end-1

2/77 6-10 AK92B

alm alm

Example 1 shows direct specification of address, pointer reg@ster, and tag
fields. In the second instruction, no pointer register is specified, and the
symbol xlab is not external, so no pointer register is used.

Example 2 shows an explicit link reference. Indirection is specified for
the link as the item at clock_ (in sys_info) is merely a pointer to the final
operand.

Example 3 uses an external expression as the operand of the adl
instruction. In this particular case, the operand itself is in sys_info.

Example 4 uses a stack temporary. Since the word is directly addressable
using pr6, the modifier specified is used in the instruction.

Example 5 shows a directly specified operand that refers to an external
entity. It is necessary in this case to specify the pointer register and
modifier fields, unlike segref.

Example 6 wuses two literal operands. Only the second instruction causes
the literal value to be stored in the literal pool.

rithmetic Ex ion

An arithmetic expression consists of names (other than external names) and
decimal numbers joined by the ordinary operators + - % /. Parentheses can be
used with their normal meaning.

An asterisk in an expression, when not used as an operator, has the value
of the current location counter.

All intermediate and final results of the expression must be absolute or
relocatable with respect to a single location counter. A relocatable expression
cannot be multiplied or divided.

Logical Expressions

A logical expression is composed of octal constants and absolute symbols
combined with the Boolean operators + (OR), - (XOR), * (AND), and "~ (NOT).
Parentheses can be used with their normal meaning.

2/77 6-11 AK92B

alm alm

External Expressions

An external expression refers symbolically to some other segment. It
consists of an external name or explicit link reference, an optional arithmetic
expression added or subtracted, and an optional modifier subfield. An external
name 1is one defined by the segref pseudo-operation. An explicit link reference
must begin with a segment name enclosed in angle brackets (the 1less-than and
greater-than characters) and followed by a vertical bar. This can optionally be
followed by an entryname in square brackets. For example:

<segname>|[entryname]
<{segname>|0,5%

An alternative form of external expression must begin with a segment name
followed by a dollar sign. This may be followed by an entryname, an arithmetic
expression, or a modifier, all of which are optional. For example:

segname$

segname$entryname-1
segname$+3,5

A segment name of *text, ¥link, or *static indicates a reference to this
procedure's text, linkage, or static sections.

A segment name of ¥*system indicates a reference to the external variable
(or common block) entryname, which is managed by the linker.

A link pair is constructed for each combination of segment name, entryname,
arithmetic expression, and tag that is referenced.

Literal Expressions

A literal reference causes the instruction to refer to a word in a 1literal
pool that contains the value specified. However, the du and dl modifiers cause
the value to be stored directly in the address field of the instruction. The
various formats of literals are described in the following paragraphs.

A decimal literal can be signed. If it contains a decimal point or
exponent, it is floating point. If the exponent begins with "d" instead of "e",
it 1is double precision. A binary scale factor beginning with "b" indicates
fixed point and forces conversion from floating point.

An octal literal begins with an "o" followed by up to 12 octal digits.

ASCII literals can occur in two forms. One form begins with a decimal
number between 1 and 32 followed by "a" followed by the number of data
characters specified by the integer preceding the "a", which can cross statement
delimiters. The other form begins with "a" followed by up to four data
characters, which can be delimited by the newline character.

1/77 6-12 AK92C

alm alm

A GBCD literal begins with "h" followed by up to six data characters, which
can be delimited by the newline character. Translation is performed to the
6-bit character code.

An ITS (ITP) literal begins with nits" ("itp") followed by a parenthesized
list containing the same operands accepted by the its (itp) pseudo-operation.
The value is the same as that created by the pseudo-operation.

A variable-field literal begins with "v" followed by any number of decimal,
octal, and ASCII subfields as in the vfd pseudo-operation. It must be enclosed
in parentheses if a modifier subfield is to Dbe used.

11/77 : 6-12.1 AK92C

This page intentionally left blank.

/77 AK92C

r~

alm alm

Modifiers

These specify indirection, index register address modification, immgdiate
operands, and miscellaneous tally word operations. They can bg specified as
2-digit octal numbers (particularly useful for instructions 1like stba) or
symbolically using the mnemonics described here.

Simple register modification is specified by using any of tpe register
designators listed below. It causes the contents of the selected register to be
added to the effective address.

Designators Register

x0 0 index register O

x1 1 index register 1

x2 2 index register 2

x3 3 index register 3

x4 4 index register U

x5 5 index register 5

x6 6 index register 6

x7 T index register 7

n none (no modification)

au A bits 0-17

al A bits 18-35 or 0-35
qu Q bits 0-17

ql Q bits 18-35 or 0-35
ic instruction counter

In addition to the above, any symbol that is not otherwise a valid modifier
(e.g., au, ql, x7) may be used as a modifier to designate an index
register. Thus,

equ rege,3
lda spi0, ¥rege

is equivalent to:

lda spi0,¥*3

Register-then-indirect modification 1is specified by wusing any of the
register designators followed by an asterisk. If the asterisk is used alone, it
is equivalent to the n* modifier. The register 1is added to the effective
address, then the address and modifier fields of the word addressed are used in
determining the final effective address. Indirect cycles continue as long as
the indirect words contain an indirect modifier.

Indirect-then-register modification is specified by placing an asterisk
before any one of the register designators listed above.

Direct modifiers are du and dl. They cause an immediate operand word to be
fabricated from the address field of the instruction. For dl, the 18 address
bits are right-justified in the effective operand word; for du they are
left-justified. In either case, the remaining 18 bits of the effective operand
are filled with 0's.

2/717 6-13 AK92B

alm alm

Segment addressing modifiers are its and itp; they can only occur in an
indirect word pair on a double-word boundary. The addressing modifier its
causes the address field of the even word to replace the segment number of the
effective address, then continues the indirect cycle with the odd word of the
pair. Nearly all indirection in Multics wuses ITS pairs. For itp, see the
Multics Processor Manual.

Tally modifiers i, ci, se, scr, ad, sd, id, di, 1ide, and dic control
incrementing and decrementing of the address and tally fields in the indirect
word. They are difficult to use in Multics because the indirect word and the
data must be in the same segment.

Fault tag modifiers f1, f2, and f3 cause distinct hardware faults whenever
they are encountered. The modifier f2 is reserved for use in the Multics
dynamic linking mechanism; the other modifiers result in the signalling of the
conditions "fault_tag_1" and "fault_tag_3".

EI jfier

An EIS modifier appears in the first word of an EIS multiword instruction.
It affects the interpretation of operand descriptors in subsequent words of the
instruction. No check is made by ALM to determine whether the modifier
specified is consistent with the operand descriptor specified elsewhere.

An EIS modifier consists of one or more subfields separated by commas.
Each subfield contains either a keyword as listed below, a register designator,
or a logical expression. The values of the subfields are OR'ed together to
produce the result.

eyword Meaning

pr Descriptor contains a pointer register reference.

id Descriptor is an indirect word pointing to the true
descriptor.

rl Descriptor length field names a register containing data
length.

Separ

If a separate static object segment is desired, a join pseudo-operation
specifying static should exist in the program.

2/77 6-14 AK92B

alm alm

Pseudo-operations

The pseudo-operations are l1isted below in alphabetical order. Add?tional
pseudo-operations are provided by the macro facility. Seg "Macros in ALM"
(following this list of pseudo-operations) for a further description of their
syntax.

acc /string/,expression

assembles the ASCII string <{string> into as many contiguous words as
are required (up to 42). The delimiting character (/ above) can be
any character other than white space. The quoted string can contain
newline and semicolon characters. The length of the string is placed
in the first character position in acc format. If present, expression
defines the length of the string; otherwise, the length is the actual
length of the quoted string. If the given string is shorter than the
defined 1length, it 1is padded on the right with blanks. If it is
longer, it will be truncated to the defined length.

aci /string/,expression
is similar to acc, but no length 1is stored. The first character
position contains the first character in aci format.

acld /string/,expression
is similar to aci, but only the rightmost four bits of each ASCII
character are stored into the corresponding character position of a
string of 4-bit characters. If the given string is shorter than the
defined length, it is padded on the right with zeros.

arg operand
assembles exactly like an instruction with a zero opcode. Any form of
instruction operand can be used.

bci /string/,expression
is similar to aci, but uses GBCD 6-bit character codes and GBCD blanks
for padding.

bfs name,expression
reserves a block of expression words with name defined as the address
of the first word after the block reserved.

bool name,expression
defines the symbol name with the logical value expression. See the
definition of logical expressions above under "Logical Expressions."

bss name,expression
defines the symbol name as the address of a block of expression words
at the current location. The name can be omitted, in which case the
storage is still reserved.

call routine(arglist)
calls out to the procedure routine using the argument list at arglist.
Both routine and arglist can be any valid instruction operand,
including tags. If arglist and the parentheses are omitted, an empty
argument list is created. All registers are saved and restored by
call.

dec number1,number2,...,numbern

assembles the decimal integers number1, number2, through numbern into
consecutive words. -

11777 6-15 AK92C

alm

11/77

alm

descda address(offset),length
descba address(offset),length
desc9a address(offset),length

generates one of the operand descriptors of an EIS multiword
instruction. The address is any arithmetic expression, possibly
preceded by a pointer register subfield as in an instruction operand.
The offset is an absolute arithmetic expression giving the offset (in
characters) to the first bit of data. It can be omitted if the
parentheses are also omitted. The length is either a built-in index
register name (al, au, ql, x0, etc.) or an absolute arithmetic
expression for the data length field of the descriptor. The character
size (in bits) is specified as part of the pseudo-operation name.

descldfl address(offset),length,scale
descd4ls address(offset),length,scale
desclns address(offset),length,scale
descldts address(offset),length,scale

generates an operand descriptor for a decimal string. The scale is an
absolute arithmetic expression for a decimal scaling factor to be
applied to the operand. It can be omitted, and is ignored in a
floating-point operand. Data format is specified in the
pseudo-operation name: descd4fl indicates floating point, descldls
indicates leading sign fixed point, desclns indicates unsigned fixed
point, and descldts indicates trailing sign fixed point. Nine-bit
digits can be specified by using desc9fl, desc91ls, desc9ns, and
desc9ts.

descb address(offset),length

generates an operand descriptor for a bit string. Both offset and
length are in bits.

dup expression

duplicates all source statements following the statement containing
the dup pseudo-operation wup to (but not including) the statement
containing the dupend pseudo-operation. The number of times that the
statements are duplicated is equal to the value of the expression.
This value must be positive and nonzero. Also, dup statements may not
be nested.

dupend

terminates the range of a dup pseudo-operation.

(see the even pseudo-operation)

terminates the source segment.

entry namel,name2,...,namen

generates entry sequences for labels namel, name2, through namen and
makes the externally-defined symbols namel, name2, through namen refer
to the entry sequence code rather than directly to the labels. The
entry sequence performs such functions as initializing base register
pr4 to point to the 1linkage section, which is necessary to make
external symbolic references (link, segref, explicit 1links). The
entry sequence can use (alter) base register pr2, index registers 0
and 7, and the A and Q registers. It requires pr6 and pr7 to be
properly set (as they normally are).

equ name,expression

defines the symbol name with the arithmetic value expression.

6-16 AK92C

alm

even
inserts padding (nop) to a specified word boundary.

firstref extexpression1(extexpressionZ{ . .
calls the procedure extexpressionl with the argument pointer

extexpression2 the first time (in a process) that this object segment
is linked to by an external symbol. If extexpression2 and the
parentheses are omitted, an empty argument list is supplied. The
expressions are any external expressions, including tags.

etl

& psets the pointer register pr4 to point to the linkage section. This
can be used with segdef to simulate the effect of entry. This
operator can use pointer register pr2, index registers 0 and 7, and
the A and Q registers, and requires pr6 and pr7 to be set properly.

include segmentname
inserts the text of the segment segmentname.incl.alm immediately after
this statement. A standard include library search is done to find the
include file. See "System Libraries and Search Rules" in Section III
of the MPM Reference Guide.

inhibit off
instruct assembler to turn off the interrupt inhibit bit in subsequent
instructions. This mode continues until the inhibit on
pseudo-operation is used.

inhibit on
instructs assembler to turn on the interrupt inhibit bit (bit 28) in
subsequent 1instructions. This mode continues until the inhibit off
pseudo-operation is used.

itp prno,offset,tag
generates an ITP pointer referencing the pointer register prno.

its segno,offset,tag
generates an ITS pointer to the segment segno, word offset <offset>,
with optional modifier tag. If the current location is not even, a
word of padding (nop) is inserted. Such padding causes any labels on
the statement to be incorrectly defined.

join /text/name1,name2,.../link/name3,nameu,.../static/name5,name6,....

appends the location counters namel, name2, etc., to the text section,
appends the location counters name3, nameld4, etc., to the 1linkage
section and appends the location counters name5, nameb, etc., to the
static section. Any number of names can appear. Each name must have
been previously referred to in a use statement. Any location counters
not joined are appended to the text section. If both link and static
are specified in join pseudo-operations, then a warning is printed on
the terminal.

link name,extexpression
defines the symbol name with the value equal to the offset from lp to
the link pair generated for the external expression extexpression. An
external expression can include a tag subfield. The name is not an
external symbol, so an instruction should refer to this link by:
pr4diname,*

11777 6-17 AK92C

alm

11/77

alm

maclist keyword {save}
indicates how listing of statements generated by macro expansion is to
be done. The following keywords are accepted:

off
sugpresses the listing of macro-generated statements and object
code
on
lists such statements and their associated object code
object
lists only the object code
restore

reverts the macro listing mode to a previously saved setting

The save argument, if present, saves the current macro listing ‘in a
pushdown stack. The default macro listing mode is on.

macro name
indicates the start of a macro definition. When a macro name is
defined, it may then be wused as a pseudo-operation to trigger the
expansion of the macro. See "Macros in ALM" below for a complete
description of the definition and expansion of macros in ALM.

mod <expression>
inserts padding (nop) to an <expression> word boundary.

name objectname
specifies again the object segment name as it appears in the object
segment. By default, the storage system name is used.

null
is ignored. This pseudo-operation is used for comments.

oct number1,number2,...,numbern
is like dec, with octal integer constants.

odd
(see the even pseudo-operation)

org expression
sets the location counter to the value of +the absolute arithmetic
expression <{expression>. The expression can only use symbols
previously defined.

push expression
creates a new stack frame for this procedure, containing expression
words. If expression is omitted (the usual case), the frame is just
large enough to contain all cells reserved by temp, tempd, and temp8.

rem
(see the null pseudo-operation)

return
is used to return from a procedgre that has performed a push.

segdef namel,name2,...,namen
makes the labels namel, name2, through namen available to the 1linker
for referencing from outside programs, using the symbolic names namel,
name2, through namen. Such incoming references go directly to the
labels namel, name2 through namen so the segdef pseudo-operation is
usually used for defining external static data. For program entry
points, the entry pseudo-operation is usually used.

6-18 . AK92C

1/77

alm

segref segname ,namel,name2,...,namen
defines the symbols namefl, name2, through namen as external symbols
referencing he entry points namel, name2, fhrougb namen in segment
segname. This defines a symbol with an implicit base register

reference.

set name,expression
assigns the arithmetic value expression to the symbol name. Its value
can be reset in other set statements.

shortcall routine))
calls out to routine using the argument list pointed to by proO. Only
pr4 and pr6 are preserved by shortcall.

shortreturn
is used to return from a procedure that has not performed a push.

sixtyfour
(see the even pseudo-operation)

temp namel(n1),name2(n2),...,namen(nn)
defines the symbols namel, nameZ, through namen to reference unique
stack temporaries of nl1, n2, through nn words each. Each ni is an
absolute arithmetic expression and can be omitted (the parentheses
should also be omitted). The default is one word per namei.

temp8 namel(n1),name2(n2),...,namen(nn)
is similar to temp, except that 8-word units are allocated, each on an
8-word boundary.

tempd namel(n1),name2(n2),...,namen(nn)
is similar to temp, except that n1 (n2 through nn) double words are
allocated, each on a double-word boundary.

use name
assembles subsequent code into the location counter name. The default
location counter is ".text.".

vfd T1L1/expression1,T2L2/expression2,...,TnLn/expressionn

is variable format data. Each expressioni is of type Ti and is stored
in the next Li bits of storage. As many words are used as required.
Individual items can cross word boundaries and exceed 36 bits in
length. Type is indicated by the letters "a" (ASCII constant) or "o"
(logical expression) or none (arithmetic expression). Regardless of
type, the low-order Li bits of data are used, padded if needed on the
left. The Ti can appear either before or after Li.

Restrictions: The total length of the variable format data cannot
exceed 128 words. A relocatable expression cannot be stored in a
field less than 18 bits long, and it must end on either bit 17 or
bit 35 of a word.

zero expressionil,expression2

assembles expression! into the left 18 bits of a word and expression2
into the right 18 bits. Both subfields default to zero.

6-19 AK92C

alm

Macros in ALM

The ALM macro facility provides a means for defining and using sequences of
text to be inserted at various points in an ALM program. Each such sequence of
text, called a macro, is defined by the use of the macro pseudo-operation in
ALM. A macro definition consists of all text following the line containing the
macro pseudo-operation wuntil the character string, &end. The sequence of text
is named py the symbol appearing as the operand to the macro pseudo-operation.

At any point in a program subsequent to the definition of a macro, the
macro name can be used as a pseudo-operation in ALM. Whenever it is so used,
ALM inserts the text sequence defined as that macro.

The macro facility is purely text manipulative. It deals with macro
definitions as a continuous stream of text characters interspersed with control
sequences. Each control sequence begins with the & character. The control
sequence, &end, terminates the macro definition. When a macro is invoked by
using its name as a pseudo-operation, the macro definition is scanned from left
to right. All text Dbetween control sequences 1is copied, and variable
information is inserted in place of the control sequences. The resulting macro
expansion is presented to ALM for assembly.

Macros may be given arguments by placing operands in fields corresponding
to the operands of a pseudo-operation. These arguments can be substituted into
the expanded copy of the macro as specified by various control sequences within
the macro definition. Control sequences are also provided to facilitate
iteration, conditional text selection, wunique symbol generation, and other
operations.

The macro facility also provides a set of special pseudo-operations that
are distinct from the regular ALM pseudo-operations. These special
pseudo-operations allow for the conditional assembly of source 1lines and the
printing of messages to the wuser's terminal during assembly. The argument
syntax of these pseudo-operations is the same as that of macros, not the
expressions and symbols of the ALM assembler.

Contents of a Macro

The body of a macro (i.e., the text starting on the 1line following the
macro pseudo-operation and ending just before the character string &end) can
include any text and control sequences which, when expanded, yield valid ALM
source code. The body of a macro can include invocations of other macros and
even the definition of other macros.

Macro definitions are shown in the assembly 1listing with their internal
line numbers to the left of the ALM source line number. (These internal numbers
are used 1in diagnostics produced by the macro expander.) Macros may be
redefined, the later definition replacing the earlier. Macros may also redefine
all existing ALM operations and pseudo-operations.

1/77 6-19.1 AK92C

alm alm

An example macro is given below:

macro move_a_to_b

lda a
sta b
&end

Invoking a Macro

A macro is invoked by specifying its name as a pseudo-operation. Arguments
to the macro can appear in the variable field separated by commas. A comment
may follow the argument list, separated from it Dby white space or a double
quote. Arguments to macros that include spaces, tabs, newline characters,
commas, or semicolons must be enclosed in matching parentheses. The parentheses
are stripped from the argument during macro expansion. The use of parentheses
allows macro invocations to ex