Honeywell APL USER'S GUIDE

MULTICS

SUBJECT:

Introductory User's Guide to Multics APL.

SOFTWARE SUPPORTED:

Multics Software Release 1.0

DATE:

January 1974

ORDER NUMBER:

AK95, Rev. 0

PREFACE

‘The organization of the manual follows the organization
of the APL processor. Section I presents an introduction to
APL. Section II discusses the invocation of the processor
and the character set conventions necessary to communicate
with it. Section III discusses the APL language. Section IV
explains the APL system commands. Section V discusses the
use of the APL editor to create and manipulate stored
programs.

The remainder of the manual contains material of wvalue
to certain classes of users. For new users, Section VI
presents an annotated reproduction of a sample demonstration
APL session, containing the most basic features of the
language. For users already familiar with APL/360, Section
VII identifies the differences between APL/360 and Multics
APL.

C) 1974, Honeywell Information Systems Inc. File No.: 1L23

AK95

CONTENTS

Section I Introduction
History of APL
Characteristics of APL

Section II Communicating with Multics APL
Calling the APL Command
APL Character Set
Selectric-type Terminals
ASCII Terminals
Canonicalization
Erase and Kill Processing
Escape Processing
Details of APL Input Line Processing
Line Length 256
Program Interrupt is Enabled
Using APL

Section III The APL Language
Workspaces
Values
Type
Rank
Shape
Output of Values
Input of Values
Names
Operators
Scalar Operators

Addition, Subtraction, Multiplication,

Division + - x =+

Plus, Negation + -

Signum Xx

Reciprocal +

Exponential, Logarithm x @
Modulo |

Absolute Value |

Factorial and Binomial Coeff1c1ent

Maximum and Minimum [L

iii

Page

o
1
N -

oo UTddWWH K

PEYY Y

11 |
FHWOVY NN WhDNNDEE

oo

Wwwww L;waww

I
ol
o

ww
|
=

3-11
3-12

AK95

~ CONTENTS (cont)

Ceiling and Floor [L
Random Number ?
Comparison Operators < < = # 2 >
Logical Operators ~ A v » ¥
Circular and Hyperbolic Operator o
Mixed Operators
Shape p
Reshape p
Ravel ,
Concatenate ,
Index Generator
Index 1
Take and Drop + +
Grade Up and Grade Down h V
Reverse ¢ o
Rotate ¢ o
Transpose &
Compression /
Expansion \ X
Membership e
Encode T
Evaluate 1
Deal ?
Matrix Inverse
Matrix Divide B
I-Beam I -
Other Operators and Symbols
Assignment <«
Output [
Evaluated Input 0
Character Input [
Jump -
Parentheses ()
Lists ;
Subscripts [;]
Reduction Operator o/ @4
Inner Product o.®
Outer Product °.®
Comments n
Expressions, Lists, and Statements
Scope of Operators: The Right-to-Left Rule
Scope of Functions
Lists
Statements
Dependence Upon Unspecified Ordering
Functions
Arguments and Results
Local and Global Variables

iv

AK95

CONTENTS (cont)

Branching

Statement Numbers
The Jump Operator -
Function Return
Statement Labels

Recursion

Extension of Scalar Functions to Arrays

Library Functions
Error Handling
Error Messages

Pendent Statements and the State Indicator

Suspended Statements

Restarting Suspended Functions

Clearing the State Indicator

Restarting Following a Function Edit

Panic

Section IV System Commands
System Commands Generally
Workspace Parameters

The
The
The
The
The
The
The
The

)ORIGIN System Command
YJWIDTH System Command
)DIGITS System Command
YFUZZ System Command
)SETLINK System Command
)SFII System Command
)SFEI System Command
)SFCI System Command

Name Table Management

The
The
The
The
The
The
The
The
The

)VARS System Command
JFNS System Command
)GRPS System Command
)GRP System Command
)GROUP System Command
JERASE System Command
JCLEAR System Command
)SI System Command
)SIV System Command

Saving and Reloading Workspaces
Workspace Identification
Passwords

The
The
The
The
The

)SAVE System Command
Y)LOAD System Command
)COPY System Command
)PCOPY System Command
YCONTINUE System Command

111 | L I O I |
HHRWOVWOONOUBMTWNDEHEFE

o N S A o S R R
1

AK95

CONTENTS (cont)

Page

The)ysrip System Command 4-25

The)17 System Command 4-26

The)prop System Command 4-26

Communicating With Multics 4-27

The)@,)QuIir, and)orF System Commands 4-27

The)porTS System Command 4-28

The)r System Command 4-28

External Functions 4-29
The)prN,)MFN,)zry Define External

Function Names 4-30
Definition Syntax . ’ 4-30
Definition Errors : 4-31
External Functions Cannot be Edited 4-31
External Functions Tagged With "*"

In)rFys Listing 4-31
External Function Calling Sequence 4-31
External Function Returned Value 4-32
Use of Supplied "Alloc" Entry 4-32
Use of Supplied "Error" Entry 4-33
Use of Supplied "Static" Structure 4-33

Section V The APL Function Editor
Invoking the Function Editor 5-1
Errors Invoking the Editor 5-2
The Function Header Line (5-3
Leaving the Editor 5-4
Editing Requests 5-5
Basic Editing Requests 5-5
Print Request p n 5-5
Locate Request [string 5-6
Insert Request 1 string 5-7
Delete Request p n 5-8
Retype Request p string 5-9
Top Request 7T 5-9
Change Request ¢ n /stringl/string2/ 5-10
Input Request , 5-12
Quit Request g 5-14
Other Useful Requests 5-14
Next Request y n 5-14
Backup Request - n 5-15
Bottom Request B 5-16
Find Request F 5-16
Infrequently Used Requests 5-17
Kill Request g 5-17
Verify Request y 5-18

vi AK95

CONTENTS (cont)

Page

Line-Number Request = - 5-19

Comment Request | 5-19

Execute Request p command 5-21
Delete-Above Request yx 5-21

Write Request p pathname 5-22

Merge Request py pathname : 5-23
Write-Above Request y pathname 5-25

Synonyms for Requests 5-26
Substitute Request g n /stringl/string2/ 5-26

Execute Request p command 5-26

Upwrite Request ypyrITE pathname 5-26

Updelete Request yYPDELETE 5-27

Merge Request yprGgE pathname 5-27

Program Interrupt during Editing 5-27

The Sneak Request 5-27

Section VI Demonstration APL Session
APL in Action 6-1
Section VII Comparison With APL/360

APL/360 7-1
Multics APL 7-1
Entering APL 7-2
APL Is Recursive 7-2
Workspace 7-2
Terminal I/O 7-2
Program Interrupt Is Enabled 7-3
APL Language Itself 7-3
Order of Execution 7-3
Line Length 256 7-4
Identifiers 7-4
Minimum and Maximum Identity Elements 7-4
Take and Drop Conformability 7-4
Coordinate for Compress, Expand, Grade 7-4
I-Beam Functions 7-5
Jump Operator 7-5
Escape from Character Input 7-6
Error Messages 7-6
Messages not in Multics APL 7-6
Stream Switching On Errors 7-6
Panic 7-6
Library Functions 7-7
Matrix-Inverse (Domino) Generalized 7-7
System Commands 7-8
Use)@,)QUIT, Oor)OoFF to Exit from APL 7-8
YyDIGITS Command Allows up to 19 Digits 7-9
YSETLINK Initializes Random Number Generator 7-9

vii AK95

CONTENTS (cont)

Page
JFUZZ Sets the Fuzz ‘ 7-9
)JSFII,)SFEI,)SFCI Set the Go-Ahead
Characters 7-9
)E Executes a Multics Command 7-10
JERASE Command 7-10
JCLEAR Command 7-10
No)MSG,)MSGN,)OPR,)OPRN Commands 7-11
)PORTS Command is Multics "who" 7-11
Saving and Reloading Workspaces 7-11
Workspace Identification 7-11
Passwords 7-12
Internal Format of Saved Workspaces 7-12
YLIB and)DROP Commands 7-12
No APL Library Yet 7-12
External Functions 7-13
Function Editing 7-13
When a Function can be Edited 7-13
Invoking and Terminating the Editor ’ 7-14
Function Header Line 7-15
Input Mode 7-15
Edit Mode 7-15
Program Interrupt During Editing 7-15
E Request Executes a Multics Command 7-16
M, U, and W Requests to Read and Write Files 7-16
Saving Individual Function Definitions 7-16
Sneak Request 7-16
Line Numbers and Labels 7-17
No System Commands in Editor 7-17
No Stop or Trace Control 7-17
No Locked Functions 7-17
External Functions Cannot be Edited 7-18
Pitfalls 7-18
Interrupt Button Is Not For Line Editing 7-18
APL Translates)E command, E function, and E
Request 7-18
Remember the Function Header Line 7-18
Do Not Use the W Request when Editing
is Finished 7-19
Order of Operand Preparation Differs From
APL/360 7-19

viii AK95

TABLES

Page
Table 2-1. APL Character Set 2-2
Table 2-2. Mnemonic Escape Sequences 2-5
Table 3-1. Scalar Operator Identity Elements 3-43

ix AK95

SECTION I

INTRODUCTION

HISTORY OF APL

A Programming Language (APL) originated as a
mathematical notation~ for the discussion of the theory of
algorithms. It was invented by Dr. Kenneth E. Iverson and
was described by him in his book, A Programming Language *.
The value of the notation as a practical means for
expressing an algorithm to a computer was soon noticed. An
interpreter which realized a subset of the notation was
developed by IBM on its 7090 computer. The success of this
pilot interpreter 1led to a second and more powerful
implementation, known as APL/360, on the IBM 360.

The success of APL can be attributed to some
characteristics which distinguish it from more conventional
programming languages. First, it is interactive by design

rather than by decree--it is fast, succinct, forgiving,
informative, and even fun to use. Next, it is at once both
simple and powerful--it is easy to learn, transparent, yet
it attacks abstruse problems with ease.

Multics APL is designed to behave as much like APL/360
as possible, to minimize the learning effort required of
those already familiar with APL/360, and to promote
compatibility at the source language level with other APL
installations.

*John Wiley and Sons, 1962

1-1 AK95

CHARACTERISTICS OF APL

APL can be characterized as a 1line-at-a-time desk
calculator with many sophisticated operators and a
stored-program capability. The wuser needs 1little or no
prior acquaintance with digital computers to use it. After
invoking APL, the user types an expression to be evaluated.
The APL interpreter performs the calculations, prints the

result, and awaits a new input line. The result of an
expression evaluation can also be assigned to a variable and
remembered from line to 1line. In addition, there is a

capability for storing input lines by an assigned name, SO
that a later mention of the name causes the lines to be
recalled and interpreted as if they had been entered from
the terminal at the time. Finally, there is the ability to
save the entire state of an APL session, complete with all
variable values and stored programs, so that the user may
continue at a subsequent APL session.

The APL language uses its own specially designed
character set, in which each operator is represented by a
single character. The most convenient access to APL is via
a Selectric-type terminal with the APL typing element (type
ball) mounted. Multics APL is also usable from any ASCII
terminal as well, although the user must be aware of the
typing conventions used to represent some of the APL
characters within the framework of the available ASCII
graphics.

The Multics APL processor consists of three principal
components: the interpreter for the mathematical
expressions of the APL language, a system command processor
which provides bookkeeping aids and an environment within
which the language runs, and an editor which is wused to
create and modify stored APL programs.

1-2 AK95

SECTION II

COMMUNICATING WITH MULTICS APL

CALLING THE APL COMMAND

To call Multics APL, issue the command line:
apl

APL responds by typing six spaces before awaiting input
from the user. This informs the user that APL would like to
hear from him and improves the readability of the terminal
listing. All of the user-typed lines will appear indented
by six positions while all of the APL-generated responses
will begin at the left margin.

Before typing any input, however, the wuser must
determine how the APL character set is represented on his
terminal. Since the APL character set differs significantly
from the Multics standard character set, normal Multics
typing conventions do not apply to communication with APL.

APL CHARACTER SET

In contrast to the 94 graphics of the Multics standard
character set, the APL character set has 130 graphics. APL
graphics are shown in Table 2-1, together with their
internal codes. ’

The internal code assigned to each character is not
normally of significance to the APL user. There is no way
within the APL 1language to discover or make use of the
internal representation of a character--for example, there
is no collating sequence. However, there are occasions in
Multics such that lines originating in APL are transferred
out to the rest of Multics, or vice versa; in these
instances the exact internal codes used by APL become
significant. In this connection, the established code
assignments agree with the Multics standard code assignments
wherever any correspondence of graphics between the two
character sets can be found.

2=1 AK95

(es)
(er)

(ki)

4+ %~ —~ = X O ~ £

-

e OO O U FWNPE O

I~ N Qg v VvV I A e

s gl

042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
06l
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
130
131
132
133
134
135
136
137
140
141

APL Character Set

APL APL
Graphic Code ASCII Selectric Graphic Code ASCII Selectric
. (os) B 142 b B
" * c 143 c c
w e
$ 1 X 170 X X
3 P Yy 171 y Y
& X Z 172 4 VA
' ' « 173 g «
((l 174 |
)) > 175 } >
* * ~ 176 ~ ~
+ + < 200 (os) < - <
’ s > 201 (os) > - >
- - z 202 (os) =/ z
. . v 203 "or v
/ / A 204 "an A
0 0 + 205 (os) - : +
1 1 € 206 "ep €
2 2 + 207 "up +
3 3 ¥ 210 "do v
4 4 o 211 "ci o
5 5 [212 "ce [
6 6 L 213 "fl L
7 7 A 214 "de A
8 8 o 215 "cc o
9 9 O 216 "qu O
: : n 217 "ca n
: ; L 220 "ev 1
< < T 221 "en T
= = c 222 "in c
> >) 223 "co >
? ? U 224 "cu U
@ a » 225 "no (os) v ~
A (os) 4 x 226 "na (os) A ~
B (os) B _ e 227 "rf (os) o -
C (os) C _ # 230 (os) / - (os) / -
» 231 "1lf (os) VvV ~
X (os) X _ @ 232 "lo (os) o =
Y (os) Y _ ¢ 233 "rr (os) o |
Z (os) Z _ & 234 "tr (os) o \
L [Vs 236 "gd (os) Vv |
\ \ A 237 "gu (os) A |
]] A 240 "la (os) n.o
- m 241 "qq (os) O
_ I 242 "ib (os) T 1
v v \ 243 (os) \ - (os) \ -
a A B 244 "mi (os) O =+
2-2 AK95

Table 2-1 (cont). APL Character Set
NOTE: The following abbreviations are used in the table:

(es) - escape character . (os) - backspace and overstrike
(er) - erase character each following character
(ki) - kill character

In addition to the above graphics, all the Multics control
characters are members of the APL character set with their
usual octal codes.

010 - backspace

011l - horizontal tabulate

012 - newline (carriage return & linefeed)

040 - blank

The problem arises of representing this character set on
various terminals. Multics APL is designed to be wusable
from two general classes of terminals: Selectric-type
terminals with interchangeable typing elements (type balls),
like the IBM 1050 and 2741; and ASCII terminals which do not
have interchangeable graphics, such as Teletype Model 37 and
GE TermiNet 300 or Honeywell SRT301.

Selectric-type Terminals

In the case of Selectric-type terminals, APL assumes
that the user has mounted the APL type ball (IBM part number
1167988) . This is the most convenient way to access APL, as
the entire APL character set is made available with a
minimum of special typing conventions.

The fourth and eighth columns of Table 2-1 show how
each character of the APL set 1is represented on a
Selectric-type terminal. Most characters can be typed with
one keystroke; however, several characters must be produced
by backspacing and overstriking other graphics. The
abbreviation " (os)" in Table 2-1 means that the subsequent
graphics must be overstruck to produce the desired
character. Characters generated by overstriking graphics
are nevertheless considered to be single characters
internally.

ASCII Terminals

Using ASCII terminals is somewhat more complicated.
The third and seventh columns of Table 2-1 show how each APL

2-3 AK95

character is represented on an ASCII terminal. While most
characters can be typed with one keystroke, a few are
represented by more complicated correspondences: some are
produced by backspaces and overstrikes, and many have
defined for them mnemonic escape sequences.

As in the case of Selectric-type terminals, characters

produced by backspaces and overstrikes or escape sequences
are considered single characters.

Canonicalization

As soon as backspaces are allowed in any typed line, it
becomes evident that there are many different ways to type a
given line. That is, there are many different sequences of
keystrokes that produce visually identical results. To
reduce confusion and allow greater freedom to the typist,
APL canonicalizes each input line as it is read. This means
that the characters typed by the user are sorted into their
visual order on the page, independently of the temporal
order in which they were typed. Hence, the wuser need not
bother to type overstrikes in any specified order.

A more complete explanation of APL
canonicalization process is given under "Details of APL
Input Line Processing," later in this section.

Erase and Kill Processing

Typing errors in Multics APL are corrected through the
mechanism of erase and kill characters rather than by
backspacing and hitting the ATTN button as in APL/360. The

kill character is the alpha « (which 1is represented as
commercial at (@) on ASCII terminals), and the erase
character is the omega w (which 1is represented as the

number sign # on ASCII terminals).

The kill character removes the entire line preceding
it. That is, the kill character deletes itself, anything
overstruck with 4it, and all characters to the left.
Characters to the right of a kill character are not deleted.

The definition of erase is a little more complicated.
If the erase character is overstruck with anything, then
only that print position is removed. But if the erase
character appears alone 1in a print position, then the
character in the preceding print position is removed as
well. If there is no character in the preceding position
(i.e., it is white space), then the entire white space or

2-4 AK95

carriage motion preceding the erase character is deleted.

Since erase and kill are performed after
canonicalization, the spatial positions of the characters on
the 1line determine which characters are removed; i.e., the
order in which the characters were typed is not significant.

In Multics APL, kill is performed before erase; it is
not possible to erase a kill character.

Table 2-2. Mnemonic Escape Sequences

Escape Code APL Meaning Escape Code APL Meaning
Tal 100 o alpha "1 222 c 1ncluded
"an 204 A and "la 240 p lamp
"ba 174 | bar "1f 231 % locked
"ca 217 n cap function
"cc 215 o center- "lo 232 @ logarithm

circle "mi 244 B matrix
"ce 212 [ceiling inverse
"ci 211 o circle "na 226 ~ nand
"co 223 > contains "no 225 ¥ nor
"c 224 n
o B o S e
"do 210 + down arrow "qgq 241 M gquote-quad
"en 221 T encode "qu 216 0 gquad
"ep 206 e epsilon "rf 227 e reverse-
"es 042 ** escape first
"ev 220 L evaluate "rr 223 ¢ reverse/
"fl 213 L floor rotate
"gd 236 Y grade down "ti 176 ~ tilde
"gu 237 A grade up "tr 234 § transpose
"ib 242 I I-beam "up 207 + up arrow

Escape Processing

An escape mechanism is provided in order to allow any
arbitrary character or sequence of characters to be entered
in spite of canonicalization, erase, and kill. The escape
character 1is the diaeresis (-+) (represented as double
quotation marks (") on ASCII terminals). The eéescape
character is followed by (1) another escape character, which
represents a diaeresis as data in the input 1line without
performing an escape function; or, (2) a one-, two-, or

2-5 AK95

three-digit octal number, which represents a single
character of precisely that internal code; or (3) one of the
two-character mnemonic escape sequences listed in Table 2-2,
While escapes are necessary primarily for users of ASCII

terminals, the same escapes are accepted from Selectric-type
terminals. :

Since erase and kill are performed before escape
processing, it is possible to erase and kill the various
characters of an escape sequence. For example, an escape
followed by an erase results in an erasure of the escape
character rather than the input of an erase character (an
erase character can be input either with an octal escape or
with its mnemonic escape " 0M).

Details of APL Input Line Processing

The following paragraphs contain a more detailed
explanation of input line processing.

Initially, APL obtains its input from the Multics
stream "user_input". Upon the occurrence of any error, APL
reverts to reading the stream "user i/o". 1In either case,
the following initialization is performed. APL makes an
"info" order call in an attempt to determine the type of
terminal to which the stream is attached. If there 1is no
terminal, an unknown type of terminal, or if the "info"
order is rejected, then APL assumes that there is no
terminal connected. In this case, the input is used
directly as read, and no code conversion, canonicalization,
erase, kill, escape, or overstrike processing is performed.
In other words, the input stream in this case must already
consist of correct Multics APL internal character codes.
(The APL function editor and its ¥ request is a convenient
way to generate a file suitable for input to APL.)

If it is recognized that the input stream is connected
to a Selectric-type or ASCII terminal, then processing
appropriate to the device is selected. In order that APL be
able to do its own line processing, a "modes" order call is
issued to the Multics ring-zero Teletype device interface
module to turn off standard canonicalization, erase, kill,
and escape processing. The former mode is remembered for
subsequent restoration.

Whenever APL is left and re-entered by the)E system
command or the E editor request, the remembered mode is
restored before the callout. Upon return, the attachment of
the input stream is again inspected for possible changes and
the appropriate handling for it is selected. If the input
stream attachment is disturbed without notifying APL (e.g.,

2-6 AK95

C

when the user quits out of APL), then APL continues to apply
the same 1line processing as was selected for the old
attachment, 1leading to possibly confusing or inconvenient
results with the new device.

Assuming that the terminal was properly identified, the
first processing of the input line (a line is a sequence of
characters ending with a new-line character) is conversion
of each input character into the APL internal character
code. Each graphic is then flagged with its color (it can
be red or black) and its position on the printed page. The
nongraphic (carriage-motion) characters are ignored except
for their contribution to the positioning of the graphic
characters. Each position consists of the following:
subline, tab stop, and print position within tab stop
(sublines are separated by vertical-tab and form-feed
characters; tab stops are separated by horizontal-tab
characters). The graphics are then canonicalized (sorted
into ascending spatial order, i.e., the order in which they
are seen on the printed page). Within a single print
position, overstruck graphics are sorted into ascending
order according to the APL internal character code.

Kill processing is performed next. If any print
position contains a kill character, it and all positions to
the 1left of it are eliminated. Since this elimination is
done after canonicalization, some of the characters
eliminated may have been typed before the kill character and
some = may have been typed after it; what counts is the
position of each character on the printed page.

Erase processing 1is performed next. If any print
position contains an erase character and any other graphic,
then that print position 1is eliminated. If the erase

character is alone in its print position, then the preceding
print position or carriage motion is also eliminated.
Nothing on a previous subline can be erased by erase
characters. Since kill is performed before erase, kill
characters cannot be erased.

Escape and overstrike processing are performed next,
both at the same time. Since canonicalization, erase, and
kill have already been performed, carriage motions, erase,
and kill can be used to properly format escapes and
overstrikes. For example, erase can be used to correct
individual characters in escape sequences, or to erase the
escape character itself. Escaped-in erase, kill, or escape
characters are treated as data since no further erase, kill,
or escape processing follows. Also, backspaces and other
carriage motions generated by the escape feature are treated
as data and do not influence either the overstrike
processing or the canonicalization.

2-7 AK95

Finally, the last step consists of inserting new
carrigge-motion and color-shift characters to make all the
graphlcs print with proper color in their correct print
positions.

LINE LENGTH 256

In Multics APL, the 1longest input line that can be
processed is 256 characters. When a line to be interpreted
consists of several typed lines because of newline
characters imbedded in character constants, the total
interpreted line must fall within this limit.

PROGRAM INTERRUPT IS ENABLED

Whenever Multics APL is running, it provides the user a
handler for the "program interrupt" condition. If the user
desires to interrupt APL, he presses the QUIT button and
types the "pi" command. APL then sets a timer to give the
current calculation a short grace time in which to complete.
If the end of a line to be interpreted is encountered before
the timer expires, APL suspends operation, types six spaces,
and awaits input from the terminal. If the timer expires
before the end of a 1line is reached, the state of the
computation reverts to the previous console suspension

point. APL then types six spaces, and awaits input. 1In
either case, the user can use the VST or)SIV system
commands to determine where his computation was suspended.
The Jjump operator > can be used to restart the
computation.

USING APL

When APL has been invoked and awaits input the user may
enter one of three types of input: an expression to be
evaluated immediately, a system command, or an invocation of
the function editor.

An expression to be evaluated immediately is the most
common response. This entry initiates computations. This
class of input is discussed in Section III.

A system command interrogates or adjusts the
environment in which the computations are performed. Most
system commands are attendant to bookkeeping functions such
as listing names of current variables and functions, erasing
variables or causing APL to return to Multics. System

2-8 AK95

commands are discussed in Section 1IV.

Finally, the function editor is used to store
functions, or programs of APL lines, for later execution,
rather than to execute each line as it is typed. The editor
provides a means to create, modify, and replace stored

function definitions. The function editor is discussed in
Section V.

2-9 AK95

SECTION III

THE APL LANGUAGE

WORKSPACES

A workspace is that area of computer memory set aside
for the APL interpreter to remember everything it must keep
track of during a session. An APL workspace contains: (1)
a name table listing the names of all variables, functions,
and groups that have been defined; (2) the values of all
variables and the definitions of all functions and groups;
(3) a state indicator, which records the instantaneous
state of functions currently in execution; and (4) a few
occasionally referenced static parameters, such as page
width and index origin.

When the APL command is issued, the active workspace is
initially clear; that is, it contains no variables,
functions, or groups, and it contains some default values
for the static parameters.

APL system commands exist for saving the contents of
the active workspace as a Multics segment, or for reloading
the workspace from a previously saved copy. This permits an
APL session to be interrupted and saved, and then taken up
again on a later date with no 1loss of information. This
also permits a user to maintain several saved workspaces,
each applicable to some separate task, and to take them up
in turn as desired.

VALUES

In APL, the value of any variable or expression is a
rectangular array of elements, each of which 1is a single
character or a single number. The array can have any number
of dimensions from zero up, and the extent of each dimension
can be anything from zero up. The number of elements in the
array is equal to the product of the dimension extents.
Character and numeric elements cannot be mixed within the
same value.

3-1 AK95

Txge

Three salient characteristics of an APL value are its
type, its rank, and its shape. The type of a value is
either character or numeric, depending upon whether its
elements are characters or numbers. Remember that
characters and numbers cannot both appear in one value.
Type is important in that some operations demand operands of
a specific type.

Internally, the APL interpreter further classifies
numeric values into three subtypes: bit, integer, and
double-precision floating-point. However, these internal
subtypes are invisible to the user, and conversions between
them are made automatically by the interpreter.

An array with no elements at all (the so-called null
value) 1is acceptable to operations demanding either
character or numeric operands. It may be thought of as
having either type, as the occasion demands.

Rank

The rank of a value is the number of its dimensions. A
scalar has rank zero, and consists of but a single element.
A vector has rank one, and consists of a number of linearly
ordered elements. Matrices of rank two and arrays of higher
rank are also permitted.

ShaEe

The shape of a value is its set of dimension extents,
expressed as a vector. A scalar, having no dimensions, has

a null shape vector; i.e., a vector with no elements. A
vector has a shape vector that consists of a single number,
the number of elements in the vector value. Matrices of

rank two have shape vectors with two elements. Arrays of
higher rank have shape vectors of length equal to their
rank.

Since the shape of a value is a numeric vector, it
itself is an APL value. The shape operator p, provides a way
to extract the shape of a value. For example if 4 is a 5 by
2 by 4 character array, then pA is a numeric vector of three
elements with value 5 2 4, The shape of the shape is again
an APL value; in fact, it is the rank of the original
array. Thus, pp4 would be 3 in the current example.

3-2 AK95

)

Output of Values

Two workspace parameters directly affect the output of
values. They are the page width and number of digits of
precision. The page width is the maximum number of
character positions per line that the interpreter will fill
when typing output. It is set by default to 80 characters,
but it can be changed by using the)yrpry system command or
the wrpry library function. The number of digits of
precision is the number of significant decimal digits that
are to be displayed when numbers are output. Numbers are
rounded to this precision before printing. This precision
does not affect the accuracy with which internal
calculations are carried out; it affects only the final
printing of answers. The initial precision is 10 decimal
digits, but it can be changed by the)prGI7s system command
or the prgrTs library function.

A character element is output simply as the single
character which it 1is; it is not placed within quotes or
otherwise altered.

A numeric element is output in the simplest
representation possible in the decimal notation. Positive
signs are omitted, negative signs are printed as the upper
minus, ~, Magnitudes are displayed rounded to the current
workspace precision, with trailing zeroes suppressed. If
the magnitude is very large or very small, the interpreter
may choose to output the number in scientific notation,
which consists of the digit string, the letter g (for
"exponent"), and an integer which is the power of ten by
which to multiply the digit string to obtain the true number
being represented. For example, Boltzmann's constant in
joules per degree Kelvin, which is 1.38 times 10 to the =23
power, would be printed by APL as 1.38EF 23.

A vector of character elements is output as a character
string, with no extra blanks or other separators intervening
between the elements. Of course, the elements themselves
may have as values the characters blank, tabulate, newline,
etc. If a character vector is longer than the page width,
as many elements as possible are printed on the first 1line
and then the excess elements overflow to a following line,
indented by six spaces. As many overflow lines as necessary
are inserted to print all the elements of a very long
vector.

In a vector of numeric elements, each element is set
off from the preceding one by two blanks. As with character
vectors, if one line is insufficient in width to accommodate
all the elements, the excess elements are placed on a
succeeding line or lines, each indented by six spaces.

3-3 AK95

Matrices and higher-rank values are printed in
rectangular planes, with decimal points lined up in rows and
columns. Each plane is preceded by a blank line. As many
planes as necessary are printed to output the entire array.
For example, the output of a 5 by 2 by 4 by 3 character
array consists of ten planes, each consisting of a blank
line and four lines of three characters each. If the page
width is insufficient to hold even one line of the output,
then the excess elements from each 1line are moved to
inserted 1lines, indented as |usual. An array with no
elements prints simply as a blank line.

A consequence of this output format is that it is
impossible to distinguish a scalar from a one-element vector
by means of their printed values. It is also impossible to
distinguish the exact rank of higher-dimensional arrays when
they consist of a single element, or have no elements at
all. 1In cases where the shape of a value must be known
precisely, the shape operator , can be used to explicitly
extract its shape.

Some examples of the output of wvalues will be found
following the discussion of value input below.

Input of Values

A scalar character element is input by typing the
desired character between a pair of quote marks. Between
quote marks, if it is desired to represent a quote mark
itself, the quote mark must be typed as two quote marks.
~ Thus, the input of a character element whose value is to be
a single quote mark consists of four quote marks, two to
bound the element value and two to represent the single
quote being entered. Blanks, tabulates, newlines, and any
other 1legal APL character, including the ones constructed
from overstrikes or escape sequences, can be entered between
quote marks. A character produced by overstrikes or escapes
is considered a single element internally.

A scalar numeric element is input by typing the upper
minus sign - if negative, or no sign if positive, and a
string of decimal digits optionally containing a decimal
point. Scientific notation can also be used for input, in
which case the digit string is followed by the letter p and
the desired decimal exponent expressed as an integer. No
blanks are permitted within the representation of a single
numeric element. In the final value input to the workspace,
no record is retained of the way in which a number was
typed; for example, all the following inputs result in the
very same internal value: 1 0001.00 0.01E2 1000E 3.

3-4 AK95

Note that APL distinguishes the minus sign (7) from
the subtraction operator (-), The subtraction operator is
not permitted within a constant.

A vector of numeric elements is input by typing its
members, separated by one or more spaces or tabs.

A vector of character elements can be input in either

of two ways. The individual character elements, each
enclosed by a pair of quote marks, can be typed separated by
one oOr more spaces or tabs. Alternatively, the entire

string of elements can be typed between one pair of quote
marks. Within such a string, any legal APL character can
appear as an element. To represent the quote character as
one of the elements of the string, it must be typed as two
quote characters.

Arrays of rank higher than one cannot be input
directly. Such values must be constructed by entering their
elements as vectors and then wusing the dyadic reshape
operator , to reshape them to the desired dimensions,
filling 1in the supplied elements in row-major order. For
example, the input 2 3p1 2 3 4 5 6 is an expression whose
value is a 2 by 3 array of numbers from one to six.

13.49 Examples of input and output.
13.49

39.2 14 Use of the upper minus sign to
39.2 14 enter a negative element.

39.2 -14 The minus sign is not the same
25.2 as the subtraction operator.

1 0001.00 0.01E2 1000E 3
1 1 1 1

|DON!'T'
DON'T
'D' '01 lIV' trer VT'
DON'T . _
2 3p'WHYNOT' A 2-by-3 matrix built
from a vector constant by use
WHY of the reshape operator. A
NorT blank line precedes each plane
2 201003 32 ~28E 1 416 of array output.
1003 32
2.8 416
0.0000000000000000000000138
1.38E 23

3-5 AK95

NAMES

Names are used within APL for naming variables,
functions, and groups. A name consists of an alphabetic
character followed by any number of alphabetic or numeric
characters. For the purposes of this rule, the alphabetic
characters are considered to be

ABCDETFGHIJXKLMNOPQQRSTUVWIXY?Z
and

and also _ itself. The numeric characters are 0 1 2 3 4 5 6
7 8 and 9. All characters of a name are significant. Names
can be of any length. In APL statements, at least one space
or tabulate must appear between consecutive names or numbers
in order to separate them. Spaces and tabulates are
optional between any other two constituents of statements.

A variable is simply an APL value that has been given a
name, Unlike most programming languages, APL requires no
declarations of names. A variable 1is created by merely
assigning a value to a name (values are assigned with the
assignment operator <) as discussed under "Other Operators
and Symbols", later in this section. Variables are not
restricted to values of specific type or dimensions; any
variable can take on any APL value. When a new value is
assigned to a variable, any previous value possessed by that
variable is discarded. An attempt to assign a value to a
group or function name is an error, as a name can refer to
only one object at a time. A reference to the value of a
variable before it has ever been assigned one is also an
error.

A function is a stored APL program. It consists of any
number of APL lines to be interpreted, plus a header line
which specifies some important properties of the function.
A function is created and altered with the APL function
editor, as described in Section V. When the name of a
function is included in an expression being interpreted, the
stored lines are brought forth and executed, much as if they
had been typed in place of the name.

A group is a list of names of other objects. Grouping
the objects allows them to be copied and erased as a unit,
without repetitively typing their individual names. Groups

have no significance other than in the copy and erase system
commands .

The names of all objects in a workspace can be listed

with the)VARS, JFNS, and)GRPS system commands . Any
variable, function, or group can be deleted from a workspace
with the)ERASE system command . System commands are

3-6 AK95

discussed in Section 1IV.

OPERATORS

Values can be built up into complicated expressions by
operating upon them with operators. APL has a great number
of operators, most of them borrowed from the language of

everyday arithmetic, algebra, and related areas of
mathematics.

Some operators operate on only one operand, (e.g.,
negation, absolute-value, reciprocal), while others operate
upon two (e.g., addition, subtraction). An operator taking
one operand is said to be monadic. In APL, a monadic
operator is always written before (to the 1left of) its
operand, which becomes its right, and only, operand. An
operator taking two arguments is said to be dyadic. A
dyadic operator is always written between its le¥t operand
and its right operand.

Some APL operators are inherently monadic or inherently
dyadic, but others can be used either way with a
corresponding slight change in the definition of the
operator. For example, the subtraction sign represents the
subtraction operation when wused dyadically, as A-B is the
value of A minus the value of B; but it represents the
negation operation when used monadically, as -B is the value
of B negated (algebraically changed in sign).

Scalar Operators

A scalar operator is one defined as acting on a single
scalar element as operand (when used monadically) or on a
single pair of scalar elements (when used dyadically). As
discussed below, it is possible by observing certain
restrictions to provide an array as an operand of a scalar
operator, but, in this case, the scalar operation is still
defined only in terms of its action on the individual
elements of the array, independently of each other. In
other words, a scalar operator applied to an array merely
extends its action to each individual element of the array.
This is in distinction to a mixed operator, which accepts an
entire array at once as its operand, and which performs some
action on the whole array at once, an action in which the
elements of the array cannot be considered independently of
one another.

Examples of scalar operations include addition,
subtraction, absolute-value, logical AND, and logical OR.

3-7 AK95

Examples of mixed operations include matrix transposition,
matrix inversion, reshaping, and sorting.

The sense in which scalar operators extend to operate
upon the elements of arrays will now be clarified. First,
monadic operators present no difficulty: if a monadic
operator is applied to an array, the result of the operation
is an array of identical rank and dimensions, and each
element of the answer is the result of applying the scalar
operation independently to the corresponding element of the
operand. For example, if the value of 4 is a numeric vector
of six elements, then the value of -4 is again a numeric
vector of six elements, each element having had its sign
changed from that of the operand vector.

The case for dyadic scalar operators is slightly more
complicated because now there are two operands to be
considered. If a scalar operator is applied to two operands
of identical rank and dimensions, then the answer is again
an array of the same rank and dimensions, and each element
of the answer is generated by applying the operation to the
two corresponding elements of the operands. For example,
two identical 1length vectors may be added, element by
element; 6 2 3+1 4 7 gives the result 7 6 10.

If a scalar operator is applied to two arrays that fail
to match in rank and dimensions, and one of the arrays
consists of only a single element, then the single element
is considered to be replicated to the rank and dimensions of
the other operand, and the operation proceeds element-
by-element as before. In other words, the single element
participates with each element of the other operand in turn,
producing a result identical in rank and dimensions to the
other operand. For example, if the value of 4 is a 2 by 3
matrix of integers, then the value of g+4 is a 2 by 3 matrix
of integers each six greater, because the single
element g is applied independently to each of the elements
of 4.

If both operands consist of only a single element, then
the rank of the result is arbitrarily taken as the rank of
the right operand. For example, if 4 has the value of a l
by 1 array consisting of the number 103 and p has the value
of a scalar (rank 0) number 88, then p-p has the value
scalar 15, In contrast, the value of p-4 would be the 1 by
1 matrix 715,

The final case which must be considered is that of a
scalar operator applied to two operands which do not match
in rank and dimensions, and in which neither operand
consists of only a single element. In this case, the
operation is in error, and the APL interpreter suspends
operation and issues a diagnostic message. The message

3-8 ' AK95

is RANK ERROR if the two operands do not match in rank, or
else LENGTH ERROR if they match in rank but some
corresponding pair of dimension extents do not match. Error
reporting and possible recovery actions are discussed later
in this section.

ADDITION, SUBTRACTION, MULTIPLICATION, DIVISION + - x %
When used dyadically, the operators + - x and

represent the arithmetic operations of addition,

subtraction, multiplication, and division. Unlike some

programming languages which truncate quotients of integers
to an integer, APL retains the fractional part of a quotient
as accurately as the hardware permits (approximately 19
decimal digits).

A DOMAIN ERROR occurs when an attempt is made to divide
by zero or when the result of an operation exceeds the
capacity of the hardware to represent numbers (the largest
magnitude representable is 1.701411834604692317E38).

6.3+21.4 Examples of dyadic + - x and
27 .7 i,

6 2 ~7-"1 2 "3 The minus operator as distin-
7 0 Ty guished from the negative

3x13.9 "1 0.11F4 sign.

41,7 3 3300
36000040.00003

1.2F10

2E20x3E30 6E50 is beyond the capacity of
DOMAIN ERROR. hardware.

2E20x3F30

|

15+7 Quotients are not truncated to
2.142857143 integers.

1 2x3 4 5 The vectors are not the same
LENGTH ERROR. length.

1 2x3 4 5

I

PLUS, NEGATION + -

The monadic + operator 1leaves its numeric operand
unchanged.

The monadic - operator represents negation; that is,
algebraic change of sign of its operand.

3-9 AK95

_ +712°73
1 2 73
. -12 73
1 "2 3
SIGNUM x

_ The monadic x operator represents the mathematical
signum operation; that is, 1 if its operand is greater than

zero, 0 if its operand is 0, and "1 if its operand is less
than 0.

A number is considered equal to 0 if it is within a
certain tolerance of 0. This tolerance is called fuzz.
Fuzz is discussed in Section 1IV.

RECIPROCAL +

The monadic * operator finds the reciprocal of its
right operand. An attempt to extract the reciprocal of 0
causes a DOMAIN ERROR.

e—1_2 73
1 0.5 0.3333333333

EXPONENTIAL, LOGARITHM *x @

A raised to the B power is expressed in APL as AxB.
The logarithm of B to the base A is expressed as Ae@B. Note
that the base is the left operand in the definition of both
operations. If the base is omitted (monadic usage of the
operators), the natural logarithm base 2.718281828... 1is
used. Thus, *1 is the natural logarithm base itself.

There are no square-root or cube-root operators in APL,
so the exponential operator is wused to perform these
operations. For example, the square root of A can be
expressed as A*0.5 or as A*:32. Since APL does not handle
complex numbers, any attempt to extract an even root of a
negative number results in a DOMAIN ERROR.

10%x1 2 3 &

10 100 1000 10000
2 5 10e10

3-10 AK95

3.321928095 1.430676558 1
@10
2.302585093
*1 2.302585093
2.718281828 10
T8%x+3

2

MODULO I

The vertical bar | used dyadically represents the
modulo operation: A|B is the remainder left when A is
divided an integral number of times into B (note the order
of the operands: the left operand is the divisor and the
right operand is the dividend). More precisely, if A is not
0, then an integer quotient Q 1is <chosen so that the
remainder B-(@x4) is the smallest possible non-negative
remainder (i.e., greater than or equal to 0 but strictly
less than the absolute value of A), and this remainder is
the value of A|B. If A is 0 and B is not negative, then B
itself 1is the wvalue of 4/B. If A is 0 and B is negative,
then A|B causes a DOMAIN ERROR.

10]27

7
3.5/78.3 Because _ _

2.2 0 < 2.2 = 8.3-3x3.5 < 3.5,
112.718281828 3.141592654

0.718281828 0.141592654

ABSOLUTE VALUE |

The vertical bar | used monadically represents the
absolute value of its right operand; that is, the algebraic
sign of the operand is changed to positive if it was
negative.

|72 71 0 1 2
2 1 0 1 2

FACTORIAL AND BINOMIAL COEFFICIENT !

The exclamation point ! , when used monadically,
represents the factorial of its right operand (note that it
is written before its operand, as are all monadic operators
in APL, as opposed to following it as in conventional
mathematical notation). For non-integer operands, ‘4 rep-

3-11 AK95

resents the gamma function of A plus 1. A DOMAIN ERROR
rgsults if A 1is a negative integer (the gamma function is
singular for all negative integers).

The dyadic exclamation point A!B represents the A-th
binomial coefficient of degree B, or the number of
combinations of B things taken A at a time. More
precisely, A!B is B factorial divided by the product of the
factorials of A and (B minus A). If A or B is not integral,
then the gamma function is used to interpolate, as in
monadic factorial.

1. 2 3 4 5
1 2 6 24 120
1.5

1.329340388
01 2 3 4 5 6!6
1 6 15 20 15 6 1
2!13.3
3.795

MAXIMUM AND MINIMUM r L

. The dyadic operators [and L represent the maximum and
minimum operations respectively. They are defined only for
numeric operands; characters have no collating sequence in
APL.

3[1 2 3 4 5
3 3 3 4 5

3L1 2 3 4 5
1 2 3 3 3

“73.11729.88
T29.88

CEILING AND FLOOR r L

The monadic forms of [and L represent the ceiling and

floor operations respectively. Ceiling is defined as the
algebraically smallest integer greater than or equal to its
operand; floor is defined as the algebraically largest

integer less than or equal to its operand.

A number is considered equal to an integer if it is
within a certain tolerance of that integer. This tolerance
is called fuzz. Fuzz is discussed in Section IV.

Lo.6 1 1.4 1.8 2.2
0o 1 1 1 2

12 AK95

w
I

0.6 12 1.4 1.8 2.2
2 3

r

1 1 2
fTo.6 "1 1.4 ~1.8 2.2
2

_ 0
0 1 1 1
V< 2.1 3 3.9 "4.8 16.99

LV

"3 T3 "4 "5 16
1|V

0.9 0 0.1 0.2 0.99
(LV)+(11Vv)

2.1 3 3.9 "4.,8 16.99

RANDOM NUMBER ?

While the dyadic form of the 7 operator is a mixed
operator (the deal operator), monadic 2 is a scalar
operator, the random number generator. The operand of the
random number operator must be a positive integer, say A,
and the result of the operator is an integer chosen randomly
and uniformly from the set of integers 4. As explained
under the , (index generator) operator, the set 4 is a
vector of A integers, either 1,2,3,...,A or else
0,1,2,...,A-1, depending upon whether the workspace index
origin is set to 1 or to 0 respectively. The index origin
can be changed with the)orIGIN system command oOr
the orrgry library function.

The random number algorithm used by Multics APL is a
multiplicative congruential generator with period
34359738368. In this algorithm, the seed used to produce
each random number is a function of the seed used to produce
the previous one. In a clear workspace, the starting seed
is derived from the calendar clock, so that the sequences of
random numbers generated are ordinarily unpredictable from
session to session. If it is desirable to work with a
reproducible sequence of random numbers, the user should
specifically initialize the seed with the)ggpTrrINk system
command or the gsgrrIinvk library function. The seed can be
set to any integral value from 1 to 34359738367. The seed
is properly remembered and restored by
the)save and)ro4p system commands.

710
210
210
?10 10 10 10 10 10 10 10 10 10 10

8 5 4 9 2 9 3 9 3 8 6
JSETLINK 666

3-13 AK95

WAS 17970104840
710 10 10 10 10 10
9 3 6 7 2 4
YSETLINK 666
WAS 10635721024
210 10 10 10 10 10
9 3 6 7 2 4
YJORIGIN 0
WAS 1
YSETLINK 666
WAS 10635721024
210 10 10 10 10 10
8 2 5 6 °1 3

COMPARISON OPERATORS < £ = 72 2 >

The APL comparison operators are < < = # 2 and >. They
represent the mathematical relations of less than, less than
or equal to, equal-to, not-equal-to, greater-than-or-
equal-to, and greater than respectively. The comparison
operators are all dyadic operators, and they all return the
numerical value 1 to signify "true" and the numerical value
0 to signify "false".

Operands of < < 2 and > must be numeric, otherwise
a DOMAIN ERROR occurs. Operands of = and # can be numeric
or character or both. A number is considered not equal to a
character; hence, in a mixed-type comparison, = always
returns 0 and # always returns 1.

Two numbers are considered equal if they are within a
certain tolerance of each other. This tolerance is called
fuzz. Fuzz is discussed in Section IV.

5.3>4 5 6 7
1 1 0 0 '

'NO QUOTES'=z'NOPQRSTUV'
o o 1 o0 1 1 o0 1 1

5=15"
0
4,3 73.9 "3.5< 4
1 0 0
'IS'="ARE'
LENGTH ERROR.
'IS'"="ARE"

3-14 AK95

LOGICAL OPERATORS ~ AV x w

The symbols ~ A Vv # and ¥ represent the logical
operations NOT, AND, OR, NAND, and NOR respectively. The
NOT operator ~ is monadic; the other four are dyadic. Both
the operands and the results of the logical operators are
restricted to the two numeric values 1 and 0, which signify

"true" and "false" respectively. ~4 is 1 if and only if A
is 0. AAB is 1 if and only if both A and B are 1. AVB is
0 if and only if both A and B are 0. A~B is 0 if and only

if both A and B are 1. A¥B is 1 if and only if both A and
B are 0.

By virtue of their actions on operands of 0 and 1, the
Six comparison operators introduced in the preceding section
can also be used as dyadic logical operators,
with = representing EQUIVALENCE, #z EXCLUSIVE
OR, < IMPLICATION, and = is IMPLIED BY. This gives APL the
complete set of all ten nontrivial dyadic logical
operations. A=B is 1 if and only if A and B are both 0 or
both 1. A<B is 1 unless A is 1 and B is 0. A>B 1is 0
unless A is 1 and B is 0. 42B is 1 unless A is 0 and B is
1. And finally, A<B is 0 unless A is 0 and B is 1.

~0 1
1 0

0 01 1A0 1 0 12
0 o0 o 1

0 01 1>0 1 0 1
O 0 1 O©

0 01 1<0 1 0 1
6 1 0 O

0 01 120 1 0 1
0 1 1 0O

0 01 1v0 1 0 1
o 1 1 1

0 01 10 1 0 1
1 0 0 O

0 01 1=01 01
1 0 0 1

06 01 120 1 0 1
1 0 1 1

0 01 1<0 1 0 1
1 1 0 1

0 01 10 1 0 1
1 1 1 0

001.0A0,.,001F3
1

3-15 AK95

CIRCULAR AND HYPERBOLIC OPERATOR o

The circle operator o is used to generate the common
circular and hyperbolic functions of its right operand. The
left operand determines which function is generated.
Angular values are expressed in radians.

“704 1is defined as argtanh 4;
“6o04 1is defined as argcosh 4;
“504 1s defined as argsinh g4;
“yo4 1is defined as (T1+4xA)*0.5;
“304 1is defined as arctan 4;
“204 1is defined as arccos 4;
“104 1is defined as arcsin 4;
0oAd 1is defined as (1-4xA)*0.5;
104 1is defined as sin 4;

204 1is defined as <cos 4;

304 1is defined as tan 4;

404 1is defined as (1+4x4)*0.5;
504 1is defined as sinh 4;

604 1is defined as cosh 4;

704 1is defined as tanh 4;

o4 (monadic) is defined as 4x3.14159265358979...
Any other left operand of o 1is a DOMAIN ERROR.

“100 0.5 1

0 0.5235987756 1.570796327
00.5 1 10

1.570796327 3.141592654 31.41592654
500.5 1 10

0.5210953055 1.175201194 11013.23287

*0.,5 1 10
1.648721271 2.718281828 22026.46579
0+180 Radians per degree.
0.01745329252)
+0%180 Degrees per radian.

57.29577951
10(0 10 20 30 40 50 60 70 80 90x0+180)

0 0.1736481777 0.3420201433 0.5 0.6427876097
0.7660444431 0.8660254038 0.9396926208
0.984807753 1 Table of sines.

(T100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1)%0%180

0 5.739170477 11.53695903 17.45760312 23.57817848
30 36.86989765 4y,427004 53.13010235 64,15806724
90 Table of arc sines.

30(°301 2 3 4 5)

1 2 3 L 5

3-16 AK95

Mixed Operators

A mixed operator is one that must consider an array
operand as a whole, rather than acting independently on its
constituent elements. Each individual mixed operator has
i@s own rules about the rank and dimensions of operands it
will accept. Like the scalar operators, some mixed
operators can be used either monadically or dyadically, with
some change in meaning of the operation performed.

A few of the operator descriptions in this section make
some use of subscript notation before it is formally
introduced. That 1is, V[I] is used to refer to the I-th
element of the vector V, and M[I;J] is used to refer to
the I,J-th element of the matrix M. The subscripting
capability of APL is actually far more powerful than these
simple uses suggest, and is discussed at length in "Other
Operators and Symbols" in this section.

SHAPE P

Monadic p is an operator whose value is the dimension
vector, or shape as it is frequently called in APL, of its
right operand. The type and actual element values of the
operand are ignored. The result of the shape operator is
always a numeric vector.

The shape of a scalar (which has no dimensions) 1is a
null vector (a vector with a length of 0; i.e., containing
no elements). The shape of a vector is a vector of length 1
(because the operand has one dimension) whose single element
value is the length of the operand. The shape of a matrix
(2 dimensions) is a vector of length 2, whose element values
are the extents of the two dimensions of the operand matrix.
Similarly, the shape of any array is a vector of length
equal to the rank, or number of dimensions, of the array.

Since the result of the shape operator is a vector, the
shape operator can be applied to that result to produce the
shape of the shape. As the length of the shape is the rank
of the original operand, this is a way of obtaining the rank
of any array.

pl 2 3 4 The shape of a vector is its
4 length (number of elements).

p'2+AQB! The shape of a character vec-
5 tor. Five characters.

p'! The shape of a null vector.
0 It has no elements.

p93 The shape of a scalar is a

null vector.

3-17 AK95

pp93 The rank of a scalar is the
0 shape of a null vector: zero.
pp2 3 4 5 6 The rank of a vector is one.

RESHAPE o

The dyadic p is the reshape operator. It is wused to
form a sequence of element values into a specified shape.
The left operand of the reshape operator must be a shape (a
vector of non-negative integers). The element values of the
right operand are used to fill up an array of the shape
specified as the left operand. The shape of the right
operand is ignored.

If the new array requires less elements than the old
array provides, the excess elements are simply not used. If
the new array requires more elements than the old array
provides, then the elements of the old array are repeated
over and over, as many times as are necessary to fill up the
new shape.

The element values are extracted and packed in
row-major order. That is, the first elements treated are
those of the first row of the first plane, followed by the
second row of the first and so on, through the last row of
the last plane.

As a convenience, a single element specified as the
left operand of a reshape 1is accepted as if it were a
one-element vector, regardless of its true shape. If the
new array is to have any elements at all, then the right
operand of the reshape operator must have at least one
element.

5p1 2 3 Three element vector reshaped
1 2 3 1 2 to a five-element vector.
M<2 3p1.1 2.2 3.3 4.4
M A matrix formed by reshaping
a vector.
1.1 2.2 3.3
4.4 1.1 2.2
3 2pM The same elements values used
to make a different shape.
1.1 2,2
3.3 4.4
1.1 2.2
6p10 A scalar reshaped to a vector.
10 10 10 10 10 10
0p3.14 A scalar reshaped to a null

vector.

3-18 AK95

"'oM A matrix reshaped to a scalar.
1.1
3 50'ONE TWO THREE!

ONE
TWO
THREE ‘
3 2 Up'+-X++x=0"

+-X%
*=0+

-X<+%x
=0+~

RAVEL ,

The monadic comma , is the ravel operator. The ravel
operator makes 1its operand into a vector, by retaining all
of its elements but ignoring its shape.

5

p5
)
5
PsS
1
M<«2 3p'ABCD'
M
ABC
DAB
M
ABCDAB
CONCATENATE .

The dyadic comma , is the concatenate operator. Both
its operands must be scalars or vectors, and the result is a
vector in which the elements of the 1left operand are
followed by the elements of the right operand. Since a
single APL value cannot contain both character and numeric
elements, the operands of the concatenate operator must be
both character or both numeric.

3-19 AK95

1 2 3,4
1 2 3 L
'WHY','NOT'
WHYNOT
(8+7),(21+3)
15 7

1.1

. 2 3.3,"!
1.1 2.2 3
1. 2
DOMAIN E

1.

.2 3.3,'4BC"
R

.2 3.3,"ABC!
|

2
3
2
RO
2

e

INDEX GENERATOR 1

The monadic iota 1 is the index generator operator.
Its operand must be a single non-negative integer value.
The result of 14 is a vector of integers of length A, the
first element of which is the workspace index origin (either
0 or 1), and succeeding elements of which are each one
greater than the preceding element.

The workspace index origin can be changed with
the)ORIGIN system command or the ORIGIN library function.

JORIGIN 1
WAS 0
14
1 2 3 4
110
i1 2 3 4 5 6 7 8 9 10
10
11
1
JORIGIN O
WAS 1
14
o 1 2 3
110
o 1 2 3 4 5 6 7 8 9
10
11
0

3-20 AK95

INDEX 1

The dyadic usage of iota as 4B represents the index of
the first occurrence of B in the vector A. The left operand
of index must be a vector. The right operand can be an
array of any shape; its elements are considered
independently of one another, producing an answer of shape
identical to the right operand. As each element is selected
from B, it 1is compared to the successive elements of A,
starting with the first and proceeding until a match is
found. If a match is found, then the answer is the number
of the element that matched.

The numbers returned by index follow the workspace
index origin. If the index origin is 0, then the first
element of A is numbered 0, the next is numbered 1, and so
on. If the index origin is 1, then the first element of A
is numbered 1, the next 2, and so on.

Two numeric elements are considered equal if they are
within a certain tolerance of each other. This tolerance is
called fuzz, and is discussed in Section IV. If more than
one element of A matches the element of B being considered,
the index of the earliest is returned. If no element of A
matches, then an index one greater than the last index of A
is returned; e.g., if A has seven elements, then 7 will be
returned in origin 0 (because the elements of A are numbered
from 0 to 6), but 8 will be returned in origin 1 (because
the elements are then numbered from 1 to 7).

JORIGIN 1
WAS 0
6 7 9 3 419

6 7 9 3 411 2 3 U
6 6 4 5

'"ABCDEF'\'FAT CAT'
6 1 7 7 3 1 7

JORIGIN O

't-x3XYZ' 1" X+2x2!"
b o0 7 2 6
'FEEBLE'\'BED'

3 1 6
M<2 3p'FATCAT'
M
FAT
CAT
'ABCDEF'\ M
5 0 6
2 0 6

3-21 AK95

TAKE AND DROP + ¥

Take + and drop + are both dyadic operators that
accept a vector of integers V as left operand and any array
A as right operand. The length of the vector V must be
equal to the rank of the array A (except that a scalar V is
automatically replicated to the rank of A). The function of
take V44 1is to take or retain, for each dimension I in the
rank of A, the first (if Vv[rl>0) V[I] elements of that
dimension, or the last (if V[I1]<0) |V[I] elements of that
dimension, discarding the other elements. The function of
drop V+4 is to drop or discard the first (if V[I]>0) or
last (if vlIl<o) |VLI] elements of each coordinate I,
retaining the others. For both take and drop, | VL I] must
not be greater than (p4)[I].

A<?3 5p100 A random 3-by-5 array.
A

98 52 9 26 58
34 14 91 L7 15
97 33 66 85 26
2 T344 Take the first 2 rows and
the last 3 columns.

9 26 58
91 L7 15
1+v4 Same as 1 ~1+4, drop the last

row and the last column.
98 52 9 26
34 14 91 L7
74YABRAHAM LINCOLN'
ABRAHAM
7Y '"ABRAHAM LINCOLN'
LINCOLN

GRADE UP AND GRADE DOWN AV

The grade up § and the grade down ¥ operators are
the APL sorting operators. They are both monadic, and
accept any numeric array as operand (characters have no
collating sequence in APL--hence they cannot be sorted).
The result of A or V is a permutation array (or array of
subscripts) identical in shape to A that orders the
elements of A to be monotonically nondecreasing or
nonincreasing along the last dimension of 4. That is,
when the result of the grade operator is used to subscript
its operand, the resultant value is found to be sorted along
the 1last dimension. The sort preserves the original order
of equal elements. Elements are considered equal if they
are within a certain numeric tolerance of each other, known
as the fuzz; see Section IV.

3-22 AK95

If 4 is a vector, then 4[p4] is the elements
of 4 sorted into increasing order. If 4 is a matrix,
then j4 is a permutation matrix each row of which orders
each row of 4 into ascending order, so A[I;(AA)[I;]1] is
the I-th row of 4 sorted.

If an integer-valued expression in brackets follows the
grade operator, as ALIT]A, then the value of that
expression I 1is taken as the coordinate number upon which
to sort instead of the 1last coordinate. The coordinate
numbers as well as the subscripts returned by the grade
operators follow the numbering of the index origin. Thus,
in 1l-origin indexing, if 4 is a matrix, then j[2]4 1is
the same as j[4], while j[1]4 is the permutation matrix
which orders the columns of 4 into increasing order.

V<3 1 4 1 5 9 A vector to sort.

AV Permutation vector, says big-
2 4 1 3 5 6 gest item is second, next is

VLAV] fourth, etc.
1 1 3 4 5 9 V, sorted.

Vv Permutation vector for descen-
6 5 3 1 2 4 ding sort, note equal items.

A '~ An array to sort.

98 52 9 26 58
34 14 91 47 15
97 33 66 85 26

A Sorting along the rows.
3 4 2 5 1
2 5 1 4 3
5 2 3 4 1
y[114 Sorting along the columns.

w
w
w
N
w

2 2 1 1 2
ALF«'"ABCDEFGHIJKLMNOPQRSTUVWXYZ,. '

M<«ALF1\'LETTERS TO BE SORTED.'
ALFLM[AM]] Letters cannot be sorted, but

BDEEEELOORRSSTTTT. they can be made into numbers.

REVERSE ¢ o

The reverse operator ¢ is a monadic operator that
reverses the elements of the last dimension of its operand
array. Like the grade operators, the reverse operator also
accepts the number of a dimension wupon which to act in
brackets; ¢[I]JA reverses the elements of A along the I-th
dimension; where I can be specified by an integer valued

3-23 AK95

expression. The dimension numbers follow the setting of the

workspace index origin. The operator e is a shorthand
for ¢[1] in l-origin or ¢[0] in 0-origin; that
is, e reverses along the first coordinate instead of the
ast.

JURIGIN 1
WAS O
|4
3 1 & 1 5 9
oV
9 5 1 4 1 3 V, reversed.
AV
2 4 1 3 5 6
A% Not the same as AV because of
4 2 1 3 5 6 the two equal elements.
$L31(2 3 4pr2u) Same as ¢(2 3 u4pi124). Rever-
sal along the last coordinate
4 3 2 1 of a three-dimensional array.
8 7 6 5
12 11 10 9
16 15 14 13
20 19 18 17
24 23 22 21
dL21(2 3 Hpi12u) Reversal along the second di-
mension.

g 10 11 12
6 7 8
1 2 3 4

(8]

21 22 23 24
17 18 19 20
13 14 15 16
eL11(2 3 u4p124) And along the first. Same as
e(2 3 Lp124).
13 14 15 16
17 18 19 20
21 22 23 24

(6]
(e2]
~
(o]

ROTATE $ e

The dyadic forms of ¢ and e represent the rotate
operators: ¢ rotates the elements of its right operand
along the 1last dimension, ¢[I] rotates along the I-th
dimension (the coordinate numbering following the index
origin), and e rotates along the first dimension.

The left operand of ¢ and e specifies the amount of
rotation as follows: in the expression 4¢[I]B, A must be

3-24 AK95

an array of integers one less in rank than the array B, each
integer specifying the number of positions to the left that
each corresponding vector of B along the I-th dimension is
to be rotated. Elements rotated off the 1left end of a
vector re-enter it on the right end. Zero is a valid
rotation (which results in no change), as are negative
numbers (which result in rotation to the right), as well as
very large numbers (which may have the effect of rotating
the vector through its starting position several times--the
interpreter is clever enough to avoid performing the
superfluous complete cycles). If a scalar is given for A,
then it is replicated to the required shape; i.e., all
vectors of B along the I-th coordinate are rotated by the
same scalar amount.

263 1 4 15 9
4 1 5 9 3 1
A

98 52 9 26 58

34 14 91 47 15

97 33 66 85 26
T1 0 52304

58 98 52 9 26

34 14 91 47 15

85 26 97 33 66
0 1 2 3 4ed

98 14 66 26 15
34 33 9 47 26
97 52 91 85 58

TRANSPOSE \

The monadic & 1is the ordinary transpose operator. It
interchanges the coordinate numbering of the last two
coordinates of its array operand: the last coordinate
becomes the next-to-last, and the next-to-last becomes the
last. Obviously, monadic transpose requires an operand of
rank at least 2.

A

98 52 9 26 58

34 14 91 47 15

97 33 66 85 26
R4

98 34 97
52 14 33

3-25 AK95

9 91 66

26 47 85

58 15 26
®(2 3 4pr124)

1 5 9
2 6 10
3 7 11
4 8 12
13 17 21
i4 18 22
15 19 23

16 20 24

In the dyadic transpose operation A&B, A must be a
vector of integers of length equal to the rank of B, so
that A[I] corresponds to the I-th dimension of B. Then,
dimension I of B becomes dimension A[I] of the result.
The numbering of dimensions in A follows the workspace index
origin.

It is not necessary that all the integers in A be
different. If two or more integers of A are equal, then
that dimension of the result is composed of elements taken
from the diagonal crossing the dimensions of B that map into
it (if the several dimensions of B are not identical in
extent, then the resultant dimension stops as soon as the
shortest is exhausted). For example, 1 1&B is the
ordinary major diagonal of the matrix B. It is required,
however, that all dimensions that will finally appear in the
result value be specified somewhere in the vector A. That
is, the vector A must consist of the numbers from the index
origin (which is the number of the first dimension) through
the highest element of A, with some possibly repeated but
none missing. Or, stated in APL, the elements of the vector
A must be chosen from the set 1[/4 and every member of

1[/A must be present at least once in A.

3 1 2Q(2 3 u4p124)

13
14
15
16

FwWwN PR

17
18
19
20

0 g o0,

O

21
10 22

3-26 AK95

11 23
12 24
3 2 18(2 3 upr2u)

1 13
5 17
9 21
2 14
6 18
10 22
3 15
7 19
11 23
4 16
8 20
12 24

1 1 28(2 3 u4p124)

1 2 3 4
17 18 19 20
1 2 18(2 3 4p124)

1 5 9
14 18 22
1 2 28(2 3 4pr24)
1 6 11
13 18 23
1 1 18(2 3 4p124)
1 18
2 1 28(2 3 u4pi24)
1 14
5 18
9 22

COMPRESSION /7

Compression is a dyadic operator. In the
expression A4/B, A must be a vector of ones and zeros, of
length equal to the last dimension of the array B. The
resultant value is obtained by selecting or retaining those
elements along the last dimension of B that correspond to a
1 in the vector A, and omitting or dropping those elements
that correspond to a 0. Thus, the result is of the same
rank as B, and of the same dimensions except for the last,
along which it has been compressed.

3-27 AK95

In the expression ,,[7]p, . where I

is an-

integer-valued expression, the dimension along which the
compression is to act is I (the numbering follows the. . index

origin). The expression = gup is a shorthand for:

compression along the first dimension.

011010 0/3 1 4159
3 1 1.

001 001000110 0/'JKLMNOPQRSTUV!
Losr .-

| 98 52 9 26 58

34 14 91 47 15

97 33 66 85 26
1011 0/4

98 9 26

| 84 91 w7

! 97 66 85

; 0 1 044

34 14 91 47 15
|

|

EXPANSION \

Like compression, expansion is a dyadic operator
requiring a vector of ones and =zeros as left operand.
However, in the case of expansion it is the number of ones
in the 1left operand vector that must equal the last
dimension of the right operand array. The resultant value
of 4\p 1s obtained by including each of the elements along
the last dimension of B in the answer in positions

corresponding to a 1 in the vector A, and filling

in the

answer positions corresponding to a 0 in A with either 0 (if

B is numeric) or else blank (if B is character). Thus, the -

result is of the same rank as B, and also of the same
dimensions, except for the last, along which it has been

expanded.

In the expression A\[I]1B the integer-valued
expression I gives the number of the dimension to be
expanded instead of the 1last (the numbering of the

dimensions follows the workspace index origin). The
expression g\B indicates expansion along the first
dimension.

110101 10\3 1415
3 1. 0 4 0 1 5 O

1101101011101 1 1 A\'"ITISABIGONE.'
IT IS A BIG ONE.

AK95

~/

98 52 9 26 58
34 14 91 47 15
97 33 66 85 26

1 0 01 1 0%4

98 52 9 26 58
0 0 0 0 0
0 0 0 0 0

34 14 91 47 15

97 33 66 85 26
0 0 0 0 0

MEMBERSHIP €

In the expression AeB the result is an array of ones
and zeros identical in shape to the array A, with ones
corresponding to those elements of A that are found to occur
somewhere (anywhere) within array B, and zeros for those
elements of A that are not found in B. The shape of B is
irrelevant; the array B merely represents a collection of
objects, and the € operator determines which elements of a
given array A are members of the collection and which are
not.

D«0 1 2 3 4 5 6 7 8 9 The digits from 0 to 9.
De3 1 4 15 9 What digits are used in this
o 12 0 1 1 1 0 0 0 1 number? 1, 3, 4, 5, and 9.
(De3 1 4 1 5 9)/D Compression operator can list
1 3 4 5 9 them by name.
De2 7 1 8 2 8 What digits are used in this
0 1 1 0 0 0 0 1 1 0 number?
(De3 1 4 1 5 9)A(De2 7 1 8 2 8)
o 1 0 0 0 0 0 0 O O Digits in common (intersec-
(De3 1 4 1 5 9)v(De2 7 1 8 2 8) tion of sets).
o 14 1 1 1 1 0 1 1 1 Digits in either (union).
1

"ABCDEF'e'THE FAT CAT
i1 0 1 o0 1 1

'"THE FAT CAT'e'ABCDEF'
o o 1 0o 1 1 0 0 1 1 O

ENCODE T

The encode operator ATB encodes a numeric scalar B
into its positional representation in any number system, the
‘radix being specified by the numeric vector A, each element
of the vector A representing the radix applicable to the

corresponding position. The result is a vector equal in

3-29 AKSS

length‘to the vector A, each element of which is the digit
occupying the corresponding position of the representation

of the value of B when expressed in the desired number
system.

1071983 Decimal representation of
3 1983, to one digit.

10 10 10 10 10 10T1983 To enough digits.
6 o 1 9 8 3

0 s i 8 8Th1 Octal representation of 41l.
24 60 60711642 A mixed radix representation:
3 14 2 hours, minutes, and seconds.

EVALUATE 1

The evaluate operator ALB is the inverse of the
encode operator. It accepts a numeric vector A defining the
radices of the positions in a number system and a vector B
of positions representing a number in that system. The
result is a scalar, the value of the number. The vectors A
and B must be the same length (except that a scalar on the
left 1is replicated to match the length of the right
operand) .

10 10 10 1011 9 8 3 The number whose decimal
1983 representation is 1983.
1011 9 8 3
1983
810 5 1 The number whose octal repre-
41 sentation is 51.
24 60 6013 14 2 Hours, minutes, and seconds
11642 converted to seconds.
2011 01 1 0 Binary 10110.
22
DEAL ?

Though the monadic form of ? is a scalar operator,
the dyadic form A?B is a mixed operator, the deal
operator. A and B must be numeric integer scalars
with 0<A<B, and the result of 47B is a vector of A
elements selected randomly and without replacement from the
set 1B. Thus, the effect is that of shuffling a deck of B
cards, and then dealing A of them. The set 1B consists of
either the integers from 0 to B-1, or from 1 to B, depending
on whether the workspace index origin is set to 0 or to 1
respectively. Details of the random number generation
algorithm used by the deal operator can be found under

3-30 AK95

"Random Number" earlier in this section which uses the same
generator.

3712 Three things dealt out of 12,
4 7 1

678 Six things dealt from eight.
8 4 7 3 1 2

10210 A random permutation of the
9 8 2 3 6 1 5 7 10 4 numbers from 1 to 10.

10710 ’ : The selection is without re-
3 9 6 4 5 7 2 8 1 10 placement.

?10p10 A Here, in contrast, it is with
8 6 7 1 3 2 9 1 10 4 replacement.

MATRIX INVERSE 5]

Monadic B is the matrix inverse operator. In the
expression (A4 the right operand A must be a numeric array
whose shape is such that the product of all dimensions of A
except the last (i.e., x/ 1+p4) 1is greater than or equal
to the 1last dimension (T14p4). The result is a matrix
of "14p4 rows and x/ 1vpA columns whose elements are
chosen to least-squares best-fit the matrix product
of A and B4 to the identity matrix of order x/ 1+pA. That
is, if X is the result of {4, then the elements of X are
are chosen to minimize +/,((A+.xX)-I)*2 where I is the
identity matrix.

If A is a square matrix, then B4 is the ordinary
matrix inverse of A. If A is over-square (more rows than
columns), then A is not exactly invertible, and B4 is the
least-squares best inverse. If A 1is under-square,
then B4 results in a DOMAIN ERROR.

A<?3 3p100 Get a matrix to invert.
A
76 86 11
L6 2 80
18 gy 73
X<EA Invert it.
X
0.01087283472 0.007732186776 “0.0101120017

0.002828057635 0.007888481932 0.008218766035
T0.006322581406 0.008251204652 0.005608931826

A+ . xX Test the result, which should
be the identity matrix.
1 T8.673617380E 19 ~8.673617380F_19
"8.673617380E 19 1 T2.168404345F 19

“6.234162492E°19 ~5.,149960319E 19 1

3-31 AK95

MATRIX DIVIDE &

Dyadic B is the matrix divide operator. The
result X of ABB is chosen to least-squares best-fit the
matrix product of B -and X to A. More precisely, the

elements of X are chosen to minimize +/,((B+.xX)-4)*2.

The shape requirements of the matrix divide operator
are as follows. The shape of B must be of the
form H,U where U is a single dimension and H is a (possibly
null) vector of preceding dimensions, and the product of the
elements of H, or */H, must be at least U. The shape of A
must be of the form H,T where H is identical to the H in
the shape of B, and T is a (possibly null) vector of
succeeding dimensions. The result X has the shape U,T and
it is x/T sets of least-squares best solutions in U
unknowns to the x/T sets of */H 1linear equations in U
unknowns.

A A matrix to use as a divisor.

76 86 11
46 2 80
18 94 73

_ 6 3 94 Divide a vector by it.
0.002574446627 0.06727179433 ‘0.03729851195
A+.x(6 3 9BA) " Test the answer, which should
6 3 9 produce 6 3 9 in this matrix
multiplication.

I-BEAM I

The I-beam operator T is a monadic operator that
accepts as operand a numeric integer scalar chosen from a
small set of values. The result is the value of some system
parameter, which one being chosen by the operand. The
results versus the value of the operand are as follows:

I19 The real time in sixtieths of a second since this
instance of APL was invoked (uses "clock_").

120 The time of day, in sixtieths of a second since
midnight (uses "clock " and "sys_info$time_delta").

121 The CPU time used so far since this instance of APL
was invoked, in sixtieths of a second (uses
"hcs $get usage values").

I22 The size of workspace remaining available to be used,

3-32 - AK95

in units of 9-bit characters (i.e., four times the
number of words). This number will reflect the fact

- that a Multics APL workspace can be many segments in
size. However, since any single APL value must fit
wholly within one segment, it is possible for some APL
expressions to cause WORKSPACE FULL errors even when
I-beam 22 is returning large values. For example, it
is impossible to create a 300,000 character item, even
in a clear workspace with millions of characters of
space available.

I23 Multics "nusers".

24 The time of day, in sixtieths of a second since
midnight, that this instance of APL was invoked.

125 The date, as a 6-digit integer, MMDDYY. »

I26 The first element of I-beam 27 (or 0 if I-beam 27 is
null).

127 The vector of statement numbers in the state
indicator, most recent first. An element of 0 is
returned corresponding to evaluated input (0) entries
in the state.

All results returned by I-beam are scalar integers
except for I-beam 27, which is a vector of integers.

24 60 60 60TI20 The current time of day, in
9 14 27 53 hours, minutes, seconds, and
I25 sixtieths. i
102772 The date, 27 October 1972.
I23
40 Forty Multics users.

Other Operators and Symbols

In addition to scalar operators and mixed operators,
which fall neatly into their respective classes, there are a
number of other miscellaneous operators that defy
classification. Also, there are a number of symbols that
can appear in APL statements that are not operators but that
still require explanation.

ASSIGNMENT «

The 1left arrow <« is the assignment operator in APL.
A variable name must appear immediately to the left of the
assignment operator; any expression can be the right
operand. The purpose of the assignment operator is to set
the value of the variable to that of the expression. If a
variable of the given name does not already exist in the
workspace, then one 1is created (if the name is already in

3-33 AK95

use for naming a function or a group, then it is an error to
make an assignment to the name--a name can refer to only one
object at a time). If the variable already exists, -then its
previous value is discarded.

Note that any variable can take on any APL value,
regardless of its type or shape. There are no declarations
of variables in APL.

In addition to being assigned to the variable name
mentioned as left operand, the value of the expression on
the right is also considered the result of the assignment
operator in the APL statement in which it is found. This
value may then be further operated upon. Thus, assignments,
like other operators, can be used freely within statements.

In an APL statement consisting of a single expression,
when the very last operation executed in that expression is
the assignment qQperation, then the APL processor does not
print the final value of the expression. On the other hand,
if the last operation is not an assignment, then the value
of the expression is printed. This automatic printing of
values not assigned to any variable is the most common
method of performing output in APL (the other two methods
are to use the input/output symbol [J, which is discussed
below, or to write a list for the APL statement, which is
discussed later in this section.

Q<13 Assign a value to Q.
Q Now print it.
1 2 3
Q<2 Sp'NEW VALUE! Change its value. 0ld value
Q is discarded, only new value
remains.
NEW
VALUE
S<6XP+pQ<21Q Multiple assignments.
Q Print the new values.
NE
VA
P
2 2
S
12 12 _ -
YVERASE P @ S Variables can be erased.
Q Now there is no Q.
VALUE ERROR.
Q

In addition to assigning a complete new value to a
variable, it is also possible to assign values to specific

3-34 AK95

elements of an array value, leaving the remaining elements
undisturbed. This is done by writing a subscripted variable
name to the 1left of the assignment operator, and is
discussed below in "Subscripts".

OUTPUT O

The quad symbol [0 is the output symbol in APL. It is
not an operator; instead it behaves much 1like a variable.
If a value is assigned to the output symbol (with the
assignment operator <« discussed previously), then that
value is printed. In addition, the value is also available
for_further operations within the statement, just as in any
assignment operation.

0«@<«6 3 29 0 can be used to force print-

6 3 29 ing of expressions ending in
QLO«AQ] assignments, or to print

2 1 3 intermediate results.
1+0«1+0«1+0«1

1 These three lines printed by

2 the 0O symbol.

3 .

4 This line is final value.

EVALUATED INPUT U

The same symbol [0 is also the evaluated input symbol.
We have already seen how it behaves as the output symbol
when a value is assigned to it. 1In contrast, if a is
encountered that is not to the left of an assignment arrow,
then that [is being used for input. The interpreter
temporarily sets aside evaluation of the statement
containing the [, types the go-ahead string U:» and then
awaits the input of an APL expression from the user.
Whatever expression is typed (it can be any APL expression)
is evaluated and the result taken as the value of
the [symbol in the original statement. Interpretation of
that statement then resumes.

Input typed in response to the Osymbol is called
"evaluated input", because it can consist of a fully general
APL expression to be evaluated.

If the expression typed in response to the U symbol
has no value or results in an error report, then the
interpreter again requests input by typing as usual.
Execution of the statement containing the 0 does not
proceed until valid input is received.

3-35 AK95

If a system command or function editor invocation is
typed when the interpreter is expecting evaluated input, the
command or edit is performed; when the function is finished,
the interpreter again requests the evaluated input.

If the user wishes to abandon execution of a statement
or program requesting input instead of supplying it, a
right arrow alone is typed. As discussed later, this has
the effect of returning the interpreter back to its state at

the last time it was accepting regular immediate input from
the terminal.

3x(0+2) A line requiring evaluated in-
O: put. Interpreter calls for
13 it. Any expression is OK.
g 12 15 Result of original line.
'DID YOU SAY ',0,'?!
0:
'"HELLO'
DID YOU SAY HELLO?
» o0
0:
2 4pl0 Any expression is legal, even
0: ones with further [symbols.
'WHY NOT?!
YHW?TON
100
0O:

THIS IS JUNK.
VALUE ERROR.
THIS IS JUNK.
|
O: Input requested again.
6 3 29 8
1 2 3 4 This time it is good.

CHARACTER INPUT 0

Another form of input, known as "character input", can
be invoked by using [as the input symbol rather than 0.
When the character input symbol is encountered, the
interpreter reads one line from the wuser's terminal and
takes the characters typed as the value of the [M symbol. No
go-ahead signal is typed for this form of input; the APL
program employing the character input symbol has already
notified the user that input is expected. Also, the line
input is not evaluated in any way--its characters are simply
made available verbatim as the character value of
the [symbol.

3-36 AK95

The newline character that terminates the input line is
not included in the value. Also, a line consisting of
exactly one character is considered a scalar; any other line
length results in a vector. A newline alone is legal and it
results in a null vector.

No errors are possible in character input, since no
evaluation is performed. Entry of system commands oOr
function editor calls or the right arrow during character
input is not possible; these characters, as any others, are
simply made available as the value of the [symbol. To
escape from character input and to restore the interpreter
to the point of the last console suspension, issue a Multics
QUIT followed by a "program interrupt". This has the same
effect on the interpreter state as typing a right arrow
alone to evaluated input or following a function suspension.
See "Clearing the State Indicator" in this section.

'DID YOU SAY ',0,'?!
HELLO
DID YOU SAY HELLO?
"ABCDEFGHIJKLMNOPQRSTUVWXYZ,. '"1[]
SECRET MESSAGE.
19 5 3 18 5 20 29 13 S5 19 19 1 7 5 28

M Call for input.
"JORIGIN O Type the input.
JORIGIN O Value of resultant expression.
]
0: In evaluated input, the system
JORIGIN O command is acted upon.
WAS 1
0: And then the input is again
'YORIGIN 0O requested.
JORIGIN O
]
3+2
3+2 No evaluation.
U
3+2
5 3+2 evaluated.
JUMP ->

The jump operator - is normally valid only in APL
statements stored in a function definition, not in lines
typed from the terminal for immediate execution. It is a
monadic operator expecting an integer operand, the number of
the statement to which to jump (in the absence of a Jjump
operator, statements in a function definition are executed
sequentially).

3-37 AK95

A precise description of jump usage is found under
"Branching" in this section.

The jump operator is validly typed from a terminal when
restarting or abandoning a function execution that was
suspended due to an error. (See "Restarting Suspended
Functions" and "Clearing the State Indicator" in this
section) or when abandoning evaluated input (see the
discussion of "Evaluated Input" above).

+>3 Jump to statement 3.

>T Jump to statement I. The
value of I must be an integer
statement number.

+(N>12)/9 Jump to statement 9 if N is
greater than 12.
> Unwind the state indicator

stack back to the previous
console suspension.

PARENTHESES ()

As in ordinary mathematics and conventional programming
languages, parentheses are not operators but symbols of
grouping. Within any expression, if a subexpression is
placed within parentheses, then that subexpression is
evaluated by itself and the result of the evaluation
participates as a unit in the evaluation of the remainder of
the expression. Parenthesized subexpressions can be nested
to any level, and redundant parentheses are not harmful.

In the absence of any parentheses, there is a rule that
establishes what grouping APL assumes about the constituents
of an expression. The rule is carefully explained under
"The Right-to-Left Rule", in this section.

(3+7)x2 Parentheses needed because
20 3+(7x2) is not intended.
(01)%22 Sgrt(pi). Without parens,
1.772453851 gives pi times sqgrt(l), or pi.
$(+1)+($2)+(+3)+(24) Parallel resistance. With no
0.48 parens, gives incorrect uy3:30,
(5+3)p2 Gives 7 7 7 when the parens
2 2 92 2 92 9 92 9 are deleted.
(C(((4+8))))) Extra parentheses are not
12 harmful.

3-38 AK95

LISTS
A list 1is a series of expressions separated by
semicolons. Thus, the semicolon is not an operator, but
serves to separate expressions. There are two uses for
lists in APL.

First, an APL statement can be a list of expressions
instead of only one expression. The meaning of a list as a
statement is fully discussed later, under "Statements", in
this section, but briefly, the effect is simply to print the
values of each of the expressions, one after the other, with
no intervening spaces.

YORIGIN 1

WAS
1;231334 A list of expressions. Values
121 2 34 : are printed side-by-side.
'LOG PI = ';e01 Lists can be used to label or
LOG PI = 1.144729886 identify results.
'THE MATRIX IS';2 3p163', YOU SEE.'
THE MATRIX IS The newlines and spaces
1 2 3 inherent in the values
4 5 6, YOU SEE. themselves are unchanged.

The second use for lists in APL is as array subscripts.
Subscripts are described next.

SUBSCRIPTS L s]

Any nonscalar APL value, a constant, a variable, or a
parenthesized subexpression, can be followed by a subscript
list, which is a list of expressions separated by semicolons
and placed within brackets. The number of expressions in
the 1list must be equal to the rank of the value being
subscripted, and the result of the subscripting operation is
a new array formed from the elements of the original value
that are selected by the subscript list.

The shape of the result of a subscripting operation is
determined by the shapes of the subscripts, not by the shape
of the value being subscripted. However, the shape of the
value being subscripted does determine how many expressions
must be in the subscript 1list and the ranges of their
allowed values.

If A is an array value of rank R, and it is subscripted
by a list of expressions El, E2, ..., ER, then the result
of A[E1:E2;...:;ER] is an array of
shape (pE1),(pE2),...,(pER) consisting of the elements
chosen from A whose first subscripts are equal to elements
of E1l, whose second subscripts are equal to elements of E2,
and so on.

3-39 AK95

Thus, if all subscripting expressions El, ...,ER are
scalars, then the result of the subscript operation is also
a scglar, namely the single element of the array A having
precisely those subscripts. If some subscript expression is
a vector or higher-ranked array, then the result is a
similarly shaped array, built up from the various elements
selectgd out of A by the various elements of the
subscr;pting array. Finally, if many or all of the
subscript expressions are arrays, the result has rank equal
to the sum of their ranks, each subscript expression
contributing its dimensions to the rank of the result.

_ The elemental subscript values themselves are
interpreted according to the current workspace index origin.
For example, in 0-origin indexing, the subscripts for a 5 by
7_matrix are allowed to take on the values 0 to 4 for the
first dimension and 0 to 6 for the second. In l-origin
indexing, the corresponding allowed ranges are 1 to 5 and 1
to 7, respectively. Any subscript value that is not
numeric, not integral, or outside the dimensions of the
subscripted array value causes an INDEX ERROR to occur,
with the error marker placed under the left bracket opening
the subscript list.

A vacuous expression in any subscript position (nothing
but the semicolon alone) is interpreted as selecting all
possible values for that subscript as if 1N had been
supplied where N is the corresponding dimension extent.
For example, if M is a matrix, then M[1;] is the first row
of M, while M[N] is the same as M.

A An array to experiment with.
98 52 9 26 58

34 14 91 47 15
97 33 66 85 26

AL3 ;4] A sub (3,4), the fourth ele-
85 ment of the third row.
A[3;4 2 5 5] Select several elements from
85 33 26 26 the third row.
AL 33 5] Columns 3 and 5.
9 58
91 15
66 26

A[C1 3;2 3p2 3 1 5 1 3] A three-dimensional array
obtained by subscripting a
52 9 98 two-dimensional one.
58 98 9
33 66 97
26 97 66
YABCDEF '[1 7 2 1 4 7 6 1 4]
A BAD FAD

3-40 AK95

JORIGIN 0 The meaning of subscripts

WAS 1 changes with the index origin.
'ABCDEF '"[5 0 3 4 3 6 2 0 1]
FADED CAB
A[l2 1;3 4 0]
85 26 97
47 15 34
JORIGIN 1
WAS 0

A subscripted variable can be placed to the left of the
assignment operator. When this is done, the variable must
already possess a value of shape acceptable to the
subscripting operation, and the new value, which is the
right operand of the assignment operator, must have a shape
precisely equivalent to that of the result of the subscript
selection. Then the elements of the variable's value
selected by the subscripts are assigned the new values from
the corresponding elements of the assigning expression.
Elements of the variable's value not selected by the
subscripting operation remain unchanged.

Two important restrictions apply to assignment to a
subscripted variable. First, neither the rank nor the
dimensions of the value of a variable can be extended in
this way; only elements that already exist can have their
values changed. Second, the assignments of the various
elements within a single assignment operation take place in
an unspecified order; hence, if some particular element is
selected several times and assigned different values, which
of the values it will wultimately be found with is
unspecified.

It is an error to assign character values to elements
of a numeric array, or numeric values to elements of a
character array. Characters and numbers cannot be mixed in
any APL array.

A Our favorite array.
98 52 9 26 58

34 14 91 47 15
97 33 66 85 26

AL23]«15 Replace the second row.
A[3;5]<« 10 And the very last element.
A See what we have now.

98 52 9 26 58

1 2 3 L 5

97 33 66 85 10
AL2 3;0151«Al1 23] Copy the first and second rows
A of A reversed into the second

3-41 AK95

and third rows.

98 52 3 26 58 Only the first row remains un-
58 26 9 52 98 changed.
5 L 3 2 1

A[1;3 3 3]«6 7 8 Here it is unspecified whether

the final wvalue of 4[1;3] is
6, 7, or 8.

REDUCTION OPERATOR o/ of

The reduction operator is a composite operator
consisting of a slash / preceded by any standard APL
scalar operator for which a dyadic meaning is defined. For

example, plus-reduction is +/ and maximum reduction is [/.
The scalar operators are all enumerated under "Scalar
Operators", in this section. When it is necessary to
discuss the reduction operator in general, it will be shown
as ©/ with the understanding that the o symbol, which
has no APL meaning, stands for some particular scalar
operator in every actual instance.

Operator reduction behaves as a monadic operator
accepting an array of any rank as operand. When applied to
a vector operand, the result o/V is defined to be the same
as placing the scalar operator o between each of the
elements of V. For example, if V is a four-element vector,
then +/V 1is the same as V[11+V[2]1+V[31+V[u4] (where the
subscripts have been expressed in l-origin indexing). Thus,
the plus-reduction of V 1is seen to be the sum of the
elements of V.

When the operand of the reduction operator is a null
vector, the answer is the identity element for the scalar
operator involved, if it has one; otherwise, it is a domain
error. The identity elements for the various scalar
operators that can be used in operator reduction are shown
in Table 3-1.

3-42 AK95

Table 3-1. Scalar Operator Identity Elements

operator © ©0/10 operator © ©/10
addition + O modulo | O
subtraction t+ 1 binomial coefficient ! 1
multiplication * 1 and A 1
division * 1 or vV 0
exponential * 1 less < O
logarithm ® domain error less-equal = 1
circular © _domain error equal = 1
maximum [1.701411835FE38 not equal # O
minimum L 1.701411835E38 greater-equal 2= 1
nand 7~ domain error greater > O

L4

nor domain error

When the operand of the reduction operator is a scalar,
it is treated as a one-element vector. The result of
reducing a one-element vector is always simply the single
element itself--even if this is an element of type or value
not normally returned by the scalar operator involved in the
reduction.

When the operand of the reduction operator is not a
vector but a higher rank array, then the reduction is along
the vectors that form the last dimension of the array. The
result is an array of rank one less than the original, with
shape equivalent to the shape of the original except for the
disappearance of the reduced-over last dimension.

Operator reduction can also be performed along other
dimensions of an array than the last. The
expression ©74 signifies reduction by the © operator along
the first dimension of the array A. The expression ©/[I]4
signifies reduction along the I-th dimension of the array A,
where I is an integer-valued expression. The dimension
numbering follows the setting of the workspace index origin;
i.e., the first dimension is numbered 0 in 0-origin and 1 in
l-origin. In any case, the result of reduction is an array
of one lower rank with the corresponding dimension absent
from the shape of the result.

3-43 AK95

Tbe order in which the repeated scalar operations of a
redugtlon are performed is sometimes of consequence--it is
not in the case of plus-reduction--but is in the case of
minus-reduction. For example, if V 1is a four-element
vgctor, -/V gives V{1]1-(VL[21-(VvL31-vLul)) which is
different in value from ((vL11-v[21)-vL[3]1)-v[4]. The rule
is that the operations are performed in right-to-left order;
i.e., the first operation performed is the rightmost one,
and the result of that operation becomes the right operand
of the next operation to the left, and so on. As will be
seen in "Scope of Operators" in this section, this is the
same interpretation given to the
expression V[1]1-V[2]-v[3]1-V[&] if it were to Dbe typed
directly.

_ x/6 3 "2 4 Times reduction. The product
144 _ of the vector elements.
_ L/6 3 24 Minimum reduction. Finds the
2 smallest element of a vector.
x/16 x/1N is the same as ! for in-
720 teger N in l-origin.
=/'A" Reduction of a single element
A always yields that element.
L/ Reduction of a null vector
1.701411835E38 yields operator's identity.
+/("E'='THEN AS EVER') Count the 'E's.
3 There were three of them.
0«A<?3 u4p100 Get an array to fool around
with.

56 23 31 83
97 15 54 55
70 80 88 49

+/4 Add up the rows.
193 221 287
xftA Multiply out the columns.

380240 27600 147312 223685

INNER PRODUCT 0.9

The inner product operator is a composite operator
built up out of any standard dyadic scalar operator,
followed by a period, followed by another dyadic scalar
operator. When the general inner product operator is being
discussed, it will be shown as ©.e with the understanding
that the © and e symbols, which have no APL meaning, are
replaced by particular scalar operators in every actual
instance. For example, ordinary matrix multiplication is
performed in APL by the +.x inner product.

Inner product behaves as a dyadic operator. In the
inner product 4@.eB, the last dimension of the array A

3-44 AK95

must be identical in length to the first dimension of array
B. If A and B are both vectors, then the result of 40.eB is
a scalar whose value is ©/(4eB). That is, the elements of
A and B are pair-wise combined with the e dyadic scalar
operator, and the resulting vector of answers is reduced
with the e operator to form a single-element result. The
name "inner product" is suggested by the fact that A4+.xB is
the inner product of the vectors A and B in ordinary vector
algebra; that is, the components are pair-wise multiplied
and the products added to give the scalar result.

More generally, if A and B are of higher rank, then
each vector forming the last dimension of A (there will be
many of them, as determined by the preceding dimensions of
A) is paired with each vector forming the first dimension of
B (again, there will be many of them, as determined by the
remaining dimensions of B) to form a single element of the
answer just as in the vector-vector case. (The elements of
the two vectors are pair-wise combined with the @ operator,
and then reduced with the o operator.) The elements thus
formed from all the reductions acquire a shape whose earlier
dimensions are those of the array A except its last, and
whose later dimensions are those of the array B except its
first. The last dimension of A and the first dimension of B
are lost in the reduction process. More formally then, in

Ao.®B, 14pA must be identical to 1+4pB, and the result
Ao .®B has shape (1+¥p4),(1+pB).

O«A4<?3 4p1lo0 A 3 by 4 matrix to ex-
periment with.
3 9 10 10
3 8 6 1
7 8 8 2
A+.x1 2 3 4 Postmultiply by a four-vector
91 41 55 giving a three-vector.
6 0 3+.x4 Premultiply by a three-vector
39 78 84 66 giving a four-vector.
A+.x(R4) Matrix multiplication by its

own transpose.
290 151 193
151 110 135
193 135 181
7 3 14[.+4 Add elements and then maximum
21 22 22 17 reduce.

OUTER PRODUCT °.®

The outer product operator 1is a composite operator

consisting of the symbols ° and . followed by any
standard dyadic scalar operator. When the outer product
operator is discussed in general, it will be shown as °©.9®

3-45 AK95

with the understanding that the g symbol, which has no APL
meaning, is replaced by some particular scalar operator in
every actual instance.

In an outer product Ao .®B, each element of A is
combined with each element of B wusing the ® operator,
producing (x/pA)x(x/pB) results arranged in an array of
shape (p4),(pB). That is, the result of Ao .®B is an
array with all the dimensions of A in addition to all the
dimensions of B. The elements of the array are all
possible pair-wise @ operations on an element from A and

an element from B.

1 2 3 Y4o,x6 3 ~2 Ordinary outer product.
6 3 2
12 6 u
18 9 76
24 12 8
31 415 90,2(110) A histogram of zeros and
ones.
1 1 1 0 O 0 O 0O 0 O
1 0 o o0 o o o o o0 o
1 1 1 1 0 0O © 0 O 0
1 0o o0 O o0 O 0O o0 o0 ©
1 1 1 1 1 0] 0 0 0 0
1 1 1 1 1 1 1 1 1 0
01 2 3 4 S0,!'0 1 2 3 4 sPascal's triangle.
1 1 1 1 1 1
0 1 2 3 L 5
0 0 1 3 6 10
0 0 0 1 4 10
0 0 0 0 1 5
0 0 0 0 0 1

COMMENTS o

The comments indicator g, causes the interpreter to
ignore it and everything following it on the line. Thus,
arbitrary comments can be entered into APL statements for
documentation purposes. During execution of the line, the
interpreter behaves as if the comments were not there.
Comments can be placed on lines typed on the terminal as
well as lines within function definitions.

A THIS LINE IS IGNORED.

R SO IS THIS ONE.

3+2 o BUT THIS ONE SHOULD GIVE US A FIVE.
5

te>=>t M, '<-<="
A WHAT ABOUT THIS ONE?
->a WHAT ABOUT THIS ONE?<-<-

3-46 AK95

EXPRESSIONS, LISTS, AND STATEMENTS

Now that we have studied values and operators, we are
ready to start putting them together to make expressions and
finally complete APL statements. A statement in APL is
either an expression or a list of expressions separated by
semicolons. An expression is, generally speaking, either a
value alone (a variable, a constant, or a function taking no
operands), or else a value composed of other values by means
of operators operating upon them. The values operated upon
can themselves be expressions, of course, which is what
allows expressions to become arbitrarily long. The
remainder of this section more precisely defines the
concepts of expressions and their evaluation.

Scope of Operators: The Right-to-Left Rule

In any expression containing more than one operator, it
is important to know in what order the operations are
performed; in other words one must know how much of the
remainder of the expression is considered as an operand of
any particular operator. For example, it makes a great deal
of difference whether the APL expression X+!YxZ is taken
as meaning (1) X added to the factorial of the product of Y
and Z, or (2) X added to the product of Z and the factorial
of Y, or (3) Z multiplied by the sum of X and the factorial
of Y.

In conventional algebra and some programming languages,
the order of execution is determined by a fixed hierarchical
ordering of operators (e.g., all exponentiations are
performed before all products, which are performed before
all sums). In APL, this would be unworkable due to the
enormous number of different operators involved--no one
could possibly remember the necessarily arbitrary ordering
of so many unrelated operators. Hence, the rule is:

In any APL expression, each operator takes for its
operand everything to the right of it as written.

Thus, in any APL expression, the first operation to be
performed is the right-most one, and then the result of that
operation becomes the operand for the next operator to the
left, and the result of that operation is fed to the next
operator to the 1left, and so on. This rule is often
referred to as the right-to-left rule.

Seemingly, the above rule specifies the scope of only
right operands while saying nothing about left operands.
Actually, by implication the rule specifies that the left
operand of any dyadic operator be the single value

3-47 AK95

immediately to its left as written. If the left operand were

larger than this--if it included an operator operating upon
tbe Vglue--then that operator would be seen to be in
violation of the right-to-left rule. So the rule is

logically complete as stated.

?arentheses can be used at will to explicitly override
the right-to-left rule when some other ordering is desired.
Any portion of an expression enclosed within parentheses is
evaluated separately and then taken as a single value during
the evaluation of the remainder of the expression.

1+12x3 Examples of order of evalua-
721 tion. Taken as 1+(!(2x3)).
(1+12)x3 Parentheses can be used to
9 specify a different order.
; 1+(!2)x3 Taken as 1+((!2)x3).
4x2+3 Not 11, as you would expect
20 B from the rules of algebra.
3x 1+4 The upper minus sign is not an
27 operator.
3x-1+4 The subtraction operator is
0.004115226337
z2/14 z/14 is the same as 1z2z3z4,
0 which is 1=(2=(3z4)), or O.
3+1+7+1+15+1+1+1%292 Continued fraction, same as
3.141592653 3+(1:(7+(1%....+4(12292))))))).

The same value written with
the monadic ¢ operator.

3++7++15++1+3292
3.141592653

1+2 3pl 2 3 1is not the same as 2,3
when some operator follows it
5 5 5 in an expression, because the
5 5 concatenate operator takes
1+2,3pk everything to its right as its
3 5 5 operand.
-/4,5%x12 Variations on a theme.
9 4-5-10.
-/(4,5)x12
76
(-/4),5%x12
4 10 4,5 10,
(-/u4,5)x12
"1 T1x1 2.

Scope of Functions

been

Although functions (stored APL programs) have
introduced, it
point how function calls behave with

evaluation.

seems

not vyet
appropriate to discuss at this
respect to order of

AK95

There are three kinds of APL functions: those that
take no arguments (so-called =zero-adic functions), those
that take one argument (monadic functions), and those that
take two arguments (dyadic functions) .

From the standpoint of expression evaluation, zero-adic
functions behave exactly as variables. That is, when the
function name 1is encountered in a line of APL being
interpreted, the function is evaluated to produce a value.
Then that value participates in the remainder of the
expression evaluation as a unit, according to the
right-to-left rule. Of course, the action of evaluating a
function is more complicated than that of evaluating a
variable (the function must be called and its statements
executed) , but from the viewpoint of the expression in which
the function reference is found, the function behaves as if
it were a single value.

In contrast, monadic and dyadic functions behave as
monadic and dyadic operators, respectively. Monadic
functions, like monadic operators, accept only one operand,
the right operand. Dyadic functions, like dyadic operators,
accept both 1left and right operands, between which the
function name is written. The right-to-left rule governs
the scope of the operands to functions just as for
operators: within any APL expression, a function takes as
its right operand everything written to the right of it; a
dyadic function takes as its left operand only the single
value found immediately to its left.

VTHREE Examples of order of evalua-
FUNCTION 'THREE' NOT FOUND. tion when function references
INPUT. are involved.

Z<«THREE A zero-adic function that
Z+«3V ' always returns the value 3.

VPLUS
FUNCTION 'PLUS' NOT FOUND. A dyadic function that returns
INPUT. the sum of its operands (it
Z<X PLUS Y mimics the dyadic + operator).
Z<X+YV

VITIMES
FUNCTION 'TIMES' NOT FOUND. A function that mimics the
INPUT. dyadic multiply operator.

C«A TIMES B
C<AxBV

1 PLUS '2 TIMES THREE Zero-adic functions behave as
721 values, others as operators.

4 TIMES THREE PLUS 5 Same as 4x3+5.

32

1 PLUS 2,THREEph Same as 1+2,3pk4.

3 5 5 5

THREE TIMES 1 THREE PLUS THREE Same as 3x13+3.
3 6 9 12 15 18

3-49 AK95

_ The input-output symbol [also behaves exactly as a
variable. When used for input, it is evaluated to produce a
yalue. When used for output, it is assigned a value, which
is printed and also passed on as the value of the [during
the remainder of the expression evaluation.

V<U«+/Ax0+2 Here the operators are per-
formed in the order + x + <«
and <. The input occurs prior
to the first +, the output
occurs between the two assign-
ments.

Lists

A 1list 1is a series of expressions separated by
semicolons. There are two uses for lists in APL. First, an
APL statement itself can be a list of expressions instead of
just a single expression. Second, a list of expressions
written between square brackets and placed following any

value is a subscripting operation on that value.

Statements

A statement in APL is either an expression alone or
else a list of expressions separated by semicolons. When an
APL statement consists of only a single expression, the
behavior of the interpreter depends upon whether the last
operator executed in that expression is a left arrow (the
assignment operator). If the last operation performed is an
assignment, then the interpreter does not print the result
of the expression evaluation. If the last operation
performed is other than an assignment operation, however,
the interpreter prints the value of the expression (if it
has one). This printing of the values of lines that do not
end in assignments is the commonest method of performing
output in the APL language.

The previous paragraph suggested that an expression
might not have a value. This 1is possible only in three
cases: (1) the expression is vacuous (an empty line, for
example); (2) the expression ends with the Jjump operator
(the Jjump operator -+ has no result and can be used only as
the final operation in a statement); or (3) the expression
consists of a call on a function that returns no result. 1In
each of these three cases, the result of the expression
evaluation yields no value, hence nothing is printed. These
cases of an expression with no value must be carefully
distinguished from that of an expression with a null value.

3-50 AK95

~

The null value (an array with zero elements) is a perfectly
well-defined and well-behaved value, and it prints as a
blank line.

When the APL statement consists of a list of
expressions, the values of the expressions are always
printed, even when some or all of the expressions conclude
with the assignment operator (it is a VALUE ERROR if any
nonvacuous expression has no value). The values of the
expressions are printed, one after the other, with no
additional spaces or newlines placed between them. Whatever
spaces and newlines may be a portion of the representations
of the values themselves are, however, printed as usual.
Since some of the expressions may have character values and
others numeric, this is a way of forming output with mixed
types appearing on one line.

V<1 2 3 Assignment, no value printed.
|4 No assignment, value of
1 2 3 expression printed.
Vi;4 5 A list of expressions; values
1 2 34 5 are printed side by side.
V' ';4 05 Explicit spaces included. An
1 2 3 u4 5 example of mixed-type output.
S<'HELLO' ;' THERE.' Lists always print, even when
HELLO THERE. there are assignments made.
S3;2 3p16;8S No extra control characters
HELLO beyond those of the values
1 2 3 themselves are added (recall
4 5 GBHELLO newline before each plane).
'6+3 = ';6+3 Another example of mixed-type
633 = 2 output.
VRESULTLESS Define a function that

FUNCTION 'RESULTLESS' NOT FOUND. returns no result.
INPUT.

RESULTLESS
V<V+1V A call on RESULTLESS results
RESULTLESS in no printing.
0p0 A null value, however, prints
as a blank line.
74 The call on RESULTLESS did
2 3 4 produce this side-effect.
W«<33x/0 10 .4V A vacuous expression tacked to
0.125° 0.05 the end of a statement just

to force printing.

Dependence upon Unspecified Ordering

While the right-to-left rule specifies the order that
operators within an expression are executed, it is important
to note some things that it does not specify. There are a

3-51 AK95

number of steps- taken during the evaluation of an APL
statement that occur in an explicitly unspecified order.
Any program that depends upon a certain order of occurrence
for any of these unspecified cases is incorrect APL. Such
incorrect programs cannot be expected to give consistent
results when run on different implementations of the

}anguage, or even when run on later versions of any given
implementation.

The various expressions within a list are evaluated
separately from each other. No portion of any expression
participates as an operand of any operator in any other
expression of the list. Hence, the semicolons of a list act
as barriers to the scope of the right-to-left rule, which
holds only within single expressions. There is no
specification or definition of the order in which the
several expressions are evaluated.

D<A[I+3;I«I+1] Examples of unspecified order
of evaluation. Here, one ex-
pression in a list assigns a
new value to the variable I.
Another expression uses I. It
is unspecified whether the old
or the new value of I is ob-
tained in the first subscript.

'"THIRTY = ' ;N<3;N<0 Here the printed result is
definitely 30, but whether 3
or 0 will be found as the
value of N following this
statement is unspecified.

O«'ONE!' ;(0«'TWO! This statement causes three
lines of output, the third of
which is definitely the string
ONETWO, that being the final
result of the list evaluation.
Whether the earlier two lines
come in the order ONE TWO or
TWO ONE is unspecified.

The right-to-left rule specifies carefully the order in
which operations are performed, but it does not specify the
order in which the various operands of a single operator are
evaluated or made ready for the operation.

(A<A+5)x(334) What does the right-to-left
rule say about the order of
operations here? It says that
the addition must be performed
before the assignment, which

3-52 AK95

(because of the first pair of
parentheses) must be done be-
fore the multiply. The divide
must also be done before the
multiply (the second pair of
parentheses are unnecessary).
But there is no specification
of the relative order of the
assignment and the divide, so
whether the o0ld or the new
value of A will be used in the
divide is unspecified.

(I«3)PL[I+113 hLp1I<«12 The printed result of this
statement is definitely the
value of 3¢[1]3 4p112, but
whether the value of I will
later be found as 3, 1, or 12
is unspecified.

Even when an operand of an operator is a single
variable alone, it still needs evaluation. That is, at some
time or other, the current value of the variable must be
looked up and made available to the operator. The exact
time at which the evaluation is done can lead to different
results if the value of that variable is changed elsewhere
in the same statement.

AxA<3 ' Here it is unspecified whether
the left operand of the multi-
ply is the old value of A
(whatever it was) or 3. Note
that the assignment of 3
to A definitely takes place
before the multiply. However,
it is not known whether that
was before or after the ex-
traction of the value of A for
the left operand.

0:0 In this example it is not
known whether the first number
input will be divided by the
second, or the second divided
by the first, because
it is not specified whether
the left or right operand is
evaluated first. The input-
output symbol is not an opera-
tor; it behaves exactly as a
variable or a zero-adic func-
tion.

3-53 AK95

In summary, dependence on unspecified ordering occurs
only in statements containing, as other than the leftmost
(i.e., last) operation, assignments that change values of
variables wused elsewhere in the same statement. In this
connection, any input-output activity must be considerea as
a form of assignment, as must calls on functions that
perform such assignments or input-output. Any program that
depends on ordering other than that implied by the
right-to-left rule must be considered an incorrect program.
A dependency of this nature can be very difficult to
discover when one has access to only one implementation of
the language, of course, since most implementations tend to
be at least self-consistent and repeatable in choosing some
ordering.

FUNCTIONS

Functions are stored APL programs. They are created
and modified with the APL function editor, which is fully
described in Section V. More precisely, a function is a
stored sequence of APL statements preceded by a special
line, called the function header line, which defines several
important properties of the function; these are its name,
the number of arguments it accepts, whether it may return a
result, and whether it has within it any local variables.

The names of all functions defined within a workspace
can be listed with the YFNS system command, which is
discussed under "Name Table Management" in Section V.

Arguments and Results

Every APL function accepts a fixed number of
arguments, either zero, one, or two. Functions that accept
no arguments are said to be zero-adic; those that accept one
argument are said to be monadic; and those that accept two
are said to be dyadic. -

The header 1line of every function also specifies
whether the function may return a result. If the header
line indicates that it may, then the function may sometimes
return a result and sometimes not. If the header line
indicates that it may not, then it may never return a
result.

From the standpoint of usage, a zero-adic function

behaves exactly like a variable. If a function name is
encountered during the evaluation of an expression, the
function is evaluated (by bringing forth its stored

3-54 AK95

definition and executing the 1lines within it), and any
result passed back by the function is taken as its value,
and then the expression evaluation resumes. If the function
cannot or has not elected to return a result, and the
context of the function reference is such as to require a
value for the expression evaluation to resume, then a VALUE
ERROR message results, just as if a reference was made to a
variable which had not been assigned a value.

From the standpoint of wusage, monadic and dyadic
functions behave exactly like monadic and dyadic operators
respectively. That is, monadic functions accept only one
operand, a right operand. Dyadic functions accept both a
left ‘and a right operand, between which the name of the
function 1is written. The right-to-left rule governs the
scope of operands and the order of execution of functions
just as for operators: each function accepts as its right
operand the entire remainder of the expression following it;
in the absence of parentheses, operators and function calls
within an expression are performed in right-to-left order.
Again, a function evaluated in a context that demands a
returned value must provide one; otherwise a VALUE
ERROR occurs.

The manner in which the function header line specifies
the properties of a function can now be described. The
function header line is in the form of a sample call on the
function. For example, the header line Z<«X FN Y declares
the function whose name is FN to be a dyadic function
whose 1left argument is known by the name X within the
function definition, whose right argument is known by the
name y within the function definition, and which may
return a result known by the name of 7 within the function
definition. Whatever parts of the header line do not apply
to the particular function being defined are simply omitted.
So, the exact format of a header line is: a name followed by
a left arrow, if the function is to be able to return a
result; a name, if the function is to have a left argument;
the function name itself, which is the only nonoptional
constituent of the header line; and finally, another name,
if the function is to have a right argument. All names in
the function header 1line must obey the APL rules for
constructing names (see "Names" earlier in this section).

Since each APL function has a choice of three argument
options (0, 1, or 2 arguments) and two result options (0 or
1 result), there are six different kinds of function header
lines. Examples of the six kinds are:

Z<«L NAME R (dyadic, result)
Z<«NAME R (monadic, result)
Z<«NAME , (zero-adic, result)
L NAME R (dyadic, no result)

3-55 AK95

NAME R (monadic, no result)
NAME (zero-adic, no result)

Some examples of some simple functions are shown on
pages 3-58 and 3-59.

Local and Global Variables

When a function 1is <called, variables with the names
mentioned in the header line come into existence (that is,
the result variable and the two argument variables, in the
fullest case). The value of the 1left operand from the
calling expression is then assigned to the left argument
variable; the value of the right operand from the calling
expression 1is assigned to the right argument variable; no
assignment is made to the result variable.

These variables, called local variables, are created
even 1if variables of the same name are already in existence

at the time of the function reference. Throughout the
execution of the function, any reference to one of the local
variable names is considered a reference to the

corresponding local variable, and not to any variable that
was 1in existence at the time of the function call. Thus,
the local variable names effectively mask off any access
from within the function to possibly similarly-named
variables outside the function.

During the execution of the function, 1local variables
can be wused freely, and they behave exactly as normal
variables. Their values can be changed at any time by the
assignment operator. Note that changing the value of an
argument local variable has no effect upon the values of
variables outside the function that may have been used to
express the corresponding operand of the function; the
values of the operands are copied into the argument local
variables at the time the function is invoked and there is
no further reference to the actual operands. As with any
other variable, a reference to the value of a local variable
before it has been assigned one is an error (this error, of
course, never occurs with argument local variables, because
they start off with values automatically assigned to them).

An APL function returns a result by assigning a value
to its result local variable. Whatever value is found for
the result local variable at the time the function execution
terminates is taken as the value of the function and
returned to the calling expression. If a function never
assigns a value to its result 1local variable, then the
function will be found not to have a value in the
referencing expression (whether or not this is an error

3-56 AK95

depends upon whether the referencing expression demands a
value at this point).

When a function terminates, its 1local variables
disappear. Other than the extraction of the value of the
result local variable prior to its erasure, no history or
trace is left of its existence. Variables that had been
rendered inaccessible because their names were masked by
similarly named local variables again become accessible,
with their old values unchanged.

The masking of variable names by similarly named local
variables nests to any depth within function calls. That
is, if a function, say F, is invoked with certain local
variable names, say A, B, and C, then those names mask off
any access to other variables similarly named. Until the
function F terminates, any references to A, B, or C will be
to F's local variables, even from within functions called by
the function F (unless local variables in the newly called
functions further mask from accessibility the local
variables of F). For example, if F calls a function G whose
local variables are C and D, then any reference to A or B
within G will be taken as a reference to F's 1local

variables. Any reference to C or D will be taken as a
reference to G's local variables (the local name C masks off
access to F's local variable C). Any reference to still

another name, say E, will not be found as local to either F
or G, but will be searched for in whatever function called
F, and so on. If a referenced name is ultimately found to
be local to no function invocation, then it is said to be
global, and a permanent variable of that name is accessed or
created. Global variables are not erased when functions
terminate.

In addition to the arguments and the result, any number
of other names can be listed in the function header line so
that they become local variables. Such additional names are
listed, each preceded by a semicolon, after the sample
function invocation which has already been discussed. For
example, the header line Z<F X;A;B refers to a monadic
function named F, with argument X and result Z, and
additional local variables A and B. Such variables can be
used within the function to store intermediate results
without danger of destroying the values of any of the
caller's variables. Labels, discussed on page 3-62, are
automatically local variables and should not be entered into
the local variable list.

The)SIV system command can be issued to obtain a
listing of current function invocations, together with the

variable names that are local to each function. Thus, the
YSIV output can be used to determine unambiguously the
referent of any particular name. The)SIV command is

3-57 | AK95

discussed under "Name Table Management" in Section IV.

VTAX3
FUNCTION 'TAX3' NOT FOUND.
INPUT.
TAX3

'"PLEASE TYPE AMOUNT OF SALE'

'TAX IS ';0.01xL0.5+3x0V
TAX3
PLEASE TYPE AMOUNT OF SALE
O:
48,55
TAX IS 1.46
VTAXN
FUNCTION 'TAXN!
INPUT,
TAXN R
YAMOUNT ., .
R;' PERCENT TAX IS
TAXN 5
AMOUNT. .
O:

NOT FOUND.

10.22
5 PERCENT TAX IS 0.51
VTAX
FUNCTION 'TAX'
INPUT.
T<R TAX AMT
T«0.01xL0.5+R*xAMTV
3 TAX 48.55

NOT FOUND.

'50.01xL0.5+RxV

Some very simple examples of
functions. The function edit-
or is discussed in Section V.
Header line: no args or result
for this function.

Call the function.

Output produced by executing
function. Function requests
input and gets it.

From last line of function.
Now a function of one argument
but still no result.

Header: right argument R.
Still only a two-line function
as before.

Execute it.

OK. Now we're ready for the
big leagues. Here is a dyadic
function that returns a re-
sult. Takes rate, amount.
Only one line to this one.
This time the function itself
has no output, but it gives a
value to the calling expres-
sion.
And those values can be
further operated upon.
The parentheses above
were not needed.

But the other set were.
This is tax on 48.55+0.51.
A 5 percent surtax on a 20
percent tax.

A simple function to multiply
by the value of M.

We'd better provide a value.
Try M times 5.

1.46

5 TAX 10.22
0.51

(3 TAX u48.55)+(5 TAX 10.22)
1.97

(3 TAX 48.,55)+5 TAX 10.22
1.97

3 TAX 48.55+5 TAX 10.22
1.47

5 TAX 20 TAX 83.97
0.84

VMX
FUNCTION 'MX' NOT FOUND.
INPUT.
Z<MX X
Z<MxXV

M<3

MX 5
15

VCALL_MX
FUNCTION ' CALL_MX' NOT FOUND.
INPUT.

58 AK95

R<CALL_MX Q Another simple function, whose

R<MX QV only job is to call MX.

CALL MX 5 Q passes 5 to MX, which re-
15 - turns 15, as before.

VCALL MX C 3 /Q/M/ V But wait, let's change the Q
R<CALL MX M to an M in CALL_MX and see
R<MX M what happens.

CALL MX 5 This time MX picks up the M
25 - which is local to CALL_MX.

M The global M is unchanged.
3

MX 5 MX works fine here.

15
Branching

Branching, or the ability to alter the normal
sequential flow of control from one statement to the next,
is an essential feature of any programming language. In APL
the jump operator . performs the jobs of conditional and
unconditional branching as well as function return. 1In
order to understand how it works, it is first necessary to
learn about statement numbers.

STATEMENT NUMBERS

Each executable statement of an APL function is
numbered, beginning with one for the line after the header
line (the header 1line itself is sometimes referred to as
statement zero, but this has no real meaning because it
cannot be branched to). One 1line 1is normally one APL
statement, but occasionally several lines combine to make
one statement due to newline characters imbedded in
character constants.

7«I OP R An example of statement num-
[1] >2xxI,Z«R+1+R=2 bering. The numbers in the
[2] 742 brackets show the statement
[31] >xxR<R-1 numbers considered to be
[4] >3xxZ<(I-1) OP Z associated with each statement

of the function.

Z<N ROUND V38 Another example. Note that
[1] S<L0.5+4/2«1|V<VsN the header line is not
[2] z<Nx(S21pV)[Ayzl+ly counted.

ADD3 ;A A final example.

(1] A<3p~xI<«30
£2] >2x1xI<«I-pA<«A+0
3] A

3-59 AK95

THE JUMP OPERATOR -~

The jump operator > is a monadic operator which
accepts as its operand a scalar or vector of integers. 1If
the operand is a scalar, it is simply the statement number
of the statement to which to jump. If the operand is a
vector with at least one element, then the first element is
taken.as the target statement number (any remaining elements
are ignored). If the operand is a vector with no elements,
then no jump is performed--control passes on to the next
statement in sequence.

The jump operator is wunusual in that it has no
resultant value; hence, it must be the 1last (i.e.,
left-most) operator of any statement in which it is found.

- Since the operand of the Jjump operator can be an
arbitrary APL expression, the jump target can be calculated
instead of merely being a constant. Thus, the same
operator -+ becomes a conditional or computed branch at will
and serves as an unconditional branch when necessary.

The target statement of the jump operation always lies
in the same function as the jump itself. There is no way in
APL to jump out of one function and land on a specified
statement in another.

-3 Unconditional branch to state-
ment 3.
>I Branch to statement I. The

next statement executed will
be determined by the current
value of I, which must be a
numeric integer.

~(N>12)/7 Can be read as "if N is great-
er than 12, then branch to
statement 7". Work it out.
Remember a null vector is no
branch.

>7x1N>12 In index origin 1, this can be
read as "branch to statement 7
if N is greater than 12".

>7+1N>12 This is the way it is written
in origin O.

+S¢7 13 32 Switch, or dispatch table.
Branch to statement 7, 13, or
32 depending upon whether S is
0, 1, or 2.

3-60 AK95

FUNCTION RETURN

Any operand of the jump operator other than a numeric
integer is an error, but a jump to an integer that is simply
not a statement number of the current function is legal, and

is considered to be a

function
function ceases execution, any value found to be

return. That

is,
associated

the

with its result local variable is passed back as the value
of the function, all local variables are erased, and the
interpretation of the «calling expression resumes from the

point at which it invoked the function.

Thus, there are two ways

function: to
or to jump to a
number 0

in APL to return

statement number.

from a
run off the end of the function sequentially,

nonexistent
is conventionally used in a function return jump,
but actually any integer smaller than 1 or greater than

Statement

the

largest statement number present in the function can be
used.

VFACT A factorial calculator will
FUNCTION 'FACT' NOT FOUND. illustrate a conditional re-
INPUT. turn jump.

F«FACT I Header line, one arg, result.

F<1 Answer is 1 if return now. [1]
+>3xI>1 Return if I<1, else go on. [2]
FePxT Multiply in this integer. [3]
I<I-1 Step down one. 4]
»2V And go to test if done. [51]

FACT 3
6

VDRILL Addition drill, types random
FUNCTION 'DRILL' NOT FOUND. small integers to be added by
INPUT, the user.

DRILL3I3d3K No args, three local vars.

I«?210;'+";J«210;" = 2! Type the question. (1]
>3x'Q"#K<[] Read answer, stop if 'Q'. [2]
>1K=T+J Go to 1 if correct. (3]
+>2,p0<«'"SORRY, TRY AGAIN.'V Else gripe and go to 2. (4]

DRILL
6+3 = 7
O:

9
10+5 = 7
O:

8
SORRY, TRY AGAIN.

0:

15
2+7 = 7
0:

Q! Enough for now.

3-61 AK95

STATEMENT LABELS

As can be seen from the above examples, counting
statements to determine their statement numbers is awkward
at best. To overcome this difficulty, statement labels are
provided. A statement 1label is a name preceding any
statement within a function and set off from it by a colon.
All statement labels are considered to be local variables of
the function (they need not be listed again in the header
line) that are automatically assigned the values of their

;espective statement numbers at the time the function is
invoked.

It 1is recommended that statement labels rather than
absolute statement numbers always be used for branching. 1In
addition to being less error-prone and more readable, labels
continue to give correct results when new statements are
added to a function.

VDRILL? Another version of DRILL, this
FUNCTION 'DRILL2' NOT FOUND. one using labels. During the
INPUT. execution of DRILL2, the vari-
DRILL?2;I;d ;K ables new, again, and check
NEW:I+2103'+'3J«210;"' = 2! have the values 1, 2, and 3,
AGAIN: -»CHECKx'Q'zK<[] respectively. The interpreter
CHECK: -»(K=I+J)/NEW has done the necessary count-
+AGAIN,pO«'NICE TRY, BUT NO CIGAR.'v ing for us.

VF
FUNCTION ‘'F' NOT FOUND. Let's also rewrite the fac-
INPUT. torial function with labels.

ANS<F INPUT Horizontal tabs used to space
ANS<1 the program and improve read-
LOOP: +NEXTxINPUT>1 ability.
NEXT: ANS«ANSxXINPUT
INPUT<INPUT-1
+LOOPV
F 4

24

After their initialization at function invocation time,
statement label local variables behave just as other local
variables. Nothing prevents the assignment of new values to
them, or the usage of their values for purposes other than
branching. However, it is doubtful if such practices are
useful, and they can make a program difficult to understand
and dangerous to modify.

Recursion

Since each invocation of a function creates new
instances of its local variables, even 1if similarly named

3-62 AK95

variables are already in existence, functions are fully
recursive in APL. Any function can be invoked at any time,
regardless of it being already invoked. Functions can call
themselves, or call others that will wultimately call
themselves. The rules for determining referents of 1local
names ensure that each invocation of a function has access
to its own local variables, and that access to the caller's
variables is restored upon a return.

VE The factorial function written
FUNCTION 'F' NOT FOUND. recursively. The answer is
INPUT. initialized to 1 in case the
A«E N argument is 0 or 1 (immediate
>(N<d<«1)/0 return). Otherwise, call our-
A<NxEF N-1V self to do N-1 and multiply.

F 5
120

VWINS A recursive program to calcu-
FUNCTION 'WINS' NOT FOUND. late the winning lines in N*K
INPUT. Tic-Tac-Toe (K-dimensional,
W<«N WINS K;X with N on a side). Calls it-
W<(1,N)pN self to do the wins of one
~(K<2)/0 less dimension, then figures
X<(N*K-1)x 141N out how to spread each of them
W«Xo.+N WINS K-1 over the highest dimension.

W+(:W)s(92 1 2QW)9(9? 1 2Q¢W)s(s(1N*K-1)°o+X)
W<((0.5x-/(N+2 0)*xK),N)pWV

4 WINS 1 Ultra-trivial Tic-Tac-Toe: one
line of four cells. There is
1 2 3 4 only one win.
3 WINS 2 Normal 3-by-3 game. There

are eight wins.

WNRP,WPRE, I FR
o O F O o1 OoN
O 0O I JOWOow

Extension of Scalar Functions to Arrays

Since arrays as well as scalars are legal APL values,
arrays can be passed as arguments to functions. Whether an
array argument makes sense in any particular function
depends on what operations it is subjected to in the body of
the function. One interesting special case is that of a
function definition that uses only scalar operations.
Scalar operations are precisely defined earlier in this
section, but, generally speaking, they are those operations

3-63 ' AK95

that manipulate a single scalar operand or a pair of
operands at a time. Since scalar operators extend
element-by-element in their activity to arrays, any function
that uses only scalar operators within its definition also

extends automatically in the same way to handle array
arguments,

MX 3 8 11.53 T17.3 MX uses only scalar operators
9 24 34,59 51.9 so it extends to arrays.

3 TAX 0.79 1.33 5.95 The scalar 3 is replicated to
0.02 0.04 0.18 match the right operand.

3 57 TAX 0.79 1.33 5.95 Element-by-element, 3% of
0.02 0.07 0.42 0.79, 5% of 1.33, 7% of 5.95.

3 5 TAX 1 2 3 4 Here shapes do not match. An
LENGTH ERROR. error report occurs at the
TAX[1] T«0.01xL0.5+pxAMT first conflict. APL marks the

| operation in difficulty.

)SIV Display state indicator and
TAX[2]x T AMT R local variable names.

R Local variables are accessible
3 5 because the function is cur-

AMT rently invoked.
1 2 3 4

R«<3 5 7 9 Supply a better value for R

-1 and jump back to line 1.
0.03 0.1 0.21 0.36 Function completes normally.

Library Functions

A number of generally useful functions for
manipulating workspace parameters are available in the
public workspace >APL>WSFNS. Any of these functions can
be copied with the)CoPY system command from the public
workspace into any user workspace. The)COPY command is
described under "Saving and Reloading Workspaces" in Section
IV. The available functions are:

DELAY ORIGIN SFET
DIGITS SETLINK SFII
E SFCI WIDTH
FUZZ

Each of these functions performs the same activity as
its similarly named system command, except that the function
has the additional capability of being called from within an
APL program. The system commands are described in detail in
Section IV, to which reference should be made to obtain the
exact meaning of each library function.

All the functions are monadic and expect an APL
expression of correct type as argument (E, SFCI, SFEI, and

3-64 AK95

also SFII take a character-string argument; the others, a

numeric argument) . Functions corresponding to system
commands that print the former value of a workspace
parameter (all except DELAY and E) instead return that

value as the result of the function (DELAY and E have no
result) .

The DELAY library function has no system command
counterpart. It takes a numeric integer argument and delays
execution for that many seconds. It uses
"timer_manager_S$sleep", and returns no value.

In Multics APL, the library functions are implemented
as external functions, which is why their names are tagged
with an asterisk it a)FNS 1listing. Further details about
external functions can be found in Section IV.

)COPY >APL>WSFNS
SAVED 10/12/72 1202.0

JFNS
DELAY* DIGITS* Ex FUZZ* ORIGIN* SETLINK=*
SFCIx* SFEIx* SFIIx* WIDTH=*
DIGITS 19 Same as)DIGITS 19.
10
*1
2,718281828459045235
I«ORIGIN O Set the workspace index origin
14 to 0 and remember the old set-
o 1 2 3 ting.
I<ORIGIN I Restore the old setting.
D<'0123456789"'[1+(6p10)TI25] Get date, mmddyy.
D«p[1 21,'/',D[3 u4],'/19',D[5 6] Get mm/dd/l19yy.
T<'0123456789'[1+(3p10)TL(T19):60) Get cpu seconds.
E 'FO APL_LOG;IOA_ DATE:',D,',TUSED:',T,'SEC.;CO'
E 'PR APL_LOG 1 1! Log usage.
date:10/17/1972 ,tused:006sec. Print log entry.
I<WIDTH 0O<«WIDTH 100 Print the workspace page width
80 without changing it.

ERROR HANDLING

Many different kinds of errors can be detected by the
APL processor, When an error 1is detected during the
execution of a statement, APL aborts further interpretation
of the statement, types a message naming the kind of error,
and types a copy of the statement being interpreted with a
marker (a vertical bar) placed under the character that was
being processed at the time of the error. The interpreter
then reads the terminal normally to obtain further
statements to interpret. Since any APL statements can be
typed at this time, APL 1is its own debugging language:

3-65 AK95

var%ables can be displayed; values can be changed with the
assignment operator; the suspended program (if it was a
function being interpreted rather than a 1line from the
terminal) can be restarted with the jump operator.

Error Messages

The most common error messages are listed below, each
with a short definition.

CHARACTER The user typed an illegal overstrike combination
or an undefined escape sequence. One of the
constituents of the combination is marked with the
error marker. No interpretation or other action
is taken wupon lines that have illegal characters
in them.

COMMAND The user typed an incorrect system command. If the
marker is under the command name, then that name
could not be recognized as a legal system command;
perhaps it is misspelled. Otherwise, the command
itself is legal but something is wrong with the
arguments supplied to it. Argument requirements
vary considerably from command to command; the
user should refer to the detailed description of
the particular command in Section IV.

DEPTH Too many function invocations are nested in the
state indicator. Perhaps some function is calling
itself recursively without limit, or perhaps too
many error suspensions have been allowed to
accumulate in the state indicator. No source line
is printed with this error message, because the
problem is not associated with any specific
statement. The interpreter has cut the state
indicator back to the previous console suspension
point and suspended there again. The user must
inspect the state indicator with the)sr system
command and possibly wuse the > operator to
discard useless function invocations being held

there.
DEFN Function definition error, or an illegal call on
the function editor. This can be due to an

illegally constructed function name, an attempt to
create a function with the same name as some
already existing group or global variable, an
attempt to edit a pendent function (see
"Restarting Following a Function Edit" in this
section), an attempt to edit an external function
or to define one with an illegal pathname (see

3-66 AK95

DOMAIN

INDEX

LENGTH

RANK

SYNTAX

VALUE

WS FULL

"External Functions" in Section 1IV), or the
occurrence of the editor-call character V in an
incorrect context.

An operation demands an operand of a different
type than supplied, or the value supplied is out
of the range of values meaningful to the operator.
The operator is marked.

An index or subscript value was outside the bounds
or dimensions of the subscripted array. The
error marker is wunder the 1left bracket of the
subscript list.

The lengths of the left and right operands of an
operator did not match. The operator is marked.

The number of dimensions of the 1left and right
operands of a scalar operator did not match, or
some operator demanding an operand of a specific
rank did not find it. The operator in question is
marked.

An illegally-formed statement was encountered.
Some examples of syntax errors are mismatched
parentheses and brackets, missing operators, and
missing operands. Everything to the left of the
error marker is acceptable, but the item marked
with the error marker cannot logically follow what
preceded it, or, if the the error marker is off
the end of the statement, something more was
expected.

A variable's value was called for before a value
was assigned, or a function did not return a
result when one was required. The name lacking a
value is marked.

Workspace full. The workspace could not
accommodate an item for which the interpreter
needed space. As with a DEPTH error, no source
statement is printed with a WS FULL error, and
the state indicator may need to be cut back to the
previous console suspension point. This error can
be caused by a genuine lack of room in the
workspace, which can be remedied by erasing
needless objects; or by an attempt to create an
APL value larger than a Multics segment, which has
no remedy (though a workspace can grow to many
segments in size, each individual value must fit
wholly within one segment). Remember that local
variables and saved function invocations consume
space too; they can be erased by clearing the

3-67 AK95

state indicator.

Due to the extremely large workspace size possible on

Multics, DEPTH and WS FULL errors do not occur
frequently.

All error messages from Multics APL are written onto
the 'stream "user i/o". Furthermore, following an error,
Multics APL no JTonger reads and writes the streams
?user input" and "user output", but instead performs all its
input/output on the stream "user i/o". The stream

attachments are not disturbed; the implementation is such
that the former streams are simply not used. At present
there is no way to cause an invocation of APL to return to
using "user_input" and "user output". The only way
presently of returning to "user input" and "user output" is
to save the current workspace with the)SAVE system
command, exit from APL with the)@ system command,
re-invoke APL (the new invocation will again read
"user_input" and write "user output"), and finally get back
the workspace with the)L0OAD system command.

13.4 Domain error. The operand of
DOMAIN ERROR. the 1 operator must be an

13.4 integer. The operation is

| marked.

22+15 6 7 Rank error. The operand of
RANK ERROR. the 1 operator must be a

22+15 6 7 scalar, not an array. Again

I the 1 is marked.

"ABCDEF'[1 4 9 3] Index error. The 9 is out of
INDEX ERROR. range. Again, the operator is

'"ABCDEF'[1 4 9 3] marked.

|

+/\NOTTHERE x5 Value error. The variable
VALUE ERROR. NOTTHERE has no value yet.

+/ \NOTTHEREXS

|

(11)+(((6p10)T(T25)260)[3 4] Syntax error. The
SYNTAX ERROR. interpreter would

(11)+(((6p10)T(T25)+60)[3 ul like a closing

I parenthesis.

1 0 1\'"AB(C' Length error. The number of
LENGTH ERROR. ones in the left operand is

1 0 1\'"4B(C' not equal to the length of the

| right operand.

3-68 AK95

Pendent Statements and the State Indicator

To fully explain the action of the APL processor on an
error, the concepts of pendent and susgended statements and
the state indicator must be defined.

When the APL interpreter is executing an APL statement,
most often it can process the statement completely from
beginning to end without turning its attention to any other
APL statement in the process. However, if the statement
contains a reference to a function or to the evaluated input
symbol a, then the evaluation of the given statement
cannot be completed until the interpreter has evaluated one
or more additional statements (the statements in the body of
the function definition, or the statement typed as input).
In these cases, the further execution of the given statement
is said to be pendent upon the successful completion of the
function or evaluated input line invoked by the given
statement.

Many things must be safely stored away by the
interpreter when a statement becomes pendent so that its
evaluation can be resumed accurately once the invoked
statements have been completed. An area of the workspace
called the state indicator is reserved for this information.
Whenever a statement becomes pendent, the APL processor
creates an item for the state indicator stack containing all
the relevant information (the state indicator behaves as a
stack because items on it are needed on a last-in, first-out
basis) .

Since evaluated input statements as well as statements
within a function can contain further function and evaluated
input references, the interpreter often needs to make
several successive entries to the state indicator stack.
For example, 1in a nest of several function calls, the
outermost statement is pendent upon completion of the first
function «call, and some statement in that function is
pendent upon the completion of another call, and so on.
During execution of the innermost function, the state
indicator remembers the partial evaluations of all the
pendent statements. As each invoked function returns, the
corresponding item is recalled from the state indicator
stack so that the execution of the invoking line can be
resumed. When eventually all functions return, the state
indicator will be empty again.

Suspended Statements

The exact state of the APL interpreter following an
error message can now be clarified.

3-69 AK95

When an error occurs during the interpretation of a
line, the interpretation of the line stops, any temporary
storage consumed by intermediate values incident to
evaluating the line is reclaimed, and the line is discarded.
If the portion of the line that was already evaluated at the
time of the error included assignments to variables or
input/output activity via the O symbol, then such
assignments and input/output activity will have taken place,
and the interpreter does not and cannot undo them.

If the 1line in error was a line read from the console
(as either immediate or evaluated input), then there is no
change to the state of the interpreter in response to the
error. The interpreter again requests the input it was
awaiting by typing either the immediate go-ahead signal (six
spaces) or the evaluated go-ahead signal ([:).

If the 1line in error was a line from the body of a
function definition, then execution of the function is
temporarily suspended. This means that statements cease to
be drawn from the function definition for execution.
Instead, an entry is made to the state indicator remembering
the number of the next statement of the function to be
executed, and the interpreter reverts to reading statements
from the console. The state indicator contains the saved
partial evaluations of the pendent statements that
ultimately led to the function line containing the error, as
well as to the newly made entry for the function suspension.
Note that the suspension entry on the state indicator is
different from the pendent entries in that it does not
include the partial evaluation of any line, and that it
represents a point at which control was given to the user,
by letting him execute statements from the console as
immediate input.

Following an error and a suspension, arbitrary APL
statements can be typed, and they execute completely
normally. In particular, the normal rules for establishing
the referents of names are still in effect: the suspended
function's local variables are still in existence, hence
they are fully available for display and alteration.
Furthermore, the local variables of the pendent functions
that invoked the suspended function, if any, are in
existence too, and those that are not masked by similarly
named variables in later invocations are equally accessible.
Since the full power of APL is available for manipulating
these variables, APL is truly its own debugging language.

The)SI and)SIV system commands are useful for
printing out the contents of the state indicator following

an error. The)SI command prints the name of each
function saved 1in the state indicator together with the
statement number on which it is to resume execution. The

3-70 ' AK95

command)SIV is the same except that it also 1lists the
names of the local variables associated with each function
invocation. The listing is in the order of most recent to
least recent, and the suspended function is tagged with an
asterisk to distinguish it from the pendent functions.

VPLUS Define a function for the pur-
FUNCTION 'PLUS' NOT FOUND. poses of illustrating errors
INPUT. and the state indicator.

C«A PLUS B
C+A+BV

)ST The state indicator is empty.

1 2 PLUS 3 4 5 Cause an error in the func-
LENGTH ERROR. tion. The interpreter marks
PLUSL1] C<«A+B the operation in error and

| suspends.

)SI
PLUS[2]=* The * means PLUS is suspended.

)SIV Once more with the local
PLUS[2]1%* c A B variable names.

A The variables are accessible.
1 2

B
3 4 5

dA+3 PLUS 8x24B Any APL statement can be
37 28 executed.

Since any arbitrary statement can be entered following
a suspension, further function invocations and evaluated
inputs can be performed. Such additional invocations cause
additional entries to be made 1in the state indicator to
record the saved partial evaluations of the pendent invoking
lines. The new entries are stacked on top of the old
entries, because they will be needed first when the new
invocations terminate and control unwinds back to the
previous suspension point again.

If some new invocation runs into trouble and causes an
error message, the new invocation will suspend also. Thus,
the state indicator may contain several suspensions stacked
on top of one another. The paragraphs following the example
below show to dispose of how to dispose of these
suspensions.

VSIXPLUS Continuing the above example,
FUNCTION 'SIXPLUS' NOT FOUND. here we define two more
INPUT. functions. SIXPLUS calls PLUS
Z<SIXPLUS X to add six to its argument.
«6 PLUS XV

VQTIMES QTIMES multiplies its argument
FUNCTION 'QTIMES' NOT FOUND. by 0O, that is, by whatever
INPUT. expression is typed in for the
B«QTIMES A value of the U symbol.

3-71 AK95

B<[xAV

)SIV The state was unaffected by
PLUS[2]=* c A B the function edits.

QTIMES 31 Quad times 31.

a: APL would like a value for [J.

)SIT Let's look at the state now.
O A [J line is currently pendent.
QTIMES[1] Preceded by pendent QTIMES.
PLUS[2]%* And PLUS is still suspended.
a: APL again requests [] input.

SIXPLUS ABLE Give it an erroneous line.
VALUE FERROR. alde 1is undefined.

SIXPLUS ABLE

[:
0: 'APL says try again, please.

)SI Errors in immediate or evalu-
U ated input do not change the
QTIMES[1] state.

PLUS[2]*
O: Input requested yet again.

SIXPLUS 'ABC! ' This time cause an error down
DOMAIN ERROR. in the function PLUS. Charac-
PLUS[1] C<«A+B ters are not in the domain of

| the + operator.

)SIV Now the state is changed.
PLUS[2]=* c A B Most recent suspen-
SIXPLUS[1] Z X sion of PLUS.

O
QTIMES[1] B A
PLUS[2]* c A B Previous one.

A The names 4 and B refer to the
6 local variables of the most

B recent invocation of PLUS.
ABC

X X in SIXPLUS also has the
ABC value '4BC' .

Restarting Suspended Functions

Following the suspension of a function, the Jjump
operator - is a legal constituent of a statement typed from
the console. A jump can be made to any of the lines of the
most recently suspended function. Of course, this is
generally useful only after whatever caused the error
condition has been remedied by the execution of other APL
statements. The user must also be careful to Jjump to the

correct 1line -- whether the line that triggered the error
needs to be executed again depends on the particular
function. Statement labels are defined and accessible, so

they can be used to make jumps when convenient.

3-72 AK95

As always in APL, there is no way to jump to a line of
other than the most recently invoked function.

B«1 2 3 Continuing the example begun
B in the previous section, let's
1 2 3 correct the bad value of B.
X This doesn't change X, but Xx
ABC will not be referenced again.
+1 Jump back into PLUS at line 1.
217 248 279 All invocations unwind.
)ST The state indicator is now
PLUS[2]%* back to the previous suspen-
B sion of PLUS. The previous
3 4 5 local variables again become
+>1 Restart this one too.
b 6 1 2+3 44,
)ST State indicator empty now.

Clearing the State Indicator

Often it 4is desired to merely discard a suspension in
the state indicator rather than restart it. The jump
operator - alone, with no operand, erases the state
indicator back to the previous suspension point. Successive
entries of -+ alone can be used to totally clear the state
indicator.

)SI Assume that we have this state
PLUS[2]1%* : indicator, as from the example
SIXPLUS[1] (see "Suspended Statements").
0
QTIMES[1]

PLUS[2]=*

-> Clear out the most recent

)SI . suspension.

PLUS[2]%* Now we have only this one.
> Another - clears the state

)SIT indicator entirely.

Restarting Following a Function Edit

A pendent function cannot be edited, because at least one of
its lines is only partially evaluated and saved in the state
indicator. There is no meaningful way to associate the
saved information with an edited function definition when
restarting. Consequently, if it 1is necessary to alter a
pendent function, the state indicator must be cleared past
it with the -+ operator, as discussed above.

3-73 AK95

Suspended functions, however, can be edited and then
restarted ggain successfully. When a function is restarted
after an edit, the following restrictions apply.

No local variables are created or destroyed when a
function is restarted. If any change was made in the local
variable names during the edit, variables with the new names
Will be created only at the next time the function is
invoked. All previous invocations will have accessible to
them only the 1local names that were created at their
respective invocations. Any reference to a new name by a
restarted function will be satisfied by the normal name
referencing rules: it will be searched for in the calling
function, in its caller, and so on, until ultimately it may
access or create a global variable.

The values of the 1label variables in previous
invocations are not altered, even if statements are moved
around in the function definition. However, on any new
invocation, the new label 1local variables will correctly
correspond to the new function definition.

Other header line changes, such as changing a function
from monadic to dyadic, or adding a returned value, for
example, similarly affect only new invocations of the
function.

The statements of the function, however, are defined
immediately by the new definition, even in previously
suspended invocations. For example, 1if, following a
suspension of a function, an operator is added to line 2 of
the function definition, and then a jump is made to 1line 2
of that function, then the new definition of line 2 is
fetched and executed, and the added operator is performed.

The erasing of local variables on a function return is
consistent in that precisely the ones that were created upon
function invocation are erased upon termination, even if the
local variable names were altered in an intervening function
edit.

When there is any doubt as to the meaning of restarting
an edited function, it is best to clear the state indicator
and start fresh.

Panic

In certain exceptional circumstances, the APL
interpreter may find itself so confused that it cannot
proceed. This is usually due to an error in the interpreter
itself or else a serious malfunction in the Multics

3-74 AK95

operating system or hardware, rather a user's error. When
this happens, APL prints the message

...APL PANIC...COMMAND LOOP CALLED...

and invokes a Multics listener beneath itself. The APL
session in progress cannot be continued.

The recommended procedure following a panic is to notify the
system programmers at your installation. Forward to them a
stack trace, which can be obtained with the Multics
"trace_stack" command, and your console sheet, with as much
history as possible retained concerning what you were doing.
You may continue to use APL by invoking it again, but there
is no way to recover the state of your interrupted session.

3-75 AK95

SECTION IV

SYSTEM COMMANDS

SYSTEM COMMANDS GENERALLY

System commands are lines typed by the user to adjust
or control the operation of the APL interpreter. They are
distinguished from expressions to be interpreted by always
beginning with a right parenthesis (no legal expre551on
could ever begin that way). The right parenthesis is
followed by the name of the particular system command, which
is then followed by arguments separated by spaces. The
arguments required by each command vary from one to the next
and are discussed under the individual command descriptions
below.

System commands can be typed whenever the APL processor
is awaiting immediate input or evaluated input. They cannot
be typed while editing a function, nor can they be placed in
functions for execution when the function is called, nor
can they be typed while the interpreter is 1listening for
character input. A system command is performed as soon as
it is typed, and then APL requests again the input it was
awaiting before encountering the command (unless the action
of the command itself was such as to cancel the need for
that input).

WORKSPACE PARAMETERS

Each workspace contains eight data values used for
specific, fixed purposes by the APL processor. These are
the index origin, the page width, the number of significant’
digits, the fuzz, the random number seed, the string for
immediate input, the string for evaluated input, and the
string for character input. Each of these workspace
parameters has associated with it a system command to set
its value.

The workspace parameters are also affected by
the)CLEAR and)LOAD system commands. The)CLEAR command

4-1 AK95

resets all parameters to their default values, while

the)Lo4D command sets them to their values as recorded in
the saved workspace.

In addition, each workspace parameter is also
changeable by an APL function of the same name as the system

command; the functions that accomplish this are called
library functions. Their definitions can be copied with
the)copry system command from the public

workspace >APL>WSFNS into any user workspace. Section III
describes the use of library functions in more detail.

The)ORIGIN System Command

The JORIGIN system command takes as its argument
either the constant 0 or the constant 1. The command
establishes its argument as the new value of the index
origin and types out the old value. The index origin of a
clear workspace is 1 by default. The index origin of a
workspace is saved and restored by the)SAVE and YLOAD
system commands.

The index origin determines whether numbers
from 0 to N-1 or from 1 to N will be used to number
coordinates and elements for various operators:

A[A;A;...;4A] interpretation of subscripts;
15 V14 result of index operators;
AA |7 result of grade operators;
A 5?5 result of roll and deal;
A(S]A ARV interpretation of coordinate
$LS14 VOLSIA numbers.
V/[S1A V\[SJA
o0/[S514

Examples:
JORIGIN 1

WAS 1
A<'"ABCDEFGHIJKLMNOPQRSTUVWXYZ,.
AV'HOW ARE YOU?'

8 15 23 29 1 18 5 29 25 15 21 30
A[6 9 14 5 27 29 20 8 1 14 11 19 28]

FINE, THANKS.

14
1 2 3 4
LOTS<«?10000p100
(L/Lors),(I/LOTS)
1 100

O«M<«?3 4p100

80 88 24 82

4-2 AK95

59 24 59 32
84 1 74 24

+/011M
223 113 157 138
+/021M
274 174 183
AL11M
2 3 1 3
1 2 2 2
3 1 3 1
YORIGIN 0
WAS 1

AV'HOW ARE YOU?'
7 1y 22 28 0 17 L 28 24 14 20 29
A[S5 8 12 4 26 28 19 7 0 13 10 18 27]
FINE, THANKS.
14
0 1 2 3
LOTS«?10000p100
(L/LoTS),(I/LOTS)
0 99
+/L01M
223 113 157 138
+/[11M
274 174 183

The)WIDTH System Command

The)WIDTH system command takes as 1its argument an
integer constant from 30 to 130. The integer supplied
is established as the new page width to be observed by the
APL output routines, and the previous value of the page
width is typed out. The page width of a clear workspace
is 80 characters. The page width of a workspace is saved
and restored by the)34VE and)LOAD system commands.

The page width of a workspace determines the maximum
number of characters which the APL output routines place on
a line before deciding that the line is full and overflowing
to the next line. Successive elements of a vector continue
to be placed on one line wuntil one of the elements no
longer fits within the established page width. Then that
element and all later ones are deferred to a following line
or lines. The exact formatting of the output of values is
discussed in Section III.

The page width of a workspace affects only the printing
of system command responses and the printing of data values.
It does not affect the printing of function definitions by
the editor, nor does it affect the printing of error

4-3 AK95

messages. Source lines printed by the editor and in error
messages always appear in their actual length, regardless of
the workspace page width. The page width of a workspace
does not affect input, but only output; as discussed 1in

Section II, any input line to the APL processor may be up to
256 characters in width at all times.

A<117

B«3 LpO112

JWIDTH 80
WAS 80

A

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
B

3.141592654 6.283185307 9.424777961 12.56637061
15.70796327 18.84955592 21,99114858 25.13274123
28.27433388 31.41592654 34,55751919 37.6991118%4

JWIDTH 50
WAS 80
A
i1 2 3 4% 5 6 7 8 9 10 11 12 13 14 15
16 17
lq

3.141592654 6.283185307 9.424777961
12.56637061
15,70796327 18.84955592 21.99114858
25,13274123
28.27433388 31.41592654 34,557519189
37.69911184
JWIDTH 30
WAS 50
A
i 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16
17
B

3.141592654 6.283185307
9.424777961
12.56637061
15,70796327 18.84955592
21.99114858
25,13274123
28.27433388 31.41592654
34.557519189
37.69911184
'"NOTE THAT THE WIDTH AFFECTS CHARACTER OUTPUT TO00.'
NOTE THAT THE WIDTH AFFECTS CH
ARACTER OUTPUT TO0O0.

4-4 AK95

The)DIGITS gystem Command

The JDIGITS system command takes as its argument an
integer constant from 1 to 19. The integer supplied is
‘established as the new number of significant digits for the
workspace, and the old value is typed out. The number of
significant digits of a clear workspace is 10. The number
of significant digits of a workspace is saved and restored
by the)SAVE and)LOAD system commands.

The number of significant digits of a workspace
determines only how values are formatted for printing. It
does not affect the stored values themselves, nor does it
affect their calculation. All values in Multics APL are
calculated to 63 bits of precision (approximately 19 decimal
digits). As a value is printed, it is rounded to the
desired number of significant digits when it is converted to
printable characters.

A<+9999 . 4x0,01*14
B«3 4por12
C<+6830 2,2E8 2,.718281828 3.14159265358979

YDIGITS 10

WAS 10
A

99.994 0.,99994 0.,0099994 9,9994E 5
B[;1]

3.141592654 15,70796327 28.,27433388
c

6830 220000000 2.718281828 3.141592654
YDIGITS 5

WAS 10
A

99,994 0,9994 0,0099994 9.999uUE 5
B[;3]

9.4248 21,991 34.558
c

6830 2.2E8 2.7183 3.1416
YDIGITS U4

WAS 5
A

99,99 0.9999 0.009999 9.999E 5
B[3;]

28,27 31.42 34.56 37.7
c

6830 2.2E8 2.718 2.1u2
YDIGITS 3

WAS U4
A

100 1 0.01 0.0001
B[2;]

15.7 18.8 22 25.1
c

4-5 AK95

6.83F3 2,28 2.72 3.14
JDIGITS 19

WAS 5
3+113

3 1.5 1 0.75 0.5999999999999999999 0.5
0.4285714285714285714 0.375 0.33333333333333333383
0.3 0.2727272727272727273 0.25
0.2307692307692307692
)JDIGITS 18

WAS 19
3%+5

0.6

The)FUZZ System Command

The)FUZZ system command takes as its argument a
constant greater than or equal to zero but less than one.
The argument supplied is taken as the new workspace fuzz,
and the o0ld fuzz 1is typed out. The fuzz of a clear
workspace is 1.0E 13. The fuzz is saved and reloaded by
the)SAVE and)LOAD system commands.

The workspace fuzz is used as an acceptable tolerance
limit whenever APL is comparing two numbers for equality.
Two numbers are considered equal if they are within fuzz of
each other. The purpose of having a tolerance for such
tests is to eliminate dependence of the decision on the last
few digits of the numbers involved; the last few digits of
results are not always correct due to the finite precision
of computer arithmetic.

The fuzz is also used when a particular value is
required to be an integer. Any number within fuzz of an
integer is accepted. Examples of this are dimension numbers
and subscript values.

Of course, setting the fuzz wide is not a cure-all for
domain errors. In general, a comprehensive error analysis
should precede any tampering with the fuzz.

A<50x0,01%19
A
0.5 0.005 G5E 5 ©SE 7 SE°9 SE 11 SE 13 SE 15 5E 17
A=0
o 0o o o o O 0 1 1
'XYZ'[0.999999999999999]

X
'XYz'[0.99]
DOMAIN ERROR.
'XYZ2'[0.99]

4-6 AK95

YJFUZZ 0.000001

WAS 1E 13
A=0

o 0 o0 1 1 1 1 1 1
YFUZZ 0.1

WAS 1E” 6
A=0

o 1 1 1 1 1 1 1 1
'XYZ'[0.99]

X
YFUZZ O

WAS 0.1
A=0

0O 0 0 0O O o0 o0 0 o0
'XYZ'[0.99999999999939999999]
DOMAIN ERROR.
'XY2'00,99999999993999999999]
|

The)ggrrrvk System Command

The)SgTLINK System command takes as its argument an
integer constant between 1 and 34359738367, Its
argument 1is established as the new seed for the
multiplicative congruential random number generator, and the
old value of the seed is typed out. The initial seed of a
clear workspace is derived from the real-time clock at the
time the workspace is cleared. The random number seed is
saved and restored by the YSAVE and YLOAD system
commands.

In the random number generator used by Multics APL, the
seed used to produce each random number is a function of the
seed used to produce the previous one. The sequence of
random numbers generated in a clear workspace cannot be
predicted in advance, as the seed of a clear workspace
depends upon the calendar clock. For applications requiring
a reproducible sequence of random numbers, the seed can be

initialized with the)YSETLINK system command or
the - sgrpINk library function. Since the seed is restored
by the YLOAD system command, the random number sequences
produced following repeated loads of the same saved

workspace will also be identical.

YCLEAR
CLEAR WS.
YSETLINK 123456
WAS 18817044392
?10p100
94 86 40 46 15 62 57 75 11 58
YCLEAR

4-7 - AK95

CLEAR WS.
JSETLINK 123456
WAS 18882306764
710p100
94 86 40 46 15 62 57 75 11 58

The)SFII System Command

The)SFII system command takes as 1its argument a
character string of up to sixteen characters enclosed
between quotes. The string may contain any of the APL
graphics as well as control characters such as newlines and
tabulates. The given string is established as the string to
be typed by the APL interpreter whenever it is awaiting
immediate input; i.e., a line to be interpreted. If the
given string is null, the interpreter will not type anything
as a go-ahead signal. The string for immediate input in a
clear workspace is six blanks. The string for immediate
input is saved and restored by the)SAVE and YLOAD
commands.

If either of the Multics streams "user_input" or
"user_output" is not attached to a terminal, then none of
the go-ahead strings are typed, regardless of whether they
are null.

YSFII ‘'==>"
==>14
1 2 3 L
==>)SFII 'TYPE:
!
TYPE
14
1 2 3 L
TYPE:
YSFII '!
14
1 2 3 L
YSFII ' '
14

The)SFEI System Command

The)SFEI system command is identical to the YSFIT
system command except that it concerns the string for
evaluated input. The interpreter awaits evaluated input in
response to the execution of the [1 operator in a line it

4-8 AK95

is interpreting. In a clear workspace, the string for
evaluated input is a quad, a colon, a newline, and six
blanks.

2x(

O

==>1Y4
2 4 6 8
O+1
==>)SFEI '0'
O)SFII 'I: '
o4

2 3 L 5

I:)SFEI '0:
]

I:)SFII ! '
12+0

0:
14

12 6 4 3

The)SFCI System Command

The)SFCI system command is identical to the)SFII or
the)SFEI system commands except that it concerns the

string for character input. The interpreter awaits
character input in response to the execution of the [
operator in a 1line it is interpreting. In a clear

workspace, the string for character input is null; that is,
nothing is typed before awaiting character input.

o0
)SFCI 'WOW.'
'.WOW' ICFS)
)SFCI 'WOW.'
ul
WOW.ABLE BAKER
REKAB ELBA
)SFCI '.

'

tE =

THERE
o 0 1 0 1
YSFCI '!
540
BRIEFLY, THE PURPOSE IS TO MAKE THIS STRING
BRIEF

4-9 AK95

NAME TABLE MANAGEMENT

The name table is an area of the workspace set aside
for remembering names and the objects to which they refer.
Names are used to refer to variables, functions, and groups.
A number of system commands exist for inspecting and
manipulating the name table.

A variable is simply an APL value that has been given a
name. Recall that a value in APL is a rectangular array of
numeric or character elements that can have any number of
dimensions. Variable names can be either local or global;
the distinction is explained in Section III, but briefly, a
name is local when it is listed in the header line of a
function. Local names exist only during the execution of
the function to which they are 1local. All remaining
variables are global. The names of all the global variables
which exist in a workspace can be printed with
the)VARS system command. All of the 1local variables
currently in existence, together with the names of the
functions to which they are 1local, can be listed with
the)SIV system command.

A function is a stored APL program. The names of all
the functions defined in a workspace can be listed with
the)FNS system command. The names of the ones currently in
execution may be listed with the)SI command.

A group is a list of names of other objects. Grouping
the objects allows them to be copied and erased as a unit,
without repetitively typing their individual names. Groups
have no significance other than in the copy and erase
commands. Groups are manipulated with the)GROUP,
JGRP, and)GRPS system commands.

The YERASE system command can be used to remove any
object listed by the)VARS,)FNS, or)GRPS commands from
the workspace. Erased objects are completely discarded,
freeing the name and storage they occupied for other uses.
Local variables cannot be erased by the YJERASE command,
but they are erased automatically when the function to which
they are local ceases execution.

The YJCLEAR command is used to erase an entire
workspace and everything in it. It is a way of getting a
fresh start. The JCLEAR command not only erases all

objects in a workspace, but it also clears the state
indicator (the record of functions currently in execution)
and resets the workspace parameters (such as page width and
index origin) to their default values. The workspace
created when APL is entered from Multics 1is a clear
workspace.

4-10 AK95

The)VARS System Command

The)VARS system command is used to print out a list
of the global variable names defined in a workspace. The
list is produced in alphabetic order, and is printed in as
many columns across the page as the workspace page width
allows.

The YVARS system command can be issued without any
arguments, in which case it lists all the global variables.
Optionally, it can also be issued with a name as its
argument, in which case it lists only names which match or
follow the argument name in alphabetic order. Thus, if it
is desired to list only a subset of the variable names, the
starting name can be supplied as an argument to)VARS and
the QUIT button can be pressed when enough names have been
displayed. The name supplied as the argument need not exist
in the workspace; it is wused only in an alphabetic
comparison to decide which names to print.

YVARS
A B DELTA DIVIDE DOGWORK LL_PTR MAT
PRIN RATE SYZYGY THIS_IS_A_VERY_LONG_ONE TOKEN
X Y

YVARS D
DELTA DIVIDE DOGWORK LL_PTR MAT PRIN RATE
SYZYGY THIS_IS_A_VERY_LONG_ONE TOKEN X Y

YVARS DOODLE
LL_PTR MAT PRIN RATE SYZYGY
THIS_IS_A_VERY_LONG_CNE TOKEN X Y

YVARS ZINSMEISTER

YCLEAR
CLEAR WS.

YVARS

ABLE<3

YVARS

ABLE

The)FNS System Command

The)FNS system command is used to print a list of the
names of the functions defined in a workspace. Like
the)VARS command, the)FNS command prints its list in
alphabetic order, and a name is accepted as an optional
argument indicating where to begin the list.

One special feature of the YENS system command
relates to external functions. External functions are
thoroughly discussed later in this section, but briefly, an
external function is one whose definition is not supplied in
the APL language itself, but in some other Multics language,

4-11 AK95

such _as PL/I. The names of such externally defined
functions are tagged with an asterisk in the)FNS 1listing.

JFNS
F FOLLOW JPZ ORIGIN* PLOT PLOTC ZETA
JFNS PLOTB
PLOTC ZETA
JMFN WIDTH
)FNS PLOTB
PLOTC WIDTHx ZETA

The)GRPS System Command

The)GRPS system command is used to print a list of
the names of the groups defined in a workspace. Like
the)VARS and)FNS commands, the)GRPS command prints
its list in alphabetic order, and accepts a starting name as
an optional argument.

)GRPS

GRAPHING_ROUTINES STAT_PKG
JGRPS S

STAT_PKG

The)GRP System Command

The)GRP system command 1lists the names of the
members of a group. It takes as its argument the name of a
group.

JGRP GRAPHING_ROUTINES

PLOT PLOTC
)GRP STAT_PKG
DELTA F FOLLOW JPZ SYZYGY ZETA

The)GROUP System Command

The)GROUP system command is used to gather objects
into a group, to append more objects to a group, or to
disband a group.

The first argument of the)GROUP command must be the
name of the group upon which the command is to operate. 1If
the purpose of the)GROUP command is to create the group,
then the group need not yet exist at the time the command is
issued; otherwise, it is an error if the group mentioned as
the first argument does not exist.

4-12 AK95

If no further arguments beyond the group name are
supplied, then the YGROUP command disbands the group.
Disbanding a group has no effect upon its members; the only
consequence is that they are no longer considered to be in a
group. This should be carefully contrasted with erasing a
group, which also erases its members. The)ERASE command
is discussed in the next section.

If some additional names are typed following the group
name argument, then the)GROUP command establishes a group
of the designated name having the indicated members. Any
name can be a member of a group: a variable name, a function
name, the name of another group, or even a name which has
never been used (a name which has no referent yet--if
subsequently an object is created with that name, then the
new object will be considered to be a member of the group).

There is only one name that cannot be made a member of
a group: the group's own name itself.. That is because the
occurrence of the group's own name in the list of proposed
members has a special meaning to the)GROUP command: it
means that all the previous members of the group are to be
retained in the new group along with the new members. This
provides a way of appending new members to an existing
group.

An o0ld group of the same name as the newly established
group is disbanded by the)GROUP command.

JGROUP ONE A B C Create a group named ONE .
)GRPS It is immaterial whether or
ONE not the objects 4 , B , or
)GRP ONE C exist.
A B c
JGROUP TWO D E F ONE A group can be a member of a
YJGROUP TWO TWO G group. Append an object to
JGRP TWO group TWO .
D E F G
JGROUP ONE Disband group ONE .
JGRPS

Two
JGROUP ONE A B ONE (C Error. One cannot append to
COMMAND ERROR. a group that does not exist.
JGROUP ONE A B ONE C

A<1 Another error. A name cannot
JGROUP A X Y 2 by used to refer to more

NAME DUP ERROR. than one object at once; in
JGROUP A X Y Z this case, a variable as well

l as a group.

4-13 AK95

The)ERASE System Command

The)ERASE command is used to delete objects from a
workspace. Its arguments are any number of names of objects
to be deleted. The objects can be global variables,
functions, or groups. When an object is erased, it is
completely removed from the workspace and discarded. No
record of its previous existence remains. Its name and the
storage it occupied become available for other uses.

Local variables cannot be erased by the)ERASE
commapd. However, they are automatically erased when the
function to which they are local completes its execution.

When an argument to an)ERASE command is a group, in
addition to the group being disbanded, the variables and
functions that are members of that group are erased. Groups
that are members of the mentioned group are disbanded, but
their members in turn are not affected. Thus, erasure of
groups containing groups is not fully recursive; only the
members of the groups mentioned in the)ERASE command
itself are erased.

JVARS
A B DELTA DIVIDE DOGWORK LL_PTR MAT
PRIN RATE SYZYGY THIS_IS_A_VERY_LONG_ONE TOKEN
X Y
)FNS
F FOLLOW JPZ ORIGIN* PLOT PLOTC ZETA
)GRPS
GRAPHING_ROUTINES STAT_PKG
)JGRP GRAPHING_ROUTINES
PLOT PLOTC
YJGRP STAT_PKG
DELTA F FOLLOW JPZ SYZYGY ZETA

JERASE A B X STAT_PKG
YERASE DIVIDE GRAPHING_ROUTINES ORIGIN SYZYGY LL_PTR

NOT ERASED: SYZYGY Because it was already gone

YVARS from the previous erase.
DOGWORK MAT PRIN RATFE THIS_IS_A_VERY_LONG_ONE
TOKEN Y

YFNS No functions left.

)GRPS No groups, either.

The)CLEAR System Command

The)CLEAR system command is used to obtain a fresh
workspace. When the YCLEAR command is issued, the APL
processor types CLEAR WS, erases all objects, discards the
state indicator and all local variables; resets the index
origin, page width, number of significant digits, fuzz,

4-14 AK95

~

go-ahead strings, and workspace identification to their
default values; and reads the calendar clock to obtain a new
seed for the random number generator.

The JCLEAR command does not affect the input/output
stream switching or the timers maintained by the I-beam
system-dependent operator.

JVARS
A B DELTA DIVIDE DOGWORK LL_PTR MAT
PRIN RATE SYZYGY THIS_IS_A_VERY_LONG_ONE TOKEN
X Y
YFNS
F FOLLOW JPZ ORIGIN=* PLOT PLOTC ZETA
)GRPS
GRAPHING_ROUTINES STAT_PKG
JCLEAR
CLEAR WS.
JVARS
JFNS
)GRPS

The)SI System Command

The VST system command is used to inspect the state
indicator of the APL processor. The state indicator 1is an
area of the workspace set aside to record the state of
functions currently invoked.

The meaning and workings of the state indicator are
fully explained in Section III, but, briefly, the state
indicator acts as a stack. As one APL statement invokes
another (either as a function or as evaluated input), the
information pertaining to the partially evaluated invoking
line is stacked in the state indicator. The APL processor
is then free to evaluate the invoked 1lines, knowing that
when it finishes it can return to complete the evaluation of
the invoking line by restoring the saved state of evaluation
from the state indicator stack. Since the invoked
statements can further invoke other statements, many partial
evaluations may need to stack successively in the state
indicator. As their respective evaluations complete, the
stack is popped back in parallel.

A statement whose execution 1is stopped temporarily
because the processor must execute another statement (which
it invokes) is said to be pendent. Thus, the use of the
state indicator discussed so far is to remember all pendent
statements.

4-15 AK95

Another item of information remembered in the state
indicator is function suspensions. When the execution of a
function produces an error report, statements cease to be
drawn from the function definition and are instead read from
the user's terminal until the function is explicitly
restarted. During this interval, the function is said to be
suspended. An entry in the state indicator for a suspension
differs from that for a pendent statement in that no
partially evaluated statement is remembered, and also in
that a suspension marks a place where the wuser obtained
control and was able to type new statements.

In the 1listing printed by the)SI command there is
one line per entry on the state indicator stack. The stack
is printed in the order of most recent item first to least
recent last; thus, the first line printed corresponds to the
most recent entry made into the state indicator. Each 1line
shows the name of the function in execution (or the
symbol [0 if the entry refers to an evaluated input 1line),
the statement number upon which execution will resume (the
pendent statement itself for pendent entries; the statement
following the error for suspended entries), and finally an
asterisk if the entry represents a suspension (lines without
an asterisk correspond to pendent entries).

VPLUS Create some functions for the
FUNCTION 'PLUS' NOT FOUND. purpose of illustrating the
INPUT.)SI and)SIV commands.

C«<A PLUS B This one mimics the built-in
C<A+BV dyadic + operator.

VSIXPLUS
FUNCTION 'SIXPLUS' NOT FOUND.

INPUT. This one uses the above to
Z<SIXPLUS X add 6 to its operand.
Z«6 PLUS XV

VQTIMES
FUNCTION ‘'QTIMES' NOT FOUND.

INPUT. And this one does an evaluated
B<QTIMES A input.
B<[xAvV

)SI Initially, the state is empty.

1 2 PLUS 3 4 5 Now cause an error, hence a
LENGTH ERROR. suspension of the PLUS func-
PLUS[2] C<«A+B tion.

I

)ST Now the state has one entry, a
PLUS[2]* suspension.

QTIMES 31 Call a function which requests
0: evaluated input.

)SI Now look at the state.

a Evaluated input is pendent.
QTIMESL1] Line 1 of QTIMES 1is pendent.
PLUS[2]* PLUS 1is still suspended.

4-16 AK95

O: Input requested again.
SIXPLUS 'ABC' Cause a further error.
DOMAIN ERROR.
PLUS[1] C<A+B
|

)SI Now the state has another sus-
PLUS[2]* pension of PLUS .
SIXPLUS[1] SIXPLUS 1is pendent on PLUS .
0 Evaluated input is pendent on
QTIMES[1] SIXPLUS , and QTIMES on [.
PLUS[2]=* PLUS still suspended here too.
- Clear out the most recent sus-
)SIT pension.
PLUS[2]* Now we are back to the pre-
> vious one. Clear it out too.
)SI The state is empty again.

The)SIV System Command

The)SIV system command performs the same function as
the)SI system command, except that each line of the
display shows, in addition to everything shown for
the)SI command, also the names of all variables local to
the particular invocation.

Since a reference to a variable name is satisfied by
the most recently created local variable of that name, the
referent of any given name 1is easily found by scanning
the)SIV list downward. The first instance of the sought
name is the satisfying referent. If the name is not found
anywhere in the)SIV 1list, then the reference will be
satisfied by a global variable. Local and global name
referencing is treated more fully in Section III.

1 2 PLUS 3 4 5 The same example now done with
LENGTH ERROR.)SIV in place of)SI.
PLUS[1] C<A+B

|

YSIV
PLUS[2]1* c A B

QTIMES 31
0:

)SIV
0
QTIMES[1] B A
PLUS[2]1%* c A B
L:

SIXPLUS 'ABC'

DOMAIN ERROR.
PLUS[1] C<«A+B
|

4--17 AK95

)SIV

PLUS[2]x c A B
SIXPLUS[1] VA X
]
QTIMES[1] B A
PLUS[2]%* c A B
->
->
)SIV

SAVING AND RELOADING WORKSPACES

One of the most important features of the APL language
is the ability to save the complete contents of a workspace
and then take it up again later. Work can then be continued
as 1if there had been no interruption. On Multics,
workspaces are saved as segments (or, if necessary, as
multisegment files) anywhere in the storage system
hierarchy. Normal Multics quota and access conventions
govern the storage of saved workspaces.

When a workspace is saved, everything necessary to
resume the session in progress is remembered. The values of
all variables, both local and global, the definitions of all
functions and groups, everything in the state indicator, and
the settings of all the workspace parameters are saved.
When a workspace is to be taken up again, the wuser has a
choice of how much of the saved workspace to recall. He can
copy individual variables or functions or groups
(the)copy system command with a specific object named); or
he can copy all objects but not the state of execution
(the)copy command with no object named); or he can recall
the entire workspace (the)rp4p command). Objects can be
moved from workspace to workspace or duplicated in several
workspaces by 1loading one workspace, copying any desired
objects from another, and saving the newly updated workspace
again.

Workspace Identification

The current, or active, workspace has associated with
it a workspace identification, which is the absolute or
relative pathname of the saved workspace that was most
recently loaded. Internally, all workspace identifications
end in the four-character suffix ".apl" to clearly
distinguish saved workspaces in the Multics hierarchy.
However, the user never need type the suffix, as it is
appended automatically by the APL processor to all
identifications typed in.

4-18 AK95

Until any saved workspace is loaded in an APL session,
the current workspace has the identification C(LEAR
WS, indicating that it was never loaded from any saved copy.
The identification CLEAR WS does not actually mean that
the workspace is clear, as many objects may have been

constructed in it since it was created.

When a J)LOAD command is issued, the APL processor
replaces the current workspace identification with the
pathname typed in the load command (after appending the
suffix ".apl" to it), locates the saved workspace in the
Multics hierarchy, and then 1loads 1its contents into the
current workspace.

When a)SAVE command is issued with no pathname as
argument, the active workspace is stored according to its
current identification; that is, from where it was loaded.
Alternatively, if a)SAVE command is issued with some
pathname as argument, then the workspace identification is
replaced by the new pathname, and the workspace is saved at
the new place in the Multics hierarchy. It is an error to
issue a)SAVE command with no pathname given when the
current workspace identification is CLEAR WS.

The workspace identification can also be inspected or
changed at any time with the)WSID system command. No
commands other than)CLEAR,)SAVE,)LOAD, and yWSID affect
or concern themselves with the workspace identification.

Note that no workspace identification typed into APL
ever shows the ".apl" appendage; however, the actual saved
workspaces in the Multics hierarchy always have the suffix.
Also note that the current workspace identification is
always set apart from the pathname as typed in the)SAVE,

JLOAD or YWSID system command (with the ".apl" suffix
added), so several different identifications often can
access the same saved workspace (relative vs. absolute
pathnames, or multiple names on a segment or containing
directory). The user is cautioned that changing the working
directory when the workspace identification is only a
relative pathname can change the meaning of that
pathname--and a succeeding)SAVE command with no argument
may not necessarily refer to the previously loaded
workspace.

Passwords

It is possible to associate a password with a saved
workspace. When a workspace has been saved with a password,
APL will prevent a load or copy operation from it unless the
password can be supplied. No password is required to delete

4-19 AK95

a saved workspace. Cautious wusers should note, however,
that' nothing prevents another user from supplying a program
of his own construction to search for interesting things in
your saved workspaces.

The mechanics of supplying passwords are as follows.
Passwords are accepted on the)SAVE, YLOAD,)JCOPY, and
)PCOPY system commands. To indicate that a password is to
be supplied, a colon is typed following the last character
of the pathname constituting the workspace identification in
the command line (blanks are optional between the workspace
identification and the colon). The remainder of the command
line is typed normally. APL responds PASSWORD: and when
the password, which is 2zero to eight characters of the

user's choosing, 1is received, proceeds to process the
command.

If a saved workspace with a password is accessed by
a)LOAD,)COPY, or)PCOPY command without a password or
with an incorrect password, the load or copy does not occur.

If a)SAVE command is issued without a colon, the
workspace is saved with its current password. To remove or
change the password of a workspace, the)SAVE command must
be issued with a colon. A password of zero characters
(simply a newline) is considered the same as no password. A
clear workspace has no password.

The)SAVE System Command

The)SAVE system command is used to save a copy of
the current APL workspace so that it can be taken up again
later. Everything in the workspace is saved. Workspaces
become Multics segments or multisegment files.

The YSAVE command can be issued in three forms: the
command alone,

JSAVE
or with a workspace identification (i.e., pathname),
)SAVE identification
or with a workspace identification and a colon,
)SAVE identification :
In the first form, the command alone, the workspace is

saved under its current identification and with its current
password. See the preceding two sections for a description

4-20 AK95

of workspace identifications and passwords. This form of
the)SAVE command is illegal when the workspace
identification is set to CLEAR WS 1i.e., when the current
workspace was not loaded from any saved copy. The response
to this command is the current date and time, followed by
the workspace identification as a reminder.

In the second form, the current workspace is saved
under the new identification (i.e., at a new place in the
storage system hierarchy), but with the current password if
any. The current workspace identification is replaced by
the new identification typed in the)SAVE comamnd. The
response to this form of the command is the current date and
time.

In the final form of the)SAVE command, the APL
processor asks the user to type a password. Then the
current workspace is saved under the new identification with
the new password. A password consisting of a newline
alone is the same as no password. The current workspace
identification and password are both changed to those of
the)SAVE command. Again, the response to this command is
the date and time.

The)SAVE command does not alter the current
workspace in any way, except that its identification and
password may change. Following the)SAVE, computations

can resume in the current workspace.

If there are any Multics errors encountered in
performing the save, such as record quota or access
violations, they are reported and the current workspace
remains unchanged. In such cases, the partially-created
workspace segment in the Multics hierarchy is almost
certainly bad, but the current workspace is still available
to save again once the problem has been rectified. The
partially-created saved workspace will also be bad if
the)SAVE command is QUIT out of and not restarted. The
mechanism by which a previously saved workspace is resaved
is that the previous copy is truncated and the new one is
written in its place.

JCLEAR Set up a workspace to save.
CLEAR WS.

I<3 Put some things in it.

A<'SUPERCALIFRAGILISTICEXPIALIDOCIOUS'

P+<0O1

)SAVE <ALGORITHMS A save command with a relative

11/15/72 2211.2 ' pathname.

VSAVE >UDD>M>MGS>NEW Save same workspace elsewhere,
11/15/72 2212.3 using an absolute pathname.

)SAVE Save using the preceding path.
11/15/72 2213.1 >UDD>M>MGS>NEW.APL APL reminds us of

4-21 AK95

the current workspace identi-
fication since we have not
typed it.

The)LOAD System Command

The)LOAD system command takes as its argument a
workspace identification, (i.e., pathname), optionally
followed by a colon. If the colon is supplied, APL requests
a password. If the password supplied does not match that of
the saved workspace whose identification is given in
the)LOAD command, then the error is reported and the
current workspace remains unchanged. Otherwise, the current
workspace is discarded and replaced by a copy of the saved

workspace. The response to the YLOAD system command
is SAVED followed by the date and time that the workspace
was saved. The saved workspace itself is not altered by

the)LOAD command.

The input/output stream attachments and the timers
maintained by the I-beam operator are the only items not
affected by the)LOAD command. All other features of the
current workspace become identical to those following
the)SAVE command which saved the copy, including local and
global variable names and values, functions, groups, state
indicator, and workspace parameters. Even the random number
generator seed 1is 1loaded from the saved copy, so that the
sequences of random numbers generated from reloaded
workspaces are reproducible.

JLOAD >UDD>M>MGS>NEW Load a saved workspace.

SAVED 11/15/72 2213.1 APL tells when it was saved.
JVARS What's in it?

A I P These variables.
I

3
YFNS No functions.

The)COPY System Command

The) COPY system command copies functions, groups,
and global variables from a saved workspace into the current
workspace. The current workspace remains unchanged except
for the addition of the new object or objects.

4-22 AK95

The)COPY system command can be issued in two forms.
The first is

yCOPY identification

where "identification" is the pathname of a saved workspace.
If the workspace was saved with a password, then a colon
must be typed following its identification in the)COPY
command so that APL will request a matching password. The
meaning of this form of the command is to place copies of
all functions, groups, and global variables contained in the
saved workspace into the current workspace. If any object
of the same name as an object to be copied already exists in
the current workspace, it is erased and replaced by the
copy . All other objects of the current workspace remain
unchanged, as do the workspace parameters and the state
indicator.

In the second form of the)CoOPY command, a list of
specific objects is mentioned, as

YCOPY identification object object...

where, as before, "identification" is the pathname of a
saved workspace, possibly ending in a colon if a password is
required, and each "object" 1is the name of a function,
group, or global variable in the saved workspace. The
function of this form of the)COPY command is to copy only
the objects mentioned from the saved workspace into the
current workspace. If any object is a group, however, all
of its members are copied as well. As in the other form
of)copry, naming conflicts between copied objects and
existing objects are resolved by erasing the existing
objects. If a specified object does not exist in the saved
workspace, an error report tells that it was not copied.

In any case, there is no change to the saved workspace.
The response to the)COPY command is the date and time the
donor workspace was saved.

YCOPY >APL>WSFNS ORIGIN Copy the library function

SAVED 10/12/72 1202.0 ORIGIN out of the public work-

YENS space. Now it is defined in
ORIGIN=* our workspace.

YJCOPY >APL>WSFNS Copy all objects out of WSFNS.
SAVED 10/12/72 1202.0

YVARS Variables unchanged, as there
A : I P were none in WSFNS.

YFNS But there were many functions.
DELAY* DIGITS* Ex FUZZx* ORIGIN*x SETLINK=*

SFCIx* SFEI* SFIIx WIDTH*
The asterisks in the)FNS list
mean these are all external

4-23 AK95

functions, as discussed in
)PCOPY below.

The)PCOPY System Command

The)PCOPY (protected copy) system command behaves
exactly 1like the)COPY system command with the exception
of its treatment of naming conflicts. With the protected
copy command, when an object to be copied has the same name
as an existing object, the existing object remains
unchanged, and the saved object is simply not copied. The
names of any objects not copied are reported.

Like the)COPY command, the)PCOPY command can copy
either specified objects or all global objects out of a
saved workspace. The normal response to the command is the
date and time the workspace was saved. There is no change
made to the saved workspace.

JCLEAR Create a workspace with some
CLEAR WS. names used.

EF<x1

DIGITS<«1 2 3 4 5 6 7 8 9

JPCOPY >APL>WSFNS Now try a protected copy.
NOT COPIED: DIGITS F These two objects could not be
SAVED 10/12/72 1202.0 copied because the names were

E in use. The names retain
2.718281828 their former meanings.

)COPY >APL>WSFNS In contrast, an unprotected
SAVED 10/12/72 1202.0 copy overrides the previous

E 'IOA_ HELLO.' usages of duplicate names.

HELLO.

The)CONTINUE System Command

The . JCONTINUE system command provides no new
capability to the APL system, but is simply a convenient way
to terminate an APL session that must be resumed again
later. The JCONTINUE command behaves identically to the
sequence

)SAVE CONTINUE
JOFF

of commands. That is, the current workspace is saved under

the name CONTINUE, and the APL session is terminated.
Later, the command

4-24 AK95

Q)

YLOAD CONTINUE

can be used to pick up the work again as if there had been
no interruption.

YCONTINUE Exit from APL with the con-
11/15/72 2217.8 CONTINUE tinue command.
r 2218 13.832 48+503

list continue.** -dtm There is now a saved workspace
named CONTINUE.

Segments = 1, Records = 2.

11/15/72 2217.8 rewa 2 continue.apl

r 2219 2,173 2+25

apl Enter APL.

YJLOAD CONTINUE Resume interrupted session.
SAVED 11/15/72 2217.8

The)WSID System Command

The)WSID system command is used to inspect or change
the current workspace identification. If the)W¥SID command
is typed with no arguments, as

YWSID

then the current workspace identification is printed out.
As explained earlier in this section, the workspace
identification is the pathname of the saved workspace from
which the current workspace was loaded. If the current
workspace has not been loaded from any saved copy, its
identification is CLFEAR WS.

The)WSID command can also be used to set the current
workspace identification. 1In this case, the user types

YWSID identification

where "identification" is any absolute or relative pathname.
APL appends the suffix ".apl" to the pathname and places it
as the current workspace identification. The former
identification is typed in reply.

The only purpose of setting the workspace
identification is to allow a later)SAVE command given
without an identification to save the workspace in the
desired place. Beyond YWSID, the only commands that
affect or concern themselves with the workspace

4-25 AK95

identification are)CLEAR,
YWSID
CONTINUE .APL
YCLEAR
CLEAR WS.
YWSID
CLEAR WS
JWSID >UDD>M>MGS>NEW
WAS CLFEAR WS
)JSAVE
11/15/72

The)LIB System Command

The)LIB

APL/360, the)LIB

saved workspaces within

JLIB command is implemented as a
"list" command with
effect of 1listing all

this usage.

to 1issue their own

system command is provided as a
to APL/360 users who are not yet accustomed to Multics.
command is used to
any APL library.

an argument of "*,apl".

segments in the
directory whose names have a second component of "apl".
course, the Multics "list" command is far more general than
Experienced Multics users will probably prefer

calls "list" via

JSAVE, and)LOAD.

Observe the current workspace

identification.

Observe the identification of
a fresh workspace.
Reset the identification.

Do a save under the new name.

2222.2 >UDD>M>MGS>NEW

list the

call on the

directly to

the)F system command, as discussed later in this section.

)LIB

Segments = 2, Records = 3.

rewa 2 continue.apl

rewa 1 new.apl
JWSID

>UDD>M>MGS>NEW.APL

The)DROP System Command

The)DROP
copy of a workspace.

)DROP

where "identification" is the
suffix) of the saved workspace to be deleted.

not required to delete a saved workspace. The
equivalent to the Multics "delete"

command is essentially

4-26

Issue the)ILIB command and
change the type-ball for a
neater list.

Restore the APL type-ball.

system command is used to delete the saved
The form of the command is

identification

pathname (less the

convenience
On
names of
On Multics, the
Multics
This has the
current working
of

n . aplll
A password is
)JDROP system

AK95

QO

command.

The)DROP command has no effect on the current
workspace.

YDROP CONTINUE
YLIB

Segments = 1, Records = 1.
rewa 1l new.apl
YDROP NEW

YLIB
ls: *.apl not found.

COMMUNICATING WITH MULTICS

In addition to the commands relating to the saving and
reloading of workspaces, a number of other commands involve
communication between APL and Multics. The)@,)QUIT,
and)OFF system commands are used to exit from APL.
The)PORTS system command prints the names of other users
currently logged in to Multics. Finally, the)E system
command provides a means of executing Multics commands
without exiting from APL.

The)Q,)QUIT, and)OFF System Commands

The)@,)QUIT, and)OFF system commands are all
identical. They cause the APL processor to return to its
caller. If APL was invoked as a Multics command, this
amounts to a return to Multics command level.

Before returning, APL deletes all segments of the
current workspace so that it no longer consumes space in the
user's process directory (recall that during the execution
of APL the current workspace is maintained in a number of

segments in the process directory having the names "apl.?",
where " is a 15-character unique identifier). In
addition, the former settings of the ring-zero

teletypewriter device interface module are restored, so that
character input and output over the user terminal again obey
Multics conventions instead of the APL conventions described
in Section II.

When APL is running, it maintains a cleanup handler so

that the above actions occur even if an invocation of APL
is released from the stack rather than commanded to return.

4-27 AK95

Following a return to Multics, the current workspace is
no longer accessible. If the wuser wishes to save the
results of an APL session, a)SAVE command must be issued

before retgrning, or else the)CONTINUE command should be
used to exit instead of)@,)QUIT, or)OFF.

)OFF That's all, folks.
r 2225 7.103 16+122 Multics ready message.
apl Re-enter APL.
YWSID No history left of the previous
CLEAR WS workspace.

The)PORTS System Command

The)PORTS system command prints a 1list of the
Multics users currently logged in. It is implemented as a
call on the Multics "who" command. Any arguments typed
after the)PORTS command are simply passed on to the "who"
command, so a certain amount of selectivity is possible.
Refer to the description of the "who" command in the Multics
Programmer's Manual -- Commands and Active Functions, Order
No. AGY92, for further information.

JPORTS .MULTICS Issue the)PORTS command and
Chang.Multics change type-ball for neater
Snyder .Multics listing.

MSmith.Multics
DSLevin.Multics*

Morris.Multics

The)EF System Command

The)E system command is used to execute an arbitrary
Multics command line from within APL. The entire remainder
of the command line following the)E 1is passed unchanged
to "cu_$cp", the Multics command processor, for execution.

During the time that control is passed out of APL, the
special APL character set processing discussed in Section II
is turned off. The former settings of the ring-zero
teletypewriter device interface module are restored during
this interval. Thus, the executed commands have available
to them the normal Multics terminal input/output
environment. When APL control is returned, it establishes
its own character set processing again.

The user is cautioned, however, that the command line
itself has been read by APL; hence, it has undergone the APL

4-28 AK95

rather than the Multics input processing. While the APL and
the Multics character sets largely overlap, there are some
differences. It is up to the wuser to anticipate the
translations mentioned in Section II and compensate for them
where necessary. For example, if one types

YE SM MGS M WHY ERROR WHEN “COPY_"ING FILE FROB?
the actual message transmitted, in ASCII, will be
Why error when ¢223py ¢222g file frob?

Corresponding to the)E system command there is an F
library function. The library function is monadic; it
accepts a character vector as its operand and returns no
result. The character vector is passed to the Multics
command processor for execution. Additional details on
library functions can be found in Section III.

)E IOA_ HELLO.
HELLO.
)E APL
I<53
J<'JABBERWOCKY"
)SAVE IT
11/15/72 2225.3
)Q
I
VALUE ERROR.
I
|
YLOAD IT
SAVED 11/15/72 2225.3
I
53

EXTERNAL FUNCTIONS

The Multics APL interpreter permits APL programs to
make external calls out to object segments which have been
created by other Multics translators, such as PL/I, provided
that those object segments obey a specified interface. To
the APL program, such a call 1looks 1like an ordinary
reference to a defined function; the function may accept
zero, one, or two arguments, and it may optionally return a
result.

4-29 AK95

J)DFN,)MFN,)ZFN Define External Function Names

The system commands)DFN,)MFN, and)ZFN are used to
define external function names. The command)DFN is used
to declare a dyadic function; i.e., one accepting two
arguments. The command)MFN is used to declare a monadic
function; i.e., one accepting one argument. And the
command)ZFN is used to declare a zero-adic function; i.e.,
one accepting no arguments. Whether an external function
produces a result need not be specified at the time its name
is defined; in fact, the same function can at times return
and at other times not return a value, as it chooses.

Definition Syntax

The syntax of an external name definition is

)DFN aplname pathname
or else

)DFN pathname

where YDFN can be replaced by YMFN or YZFN as
appropriate to the function being defined. The first form
defines the name "aplname" to be an externally-coded dyadic
function. When an APL program makes a function reference to
"aplname", the APL interpreter performs a call on the object
segment "pathname" with the «calling sequence described
below. When "pathname" returns, any returned value is
considered as the result of "aplname", and execution of the
APL program resumes.

The "pathname" may be an absolute or relative pathname,
or it may be a reference name, in which case the Multics
search rules will be used to obtain its referent. The
"pathname" may contain both a segment name and an entry
point name separated by a dollar sign, as "a$b", or it may
simply contain a segment name, as "a", which will be
considered "a$a"; i.e., a call to entry point "a" in segment
"a". Note that the dollar sign must be typed as an iota
on Selectric-type terminals, with the APL typing element
mounted (see Section II for translations performed by the
APL terminal input processor).

In the second form of definition, where "aplname" is
not specified, it is considered to be the same as the entry
point name of "pathname", (for example, "b" if pathname were
"a$b", or "xyz" if pathname were simply "xyz").

4-30 AK95

Definition Errors

A definition error report can be due to: (1) an
illegal character in the function name; (2) a global
variable or group already in existence with the proposed
function name; or (3) an illegally constructed pathname.

External Functions Cannot be Edited

External functions cannot be edited in any way by the
APL editor. An attempt to open one for editing results in a
definition error report. However, external functions can be
erased or redefined, and their definitions can be copied
from one workspace to another.

External Functions Tagged with "*" in FNS Listing

External function names are listed along with internal
function names in a)FNS listing, but the external names

have an asterisk appended to them to identify them as
external.

External Function Calling Sequence

A procedure, say "f", which is to be called by APL as
an external function, must conform to the following calling
sequence:

f: proc(leftp,rightp,infop,valuep,Alloc,Error,Static) ;

dcl (leftp,rightp,infop,valuep) ptr,
Alloc entry(fixed,fixed,fixed),
Error entry(char(l5) var),
1l Static aligned,
2 Reserved(5) fixed,
2 (Digits,wWidth,Iorg,Niorg,Seed) fixed,
2 Fuzz float bin(63);

Pointers "leftp" and "rightp" are input parameters
corresponding to the left and right argument values in the
reference to "f". If either argument is absent (as, "f" is
monadic or zero-adic), the corresponding pointer will be
null. Otherwise, the pointer points to the value bead for
the argument supplied. The value bead structure is declared
as:

4-31 AK95

dcl 1 vb aligned based(leftp),
2 (v reserved, v _type, v_number, v_rhorho) fixed,
2 v_rho(vb.v rhorho) fixed,
2 v value(vb v_number)
bit(vsize(vb.v _type))unaligned;
dcl vsize(4) fixed bin(7) int static init(1,9,36 ,72) ;

In this structure, "v reserved" is reserved for use of
the APL storage manager; "v _type" is the internal type code
of the value: 1 for bit, 2 for character, 3 for single-
precision 1nteger, 4 for double—prec151on floatlng point;

"v_number" is the number of elements in the value; i. €., the
times reduction of the rho of the value; "v_rhorho" is the
rank or rhorho of the value; "v rho" is the shape or rho of
the value; and finally, "v value“ is an array of bit
strings, each of which represents one element of the value:
a l-bit bit, a 9-bit <character, a 36-bit integer, or a
72-bit double-precision floating-point number. Note that
this structure is adjustable and also self-referencing.
Note also that it is aligned only to a word boundary, not
too doubleword. If a "v_value" is declared as
floating-point because it is known to be of type 4, then it
must also have the "unaligned" attribute.

External Function Returned Value

Pointers "infop" and "valuep" relate to a possible
value to be returned by "f". They are initialized to null
by APL before calling "f". If "f" desires to return a
value, it should make "infop" point to a properly filled-in
information structure declared as:

dcl 1 info aligned based(infop),
2 (i_type, i_number, i_rhorho) fixed,
2 i_rho(info.i_rhorho) fixed;

and "valuep" point to the array of element values
themselves. The information in the structure must obey the
same conventions as the corresponding items of the value
bead, as discussed above. When "f" returns to APL, the APL
storage manager will allocate room in the workspace of
sufficient size to contain the returned value and to copy
all the elements into it.

Use of Supplied "Alloc" Entry

For convenience and efficiency, the external function
may desire to directly allocate space for the returned
result in the workspace itself, thus avoiding an unnecessary

4-32 AK95

second allocation and copy. For this purpose, the entry
point "Alloc" +to the APL storage management package is
provided. If "f" makes the call

call Alloc(type, number, rhorho);

then "Alloc" will create a value bead of sufficient size to
contain an array of "number" elements of type "type" and
having a rhorho of "rhorho". It will set "infop" to point
to the information area of the value bead, fill in "v type",

"v_number", and "v_rhorho" (and also "v_rho" if rhorho
equals 1), and set "valuep" to point to the ~value area of
the value bead. The external function "f" is then
responsible for filling in "v rho" (if rhorho is greater

than 1) and the element values themselves. The user is
cautioned that the value bead is not doubleword-aligned in
general.

Use of Supplied "Error" Entry

Entry point "Error" is provided to the external
function so that it <can generate a standard APL error
message if it so desires. The call

call Error("string");

where "string" is up to 15 characters long, produces the
message "string ERROR" followed by a reproduction of the
source line calling the external function with the error
marker under the external function name. "Error" does not
return to its caller; instead it exits with a nonlocal go-to
back to the main loop of the interpreter where the user's
next console line will be read.

The string "string" must be expressed in APL internal
character codes; see Section II.

Use of Supplied "Static" Structure

The structure named "Static" makes available to the
external function the key parameters of the active
workspace. If any of them are changed by the function, they
should obey the domain 1limits specified for them; no
validity checking will be performed on them when the
external function returns. The domain limits are:

1 < Digits =< 19
30 < width < 130
0 =< Iorg < 1

4-33 AK95

Seed < 34359738367
Fuzz < 1.0e0

1l =<
<

0.0e0

Niorg ("not Iorg") must always be equal to l-Iorg.

4-34 AK95

SECTION V

THE APL FUNCTION EDITOR

INVOKING THE FUNCTION EDITOR

Creation, inspection, and alteration of APL function
definitions are performed by invoking the APL function
editor. The function editor can be invoked whenever the APL
processor is expecting immediate input or evaluated input.
When the function edit is complete and the user exits from
the editor, the system again requests the immediate or
evaluated input it was previously awaiting.

The Multics APL function editor is different from the
APL/360 editor; APL/360 users are cautioned to read all the
material in this section. The Multics APL function editor
is modelled after (and is functionally equivalent to) the
Multics context editor "edm".

The editor is invoked by typing the editor-call
character v followed by the name of the function to be
edited. For example, one types

VNAME
to begin editing the function named yAME.

One possible response to an attempted editor invocation
is the DEFN ERROR error report; this occurs if the function
specified cannot be edited. The possible causes of a
definition error when invoking the editor are discussed
under "Errors Invoking the Editor" in this section. When a
definition error occurs the editor is not invoked, and the
APL processor requests again the input it was awaiting
before the editor invocation was attempted.

If the editor invocation succeeds, then there are two
cases. First, if the function mentioned in the invocation
already exists, the editor responds EDIT and awaits editing
requests. Editing requests are discussed under "Basic
Editing Requests" in this section. Second, if the function

5-1 ' AK95

mentioned does not already exist, the editor
responds FUNCTION NOT FOUND, INPUT and then awaits the
function to be input. 1Input mode is discussed in this
section under "Input Request".

When the modifications to the function definition are
complete and the user desires to exit the editor, he may do
so either by issuing the @ editing request while in edit
mode, or by typing a closing editor-call character vV at the
end of any 1line, whether in input mode or edit mode. The
termination of an edit is discussed in more detail under
"Leaving the Editor" in this section.

The invocation of the editor to create a new function
in Multics APL is different from that in APL/360. In
APL/360, the entire function header line must be typed in
the editor invocation. 1In Multics APL, only the function
name is typed.

ERRORS INVOKING THE EDITOR

A definition error report DEFN ERROR occurs if the
attempted invocation of the editor is unsuccessful. This
can be due to one of four causes.

First, a definition error occurs if the proposed
function name is not a 1legal APL name. The rules for
governing which characters can be used to make names in APL
can be found in Section III.

Second, an error occurs if the proposed function name
is already being used as a group name or a global variable
name. A name can refer to only one object at a time. The
names of obsolete objects can be freed for other uses by
erasing those objects with the)ERASE system command.

Third, an error occurs if an attempt is made to edit an
external function. An external function 1is one whose
definition is provided in some Multics language other than
APL. The APL function editor cannot be used in any way with
external function definitions. External function names are
identified with an asterisk in a)FNS listing. Additional
information on external functions can be found in Section
Iv.

Fourth and last, an error occurs if an attempt is made
to edit a pendent function. Suspended functions and
inactive functions can be edited, but not pendent functions.
Generally speaking, a function becomes pendent when the
execution of some 1line of it is begun, but cannot be
completed before executing some other function (because the

5-2 AK95

line contains a function call) or before interpreting a line
read from the user's terminal (because the line contains an
evaluated input request). In these cases, completion of the
execution of the function 1line is pendent upon receiving
another result, so the interpreter remembers the state of
evaluation of the function 1line to the point of the new
function call or input request. The interpreter then
temporarily abandons it in order to interpret the new
function or input line. If the user attempts to edit the
given function before its pendent line has been allowed to
complete execution, he receives a DEFN ERROR message. The
names of functions pendent can be listed with the)SI system
command. Pendent functions can be made available for
editing again by clearing the state indicator with
the - operator.

THE FUNCTION HEADER LINE

The first line of every APL function definition must be
the function header line. The function header line mentions
the name of the function; the names of its arguments; the
name of its results; and the names of variables which are
local to it, if any.

The format of a header 1line is a sample function
reference followed by the names of the local variables set
off by semicolons. For example, a dyadic function named
NAME, taking a left argument named L and a right argument
named R, producing a result named Z, and having local
variables 4, B, and (would have the header line:

Z<L NAME R;A3B;C

A monadic function F of one argument ZAP producing no result
and having no local variables would have the header line:

F ZAP

Since in APL there are two choices as to result (either
return a result or not) and three choices as to number of
arguments (0, 1, or 2), there are six different kinds of
functions and hence six corresponding different kinds of
header lines. Examples of the six kinds are:

7Z<L NAME R (dyadic, result)
Z<NAME R (monadic, result)
Z<NAME (zero-adic, result)

L NAME R (dyadic, no result)
NAME R (monadic, no result)
NAME (zero-adic, no result)

5-3 AK95

Each of these six can have a list of local variables on
it as well.

The function header line can be edited as any other
line. It 1is not necessary for a valid header line to be
present at all times during the edit, but one must be
present in order to exit from the editor.

LEAVING THE EDITOR

When the user has made his desired modifications to the
function definition, he terminates the edit either by
issuing the (editing request or by typing the editor-exit
character vy at the end of a line (or on a line by itself).
The y character terminates the edit, whether typed in input
mode or in edit mode, following the normal processing of
whatever precedes it on the 1line. The y character may
appear only at the end of a line; it is not possible to
input one into a function definition (unless it 1is in a
quoted string, in which case it is treated as data and will
not terminate the edit). Any other use of the y character
results in an error message.

At the time the user requests termination of the edit,
if the function has no lines then it is deleted. Otherwise,
the editor verifies that the first line of the function is a
valid header line and analyzes all 1lines of the function
into their syntactic constituents (names, operators,
constants). If any errors are detected either in the header
line or in the syntactic scan, they are reported and editor
remains in edit mode. The editor does not terminate until
the header line and syntactic scan are verified as correct.

If the name of the function in the function header line
was edited, the function will be known by the new name when
the edit terminates. The new name will have been checked
for naming conflicts with groups, global variables, and
other functions before the edit is allowed to terminate.
The name under which the function was previously known is
freed for other uses. Any other information in the header
line can be changed as well: the names or number of
arguments required, the name or existence of the result, and
the names of 1local variables. At the conclusion of the
edit, the function acquires whatever characteristics its new
header line specifies for it, regardless of 1its previous
characteristics.

When the editor invocation terminates, the APL
interpreter again requests the input it was awaiting before
the edit.

5-4 AK95

EDITING REQUESTS

The APL function editor is a line-by-line editor. The
editor's attention is always on a single 1line of the
function being edited; whatever line that happens to be, at
any given instant, is known as the "current line". The user
issues "requests" to the editor which either initiate some
editing activity on the current 1line or else move the
editor's attention to some other desired 1line. When the
editor is invoked, the <current 1line is initially a
hypothetical, nonexistent line positioned in front of the
first line of the function.

Each request is identified by a single-character name.
The user issues a request by typing a 1line beginning with

that character. Some requests require arguments or
additional information to be typed following their
single-character identifier. Such information can be

separated from the request identifier by zero or more
blanks.

Note that what the editor considers to be a "line" is
not always the same as what the APL interpreter considers to
be a statement. Because character constants can contain
newline characters, a single statement of APL code to be
interpreted may have been assembled from several source
lines (editor lines) in the definition of the function. The
editor 1is wunaware of the structure of APL; it is simply a
general text editor.

Basic Editing Requests

The requests discussed in this section are the minimum
set necessary to make use of the editor. They are the
requests that a beginner will want to learn to use first.

PRINT REQUEST P n

Beginning with the current 1line, "n" 1lines of the
function are printed. The last line printed becomes new
current line. If "n" is omitted, it is assumed to be 1;
i.e., only the current line is printed.

If the current line does not exist (because it was
deleted, or because it is the hypothetical 1line preceding
the first actual 1line of the function), then NO LINE is
printed. If the end of the function is encountered before
the requested number of lines have been printed,
then EOF (for end-of-function) is printed.

5-5 AK95

VPLOT , Open function PLOT for edit-

EDIT. ing. It is already defined.
P3 Print three lines.

NO LINE. The nonexistent line.

X PLOT Y;M;A Two more lines.

A<3053p"' !

P Print request with no integer
A<3053p"' ! prints only the current line.
P 99 Print the entire remainder of
A«3053p" ! the function. (Starting with
M«35:[/|X,Y the current 1line.)
AL(L36.5+XxM)+71xL21.5-Yx0.6xM]«(pX)p"'*"

43 71p4

EOF. End of the function reached.
P Any attempt to print more is
EQF. unsuccessful.

LOCATE REQUEST L string

Beginning with the 1line after the current line,
successive lines of the function are searched for an
occurrence of the character string "string" in them. As
soon as a line containing "string" is found, it becomes the
current line, and it 1is printed. The character string
"string" can be set off from the L request by zero or one
blank. If additional blanks are typed, they are considered
to be part of "string" and are included in the search.

If the end of the function is reached before a line
containing the string is found, the search resumes from the
beginning of the function and continues wuntil the line
before the current line (i.e., the current line is the only
line not searched). If none of the searched lines contains
an instance of "string", the editor types SORRY and the
current line status remains unchanged.

The sequential nature of the search, plus the exclusion
of the current line from the search, implies that all
instances of a particular string in a function can be
located successively and in order by issuing repeated locate
requests for the string. As a typing convenience, the
editor considers the [request alone, without a string
following it, as a request to locate the same string last
mentioned in a locate or find request.

L A Locate a line containing the

X PLOT Y;M;A string A. Editor prints it.

L A Locate the next 4.

A<3053p" ! It is in this 1line.

L Locate the next again. Editor

AL(L36.5+XxM)+71%x21.5-Y*x0.6xM]«(pX)p'*x' Kknows we mean 4.

5-6 AK95

L 37

43 71pA

L [/
M<35:[/|X,Y
L |

String can contain blanks.
Or special characters.

Locate quote.

AL(L36.5+XxM)+71%xL21,5-Yx0.6xM]<«(pX)p"' ="'

L |
A<3053p" !
L '
SORRY .

P
A<3053p" !

INSERT REQUEST I string

Locate blank quote.

Locate blank blank quote.
No such string in the func-
tion. Current line unchanged.

The string "string", which is typed to the right of

the I request character,

inserted as a new line in the

function, immediately following the current line. Thus,
successive insert requests allow a sequence of lines to be
inserted at any desired point in a function. As 1in the

locate request, the

"string"” can be separated from

the I character by an optional blank; any additional blanks
are considered to be part of "string" and are inserted into
the function. No typed response occurs from the editor for

the insert request.

P

A<3053p" !

I a 3053 IS 43x71,
P

A 3053 IS 43x71.

L 3053

A<3053p" !

P2

A«3053p" ! .
A 3053 IS u43x71.

I THIS IS A NEW LINE.

I S0 IS THIS.

P 2

S0 IS THIS.
M<35:[/|X,Y

L 1p

43 71pA

I » END OF FUNCTION,
P 333

A END OF FUNCTION.
EQF.

Where are we now?

Still here.

Insert a new line into the
function. Now print it.
Yes, it's really there.

Make sure it got put in the
right place by going back to
the line in front of it and
printing two lines.

Insert some more lines.

Current line is last line
inserted.

- 5-7 AK95

DELETE REQUEST D n

Starting with the current 1line, "n" 1lines of the
gunctlon are deleted. If "n" is omitted, the default is 1;
l.e., only the current line is deleted. The editor types no
response to the delete request, unless the end of the
function is reached before the requisite number of lines are

deleted, in which case it responds EOF (for
end-of-function).

Fol}owing a delete request, the current line is a
hypothetlcal, nonexistent line holding the place of the last
line deleted. Thus, an insert request issued after a delete

is one way of replacing a line of the function with a new
line.

L THIS Take out the two non-APL lines
THIS IS A NEW LINE to make the function correct
D 2 again.

P

NO LINE,. Current line was deleted.

L A<«

A<3053p"' !

P 3

A<3053p"' !

Am 3053 IS u43x71. No evidence remains of the
M<35:[/|X,Y deleted lines.

L 05

A<3053p"' ! Back to our favorite line.

D P 2 Bye-bye.

NO LINE.

A 3053 IS u43x71, We were still at the same

L n place in the function.

A END OF FUNCTION. Locate that line we put at the
D 77 end.

EOF. Delete all from here out.

L PLOT End of function reached.

X PLOT Y;M;A It is time to stop and take a
P 1000 look at our entire function

X PLOT Y;M;A again.

p 3053 IS 43x71.

M<35:[/|X,Y
AL(L36.5+XxM)+71xL21.5-Yx0.6xM]<(pX)p"'x"'
43 71pA EOF.

L n

Ap 3053 IS 43x71.

D Oops, we better fix up that
I A<(43x71)p" ! initialization of A again.
P 4

A<(43x71)p" !
M<35:[/]X,Y

5-8 AK95

AL(L36.5+XxM)+71xL21.5-Yx0.6xM]<«(pX)p'x"
43 71p4A

RETYPE REQUEST R string

The retype request replaces the current line with
"string". It behaves exactly like a delete request followed
by an insert request. As in the locate and insert requests,
if more than one blank separates "string" from the R request
character, the additional a blanks are taken as part of the
retyped line.

L 43 Let's make plot return its

A« (43x71)p" ! answer instead of printing it.
L Oops, wrong 43. Get the next

43 71pA one. That's better.

R Z+43 71p4 Retype the line.

P

Z<u43 71p4 Make sure.

L PLOT

X PLOT Y3;M;4A We need to fix the header 1line
R Z<X PLOT Y;M;A too.

P 38934934 Display the new definition.

Z«X PLOT Y3;M;A

A<(43x71)p" !

M<35+[/|X,Y
AL(L36.5+XxM)+71%x21.5-Yx0.6xM]«(pX)p'*"
7«43 71p4

EQOF.

TOP REQUEST T

The top request moves the editor's line pointer to the
hypothetical, nonexistent line located ahead of the first
actual line of the function. Due to the sequential or
"one-line-to-the-next" nature of many of the other requests,
it is often desirable to start an edit pass at the top of
the function and work downward, making alterations in
sequence.

The editor types no response to the top request. The
nonexistent line is printed as NO LINE by the print request.

A purpose served by the hypothetical line in front of
the first real function line is to permit insertion of a new
line ahead of the first line of a function (for example,
supplying an omitted header line).

5-9 AK95

T

P 3

NO LINE.

Z<X PLOT Y;M;A
A<(43x71)p" !

|

NEW HEADER LINE.
NEWER HEADER LINE,

NOT QUITE SO NEW.

I
T
I
T
I NEWEST HEADER LINE.
I
I NOT NEW AT ALL.

T

"

7

NO LINE.

NEWEST HFADER LINE,
NOT QUITE SO NEW.
NOT NEW AT ALL.
NEWER HEADER LINE,
NEW HEADER LINFE,
Z«<X PLOT Y;M;A

T

D 6

P 3

NO LINE,

Z«X PLOT Y;M;A
A<(u43x71)p" !

CHANGE REQUEST ¢ n /stringl/string2/

The change request is used for character editing within
a line. For the next "n" lines beginning with the current
line, all occurrences of the character string "stringl" are
changed to "string2". If "n" is omitted, only the current
line is affected. At the conclusion of the change request,
the new current line is the last of the 1lines inspected
(whether or not there were any occurrences of "stringl" in
that line).

All lines actually changed are printed in their new
form. If no lines changed (because there were no instances
of "stringl" in any of the selected 1lines), then SORRY is
printed as a warning. If the end of the function is reached
before the requisite number of lines has been processed,
then EOF is printed.

The character used to delimit the strings in the
request line need not be "/". Any character not appearing
in the strings can be used. Any character encountered
before "stringl" is used as the delimiter. If there are no

5-10 AK95

trailing blanks in "string 2", then the last delimiter can
be omitted. Using less than two or more than three
delimiters in the request is an error, however.

Either "stringl" or "string2" can be zero characters in
length (i.e., adjacent delimiters with no characters between
them). When "stringl" is null, it is considered to match
the beginning of the function line; hence, "string2" will be
prefixed to the existing function line. When "string2" is
null, it means that occurrences of "stringl" disappear (they
are replaced by no characters).

P

A« (43x71)p" !

¢ /(u43x71)/3053/
A<3053p"' !

c /3/+%?/
A<+$?205+p?p "' !

c .+¢.T/L.

A<[/L2057 /L?p"
c .[.3.
A<3/L?2053/L?p" !
¢ ./L?..
A<3053p"' !

T

C 999 /J/A/ARRAY/
Z<X PLOT Y;M;ARRAY
ARRAY<3053p"' !

Where are we?

Put the line back the way it
was. Editor prints new line.

Both instances of' 3 'changed.
Use of a different delimiter
character.

Character deletion: null
replacement string.

Start at the top of the func-
tion and change all references

of ' A ' to ' ARRAY '. The editor

prints the changed lines.

ARRAY[(L36.5+XxM)+71xL21.5-Yx0.6xM]<«(pX)p"'*'

2«43 T71pARRAY

EOF.

I THIS IS A TFEST.

¢ /IS/AT/

THAT AT A TEST.

¢ /AS/IS/

SORRY.

C /AT A /WAS A/
THAT WAS ATFEST.

c /AT/A T/

THA T WAS A TFEST.

¢c /T /T

THATWAS A TEST.

C /THATWAS/THAT WAS/
THAT WAS A TEST.

c/S A T/S SOME T/
THAT WAS SOME TEST.
C/EST/RICK

THAT WAS SOME TRICK.
c ..JOE, .

JOE, THAT WAS SOME TRICK.

c/ 7/
JOE ,THATWASSOMETRICK.

¢ /JOE,T//

End of function hit.
Get a line to play with.

Both strings changed.

No ' 45 ' in the 1line.
Carefully specify enough char-
acters to exclude ' THAT '.
Now need a blank before

' TEST '.

Some days nothing works right.
Do it more carefully now.

Null stringl.

Null string2.

5-11 AK95

HATWASSOMETRICK.
C /TWA//
HASSOMETRICK.

C /METRI//
HASSOCK.

INPUT REQUEST .

The character . (period) identifies the input request.
When . is typed, the editor responds INPUT and switches to
input mode. In input mode, lines typed by the wuser are
inserted into the function as new lines. When the editor
responds INPUT, all 1lines typed are inserted into the
function following the current line. To leave input mode,
the user types a line consisting solely of . (another
period) . Then the editor responds EDIT, and any following
lines are interpreted as editing requests. The current line
at the conclusion of input mode is the last 1line inserted.
Thus, input mode behaves exactly 1like repeated insert
requests,

Note that if an editing request is typed erroneously in
input mode, it is not recognized as such, and the typed line
is inserted into the function without any warning message.
Also, 1if the terminating period for exiting from input mode
is not typed by itself on a line of its own, it goes into
the function and does not cause a termination of input mode.

When the editor is invoked to edit a new function (one
which does not already exist), it responds in input mode. If
the function already exists, the editor responds in edit
mode with the current line set before the first line of the
function.

L A<305 Rework the plotting program to
SORRY. adjust all the borders of the
L Y<«305 graph to hold just the data to
ARRAY<«3053p"' ! transpose be displayed.

INPUT. '

M<58+([/X)-XORG<~L/X Scale the data to a width of
XORG+1.5-MxXORG 5.8 inches.

YSIZE«1-L(YORG<0.5-0.6xMx[/Y)-0.6xMx| /Y

. And as much height as the data
EDIT. requires at that scale.

L 53

ARRAY<«3053p"' !

P 5

ARRAY<3053p"' !

M<58+([/X)-XORG<L/X » The new lines were inserted at
XORG+1.5-MxXORG the correct place.

5-12 AK95

YSIZE«1+L (YORG«0.5+40.,6xMx[/Y)-0.6xMxL/Y
M«35:[/1X,Y
D

INPUT.
A« (YSIZEx59)p"' !

EDIT.

L PLOT

Z«X PLOT Y3 ;M;ARRAY Add new local variables.
C JAY/AY ;XORG3;YORG;YSIZE/

Z2«X PLOT Y3;M;ARRAY ;XORG;YORGYSIZE

C 99 /RRAY//

Z<«X PLOT Y;M;A3;XORG3;YCRG;YSIZE

A<3053p"' !
AL(L36.5+4XxM)+71xLx21.5-Y*x0.6xM]«(pX)p'*"'
72«43 71pA

FOF,

L A<«

A<3053p"' !

D

L M+«

M<583:([/X)-XORG+<L/X

L

SORRY. Already deleted the other one.
L AL
AL(L36.,5+XxM)+71x[21.5-Yx0,6xM]«(pX)p'*"'
D 2

INPUT.
AL(LXORG+XxM)+59%x L YORG-Y*x0.6xM]«(pX)p"'*"'
Z<(YSIZF,59)p4

EDIT.

T

P 999

NO LINE.

72«<X PLOT Y;M ;A ;XORG3;YORG;YSIZE
M<58+ ([/X)-XORG<L/X

XORG<+1.5-MxX0ORG

YSIZE<«1+L (YORG<0.5+40,6xMx[/Y)-0.6xMx|L/Y
A« (YSIZEx59)p"' !
AL(XORG+X*xM)+59x L YORG-4+x0,6xM]«(pX)p'*'
72« (YSIZE,59)pA

HASSOCK. Oops.

EOF,

L H Forgot about that.
HASSOCK.

D There.

5-13 AK95

QUIT REQUEST Q

The quit request @ is the last of the basic editing
requests, It is issued when editing is completed and it is
desired to exit from the editor. Issuing the quit request
is not necessary; an alternate method of terminating an edit
session 1is to type an editor-exit character vV at the end of
a line. The V character terminates the edit whether typed
in input mode or edit mode; the @ editing request is
recognized only in edit mode.

When the edit is ending, the editor checks the syntax
of the function header line and verifies that all lines of
the function have recognizable syntactic constructs. See
also "Leaving the Editor" in this section.

If the checks are successful, the editor allows
termination of the edit. The APL processor again requests
the immediate or evaluated input it was awaiting at the time
the editor was invoked.

e Exit from the editor. APL
JFNS types six spaces, it is again
PLOT ready for immediate input.

(120) PLOT 2x10(120) Try plotting a sine curve.

* * * *

Other Useful Requests

While the nine requests already described are the basics
that a wuser needs to accomplish any editing task, the next
four requests, described on the following pages, can be very
convenient.

NEXT REQUEST N n

The next request is used to move the editor's attention
"n" lines further along in the function. More precisely,
beginning with the current line, "n"-1 lines are skipped,
the next line becomes the current line. If "n" is omitted,
it is assumed to be a l1l; i.e., the next line becomes the

5-14 AK95

current line.

The new current line is printed. If the end of the
function is encountered before a sufficient number of lines
have been advanced, then EOF is printed.

VPLOT
EDIT.
N
Z«X PLOT Y;M;A;XORG;YCORG;YSIZE
N
M<58+([/X)-XORG«L/X
N
XORG+«1.5-MxXORG
N 2
A«(YSIZEx59)p"' !
N 28
EOF.
T
N7
Z«(YSIZE ,59)p4A
N
EOF.

BACKUP REQUEST - n

The backup request is similar to the N request, except
that it moves the editor's attention backward. That is, the
current line becomes the "n"th previous line. The backup
request is useful when one has accidentally passed by a line
that requires changing.

The new current line is printed. If the beginning of
the function is encountered before a sufficient number of
preceding lines have been located, then BOF (for
beginning-of-function) is printed.

P Where are we?

EOF. At the end of the function.
- Back up one to see the last
72« (YSIZE,59)pA line.

- 2 Back up two more.
A<(YSIZEx59)p"' !

- 9999 Back up a lot.

BOF. Too far. The -9999 request
N has the same effect as T.
7<X PLOT Y ;M;A3;XORG;YORG;YSIZE

N 9999 Now down to the bottom again.
EOF.

Z<(YSIZE,59)p4A

(6]
!

15 AK95

BOTTOM REQUEST B

The bottom request is a convenient way to add 1lines to
tpe end of a function. The bottom request sets the current
llpe following the last line of the function,
prints INPUT, and enters input mode. All lines typed will

be appgnded to the end of the function. Exit from input
mode with the . character.

The result of the B request is the same as that of a ¥
9999 followed by a . except that EOF is not printed.

B

INPUT.

NEW LINE.
NEWER LINE,

EDIT.
p
NEWER LINE,

NEW LINE.
Z«(YSIZE,59)pA
P 7

Z«(YSIZE ,59)pA
NEW LINE.
NEWER LINE.
EOF .,

FIND REQUEST F string

The find request is similar to the locate request except
that to satisfy the search, the "string" must be found at
the beginnin of a line searched instead of being embedded
anywhere in it. The find request is useful for finding
labels or assignments to variables.

P Where are we?

EOF.

T Go to the top.

F M Find an ' ¥ ' at the beginning
M«58% ([/X)-XORG+L/X of a line. Editor prints it.
F Find another one.

SORRY. There are no others.

L But there are others not at
XORG+«1,5-MxXORG the beginning of a line.

L

YSIZE<«1+L (YORG<«0.5+0.6xMx[/Y)-0.6xMx|L/Y

F NEW Get to those lines we added.
NEW LINE.

5-16 AK95

D 2 Delete them.
SORRY .

Infrequently Used Requests

The nine requests described on the following pages serve
specialized purposes. They are not used as frequently as
the previous requests, but each is wuseful when used
appropriately as described below.

KILL REQUEST K

The kill request causes the editor to suppress normal
responses to the change, locate, £find, next, and backup
requests. After a X request has been issued, the editor no
longer prints the current line reached by L, F,
N, and - requests, nor does it print the 1lines changed by
the C request.

The kill request does not suppress the INPUT and EDIT
responses to the . request, nor does it suppress abnormal
responses like SORRY and EOF. There is no response to the
kill request itself.

Editing of a large function can be accelerated if
responses are killed, but the user is cautioned to specify
long enough strings to wuniquely locate and change the
desired items. If a locate request is satisfied by an
unexpected match, additional editing can occur before
discovery of the discrepancy, with the result that a large
number of corrections may have to be made.

X Suppress responses.

T

C 999 /M/MAG/ Change all ¥ 's to MAG 's,
EOQF. Changed lines not printed.
T

C 999 /Z/ANSWER/

EOQOF.

T

L <(YSIZFE

C YSIZEx.x/YSIZE«YSIZE,. Located line not printed.
L Get the next use of YSIZE .
c /(// Edit it, too.

C /,59)//

T

P 99 Now print the whole new
NO LINE. function.

5-17 AK95

ANSWER<X PLOT Y;MAG;A;XORG;YORG ;;YSIZE
MAG<583 ([/X)-XORG+L/X

XORG+«1.5-MAGxXORG
YSIZE«<1+4L(YORG+0,5+0.6xMAG*x[/Y)-0.6xMAGxL/Y
A<(x/YSIZE<YSIZE,59)p"'
AL(LXORG+XxMAG)+59%x L YORG-YORG-Y*0 .6 xMAG]<«(p "' *"
ANSWER<«YSIZEpA

EOF.

VERIFY REQUEST 4

The verify request permits printing of responses
suppressed by the kill request to begin again. There is no
response to the V request itself.

14 Responses back on again.
L 1.5

XORG+«1 .5-MAGxXORG Located line printed.

T

C 500 /YSIZE/SIZE/ Changed lines printed.

ANSWER<X PLOT Y ;MAG;A3;XORG3;YORG;SIZE
SIZE<1+L(YORG<0.5+0.6xMAGx[/Y)-0.6xMAGxY
A« (x/SIZE<«SIZE,59)p"' !

ANSWER<SIZEpA

EOF.

K Now let's put it back.
T

C 50 /ANSWER/Z/

EOF.

T

C 50 /AG//

EOF.

T

C 50 /ORG/G/

EOF .

T

C 50 /IZE//

EOF.

T

P 50 See what we got.
NO LINE.

Z<X PLOT Y;M;A;XG3;YG;S
M<58:([/X)-XG<L/X

XG<«1.5-MxMG

S<«1+L(YG<0.,5+0.6xM+[/Y)-0.6xMxL/Y
A<(x/8«5,59)p"
AL(LXG+X*xM)+59x L YG-Y*x0.6xM]«(pX)p'*"
Z<SpA

EOF.

5-18 AK95

LINE-NUMBER REQUEST =

The line-number request, triggered by the equal-sign
character, prints the line number of the current line. For
the purposes of this request, the lines of the function are
numbered sequentially, beginning with the header line as
number one. The numbers are dynamic, and change as lines
are added to and deleted from the function. If there is no
current line, then NO LINE or EOF is printed as a response
- to the = request.

The 1line numbers returned by the line-number request
are determined by the locations of newline characters in the
textual definition of a function. They do not correspond to
the interpreter statement numbers printed out by
the)SI system command. The two sets of numbers differ
because the interpreter considers the header statement of a
function to be statement number zero, and because newline
characters within character constants can cause several
editor lines to be taken as one statement to be interpreted.

XG+

XG+

XG+

HeewnH -

[=TI o I N]

S«
SORRY.
N 9999
EOF .

EQOF.

FusSN_E39n

COMMENT REQUEST s

The comment request is initiated by the comma
character. After a comment request, successive lines of the

5-19 AK95

function, beginning with the current line, are typed out one
at a time, without a newline character at the end. The user
may then add additional characters to the line displayed, or
31mp}y type a newline to leave the line unchanged. When the
newline is typed, either with or without additional
characters having been appended to the displayed line, the
editor advances to the next line of the function and repeats
the operation.

. The user can exit from the comment mode by typing a
single period on a line. The period cannot be preceded by a

comment for the current 1line. Upon conclusion of the
comment operation, the current 1line is the last line
displayed. An automatic exit from the comment mode occurs

if the end of the function is encountered.

4 Verify mode turned on.

L Z«

Z+SpA

L

Z«X PLOT Y;M;A;XG;YG;S

R The user requests comment mode

Z2«X PLOT Y;M;A3;XG3;YG;S and the editor prints the cur-
rent line, without a carriage
return. The user now appends
his comments.

(already typed) (new text typed by user)
Z<X PLOT Y;M;A;XG3;YG;S A PLOT GRAPH ON TYPEWRITER.
M<58+([/X)-XG<L/X The editor now advances to the

next line and displays it.
Again, we append some comments
to the line.

(already typed) (new text)
M«58+([/X)-XG<L/X p 58 COLUMNS FOR RANGE OF X'S.
XG<«1.5-MxXG Editor prints the next line.

This time we elect not to add

anything, so we enter an im-

mediate newline. The editor

responds with the next line.
S<1+L(YG«0.540.6xMx[/Y)-0.6xMx|/Y

To which we comment:

(already typed) (new)
S«1+L(YG<0.540.6xMx[/Y)-0.6xMx /Y n VERTICAL SIZE NEEDED.
A<(x/5«5,59)p" ! Next line displayed. Now we

exit from comment mode by
typing a period.

(already typed) (edit)

A« (x/5<«5,59)p"' '. FEDIT. :
P Editor responds in edit mode.
A«(x/8«5,59)p" '

T

P 6

5-20 AK95

NO LINE.

Z<X PLOT Y;M;A;XG;YG; 5 a PLOT GRAPH ON TYPEWRITER.
M«58+([/X)-XG«L/X A 58 COLUMNS FOR RANGE OF X'S.
XG+1,5-MxXG

S«1+L(YG«0.540,.6xMx[/¥Y)=-0,6xMxL/Y a VERTICAL SIZE NEEDED.
A<(x/5+5,59)p" '

EXECUTE REQUEST E command

The execute request 1is wused to execute a Multics
command without exiting from the function editor. The
remainder of the line following the F request character is
passed to the Multics command processor, via "cu_$cp", for
execution. The editor responds EDIT when the command has
been completed. The current line is unchanged.

The APL character set conventions are suspended when
control leaves APL and are restored when control returns.
The user is cautioned that APL character set conventions are
in effect during reading of the execute request line itself.
The APL character set and the Multics character set have a
considerable amount of overlap, but the user must be aware
of the differences and compensate for them when necessary.
Character set considerations are fully discussed in Section
II.

E CWD >UDD>M>MGS Execute a Multics command.
EDIT.

E PWD

>UDD> | ULTICS> | MITH Multics thinks we have a
EDIT. standard type ball mounted.
E HMU This time we
Multics 20.12b, load 26.5/50.0; 28 users will change the
Absentee users 1/2 ball.

edit.

P Change back to APL ball.

A« (x/5«5,59)p" ! Current line, as before.

DELETE-ABOVE REQUEST X

The X request causes all lines above the current line
to be deleted. The current line is unchanged. This request
is most useful for copying, deleting, and rearranging large
blocks of text, particularly in conjunction with
the U and M requests, discussed below. There is no response
to the X request.

T Put in some lines to delete.

.

5-21 AK95

INPUT.
ONE
TWO
THREE
FOUR
FIVE

EDIT.

F TwWO

TWO

X

P

gWO Current line unchanged.

P 4

NO LINE. But nothing above it left.
TWO g

THREFE

FOUR

X

T

P 4

NO LINE.

FOUR

FIVE

Z«X PLOT Y;M;A;XG3;YG3S a PLOT GRAPH ON TYPEWRITER.
X Function is now restored.
L A<«

A< (x/5«5,59)p"

The line numbers change as the
function is edited.

oo o

WRITE REQUEST W pathname

The write request causes the current source text
definition of an APL function to be written as a Multics
segment. The argument of the W request is an absolute or
relative pathname. The source is represented in terms of
APL internal character codes. The editor's current line is
at the end of the function following a write request. There
is no response typed to this request.

The write request bears no relation to the status of
the function definition as far as APL is concerned. All
editing operations instantly change the definition of the
function stored in the workspace; no write or other request
is necessary to cause them to take effect. The write
request is used solely to communicate a function definition

5-22 AK95

outside of the APL environment.

The APL function editor and the write request form a
convenient way of generating text in APL internal character
codes, as is needed when input to APL comes from a segment
rather than a terminal (absentee usage of APL, or the
"sattach" feature of "exec com"). 1f, after the write
request 1is issued, all the lines of text are deleted (as,
with the X request), then no function will be placed in the
current workspace.

D 99 Discard the original function

EQF. entirely.

INPUT.

"ARBITRARY APL TEXT'

A<3 U4pr12

A+.xQA

BA+?3 4p1o0

EDIT.

W TEST

E LS TEST

[EGMENTS= 1, pECORDS= 1. Multics thinks we have a
standard type ball.

08/31/72 2305.5 RWA 1 TEST

EDIT.

E PR TEST 1 99 Change to standard type ball

'arbitrary apl text' for this print. ©Note that

a3 4%$12 some APL character codes do

a+.&¢234a not have ASCII equivalents.

¢244a+?3 4310

edit. Change back again.

Q If we try to end the edit at

INVALID HEADER LINE. this point, APL will not let

PLOT[O] 'ARBITRARY AFL TEXT' us, because we do not have a
| valid header line.

X We are not interested in the
Q function any more.
YFNS There is no longer a PLOT

function. Deleting all of a
function's lines is a way of
erasing it.

MERGE REQUEST M pathname
The merge request 1is the complement of the write

request. All lines of the segment whose pathname is given
in the merge request are inserted into the function

5-23 AK95

definition following the current line. The new current line
becomes a hypothetical, nonexistent line placed after the
last inserted 1line. The text in the segment being merged
must be in APL internal character codes if the resultant
function definition is to be usable by APL. The segment is
unchanged. No response is typed to the M request.

The effect of the merge request is similar to
repeated I requests in which each 1line of the segment is
typed, one after the other, except that the current line is
set beyond the last line inserted.

VTEST Enter the editor again.
FUNCTION 'TEST' NOT FOUND.
INPUT.
. We do not desire to type in a
EDIT. definition. Go to edit mode.
M TEST Merge in segment TEST .
T
P 99
NO LINE.
"YARBITRARY APL TEXT'
A«3 U4pr12
A+ . xQ4
BA+?3 u4p10
EOF.
L A<«
A<3 4p112
M TEST Merge in another copy here.
T
P 99
NO LINE.
'"ARBITRARY APL TEXT'
A<«3 Lpr112
'ARBITRARY APL TEXT'
A<3 L4pr112
A+.xQA
BA+23 4p10
A+ . xQA
B4A+?3 L4plo0
EOF.
TEST Write all 8 lines back out.
TEST Now we have 16.
TEST
TEST 32.
TEST
TEST 64.
TEST
TEST 128.

I RIRNIRIIRI

BA+?73 4p10

128

5-24 AK95

WRITE-ABOVE REQUEST

U pathname

The write-above request is similar to the delete-above

request,

except that

it writes out the lines above the

current line as a Multics segment before deleting them from

the function definition.

The
be

write-above,

used rearrange

The current line is unchanged.

delete-above, and merge requests can
blocks of text by using

successive U requests to distribute the blocks to individual

segments
saved) .

T
D 999
EOF.

INPUT.
BLOCK A.
ONE .
TWO.
THREFE.
BLOCK B.
FOUR.
FIVE.
BLOCK C.
SIX.
SEVEN.
EIGHT.
NINE.
BLOCK D.
BINGO!

EDIT.

T

L B
BLOCK A.
L B.
BLOCK B.
U FILEA
L C.
BLOCK C.
X

L D.
BLOCK D.
U FILEC
N 999
EOF.

M FILEA
M FILEC
T

P 999

X requests

for blocks which need not be
Then the y request is used to rearrange the into a
new order.

An example of moving blocks
of text around.

Input some arbitrary text.

Assume, for example, that it
is desired to rework this
definition from the order
A-B-C-D into the order D-A-C
(B being deleted).

Find the beginning of block B.
Oops, wrong B.

That's better.
Write out block A as a Multics
segment.

Delete block B.

Save block C.

Block D is everything left.
Get to the bottom of block D.
Merge in the other blocks in
their correct positions.

5-25 AK95

NO LINE.
BLOCK L.
BINGO!
BLOCK A.
ONE,
TWO.
THREE.
BLOCK C.
SIX.
SEVEN.
EIGHT.
NINE,
EOF.

E DF FILEA FILEB TEST Delete the temporary segments
EDIT.

Synonyms for Requests

A number of the editor requests have alternate names.
Each of the following alternate names invokes a
corresponding request that has already been discussed.

SUBSTITUTE REQUEST S n /stringl/string2/

The substitute request, invoked by the character S, is
the same as the change request, invoked by the character (.

EXECUTE REQUEST E command

The execute request invoked with the underscored

letter, E (represented as upper case "E" on ASCII
terminals), is the same as the execute request invoked with
the plain letter, E (represented as lower case "e" on

ASCII terminals).

UPWRITE REQUEST UPWRITE pathname

The upwrite request, UPWRITE, is the same as the
write-above request, U. The upwrite request is an exception
to the 1rule that a request urr==zkication consist of a
single character: the entire word UPWRITE must be spelled
out to invoke this request.

5-26 AK95

UPDELETE REQUEST UPDELETE

The updelete request, UPDELETE, 1is exactly the same
as the delete-above request, X. The updelete request is
another exception to the rule that a request identification
consist of a single character.

MERGE REQUEST MERGE pathname

The merge request is invoked by either
spelled-out MERGE or by the single character M. The
spelled-out merge request is the final exception to the
single-character request identification rule.

PROGRAM INTERRUPT DURING EDITING

As elsewhere in APL, the Multics "program_interrupt"
condition remains enabled while editing. If the user wishes
to abort a lengthy printout or other time-consuming editor
operation, he presses the QUIT button and issues the Multics
"pi" command. The editor returns to edit mode and
prints EDIT. If the interrupted request was in the process
of altering the function, the process may not have finished
and the user should inspect several preceding lines of the
function to determine the effect of the interrupted request.

The program interrupt feature is safe in the sense that

its use never leaves the function definition in an
inconsistent or unreadable state.

THE SNEAK REQUEST

As in APL/360, in Multics APL it is possible to "sneak"
one editor request onto the same line as the editor
invocation. The request is separated from the name of the
function being edited by at least one blank.

When a sneak request is found on an editor invocation
line, the editor does not respond EDIT as usual, but
immediately proceeds to execute the request. Whether a
response is printed depends on the request. When the
request ends with the edit-termination character V, the
edit terminates after execution. Thus, an entire edit,
including invocation, request, and termination, can be
accomplished on one typed line.

5-27 AK95

If a function definition does not exist when a sneak
request is found on an editor invocation, it is assumed that
a mistake was made by the user. Thus, the editor ignores
the request and responds with INPUT mode, as usual.

q Exit from current edit.
HEADER LINE SYNTAX ERROR. Oops, the text we were using

TESTLO] BLOCK D.
l

does not look like a valid APL
function.

EDIT.
T
c 2 /.// Make it so.
BLOCK D Now it does.
@ Exit successfully.
)FNS Note that the function TEST
BLOCK was renamed BLOCK by its

VBLOCK P 99V

header line. Here is an

NO LINE. example of listing a function
BLOCK D definition by means of a sneak
BINGO! request. The editor invoca-
BLOCK A. tion, request, and termination
ONE . are all effected on one line.
TWO.
THREE .
BLOCK C.
SIX.
SEVEN .
EIGHT.
NINE.
EOF.

VBLOCK F T A sneak request not followed
TWO. by a termination.

€/0/0 HUNDRED/
TWO HUNDRED.
B
INPUT.
TEN .V
BLOCK 5
VALUE EREOR.
BLOCK[1] BINGO!
|
VBLOCK D 99V
EOF.
)FNS

Invoke the function.
It isn't really a valid APL
function.

Delete it with a sneak request

which deletes all of its
lines. Not there any more.

28 AK95

SECTION VI

DEMONSTRATION APL SESSION

APL IN ACTION

A demonstration of APL in action is shown below. The user's
requests and the computer's responses are shown as they
occurred, with running commentary.

apl Invoke Multics APL command,
2x3 change type ball. User types
6 expression to be evaluated,
6.3x2,7 APL types answer. User input
17.01 is always indented; answer is
X«1+3 not. If answer assigned to a
X variable, then not printed.
0.3333333333 Value of the variable X .
2X3+U4 Operations are executed in
14 right-to-left order.
(2x3)+Y4 But parentheses can be used to
10 specify a different order.
X Monadic : is reciprocal.
3
1h Index generator operator gen-
1 2 3 4 erates a vector of sequential
3 572 integers. A vector may be
3 5 7 2 input by the user too.
3 5 7 2%x14 Scalar operators apply element-
3 25 343 16 by-element to vectors. = is
100-13 exponentiation. A scalar is
93 98 97 applied to each element of a
plt 2 6 vector. p of a vector is its
3 length. Three elements.
4 2 6+1 2 3 4 Length error. The vectors do
LENGTH ERROR. not have a matching number of
4 2 6+1 2 3 Y4 elements. APL marks the oper-
| ator in error.
X<+5p13 Dyadic o, reshape to a speci-
X fic length. Elements are
1 2 3 1 2 repeated if necessary.
Y<«6 6
X,Y Catenation, joins two vectors.

6-1 AK95

0

1

2

3 1 2
pX,Y

+/X
r/x

10

£/ X
x/10

L/0p0

1.701411835E38

8

N F

=

n

P w

(64}

L8+15
2 2 1
M<«3 3p15

76p10
4 6 5
N<?3 3p10

3

The result is seven elements
long.

Plus-reduction, same as
1+2+3+1+2.

Maximum-reduction. Any scalar
operator allowed in reduction.
A vector with no elements.

It prints as a blank line.
Another way to express the
same value. Same result.
Logical relations produce 1
for true and 0 for false.
Equality reduction of Y .
Both elements of Y are equal.
Remember right-to-left rule,
2/X <> 12(22(3=(122))) <> 0.
Reduction of null vector gives
operator's identity value.
Identity value of the minimum
operator is biggest number.
Monadic L is floor function
(greatest integer in).

The reshape operator used to
make a two-dimensional array.
A blank line precedes each
plane of an array. Elements
are used in row-major order.

The shape of an array is
itself a vector.

The shape of the shape is
called the rank of the array.
Compression selectively in-
cludes or omits columns.
First and third columns.

Row compression, select_the
last two rows of M .

A random number between 1
and 10.

Six such numbers. Monadic ?
is a scalar operator.

A random 3 by 3 matrix.

Scalar operations extend

6-2 AK95

1 L 24

16 50 3
4 15 16

M+ . xN

15 37 26
26 63 51
22 54 L1
Ml . +N

6 12 9

9 15 12

7 13 10

Yo, ,-X

5 4 3 5 4
5 4 3 5 4

M<3 2+M
M
1 2
y 5
2 3
+/M
3 9 5
x/[1]1M
8 30
M[2;1]
n
M[2 3;1 1 2]
4 4 5
2 2 3
M[5;6]
INDEX ERROR.
M[5;6]
I
JORIGIN O
WAS 1
14
0 1 2 3
+/011M
3 9 5
M[2;0 1]
2 3
'HI THERE,'
HI THERE.
o'"HI THERE.'
9 2 3,'UHOH'
DOMAIN ERROR.
2 3,'UHOH'

element by element to matching
arrays of any rank, producing
results of matching shape.

Ordinary matrix multiplication
or inner product. Multiply
elements and plus-reduce.

Any scalar operators can be
used in inner products. Add

elements and maximum-reduce.

Outer product, applies scalar
operator between all pairs of
elements, generating higher-
rank result.

Take the first three rows and
two columns of M.

Reduction applies to the last
coordinate of any array.
Unless another coordinate is
explicitly specified.

Indexing or subscripting to
extract an element from an
array. The shape of an index-
ed reference follows the shape
of the subscript list.

Index value out of range. The
interpreter marks the index
operator.

Change the numbering of coord-
inates and indices to start at
zero. The counting vectors
now start at zero.

Coordinate numbers change.

So do index values.

A character vector.

It prints without quotes.

How many characters? Each
character is one element.
Characters and numbers cannot
be mixed in the same value.

AK95

Still another way to write a
null vector.

L/ Null vectors are neither char-
1.701411835E38 acter nor numeric.

©100 Natural logarithm.
4,605170186

+/311!leel /" A "numberless" numerical pro-
2,718281828 gram to calculate e from its

J)DIGITS 19 Taylor series. Increase the
WAS 10 precision with which results

+/31v!leel /" are displayed, and try it
2,718281828459045235 again.

*1 Compare this with the built-in
2,718281828459045235 value of e. Looks good.

2-6x%3 Small inaccuracy due to inter-
2.168404344971008868E 19 nal binary arithmetic.

JDIGITS 10 '
WAS 19

JORIGIN 1

WAS O
"ABCDEF'[2 1 4 3 1 2] Any array can be indexed, even
BADCAB a constant.
A<'ABCDEFGHIJKLMNOPQRSTUVWXYZ ,. '
A[8 9 29 20 8 5 18 5 28]

HI THERE. Characters encoded as numbers,
AV'E! Dyadic 1 is least index of E
5 in 4 .
M<«A\'HERE WE ARE.' When the right operand is an
M array, each element is indexed
8 5 18 5 29 23 5 29 1 18 5 28 individually.
AloM] Reverse operator reverses the
.ERA EW EREH order of a vector.
A[M«3 LpM] Reshape the vector into an
array. Assignment may be used
HERE within an expression. Again,
WE the shape of an indexed value
ARE. follows the index shape.
ALeM] The transpose operator. In-
terchange the rows and columns
H A of M .
EWR
REE
E .
M<A\'DOUBLE TALK.' Here the elements of ¥ are
AL, ®8(2,pM)pM] repeated, transposed, and then
DDOOUUBBLLEE TTAALLKK.. picked up in row-major order.
HM M Sort M . Result is the vector
9 4 1 6 11 5 10 2 8 3 12 7 of indices that
ML HM M] will order M .
1 2 4 5 11 12 12 15 20 21 28 29 M , sorted.
ALMIM M]] An indexed index, to produce
ABDEKLLOTU. alphabetical ordering.

6-4 AK95

"' O'[1+Xo.21[/X] Indexing a constant to produce

a histogram. Also illustrates

O maximum-reduction, and an
00 outer product using the 2
0oo operator.

a

0o

10 10 10 107983 Encode a value to its repre-
0o 9 8 3 sentation with a given radix.
10L0 9 8 3 Evaluate the representation.

983 The value is recovered.

2 5 2 5717 Mixed-radix representations
o 1 1 2 are legal.

120 The time, in sixtieths of a
2661854 second since midnight.

24 60 60 60TI20 Encode as hours, minutes,
12 19 42 38 seconds, and sixtieths.

':0123456789"'[1+1 1 0 1 1\1+4499 10 6 10 3600TI201]
12:22 HH:MM if you like.

(7p5 2)T1735 Convert 1735 to the radix of
i1 1 2 0 3 1 0 Roman numerals.

(,((7p5 2)T1735)0,214)/,84 7p'MDCLXVI'
MDCCXXXV Or all the way to Roman.

VROMAN Define a function named ROMAN .
FUNCTION 'ROMAN' NOT FOUND. One does not exist yet.

INPUT. The editor invites its crea-
R<«ROMAN D tion. Header line, one arg.
R<(,((7p5 2)TD)o.214)/,84 7p'MDCLXVI'V Close definition.
ROMAN 1735 Call the function.
MDCCXXXV Same result.
VARABIC We need one to go the other
FUNCTION 'ARABIC' NOT FOUND. way.
INPUT.
Z<ARABIC S Also one argument, result.

S<1 5 10 50 100 500 1000['IVXLCDM'1S] Now we can do Roman
Z<«+/Sxx5+1-1+5,0V arithmetic.
ROMAN(ARABIC'MDCCXXXV')-ARABIC'CCCLXVIII'

MCCCLXVII
VACK

FUNCTION 'ACK' NOT FOUND.

INPUT.

Z«M ACK N
>(xM)x3-1<Z<+N+1
Z<«M ACK N-1
Z«(M-1) ACK 2V

2 ACK 3
9

VACK
EDIT.
N 2

>(xM)x3-1<Z<«N+1
D
P

Ackermann's function will il-
lustrate conditional branching
and recursion. M ACK N <> N+1
if M=0; (M-1) ACK 1 if N=0;
else, (M-1) ACK (M ACK N-1).
Monadic x is signum, branch to
0 (return) if M 1is zero, else
branch to line 2 or 3.

Many recursive calls on ACK .
Make it more efficient.

This time function is found.
'Next' request, skip no-line
and header lines, print next.
Delete this line.

Try to print it again.

6-5 AK95

NO LINE,.

I >(ML5)90 2 3 4 5,7-1<Z<«N+1

I +0,Z2+«2+N

I +0,Z2+«3+2xN
P

+>0,2«3+2xN

INPUT .
+O,Z+:3+BXQPN
+0,2« 3+x/(N+3)p?2

EDIT.

L 8x2

+0,2« 3+8x2PN

C /P/xV

+>0,2« 3+8x2xN
VACK P 999V

NO LINE.

Z«M ACK N

>(ML5) ¢0 2 3 U4 5,7-1<Z<«N+1

+>0,2+«2+N
+0,Z2<3+2xN

+0,2« 3+8x2xN
+0,2« 3+*/(N+3)p2
Z«M ACK N-1
Z<(M-1) ACK 2

EOF.

2 ACK 3
9

JFNS
ACK ARABIC ROMAN

JERASE ACK

2 ACK 3
SYNTAX ERROR.

2 ACK 3

l

VPAYMENT
FUNCTION 'PAYMENT'
INPUT.

Z<PAYMENT ;R 3NV
R<«RATE+1200
V<(1+R)*N<12xYFEARS
Z<PRINXRXxV+V-1V

PRIN<22500

RATE<7

YEARS<25

PAYMENT
159.0253194

RATE<7 7.5 8 8.5

PAYMENT
159.0253194 166.273015
JVARS
A M N

NOT FOUND.

173.

PRIN

6-6

It is no longer there.

Insert a replacement for it.
Insert some more lines, spec-
ial cases of small M.

Print the most recent line.

Enter input mode. Same as
repeated 'I' requests.
A typing error, should be 2xN.

The error is noticed. Back to
edit mode. Use [request to
locate the line to be fixed.
Editor prints it.

Change P to » and end edit.
Editor prints changed line.
Now print the whole function.
'No line' because pointer al-
ways starts before the first

line. Branch to M handler.
Line 2, for M equals 1.

Line 3, for M equals 2.

Line 4, for M equals 3.

Line 5, for M equals 4.

For M above four, use recur-

sive evaluation.

End of function reached.

Try the new ACKx .

Same result, more efficiently.
Display the names of all de-
fined functions.

A variable or function can be
erased.

An error report results now,
because ACK is unknown.

Mortgage payment example.

R , N , and V are local vars.

RATE (percent per year) isn't.

Number of monthly payments.

PRIN , YEARS also not local.

Establish the parameters for a

$22500, 25-year mortgage at

7 percent.

What will the monthly princi-

pal+interest payment be?

Try a variety of rates.

Scalar functions extend to

6586494 181.1760938 arrays.

Type names of all variables.
RATE X Y

AK95

YEARS

N
1 2
4 10
2 5

8
3
n

Local variables R , ¥V , and

do not appear. This PV is the

global /¥ that was created
many lines back, unchanged by
the usage of a local variable
of the same name.

4

VPAYMENT C 2 /MENT/MENT RATEV Change PAYMENT so that

Z<PAYMENT RATE;R;N;V
PAYMENT 9 10

188.8191818

RATE

7 7.5

8

8.5
YEARS<«20 25 30
PAYMENT 9 10

LENGTH ERROR.
PAYMENT[2] V<(1+R)xN<«12xYEARS of differing lengths. An

VMO0
'MOO!

FUNCTION
INPUT.

MOO ;B ;S 3 M

S« 1+47?71

L: B<+/S=M<[]
'BC'[1+B<1+/,8°.

+>LXx1B<lYy
'CONGRATULATIONS!'V
MOO
O:
1 2 3 4
C
O:
5 6 7 8
BC
O:
6 7 8 0
ccC
0:
31 0 5
c
0:
3 6 7 9
cc
O:
9 3 6 8
BB
O:
7 3 9 8
BBBB
CONGRATULATIONS!
MOO
K
S
BBBB

0

204,4576677

NOT FOUND.

RATE is now a parameter.

The scalar function still
extends to arrays.

The global variable FATE was
not used, it is unchanged.

Here a scalar function is
asked to operate on arrays

error report results.

A program to play the game of
MO0 , User tries to guess the
secret four digits in a mini-
mum of turns. Computer awards
a 'bull' for each digit hit, a
'cow' for each digit in wrong
place. Need four bulls to
win.

Let's play a game.

Quad is input/output symbol,
user must type his guess.

One digit right, but wrong
place. Branch back to 0.
Next move is assigned to ¥
One digit in the right place,
one in the wrong place.

Trade 0 for 5, mix them up.

0 and 5 both in or both out.

Try both in. Mix up 1 and 3.
0 and 5 both out, one of 1 or
3 in, two of 6, 7, 8.

Proves that 8 was the bull on
the second guess. Still do
not know whether 6 or 7 is in.
Shucks, it was 7 and not 6,
and 9 is in the wrong place.
It has to be 7 3 9 8.

At last!

Another game, please.

This time we'll cheat. Any
expression is legal input to
the quad operator.

6-7 AK95

CONGRATULATIONS!

MOO
0:
O«s
6 1 0 3
BBBB
CONGRATULATIONS!
MOO
0:
JORIGIN 1
WAS 1
a:
2+A1014
cec
O:
13

LENGTH ERROR.

MOO[2] L: B«+/S=M<[

)SIV
MOO[3]* B M
PAYMENT[3]* Z

M
1 2 3

>2
O:

14
B
E

.

)SIV
PAYMENT[3] Z

->

)SIV

VGERMAN

FUNCTION 'GERMAN'
INPUT.

T<GERMAN S3;I3Jd 3 M3N
M«8 2p'"WHTHQUJoVoAoZoWo!
N<«9 2p'VoZoQVCHFoAHTZVo'

S<«S,T<"oo!
A: I<pN[9;]1<«245

RATE

RATE

NOT FOUND.

B: »>Cx111>T+J<(MA.=N[9;]1)11

>BxI<p ,N[9;2]«"'0"
C: S<«I+S
T<T,N[J;]
>Ax1Vv/1o'2S
T<«(Tz'o')/TV

GERMAN 'PASS THE SALT,
PAHSS ZE SAHLT, VILL YOU?
GERMAN 'THE FIVE WELDED JOINTS ARE QUIETER.'
ZE FIFE VELDED CHOINTS AHRE QVIETER.
GERMAN 'THEY HAVE LESS SQUEAKS THAN THE OTHERS.'

It would be more satisfying to
know the secret number. Use
the output form of quad to
print it before returning it.

Once more.

If a system command or a func-
tion edit is initiated during
a quad input, it is done and
then the quad is resumed.

Any APL expression is legal.

Of course, not all expressions
make sense to the MO0 program.

Display the state indicator
and local variable names.

R N |4
(Remember PAYMENT suspended.)
Variables are accessible.
Restart line 2 of MO0 again.
Program executing again.
This is the right length.

Exit from evaluated input.
M00 1is removed from the state.
R N |4
Another right arrow clears the
state indicator completely.
An example of text manipula-
tion: simulated German accent.
Translates specific pairs of
characters (M array) into some
replacements (N array).
the arrays, 'e°' means null.
Tack nulls onto input string.
Try to match two chars first.
Go to (¢ 1if match found.
No match, try single char now.
Match or no, advance input and
copy or replace in output.
Loop while more input to do,
else remove nulls and exit.
WILL YOU?'

6-8 AK95

Enter

I~

ZEY HAHFE LESS SQVEAHKS ZAHN ZE OZERS.
GERMAN 'WE USE THEM WHERE WE CAN.'

VE USE ZEM VERE VE CAHN.

YLOAD ALGORITHMS
SAVED 03/23/72 1134, 4
YFNS
CFC CFX EPI
VCFX P 99V
NO LINE,
V<CFX N
+>3,V<LN
+3x20>p V<V, LN«+N
+>2x0,00000000003<|N<«1|N
EOF.
CFX 6336+3937
1 1 1 1 1 3 1 2

VCFC P 99V
NO LINE.
CFC V3 A;B;3C31d
I<0
J«I<+I+A«~B<«0
A«<B+V[J 1xC<A
B<C
>(xJ<dJ~-1)p3
A;'_:.';B;' = ';A,:_B
»>2xI<pV
EOF .

CFC CFX 6336+3937
1+1 = 1
2¢+1 = 2
342 = 1.5
5+3 = 1.666666667
8+ = 1.6
29+18 = 1.611111111
37+23 = 1,608695652

10364 = 1,609375
861+535 = 1,609345794
1825+1134 1.609347443
4511+2803 1.609347128
6336+3937 1.609347219
)DIGITS 19
WAS 10
CFC 104CFX o1
3+1 = 3

Load a previously saved work-
space. System tells when it
was saved. What's in it?

JUL
Continued-fraction expander.
Continued fractions can be
used to find convergent ra-
tional approximations to any
real number. This function
develops the first 20 terms in
the expansion of NV,
Rationals have finite expan-

2 1 sions.
Continued-fraction compressor.
This algorithm prints the
successive rational approxi-
mations resulting from keeping
increasing numbers of terms in
the continued-fraction expan-
sion.

An example of mixed-type out-
put: numbers and characters
combined on the same line.
Kilometers per mile, exactly.
Successive approximations.
Two terms.

Three terms.

The successive approximations
are alternately smaller, then
larger, than the limit value,
but each is better than the
previous.

The limit in this case is
rational, so it is finally
achieved exactly.

Flex our muscles for a much
harder one next.

The first ten rational approx-
mations to pi.

22+7 = 3,1428574142857142857 Every schoolboy knows 2237,
333+106 = 3.141509433962264151

3554113 = 3,141592920353982301

3.141592653011902604
3.141592653921421045
3.141592653467436705
3.141592653618936623
8337194265381 = 3,141592653581077771

103993+33102
104348+33215
20834166317
312689+99532

Have to work hard to
improve on 355%113.

The error in 1146408
+364913 is only a
trillionth, though

1146408+364913 = 3.141592653591403978 the divisor is less

6-9 AK95

o1 than a million.

3.141592653589793238 True limit, to 19 decimals.
VEPI P 99V Function to graph epi- (X>0)
NO LINE. and hypo- (kX<0) cycloids (E=1)
Z«E FEPI K and trochoids (gz1) of order
E«<E,1pK«1+K,0 | X and eccentricity E.
K«(81 20,0K0,x0,02x01100)-,%xEx30%+/|E
Z<2257p"' !
ZL(L31.5+K[1;1)+61x18,5+0.6%xK[2;]1]1<«100p"'*"'
2«37 61p2Z
EQF .
1 EPI 7 Seven-lobed epicycloid.
*x % * %
* * % * % *
* * % *
* * *
* *
* The seven-lobed epicycloid *
* is the curve traced by a *
* K Kk point on the edge of a cir- xk Kk ok
* cle of radius 1 as it rolls *
* without slipping all the *
way around the circumference of a fixed
* circle of radius 7. In the course of *

one complete revolution about the sta-

tionary circle, the small circle ro-

tates exactly seven times, the gener- ,
* ating point finally returning exactly *

to its starting position. The resul-

* tant curve thus closes upon itself af- *
* ter journeying alternately away from *
* % % and closer to the fixed circle seven * % x
* times. If the eccentricity were not 1 *

* but 0.5, say, then the generating point *

* would be not on the edge of the small *
circle but only halfway out to the
* edge. Then the cusps, or corners of *
the curve where the generating point
* touched the base circle and abruptly *
reversed direction, would be smoothed.

* * % * * *

VJUL P 99V Gregorian calendar to Julian
NO LINE. day number conversion. Julian
D<JUL DMY ;M;Y day numbers are sequentially

6-10 AK95

D<DMY[1] assigned--useful for studying
M<DMY[2] periodic phenomena and theo-
Y<DMY[3] retical calendar calculations.
Y«Y-9<M<12|M+9
D+1721119+D+(LO.5+3O.6XM)+(365XY)+(LY%u)+(LY%400)-LY%1OO
EQOF.

JUL 25 5 1942 Julian day beginning noon UT
2430505 on Monday 25 May 1942.

JUL 24 11 4713 Monday 24 November -4713 is
0 the origin of the numbers.

JUL 7 9 ~3760 Beginning of Hebrew calendar,
347998 Monday 1 Tishri 1.

JUL 7 9 1963 Another date, Saturday 7 Sep-
2438280 tember 1963.

(JUL 7 9 1963)-(JUL 25 5 1942)
7775 Days between two dates.

VGREG P 99V Now a function to go the hard
NO LINE. way: this one accepts a Jul-
D«GREG M;Y ian day number and returns the
M<M-1721120 corresponding Gregorian date.
Y<L00x(M-D«146097|M)+146097 Get 400-year cycle.
M<3+4xD+3LLD+36524 Get 29 Feb in leap centuries.
Y<Y+(M-D<1461|M)+1461 Get 4-year period.
M<2+5x|.Dslu Get month and also finally
Y<Y+3>M<1+412| 2+ (M-D«153|M)+153 get the year itself.
D<1+LD+%5 Get day.
D<D,M,Y That's all folks.
EOF.

GREG 2430505 This function undoes what
25 5 1942 Jur does.

GREG JUL 29 12 1942 Any legal date comes through
29 12 1942 the two of them unchanged.

GREG JUL 29 2 1942 But was 1942 a leap year?
1 3 1942 No, there was no 29 Feb 1942,

GREG JUL 28 2 1942 Of course, there was a 28 Feb.
28 2 1942

GREG JUL 29 2 1944 1944 was a leap year.
29 2 1944

GREG JUL 29 2 1900 But 1900 wasn't. ©Not all cen-
3 1 1900 : turies are leap in the Greg-

GREG JUL 29 2 2000 orian calendar.
29 2 2000 Only the multiples of 400 are.

GREG 700+JUL 7 9 1963 Calendar addition: 700 days
7 8 1965 from 7 Sep 1963 is 7 Aug 1965.

VDOW The day-of-the-week can be ob-
FUNCTION 'DOW' NOT FOUND. tained easily from the Julian
INPUT. day number since they are se-
DOW D quentially assigned.
'"MONTUEWEDTHUFRISATSUN'[1 2 3+3x7|JUL DIV

DOW 25 5 1942 Verify the days-of-the-week
MON claimed above.

DOW 24 11 ~4713
MON

6-11 AK95

DOW 7 9 1963
SAT
VINTO

FUNCTION 'INTO' NOT FOUND.

INPUT.
Z<«X INTO Y
X<X+(1100)xY<«0,01xY=-X
'F(X)?!
Z<Y¥x+/0V

VINT2

FUNCTION 'INT1' NOT FOUND.

INPUT,

2«X INT1 Y

X<X+(0,1100)xY<0,01xY-X

'F(X)?!

Z<(Yx+/0x1¢1 1,99p2):2V
VINT?2

FUNCTION 'INT2' NOT FOUND.

INPUT.
Z«<X INT2 Y
X<«X+(0,1100)xY«0,01xY-X
'F(X)2!
Z<(Yx+/0x1¢1 1,99p4 2)+3V
0 INTO 0%2
F(X)?
0:
10X
1.007833419873581876
0 INT1 032
F(X)?
O:
10X
0.9999794382396073936
0 INT2 0+2
F(X)?
0:
10X
1.000000000338235941
0 INTO @3
F(X)?
O:

(1+*X)*x+2
1.838929508941500088
0 INT1 e3
F(X)?

O:
(1+%X) %22
1.8357117480469393905
0 INT2 &3
F(X)?
O:

(1+*xX)*x+2
1.835707760630289434

Looks good.
Some various numeric integra-
tion formulas.

Order 0 (rectangular) approxi-
mation. Integral from x to
of function typed in as evalu-
ated input.

Order 1 (trapezoidal) approxi-
mation. Integral is the sum
of the areas of trapezoids

fit to the function at 100
equally-spaced points.

Order 2 (parabolic) approxima-
tion (Simpson's Rule). Sum of
the areas of 50 parabolas fit
to the function.

Integral of sin x dx from 0 to
pi/2. Analytic answer is 1.
Program requests input of the
function. Give it sin Xx.

0.8% error for order 0.

Try the trapezoidal approxima-.

tion with the same integral.

Order 1 error is 0.002%.
Now try Simpson's Rule.

Order 2 error is very small.
Another function now. Try
sqgrt (1l+exp x) dx from 0 to

log 3. Indefinite integral is
2sgrt (l-exp x)-x+2log(sqrt(l+
exp x)-1), giving an analytic
answer of 1.8357077606247.

Order 0 gives 0.2% error.

Order 1 about 0.0002%.

Good to 10 decimal digits.

6-12 AK95

~

4-(8%x:2)+@3x(
1.835707760624748689
3 EPI ~3

%k k k Kk Kk %
%

YOFF

r 0937 1.314 1.332 30

142%+2)%x2

* %
*
* %

The analytic answer.

A three-looped hypotrochoid.

*x * % % Kk k%
*

* *x %
*
* *
* %
* k%
*x % *
*
*
*
*
*
*
*
* %
*
*x k%

All done, time to go away.
Multics ready message.

13

AK95

SECTION VII

COMPARISON WITH APL/360

APL/360

Multics APL was designed to appear to the wuser to be
very nearly identical to APL/360. Therefore, users who are
already familiar with the APL language through the APL/360
implementation may find the early sections of this document
largely repetitious. Such users need a condensation of the
material there, a summary which discusses only those aspects
of Multics APL which are different from APL/360. This
section provides that summary.

To be more precise, this chapter is a 1list of
differences between Multics APL and the APL/360 language as
defined by the IBM documentation, specifically the APL/360
User's Manual, IBM form number GH20-0683-1, January 1970.

Since Multics APL was designed, a more recent document
describing APL/360 has become available. It is APL/360-0S
and APL/360-DOS User's Manual IBM form number SH20-0906-0,
December 1970. With the exception of an added Appendix C,
SH20-0906-0 1is identical to GH20-0683-1 mentioned above.
The new features described in Appendix C are not present in
Multics APL except as explicitly mentioned below. That is,
the standard for comparison remains the GH20-0683-1 manual.

MULTICS APL

Multics APL is a user-ring command which provides to a
single Multics process approximately the same capability as
APL/360 provides to one of its |users. APL/360 is, in
contrast, a privileged subsystem that does its own
multiplexing of users, independent of the system in which it
is imbedded. The three major areas in which Multics APL is
different from APL/360 are: 1) the STOP and TRACE control
features for functions are not implemented; 2) the function
editor behaves 1like Multics "edm" instead of 1like the
APL/360 editor; and 3) ASCII terminals as well as
Selectric-type terminals are supported. Beyond these three

7-1 AK95

principal differences, the discrepancies between the
languages are relatively minor.

Entering APL

To enter APL, issue the "apl" command with no
arguments. APL will indent six spaces and listen for input.
If your console is a Selectric-type terminal, change to the
APL type ball. If you have an ASCII console, you will use
an ASCII representation of the APL character set. Read
Section 1II, which explains terminal input and output. Your
workspace is initially clear. You may now type an APL
system command (see "System Commands" in this section, or
you may edit an APL function (see "Function Editing", also
in this section). Exit from APL with the)@ or)OFF system
commands.

APL Is Recursive

Multics APL is fully recursive. This means it - can be
called from within itself (for example, via the)E system
command), or while a previous version of itself is being
held in the stack, with no loss of data. Each invocation
results in an independent workspace.

Workspace

A workspace in Multics APL is up to 16 segments in the
user's process directory; i.e., about four million
characters as opposed to APL/360's 32000 characters. The
segments are named "apl.?", where "?" is a unique
identifier. APL can be used recursively, so several

workspaces can be in the process directory at once. Cleanup
handlers dispose of these segments when APL is exited.
There are APL system commands that permit saving a workspace
as a normal Multics segment so that its contents can be
retained from session to session.

Terminal I/0

While APL/360 usage 1is restricted to Selectric-type
terminals, Multics APL is also usable (though not as
conveniently) from Teletype Model 37, GE TermiNet 300s,
Honeywell SRT301 and ARDS terminals. Read Section II of
this manual.

7-2 AK95

Program Interrupt is Enabled

When APL is running, the program interrupt condition is
always enabled. If the user issues a Multics "quit"
followed by the "pi" command, APL temporarily turns off all
output and gives the computation in progress a short grace
time to complete. If it completes, APL suspends execution
and accepts further input from the console as normal. To
restart the suspended function, use the jump operator. If
the computation in progress does not run to completion in
the grace period, it is aborted; the state indicator is
returned to the previous console suspension point (as if the
jump operator with no operand were typed); and then APL
suspends there again.

Thus, APL never suspends execution in the middle of a
line, only at the end.

APL LANGUAGE ITSELF

The language interpreted by Multics APL 1is almost
exactly the same language as that defined by the APL/360
documentation. To get acquainted with Multics APL, the user
need not read any of the paragraphs in this section, as they
all deal with relatively minor differences. Seasoned
APL/360 users are cautioned to read "Order of Execution"
following, however.

Order of Execution

As in APL/360, the syntax of Multics APL defines all
operators as accepting everything to their right as their
operand. Operators are executed in strictly right-to-left
order. '

However, the order of fetching of operands to make them
available for operations is explicitly undefined both in
APL/360 and in Multics APL (read carefully the section
entitled, "Multiple Specification" on page 3.45 of the
APL/360 User's Manual), and the user is warned that APL/360
and Multics APL do indeed differ in their order of operand
fetch.

In general, the difference is evident only in
statements containing, other than the left-most (i.e., last)
operation, assignments that give values to variables used
elsewhere in the same statement (or calls to functions that
make such assignments). A statement that depends on a
specific order of operand preparation is incorrect and

7-3 AK95

cannot be expected to give consistent results in different
implementations (or in later releases of APL/360 either,
which perhaps 1is why the point perhaps is carefully
mentioned in APL/360 documentation).

Line Length 256

The maximum length of any single 1line that can be
handled by Multics APL is 256 characters. If a single line
to interpret extends across many console 1lines (due to
newline characters imbedded in character constants), the
limit applies to the sum of the console lines.

Identifiers

An identifier (variable name, function name, group
name) in Multics APL consists of an alphabetic character
followed by any number of alphabetic or numerics. For the
purposes of this definition, there are 53 alphabetic
characters: the plain alphabet (A...Z), the alphabet
underscored (A...Z), and the underscore character itself
(). There are 10 numerics: the digits (0...9).

Unlike APL/360 usage, the underscore is accepted as an
alphabetic character, and the delta is not.

Minimum and Maximum Identity Elements

Due to the internal format of floating-point numbers,
the identity elements for the minimum and maximum operations
are +1.701411834604692317e38 and -1.701411834604692317e38,
respectively.

Take and Drop Conformability

The left argument of the take and drop operations must
be within the range specified by APL/360 documentation, or
else a domain error results in Multics APL.

Coordinate for Compress, Expand, and Grade

In Multics APL, the compress, expand, and _grade
operators accept the number of a coordinate upon which to

7-4 AK95

act, as specified in the APL/360 documentation.

I-Beam Functions

As might be expected, the system-dependent functions
are defined somewhat differently for Multics. Their
meanings are (where 60 "jiffies" equal 1 second):

19 Real time in jiffies since this instance of APL was
invoked (uses "clock ").

20 The time of day in jiffies since midnight (uses "clock_"
and "sys info $time delta"). -

21 CPU time in jiffies since this instance of APL was
invoked (uses "hcs $get usage values").

22 Size of workspace remaining avallable to be wused, in
units of 9-bit characters (i.e., four times the number
of words).

23 Multics "nusers".

24 The time of day, in jiffies since midnight, that this
instance of APL was invoked.

25 The date, as a 6-digit integer, MMDDYY.

26 The first element of I-beam 27.

27 The vector of statement numbers in the state indicator.

Note on I-beam 22: This number reflects the fact that
a workspace can be up to 16 segments in size. However,
since any single datum must completely fit within one
segment, it is possible to get workspace-full errors even
when I-beam 22 is returning large values. For example, it
is impossible to create a 300,000-character item, even in a
clear workspace with millions of characters of space
available.

There is no dyadic I-beam in Multics APL. The library
functions for workspace manipulation, such
as DIGITS and ORIGIN, that are implemented via the dyadic
I-beam in APL/360, are implemented differently in Multics
APL (see "Library Function" in this section). The dyadic
I-beaq}is not a documented user interface in APL/360.

Jump Operator

In APL/360, the jump operator » is accepted and ignored
in many places in which it is meaningless. In general,
Multics APL will treat such cases as syntax errors. For
example, in response to a quad, only a right arrow alone is
legal (exit from evaluated input), not a jump to a specified
line number.

7-5 AK95

Escape from Character Input

To escape from character input in Multics APL, press
the interrupt button and then issue the "pi" command. The
state indicator will be reset to the most recent console
suspension, as if a right arrow had been typed for evaluate
input. See "Program Interrupt is Enabled" in this section.

The overstruck OouT character has no special

significance in Multics APL since the interrupt button is
always operational.

Error Messages

Multics APL error messages are almost identical to
APL/360 error messages. Multics APL is a bit more careful
to place the offender marker under the proper character.

Messages not in Multics APL

The following messages do not occur in Multics
APL: RESEND, NONCE, SI DAMAGE, SYMBOL TABLE FULL (symbol
table shares workspace with everything else; more symbols
can always be added until the whole workspace is
full), LABELS VUNSTUCK (no warning is given when this
occurs), SYSTEM (instead, a "panic" usually occurs; see
"Panic", below).

Stream Switching on Errors

When an error occurs, Multics APL switches the streams
it uses for input and output to "user_i/o". In this initial
implementation, there is no easy way to restore the stream
switching to its former state (a method is described wunder
"Error Messages" 1in Section III). The attachments of
"user input" and "user output" are not disturbed by this
action; the implementation is such that they are not read
after an error.

Panic

In the event of some disastrous internal error, Multics
APL will type ...APL PANIC...COMMAND LOOP CALLED... If
this happens, your APL session cannot be continued. A PANIC
is generally indicative of an error in Multics APL, and

7-6 AK95

should be brought to the attention of system maintenance
personnel,

Library Functions

For programmably changing workspace parameters, the
public workspace APL>WSFNS has within it definitions of
the following 1library functions, which can be copied into
any workspace with the)COPY command:

DIGITS FUZZ SFCI
ORIGIN SETLINK SFEI
WIDTH DELAY SFIT
E

Each of these monadic functions performs the same
action as the similarly named system command, including
returning as a result the old value of the altered workspace
parameter. The DELAY function has no returned value; it
causes execution to be suspended for the specified number of
seconds (uses "“timer manager $sleep"). Likewise, F has no
returned value (be sure to read the caution about the use
of F in this section).

In Multics APL, the library functions are implemented
as external functions (see "External Functions" in Section
IV), rather than by a dyadic I-beam operator as in APL/360.
There is no dyadic I-beam in Multics APL.

The use of a library function involves initiating it
with its name as a reference name, so the user must be aware
of possible naming conflicts should he refer to an
identically named segment elsewhere in his process.
External function names are tagged with an asterisk in
a)FNS listing.

Note that in Multics APL the fuzz 1is an arithmetic
tolerance, rather than a number of bits of internal
representation to be masked as in the latest version of
APL/360 (APL/360-0S and APL/360-DOS User's Manual, IBM form
number SH20-0906-0, December 1970, page C.l).

Matrix-Inverse (Domino) Generalized

The matrix-inverse operator of Multics APL is a slight
generalization of the APL/360 operator. Let X be the result
of BEA. Then for conformability, the shape of 4 must be of
the form (H,U) where J is a single dimension and H is a
(possibly null) vector of preceding dimensions; the shape

7-7 AK95

A

of B must be of the form (H,T) where g is identical to
the 7 in the shape of 4 and T is a (possibly null) vector of
succeeding dimensions; and finally (x/H) must be not less
Fhan U. The result X has the shape (U,T) and it
1s (x/T) sets of least-squares best solutions in ¢y unknowns
to the (x/T) sets of (x/T) linear equations in U unknowns.
Tpa; ‘ is, the elements of X are chosen to
minimize +/,((B+.xA)-X)*2. If the matrix-inverse operator
is used monadically, then 7 is taken as (x/H) and the
elements of p are taken as those of the order (x/#) identity
matrix; x will be a matrix of shape (U, (x/H)).

In the APL/360 matrix-inverse operator, H is required

to be a single dimension, and T is required to be either a
single dimension or else null.

System Commands

Multics APL has most of the system commands of APL/360.
The commands that are available are:

)Q YENS)SETLINK
JQUIT)VARS JSFII
JORIGIN)JGROUP)SFEI
JWIDTH)GRP)SFCI
)DIGITS)GRPS)E
)SAVE)OFF JWSID
JLOAD JCONTINUE JLIB
JERASE)SI)DFN
JCLEAR)SIV JMFN
)COPY)PCOPY YZFN
)DROP)PORTS

Most commands operate identically to those of APL/360.
Only the differences are discussed below. In Multics APL,
all characters in the system command name are significant,
not the first four as in APL/360. As 1in APL/360, some
commands are duplicated as library functions, so that they
can be called from APL programs (see "Library Functions" in
this section).

Use of)QUIT or)OFF to Exit from APL

These three commands are identical. Use)@,)QUIT,
or)oFF to cause APL to return to its caller. The active
workspace in the process directory is destroyed when APL is
left., If it is desired to retain a saved copy of the
workspace contents, the)CoNTINUE command should be used
instead, or a)SAVE command should be issued before

7-8 AK95

exiting., See "Saving and Reloading Workspaces" in this
section for a discussion of saving and reloading
workspaces.

)DIGITS Command Allows up to 19 Digits

Due to the internal representation of double-precision
floating-point numbers, the)DIGITS command will allow up
to 19 decimal digits of output to be requested.

YSETLINK Initializes Random Number Generator

The integer given in the)SETLINK command is used as
the seed for the random number generator. It should be in
the range 1 < integer < 34359738367. A clear workspace will
have a seed derived from the real-time clock.

YFUZZ Sets the Fuzz

The number given in the)FUZZ command changes the
gquantity wused by APL to tell when one floating=-point number
is sufficiently close to another that they can be taken as
equal. The fuzz must be in the range 0 < fuzz < 1l. The
numbers f and g will be considered equivalent if and only if
abs (f-g) < fuzz.

Setting the fuzz too wide can interfere with the
credibility of results. In general, a careful error
analysis should be done before tampering with the fuzz. The
default fuzz is 1.0E-1.03.

Note that in Multics APL the fuzz is an arithmetic
tolerance, rather than a number of bits of internal
representation to be masked as in the latest version of
APL/360 (APL/360-0S and APL/360-DOS User's Manual, IBM form
number SH20-0906-0, December 1970, page C.l).

YSFII, SFEI, and SFCI Set the Go-Ahead Characters

When APL is ready to accept immediate input, it types 6
spaces as a "go-ahead" signal to the user, and then waits
for input. When it is ready to accept evaluated input (in
response to the quad operator), it types a quad, a colon, a
newline, and then six spaces. When it is ready to accept
character input (due to the gquote-quad operator), it types

7-9 AK95

nothing.

These go-ahead strings can be changed by the users.
The)SFII (string for immediate input),)SFEI (string for
evaluated input), and)SFCI (string for character input)
commands each accept a character string (in quotes) of up to
16 characters to replace the corresponding default string.

)JE Executes a Multics Command

The remainder of the line following the)E command is
passed to "cu_S$cp", the Multics command processor, for
execution.

The user is cautioned that the APL terminal input
processor has read and canonicalized the command line.
Thus, the user must anticipate the character translations
defined in Section 1II, and compensate for them when
necessary. For example, if one types

)E SM MGS M WHY ERROR WHEN ~COPY- ING FILE FROB?
the actual message transmitted, in ASCII, will be
Why error when ¢223py_¢222g file frob?

This precaution applies equally forcefully to the user of
the E editor request and the E library function. Note,
however, that APL does turn off its own input processing and
does restore the Multics processing during the actual call
on the command processor--thus, the executed commands have
the normal Multics input/output environment available to
them.

JERASE Command

The)ERASE command works the same as in APL/360. As in
APL/360, erasure of groups containing ‘groups is not
recursive: members of groups contained in an erased group
will not be erased. Also, when a COMMAND ERROR occurs
during an erase (garbled names supplied, for example), only
the names up to the error marker have been processed.

)CLEAR Command

The)CLEAR command works the same as in APL/360. It
erases all variables, functions, and groups, and resets the

7-10 AK95

state indicator, workspace identification, password, index
origin, digits, width, fuzz, seed, and go-ahead sequences.
It does not affect the input/output stream attachments, nor
does it affect the timers maintained by the I-beam
functions.

No)MSG,)MSGN,)OPR,)OPRN Commands

Use)E MAIL or)E SM.

YPORTS Command is Multics "who"

The)PORTS command is implemented as a call on the
Multics "who" command. Any arguments typed after)pPoRTS are
passed on unchanged to the "who" command.

Saving and Reloading Workspaces

The workspace save and load capability is present in
Multics APL. The commands which relate to this facility
are:

)SAVE JCONTINUE J)LIB
YLOAD YWSID)DROP
)COPY)PCOPY

WORKSPACE IDENTIFICATION

In APL/360 a workspace identification consists of a
library number and a name; in Multics APL it consists of an
absolute or relative pathname. A workspace can be saved as
a segment (or, if necessary, a multisegment file) anywhere
in the storage system hierarchy. All commands that accept a
workspace identification expect on Multics an absolute or
relative pathname. Normal Multics quota and access
mechanisms govern the storage of saved workspaces. The
suffix ".apl" is automatically appended to the workspace
identification by the APL processor, so that APL workspaces
are readily distinguishable in directory listings.

7-11 AK95

PASSWORDS

It is possible to associate a password with a saved
workspace. Users should note, however, that nothing
prevents another user from supplying a program of his own

construction to search for interesting things in your saved
workspaces.

The syntax of supplying passwords on Multics is
slightly different from APL/360, although they are accepted
in exactly the same places and treated identically.
Whenever in APL/360 a command would be terminated with a
colon followed by a password, in Multics the command should
be terminated with a colon alone. APL types PASSWORD: and
turns off the console printer. When the password is
received, the printing will be restored. This procedure
conforms to the handling of passwords elsewhere in Multics.

Passwords are accepted on the commands)SAVE,)LOAD,
)COPY, and)PCOPY.

INTERNAL FORMAT OF SAVED WORKSPACES

The variables and functions stored in a saved workspace
are encoded in a complicated fashion, subject to
redefinition as modifications are made to the APL
interpreter. It is not recommended that users attempt to
access saved workspaces via means other than the APL command
itself.

J)LIB AND)DROP COMMANDS

Since workspaces are saved as normal Multics files
instead of in special APL libraries,
the)LIB and)DROP commands are implemented simply as calls
on the Multics commands "list" and "deleteforce". An
argument of "*_.apl" is passed to the "list" command to 1list
only APL workspaces, and the suffix ".apl" is automatically
appended to the names listed in the)DROP command.

NO APL LIBRARY
No library of APL applications is available on Multics. The

only library functions available at the present time are the
workspace functions:

7-12 AK95

DIGITS FUZZ SFCI

ORIGIN SETLINK SFEI
WIDTH DELAY SFIT
E

Their usage is described under "Library Functions" in
this section.

External Functions

The Multics APL interpreter permits APL programs to
make external calls to object segments that have been
created by other Multics translators, such as PL/I, provided
that those object segments obey a specified interface. To
the APL program, such a call looks 1like an ordinary
reference to a defined function; the function may accept
zero, one, or two arguments, and it may optionally return a
result. External functions are discussed under "External
Functions" in Section 1IV.

FUNCTION EDITING

The mechanics of Multics APL editing are different from
those of the APL/360 editor. The Multics APL editor is
patterned after the Multics "edm" command. The reader is
advised to read Section V of this manual in its entirety.
However, a synopsis of the differences is provided in this
section. The remainder of this section presumes that the
reader is familiar with "edm" (see the Multics Programmer's
Manual, Commands and Active Functions, Order No. AG 2).

In APL/360, the source text as typed by the user is
discarded, and only an internal representation of the
syntactic entities is kept for future editing (the APL user
will note that the free-format spacing he used was discarded
by the system). In Multics APL, the actual source text is
retained as well. This means that subsequent edits of a
function will display the original source text, unmodified
in any way from the way the user last edited it.

When a Function Can Be Edited

The rules are the same as for APL/360.
The editor can be called whenever APL is accepting

either immediate input or evaluated input. At the
conclusion of the edit, APL again requests the input it was

7-13 AK95

listening for.

A particular function can be edited only if it is not
pendent. It may be suspended or inactive.

The definition error response to an editor call can be
due to: 1) the function name has an illegal character; 2) a
global variable or group already exists with the proposed

function name; 3) the function 1is pendent; or 4) the
fgnction is external (external function names are tagged
with an asterisk 1in a JFNS listing; see "External

Functions" in Section IV).

Invoking and Terminating the Editor

The editor is invoked by typing a nabla character Vv
followed by the proposed function name. If the function
already exists, the editor will respond EDIT and you may
type an editor request (see "Edit Mode" below). If the
function does not exist, the editor will respond FUNCTION
'...' NOT FOUND. INPUT and you may input the function (see
"Input Mode" below).

To exit from the editor, issue either the @ request, or
type another Vv at the end of any line (or on a line by
itself). The V character terminates the edit, whether typed
in edit or in input mode.

When the user requests an exit from the editor, the
source text amended by the edit session is scanned. The new
function must have a valid header line (see "Function Header
Line" following). If the function now has a different name,
the new name is checked for validity. All changed lines are
analyzed into syntactic entities. If any errors are
detected in this scan, they are reported to the user, and
APL will return to edit mode. The system will leave the
editor only when the scan is successful.

It is not necessary to issue the W request before
terminating an edit. An edit always reworks the current
workspace copy of a function upon termination.
The W request is for writing a copy of the APL source text
for a function into the user's Multics working directory (or
any other directory, for that matter), as discussed in
" M,U and W Requests to Read and Write Files", below, but
not into the APL workspace.

7-14 AK95

()

Function Header Line

The very first line of a function must be its header
line. The syntax of a header line is the same as in APL/360
(result and left arrow if any, left argument if any,
function name, right argument if any, and a 1list of 1local
variable names set off by semicolons). A function must
contain a valid header line in order to conclude the edit.

Note that the header line is not typed in the editor
call line. Only the function name is typed there. If a new
function is Dbeing created, the user must type the header

line as the first 1line of his input, after the editor
types INPUT.

The header line may be edited as any other line. It is
not necessary that the header 1line be correct or even
present until the conclusion of the edit.

Input Mode

When the editor responds INPUT, all following lines
typed by the user are inserted into the function. A V typed
at the end of any line (or on a 1line by itself) will
terminate the edit session. A line consisting of a period
only returns the user to edit mode.

Edit Mode

When the editor responds EDIT, any editing request may
be typed (see the "edm" write-up). If a V character
follows any request, the editor terminates after performing
that request. The "." request returns to input mode. '

Program Interrupt during Editing

During an edit, a Multics quit followed by the "pi"
command returns the editor to edit mode. This can be used
to abort lengthy output. When the editor exits, the normal
APL interrupt action is restored (see "Program Interrupt is
Enabled" in this section).

E Request Executes a Multics Command

The E and E requests pass the remainder of the request
line (minus a trailing V if present) to "cu_$cp" for

7-15 AK95

execution. The edit terminates when the command processor
returns if a v followed the request. Be sure to read the
precautions discussed under the F system commands in
")E Executes a Multics Command" in this section.

M, U and W Requests to Read and Write Files

The M, U, and W requests read and write Multics files
in the user's working directory (or any other directory if
path names are given). These requests do not write in the
APL workspace. Note that the current workspace copy of a
function is always amended upon termination of an edit.
The W request should not be issued for this purpose.

When files are read and written, no canonicalization or
other character conversion is performed. Thus, files
suitable to be read by the APL editor M request must already
contain valid APL character codes. The most convenient way
to generate such files is with the APL editor itself, using
the U and W requests.

The M, U, and W requests require a file name as an

argument. There is no default file name built into the APL
editor.

Saving Individual Function Definitions

The M, U, and W requests provide a way of communicating
individual function definitions in source language to and
from the Multics file system by making them accessible to
other Multics programs (and via the punched-card daemon and
a user-written conversion and formatting program, to any
computer) .

Sneak Request

As in APL/360, it is possible to "sneak" the user edit
request onto the editor call line. Following the function
name, one may type an editor request. If the function
already exists, EDIT will not be typed. Instead the request
will be executed. The editor then goes to edit mode (unless
the request changed the mode or ended with the Vv character).
If the function does not exist, it is assumed that the user
should be warned, so the editor will ignore the request and
respond in input mode, as usual.

7-16 AK95

Line Numbers and Labels

Line numbers typed by the editor (in response to
the = request) are source line numbers, just as for "edm".
They do not correspond to the interpreter line numbers
printed in error messages or to which the jump operator
(right arrow) refers. These numbers differ because of the
header 1line, which is considered to be interpreter line
number zero; and because of newlines in character constants,
which can cause two or more source lines to be taken as a
single interpreter line.

For this reason, it is recommended that labels be used
instead of absolute line numbers in jump operations.

Labels are automatically 1local variables, and they
should not be declared in duplicate in the header line.

No System Commands in Editor

When an edit is in progress, no system commands are
accepted by APL.

No Stop or Trace Control

Stop.and trace control are not implemented.

No Locked Functions

Locked functions are not implemented. The closest
approximation in Multics APL to a locked function is the
external function capability. If an externally-coded

function is supplied, APL cannot be used to print its
definition. Note, however, that if a user knows the
pathname of an object segment, there are many dumping and
debugging tools available to him for studying it.

External Functions Cannot be Edited

Functions defined as external by the)prw,
YMFN, and)ZFN system commands (see "Communicating with
Multics" in Section IV) cannot be edited by the APL editor.
They can be erased or redefined. External function names
are tagged with an asterisk in a)rys listing.

7-17 AK95

PITFALLS

This subsection discusses some features of Multics APL
that might be more troublesome than others, or that may
produce apparently unrelated errors. These points are all
covered elsewhere in this document, but they are collected
here as a possible service to the new user.

Interrupt Button Is Not for Line Editing

Do not backspace and press the interrupt button to
correct typing errors, as is done on APL/360. On Multics,
this results in a quit and in 1loss of the typed 1line.
Instead, use the erase and kill characters defined for your
console. See Section II.

APL Translates)E Command, £ Function, and £ Request

Remember that the APL character code is not identical
to ASCII, although there is much overlap. The command line
passed to the Multics command processor by the)E system
command, the F library function, and the E editor request is
in APL internal character code; therefore, the user must
anticipate differences from ASCII and compensate for them
when necessary. See Section II and ")E Executes a
Multics Command" in this section.

Remember the Function Header Line

When creating a function, remember that the first 1line
must be the function header line. The header line is not
typed in the editor call line, as in APL/360, but instead is
typed with the remainder of the function. See "Function
Header Line" in this section.

Do Not Use the ¥ Request When Editing Is Finished

The W request is not intended to update the current
workspace copy of a function at the conclusion of an edit;
this is automatic. The ¥ request is used to write Multics
files. Typing the ¥ request with no file name results in an
error message from the APL editor. See " M, U and W
Requests to Read and Write Files" in this section.

7-18 AK95

)

order of Operand Preparation Differs from APL/360

While the operations of Multics APL are executed in a
right-to-left order, the order of fetching of operands is
undefined. Programs that are sensitive to the order of
operand preparations are incorrect APL and can be expected
to give different results. See "Order of Execution" in this
section.

7-19 AK95

A

absolute value 3-7, 3-11

Ackermann's function 6=5

addition 3-7, 3-9, 3-43,
3-52, 3-61ff* , 4-22, 6-11

allocation u4-31ff

alphabetic 3-6, 4-11ff, 7-4

AillD, logical 3=-7

APL 1-1ff, 2-1ff, 3-1ff,
3-17, 3-19, 3-22, 3-26,
3-32ff, 3-u41ff, 3-uL,
3-4off, 3-5u4ff, 3-59ff,
3-63ff, 3-67ff, u-1ff,
4L-10ff, 4-1u4ff, L4L-18ff,
5-1ff, 5-8, 5-14, 5-21ff,
5-27ff, 6-1, 6-8, 7-1ff

APL/360 1-1, 2-4, 4-26,
5-1ff, 5=-27, 7-1ff,
7-15ff, 7-18ff

arccos, =-sin, -tan 3-16

argcosh, =sinh, -tanh 3-16

arguments to functions 3-7,
3-49, 3-54ff, 3-63ff,
3-71, 4-1ff, u4-5ff,
4b-11ff, u4-19, 4-22,
L-25ff, uL-28ff, 5=-3ff,
5-22, 6-5, 7-2, 7-4,
7-11ff, 7-15ff

arrays 2-5, 3-1ff, 3-7ff,
3-13, 3-17ff, 3-35, 3-37,
3-39ff, 3-51, 3-60,
3-63ff, 3-67ff, u4-3, 4-10,
4-29, 4-32ff, 5-11, 5-13,
6-1ff, o6-6ff, 7-5, 7-7ff

Ascil 1-2, 2-2ff, u4=-23,
5-23, 5-26, 7-1ff, 7-10,
7-18

assignnent 1-2, 2-1, 3-6,
3-33ff, 3-41, 3-50ff,
3-62, 3-6off, 3-70, 5-16,
6-1, 6-4, 6-7, 6-11, 7-3

asterisk 3-65, 3-71, L4-12,
4-16, 4-23, u4-31, 5-2,
7-7, 7-14, 7-17

B

backspacing 2-3ff, 2-6ff,
3-4, 3-66, 7-6, 7-18

binary 3-30, 6-4

binomial coefficient
3-11ff, 3-43

BOF 5-15

Boltzmann's constant 3-3

bottom request 5-16

branching 2-8, 3-37ff,
3-50, 3-59ff, 3-64, 3-66,
3-72ff, 6-5ff, 7-3, 7-5,
7-17

* The abbreviation ff after a page number means "and the following pages"

INDEX

i-1

c

calendars 3-13, 4-7, 4-15,
6-10ff

canonicalization 2-4ff,
7-10, 7-16

ceiling 2-5, 3-12

change request 5-10, 5-26

CHARACTER ERROR 3-66

character input 2-5,
3-306ff, 4-1, 4-9, 4-27,
7-6, 7-9ff

character set 1-2, 2-1ff,
L-28ff, 5=-21, 7-2

cleanup handling 4-27, 7-2

CLEAR 3-1, 3-13, 3-33,
3-73ff, uL-1ff, L=5ffF,
L-14ff, 4-17, 4-19ffF,
ll'2'-‘ff, u-zs’ 6-8, 7-2,
7-5, 7-8ff

CLEAR WS 4-7ff, 4-11,
L-14ff, 4-19, L4-21,
L-24ff, L4L-28

clock_ 3-13, 3-32, 4-7,
4-15, 7-5, 7-9

collating sequence 2-1,
3-12, 3-22

colon 3-62, 4-9, 4-20,
b-22¢f, 7-3, 7-12

COMMAND ERROR 3-66, 4-13,
7-1v0

commands, system 1-2, 2-06,
2-84 5-1' 3-3’ 3-6' 3-13'
3-2v, 3-36ff, 3-54, 3-57,
3-ou4ff, 3-08, 3-70, u4-1ff,
4-5ff, u=-1luff, u4-17fF,
4L-22ff, 5-2ff, 5-19, 6-8,
7-2, 7-7ff, 7-16ff

comment request 5-19

comments 3-46, 5-19ff

comparison operators 3-14ff

complex numbers 3-10

compression 3=27ff, 6-2

concatenate 3-19, 3-48

CONTINUE 1-2, 2-7, 3-62,
3-75, 4=-3, u4=-24ff, 5-6,
7-8, 7-11

continued fractions 3-48,
6-9

coordinate numbers 3-1,
3-13ff, 3-20ff, 3-23ff,
3-26, 3-28, 3-30, 3-37,
3-40ff, 3-60, 3-6u4ff,
L-1ff, 4-6, 4-10, 4-14,
4-23, 6-3ff, 6-8, 6-11,
7-5, 7-7ff, 7-11, 7-13

COPY 3-1, 3-6, 3-41,
3-64ff, 4-2, u4-10, L4-18ff,
4-32ff, 5-24, 6-8, 7-7ff,
7-10ff, 7-14, 7-16, 7-18

INDEX

cos 2-2, 2-5, 3-16

cosh 3-16

cu_S$cp 4-28, 5-21, 7-10,
7-15

cube roots 3-10

current line 5-5ff, 5-12,
5-14ff, 5-19ff, 5-24ff

D

date 3-1, 3-33, 3-65,
L-21ff, 6-11, 7-5

de?l3 3-13, 3-30, 3-47, u4-2,

debugging 3-65, 3-70, 7-17

decimal 3-3ff, 3-9, 3-30,
4=-5, 6-10, 6-12, 7-9

decimal digits 3-3ff, 3-9,
4L-5, 6-12, 7-9

decimal points 3-4

declarations 3-6, 3-34

DEFN ERROR 3-66, u4-31,
5-1ff, 7-14

degrees 3-3, 3-12, 3-16

DELAY 3-o4ff, 7-7, 7-13

delete request 5-8ff

delete-above request 5-21,
5-25, 5-27

DEPTH ERROR 3-66ff

device interface module
2-6, L-27ff

DFN 4-30, 7-8, 7-17

diagonal 3-26

DIGITS 2-6, 3-3ff, 3-9,
3-29ff, 3-33, 3-6uff, u4-1,
4=-5ff, L-14, 4-24, 4=-31,
4-33, 6-4, 6-7, 6-9, 6-12,
7-4ff, 7-7FfF, 7-11, 7-13

digits of precision 3-2ff,
L-5ff, 4-32, 6-4, 7-9

dimension numbers 3-1,
3-13ff, 3-20ff, 3-23ff,
3-26, 3-28, 3-30, 3-37,
3-40ff, 3-60, 3-06u4ff,
4L-1ff, 4-6, 4-10, L-14,
4-23, 6-3ff, 6-8, 6-11,
7-5, 7-7ff, 7-11, 7-13

dimensions 3-1ff, 3-5ff,
3-8ff, 3-17, 3-22ff,
3-31ff, 3-40ff, 3-43ff,
3-63, 3-67, 4-6, u4-10,
7-7FfF

dispatch tables 3-60, b6-6

division 3-9, 3-43

dollar sign ($) 4-30

DOMAIWN ERROR 3-9ff, 3-14,
3-1v, 3-20, 3=-31, 3-42ff,
3-67ff, 3-72, 4-6ff, u4-17,
6-3, 7-4

domino operator 2-5, 3-8,
3-30ff, 7-7ff

drills 3=-61ff

DROP 3-22, 4-2bff, 7-4,
7-8, 7-11ff

dyadic functions 3-49,
3-55, 4-30, 5-3

dyadic operators 3-5,
3-7ff, 3-12ff, 3-18ff,
3-21ff, 3-24, 3-26ff,
3-30, 3-32, 3-42, 3-44ff,
3-47, 3-u49, 3-54ff, 3-58,
3-74, 4-16, u4-30, 5-3,
6-1, 5“&, 7-51 7-7

E

e (2.718...) 3-10, 6-4
edit mode 5-2, 5-4, 5-12,
5-14, 5-20, 5-24, 5-27,

6-6, 7-14ff

editor 1-2, 2-6, 2-8ff,
3-6, 3-36ff, 3-54, 3-66ff,
4-3ff, 4-31, 5-1ff, 5-4ff,
5-11ff, 5-14ff, 5-19ff,
5-26ff, 6-5ff, 7-1, 7-10,
7-13ff

editor requests 2-6,
3-35ff, 3-58, 3-70, 3-72,
4-1, u4-16, u4-22ff, 5-1ff,
5-14ff, 6-1, 6-5ff, 6-12,
7-10, 7-13ff

edm 5-1, 7-1, 7-13, 7-15,
7-17

elements 1-2, 2-3, 3-1ff,
3-7ff, 3-17¢ff, 3-35,
3-39ff, 3-51, 3-60, 3-64,
4L-2ff, 4-10, 4-30, u4=-32ff,
6-1ff, 7-4ff, 7-8

encode 2-5, 3-29ff, 6-5

EOF 5-5ff, 5-13, 5-15ff,
5-23ff, 5-28, 6-6, 6-9ff

epicycloids, =-trochoids
6-10, 6-13

EQUIVALENCE, logical 3-15

ERASE 2-3ff, 3-6, 3-34,
3-73, 4=-10, u4-13ff, 5-2,
v-6, 7-8, 7-10, 7-18

erase 2-3ff, 3-6, 3-34,
3-57, 3-61, 3-67, 3-73ff,
4L-10, 4-13ff, u4-23, 4-31,
5-2, 6-v, 7-8, 7-10,
7-17fFf

error messages 3-55, 3-066,
3-68ff, 3-71, u4-u4, u4-33,
5-3ff, 7-6, 7-17ff

errors 2-4, 2-6, 3-6,
3-8ff, 3-14, 3-16, 3-20,
3-31, 3-33ff, 3-40ff,
3-51, 3-55ff, 3-61ff,
3-64ff, 3-7u4ff, u-3ff,
L-6ff, 4-12ff, L-16ff,
4-19, u4-21ff, 4-29, u4-31,
4-33, 5-1ff, 5-11, 5-28,
6-1, 6-3, 6-6ff, 6-12,

)

7-4ff,
escape 2-3ff,
3-66, 7-6
evaluated input
3-35ff, 3-69ff,
4L-8ff, L-15fFf,
5-14, 6-7ff,
7-13
evaluation 1-2,
3-30, 3-33,
3-47FF,

7-9ff, 7-14, 7-17ff

3-4, 3-37,

2-5,
L-1,

5-1,

7-5'

3-33,

5-3,
7-9ff,

2-5,
3-35ff,
3-52ff, 3-69ff,
3-73, 4-1, 4-8ff, u4-15ff,
5-1, 5-3, 5-14, 6-1,
6-5ff, 6-8, 7-5ff, 7-9ff,
7-13
EXCLUSIVE OR,
exec_com 5-23
execute request 5-21, 5-26
execution 2-9, 3-1, 3-6,
3-34ff, 3-u4o0ff, 3-49ff,
3-55ff, 3-58, 3-6Off,
3-65, 3-69ff, 3-74, uL-1,
L-8ff, 4=-1u4ff, 4-13,
4=-27ff, 5-2ff, 5-21,
5-26ff, 6-1, 6-8, 7-3,
7-7, 7-10, 7-15ff, 7-18ff
expansion 3-28, 6-3
exponential 3-10, 3-43
expressions 1-2, 2-8, 3-1,
3-5ff, 3-23ff, 3=-27ff,
3-31, 3-33ff, 3-43ff,
3-47ff, 3-5uff, 3-60ff,
3-64, 3-71, 4-1, 6-1, 6-4,
6-7ff
extension of scalars to
arrays 3-7ff, 3-63ff,
6-1ff, 6-6ff, 7-4
external functions
4-11, 4-29ff, 5-2,
7-13ff, 7-17

2-8,

logical 3-15

3-65ff,
1-7,

F

factorials
3-61, 3-63
find request 5-0,
floor 2-5, 3-12,
FNS 3-6, 3-5u4ff,
L-10ff, uL=-14ff,
4-31, 5-2, 5-14,
5-28, 6-6, 6-9,
7-14, 7-17
function arguments and
results 3-7, 3-49,
3-54ff, 3-61, 3-63ff,
3-71, u4-1ff, u4-5ff,
L-11ff, 4-19, L4-22,
L-25ff, u-28ff, 5-3ff,
5-22, 6-5, 7-2, 7-4,
7-11ff, 7-15ffF
function definitions
3-37, 3-u46, 3-55,

3-11ff, 3-47,
5-16
b=2
3-05,
L-22ff,
5-23,
7-7Ff,

2-9,
3-63,

INDEX

3-66, 3-69ff,
4-16, 5-1ff,
5-27ff, 7-16
function editor 1-2,
2-8ff, 3-6, 3-36ff,
3-66ff, u-3ff, u4-31,
5-1ff, 5-u4ff, 5-11ff,
5-14ff, 5-19ff, 5-26ff,
6-5ff, 7-1, 7-10, 7-13ff
function return 3-56ff,
3-59, 3-61, 3-69, 3-74,
4-33
function termination
3-56ff, 3-59, 3-61,
3-74, 4-33
functions 2-5ff, 2-8ff,
3-1, 3-3, 3-6, 3-12ff,
3-16, 3-20, 3-22, 3-34,
3-36ff, 3-46ff, 3-5Lff,
3-69ff, u-1ff, u4-7,
L-10ff, 4-22ff, 4L-28ff,
5-1ff, S5-14ff, 5-19ff,
5-27ff, 6-2, 6=-5ff, 7-1ff,
7-7ff, 7-10ff
fuzz 3-10, 3-12,
3-21ff, 3-64,
b-14, 4-31,
7-9, 7-11,

3-75ff, u4-3,
5-22, 5-2uff,

2-6,
3-54,

3-69,

3-14,
4L-1, L4-6ff,
4L-34, 7-7,
7-13

G

gamma function 3-12

German accent ©6-8

global variables 3-56ff,
3-59, 3-66, 3-74, u4L-10ff,
4-14, 4-17fFfFf, 4=-22fF,
4-31, 5-2, 5-4, 6-7, 7-1bL

go-ahead strings 3-35ff,
3-70, 4-1, 4-8ff, u4-15,
7-9ff

grace time 2-8,

grade operators 2-5,
3-22ff, 4=-2, 7-4

Gregorian calendar
4-7, 4-15, 6-10ff

GROUP, groups 3-1,
3-34, 3-66, 4-10,
4-18, u-22ff,
5-4, 7-4, 7-8,

GRP, GRPS 3-6,
4-12ff, 7-8

7-3

3-13,

3-6,
L-12ff,
4L-31, 5-2,

7-10, 7-14
u'lo,

H
hcs_$get_usage_values 3-32,

7-5
header line
3-61fFf,
5-9ff,
5-28,

3-6, 3-5u4ff,
3-74, L4-10, 5-2ff,
5-1,", 5-19' 5-23'

6=-5, 7-14ff, 7-17ff

histograms 3-46, 6-5

hyperbolic operator 3-16

hypocycloids, =-trochoids
6-10, 6-13

I-beam 2-5, 3-32ff, u4-15,
4-22, 7-5, 7-7, 7-11

IBM 1050 2-3

IBM 2741 2-3

IBM 360 1-1

id;ntifiers 4-27, 5=-5, 7-2,
-4

identity elements 3-42ff,
6-2, 7-4

identity matrix 3-31, 7-8

IMPLICATION, logical
3-47

index 3-1, 3-13, 3-20ff,
3-23ff, 3-26, 3-28, 3-30,
3-40ff, 3-43, 3-60, 3-65,
3-67ff, u4-1ff, 4-10, 4-14,
6-1, 6-3ff, 7-10

INDEX ERROR 3-40, 3-07ff,

3-15,

6-3

index generator 3-13, 3-20,
6-1

index origin 3-1, 3-13,

3-20ff, 3-23ff, 3-26,
3-28, 3-30, 3-40ff, 3-60,
3-65, 4-1ff, u4-10, L-14,
4-23

inner product 3-uL4ff, 6-3

input 1-2, 2-1, 2-4ff,
3-4ff, 3-33ff, 3-4Iff,
3-53ff, 3-58, 3-61ff,
3-68ff, u4-1, u4-u4, 4-8ff,
4L-15ff, 4-22, 4L-27ff,
5-1ff, 5-12ff, 5-16ff,
5-22ff, 5-28, 6-1, 6-5ff,
6-11Ff, 7-2ff, 7-5ff,
7-9fFf, 7-13ff

input mode 5-2, 5-4, 5-12,
5-14, 5-16, 5-28, 6-6,
7-14fFfF

input request 5-2ff, 5-12

input symbol 2-5, 3-33,
3-35ff, 3-69ff, u4-1,
4-8ff, u-15ff, 4-27, 5-1,
5-3, 5-14, 6-7ff, 7-5ff,
7-9ff, 7-13

insert request 5-7ff, 5-12
interest 6-6

intergration 6-12

internal codes 2-1, 2-6

interpreter 1-1ff, 3-1ff,
3-8, 3-25, 3-35ff, 3-ub,
3-50, 3-62, 3-65ff, 3-74,
4L-1, 4-8ff, u4-29ff, 4-33,
5-3ff, 5-19, 6-3, 7-12ff,
7-17

INDEX

i-4

intersection, set 3-29

inversion 2-5, 3-8, 3-30ff,
7-7Ff

Iverson, Dr. Kenneth E. 1-1

jiffies 7=5

Julian days 6-11

jump operator 2-8, 3-37ff,
3-50, 3-59ff, 3-64, 3-66,
3-72ff, 6-5ff, 7-3, 7-5,
7-17

K

kill request 5-17ff
kill 2=-3ff, 5-17ff, 7-18

L

labels 3-39, 3-57, 3-62,
3-72, 3-74, 5-16, 7-6,
7-17

least-squares fitting
3-31ff, 7-8

LENGTH ERROR 3-9, 3-14,
3-64, 3-67ff, 3-71,
4-16ff, 6-1, 6-7ff

LIB 4-26ff, 7-8, 7-11ff

library functions 3-3,
3-13, 3-20, 3-6u4ff, 4-2,
4-7, 4-23, 4-29, 7-5,
7-7Ff, 7-10, 7-12ff, 7-18

line length 2-8, 3-37, 7-4

line-number request 5-19
linear simultaneous
equations 3-32, 7-8

lists 3-6, 3-29, 3-34,
3-39ff, 3-47, 3-50ff,
3-57, 3-67, 3-71, u4-10ff,
4-17, 4-23, L-25ff, 4-28,
5-4, 6-3, 7-1, 7-12, 7-15

LOAD 3-13, 3-68, u-1ff,
4-5ff, 4L-18ff, u4-22,
4L-25ff, 4-29, 5-21, 6-9,
7-8, 7-11ff

local variables 3-54,
3-56ff, 3-59, 3-61ff,
3-67, 3-70ff, 4-10, L4-14,
4-17ff, 4-22, 5-3ff, 5-13,
6-6ff, 7-15, 7-17

locate request 5-6ff,
5-16ff

locked functions 7-17

logarithm 2-5, 3-10, 3-43,
6-4

logical operators 3-7,
3-15, 6-2

M

masking of variable names
3-56ff, 3-70, 7-7, 7-9

matrices 2-5, 3-2, 3-u4ff,
3-8, 3-17ff, 3-23, 3-26,
3-31ff, 3-39ff, 3-44fFf,

6-2ff, 7-7ff
matrix diagonal 3-26
matrix division 2-5, 3-8,
3-30Fff, 7-7fF
matrix inversion 2-5, 3-8,

3-30ff, 7-7ffF

matrix transposition 2-5,
3-8, 3-25ff, 3-45, 5-12,
6-4

maximum 3-3, 3-12, 3-42ff,
3-45, 4-3, 6-2ff, 6-5, 7-L

membership 3-29

merge request 5-23ff, 5-27

MFN 4-12, 4-30, 7-8, 7-17

minimum 2-3, 3-12, 3-43ff,
5-5, 6-2, 7-4

mixed operators 3-7, 3-13,
3-17, 3-30, 3-33

modes 2-6, 5-2, 5-4, 5-12,
5-14, 5-16, 5-20, 5-24,
5-27ff, 6-6, 7-1u4ff

modulo 3-11, 3-43

monadic functions 3-49,
3-55, 3-57, 4L-30, 5-3, 7-7

monadic operators 3-7ff,
3-15ff, 3-19ff, 3-22ff,
3-25, 3-30ff, 3-37, 3-42,
3-48ff, 3-5u4ff, 3-60,
3-64, 3-74, L4L=29ff, 5-3,
6-1ff, 6-5, 7-7

MO0 6-7ffF

mortgages 6-6

Multics 1-1ff, 2-1, 2-3ff,
2-8, 3-1, 3-13, 3-33,
3-37, 3-65, 3-67ff,
3-74fF, u=-5, u=-7ff,
4-10ff, uL-18ff, uL-26ff,
5-1ff, 5-21ff, 5-25, 5-27,
6-1, 6-13, 7-1ff

multiplication 3-3, 3-9,
3-32, 3-43ff, 3-49, 3-53,
3-58, 3-61, 3-63, 6-3

N

name table 3-1, 3-54, 3-58,
L-10

names 1-2, 2-8, 3-1, 3-6,
3-29, 3-33ff, 3-45, 3-49,
3-54ff, 3-62ff, 3-70ff,
3-74, 4-1FfFf, L-10ff,
L-16ff, 4-19, L4L-22ff,
L-26ff, L-30ff, L-33,
5-1ff, 5-26ff, 6-6ff, 7-4,
7-7ff, 7-10ff, 7-1uff

INDEX

i-5

NAND,logical
3-43

natural logarithm base (e,
2,718...) 3-10, 6-4

negation 3-7, 3-9

next request 5-14, 6-5

NO LINE 5-4ff, 5-8ff, 5-13,
5-17ff, 5-21ff, 5-24,
5-26, 5-28, 6-5ff, 6-9ff

non-existent line 5-5,
5-8ff, 5-24

NOR, logical 2-5, 3-15,
3-41, 3-43, u4-1, 4-3, u4-5,
5-17, 6-4, 7-11

null value 3-2, 3-17ff,
3-32ff, 3-37, 3-42, 3-44,
3-50ff, 3-60, 4-8ff,
L-31ff, 5-11, 6-2, 6-4,
6-8, 7-7ff

number of significant digits
2-6, 3-3ff, 3-9, 3-29ff,
3-33, 3-6u4ff, u4-1, 4=-5ff,
L-14, 4-24, 4-31, u4-33,
6-4, 6-7, 6-9, 6-12,
7-4ff, 7-7¢fF, 7-11, 7-13

number systems 2=-5, 3-29ff,
4L-15, 6-5, 7-6

nusers 3-33, 7-5

2-5, 3-15,

0]

objects 3-6, 3-29, 3-34,
3-67, 4=-10, u-12ff,
L-18ff, uL=-22ff, 4=-29ff,
5'21 7'13' 7-17

octal 2-3, 2-6, 3-30

UFF 2-6, 3-3, 3-25, 3-56ff,
3-61ff, 3-67, 4-24,
L-27ff, 5-3, 5-6, 6-13,
7-2ff, 7-8, 7-10, 7-12,
7-15

operator reduction
4-32, 6-2ff, 6-5

operators 1-2, 2-8, 3-2,
3-4ff, 3-22fFf, 3-27ffF,
3-37ff, 3-41ff, 3-55ff,
3-59ff, 3-6u4, 3-66ff,
3-72ff, L4-2, 4L-8ff,
4-15Fff, 4=-22, 5-3ff,
6-1ff, 6-7, 7-3ff, 7-7ff,
7-17

OR, logical 3-7

order calls 2-6

order of evaluation 2-4ff,
3-5ff, 3-11, 3-18, 3-22ff,
3-31, 3-41, 3-44, 3-47ff,
3-55, 3-59, 3-71, L4L-11ff,
4L-16, 4-28, 5-3ff, 5-6,
5-25, 6-1ff, 6-4, 6-10,
6-12, 7-3, 7-8, 7-13,
7-15, 7-13

ORIGIN 3-1, 3-13ff, 3=-20ff,

3-42ffF,

INDEX

3-23ff, 3-26, 3-28, 3-30,
3-37, 3-40ff, 3-60,
3-64ff, uU-1ff, 4-10, u4-1u,
4L-23, 6-3ff, 6-8, 6-11,
7-5, 7-7€Ff, 7-11, 7-13

ouge; product 3-45ff, 6-3,

output 3-3ff, 3-34ff,
3-50ff, 3-57ff, 3-68,
3-70, 4-3ff, 4-8, u-15,
b-22, 4-27fF, 6-7ff,
1-2ff, 7-6, 7-9ff, 7-15

output symbol 2-5, 3-34ff,
3-50, 3-53, 3-72, u4-9,
6-7ff, 7-5, 7-9

overflow 3-3

overstriking 2-3ff, 2-6ff,
3-4, 3-66, 7-6, 7-18

P

page width 3-1, 3-3ff,
3-64ff, 4-1, 4-3ff,
4L-10ff, u4-14, 4-31, 4-33,
5-12, 7-7ff, 7-11, 7-13

panic 3-7u4ff, 7-6

parentheses 3-38, 3-48,
3-53, 3-55, 3-58, 3-67ff,
u‘l; 6'1

Pascal's triangle 3-46

passwords 4-19ff, 4-26,

7-10, 7-12
PCOPY 4-20, 4-24, 7-8,
7-11fFf

pendent 3-66, 3-69ff,
4-15ff, 5-2ff, 7-14

period 3-13, 3-44, 5-12,
5-20, 6-11, 7-3, 7-15

permutations 3-22ff, 3-31

pi (3.14159...) 3-48, u-5,
6-9

pitfalls 7-18

PORTS u4=-27ff, 7-8, 7-11

precision 2-6, 3-2ff, 3-9,
3-29ff, 3-33, 3-6uff, 4-1,
4-5ff, L-14, L4L=-24, 4L=-31ff,
6-4, 6-7, 6-9, 6-12,
7-4ff, 7-7¢F, 7-11, 7-13

print request 5-5ff, 5-9

process directory 4-27,
7-2, 7-8

program interrupt (pi) 2-8,
3-37, 5-27, 7-3, 7-6, 7-15

public workspace 3-64, L4-2,
4-23, 7-7

Q
Q 2-2, 3-6' 3-11, 3-13'

3-30, 3-34, 3-59, 3-61,
3-68, 4-27ff, 5-2, 5-4u,

i-6

5-14, 5-23, 5-28, 6-2,
6-12, 7-2, 7-8, 7-14

quad 2-5, 3-33ff, 3-50,
3-53, 3-69ff, u4-1, uL-8ff,
L-15ff, 5-1, 5-3, 5-1u4,
6'7ffo 7'5' 7‘9ff: 7'13

QuIT 2-7ff, 3-37, 4-11,
4-21, 4-27ff, 5-14, 5-27,
7-3, 7-8, 7-15, 7-18

quit request 5-14

quote-quad 2-5, 3-36ff,
Lb-1, 4-9, 4-27, 7-6,. 7-9fF

quotes 2-5, 3-3ff, 4-8,
5-7, 6-3, 7=-9ff

quotients 3-9, 3-11

R

radians 3-16

radix 2-5, 3-29ff, 4-15,
6-5ff, 7-6

random numbers 3-13,
3-30ff, 3-47, L=-1ff, 4-7,
4-15, 4-22, 6-2, 6-10,
7-3, 7-9

rank 3-2, 3-u4ff, 3-8ff,
3-17Fff, 3-22, 3-25ff,
3-39ff, 3-u45, 3-67ff,
4-32, 6-2ff

RANK ERROR 3-9, 3-67ff

ravel 3-19

real time 3-32, 4-7, 7-5,
7-3

reciprocals 3-7, 3-10, 6-1

recursion 3-62ff, 3-66,
4-14, 6-5, 7-2, 7-10

reduction 3-42ff, 4-32,
6-2ff, 6-5

relational operators 3-1l4ff

remainders 3-11, 3-38,
3-47ff, 3-55, 4-20, L4-28,
5-6, 5-21, 7-10, 7-13,
7-15, 7-18

requests, editor 2-6,
3-35ff, 3-58, 3-70, 3-72,
4L-1, 4-16, 4-22ff, 5-1ff,
5-14ff, 6-1, 6-5ff, 6-12,
7-10, 7-13ff

reshape 3-5, 3-8, 3-18ff,
6-1ff, 6-4

restarting 3-38, 3-66,
3-72FF

results of functions
3-54ff, 3-61, 3-67, 4-29,
5-3, 7-13

retype request 5-9

reverse 2-5, 3-23ff, 6-4

right-to-left rule 3-38,
3-47ff, 3-51ff, 3-54ff,
6-2

Roman numerals 6-=5

roots 3-10

)

rotate 2-5, 3-24, 3-60

rounding 3-3, 3-59, 4-5

rounding, sum-preserving
3-59

S

SAVE 1-2, 3-13, 3-68,
L-2ff, 4-5ff, 4L-18ff,
b-24ff, 4-28ff, 5-25, 7-8,
7-11ffF

scalar operators 3-7ff,
3-13, 3-17, 3-30, 3-33,
3-42ff, 3-64, 3-67, 6-1ff

scalars 3-2, 3-4, 3-7ff,
3-13, 3-17ff, 3-22, 3-25,
3-29ff, 3=-32ff, 3-37,
3-40, 3-42ff, 3-60,
3-63ff, 3-67ff, 6-1ff,
6-6ff

scientific notation 3-3ff

scope 3-38, 3-u44, 3-L7ff,
3-51ff, 3-5u4ff, 6-2

search rules U4-30

seed 3-13ff, 3-64, uL-1,
L-7¢f, 4-15, u4-22, 4-31,
L-34, 7-7¢¢, 7-11, 7-13

semicolons 3-39ff, 3-47,
3-50, 3-52, 3-57, 5-3,
7-15

SETLINK 3-13ff, 3-64,
L-7¢f, 7-7Ff, 7-13

SFC! 3-64, 4-9, 7-7ff, 7-13

SFEl 3-64, u-8ff, 7-7ff,
7-13

SFIl 3-6u4ff, u4-8ff, 7-7ff,
7-13

shape 3-2, 3-4, 3-17ff,
3-21FffFf, 3-25, 3-29,
3-31ff, 3-34, 3-39, 3-4l1,
3-43, 3-45ff, 3-64, u4-32,
6-2ff, 7-7ff

S| 2-8, 3-66, 3-70ff, L-10,
4-15ff, 5-3, 5-19, 7-6,
7-8

signs 2-4, 3-3ff, 3-7ff,
3-11, 3-48, 4-30, 5-19

signum 3-10, 6-5

Simpson's rule 6-12

sin 3-1lo, 6-12

sinh 3-16

siv 2-8, 3-57, 3-64,
3-70ff, u4-10, 4-16ff, ©6-8,
7-8

sneak request 5=27ff, 7-16

SORRY 3-61, 5-6ff, 5-10ff,
5-16ff, 5-19

sorting 2-5, 3-8, 3-22ff,
‘&'2, 7-1‘

square roots 3-10

StaCkS 3-38/ 3-69’ 3-75/
4-15Fff, u4-27, 7-2

INDEX

state indicator 3-1, 3-33,
3-37ff, 3-6u4, 3-66ff,
3-73ff, 4-10, 4-1uLff,
4-18, 4-22fFf, 5-3, 6-8,
7-3, 7-5ff, 7-10

statement numbers 3-33,
3-38, 3-59ff, 3-70, 4-16,
5-19, 7-5

statements 3-6, 3-33ff,
3-46ff, 3-49ff, 3-59ff,
3-65ff, 3-69ff, u4-15ff,
5-5, 5-19, 7-3, 7-5

stream attachments 2-6,
3-68, 4-22, 7-11

streams 2-61 3-58' u‘8,
4-15, 4-22, 6-1, 7-6, 7-11

string for character input
3-64, 4-1, u4-9, 7-7ff,
7-13

string for evaluated input
3-64, 4L-1, 4-8ff, 7-7ff,
7-13

string for immediate input
3-64ff, -1, 4-8ff, 7-7ff,
7-13

subscripts 3-17, 3-22ff,
3-35, 3-39ff, 3-50, 3-52,
3-67, 4-2, L=-6, 6-3

substitute request 5-26

subtraction 3-5, 3-7, 3-9,
3-43, 3-48

suspension 2-8, 3-8,
3-37ff, 3-66ff, 3-69ff,
L-16ff, 5-2, 5-21, 6-8,
7-3, 7-6ff, 7-1b4

SYNTAX ERROR 3-67ff, 5-28,
6-6, 7-5

sys_info$time_delta 3-32

system commands 1-2, 2-6,
2'8' 3-1, 3-3’ 3-6' 3-13'
3-20, 3-36ff, 3-54, 3-57,
3-64ff, 3-68, 3-70, L-1ff,
L-5ff, 4-1u4ff, 4=-17ffF,
4-22ff, 5-2ff, 5-19, 6-8,
7-2, 7-7ff, 7-16ff

T

take 3-1, 3-6, 3-22, 3-34,
3-36, 3-40ff, 3=-47ff,
3-53, 3-58, 3-65, u-2ff,
L-5¢ff, 4-12, 4-18, u4-22,
5-8, 5-22, 6-3, 7-4

tan 3-16

tanh 3-16

tax 3-58, 3-64

terminals 1-2, 2-1, 2-3ff,
3-36ff, 3-46, 3-65ff,
3-70, 3-72, 3-75, 4-8,
4-16, 4-27ff, 4=-30, 4-33,
5-3, 5-23, 5-26, 7-1ff,
7-6, 7-10, 7-12, 7-18

I NDEX

TermiNet 300 2-3, 7-2

Tic-Tac-Toe 3-63

time of day 3-32ff, 7-5

ti?e;_manager_ssleep 3-65,

timers 2-8, 3-65, u4-15,
b-22, 7-7, 7-11

top request 5-9

transposition 2-5, 3-8,
3-25ff, 3-45, 5-12, 6-4

trapezoidal rule 6-12

truncation 3-9, 4-21

type 1-2, 2-3ff, 2-6, 2-8,
3-2, 3-6, 3-14, 3-17,
3-34ff, 3-37, 3-43, 3-51,
3-58, 3-61, 3-64ff, 3-67,
4-2, 4-8, u4-14, 4-16,
4-18, 4-21, u4-25ff,
4-28ff, 4-32¢ff, 5-1, 5-6,
5-8ff, 5-12, S5-14, 5-20ff,
5-23ff, 6-1, 6-6ff, 6-9,
7-1ff, 7-6, 7-9ff, 7-12,
7-14ff, 7-18

typing elements 1-2, 2-3,
4-26, 4-28, u4-30, 5-21,
5-23, 6-1, 7-2

U

union, set 3-29

unspecified ordering 3-41,
3-51ff, 3-54

updelete request 5-27

upwrite request 5-26

user_i/o 2-6, 3-68, 7-6

user_input, user_output
2-6, 3-68, u4-8, 6-1, 7-6

'

vacuous expressions 3-40,
3-50ff

VALUE ERROR 3-34, 3-36,
3-51, 3-55, 3-68, 3-72,
4-29, 5-28

values 1-1ff, 3-1ff, 3-11,
3-13ff, 3-22ff, 3-26ff,
3-30, 3-32ff, 3-L7ff,
3-60ff, 3-70ff, u-1ff,
4-5¢ff, 4L-10, 4-15, 4-18,
4-22, 4-29ff, 5-28, 6-1ff,
6-9, 7-3, 7-5, 7-7

variables 1-2, 2-8, 3-1,
3-6, 3-33ff, 3-39, 3-4l1,
3-47, 3-49ff, 3-52ff,
3-61ff, 3-66ff, 3-70ff,
4-10ff, 4-13ff, u-17ff,
4L-22fFF, 4-31, 5-2ff, 5-13,

i-8

5-16, 6-1, 6-6ff, 7-3ff,
7-10, 7-12, 7-1u4ff, 7-17

VARS 3-6, 3-61, u4-10ff,
L-14ff, 4-22Fff, 4-31, 6-6,
7-8

vectors 3-2ff, 3-8ff, 3-13,
3-17ff, 3-25ff, 3-32ff,
3-37, 3-40, 3-42ff, 3-60,
4-3, 4-29, 6-1ff, 7-5,
7-7FfF

verify request 5-18

W

WIDTH 3-1, 3-3ff, 3-64ff,
bL-1, 4-3ff, L-10ff, L4-1lu,
4-31, 4-33, 5-12, 7-7ff,
7-11, 7-13

workspace identification
4-15, 4-18ff, u4-25, 7-10ffF

workspace parameters 2-6,
3-1, 3-3ff, 3-9ff, 3-12ff,
3-20ff, 3-26, 3-28ff,
3-33, 3-37, 3-40ff, 3-60,
3-64ff, L-1ff, L-1Lff,
4-18, 4=-22ff, 4-31,
4-33ff, 5-12, 6-3ff,
6-7ff, 6-11ff, 7-4ff,
7-7ff, 7-13

workspaces 3-1, 3-3ff, 3-6,
3-13, 3-20ff, 3-24, 3-26,
3-28, 3-30, 3-32ff, 3-40,
3-43, 3-54, 3-64ff,
3-67ff, 4=-1ff, L-1u4ff,
L-18ff, 4-31ff, 5-22ff,
7-2, 7-5ff, 7-14, 7-16,
7-18

write request 5-22ff

write-above request 5-25ff

WS FULL ERROR 3-33, 3-67ff,
7-5

WSFNS 3-64, 4=-2, 4=-23, 7-7

WSID 4-19, u4-25ff, u4-28,
7-8, 7-11

Z

zero-adic functions
3-54, 4L-30

zero-adic operators
3-53ff, 4-30ff, 5-3

ZFN 4-30, 7-8, 7-17

3-49,
3-49,

R AL «)ONGLINE R R L R R R L R R R R)--

HONEYWELL INFORMATION SYSTEMS
Publications Remarks Form*

TITLE: | MULTICS APL USER'S GUIDE

ORDER No.:| AK95, REV. 0

e ——————————————————————
[———

DATED: | JANUARY 1974
ERRORS IN PUBLICATION:
SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION:
(Please Print)
FROM: NAME DATE:
COMPANY
TITLE

;

*vour comments will be promptly investigated by appropriate technical personnel, action will be taken as
required, and you will receive a written reply. If you do not require a written reply, please checﬁiere.D

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

FIRST CLASS
PERMIT NO. 39531
WELLESLEY HILLS,
MASS. 02181

POSTAGE WILL BE PAID BY:

HONEYWELL INFORMATION SYSTEMS
60 WALNUT STREET
WELLESLEY HILLS, MASS. 02181

ATTN: PUBLICATIONS, MS 050

Honeywell

(NGLINE-----

S R TR o V))
A

