Honeywell APL USER'S GUIDE

MULTICS

SUBJECT:

Introductory User's Guide to Multics APL.

SOFTWARE SUPPORTED:

Multics Software Release 1.0

DATE:

January 1974

ORDER NUMBER:

AK95, Rev. 0



PREFACE

‘The organization of the manual follows the organization
of the APL processor. Section I presents an introduction to
APL. Section II discusses the invocation of the processor
and the character set conventions necessary to communicate
with it. Section III discusses the APL language. Section IV
explains the APL system commands. Section V discusses the
use of the APL editor to create and manipulate stored
programs.

The remainder of the manual contains material of wvalue
to certain classes of users. For new users, Section VI
presents an annotated reproduction of a sample demonstration
APL session, containing the most basic features of the
language. For users already familiar with APL/360, Section
VII identifies the differences between APL/360 and Multics
APL.

C) 1974, Honeywell Information Systems Inc. File No.: 1L23

AK95



CONTENTS

Section I Introduction
History of APL
Characteristics of APL

Section II Communicating with Multics APL
Calling the APL Command
APL Character Set
Selectric-type Terminals
ASCII Terminals
Canonicalization
Erase and Kill Processing
Escape Processing
Details of APL Input Line Processing
Line Length 256
Program Interrupt is Enabled
Using APL

Section III The APL Language
Workspaces
Values
Type
Rank
Shape
Output of Values
Input of Values
Names
Operators
Scalar Operators

Addition, Subtraction, Multiplication,

Division + - x =+

Plus, Negation + -

Signum Xx

Reciprocal +

Exponential, Logarithm x @
Modulo |

Absolute Value |

Factorial and Binomial Coeff1c1ent

Maximum and Minimum [ L

iii

Page

o
1
N -

oo UTddWWH K

PEYY Y

11 |
FHWOVY NN WhDNNDEE

oo

Wwwww L;waww

I
ol
o

ww
|
=

3-11
3-12

AK95



~ CONTENTS (cont)

Ceiling and Floor [ L
Random Number ?
Comparison Operators < < = # 2 >
Logical Operators ~ A v » ¥
Circular and Hyperbolic Operator o
Mixed Operators
Shape p
Reshape p
Ravel ,
Concatenate ,
Index Generator
Index 1
Take and Drop + +
Grade Up and Grade Down h V
Reverse ¢ o
Rotate ¢ o
Transpose &
Compression /
Expansion \ X
Membership e
Encode T
Evaluate 1
Deal ?
Matrix Inverse
Matrix Divide B
I-Beam I -
Other Operators and Symbols
Assignment <«
Output [
Evaluated Input 0
Character Input [
Jump -
Parentheses ( )
Lists ;
Subscripts [ ; ]
Reduction Operator o/ @4
Inner Product o.®
Outer Product °.®
Comments n
Expressions, Lists, and Statements
Scope of Operators: The Right-to-Left Rule
Scope of Functions
Lists
Statements
Dependence Upon Unspecified Ordering
Functions
Arguments and Results
Local and Global Variables

iv

AK95



CONTENTS (cont)

Branching

Statement Numbers
The Jump Operator -
Function Return
Statement Labels

Recursion

Extension of Scalar Functions to Arrays

Library Functions
Error Handling
Error Messages

Pendent Statements and the State Indicator

Suspended Statements

Restarting Suspended Functions

Clearing the State Indicator

Restarting Following a Function Edit

Panic

Section IV System Commands
System Commands Generally
Workspace Parameters

The
The
The
The
The
The
The
The

)ORIGIN System Command
YJWIDTH System Command
)DIGITS System Command
YFUZZ System Command
)SETLINK System Command
)SFII System Command
)SFEI System Command
)SFCI System Command

Name Table Management

The
The
The
The
The
The
The
The
The

)VARS System Command
JFNS System Command
)GRPS System Command
)GRP System Command
)GROUP System Command
JERASE System Command
JCLEAR System Command
)SI System Command
)SIV System Command

Saving and Reloading Workspaces
Workspace Identification
Passwords

The
The
The
The
The

)SAVE System Command
Y)LOAD System Command
)COPY System Command
)PCOPY System Command
YCONTINUE System Command

111 | L I O I |
HHRWOVWOONOUBMTWNDEHEFE

o N S A o S R R
1

AK95



CONTENTS (cont)

Page

The )ysrip System Command 4-25

The )17 System Command 4-26

The )prop System Command 4-26

Communicating With Multics 4-27

The )@, )QuIir, and )orF System Commands 4-27

The )porTS System Command 4-28

The )r System Command 4-28

External Functions 4-29
The )prN, )MFN, )zry Define External

Function Names 4-30
Definition Syntax . ’ 4-30
Definition Errors : 4-31
External Functions Cannot be Edited 4-31
External Functions Tagged With "*"

In )rFys Listing 4-31
External Function Calling Sequence 4-31
External Function Returned Value 4-32
Use of Supplied "Alloc" Entry 4-32
Use of Supplied "Error" Entry 4-33
Use of Supplied "Static" Structure 4-33

Section V The APL Function Editor
Invoking the Function Editor 5-1
Errors Invoking the Editor 5-2
The Function Header Line ( 5-3
Leaving the Editor 5-4
Editing Requests 5-5
Basic Editing Requests 5-5
Print Request p n 5-5
Locate Request [ string 5-6
Insert Request 1 string 5-7
Delete Request p n 5-8
Retype Request p string 5-9
Top Request 7T 5-9
Change Request ¢ n /stringl/string2/ 5-10
Input Request , 5-12
Quit Request g 5-14
Other Useful Requests 5-14
Next Request y n 5-14
Backup Request - n 5-15
Bottom Request B 5-16
Find Request F 5-16
Infrequently Used Requests 5-17
Kill Request g 5-17
Verify Request y 5-18

vi AK95



CONTENTS (cont)

Page

Line-Number Request = - 5-19

Comment Request | 5-19

Execute Request p command 5-21
Delete-Above Request yx 5-21

Write Request p pathname 5-22

Merge Request py pathname : 5-23
Write-Above Request y pathname 5-25

Synonyms for Requests 5-26
Substitute Request g n /stringl/string2/ 5-26

Execute Request p command 5-26

Upwrite Request ypyrITE pathname 5-26

Updelete Request yYPDELETE 5-27

Merge Request yprGgE pathname 5-27

Program Interrupt during Editing 5-27

The Sneak Request 5-27

Section VI Demonstration APL Session
APL in Action 6-1
Section VII Comparison With APL/360

APL/360 7-1
Multics APL 7-1
Entering APL 7-2
APL Is Recursive 7-2
Workspace 7-2
Terminal I/O 7-2
Program Interrupt Is Enabled 7-3
APL Language Itself 7-3
Order of Execution 7-3
Line Length 256 7-4
Identifiers 7-4
Minimum and Maximum Identity Elements 7-4
Take and Drop Conformability 7-4
Coordinate for Compress, Expand, Grade 7-4
I-Beam Functions 7-5
Jump Operator 7-5
Escape from Character Input 7-6
Error Messages 7-6
Messages not in Multics APL 7-6
Stream Switching On Errors 7-6
Panic 7-6
Library Functions 7-7
Matrix-Inverse (Domino) Generalized 7-7
System Commands 7-8
Use )@, )QUIT, Oor )OoFF to Exit from APL 7-8
YyDIGITS Command Allows up to 19 Digits 7-9
YSETLINK Initializes Random Number Generator 7-9

vii AK95



CONTENTS (cont)

Page
JFUZZ Sets the Fuzz ‘ 7-9
)JSFII, )SFEI, )SFCI Set the Go-Ahead
Characters 7-9
)E Executes a Multics Command 7-10
JERASE Command 7-10
JCLEAR Command 7-10
No )MSG, )MSGN, )OPR, )OPRN Commands 7-11
)PORTS Command is Multics "who" 7-11
Saving and Reloading Workspaces 7-11
Workspace Identification 7-11
Passwords 7-12
Internal Format of Saved Workspaces 7-12
YLIB and )DROP Commands 7-12
No APL Library Yet 7-12
External Functions 7-13
Function Editing 7-13
When a Function can be Edited 7-13
Invoking and Terminating the Editor ’ 7-14
Function Header Line 7-15
Input Mode 7-15
Edit Mode 7-15
Program Interrupt During Editing 7-15
E Request Executes a Multics Command 7-16
M, U, and W Requests to Read and Write Files 7-16
Saving Individual Function Definitions 7-16
Sneak Request 7-16
Line Numbers and Labels 7-17
No System Commands in Editor 7-17
No Stop or Trace Control 7-17
No Locked Functions 7-17
External Functions Cannot be Edited 7-18
Pitfalls 7-18
Interrupt Button Is Not For Line Editing 7-18
APL Translates )E command, E function, and E
Request 7-18
Remember the Function Header Line 7-18
Do Not Use the W Request when Editing
is Finished 7-19
Order of Operand Preparation Differs From
APL/360 7-19

viii AK95



TABLES

Page
Table 2-1. APL Character Set 2-2
Table 2-2. Mnemonic Escape Sequences 2-5
Table 3-1. Scalar Operator Identity Elements 3-43

ix AK95






SECTION I

INTRODUCTION

HISTORY OF APL

A  Programming Language (APL) originated as a
mathematical notation~ for the discussion of the theory of
algorithms. It was invented by Dr. Kenneth E. Iverson and
was described by him in his book, A Programming Language *.
The value of the notation as a practical means for
expressing an algorithm to a computer was soon noticed. An
interpreter which realized a subset of the notation was
developed by IBM on its 7090 computer. The success of this
pilot interpreter 1led to a second and more powerful
implementation, known as APL/360, on the IBM 360.

The success of APL can be attributed to some
characteristics which distinguish it from more conventional
programming languages. First, it is interactive by design

rather than by decree--it is fast, succinct, forgiving,
informative, and even fun to use. Next, it is at once both
simple and powerful--it is easy to learn, transparent, yet
it attacks abstruse problems with ease.

Multics APL is designed to behave as much like APL/360
as possible, to minimize the learning effort required of
those already familiar with APL/360, and to promote
compatibility at the source language level with other APL
installations.

*John Wiley and Sons, 1962

1-1 AK95



CHARACTERISTICS OF APL

APL can be characterized as a 1line-at-a-time desk
calculator with many sophisticated operators and a
stored-program capability. The wuser needs 1little or no
prior acquaintance with digital computers to use it. After
invoking APL, the user types an expression to be evaluated.
The APL interpreter performs the calculations, prints the

result, and awaits a new input line. The result of an
expression evaluation can also be assigned to a variable and
remembered from line to 1line. In addition, there is a

capability for storing input lines by an assigned name, SO
that a later mention of the name causes the lines to be
recalled and interpreted as if they had been entered from
the terminal at the time. Finally, there is the ability to
save the entire state of an APL session, complete with all
variable values and stored programs, so that the user may
continue at a subsequent APL session.

The APL language uses its own specially designed
character set, in which each operator is represented by a
single character. The most convenient access to APL is via
a Selectric-type terminal with the APL typing element (type
ball) mounted. Multics APL is also usable from any ASCII
terminal as well, although the user must be aware of the
typing conventions used to represent some of the APL
characters within the framework of the available ASCII
graphics.

The Multics APL processor consists of three principal
components: the interpreter for the mathematical
expressions of the APL language, a system command processor
which provides bookkeeping aids and an environment within
which the language runs, and an editor which is wused to
create and modify stored APL programs.

1-2 AK95



SECTION II

COMMUNICATING WITH MULTICS APL

CALLING THE APL COMMAND

To call Multics APL, issue the command line:
apl

APL responds by typing six spaces before awaiting input
from the user. This informs the user that APL would like to
hear from him and improves the readability of the terminal
listing. All of the user-typed lines will appear indented
by six positions while all of the APL-generated responses
will begin at the left margin.

Before typing any input, however, the wuser must
determine how the APL character set is represented on his
terminal. Since the APL character set differs significantly
from the Multics standard character set, normal Multics
typing conventions do not apply to communication with APL.

APL CHARACTER SET

In contrast to the 94 graphics of the Multics standard
character set, the APL character set has 130 graphics. APL
graphics are shown in Table 2-1, together with their
internal codes. ’

The internal code assigned to each character is not
normally of significance to the APL user. There is no way
within the APL 1language to discover or make use of the
internal representation of a character--for example, there
is no collating sequence. However, there are occasions in
Multics such that lines originating in APL are transferred
out to the rest of Multics, or vice versa; in these
instances the exact internal codes used by APL become
significant. In this connection, the established code
assignments agree with the Multics standard code assignments
wherever any correspondence of graphics between the two
character sets can be found.

2=1 AK95



(es)
(er)

(ki)

4+ %~ —~ = X O ~ £

-

e OO O U FWNPE O

I~ N Qg v VvV I A e

s gl

042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
06l
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
130
131
132
133
134
135
136
137
140
141

APL Character Set

APL APL
Graphic Code ASCII Selectric Graphic Code ASCII Selectric
. (os) B 142 b B
" * c 143 c c
# w e
$ 1 X 170 X X
3 P Yy 171 y Y
& X Z 172 4 VA
' ' « 173 g «
( ( l 174 |
) ) > 175 } >
* * ~ 176 ~ ~
+ + < 200 (os) < - <
’ s > 201 (os) > - >
- - z 202 (os) =/ z
. . v 203 "or v
/ / A 204 "an A
0 0 + 205 (os) - : +
1 1 € 206 "ep €
2 2 + 207 "up +
3 3 ¥ 210 "do v
4 4 o 211 "ci o
5 5 [ 212 "ce [
6 6 L 213 "fl L
7 7 A 214 "de A
8 8 o 215 "cc o
9 9 O 216 "qu O
: : n 217 "ca n
: ; L 220 "ev 1
< < T 221 "en T
= = c 222 "in c
> > ) 223 "co >
? ? U 224 "cu U
@ a » 225 "no (os) v ~
A (os) 4 x 226 "na (os) A ~
B (os) B _ e 227 "rf (os) o -
C (os) C _ # 230 (os) / - (os) / -
» 231 "1lf (os) VvV ~
X (os) X _ @ 232 "lo (os) o =
Y (os) Y _ ¢ 233 "rr (os) o |
Z (os) Z _ & 234 "tr (os) o \
L [ Vs 236 "gd (os) Vv |
\ \ A 237 "gu (os) A |
] ] A 240 "la (os) n.o
- m 241 "qq (os) O
_ I 242 "ib (os) T 1
v v \ 243 (os) \ - (os) \ -
a A B 244 "mi (os) O =+
2-2 AK95



Table 2-1 (cont). APL Character Set
NOTE: The following abbreviations are used in the table:

(es) - escape character . (os) - backspace and overstrike
(er) - erase character each following character
(ki) - kill character

In addition to the above graphics, all the Multics control
characters are members of the APL character set with their
usual octal codes.

010 - backspace

011l - horizontal tabulate

012 - newline (carriage return & linefeed)

040 - blank

The problem arises of representing this character set on
various terminals. Multics APL is designed to be wusable
from two general classes of terminals: Selectric-type
terminals with interchangeable typing elements (type balls),
like the IBM 1050 and 2741; and ASCII terminals which do not
have interchangeable graphics, such as Teletype Model 37 and
GE TermiNet 300 or Honeywell SRT301.

Selectric-type Terminals

In the case of Selectric-type terminals, APL assumes
that the user has mounted the APL type ball (IBM part number
1167988) . This is the most convenient way to access APL, as
the entire APL character set is made available with a
minimum of special typing conventions.

The fourth and eighth columns of Table 2-1 show how
each character of the APL set 1is represented on a
Selectric-type terminal. Most characters can be typed with
one keystroke; however, several characters must be produced
by backspacing and overstriking other graphics. The
abbreviation " (os)" in Table 2-1 means that the subsequent
graphics must be overstruck to produce the desired
character. Characters generated by overstriking graphics
are nevertheless considered to be single characters
internally.

ASCII Terminals

Using ASCII terminals is somewhat more complicated.
The third and seventh columns of Table 2-1 show how each APL

2-3 AK95



character is represented on an ASCII terminal. While most
characters can be typed with one keystroke, a few are
represented by more complicated correspondences: some are
produced by backspaces and overstrikes, and many have
defined for them mnemonic escape sequences.

As in the case of Selectric-type terminals, characters

produced by backspaces and overstrikes or escape sequences
are considered single characters.

Canonicalization

As soon as backspaces are allowed in any typed line, it
becomes evident that there are many different ways to type a
given line. That is, there are many different sequences of
keystrokes that produce visually identical results. To
reduce confusion and allow greater freedom to the typist,
APL canonicalizes each input line as it is read. This means
that the characters typed by the user are sorted into their
visual order on the page, independently of the temporal
order in which they were typed. Hence, the wuser need not
bother to type overstrikes in any specified order.

A more complete explanation of APL
canonicalization process is given under "Details of APL
Input Line Processing," later in this section.

Erase and Kill Processing

Typing errors in Multics APL are corrected through the
mechanism of erase and kill characters rather than by
backspacing and hitting the ATTN button as in APL/360. The

kill character is the alpha « (which 1is represented as
commercial at (@) on ASCII terminals), and the erase
character is the omega w (which 1is represented as the

number sign # on ASCII terminals).

The kill character removes the entire line preceding
it. That is, the kill character deletes itself, anything
overstruck with 4it, and all characters to the left.
Characters to the right of a kill character are not deleted.

The definition of erase is a little more complicated.
If the erase character is overstruck with anything, then
only that print position is removed. But if the erase
character appears alone 1in a print position, then the
character in the preceding print position is removed as
well. If there is no character in the preceding position
(i.e., it is white space), then the entire white space or

2-4 AK95



carriage motion preceding the erase character is deleted.

Since erase and kill are performed after
canonicalization, the spatial positions of the characters on
the 1line determine which characters are removed; i.e., the
order in which the characters were typed is not significant.

In Multics APL, kill is performed before erase; it is
not possible to erase a kill character.

Table 2-2. Mnemonic Escape Sequences

Escape Code APL Meaning Escape Code APL Meaning
Tal 100 o alpha "1 222 c 1ncluded
"an 204 A and "la 240 p lamp
"ba 174 | bar "1f 231 % locked
"ca 217 n cap function
"cc 215 o center- "lo 232 @ logarithm

circle "mi 244 B matrix
"ce 212 [ ceiling inverse
"ci 211 o circle "na 226 ~ nand
"co 223 > contains "no 225 ¥ nor
"c 224 n
o B o S e
"do 210 + down arrow "qgq 241 M gquote-quad
"en 221 T encode "qu 216 0 gquad
"ep 206 e epsilon "rf 227 e reverse-
"es 042 ** escape first
"ev 220 L evaluate "rr 223 ¢ reverse/
"fl 213 L floor rotate
"gd 236 Y grade down "ti 176 ~ tilde
"gu 237 A grade up "tr 234 § transpose
"ib 242 I I-beam "up 207 + up arrow

Escape Processing

An escape mechanism is provided in order to allow any
arbitrary character or sequence of characters to be entered
in spite of canonicalization, erase, and kill. The escape
character 1is the diaeresis (-+) (represented as double
quotation marks (") on ASCII terminals). The eéescape
character is followed by (1) another escape character, which
represents a diaeresis as data in the input 1line without
performing an escape function; or, (2) a one-, two-, or

2-5 AK95






