Honeywell APL USER'S GUIDE

MULTICS

SUBJECT:

Introductory User's Guide to Multics APL.

SOFTWARE SUPPORTED:

Multics Software Release 1.0

DATE:

January 1974

ORDER NUMBER:

AK95, Rev. 0

PREFACE

‘The organization of the manual follows the organization
of the APL processor. Section I presents an introduction to
APL. Section II discusses the invocation of the processor
and the character set conventions necessary to communicate
with it. Section III discusses the APL language. Section IV
explains the APL system commands. Section V discusses the
use of the APL editor to create and manipulate stored
programs.

The remainder of the manual contains material of wvalue
to certain classes of users. For new users, Section VI
presents an annotated reproduction of a sample demonstration
APL session, containing the most basic features of the
language. For users already familiar with APL/360, Section
VII identifies the differences between APL/360 and Multics
APL.

C) 1974, Honeywell Information Systems Inc. File No.: 1L23

AK95

CONTENTS

Section I Introduction
History of APL
Characteristics of APL

Section II Communicating with Multics APL
Calling the APL Command
APL Character Set
Selectric-type Terminals
ASCII Terminals
Canonicalization
Erase and Kill Processing
Escape Processing
Details of APL Input Line Processing
Line Length 256
Program Interrupt is Enabled
Using APL

Section III The APL Language
Workspaces
Values
Type
Rank
Shape
Output of Values
Input of Values
Names
Operators
Scalar Operators

Addition, Subtraction, Multiplication,

Division + - x =+

Plus, Negation + -

Signum Xx

Reciprocal +

Exponential, Logarithm x @
Modulo |

Absolute Value |

Factorial and Binomial Coeff1c1ent

Maximum and Minimum [L

iii

Page

o
1
N -

oo UTddWWH K

PEYY Y

11 |
FHWOVY NN WhDNNDEE

oo

Wwwww L;waww

I
ol
o

ww
|
=

3-11
3-12

AK95

~ CONTENTS (cont)

Ceiling and Floor [L
Random Number ?
Comparison Operators < < = # 2 >
Logical Operators ~ A v » ¥
Circular and Hyperbolic Operator o
Mixed Operators
Shape p
Reshape p
Ravel ,
Concatenate ,
Index Generator
Index 1
Take and Drop + +
Grade Up and Grade Down h V
Reverse ¢ o
Rotate ¢ o
Transpose &
Compression /
Expansion \ X
Membership e
Encode T
Evaluate 1
Deal ?
Matrix Inverse
Matrix Divide B
I-Beam I -
Other Operators and Symbols
Assignment <«
Output [
Evaluated Input 0
Character Input [
Jump -
Parentheses ()
Lists ;
Subscripts [;]
Reduction Operator o/ @4
Inner Product o.®
Outer Product °.®
Comments n
Expressions, Lists, and Statements
Scope of Operators: The Right-to-Left Rule
Scope of Functions
Lists
Statements
Dependence Upon Unspecified Ordering
Functions
Arguments and Results
Local and Global Variables

iv

AK95

CONTENTS (cont)

Branching

Statement Numbers
The Jump Operator -
Function Return
Statement Labels

Recursion

Extension of Scalar Functions to Arrays

Library Functions
Error Handling
Error Messages

Pendent Statements and the State Indicator

Suspended Statements

Restarting Suspended Functions

Clearing the State Indicator

Restarting Following a Function Edit

Panic

Section IV System Commands
System Commands Generally
Workspace Parameters

The
The
The
The
The
The
The
The

)ORIGIN System Command
YJWIDTH System Command
)DIGITS System Command
YFUZZ System Command
)SETLINK System Command
)SFII System Command
)SFEI System Command
)SFCI System Command

Name Table Management

The
The
The
The
The
The
The
The
The

)VARS System Command
JFNS System Command
)GRPS System Command
)GRP System Command
)GROUP System Command
JERASE System Command
JCLEAR System Command
)SI System Command
)SIV System Command

Saving and Reloading Workspaces
Workspace Identification
Passwords

The
The
The
The
The

)SAVE System Command
Y)LOAD System Command
)COPY System Command
)PCOPY System Command
YCONTINUE System Command

111 | L I O I |
HHRWOVWOONOUBMTWNDEHEFE

o N S A o S R R
1

AK95

CONTENTS (cont)

Page

The)ysrip System Command 4-25

The)17 System Command 4-26

The)prop System Command 4-26

Communicating With Multics 4-27

The)@,)QuIir, and)orF System Commands 4-27

The)porTS System Command 4-28

The)r System Command 4-28

External Functions 4-29
The)prN,)MFN,)zry Define External

Function Names 4-30
Definition Syntax . ’ 4-30
Definition Errors : 4-31
External Functions Cannot be Edited 4-31
External Functions Tagged With "*"

In)rFys Listing 4-31
External Function Calling Sequence 4-31
External Function Returned Value 4-32
Use of Supplied "Alloc" Entry 4-32
Use of Supplied "Error" Entry 4-33
Use of Supplied "Static" Structure 4-33

Section V The APL Function Editor
Invoking the Function Editor 5-1
Errors Invoking the Editor 5-2
The Function Header Line (5-3
Leaving the Editor 5-4
Editing Requests 5-5
Basic Editing Requests 5-5
Print Request p n 5-5
Locate Request [string 5-6
Insert Request 1 string 5-7
Delete Request p n 5-8
Retype Request p string 5-9
Top Request 7T 5-9
Change Request ¢ n /stringl/string2/ 5-10
Input Request , 5-12
Quit Request g 5-14
Other Useful Requests 5-14
Next Request y n 5-14
Backup Request - n 5-15
Bottom Request B 5-16
Find Request F 5-16
Infrequently Used Requests 5-17
Kill Request g 5-17
Verify Request y 5-18

vi AK95

CONTENTS (cont)

Page

Line-Number Request = - 5-19

Comment Request | 5-19

Execute Request p command 5-21
Delete-Above Request yx 5-21

Write Request p pathname 5-22

Merge Request py pathname : 5-23
Write-Above Request y pathname 5-25

Synonyms for Requests 5-26
Substitute Request g n /stringl/string2/ 5-26

Execute Request p command 5-26

Upwrite Request ypyrITE pathname 5-26

Updelete Request yYPDELETE 5-27

Merge Request yprGgE pathname 5-27

Program Interrupt during Editing 5-27

The Sneak Request 5-27

Section VI Demonstration APL Session
APL in Action 6-1
Section VII Comparison With APL/360

APL/360 7-1
Multics APL 7-1
Entering APL 7-2
APL Is Recursive 7-2
Workspace 7-2
Terminal I/O 7-2
Program Interrupt Is Enabled 7-3
APL Language Itself 7-3
Order of Execution 7-3
Line Length 256 7-4
Identifiers 7-4
Minimum and Maximum Identity Elements 7-4
Take and Drop Conformability 7-4
Coordinate for Compress, Expand, Grade 7-4
I-Beam Functions 7-5
Jump Operator 7-5
Escape from Character Input 7-6
Error Messages 7-6
Messages not in Multics APL 7-6
Stream Switching On Errors 7-6
Panic 7-6
Library Functions 7-7
Matrix-Inverse (Domino) Generalized 7-7
System Commands 7-8
Use)@,)QUIT, Oor)OoFF to Exit from APL 7-8
YyDIGITS Command Allows up to 19 Digits 7-9
YSETLINK Initializes Random Number Generator 7-9

vii AK95

CONTENTS (cont)

Page
JFUZZ Sets the Fuzz ‘ 7-9
)JSFII,)SFEI,)SFCI Set the Go-Ahead
Characters 7-9
)E Executes a Multics Command 7-10
JERASE Command 7-10
JCLEAR Command 7-10
No)MSG,)MSGN,)OPR,)OPRN Commands 7-11
)PORTS Command is Multics "who" 7-11
Saving and Reloading Workspaces 7-11
Workspace Identification 7-11
Passwords 7-12
Internal Format of Saved Workspaces 7-12
YLIB and)DROP Commands 7-12
No APL Library Yet 7-12
External Functions 7-13
Function Editing 7-13
When a Function can be Edited 7-13
Invoking and Terminating the Editor ’ 7-14
Function Header Line 7-15
Input Mode 7-15
Edit Mode 7-15
Program Interrupt During Editing 7-15
E Request Executes a Multics Command 7-16
M, U, and W Requests to Read and Write Files 7-16
Saving Individual Function Definitions 7-16
Sneak Request 7-16
Line Numbers and Labels 7-17
No System Commands in Editor 7-17
No Stop or Trace Control 7-17
No Locked Functions 7-17
External Functions Cannot be Edited 7-18
Pitfalls 7-18
Interrupt Button Is Not For Line Editing 7-18
APL Translates)E command, E function, and E
Request 7-18
Remember the Function Header Line 7-18
Do Not Use the W Request when Editing
is Finished 7-19
Order of Operand Preparation Differs From
APL/360 7-19

viii AK95

TABLES

Page
Table 2-1. APL Character Set 2-2
Table 2-2. Mnemonic Escape Sequences 2-5
Table 3-1. Scalar Operator Identity Elements 3-43

ix AK95

SECTION I

INTRODUCTION

HISTORY OF APL

A Programming Language (APL) originated as a
mathematical notation~ for the discussion of the theory of
algorithms. It was invented by Dr. Kenneth E. Iverson and
was described by him in his book, A Programming Language *.
The value of the notation as a practical means for
expressing an algorithm to a computer was soon noticed. An
interpreter which realized a subset of the notation was
developed by IBM on its 7090 computer. The success of this
pilot interpreter 1led to a second and more powerful
implementation, known as APL/360, on the IBM 360.

The success of APL can be attributed to some
characteristics which distinguish it from more conventional
programming languages. First, it is interactive by design

rather than by decree--it is fast, succinct, forgiving,
informative, and even fun to use. Next, it is at once both
simple and powerful--it is easy to learn, transparent, yet
it attacks abstruse problems with ease.

Multics APL is designed to behave as much like APL/360
as possible, to minimize the learning effort required of
those already familiar with APL/360, and to promote
compatibility at the source language level with other APL
installations.

*John Wiley and Sons, 1962

1-1 AK95

CHARACTERISTICS OF APL

APL can be characterized as a 1line-at-a-time desk
calculator with many sophisticated operators and a
stored-program capability. The wuser needs 1little or no
prior acquaintance with digital computers to use it. After
invoking APL, the user types an expression to be evaluated.
The APL interpreter performs the calculations, prints the

result, and awaits a new input line. The result of an
expression evaluation can also be assigned to a variable and
remembered from line to 1line. In addition, there is a

capability for storing input lines by an assigned name, SO
that a later mention of the name causes the lines to be
recalled and interpreted as if they had been entered from
the terminal at the time. Finally, there is the ability to
save the entire state of an APL session, complete with all
variable values and stored programs, so that the user may
continue at a subsequent APL session.

The APL language uses its own specially designed
character set, in which each operator is represented by a
single character. The most convenient access to APL is via
a Selectric-type terminal with the APL typing element (type
ball) mounted. Multics APL is also usable from any ASCII
terminal as well, although the user must be aware of the
typing conventions used to represent some of the APL
characters within the framework of the available ASCII
graphics.

The Multics APL processor consists of three principal
components: the interpreter for the mathematical
expressions of the APL language, a system command processor
which provides bookkeeping aids and an environment within
which the language runs, and an editor which is wused to
create and modify stored APL programs.

1-2 AK95

SECTION II

COMMUNICATING WITH MULTICS APL

CALLING THE APL COMMAND

To call Multics APL, issue the command line:
apl

APL responds by typing six spaces before awaiting input
from the user. This informs the user that APL would like to
hear from him and improves the readability of the terminal
listing. All of the user-typed lines will appear indented
by six positions while all of the APL-generated responses
will begin at the left margin.

Before typing any input, however, the wuser must
determine how the APL character set is represented on his
terminal. Since the APL character set differs significantly
from the Multics standard character set, normal Multics
typing conventions do not apply to communication with APL.

APL CHARACTER SET

In contrast to the 94 graphics of the Multics standard
character set, the APL character set has 130 graphics. APL
graphics are shown in Table 2-1, together with their
internal codes. ’

The internal code assigned to each character is not
normally of significance to the APL user. There is no way
within the APL 1language to discover or make use of the
internal representation of a character--for example, there
is no collating sequence. However, there are occasions in
Multics such that lines originating in APL are transferred
out to the rest of Multics, or vice versa; in these
instances the exact internal codes used by APL become
significant. In this connection, the established code
assignments agree with the Multics standard code assignments
wherever any correspondence of graphics between the two
character sets can be found.

2=1 AK95

(es)
(er)

(ki)

4+ %~ —~ = X O ~ £

-

e OO O U FWNPE O

I~ N Qg v VvV I A e

s gl

042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
06l
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
130
131
132
133
134
135
136
137
140
141

APL Character Set

APL APL
Graphic Code ASCII Selectric Graphic Code ASCII Selectric
. (os) B 142 b B
" * c 143 c c
w e
$ 1 X 170 X X
3 P Yy 171 y Y
& X Z 172 4 VA
' ' « 173 g «
((l 174 |
)) > 175 } >
* * ~ 176 ~ ~
+ + < 200 (os) < - <
’ s > 201 (os) > - >
- - z 202 (os) =/ z
. . v 203 "or v
/ / A 204 "an A
0 0 + 205 (os) - : +
1 1 € 206 "ep €
2 2 + 207 "up +
3 3 ¥ 210 "do v
4 4 o 211 "ci o
5 5 [212 "ce [
6 6 L 213 "fl L
7 7 A 214 "de A
8 8 o 215 "cc o
9 9 O 216 "qu O
: : n 217 "ca n
: ; L 220 "ev 1
< < T 221 "en T
= = c 222 "in c
> >) 223 "co >
? ? U 224 "cu U
@ a » 225 "no (os) v ~
A (os) 4 x 226 "na (os) A ~
B (os) B _ e 227 "rf (os) o -
C (os) C _ # 230 (os) / - (os) / -
» 231 "1lf (os) VvV ~
X (os) X _ @ 232 "lo (os) o =
Y (os) Y _ ¢ 233 "rr (os) o |
Z (os) Z _ & 234 "tr (os) o \
L [Vs 236 "gd (os) Vv |
\ \ A 237 "gu (os) A |
]] A 240 "la (os) n.o
- m 241 "qq (os) O
_ I 242 "ib (os) T 1
v v \ 243 (os) \ - (os) \ -
a A B 244 "mi (os) O =+
2-2 AK95

Table 2-1 (cont). APL Character Set
NOTE: The following abbreviations are used in the table:

(es) - escape character . (os) - backspace and overstrike
(er) - erase character each following character
(ki) - kill character

In addition to the above graphics, all the Multics control
characters are members of the APL character set with their
usual octal codes.

010 - backspace

011l - horizontal tabulate

012 - newline (carriage return & linefeed)

040 - blank

The problem arises of representing this character set on
various terminals. Multics APL is designed to be wusable
from two general classes of terminals: Selectric-type
terminals with interchangeable typing elements (type balls),
like the IBM 1050 and 2741; and ASCII terminals which do not
have interchangeable graphics, such as Teletype Model 37 and
GE TermiNet 300 or Honeywell SRT301.

Selectric-type Terminals

In the case of Selectric-type terminals, APL assumes
that the user has mounted the APL type ball (IBM part number
1167988) . This is the most convenient way to access APL, as
the entire APL character set is made available with a
minimum of special typing conventions.

The fourth and eighth columns of Table 2-1 show how
each character of the APL set 1is represented on a
Selectric-type terminal. Most characters can be typed with
one keystroke; however, several characters must be produced
by backspacing and overstriking other graphics. The
abbreviation " (os)" in Table 2-1 means that the subsequent
graphics must be overstruck to produce the desired
character. Characters generated by overstriking graphics
are nevertheless considered to be single characters
internally.

ASCII Terminals

Using ASCII terminals is somewhat more complicated.
The third and seventh columns of Table 2-1 show how each APL

2-3 AK95

character is represented on an ASCII terminal. While most
characters can be typed with one keystroke, a few are
represented by more complicated correspondences: some are
produced by backspaces and overstrikes, and many have
defined for them mnemonic escape sequences.

As in the case of Selectric-type terminals, characters

produced by backspaces and overstrikes or escape sequences
are considered single characters.

Canonicalization

As soon as backspaces are allowed in any typed line, it
becomes evident that there are many different ways to type a
given line. That is, there are many different sequences of
keystrokes that produce visually identical results. To
reduce confusion and allow greater freedom to the typist,
APL canonicalizes each input line as it is read. This means
that the characters typed by the user are sorted into their
visual order on the page, independently of the temporal
order in which they were typed. Hence, the wuser need not
bother to type overstrikes in any specified order.

A more complete explanation of APL
canonicalization process is given under "Details of APL
Input Line Processing," later in this section.

Erase and Kill Processing

Typing errors in Multics APL are corrected through the
mechanism of erase and kill characters rather than by
backspacing and hitting the ATTN button as in APL/360. The

kill character is the alpha « (which 1is represented as
commercial at (@) on ASCII terminals), and the erase
character is the omega w (which 1is represented as the

number sign # on ASCII terminals).

The kill character removes the entire line preceding
it. That is, the kill character deletes itself, anything
overstruck with 4it, and all characters to the left.
Characters to the right of a kill character are not deleted.

The definition of erase is a little more complicated.
If the erase character is overstruck with anything, then
only that print position is removed. But if the erase
character appears alone 1in a print position, then the
character in the preceding print position is removed as
well. If there is no character in the preceding position
(i.e., it is white space), then the entire white space or

2-4 AK95

carriage motion preceding the erase character is deleted.

Since erase and kill are performed after
canonicalization, the spatial positions of the characters on
the 1line determine which characters are removed; i.e., the
order in which the characters were typed is not significant.

In Multics APL, kill is performed before erase; it is
not possible to erase a kill character.

Table 2-2. Mnemonic Escape Sequences

Escape Code APL Meaning Escape Code APL Meaning
Tal 100 o alpha "1 222 c 1ncluded
"an 204 A and "la 240 p lamp
"ba 174 | bar "1f 231 % locked
"ca 217 n cap function
"cc 215 o center- "lo 232 @ logarithm

circle "mi 244 B matrix
"ce 212 [ceiling inverse
"ci 211 o circle "na 226 ~ nand
"co 223 > contains "no 225 ¥ nor
"c 224 n
o B o S e
"do 210 + down arrow "qgq 241 M gquote-quad
"en 221 T encode "qu 216 0 gquad
"ep 206 e epsilon "rf 227 e reverse-
"es 042 ** escape first
"ev 220 L evaluate "rr 223 ¢ reverse/
"fl 213 L floor rotate
"gd 236 Y grade down "ti 176 ~ tilde
"gu 237 A grade up "tr 234 § transpose
"ib 242 I I-beam "up 207 + up arrow

Escape Processing

An escape mechanism is provided in order to allow any
arbitrary character or sequence of characters to be entered
in spite of canonicalization, erase, and kill. The escape
character 1is the diaeresis (-+) (represented as double
quotation marks (") on ASCII terminals). The eéescape
character is followed by (1) another escape character, which
represents a diaeresis as data in the input 1line without
performing an escape function; or, (2) a one-, two-, or

2-5 AK95

three-digit octal number, which represents a single
character of precisely that internal code; or (3) one of the
two-character mnemonic escape sequences listed in Table 2-2,
While escapes are necessary primarily for users of ASCII

terminals, the same escapes are accepted from Selectric-type
terminals. :

Since erase and kill are performed before escape
processing, it is possible to erase and kill the various
characters of an escape sequence. For example, an escape
followed by an erase results in an erasure of the escape
character rather than the input of an erase character (an
erase character can be input either with an octal escape or
with its mnemonic escape " 0M).

Details of APL Input Line Processing

The following paragraphs contain a more detailed
explanation of input line processing.

Initially, APL obtains its input from the Multics
stream "user_input". Upon the occurrence of any error, APL
reverts to reading the stream "user i/o". 1In either case,
the following initialization is performed. APL makes an
"info" order call in an attempt to determine the type of
terminal to which the stream is attached. If there 1is no
terminal, an unknown type of terminal, or if the "info"
order is rejected, then APL assumes that there is no
terminal connected. In this case, the input is used
directly as read, and no code conversion, canonicalization,
erase, kill, escape, or overstrike processing is performed.
In other words, the input stream in this case must already
consist of correct Multics APL internal character codes.
(The APL function editor and its ¥ request is a convenient
way to generate a file suitable for input to APL.)

If it is recognized that the input stream is connected
to a Selectric-type or ASCII terminal, then processing
appropriate to the device is selected. In order that APL be
able to do its own line processing, a "modes" order call is
issued to the Multics ring-zero Teletype device interface
module to turn off standard canonicalization, erase, kill,
and escape processing. The former mode is remembered for
subsequent restoration.

Whenever APL is left and re-entered by the)E system
command or the E editor request, the remembered mode is
restored before the callout. Upon return, the attachment of
the input stream is again inspected for possible changes and
the appropriate handling for it is selected. If the input
stream attachment is disturbed without notifying APL (e.g.,

2-6 AK95

C

when the user quits out of APL), then APL continues to apply
the same 1line processing as was selected for the old
attachment, 1leading to possibly confusing or inconvenient
results with the new device.

Assuming that the terminal was properly identified, the
first processing of the input line (a line is a sequence of
characters ending with a new-line character) is conversion
of each input character into the APL internal character
code. Each graphic is then flagged with its color (it can
be red or black) and its position on the printed page. The
nongraphic (carriage-motion) characters are ignored except
for their contribution to the positioning of the graphic
characters. Each position consists of the following:
subline, tab stop, and print position within tab stop
(sublines are separated by vertical-tab and form-feed
characters; tab stops are separated by horizontal-tab
characters). The graphics are then canonicalized (sorted
into ascending spatial order, i.e., the order in which they
are seen on the printed page). Within a single print
position, overstruck graphics are sorted into ascending
order according to the APL internal character code.

Kill processing is performed next. If any print
position contains a kill character, it and all positions to
the 1left of it are eliminated. Since this elimination is
done after canonicalization, some of the characters
eliminated may have been typed before the kill character and
some = may have been typed after it; what counts is the
position of each character on the printed page.

Erase processing 1is performed next. If any print
position contains an erase character and any other graphic,
then that print position 1is eliminated. If the erase

character is alone in its print position, then the preceding
print position or carriage motion is also eliminated.
Nothing on a previous subline can be erased by erase
characters. Since kill is performed before erase, kill
characters cannot be erased.

Escape and overstrike processing are performed next,
both at the same time. Since canonicalization, erase, and
kill have already been performed, carriage motions, erase,
and kill can be used to properly format escapes and
overstrikes. For example, erase can be used to correct
individual characters in escape sequences, or to erase the
escape character itself. Escaped-in erase, kill, or escape
characters are treated as data since no further erase, kill,
or escape processing follows. Also, backspaces and other
carriage motions generated by the escape feature are treated
as data and do not influence either the overstrike
processing or the canonicalization.

2-7 AK95

Finally, the last step consists of inserting new
carrigge-motion and color-shift characters to make all the
graphlcs print with proper color in their correct print
positions.

LINE LENGTH 256

In Multics APL, the 1longest input line that can be
processed is 256 characters. When a line to be interpreted
consists of several typed lines because of newline
characters imbedded in character constants, the total
interpreted line must fall within this limit.

PROGRAM INTERRUPT IS ENABLED

Whenever Multics APL is running, it provides the user a
handler for the "program interrupt" condition. If the user
desires to interrupt APL, he presses the QUIT button and
types the "pi" command. APL then sets a timer to give the
current calculation a short grace time in which to complete.
If the end of a line to be interpreted is encountered before
the timer expires, APL suspends operation, types six spaces,
and awaits input from the terminal. If the timer expires
before the end of a 1line is reached, the state of the
computation reverts to the previous console suspension

point. APL then types six spaces, and awaits input. 1In
either case, the user can use the VST or)SIV system
commands to determine where his computation was suspended.
The Jjump operator > can be used to restart the
computation.

USING APL

When APL has been invoked and awaits input the user may
enter one of three types of input: an expression to be
evaluated immediately, a system command, or an invocation of
the function editor.

An expression to be evaluated immediately is the most
common response. This entry initiates computations. This
class of input is discussed in Section III.

A system command interrogates or adjusts the
environment in which the computations are performed. Most
system commands are attendant to bookkeeping functions such
as listing names of current variables and functions, erasing
variables or causing APL to return to Multics. System

2-8 AK95

commands are discussed in Section 1IV.

Finally, the function editor is used to store
functions, or programs of APL lines, for later execution,
rather than to execute each line as it is typed. The editor
provides a means to create, modify, and replace stored

function definitions. The function editor is discussed in
Section V.

2-9 AK95

SECTION III

THE APL LANGUAGE

WORKSPACES

A workspace is that area of computer memory set aside
for the APL interpreter to remember everything it must keep
track of during a session. An APL workspace contains: (1)
a name table listing the names of all variables, functions,
and groups that have been defined; (2) the values of all
variables and the definitions of all functions and groups;
(3) a state indicator, which records the instantaneous
state of functions currently in execution; and (4) a few
occasionally referenced static parameters, such as page
width and index origin.

When the APL command is issued, the active workspace is
initially clear; that is, it contains no variables,
functions, or groups, and it contains some default values
for the static parameters.

APL system commands exist for saving the contents of
the active workspace as a Multics segment, or for reloading
the workspace from a previously saved copy. This permits an
APL session to be interrupted and saved, and then taken up
again on a later date with no 1loss of information. This
also permits a user to maintain several saved workspaces,
each applicable to some separate task, and to take them up
in turn as desired.

VALUES

In APL, the value of any variable or expression is a
rectangular array of elements, each of which 1is a single
character or a single number. The array can have any number
of dimensions from zero up, and the extent of each dimension
can be anything from zero up. The number of elements in the
array is equal to the product of the dimension extents.
Character and numeric elements cannot be mixed within the
same value.

3-1 AK95

Txge

Three salient characteristics of an APL value are its
type, its rank, and its shape. The type of a value is
either character or numeric, depending upon whether its
elements are characters or numbers. Remember that
characters and numbers cannot both appear in one value.
Type is important in that some operations demand operands of
a specific type.

Internally, the APL interpreter further classifies
numeric values into three subtypes: bit, integer, and
double-precision floating-point. However, these internal
subtypes are invisible to the user, and conversions between
them are made automatically by the interpreter.

An array with no elements at all (the so-called null
value) 1is acceptable to operations demanding either
character or numeric operands. It may be thought of as
having either type, as the occasion demands.

Rank

The rank of a value is the number of its dimensions. A
scalar has rank zero, and consists of but a single element.
A vector has rank one, and consists of a number of linearly
ordered elements. Matrices of rank two and arrays of higher
rank are also permitted.

ShaEe

The shape of a value is its set of dimension extents,
expressed as a vector. A scalar, having no dimensions, has

a null shape vector; i.e., a vector with no elements. A
vector has a shape vector that consists of a single number,
the number of elements in the vector value. Matrices of

rank two have shape vectors with two elements. Arrays of
higher rank have shape vectors of length equal to their
rank.

Since the shape of a value is a numeric vector, it
itself is an APL value. The shape operator p, provides a way
to extract the shape of a value. For example if 4 is a 5 by
2 by 4 character array, then pA is a numeric vector of three
elements with value 5 2 4, The shape of the shape is again
an APL value; in fact, it is the rank of the original
array. Thus, pp4 would be 3 in the current example.

3-2 AK95

)

Output of Values

Two workspace parameters directly affect the output of
values. They are the page width and number of digits of
precision. The page width is the maximum number of
character positions per line that the interpreter will fill
when typing output. It is set by default to 80 characters,
but it can be changed by using the)yrpry system command or
the wrpry library function. The number of digits of
precision is the number of significant decimal digits that
are to be displayed when numbers are output. Numbers are
rounded to this precision before printing. This precision
does not affect the accuracy with which internal
calculations are carried out; it affects only the final
printing of answers. The initial precision is 10 decimal
digits, but it can be changed by the)prGI7s system command
or the prgrTs library function.

A character element is output simply as the single
character which it 1is; it is not placed within quotes or
otherwise altered.

A numeric element is output in the simplest
representation possible in the decimal notation. Positive
signs are omitted, negative signs are printed as the upper
minus, ~, Magnitudes are displayed rounded to the current
workspace precision, with trailing zeroes suppressed. If
the magnitude is very large or very small, the interpreter
may choose to output the number in scientific notation,
which consists of the digit string, the letter g (for
"exponent"), and an integer which is the power of ten by
which to multiply the digit string to obtain the true number
being represented. For example, Boltzmann's constant in
joules per degree Kelvin, which is 1.38 times 10 to the =23
power, would be printed by APL as 1.38EF 23.

A vector of character elements is output as a character
string, with no extra blanks or other separators intervening
between the elements. Of course, the elements themselves
may have as values the characters blank, tabulate, newline,
etc. If a character vector is longer than the page width,
as many elements as possible are printed on the first 1line
and then the excess elements overflow to a following line,
indented by six spaces. As many overflow lines as necessary
are inserted to print all the elements of a very long
vector.

In a vector of numeric elements, each element is set
off from the preceding one by two blanks. As with character
vectors, if one line is insufficient in width to accommodate
all the elements, the excess elements are placed on a
succeeding line or lines, each indented by six spaces.

3-3 AK95

Matrices and higher-rank values are printed in
rectangular planes, with decimal points lined up in rows and
columns. Each plane is preceded by a blank line. As many
planes as necessary are printed to output the entire array.
For example, the output of a 5 by 2 by 4 by 3 character
array consists of ten planes, each consisting of a blank
line and four lines of three characters each. If the page
width is insufficient to hold even one line of the output,
then the excess elements from each 1line are moved to
inserted 1lines, indented as |usual. An array with no
elements prints simply as a blank line.

A consequence of this output format is that it is
impossible to distinguish a scalar from a one-element vector
by means of their printed values. It is also impossible to
distinguish the exact rank of higher-dimensional arrays when
they consist of a single element, or have no elements at
all. 1In cases where the shape of a value must be known
precisely, the shape operator , can be used to explicitly
extract its shape.

Some examples of the output of wvalues will be found
following the discussion of value input below.

Input of Values

A scalar character element is input by typing the
desired character between a pair of quote marks. Between
quote marks, if it is desired to represent a quote mark
itself, the quote mark must be typed as two quote marks.
~ Thus, the input of a character element whose value is to be
a single quote mark consists of four quote marks, two to
bound the element value and two to represent the single
quote being entered. Blanks, tabulates, newlines, and any
other 1legal APL character, including the ones constructed
from overstrikes or escape sequences, can be entered between
quote marks. A character produced by overstrikes or escapes
is considered a single element internally.

A scalar numeric element is input by typing the upper
minus sign - if negative, or no sign if positive, and a
string of decimal digits optionally containing a decimal
point. Scientific notation can also be used for input, in
which case the digit string is followed by the letter p and
the desired decimal exponent expressed as an integer. No
blanks are permitted within the representation of a single
numeric element. In the final value input to the workspace,
no record is retained of the way in which a number was
typed; for example, all the following inputs result in the
very same internal value: 1 0001.00 0.01E2 1000E 3.

3-4 AK95

Note that APL distinguishes the minus sign (7) from
the subtraction operator (-), The subtraction operator is
not permitted within a constant.

A vector of numeric elements is input by typing its
members, separated by one or more spaces or tabs.

A vector of character elements can be input in either

of two ways. The individual character elements, each
enclosed by a pair of quote marks, can be typed separated by
one oOr more spaces or tabs. Alternatively, the entire

string of elements can be typed between one pair of quote
marks. Within such a string, any legal APL character can
appear as an element. To represent the quote character as
one of the elements of the string, it must be typed as two
quote characters.

Arrays of rank higher than one cannot be input
directly. Such values must be constructed by entering their
elements as vectors and then wusing the dyadic reshape
operator , to reshape them to the desired dimensions,
filling 1in the supplied elements in row-major order. For
example, the input 2 3p1 2 3 4 5 6 is an expression whose
value is a 2 by 3 array of numbers from one to six.

13.49 Examples of input and output.
13.49

39.2 14 Use of the upper minus sign to
39.2 14 enter a negative element.

39.2 -14 The minus sign is not the same
25.2 as the subtraction operator.

1 0001.00 0.01E2 1000E 3
1 1 1 1

|DON!'T'
DON'T
'D' '01 lIV' trer VT'
DON'T . _
2 3p'WHYNOT' A 2-by-3 matrix built
from a vector constant by use
WHY of the reshape operator. A
NorT blank line precedes each plane
2 201003 32 ~28E 1 416 of array output.
1003 32
2.8 416
0.0000000000000000000000138
1.38E 23

3-5 AK95

NAMES

Names are used within APL for naming variables,
functions, and groups. A name consists of an alphabetic
character followed by any number of alphabetic or numeric
characters. For the purposes of this rule, the alphabetic
characters are considered to be

ABCDETFGHIJXKLMNOPQQRSTUVWIXY?Z
and

and also _ itself. The numeric characters are 0 1 2 3 4 5 6
7 8 and 9. All characters of a name are significant. Names
can be of any length. In APL statements, at least one space
or tabulate must appear between consecutive names or numbers
in order to separate them. Spaces and tabulates are
optional between any other two constituents of statements.

A variable is simply an APL value that has been given a
name, Unlike most programming languages, APL requires no
declarations of names. A variable 1is created by merely
assigning a value to a name (values are assigned with the
assignment operator <) as discussed under "Other Operators
and Symbols", later in this section. Variables are not
restricted to values of specific type or dimensions; any
variable can take on any APL value. When a new value is
assigned to a variable, any previous value possessed by that
variable is discarded. An attempt to assign a value to a
group or function name is an error, as a name can refer to
only one object at a time. A reference to the value of a
variable before it has ever been assigned one is also an
error.

A function is a stored APL program. It consists of any
number of APL lines to be interpreted, plus a header line
which specifies some important properties of the function.
A function is created and altered with the APL function
editor, as described in Section V. When the name of a
function is included in an expression being interpreted, the
stored lines are brought forth and executed, much as if they
had been typed in place of the name.

A group is a list of names of other objects. Grouping
the objects allows them to be copied and erased as a unit,
without repetitively typing their individual names. Groups

have no significance other than in the copy and erase system
commands .

The names of all objects in a workspace can be listed

with the)VARS, JFNS, and)GRPS system commands . Any
variable, function, or group can be deleted from a workspace
with the)ERASE system command . System commands are

3-6 AK95

discussed in Section 1IV.

OPERATORS

Values can be built up into complicated expressions by
operating upon them with operators. APL has a great number
of operators, most of them borrowed from the language of

everyday arithmetic, algebra, and related areas of
mathematics.

Some operators operate on only one operand, (e.g.,
negation, absolute-value, reciprocal), while others operate
upon two (e.g., addition, subtraction). An operator taking
one operand is said to be monadic. In APL, a monadic
operator is always written before (to the 1left of) its
operand, which becomes its right, and only, operand. An
operator taking two arguments is said to be dyadic. A
dyadic operator is always written between its le¥t operand
and its right operand.

Some APL operators are inherently monadic or inherently
dyadic, but others can be used either way with a
corresponding slight change in the definition of the
operator. For example, the subtraction sign represents the
subtraction operation when wused dyadically, as A-B is the
value of A minus the value of B; but it represents the
negation operation when used monadically, as -B is the value
of B negated (algebraically changed in sign).

Scalar Operators

A scalar operator is one defined as acting on a single
scalar element as operand (when used monadically) or on a
single pair of scalar elements (when used dyadically). As
discussed below, it is possible by observing certain
restrictions to provide an array as an operand of a scalar
operator, but, in this case, the scalar operation is still
defined only in terms of its action on the individual
elements of the array, independently of each other. In
other words, a scalar operator applied to an array merely
extends its action to each individual element of the array.
This is in distinction to a mixed operator, which accepts an
entire array at once as its operand, and which performs some
action on the whole array at once, an action in which the
elements of the array cannot be considered independently of
one another.

Examples of scalar operations include addition,
subtraction, absolute-value, logical AND, and logical OR.

3-7 AK95

Examples of mixed operations include matrix transposition,
matrix inversion, reshaping, and sorting.

The sense in which scalar operators extend to operate
upon the elements of arrays will now be clarified. First,
monadic operators present no difficulty: if a monadic
operator is applied to an array, the result of the operation
is an array of identical rank and dimensions, and each
element of the answer is the result of applying the scalar
operation independently to the corresponding element of the
operand. For example, if the value of 4 is a numeric vector
of six elements, then the value of -4 is again a numeric
vector of six elements, each element having had its sign
changed from that of the operand vector.

The case for dyadic scalar operators is slightly more
complicated because now there are two operands to be
considered. If a scalar operator is applied to two operands
of identical rank and dimensions, then the answer is again
an array of the same rank and dimensions, and each element
of the answer is generated by applying the operation to the
two corresponding elements of the operands. For example,
two identical 1length vectors may be added, element by
element; 6 2 3+1 4 7 gives the result 7 6 10.

If a scalar operator is applied to two arrays that fail
to match in rank and dimensions, and one of the arrays
consists of only a single element, then the single element
is considered to be replicated to the rank and dimensions of
the other operand, and the operation proceeds element-
by-element as before. In other words, the single element
participates with each element of the other operand in turn,
producing a result identical in rank and dimensions to the
other operand. For example, if the value of 4 is a 2 by 3
matrix of integers, then the value of g+4 is a 2 by 3 matrix
of integers each six greater, because the single
element g is applied independently to each of the elements
of 4.

If both operands consist of only a single element, then
the rank of the result is arbitrarily taken as the rank of
the right operand. For example, if 4 has the value of a l
by 1 array consisting of the number 103 and p has the value
of a scalar (rank 0) number 88, then p-p has the value
scalar 15, In contrast, the value of p-4 would be the 1 by
1 matrix 715,

The final case which must be considered is that of a
scalar operator applied to two operands which do not match
in rank and dimensions, and in which neither operand
consists of only a single element. In this case, the
operation is in error, and the APL interpreter suspends
operation and issues a diagnostic message. The message

3-8 ' AK95

is RANK ERROR if the two operands do not match in rank, or
else LENGTH ERROR if they match in rank but some
corresponding pair of dimension extents do not match. Error
reporting and possible recovery actions are discussed later
in this section.

ADDITION, SUBTRACTION, MULTIPLICATION, DIVISION + - x %
When used dyadically, the operators + - x and

represent the arithmetic operations of addition,

subtraction, multiplication, and division. Unlike some

programming languages which truncate quotients of integers
to an integer, APL retains the fractional part of a quotient
as accurately as the hardware permits (approximately 19
decimal digits).

A DOMAIN ERROR occurs when an attempt is made to divide
by zero or when the result of an operation exceeds the
capacity of the hardware to represent numbers (the largest
magnitude representable is 1.701411834604692317E38).

6.3+21.4 Examples of dyadic + - x and
27 .7 i,

6 2 ~7-"1 2 "3 The minus operator as distin-
7 0 Ty guished from the negative

3x13.9 "1 0.11F4 sign.

41,7 3 3300
36000040.00003

1.2F10

2E20x3E30 6E50 is beyond the capacity of
DOMAIN ERROR. hardware.

2E20x3F30

|

15+7 Quotients are not truncated to
2.142857143 integers.

1 2x3 4 5 The vectors are not the same
LENGTH ERROR. length.

1 2x3 4 5

I

PLUS, NEGATION + -

The monadic + operator 1leaves its numeric operand
unchanged.

The monadic - operator represents negation; that is,
algebraic change of sign of its operand.

3-9 AK95

_ +712°73
1 2 73
. -12 73
1 "2 3
SIGNUM x

_ The monadic x operator represents the mathematical
signum operation; that is, 1 if its operand is greater than

zero, 0 if its operand is 0, and "1 if its operand is less
than 0.

A number is considered equal to 0 if it is within a
certain tolerance of 0. This tolerance is called fuzz.
Fuzz is discussed in Section 1IV.

RECIPROCAL +

The monadic * operator finds the reciprocal of its
right operand. An attempt to extract the reciprocal of 0
causes a DOMAIN ERROR.

e—1_2 73
1 0.5 0.3333333333

EXPONENTIAL, LOGARITHM *x @

A raised to the B power is expressed in APL as AxB.
The logarithm of B to the base A is expressed as Ae@B. Note
that the base is the left operand in the definition of both
operations. If the base is omitted (monadic usage of the
operators), the natural logarithm base 2.718281828... 1is
used. Thus, *1 is the natural logarithm base itself.

There are no square-root or cube-root operators in APL,
so the exponential operator is wused to perform these
operations. For example, the square root of A can be
expressed as A*0.5 or as A*:32. Since APL does not handle
complex numbers, any attempt to extract an even root of a
negative number results in a DOMAIN ERROR.

10%x1 2 3 &

10 100 1000 10000
2 5 10e10

3-10 AK95

3.321928095 1.430676558 1
@10
2.302585093
*1 2.302585093
2.718281828 10
T8%x+3

2

MODULO I

The vertical bar | used dyadically represents the
modulo operation: A|B is the remainder left when A is
divided an integral number of times into B (note the order
of the operands: the left operand is the divisor and the
right operand is the dividend). More precisely, if A is not
0, then an integer quotient Q 1is <chosen so that the
remainder B-(@x4) is the smallest possible non-negative
remainder (i.e., greater than or equal to 0 but strictly
less than the absolute value of A), and this remainder is
the value of A|B. If A is 0 and B is not negative, then B
itself 1is the wvalue of 4/B. If A is 0 and B is negative,
then A|B causes a DOMAIN ERROR.

10]27

7
3.5/78.3 Because _ _

2.2 0 < 2.2 = 8.3-3x3.5 < 3.5,
112.718281828 3.141592654

0.718281828 0.141592654

ABSOLUTE VALUE |

The vertical bar | used monadically represents the
absolute value of its right operand; that is, the algebraic
sign of the operand is changed to positive if it was
negative.

|72 71 0 1 2
2 1 0 1 2

FACTORIAL AND BINOMIAL COEFFICIENT !

The exclamation point ! , when used monadically,
represents the factorial of its right operand (note that it
is written before its operand, as are all monadic operators
in APL, as opposed to following it as in conventional
mathematical notation). For non-integer operands, ‘4 rep-

3-11 AK95

resents the gamma function of A plus 1. A DOMAIN ERROR
rgsults if A 1is a negative integer (the gamma function is
singular for all negative integers).

The dyadic exclamation point A!B represents the A-th
binomial coefficient of degree B, or the number of
combinations of B things taken A at a time. More
precisely, A!B is B factorial divided by the product of the
factorials of A and (B minus A). If A or B is not integral,
then the gamma function is used to interpolate, as in
monadic factorial.

1. 2 3 4 5
1 2 6 24 120
1.5

1.329340388
01 2 3 4 5 6!6
1 6 15 20 15 6 1
2!13.3
3.795

MAXIMUM AND MINIMUM r L

. The dyadic operators [and L represent the maximum and
minimum operations respectively. They are defined only for
numeric operands; characters have no collating sequence in
APL.

3[1 2 3 4 5
3 3 3 4 5

3L1 2 3 4 5
1 2 3 3 3

“73.11729.88
T29.88

CEILING AND FLOOR r L

The monadic forms of [and L represent the ceiling and

floor operations respectively. Ceiling is defined as the
algebraically smallest integer greater than or equal to its
operand; floor is defined as the algebraically largest

integer less than or equal to its operand.

A number is considered equal to an integer if it is
within a certain tolerance of that integer. This tolerance
is called fuzz. Fuzz is discussed in Section IV.

Lo.6 1 1.4 1.8 2.2
0o 1 1 1 2

12 AK95

w
I

0.6 12 1.4 1.8 2.2
2 3

r

1 1 2
fTo.6 "1 1.4 ~1.8 2.2
2

_ 0
0 1 1 1
V< 2.1 3 3.9 "4.8 16.99

LV

"3 T3 "4 "5 16
1|V

0.9 0 0.1 0.2 0.99
(LV)+(11Vv)

2.1 3 3.9 "4.,8 16.99

RANDOM NUMBER ?

While the dyadic form of the 7 operator is a mixed
operator (the deal operator), monadic 2 is a scalar
operator, the random number generator. The operand of the
random number operator must be a positive integer, say A,
and the result of the operator is an integer chosen randomly
and uniformly from the set of integers 4. As explained
under the , (index generator) operator, the set 4 is a
vector of A integers, either 1,2,3,...,A or else
0,1,2,...,A-1, depending upon whether the workspace index
origin is set to 1 or to 0 respectively. The index origin
can be changed with the)orIGIN system command oOr
the orrgry library function.

The random number algorithm used by Multics APL is a
multiplicative congruential generator with period
34359738368. In this algorithm, the seed used to produce
each random number is a function of the seed used to produce
the previous one. In a clear workspace, the starting seed
is derived from the calendar clock, so that the sequences of
random numbers generated are ordinarily unpredictable from
session to session. If it is desirable to work with a
reproducible sequence of random numbers, the user should
specifically initialize the seed with the)ggpTrrINk system
command or the gsgrrIinvk library function. The seed can be
set to any integral value from 1 to 34359738367. The seed
is properly remembered and restored by
the)save and)ro4p system commands.

710
210
210
?10 10 10 10 10 10 10 10 10 10 10

8 5 4 9 2 9 3 9 3 8 6
JSETLINK 666

3-13 AK95

WAS 17970104840
710 10 10 10 10 10
9 3 6 7 2 4
YSETLINK 666
WAS 10635721024
210 10 10 10 10 10
9 3 6 7 2 4
YJORIGIN 0
WAS 1
YSETLINK 666
WAS 10635721024
210 10 10 10 10 10
8 2 5 6 °1 3

COMPARISON OPERATORS < £ = 72 2 >

The APL comparison operators are < < = # 2 and >. They
represent the mathematical relations of less than, less than
or equal to, equal-to, not-equal-to, greater-than-or-
equal-to, and greater than respectively. The comparison
operators are all dyadic operators, and they all return the
numerical value 1 to signify "true" and the numerical value
0 to signify "false".

Operands of < < 2 and > must be numeric, otherwise
a DOMAIN ERROR occurs. Operands of = and # can be numeric
or character or both. A number is considered not equal to a
character; hence, in a mixed-type comparison, = always
returns 0 and # always returns 1.

Two numbers are considered equal if they are within a
certain tolerance of each other. This tolerance is called
fuzz. Fuzz is discussed in Section IV.

5.3>4 5 6 7
1 1 0 0 '

'NO QUOTES'=z'NOPQRSTUV'
o o 1 o0 1 1 o0 1 1

5=15"
0
4,3 73.9 "3.5< 4
1 0 0
'IS'="ARE'
LENGTH ERROR.
'IS'"="ARE"

3-14 AK95

LOGICAL OPERATORS ~ AV x w

The symbols ~ A Vv # and ¥ represent the logical
operations NOT, AND, OR, NAND, and NOR respectively. The
NOT operator ~ is monadic; the other four are dyadic. Both
the operands and the results of the logical operators are
restricted to the two numeric values 1 and 0, which signify

"true" and "false" respectively. ~4 is 1 if and only if A
is 0. AAB is 1 if and only if both A and B are 1. AVB is
0 if and only if both A and B are 0. A~B is 0 if and only

if both A and B are 1. A¥B is 1 if and only if both A and
B are 0.

By virtue of their actions on operands of 0 and 1, the
Six comparison operators introduced in the preceding section
can also be used as dyadic logical operators,
with = representing EQUIVALENCE, #z EXCLUSIVE
OR, < IMPLICATION, and = is IMPLIED BY. This gives APL the
complete set of all ten nontrivial dyadic logical
operations. A=B is 1 if and only if A and B are both 0 or
both 1. A<B is 1 unless A is 1 and B is 0. A>B 1is 0
unless A is 1 and B is 0. 42B is 1 unless A is 0 and B is
1. And finally, A<B is 0 unless A is 0 and B is 1.

~0 1
1 0

0 01 1A0 1 0 12
0 o0 o 1

0 01 1>0 1 0 1
O 0 1 O©

0 01 1<0 1 0 1
6 1 0 O

0 01 120 1 0 1
0 1 1 0O

0 01 1v0 1 0 1
o 1 1 1

0 01 10 1 0 1
1 0 0 O

0 01 1=01 01
1 0 0 1

06 01 120 1 0 1
1 0 1 1

0 01 1<0 1 0 1
1 1 0 1

0 01 10 1 0 1
1 1 1 0

001.0A0,.,001F3
1

3-15 AK95

CIRCULAR AND HYPERBOLIC OPERATOR o

The circle operator o is used to generate the common
circular and hyperbolic functions of its right operand. The
left operand determines which function is generated.
Angular values are expressed in radians.

“704 1is defined as argtanh 4;
“6o04 1is defined as argcosh 4;
“504 1s defined as argsinh g4;
“yo4 1is defined as (T1+4xA)*0.5;
“304 1is defined as arctan 4;
“204 1is defined as arccos 4;
“104 1is defined as arcsin 4;
0oAd 1is defined as (1-4xA)*0.5;
104 1is defined as sin 4;

204 1is defined as <cos 4;

304 1is defined as tan 4;

404 1is defined as (1+4x4)*0.5;
504 1is defined as sinh 4;

604 1is defined as cosh 4;

704 1is defined as tanh 4;

o4 (monadic) is defined as 4x3.14159265358979...
Any other left operand of o 1is a DOMAIN ERROR.

“100 0.5 1

0 0.5235987756 1.570796327
00.5 1 10

1.570796327 3.141592654 31.41592654
500.5 1 10

0.5210953055 1.175201194 11013.23287

*0.,5 1 10
1.648721271 2.718281828 22026.46579
0+180 Radians per degree.
0.01745329252)
+0%180 Degrees per radian.

57.29577951
10(0 10 20 30 40 50 60 70 80 90x0+180)

0 0.1736481777 0.3420201433 0.5 0.6427876097
0.7660444431 0.8660254038 0.9396926208
0.984807753 1 Table of sines.

(T100 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1)%0%180

0 5.739170477 11.53695903 17.45760312 23.57817848
30 36.86989765 4y,427004 53.13010235 64,15806724
90 Table of arc sines.

30(°301 2 3 4 5)

1 2 3 L 5

3-16 AK95

Mixed Operators

A mixed operator is one that must consider an array
operand as a whole, rather than acting independently on its
constituent elements. Each individual mixed operator has
i@s own rules about the rank and dimensions of operands it
will accept. Like the scalar operators, some mixed
operators can be used either monadically or dyadically, with
some change in meaning of the operation performed.

A few of the operator descriptions in this section make
some use of subscript notation before it is formally
introduced. That 1is, V[I] is used to refer to the I-th
element of the vector V, and M[I;J] is used to refer to
the I,J-th element of the matrix M. The subscripting
capability of APL is actually far more powerful than these
simple uses suggest, and is discussed at length in "Other
Operators and Symbols" in this section.

SHAPE P

Monadic p is an operator whose value is the dimension
vector, or shape as it is frequently called in APL, of its
right operand. The type and actual element values of the
operand are ignored. The result of the shape operator is
always a numeric vector.

The shape of a scalar (which has no dimensions) 1is a
null vector (a vector with a length of 0; i.e., containing
no elements). The shape of a vector is a vector of length 1
(because the operand has one dimension) whose single element
value is the length of the operand. The shape of a matrix
(2 dimensions) is a vector of length 2, whose element values
are the extents of the two dimensions of the operand matrix.
Similarly, the shape of any array is a vector of length
equal to the rank, or number of dimensions, of the array.

Since the result of the shape operator is a vector, the
shape operator can be applied to that result to produce the
shape of the shape. As the length of the shape is the rank
of the original operand, this is a way of obtaining the rank
of any array.

pl 2 3 4 The shape of a vector is its
4 length (number of elements).

p'2+AQB! The shape of a character vec-
5 tor. Five characters.

p'! The shape of a null vector.
0 It has no elements.

p93 The shape of a scalar is a

null vector.

3-17 AK95

pp93 The rank of a scalar is the
0 shape of a null vector: zero.
pp2 3 4 5 6 The rank of a vector is one.

RESHAPE o

The dyadic p is the reshape operator. It is wused to
form a sequence of element values into a specified shape.
The left operand of the reshape operator must be a shape (a
vector of non-negative integers). The element values of the
right operand are used to fill up an array of the shape
specified as the left operand. The shape of the right
operand is ignored.

If the new array requires less elements than the old
array provides, the excess elements are simply not used. If
the new array requires more elements than the old array
provides, then the elements of the old array are repeated
over and over, as many times as are necessary to fill up the
new shape.

The element values are extracted and packed in
row-major order. That is, the first elements treated are
those of the first row of the first plane, followed by the
second row of the first and so on, through the last row of
the last plane.

As a convenience, a single element specified as the
left operand of a reshape 1is accepted as if it were a
one-element vector, regardless of its true shape. If the
new array is to have any elements at all, then the right
operand of the reshape operator must have at least one
element.

5p1 2 3 Three element vector reshaped
1 2 3 1 2 to a five-element vector.
M<2 3p1.1 2.2 3.3 4.4
M A matrix formed by reshaping
a vector.
1.1 2.2 3.3
4.4 1.1 2.2
3 2pM The same elements values used
to make a different shape.
1.1 2,2
3.3 4.4
1.1 2.2
6p10 A scalar reshaped to a vector.
10 10 10 10 10 10
0p3.14 A scalar reshaped to a null

vector.

3-18 AK95

"'oM A matrix reshaped to a scalar.
1.1
3 50'ONE TWO THREE!

ONE
TWO
THREE ‘
3 2 Up'+-X++x=0"

+-X%
*=0+

-X<+%x
=0+~

RAVEL ,

The monadic comma , is the ravel operator. The ravel
operator makes 1its operand into a vector, by retaining all
of its elements but ignoring its shape.

5

p5
)
5
PsS
1
M<«2 3p'ABCD'
M
ABC
DAB
M
ABCDAB
CONCATENATE .

The dyadic comma , is the concatenate operator. Both
its operands must be scalars or vectors, and the result is a
vector in which the elements of the 1left operand are
followed by the elements of the right operand. Since a
single APL value cannot contain both character and numeric
elements, the operands of the concatenate operator must be
both character or both numeric.

3-19 AK95

1 2 3,4
1 2 3 L
'WHY','NOT'
WHYNOT
(8+7),(21+3)
15 7

1.1

. 2 3.3,"!
1.1 2.2 3
1. 2
DOMAIN E

1.

.2 3.3,'4BC"
R

.2 3.3,"ABC!
|

2
3
2
RO
2

e

INDEX GENERATOR 1

The monadic iota 1 is the index generator operator.
Its operand must be a single non-negative integer value.
The result of 14 is a vector of integers of length A, the
first element of which is the workspace index origin (either
0 or 1), and succeeding elements of which are each one
greater than the preceding element.

The workspace index origin can be changed with
the)ORIGIN system command or the ORIGIN library function.

JORIGIN 1
WAS 0
14
1 2 3 4
110
i1 2 3 4 5 6 7 8 9 10
10
11
1
JORIGIN O
WAS 1
14
o 1 2 3
110
o 1 2 3 4 5 6 7 8 9
10
11
0

3-20 AK95

INDEX 1

The dyadic usage of iota as 4B represents the index of
the first occurrence of B in the vector A. The left operand
of index must be a vector. The right operand can be an
array of any shape; its elements are considered
independently of one another, producing an answer of shape
identical to the right operand. As each element is selected
from B, it 1is compared to the successive elements of A,
starting with the first and proceeding until a match is
found. If a match is found, then the answer is the number
of the element that matched.

The numbers returned by index follow the workspace
index origin. If the index origin is 0, then the first
element of A is numbered 0, the next is numbered 1, and so
on. If the index origin is 1, then the first element of A
is numbered 1, the next 2, and so on.

Two numeric elements are considered equal if they are
within a certain tolerance of each other. This tolerance is
called fuzz, and is discussed in Section IV. If more than
one element of A matches the element of B being considered,
the index of the earliest is returned. If no element of A
matches, then an index one greater than the last index of A
is returned; e.g., if A has seven elements, then 7 will be
returned in origin 0 (because the elements of A are numbered
from 0 to 6), but 8 will be returned in origin 1 (because
the elements are then numbered from 1 to 7).

JORIGIN 1
WAS 0
6 7 9 3 419

6 7 9 3 411 2 3 U
6 6 4 5

'"ABCDEF'\'FAT CAT'
6 1 7 7 3 1 7

JORIGIN O

't-x3XYZ' 1" X+2x2!"
b o0 7 2 6
'FEEBLE'\'BED'

3 1 6
M<2 3p'FATCAT'
M
FAT
CAT
'ABCDEF'\ M
5 0 6
2 0 6

3-21 AK95

TAKE AND DROP + ¥

Take + and drop + are both dyadic operators that
accept a vector of integers V as left operand and any array
A as right operand. The length of the vector V must be
equal to the rank of the array A (except that a scalar V is
automatically replicated to the rank of A). The function of
take V44 1is to take or retain, for each dimension I in the
rank of A, the first (if Vv[rl>0) V[I] elements of that
dimension, or the last (if V[I1]<0) |V[I] elements of that
dimension, discarding the other elements. The function of
drop V+4 is to drop or discard the first (if V[I]>0) or
last (if vlIl<o) |VLI] elements of each coordinate I,
retaining the others. For both take and drop, | VL I] must
not be greater than (p4)[I].

A<?3 5p100 A random 3-by-5 array.
A

98 52 9 26 58
34 14 91 L7 15
97 33 66 85 26
2 T344 Take the first 2 rows and
the last 3 columns.

9 26 58
91 L7 15
1+v4 Same as 1 ~1+4, drop the last

row and the last column.
98 52 9 26
34 14 91 L7
74YABRAHAM LINCOLN'
ABRAHAM
7Y '"ABRAHAM LINCOLN'
LINCOLN

GRADE UP AND GRADE DOWN AV

The grade up § and the grade down ¥ operators are
the APL sorting operators. They are both monadic, and
accept any numeric array as operand (characters have no
collating sequence in APL--hence they cannot be sorted).
The result of A or V is a permutation array (or array of
subscripts) identical in shape to A that orders the
elements of A to be monotonically nondecreasing or
nonincreasing along the last dimension of 4. That is,
when the result of the grade operator is used to subscript
its operand, the resultant value is found to be sorted along
the 1last dimension. The sort preserves the original order
of equal elements. Elements are considered equal if they
are within a certain numeric tolerance of each other, known
as the fuzz; see Section IV.

3-22 AK95

If 4 is a vector, then 4[p4] is the elements
of 4 sorted into increasing order. If 4 is a matrix,
then j4 is a permutation matrix each row of which orders
each row of 4 into ascending order, so A[I;(AA)[I;]1] is
the I-th row of 4 sorted.

If an integer-valued expression in brackets follows the
grade operator, as ALIT]A, then the value of that
expression I 1is taken as the coordinate number upon which
to sort instead of the 1last coordinate. The coordinate
numbers as well as the subscripts returned by the grade
operators follow the numbering of the index origin. Thus,
in 1l-origin indexing, if 4 is a matrix, then j[2]4 1is
the same as j[4], while j[1]4 is the permutation matrix
which orders the columns of 4 into increasing order.

V<3 1 4 1 5 9 A vector to sort.

AV Permutation vector, says big-
2 4 1 3 5 6 gest item is second, next is

VLAV] fourth, etc.
1 1 3 4 5 9 V, sorted.

Vv Permutation vector for descen-
6 5 3 1 2 4 ding sort, note equal items.

A '~ An array to sort.

98 52 9 26 58
34 14 91 47 15
97 33 66 85 26

A Sorting along the rows.
3 4 2 5 1
2 5 1 4 3
5 2 3 4 1
y[114 Sorting along the columns.

w
w
w
N
w

2 2 1 1 2
ALF«'"ABCDEFGHIJKLMNOPQRSTUVWXYZ,. '

M<«ALF1\'LETTERS TO BE SORTED.'
ALFLM[AM]] Letters cannot be sorted, but

BDEEEELOORRSSTTTT. they can be made into numbers.

REVERSE ¢ o

The reverse operator ¢ is a monadic operator that
reverses the elements of the last dimension of its operand
array. Like the grade operators, the reverse operator also
accepts the number of a dimension wupon which to act in
brackets; ¢[I]JA reverses the elements of A along the I-th
dimension; where I can be specified by an integer valued

3-23 AK95

expression. The dimension numbers follow the setting of the

workspace index origin. The operator e is a shorthand
for ¢[1] in l-origin or ¢[0] in 0-origin; that
is, e reverses along the first coordinate instead of the
ast.

JURIGIN 1
WAS O
|4
3 1 & 1 5 9
oV
9 5 1 4 1 3 V, reversed.
AV
2 4 1 3 5 6
A% Not the same as AV because of
4 2 1 3 5 6 the two equal elements.
$L31(2 3 4pr2u) Same as ¢(2 3 u4pi124). Rever-
sal along the last coordinate
4 3 2 1 of a three-dimensional array.
8 7 6 5
12 11 10 9
16 15 14 13
20 19 18 17
24 23 22 21
dL21(2 3 Hpi12u) Reversal along the second di-
mension.

g 10 11 12
6 7 8
1 2 3 4

(8]

21 22 23 24
17 18 19 20
13 14 15 16
eL11(2 3 u4p124) And along the first. Same as
e(2 3 Lp124).
13 14 15 16
17 18 19 20
21 22 23 24

(6]
(e2]
~
(o]

ROTATE $ e

The dyadic forms of ¢ and e represent the rotate
operators: ¢ rotates the elements of its right operand
along the 1last dimension, ¢[I] rotates along the I-th
dimension (the coordinate numbering following the index
origin), and e rotates along the first dimension.

The left operand of ¢ and e specifies the amount of
rotation as follows: in the expression 4¢[I]B, A must be

3-24 AK95

an array of integers one less in rank than the array B, each
integer specifying the number of positions to the left that
each corresponding vector of B along the I-th dimension is
to be rotated. Elements rotated off the 1left end of a
vector re-enter it on the right end. Zero is a valid
rotation (which results in no change), as are negative
numbers (which result in rotation to the right), as well as
very large numbers (which may have the effect of rotating
the vector through its starting position several times--the
interpreter is clever enough to avoid performing the
superfluous complete cycles). If a scalar is given for A,
then it is replicated to the required shape; i.e., all
vectors of B along the I-th coordinate are rotated by the
same scalar amount.

263 1 4 15 9
4 1 5 9 3 1
A

98 52 9 26 58

34 14 91 47 15

97 33 66 85 26
T1 0 52304

58 98 52 9 26

34 14 91 47 15

85 26 97 33 66
0 1 2 3 4ed

98 14 66 26 15
34 33 9 47 26
97 52 91 85 58

TRANSPOSE \

The monadic & 1is the ordinary transpose operator. It
interchanges the coordinate numbering of the last two
coordinates of its array operand: the last coordinate
becomes the next-to-last, and the next-to-last becomes the
last. Obviously, monadic transpose requires an operand of
rank at least 2.

A

98 52 9 26 58

34 14 91 47 15

97 33 66 85 26
R4

98 34 97
52 14 33

3-25 AK95

9 91 66

26 47 85

58 15 26
®(2 3 4pr124)

1 5 9
2 6 10
3 7 11
4 8 12
13 17 21
i4 18 22
15 19 23

16 20 24

In the dyadic transpose operation A&B, A must be a
vector of integers of length equal to the rank of B, so
that A[I] corresponds to the I-th dimension of B. Then,
dimension I of B becomes dimension A[I] of the result.
The numbering of dimensions in A follows the workspace index
origin.

It is not necessary that all the integers in A be
different. If two or more integers of A are equal, then
that dimension of the result is composed of elements taken
from the diagonal crossing the dimensions of B that map into
it (if the several dimensions of B are not identical in
extent, then the resultant dimension stops as soon as the
shortest is exhausted). For example, 1 1&B is the
ordinary major diagonal of the matrix B. It is required,
however, that all dimensions that will finally appear in the
result value be specified somewhere in the vector A. That
is, the vector A must consist of the numbers from the index
origin (which is the number of the first dimension) through
the highest element of A, with some possibly repeated but
none missing. Or, stated in APL, the elements of the vector
A must be chosen from the set 1[/4 and every member of

1[/A must be present at least once in A.

3 1 2Q(2 3 u4p124)

13
14
15
16

FwWwN PR

17
18
19
20

0 g o0,

O

21
10 22

3-26 AK95

11 23
12 24
3 2 18(2 3 upr2u)

1 13
5 17
9 21
2 14
6 18
10 22
3 15
7 19
11 23
4 16
8 20
12 24

1 1 28(2 3 u4p124)

1 2 3 4
17 18 19 20
1 2 18(2 3 4p124)

1 5 9
14 18 22
1 2 28(2 3 4pr24)
1 6 11
13 18 23
1 1 18(2 3 4p124)
1 18
2 1 28(2 3 u4pi24)
1 14
5 18
9 22

COMPRESSION /7

Compression is a dyadic operator. In the
expression A4/B, A must be a vector of ones and zeros, of
length equal to the last dimension of the array B. The
resultant value is obtained by selecting or retaining those
elements along the last dimension of B that correspond to a
1 in the vector A, and omitting or dropping those elements
that correspond to a 0. Thus, the result is of the same
rank as B, and of the same dimensions except for the last,
along which it has been compressed.

3-27 AK95

In the expression ,,[7]p, . where I

is an-

integer-valued expression, the dimension along which the
compression is to act is I (the numbering follows the. . index

origin). The expression = gup is a shorthand for:

compression along the first dimension.

011010 0/3 1 4159
3 1 1.

001 001000110 0/'JKLMNOPQRSTUV!
Losr .-

| 98 52 9 26 58

34 14 91 47 15

97 33 66 85 26
1011 0/4

98 9 26

| 84 91 w7

! 97 66 85

; 0 1 044

34 14 91 47 15
|

|

EXPANSION \

Like compression, expansion is a dyadic operator
requiring a vector of ones and =zeros as left operand.
However, in the case of expansion it is the number of ones
in the 1left operand vector that must equal the last
dimension of the right operand array. The resultant value
of 4\p 1s obtained by including each of the elements along
the last dimension of B in the answer in positions

corresponding to a 1 in the vector A, and filling

in the

answer positions corresponding to a 0 in A with either 0 (if

B is numeric) or else blank (if B is character). Thus, the -

result is of the same rank as B, and also of the same
dimensions, except for the last, along which it has been

expanded.

In the expression A\[I]1B the integer-valued
expression I gives the number of the dimension to be
expanded instead of the 1last (the numbering of the

dimensions follows the workspace index origin). The
expression g\B indicates expansion along the first
dimension.

110101 10\3 1415
3 1. 0 4 0 1 5 O

1101101011101 1 1 A\'"ITISABIGONE.'
IT IS A BIG ONE.

AK95

~/

98 52 9 26 58
34 14 91 47 15
97 33 66 85 26

1 0 01 1 0%4

98 52 9 26 58
0 0 0 0 0
0 0 0 0 0

34 14 91 47 15

97 33 66 85 26
0 0 0 0 0

MEMBERSHIP €

In the expression AeB the result is an array of ones
and zeros identical in shape to the array A, with ones
corresponding to those elements of A that are found to occur
somewhere (anywhere) within array B, and zeros for those
elements of A that are not found in B. The shape of B is
irrelevant; the array B merely represents a collection of
objects, and the € operator determines which elements of a
given array A are members of the collection and which are
not.

D«0 1 2 3 4 5 6 7 8 9 The digits from 0 to 9.
De3 1 4 15 9 What digits are used in this
o 12 0 1 1 1 0 0 0 1 number? 1, 3, 4, 5, and 9.
(De3 1 4 1 5 9)/D Compression operator can list
1 3 4 5 9 them by name.
De2 7 1 8 2 8 What digits are used in this
0 1 1 0 0 0 0 1 1 0 number?
(De3 1 4 1 5 9)A(De2 7 1 8 2 8)
o 1 0 0 0 0 0 0 O O Digits in common (intersec-
(De3 1 4 1 5 9)v(De2 7 1 8 2 8) tion of sets).
o 14 1 1 1 1 0 1 1 1 Digits in either (union).
1

"ABCDEF'e'THE FAT CAT
i1 0 1 o0 1 1

'"THE FAT CAT'e'ABCDEF'
o o 1 0o 1 1 0 0 1 1 O

ENCODE T

The encode operator ATB encodes a numeric scalar B
into its positional representation in any number system, the
‘radix being specified by the numeric vector A, each element
of the vector A representing the radix applicable to the

corresponding position. The result is a vector equal in

3-29 AKSS

length‘to the vector A, each element of which is the digit
occupying the corresponding position of the representation

of the value of B when expressed in the desired number
system.

1071983 Decimal representation of
3 1983, to one digit.

10 10 10 10 10 10T1983 To enough digits.
6 o 1 9 8 3

0 s i 8 8Th1 Octal representation of 41l.
24 60 60711642 A mixed radix representation:
3 14 2 hours, minutes, and seconds.

EVALUATE 1

The evaluate operator ALB is the inverse of the
encode operator. It accepts a numeric vector A defining the
radices of the positions in a number system and a vector B
of positions representing a number in that system. The
result is a scalar, the value of the number. The vectors A
and B must be the same length (except that a scalar on the
left 1is replicated to match the length of the right
operand) .

10 10 10 1011 9 8 3 The number whose decimal
1983 representation is 1983.
1011 9 8 3
1983
810 5 1 The number whose octal repre-
41 sentation is 51.
24 60 6013 14 2 Hours, minutes, and seconds
11642 converted to seconds.
2011 01 1 0 Binary 10110.
22
DEAL ?

Though the monadic form of ? is a scalar operator,
the dyadic form A?B is a mixed operator, the deal
operator. A and B must be numeric integer scalars
with 0<A<B, and the result of 47B is a vector of A
elements selected randomly and without replacement from the
set 1B. Thus, the effect is that of shuffling a deck of B
cards, and then dealing A of them. The set 1B consists of
either the integers from 0 to B-1, or from 1 to B, depending
on whether the workspace index origin is set to 0 or to 1
respectively. Details of the random number generation
algorithm used by the deal operator can be found under

3-30 AK95

"Random Number" earlier in this section which uses the same
generator.

3712 Three things dealt out of 12,
4 7 1

678 Six things dealt from eight.
8 4 7 3 1 2

10210 A random permutation of the
9 8 2 3 6 1 5 7 10 4 numbers from 1 to 10.

10710 ’ : The selection is without re-
3 9 6 4 5 7 2 8 1 10 placement.

?10p10 A Here, in contrast, it is with
8 6 7 1 3 2 9 1 10 4 replacement.

MATRIX INVERSE 5]

Monadic B is the matrix inverse operator. In the
expression (A4 the right operand A must be a numeric array
whose shape is such that the product of all dimensions of A
except the last (i.e., x/ 1+p4) 1is greater than or equal
to the 1last dimension (T14p4). The result is a matrix
of "14p4 rows and x/ 1vpA columns whose elements are
chosen to least-squares best-fit the matrix product
of A and B4 to the identity matrix of order x/ 1+pA. That
is, if X is the result of {4, then the elements of X are
are chosen to minimize +/,((A+.xX)-I)*2 where I is the
identity matrix.

If A is a square matrix, then B4 is the ordinary
matrix inverse of A. If A is over-square (more rows than
columns), then A is not exactly invertible, and B4 is the
least-squares best inverse. If A 1is under-square,
then B4 results in a DOMAIN ERROR.

A<?3 3p100 Get a matrix to invert.
A
76 86 11
L6 2 80
18 gy 73
X<EA Invert it.
X
0.01087283472 0.007732186776 “0.0101120017

0.002828057635 0.007888481932 0.008218766035
T0.006322581406 0.008251204652 0.005608931826

A+ . xX Test the result, which should
be the identity matrix.
1 T8.673617380E 19 ~8.673617380F_19
"8.673617380E 19 1 T2.168404345F 19

“6.234162492E°19 ~5.,149960319E 19 1

3-31 AK95

MATRIX DIVIDE &

Dyadic B is the matrix divide operator. The
result X of ABB is chosen to least-squares best-fit the
matrix product of B -and X to A. More precisely, the

elements of X are chosen to minimize +/,((B+.xX)-4)*2.

The shape requirements of the matrix divide operator
are as follows. The shape of B must be of the
form H,U where U is a single dimension and H is a (possibly
null) vector of preceding dimensions, and the product of the
elements of H, or */H, must be at least U. The shape of A
must be of the form H,T where H is identical to the H in
the shape of B, and T is a (possibly null) vector of
succeeding dimensions. The result X has the shape U,T and
it is x/T sets of least-squares best solutions in U
unknowns to the x/T sets of */H 1linear equations in U
unknowns.

A A matrix to use as a divisor.

76 86 11
46 2 80
18 94 73

_ 6 3 94 Divide a vector by it.
0.002574446627 0.06727179433 ‘0.03729851195
A+.x(6 3 9BA) " Test the answer, which should
6 3 9 produce 6 3 9 in this matrix
multiplication.

I-BEAM I

The I-beam operator T is a monadic operator that
accepts as operand a numeric integer scalar chosen from a
small set of values. The result is the value of some system
parameter, which one being chosen by the operand. The
results versus the value of the operand are as follows:

I19 The real time in sixtieths of a second since this
instance of APL was invoked (uses "clock_").

120 The time of day, in sixtieths of a second since
midnight (uses "clock " and "sys_info$time_delta").

121 The CPU time used so far since this instance of APL
was invoked, in sixtieths of a second (uses
"hcs $get usage values").

I22 The size of workspace remaining available to be used,

3-32 - AK95

in units of 9-bit characters (i.e., four times the
number of words). This number will reflect the fact

- that a Multics APL workspace can be many segments in
size. However, since any single APL value must fit
wholly within one segment, it is possible for some APL
expressions to cause WORKSPACE FULL errors even when
I-beam 22 is returning large values. For example, it
is impossible to create a 300,000 character item, even
in a clear workspace with millions of characters of
space available.

I23 Multics "nusers".

24 The time of day, in sixtieths of a second since
midnight, that this instance of APL was invoked.

125 The date, as a 6-digit integer, MMDDYY. »

I26 The first element of I-beam 27 (or 0 if I-beam 27 is
null).

127 The vector of statement numbers in the state
indicator, most recent first. An element of 0 is
returned corresponding to evaluated input (0) entries
in the state.

All results returned by I-beam are scalar integers
except for I-beam 27, which is a vector of integers.

24 60 60 60TI20 The current time of day, in
9 14 27 53 hours, minutes, seconds, and
I25 sixtieths. i
102772 The date, 27 October 1972.
I23
40 Forty Multics users.

Other Operators and Symbols

In addition to scalar operators and mixed operators,
which fall neatly into their respective classes, there are a
number of other miscellaneous operators that defy
classification. Also, there are a number of symbols that
can appear in APL statements that are not operators but that
still require explanation.

ASSIGNMENT «

The 1left arrow <« is the assignment operator in APL.
A variable name must appear immediately to the left of the
assignment operator; any expression can be the right
operand. The purpose of the assignment operator is to set
the value of the variable to that of the expression. If a
variable of the given name does not already exist in the
workspace, then one 1is created (if the name is already in

3-33 AK95

use for naming a function or a group, then it is an error to
make an assignment to the name--a name can refer to only one
object at a time). If the variable already exists, -then its
previous value is discarded.

Note that any variable can take on any APL value,
regardless of its type or shape. There are no declarations
of variables in APL.

In addition to being assigned to the variable name
mentioned as left operand, the value of the expression on
the right is also considered the result of the assignment
operator in the APL statement in which it is found. This
value may then be further operated upon. Thus, assignments,
like other operators, can be used freely within statements.

In an APL statement consisting of a single expression,
when the very last operation executed in that expression is
the assignment qQperation, then the APL processor does not
print the final value of the expression. On the other hand,
if the last operation is not an assignment, then the value
of the expression is printed. This automatic printing of
values not assigned to any variable is the most common
method of performing output in APL (the other two methods
are to use the input/output symbol [J, which is discussed
below, or to write a list for the APL statement, which is
discussed later in this section.

Q<13 Assign a value to Q.
Q Now print it.
1 2 3
Q<2 Sp'NEW VALUE! Change its value. 0ld value
Q is discarded, only new value
remains.
NEW
VALUE
S<6XP+pQ<21Q Multiple assignments.
Q Print the new values.
NE
VA
P
2 2
S
12 12 _ -
YVERASE P @ S Variables can be erased.
Q Now there is no Q.
VALUE ERROR.
Q

In addition to assigning a complete new value to a
variable, it is also possible to assign values to specific

3-34 AK95

elements of an array value, leaving the remaining elements
undisturbed. This is done by writing a subscripted variable
name to the 1left of the assignment operator, and is
discussed below in "Subscripts".

OUTPUT O

The quad symbol [0 is the output symbol in APL. It is
not an operator; instead it behaves much 1like a variable.
If a value is assigned to the output symbol (with the
assignment operator <« discussed previously), then that
value is printed. In addition, the value is also available
for_further operations within the statement, just as in any
assignment operation.

0«@<«6 3 29 0 can be used to force print-

6 3 29 ing of expressions ending in
QLO«AQ] assignments, or to print

2 1 3 intermediate results.
1+0«1+0«1+0«1

1 These three lines printed by

2 the 0O symbol.

3 .

4 This line is final value.

EVALUATED INPUT U

The same symbol [0 is also the evaluated input symbol.
We have already seen how it behaves as the output symbol
when a value is assigned to it. 1In contrast, if a is
encountered that is not to the left of an assignment arrow,
then that [is being used for input. The interpreter
temporarily sets aside evaluation of the statement
containing the [, types the go-ahead string U:» and then
awaits the input of an APL expression from the user.
Whatever expression is typed (it can be any APL expression)
is evaluated and the result taken as the value of
the [symbol in the original statement. Interpretation of
that statement then resumes.

Input typed in response to the Osymbol is called
"evaluated input", because it can consist of a fully general
APL expression to be evaluated.

If the expression typed in response to the U symbol
has no value or results in an error report, then the
interpreter again requests input by typing as usual.
Execution of the statement containing the 0 does not
proceed until valid input is received.

3-35 AK95

If a system command or function editor invocation is
typed when the interpreter is expecting evaluated input, the
command or edit is performed; when the function is finished,
the interpreter again requests the evaluated input.

If the user wishes to abandon execution of a statement
or program requesting input instead of supplying it, a
right arrow alone is typed. As discussed later, this has
the effect of returning the interpreter back to its state at

the last time it was accepting regular immediate input from
the terminal.

3x(0+2) A line requiring evaluated in-
O: put. Interpreter calls for
13 it. Any expression is OK.
g 12 15 Result of original line.
'DID YOU SAY ',0,'?!
0:
'"HELLO'
DID YOU SAY HELLO?
» o0
0:
2 4pl0 Any expression is legal, even
0: ones with further [symbols.
'WHY NOT?!
YHW?TON
100
0O:

THIS IS JUNK.
VALUE ERROR.
THIS IS JUNK.
|
O: Input requested again.
6 3 29 8
1 2 3 4 This time it is good.

CHARACTER INPUT 0

Another form of input, known as "character input", can
be invoked by using [as the input symbol rather than 0.
When the character input symbol is encountered, the
interpreter reads one line from the wuser's terminal and
takes the characters typed as the value of the [M symbol. No
go-ahead signal is typed for this form of input; the APL
program employing the character input symbol has already
notified the user that input is expected. Also, the line
input is not evaluated in any way--its characters are simply
made available verbatim as the character value of
the [symbol.

3-36 AK95

The newline character that terminates the input line is
not included in the value. Also, a line consisting of
exactly one character is considered a scalar; any other line
length results in a vector. A newline alone is legal and it
results in a null vector.

No errors are possible in character input, since no
evaluation is performed. Entry of system commands oOr
function editor calls or the right arrow during character
input is not possible; these characters, as any others, are
simply made available as the value of the [symbol. To
escape from character input and to restore the interpreter
to the point of the last console suspension, issue a Multics
QUIT followed by a "program interrupt". This has the same
effect on the interpreter state as typing a right arrow
alone to evaluated input or following a function suspension.
See "Clearing the State Indicator" in this section.

'DID YOU SAY ',0,'?!
HELLO
DID YOU SAY HELLO?
"ABCDEFGHIJKLMNOPQRSTUVWXYZ,. '"1[]
SECRET MESSAGE.
19 5 3 18 5 20 29 13 S5 19 19 1 7 5 28

M Call for input.
"JORIGIN O Type the input.
JORIGIN O Value of resultant expression.
]
0: In evaluated input, the system
JORIGIN O command is acted upon.
WAS 1
0: And then the input is again
'YORIGIN 0O requested.
JORIGIN O
]
3+2
3+2 No evaluation.
U
3+2
5 3+2 evaluated.
JUMP ->

The jump operator - is normally valid only in APL
statements stored in a function definition, not in lines
typed from the terminal for immediate execution. It is a
monadic operator expecting an integer operand, the number of
the statement to which to jump (in the absence of a Jjump
operator, statements in a function definition are executed
sequentially).

3-37 AK95

A precise description of jump usage is found under
"Branching" in this section.

The jump operator is validly typed from a terminal when
restarting or abandoning a function execution that was
suspended due to an error. (See "Restarting Suspended
Functions" and "Clearing the State Indicator" in this
section) or when abandoning evaluated input (see the
discussion of "Evaluated Input" above).

+>3 Jump to statement 3.

>T Jump to statement I. The
value of I must be an integer
statement number.

+(N>12)/9 Jump to statement 9 if N is
greater than 12.
> Unwind the state indicator

stack back to the previous
console suspension.

PARENTHESES ()

As in ordinary mathematics and conventional programming
languages, parentheses are not operators but symbols of
grouping. Within any expression, if a subexpression is
placed within parentheses, then that subexpression is
evaluated by itself and the result of the evaluation
participates as a unit in the evaluation of the remainder of
the expression. Parenthesized subexpressions can be nested
to any level, and redundant parentheses are not harmful.

In the absence of any parentheses, there is a rule that
establishes what grouping APL assumes about the constituents
of an expression. The rule is carefully explained under
"The Right-to-Left Rule", in this section.

(3+7)x2 Parentheses needed because
20 3+(7x2) is not intended.
(01)%22 Sgrt(pi). Without parens,
1.772453851 gives pi times sqgrt(l), or pi.
$(+1)+($2)+(+3)+(24) Parallel resistance. With no
0.48 parens, gives incorrect uy3:30,
(5+3)p2 Gives 7 7 7 when the parens
2 2 92 2 92 9 92 9 are deleted.
(C(((4+8))))) Extra parentheses are not
12 harmful.

3-38 AK95

LISTS
A list 1is a series of expressions separated by
semicolons. Thus, the semicolon is not an operator, but
serves to separate expressions. There are two uses for
lists in APL.

First, an APL statement can be a list of expressions
instead of only one expression. The meaning of a list as a
statement is fully discussed later, under "Statements", in
this section, but briefly, the effect is simply to print the
values of each of the expressions, one after the other, with
no intervening spaces.

YORIGIN 1

WAS
1;231334 A list of expressions. Values
121 2 34 : are printed side-by-side.
'LOG PI = ';e01 Lists can be used to label or
LOG PI = 1.144729886 identify results.
'THE MATRIX IS';2 3p163', YOU SEE.'
THE MATRIX IS The newlines and spaces
1 2 3 inherent in the values
4 5 6, YOU SEE. themselves are unchanged.

The second use for lists in APL is as array subscripts.
Subscripts are described next.

SUBSCRIPTS L s]

Any nonscalar APL value, a constant, a variable, or a
parenthesized subexpression, can be followed by a subscript
list, which is a list of expressions separated by semicolons
and placed within brackets. The number of expressions in
the 1list must be equal to the rank of the value being
subscripted, and the result of the subscripting operation is
a new array formed from the elements of the original value
that are selected by the subscript list.

The shape of the result of a subscripting operation is
determined by the shapes of the subscripts, not by the shape
of the value being subscripted. However, the shape of the
value being subscripted does determine how many expressions
must be in the subscript 1list and the ranges of their
allowed values.

If A is an array value of rank R, and it is subscripted
by a list of expressions El, E2, ..., ER, then the result
of A[E1:E2;...:;ER] is an array of
shape (pE1),(pE2),...,(pER) consisting of the elements
chosen from A whose first subscripts are equal to elements
of E1l, whose second subscripts are equal to elements of E2,
and so on.

3-39 AK95

Thus, if all subscripting expressions El, ...,ER are
scalars, then the result of the subscript operation is also
a scglar, namely the single element of the array A having
precisely those subscripts. If some subscript expression is
a vector or higher-ranked array, then the result is a
similarly shaped array, built up from the various elements
selectgd out of A by the various elements of the
subscr;pting array. Finally, if many or all of the
subscript expressions are arrays, the result has rank equal
to the sum of their ranks, each subscript expression
contributing its dimensions to the rank of the result.

_ The elemental subscript values themselves are
interpreted according to the current workspace index origin.
For example, in 0-origin indexing, the subscripts for a 5 by
7_matrix are allowed to take on the values 0 to 4 for the
first dimension and 0 to 6 for the second. In l-origin
indexing, the corresponding allowed ranges are 1 to 5 and 1
to 7, respectively. Any subscript value that is not
numeric, not integral, or outside the dimensions of the
subscripted array value causes an INDEX ERROR to occur,
with the error marker placed under the left bracket opening
the subscript list.

A vacuous expression in any subscript position (nothing
but the semicolon alone) is interpreted as selecting all
possible values for that subscript as if 1N had been
supplied where N is the corresponding dimension extent.
For example, if M is a matrix, then M[1;] is the first row
of M, while M[N] is the same as M.

A An array to experiment with.
98 52 9 26 58

34 14 91 47 15
97 33 66 85 26

AL3 ;4] A sub (3,4), the fourth ele-
85 ment of the third row.
A[3;4 2 5 5] Select several elements from
85 33 26 26 the third row.
AL 33 5] Columns 3 and 5.
9 58
91 15
66 26

A[C1 3;2 3p2 3 1 5 1 3] A three-dimensional array
obtained by subscripting a
52 9 98 two-dimensional one.
58 98 9
33 66 97
26 97 66
YABCDEF '[1 7 2 1 4 7 6 1 4]
A BAD FAD

3-40 AK95

JORIGIN 0 The meaning of subscripts

WAS 1 changes with the index origin.
'ABCDEF '"[5 0 3 4 3 6 2 0 1]
FADED CAB
A[l2 1;3 4 0]
85 26 97
47 15 34
JORIGIN 1
WAS 0

A subscripted variable can be placed to the left of the
assignment operator. When this is done, the variable must
already possess a value of shape acceptable to the
subscripting operation, and the new value, which is the
right operand of the assignment operator, must have a shape
precisely equivalent to that of the result of the subscript
selection. Then the elements of the variable's value
selected by the subscripts are assigned the new values from
the corresponding elements of the assigning expression.
Elements of the variable's value not selected by the
subscripting operation remain unchanged.

Two important restrictions apply to assignment to a
subscripted variable. First, neither the rank nor the
dimensions of the value of a variable can be extended in
this way; only elements that already exist can have their
values changed. Second, the assignments of the various
elements within a single assignment operation take place in
an unspecified order; hence, if some particular element is
selected several times and assigned different values, which
of the values it will wultimately be found with is
unspecified.

It is an error to assign character values to elements
of a numeric array, or numeric values to elements of a
character array. Characters and numbers cannot be mixed in
any APL array.

A Our favorite array.
98 52 9 26 58

34 14 91 47 15
97 33 66 85 26

AL23]«15 Replace the second row.
A[3;5]<« 10 And the very last element.
A See what we have now.

98 52 9 26 58

1 2 3 L 5

97 33 66 85 10
AL2 3;0151«Al1 23] Copy the first and second rows
A of A reversed into the second

3-41 AK95

and third rows.

98 52 3 26 58 Only the first row remains un-
58 26 9 52 98 changed.
5 L 3 2 1

A[1;3 3 3]«6 7 8 Here it is unspecified whether

the final wvalue of 4[1;3] is
6, 7, or 8.

REDUCTION OPERATOR o/ of

The reduction operator is a composite operator
consisting of a slash / preceded by any standard APL
scalar operator for which a dyadic meaning is defined. For

example, plus-reduction is +/ and maximum reduction is [/.
The scalar operators are all enumerated under "Scalar
Operators", in this section. When it is necessary to
discuss the reduction operator in general, it will be shown
as ©/ with the understanding that the o symbol, which
has no APL meaning, stands for some particular scalar
operator in every actual instance.

Operator reduction behaves as a monadic operator
accepting an array of any rank as operand. When applied to
a vector operand, the result o/V is defined to be the same
as placing the scalar operator o between each of the
elements of V. For example, if V is a four-element vector,
then +/V 1is the same as V[11+V[2]1+V[31+V[u4] (where the
subscripts have been expressed in l-origin indexing). Thus,
the plus-reduction of V 1is seen to be the sum of the
elements of V.

When the operand of the reduction operator is a null
vector, the answer is the identity element for the scalar
operator involved, if it has one; otherwise, it is a domain
error. The identity elements for the various scalar
operators that can be used in operator reduction are shown
in Table 3-1.

3-42 AK95

Table 3-1. Scalar Operator Identity Elements

operator © ©0/10 operator © ©/10
addition + O modulo | O
subtraction t+ 1 binomial coefficient ! 1
multiplication * 1 and A 1
division * 1 or vV 0
exponential * 1 less < O
logarithm ® domain error less-equal = 1
circular © _domain error equal = 1
maximum [1.701411835FE38 not equal # O
minimum L 1.701411835E38 greater-equal 2= 1
nand 7~ domain error greater > O

L4

nor domain error

When the operand of the reduction operator is a scalar,
it is treated as a one-element vector. The result of
reducing a one-element vector is always simply the single
element itself--even if this is an element of type or value
not normally returned by the scalar operator involved in the
reduction.

When the operand of the reduction operator is not a
vector but a higher rank array, then the reduction is along
the vectors that form the last dimension of the array. The
result is an array of rank one less than the original, with
shape equivalent to the shape of the original except for the
disappearance of the reduced-over last dimension.

Operator reduction can also be performed along other
dimensions of an array than the last. The
expression ©74 signifies reduction by the © operator along
the first dimension of the array A. The expression ©/[I]4
signifies reduction along the I-th dimension of the array A,
where I is an integer-valued expression. The dimension
numbering follows the setting of the workspace index origin;
i.e., the first dimension is numbered 0 in 0-origin and 1 in
l-origin. In any case, the result of reduction is an array
of one lower rank with the corresponding dimension absent
from the shape of the result.

3-43 AK95

Tbe order in which the repeated scalar operations of a
redugtlon are performed is sometimes of consequence--it is
not in the case of plus-reduction--but is in the case of
minus-reduction. For example, if V 1is a four-element
vgctor, -/V gives V{1]1-(VL[21-(VvL31-vLul)) which is
different in value from ((vL11-v[21)-vL[3]1)-v[4]. The rule
is that the operations are performed in right-to-left order;
i.e., the first operation performed is the rightmost one,
and the result of that operation becomes the right operand
of the next operation to the left, and so on. As will be
seen in "Scope of Operators" in this section, this is the
same interpretation given to the
expression V[1]1-V[2]-v[3]1-V[&] if it were to Dbe typed
directly.

_ x/6 3 "2 4 Times reduction. The product
144 _ of the vector elements.
_ L/6 3 24 Minimum reduction. Finds the
2 smallest element of a vector.
x/16 x/1N is the same as ! for in-
720 teger N in l-origin.
=/'A" Reduction of a single element
A always yields that element.
L/ Reduction of a null vector
1.701411835E38 yields operator's identity.
+/("E'='THEN AS EVER') Count the 'E's.
3 There were three of them.
0«A<?3 u4p100 Get an array to fool around
with.

56 23 31 83
97 15 54 55
70 80 88 49

+/4 Add up the rows.
193 221 287
xftA Multiply out the columns.

380240 27600 147312 223685

INNER PRODUCT 0.9

The inner product operator is a composite operator
built up out of any standard dyadic scalar operator,
followed by a period, followed by another dyadic scalar
operator. When the general inner product operator is being
discussed, it will be shown as ©.e with the understanding
that the © and e symbols, which have no APL meaning, are
replaced by particular scalar operators in every actual
instance. For example, ordinary matrix multiplication is
performed in APL by the +.x inner product.

Inner product behaves as a dyadic operator. In the
inner product 4@.eB, the last dimension of the array A

3-44 AK95

must be identical in length to the first dimension of array
B. If A and B are both vectors, then the result of 40.eB is
a scalar whose value is ©/(4eB). That is, the elements of
A and B are pair-wise combined with the e dyadic scalar
operator, and the resulting vector of answers is reduced
with the e operator to form a single-element result. The
name "inner product" is suggested by the fact that A4+.xB is
the inner product of the vectors A and B in ordinary vector
algebra; that is, the components are pair-wise multiplied
and the products added to give the scalar result.

More generally, if A and B are of higher rank, then
each vector forming the last dimension of A (there will be
many of them, as determined by the preceding dimensions of
A) is paired with each vector forming the first dimension of
B (again, there will be many of them, as determined by the
remaining dimensions of B) to form a single element of the
answer just as in the vector-vector case. (The elements of
the two vectors are pair-wise combined with the @ operator,
and then reduced with the o operator.) The elements thus
formed from all the reductions acquire a shape whose earlier
dimensions are those of the array A except its last, and
whose later dimensions are those of the array B except its
first. The last dimension of A and the first dimension of B
are lost in the reduction process. More formally then, in

Ao.®B, 14pA must be identical to 1+4pB, and the result
Ao .®B has shape (1+¥p4),(1+pB).

O«A4<?3 4p1lo0 A 3 by 4 matrix to ex-
periment with.
3 9 10 10
3 8 6 1
7 8 8 2
A+.x1 2 3 4 Postmultiply by a four-vector
91 41 55 giving a three-vector.
6 0 3+.x4 Premultiply by a three-vector
39 78 84 66 giving a four-vector.
A+.x(R4) Matrix multiplication by its

own transpose.
290 151 193
151 110 135
193 135 181
7 3 14[.+4 Add elements and then maximum
21 22 22 17 reduce.

OUTER PRODUCT °.®

The outer product operator 1is a composite operator

consisting of the symbols ° and . followed by any
standard dyadic scalar operator. When the outer product
operator is discussed in general, it will be shown as °©.9®

3-45 AK95

