e

SUBJECT

LEVEL 68
MULTICS
INTRODUCTORY
USERS’ GUIDE

Basic Introduction to Multics, Intended as a Guide for New Users

SPECIAL INSTRUCTIONS

For a more complete description on using the Multics System, refer to the Multics

Programmers’ Manual (MPM):

Reference Guide

Commands and Active Functions
Subroutines

Subsystem Writers’ Guide
Peripheral Input/Output

Order No
Order No
Order No
Order No
Order No

. AG91
. AG92
. AG93
. AK92
. AX49

This manual supersedes AL40, Revision 0, which was titled, Multics Users’
Guide. The Manual has been extensively revised and does not contain change

bars.

SOFTWARE SUPPORTED
Multics Software Release 6.0

ORDER NUMBER
ALA40, Rev. 1

July 1977

Honeywell

¢ el SR e BT R AR

PREFACE

The purpose of this manual is to provide programmers and other users with a
basic introduction to Multics use, a practice workbook that guides new users
through their first sessions at a terminal. The facilities described have been
chosen either because they are immediately useful to new users or because they
are representative of the system as a whole.

The information presented here is a subset of that contained in the primary
Multics reference document, the Multics Programmers' Manual (MPM). The MPM
should be used as a reference to Multics once the user has become familiar with
this introductory guide. The MPM consists of the following individual
documents:

Reference Guide

Commands and Active Functions
Subroutines

Subsystem Writers' Guide
Peripheral Input/Output

Throughout this manual, references are frequently made to portions of the
MPM. For convenience, these references are as follows:

Document R To In T
Reference Guide MPM Reference Guide
(Order No. AG91)

Commands and Active Functions MPM Commands
(Order No. AG92)

Subroutines MPM Subroutines
(Order No. AG93)

Subsystem i ' Guide MPM Subsystem Writers' Guide
(Order No. AK92)
Peripheral Input/Output MPM I/0
(Order No. AX49)
C) 1973, 1977, Honeywell Information Systems Inc. File No.: 1L13
ALY40O

J'

~/

Other Multics manuals of interest to new users are listed below. For a
complete, up-to-date list of Multics manuals, contact the Honeywell Distribution
Center, 40 Guest Street, Brighton, MA 02135 and ask for the Honeywell
Publications Catalog, Order No. AB81.

Active Functions Order No. AW17
Multics PL/I Language Specification Order No. AG9Y
Multics PL/I Reference Manual Order No. AM83
Multics FORTRAN Reference Manual Order No. AT58
Multics COBOL Users' Guide Order No. ASA43
Multics COBOL Reference Manual Order No. ASuj4
Multics BASIC Order No. AM82
Multics APL Order No. AK95
Multics FAST Subsystem Users' Guide Order No. AU25
Multics GCOS Environment Simulator Order No. ANO5
Multics Sort/Merge Order No. AW32
Multics Graphics System Order No. ASUO0
Multics Administrators' Manual (MAM)--

System Administrator Order No. AK50
MAM -- Project Administrator Order No. AK51
MAM -- Registration and Accounting

Administrator Order No. AS68

iii AL40

CONTENTS

Page

Section I Introduction 1=1

Section II How To Access The Multics System 2=1

Log-In Procedure 2-=1

Log-Out Procedure 2-4

Section III Multics Environment 3=1

Storage System ¢ vt 0 4 e e e 3=1

Naming Conventions 3=1

Entrynames« . . 3=3

Component Names + ¢ & &« « « « o 3=4

Multiple Names . . e+ e 4 e 4 e« o « 3=4

Working Directory Concept e e e e e e . 3-4

Working Directory . . . e e e e . 3-4

Initial Working Dlrectory e e e . 3-4

Section IV Commands . e e e e e e e e e e e 4.1

System Commands e e e e e e e e e e 4-1

User-Written Commands 4-1

Stopping During Command Executlon e o« « . k=2

Command Conventions -3

Correcting Typing Errors -3

Section V Sample Command Execution -1
Print Working Directory Command

(print_wdir) -1

Change Working Dlrectory Command
(change_wdir) . e e e

List Command (llst) e e ..

Print Command (print)

Help Command (help)

e o o
.
.
LI |
WWN =

Section VI Multies Editor
Requests . . . e e e e e e
Sample Invocatlon o o o o & &
Addressing . e e e e
Absolute Llne Number .« e e
Relative Line Number
Context . . . e .
Regular Expression
Special Characters . .
Null Regular Expression
Helpful Hints for New qedx Users
Request Descriptions
(append)
(insert)

e o o o o
[I I}

® o o o & e o o e o o
* o e o o o

(read)
(print)
(print 1line number) .
(delete)
(locate) .
s (substitute) . .
w (write) e e e
q (quit)
Editing Examples

® o o o o o e o o s o e o e e * o o

Qno s Hp

e o o e o o o o o s e o
e o o o o o o o o

.
| I |

[eAN N e N eo Yo Yo Ne Neo Yo Ne NeorWe WeorNeo Yol e Ne NeaWe Yo N e Weo Ne) Ut ,m w (%] ==
]

]
_ ek e e D D A VOV EEEEWN = -

v EwWwMPhNN -0

® o o o o o o o o o
e o o o . ¢« o .

® e o o o o o o o o o

e o o o o o o o o o o o

e o o o o o
o o e o o o
e o o o o
.
.
[|

iv ALY40

CONTENTS (cont)

o
n
0,0
o

Section VII Programming on Multies . . . « « ¢« « ¢« o .+
Writing a Source Program e o o e
Compiling a Source Program
Executing a Program « . .« .
Debugging a Program . . . « . . .« .
Sample Programs . . « « ¢ ¢ o o o o o

NN NN
|

Section VIII Access Control . « ¢ ¢ ¢ ¢ o o o o s e
Access Control List . . .« « « « « « &
Access Modes . . e e e s e s e
Ordering and Matchlng of ACLs . . .
Selectively Identifying ACL Entries
Setting Access . ¢ ¢« + o o o 0 e
Listing AcCCESS .« « ¢ o o « o o o o
Deleting Access . .« « « + o o o o

e o o o o & o o
.

o o o o o o
]]
UITEWWN = =

Section IX Online Communication With Other Users
mail Command
Message Facility

1
FOLWN—= =

who Command
Summary

¢« o o o o
[}

o o o o
e o o o o
e o o o o
.
.

-
o WO WOVWOWO Co Oo 00 00 o Co Oc O
[}

]
—_

Section X Absentee and I/0 Daemon Usage . . « « ¢« « & o«

Section XI Multics Features For Advanced Users
Abbreviation Processor ¢ ¢ o .
Active Functions . .- e o .
Administrative Features e e e e e e e
Archive Segment e e . .
Bound Segment . . . ¢ . « ¢ ¢ ¢ ¢ o o o o .
exec_com Command . .« « « « o o o o o o o
Graphics System . . . ¢« ¢« « ¢ ¢ o o o e
Input/Output System ¢« « « « .« &
Linking Segments . . e e e e e e
Producing Manuscript Format e e e e
gedx Editor ¢ ¢ o o .o . .
Resource Measuring
Ring Structure . .« o .
Setting Search Crlterla e o
Terminal Settings
walk_subtree Command
Word Processing Facilities . .

I T I O A |
WO OVITUTEEWWNHNN—= = =

S T QI N (I | N S S
O ST (N T QU QU | I i G . T e

e o o o
e o o o o e o
e o e o o o s o

]
—_

Appendix A GlOSSArY v « o+ « o o o o o o o o 8 e e e e e .

Appendix B Storage System and Command Conventions
Command Name Conventions
Command Line Conventions
Argument Conventions
Pathnames

Use of the Absolute Pathname

Use of the Relative Pathname
Entryname

Longer Relative Pathnames

Naming Conventions For Multiple

Component Entrynames

Special Symbols
Less-Than Character
Star Convention
Equal Convention

o« o o o o
J

1
vTwwww PPN =

e o o o o o o o o

e o o o o o o o

oo w o mm?mmmmmw =

e o o o o
e o o o o

v AL4O

CONTENTS (cont)

g
[\
(0]
(0]

Appendix C Reference to Commands by Function
Access to the System
Storage System, Creating and
Editing Segments .
Storage System, Segment
Manipulation
Storage Systemn, Dlrectory
Manipulation
Storage Systemn, Access Control
Storage System, Address Space
Control . .
Formatted Output Fa0111t1es
Language Translators, Compilers,
Assemblers, and Interpreters
Object Segment Manipulation
Debugging and Performance
Monitoring Facilities .
Input/Output System Control
Command Level Environment
Communication Among Users
Communication with the System
Accounting .
Control of Absentee Computatlons
Miscellaneous Tools ..

oXe] (@] aQ ao
[| 1 1 1
w n n —_

[eXe]
[}]
oS onurw,m Ul = =w

a0
!

Appendix D Multics edm Editor

Requests

Guidelines

Request Descrlptlons
Backup (-) Request
Print Current Line Number ()

Request

Comment Mode () Request
Mode Change (.) Request
Bottom (b) Request
Delete (d) Request
Find (f) Request
Insert (i) Request
Kill (k) Request
Locate (1) Request
Next (n) Request
Print (p) Request
Quit (gq) Request
Retype (r) Request .
Substitute (s) Request
Top (t) Request .
Verbose (v) Request
Write (w) Request

Doououo O?OOOOOO
[}
WWN ==

UC’UUUUUU?UUUUUUUU
oo ~NNNoooOnuInMEErTwWw

Index i-1
ILLUSTRATIONS

Figure 3-1. Hierarchical Storage System O L 4

Figure B-1. Sample Hierarchy B-4

vi AL40

¢

SECTION I

INTRODUCTION

Multics is a general purpose computer system developed to serve a wide
variety of users. It supports, simultaneously, end users of
transaction-oriented applications, word processing, and application and system
programming development. It supports a wide variety of languages, most notably
PL/I, COBOL, FORTRAN, BASIC, and APL. The Multics system multiplexes a central
computer among the jobs of many users, each of whom accesses Multics from a
terminal. With Multics, users have facilities that allow them to edit, compile,
debug, and run programs in one continuous, interactive session. Each Multics
user can structure information, manipulate it, and simultaneously share it with
other users.

But Multics is more than a mere time-sharing system. It supports diverse
subsystems, such as GCOS and FAST (a facility based on the full Multics systen,
offering BASIC and FORTRAN compilers) and offers two data base managers (Multics
Integrated Data Store and Multics Relational Data Store), a graphics system, and
extensive word processing tools to mention just a few facilities.

This manual helps the new user become familiar with the Multics system.
Basic Multics concepts, such as the storage system and access control, are
described briefly. However, this manual offers a limited discussion of Multics
concepts. Instead, it focuses on those facilities that all users need daily,
regardless of the nature of their terminal work.

Thus, the first topic in this document is the procedure by which the new
user enters and exits the system plus a brief explanation of some terminal and
Multies conventions (Section II). Next, the user is introduced to the Multics
environment (Section III), that is, the storage system, naming conventions, and
appropriate terminology. Once the user is familiar with the environment, the
Multics commands are described (Section IV). The Multiecs system supports
user-defined commands as well as system commands. Both types of commands and
various command conventions are included in the commands description. As a
special aid for the new user, certain frequently called system commands are also
described (Section V).

To get data on the system, modify the data, and save it, the user can call
one of the Multics editors. One Multics context editor, qedx, gives the
beginner the ability to manipulate data through many simple requests
(Section VI) and also offers the user a powerful interpretive language through
more advanced requests (not covered in this manual). (Another Multics context
editor, edm, is described in Appendix D.)

Of particular interest to the programmer is the description of programming
in the Multics environment. While this manual does not teach programming, it
does describe the ease with which programming can be accomplished on Multics
(Section VII). Programmers can write a source program, edit it, compile it,
debug and run the object program--a portion at a time if they choose--and do it
all online in one terminal session.

1=1 AL40

TR T R

After describing the programming environment, the manual presents a brief
discussion of the Multics access control concepts (Section VIII). On Multies,
each user controls the access that other users have to programs and data he
creates. Different access modes may be assigned to different users of the same
program. The wuser who creates the program can set, change, and delete access
rights just by invoking simple system commands. (Examples of these commands are
also given in Section VIII.)

Another important, wuseful feature of Multics is online communication
(Section IX). Through various commands, users can communicate with one another
instantaneously, send mail, or even check to see who else is online at the
moment.

The absentee use of Multics is briefly described in Section X. This
facility is similar to batch processing on other systems. On Multiecs, the
command language and syntax are the same for absentee and interactive usage.

The final section of this manual (Section XI) serves two purposes: it
suggests further information to pursue for the novice, and it puts this manual
in perspective with respect to the Multics system. The reader should understand
that the material presented in this document represents only a fraction of the
Multics system capabilities. However, this material should provide the new user
with a challenge for two or three brief terminal sessions, after which
Section XI and Appendices B and C will help to suggest further information to
explore.

The new user will find Appendix A particularly helpful. It is a glossary
of basic Multies terminology.

1-2 ALY40

¢

J'-

¢

SECTION II

HOW TG ACCESS THE MULTICS SYSTEM

Before users can gain access to Multics, they must be registered on the
system by the site system administrator and allowed access to a particular
project by the administrator of that project. The system administrator assigns
each user a unique two-part identification, consisting of a person
identification (called a Person_id) and a project identification (called a
Project_id). The Person_id is generally a variation of the user's surname; the
Project_id is an arbitrary name for a project that is registered on the system
for accounting purposes. In addition, the system administrator assigns a
special password for each user. For example, if Tom Smith were a new user, the
system administrator could assign TSmith as his Person_id and ProjA as his
Project_id.

Notice that the Person_id (TSmith) contains no blanks but does <contain
capital 1letters. The Multics system distinguishes between wuppercase and
lowercase characters; the exact capitalization must be used or else the
Person_id is not recognized by the system.

LOG-IN PROCEDURE

After the user has dialed the appropriate telephone number and a connection
has been established between Multics and the user's terminal, Multics prints a
message giving the number of the current system, the location of the system, the
actual number of users logged in, and the number of users the system is
currently accepting.

Multics XX-x: PCO, Phoenix, Az.
Load = 26.0 out of 100.0 units: users = 26

At this point, the wuser issues the 1login command and his Person_id,
separated by a blank.

! login TSmith
Password:

NOTE: Throughout the interactive examples in this manual, an exclamation
mark (!) precedes text typed by the user. This is done only to
distinguish user text from system-generated text; users should pot
actually begin their text with an exclamation mark.

Also, a "carriage return" (moving the typing mechanism to the first
column of the next line, called a newline on Multies) is implied at
the end of every user-typed line. See the glossary under newline
for details.

2=1 ALY40

I a7

. ety

Multics then requests the user's password. Depending on the user's
terminal, the printing of the password is either suppressed or hidden in a
string of cover-up characters typed by the system. It is essential that users
keep their own password secret to prevent unauthorized use of their programs and
data and their account. If the wuser feels that his password has been
compromised, he should notify his project administrator and also immediately
change his password.

In fact, one of the first things a new user should do is change his
password from the one assigned by the system administrator as part of the
registration process (usually just the user's initials in lowercase characters)
to one the user makes up. To change the password, the user logs in wusing the
-change_password (or -cpw) control argument. For example, to change Tom Smith's
password from tjs to mypass, he would type the following (passwords are shown
here for clarity):

! login TSmith -cpw
Password:

! tjis

New Password:
! mypass

New Password Again:
! mypass

Password changed.

For future logins, mypass is Tom's password. He can repeat the above procedure
and change his password any time he wishes.

If the wuser ever forgets his password, he must notify the system
administrator and request a new password. (Once a password is registered on the
system, it is encoded and cannot be decoded by anyone, including the system
administrator.)

If the user makes an error during the log-in procedure, the system informs
him of it and asks him to try again.

Login incorrect.

Please try again or type "help" for instructions.
! login TSmith

Password:

Each Multics site sets its own limit on how many attempts a user may make
to log in before the system automatically disconnects the line to the terminal.

Login incorrect.

hangup

Project administrators may interpose another authentication procedure after
the user types his password. The format of this procedure is determined by the
individual project administrator.

After the wuser has successfully typed his password, the system responds
with information regarding the user's last login.

ISmith ProjA logged in 06/07/77 0937.5 mst Tue from ASCII terminal "234".
Last login 06/06/77 1359.8 mst Mon from ASCII terminal "234".

2-2 ALL4O

Ra]

The log-in statistics can be used to detect unauthorized use of the user's
name and password on previous logins, since the user knows when he was last
logged in. In addition, the system informs the user qf unsuccessful attempts to
gain access to the system through his password. (Typing errors made by the user
also count as unsuccessful attempts; see Section IV for how to correct typing
errors.)

! login TSmith
Password:
!
Your password was given incorrectly at 06/07/77 0937.1 mst Tue from ASCII
terminal "234".
You are protected from preemption until 1037.
TSmith ProjA logged in 06/07/77 0937.5 mst Tue from ASCII terminal "234".
Last login 06/06/77 1359.8 mst Mon from ASCII terminal no3yn,

(The message from the system about an incorrect password is given in a slightly
different format if the user has a mailbox and uses a start_up.ec segment. For
information on mailboxes and start_up.ec segments refer to Sections IX and XI
respectively.)

These statistics are followed by the "message of the day." This message is
a convenient way to tell all system users important news, including schedules,
information on new commands, and latest documentation.

A new PL/I compiler was installed; type: help pli_new
Rates for CPU usage have changed; type: help prices

The 1last line of system-generated text in the log-in sequence is the ready
message. This message is printed to indicate that Multics is at command level
and ready to receive the next command. The ready message consists of the letter
"p" followed by the time of day and three numbers that reflect system resource
usage.

r 937 1.314 1.332 30

These usage numbers identify virtual CPU time, which is the actual CPU time
consumed by the wuser since the 1last ready message minus some supervisor
execution time; memory units, which is an approximation of the amount of memory
he has used since his last ready message; and the actual number of pages of
information brought into main memory from secondary storage since the last ready
message. For more information about the ready message, refer to the ready
command in the MPM Commands.

The complete log-in sequence for Tom Smith, assuming no one has attempted
to use his password since his last login, would be:

! login TSmith
Password:
!
TSmith ProjA logged in 06/07/77 0937.5 mst Tue from ASCII terminal "234".
Last login 06/06/77 1359.8 mst Mon from ASCII terminal "234".
A new PL/I compiler was installed; type: help pli_new
Rates for CPU usage have changed; type: help prices
r 937 1.314 1.332 30

Under certain circumstances, the user may be denied access to the system
even though he has correctly logged in. For example, the system administrator
may not yet have registered the user, the user may have exceeded the resource
limits set for him by the project administrator, or the system may temporarily
be full. In any case, if the user cannot get on the system, he generally
receives a message from Multics telling him the reason he cannot log in and what
steps, if any, he should take.

2-3 AL40O

LOG-QUT PROCEDURE

When the user has completed his work, he breaks the connection between his
terminal and the Multies system by 1issuing the logout command. The system
responds by printing the identification of the user, the date and time of the
logout, and the total CPU time and memory units used.

! logout
TSmith ProjA logged out 06/07/77 1249.4 mst Tue

CPU usage 17 sec, memory usage 103.1 units.
hangup

Some projects have a log-in time limit after which a user is subject to an
automatic logout. In such cases, Multics prints a warning several minutes
before a session is dutomatically terminated. Unless the user is automatically
logged out by the system, he should always log out before leaving the terminal,
to avoid wasting computer time and preventing others from logging in.

2-4 AL40

¢

SECTION III

MULTICS ENVIRONMENT

One major component of the Multics environment, the virtual memory, allows
the user to forget about physical storage of information; he does not need to be
concerned with, or even aware of, where his information is within the system or
on what device it resides. However, the new user does need to have a basic
grasp of another major component of the Multics environment, the storage system,
before he can begin to understand the system environment.

STORAGE SYSTEM

One good way to visualize the storage system is to consider it a
"tree-structured" hierarchy of directory segments. The basic wunit of
information within the storage system is the segment; it may contain a
collection of program instructions or data, or it may be empty (a null segment).
Some segments serve as catalogs of other segments beneath them in the tree
structure, listing the attributes of the subordinate segments; these cataloging
segments are called directory segments. All the other segments are called
nondirectory segments. However, by convention directory segments are called
simply "directories"; nondirectory segments, simply "segments."

At the beginning of the tree is the root directory; all other directories
and segments emanate from the root directory. For example, Figure 3-1 shows
user Tom Smith and his project, ProjA, in relation to the root. (Directories
are represented by rectangles and segments by circles.) Notice the two
directories immediately under the root (sss and udd). The sss directory is one
of several 1library directories that catalog all the system commands and
subroutines. The udd directory is a catalog of project directories. It
contains one directory entry for each project on the system. Likewise, each
project directory normally contains one directory for each user on that project.

NAMING CONVENTIONS

The actual name of any segment or directory reflects its position in the
hierarchy in relation to the root directory. This name, called the pathname,
shows the "path" from the root directory to the specific segment or directory.
Each name between the root and the specific segment or directory indicates
another level in the directory hierarchy. To refer to a particular segment or
directory, the wuser must list these names in the proper order (i.e., beginning
with the root and coming down) and must include a greater-than character between
each name. The greater-than character (>) is wused in Multics pathnames to
denote hierarchy levels.

3-1 AL40

myd

root
udd sss
ProjA ProjB
TSmith
Figure 3-1. Hierarchical Storage System

AL40

—~

The pathname féb segment x in Tom Smith's myd directory is:

>udd>ProjA>TSmith>myd>x

which is read as "greater than udd, greater than ProjA, greater than TSmith,
greater than myd, greater than x."

By convention, the word "root" is omitted since it would be the first entry
in every pathname. The pathname in the above example is called an absolute
pathname because it identifies the "absolute" or complete path between the root
and the specific segment. For the user's convenience, Multics also accepts a
shortened version of the pathname, called the relative pathname, that identifies
the specific segment in relation to the current working directory.

The working directory is simply the directory in which the wuser 1is
currently working; it identifies his current location within the storage system
(see also "Working Directory Concept" below). Because the system keeps track of
a user's working directory, the user needs to identify only the names between
his working directory and the specific segment. Any pathname the user types
that does not begin with the greater-than character is considered relative to
his working directory. Thus, the relative pathname for segment x when TSmith is
the working directory is:

myd>x

and the relative pathname for segment x when myd is the working directory is
simply:

X

Eptrynames

Each individual name in the pathname is called an entryname. Entrynames
must be unique within any one directory. For example, Tom Smith can use "test"
as an entryname in the TSmith directory and also in the myd directory;
furthermore, he could also use "test" as a directory name and have a "test"
segment in this directory. However, he cannot use "test" as the name for two
different segments in the same directory.

An entryname is a user-assigned identifier, from one to 32 characters long,
chosen from the full ASCII ! character set (excluding the greater-than and
less-than characters). The user should avoid the use of a space as part of an
entryname; it 1is permitted but cumbersome because the command language uses
spaces to delimit command names and arguments. By convention, the underscore
(L) is wused to simulate a space for readability, e.g., new_x. The use of
certain special symbols, such as the asterisk (*) and equals (=) characters, is
not recommended; these characters have special meanings in many Multics standard
commands. (Refer to Appendix B for information on these special meanings.)

1. American Standard Code for Information Interchange. The full ASCII
character set, 1including any special Multies interpretations is given in
Appendix A of the MPM Reference Guide.

3-3 AL4O

Component Names

The use of a period (.) in an entryname has a special meaning on Multics.
It separates the name into 1logical parts called components. Some Multics
commands require a specific last component; e.g., the mail command (described in
Section IX) requires the user's mailbox entryname to have "mbx" as the last
component. Several system conventions (e.g., the star convention and equal
convention both described in Appendix B) operate on components. Also, compilers
implemented on Multics expect the language name to be the last component of the
name of a source segment to be compiled, such as, square_root.pll for the name
of a PL/I source segment.

Multiple Names

It 1is permissible--and very convenient--to assign more than one entryname
to any segment or directory. For example, the entryname "test" would be easier
to type than "partl.test.new_compiler" any time Tom Smith wanted to work with
that particular segment.

WORKING DIRECTORY CONCEPT

Each user on Multics functions as though he performs his work from a
particular location within the Multics storage system--his working directory.

Workin

The working directory is just that--the directory in which the user is
currently doing his work. The main purpose of the working directory is
convenience; the wuser does not have to take the time to type in absolute
pathnames because the system assumes that any name he types that does not begin
with the greater-than character is relative to the current working directory.
Thus, the user can type the shorter relative pathname, and the system, knowing
the current working directory, supplies the rest of the pathname.

The wuser can change his working directory simply by invoking a standard
Multics command (see Section V). Then he can enter pathnames relative to the
new working directory, and the system again supplies the rest of the pathname.

N .

Whenever a user logs in, he logs into a particular directory within the
storage system; that 1is, the system sets his working directory for him. This
initial working directory is also known as the home directory. The system
"remembers" the pathname of each user's home directory and automatically assigns
the user to that directory when he logs in. Generally, the home directory is:

>udd>Project_id>Person_id

3-4 ALY4O

4

’

Lo U

For example, Tom Sm h's home directory would be:

>udd>ProjA>TSmith

Although the user can change his working directory several times during one
terminal session, no matter what the identity of his working directory when he

logs out, his working directory when he next logs 1in is always his home
directory.

3-5 AL40

SECTION IV

COMMANDS

A command is something the user types to get the system to perform some

action for him. When the user types a command, the system invokes a program
(called a command procedure). Most commands have both a long and a short name
(e.g., print and pr) and require one or more arguments to specify names of data

segments containing information to be acted upon by the command or special kinds
of information needed to execute the command. So, to issue a command, the user
types the name of the command followed by one or more arguments. For example,
the command:

print report

asks Multics to locate the segment named report within the user's working
directory and print it on the terminal.

SYSTEM COMMANDS

System commands are kept 1in directories called system libraries and are
supplied with the Multics system. These commands are generally available to all
users of the full Multics system. System commands are well engineered and
tested and are equipped to diagnose errors by printing self-explanatory error
messages. If the user makes a typing error or types a command that does not
exist, an explanatory message is typed on the terminal. For example, if the
user wants to invoke the command, print report, and instead types:

primt report

the system responds with an error message and a ready message (the system
returns to command level):

Segment primt not found.
r 937 .144 2,402 55

USER=HWRITTEN C

User-written commands are cataloged in directories of the user's choice.
These commands may have the same names as system commands; they are
distinguished from system commands by their location.

41 ALY40O

Multics searches in various locations (user directories, system libraries,
etc.) 1in a particular order to find the requested command. The user can alter
that order by issuing a system command to change the search rules (see "Setting
Search Criteria" in Section XI). By redefining the search rules, the user can
determine whether a user-written command or the system command is to be used
where both have identical names. For example, when a user types a command at
his terminal, 1like print report, the system first looks through the user's
working directory to see if the "print" program exists. If so, that version is
executed. If not, the system searches the system- and user-supplied directories
(according to the rules specified by the user) for the "print" program. If the
"print" program is still not found, the system types an error message and
returns to command level.

For more information on what a command is and how to write one, see the MPM
Reference Guide ("Command Language" in Section III and "Writing a Command" in
Section 1IV).

STOPPING DURING COMMAND EXECUTION

If the user wants to halt program execution at any time, he can do so by
issuing a quit signal. The user invokes the quit signal by pressing the proper
key on his terminal (e.g., ATTN, BRK, INTRPT, INTERRUPT). As soon as the system
receives this signal, Multics stops executing the program and prints QUIT and a
ready message.

For example, when the user issues the print command, he may not need to see
the entire segment. So as soon as the system prints the information he needs,
he issues a quit signal. The quit signal causes Multiecs to stop printing the
segment and instead print QUIT and a ready message. The ready message printed
after a quit signal is slightly different from other ready messages because it
contains additional information after the standard numbers:

r 938 1.213 3.107 62 level 2, 17

This level information indicates that a new command level is established and the
interrupted work is being held (preserved as 1is). Since the system is at
command level, therefore ready to accept more commands, the user can either
continue the interrupted work or go on to something else.

If the user wishes to continue the work interrupted by the quit signal, he
can issue either the start or the program_interrupt command. The start command
resumes execution of the original program from the point of interruption. The
program_interrupt command resumes execution of the original program from a
known, predetermined reentry point.

If the user does not want to continue the interrupted work, he should issue
the release command before he issues any other commands. The release command
releases the work interrupted (and held) by the quit signal (and drops the level
information from the ready message).

For more information on these commands and their relation to the quit
signal, see the MPM Commands.

42 ALY4O

The general format of a Multics command is:

command_name argumentl argument2 ... argumentn

Most Multics commands have various arguments that allow the user to modify
command execution to suit his needs. However, the new user does not have to
know any argument except a pathname for many Multics commands. By using the
simplified command line format (i.e., command_name pathname) the new user can
effectively use the Multics system.

For the user's convenience, a brief description of storage system and
command conventions is given in Appendix B. Also, for a description of the full
command language environment, refer to the MPM Reference Guide.

CORRECTING TYPING ERRORS

There are two special symbols for correcting typing errors, the character
delete and the 1line delete. These symbols may vary, depending on the type of
terminal; but generally the number sign (#) is the character-delete symbol, and
the commercial at sign (€) is the line-delete symbol. (In fact, Multics allows
users to define their own character-delete and 1line-delete symbols; see
"Terminal Settings" in Section XI.)

The character-delete symbol '"erases" one previously typed character when
typed directly after the error. The line-delete symbol "erases" every character
previously typed on the line. Examples of both symbols are given in the login
command lines below. Each line is interpreted by Multics as--login TSmith.

login TSM#mith

logen T####in TSmith

logen TSmit€login TSmith

kigum Té&€loge#in TSmith

Notice that several successive number signs erase an equal number of typed
characters preceding the number sign (see the second line above). However, a
single number sign following "white space" (any combination of spaces and
horizontal tabs) erases all the white space. This white space rule saves the

user the trouble of remembering how many spaces or tabs he just typed and also
reduces the number of keystrokes necessary to remove any white space.

y-3 AL4O

For example, assume the wuser is typing a table in which any column
containing information must end with a colon and he types:

col_1<tab><tab><tab>co
at this point the wuser realizes the colon is missing at the end of the first
colu?n. Making use of the white space rule, he types (as the rest of the same
line):

##i#:<tab><tab><tab>col_3:
so that the line he typed:

col_1<tab><tab><tab>co###:<tab><tab><tab>col_3
produces:

col_1: col_3:

Because the white space rule is an exception to the general rule of each
character-delete symbol erasing one previously typed character, new users
frequently have trouble when attempting to erase one of many white space
characters. For example, typing:

col_1<tab><tab><tab>col_3######col_3
produces:

col_1col_3

and not the "col_1<tab><tab>col_3" the user probably wanted.

4y AL4O

~

SECTION V

SAMPLE COMMAND EXECUTION

This section illustrates certain, frequently issued Multics commands.
Since qedx, access control, and the online communication commands are fully
described elsewhere (Sections VI, VIII, and IX respectively), they are not
included here.

Some of the commands shown below have many control arguments that allow the
user to tailor the action of the command to his exact needs. No attempt is made
to cover such options here; complete descriptions of the commands that follow
are given in the MPM Commands.

PHINT wOKKING DIRECTORY COMMAND (print_wdir)

The print working directory command (invoked by typing print_wdir or pwd)
requests that the system print the name of the working directory. Multics
responds by printing the absolute pathname of the user's current working
directory.

! pwd
>udd>ProjA>TSmith
r 938 1.347 2.315 41

CHANGE wORKING DIRECTORY COMMAND (change_wdir)

The change working directory command (invoked by typing change_wdir or cwd)
redefines the working directory. To change his working directory, the user
types the cwd command followed by the pathname of the directory he wishes to
redefine as his working directory. The following command changes the working
directory to JDoe under the Projb project.

! cwd >udd>Projb>dJboe
r 938 .972 1.731 25

To revert to the initial working directory (also called the home
directory), the user types a cwd command without an argument.

! cwd
r 939 1.024 1.376 35

The cwd command allows the user to manipulate his own position within the
storage system hierarchy with respect to the segments he wishes to use.
However, the user must remember that it will not help to change working
directories if he does not have access permission to use segments cataloged in
that directory.

5-1 AL4O

LIST COMMAND (list)

The 1list command (invoked by typing list or 1s) prints out a list of all
the segments in a directory. 1If the user issues the list command with no
arguments, the working directory is assumed. The command prints information
about the number of segments in the directory, access attributes of the user,

and the 1length of each segment. Segments most recently created are at the top
of the list.

! 1s

Segments = 21, Lengths = U46.

rw 4 report.runout

rw 3 report.runoff

rew 7 index

rw 5 test.pli

rw 2 exéhange_rate.fortran

r 939 1.866 2.084 41

The list command can also be used to print a list of only certain kinds of
segments (i.e., those having a certain type of entryname). For example, if the
user wants to see all the PL/I source segments in the directory, he types:

! 1ls %% pl1
Segments = 2, Lengths = 12.

rw 5 test.pl1
rw 7 index.pl1

r 939 1.371 1.936 37
The "#*% pl1" argument is a common form of a star name that tells the 1list

command to print all entrynames (in this directory) whose last component is pl1.
For more information, see "Star Convention" in Appendix B.

5-2 AL40O

¢

FIRAT T\ R AL L

PRINT COMMAND (print)

The print @ command (invoked by typing print-or pr) prints, in ASCII, ‘the
contents of' a segment. The segment name may be either an absolute or ‘relative
pathname. .

! pr circle.pli

circle.pll - © 06/07/77 0940.2 mst Tue

circle:proc;

declare (radius, area) float bin;
declare (sysin input, sysprint output) file;
put list ("enter radius");

put skip;

get list (radius);

area = 3.14159%*radius*¥2;

put skip list ("The area is:", area);
put skip;

close file (sysin), file (sysprint);
end;

r 940 1.245 1.921 53

HELP COMMAND (help)

The help command (invoked by typing help) prints information about
commands, subroutines, the current system, etc. When the help command is
issued, it prints out the specified segment (called an info segment) a portion
at a time, identifying the number of lines that follow and giving the wuser the
option to continue. For example, if the user wants information about the help
command, he types:

! help help
(4 lines follow; 37 lines in segment)
07/23/75 help

Function: prints out system information segments.
For a list of useful info segments type

help info_segs
1 line titled "Syntax" follows. More help?

NOTE: Since info segments are updated continually and a new set of info
segments 1is sent out with each system release, the system response
to the "help help" command line above may differ from the response
shown here.

At this point, the user can type "yes" if he wants to see the "Syntax"
porti?n or "no" if he does not want any more information (return to command
level).

5-3 ALL40

There are many info segments that cover general information topics such as
access control, new language compilers, and system conventions. New general
information info segments (each one has a "gi" component in its entryname) are
often added and old ones deleted when a new system release is issued. To get
the names of all general information info segments currently on the system,
type:

! help *¥* gi -he

(This command line is an example of the Multics star convention described in
Appendix B.)

5-4 AL40

SECTION VI

MULTICS EDITOR

The qedx command, which is a Multics context editor, is used to create and
edit ASCII segments. (Another editor, edm, is described in Appendix D. It is
similar to editors on other time-sharing systems. Actually, the basic editing
requests in edm and qedx are similar, but gqedx offers much more powerful
features once the "basics" are mastered. For this reason, new users are
encouraged to use the gedx editor.) To invoke the gedx editor, the user types:

qedx

(or alternately, the short name, qQx).

The gedx editor operates in one of two principal modes: edit or input.
The user is automatically in edit mode when he invokes gedx. Input requests
place the editor into input mode and allow the user to enter new ASCII text from
the terminal until a special character sequence is typed to switch the editor
back to edit mode. Edit requests perform various editing functions (e.g.,
substitution, deletion, printing) on ASCII data, permit the user to read in the
contents of an existing segment, and allow the user to save the editing work he
has done in a new or existing segment.

Input and editing operations are performed in a temporary workspace called
a buffer. When a user edits an already existing segment, a copy of that segment
is placed in a buffer. All of the changes the user makes are made on the copy,
not the original segment. The edited version of the segment replaces the
original only on the user's orders (issuing the write request described later in
this section).

The qedx requests treat a segment as a series of numbered lines with a
conceptual pointer to indicate the current line. Some requests explicitly or
implicitly move the pointer; other requests manipulate the line currently
pointed to. Most requests are indicated by a single character; generally the
first letter of the name of the request.

REQUESTS

The discussion of the gqedx editor in this section describes only 10
requests. This arbitrary subset of the editor is sufficient for the majority of
editing needs, particularly those of a new user. Once familiar with these
requests, the user can build on this subset quite easily to make use of the more
powerful facilities of qedx (e.g., global requests, special editing sequences
called macros--all described in the MPM Commands).-

Two kinds of editing requests are described in this section: input and
basic edit requests. The invocation and a brief description of the requests are
given below. More complete descriptions of the requests are given later in this
section.

6-1 AL40

Invocation

INPUT REQUESTS
a

BASIC EDIT REQUESTS
r path

P

d
/xxx/

s/o0ld/new/

w path

q

Description

Enter input mode and append 1lines typed from the
terminal after a specified line.

Enter input mode and insert 1lines typed from the
terminal before a specified line.

Read contents of segment specified by path into the
buffer.

Print specified line or lines on the terminal.

 Print line number of specified line.

Delete Specified line'or lines from the buffer.

.Locate and print the line containing the XXX character

string.

Substitute every occurrence of the old character string
with the new character string in specified line or
lines. ' :

_ Write buffer contents into segment specified by path.

Quit using the editor and return to command level.

Before getting into detailed descriptions of each of the 10 requests, read
through the. sample invocation below to see a typical editing session with qedx.

The user is'creating a new segment so hé invokes gedx and enters an input
request immediately. The user types in the lines, making use of the character
and line delete symbols, then leaves input mode (by typing "\f") and saves the

information in a segment
qedxr

c1rcle. proc; .
declre##are (radius,

out ski€@put skip
get list (radius);

put skip list ("The
put skip;

close file (sysin),
end

\f

w circle.pl1

Sun tem Gum Gum Gum Gum Sum tum tum Gum Gum b Sum Sum Sum

named circle.pll.

area float bin,

declare (sysin input syp#sprint output) file;
put list ("enter radius),

area = 3.14159%pradius¥#*2;

area is:", area);

file (sysprint),

6_2‘ AL4O

’

¢

At this point the user has a new segment named circ}e.pl1 vin his working
directory. He is still in the qedx editor--in edit mode--so to check the

material he has just input, he issues a print request:

!o1,%p C
circle: proc; .
declare (radius,area float bin; .
declare (sysin input,sysprint output) file;
put list ("enter radius);
put skip;
_get list (radius); :
area = 3.14159%radius**2;. :
put skip list ("The area is:", area);
put skip;
close file (sysin), file (sysprint);.
end

The "1,$" preceding the request is a way of telling qedx to make the request
operate on all the lines. (Refer to "Addressing" below for more information.)
After looking at the input material, the wuser sees lines that need to be
corrected. He corrects the lines using gqedx edit requests and puts the
corrected lines in the segment by issuing a w (write) request again.

! /float/ v
declare (radius,area float binj
! s/area/area)/p :
declare (radius,area) float bin;

! /enter/

put list ("enter radius);
! s/)/™)/p

put list ("enter radius");
! +6

end . R
! s/end/end;/p

end; .

oo

q ;
r 102610.608 5.510 261

Notice how the user combined s and p requests to have gedx print out the
edited 1line for verification. This technique is highly recommended for new
users. Also notice the editing request line "+6" to tell the editor to go six
lines ahead of the current line; this is called addressing by relative line
number. Addressing is an important concept in a line-oriented editor like qedx;
it enables the user to tell gedx what lines the editing request should work on.
(Refer to "Addressing" below for more information.) And finally, notice the
second w (write) request. It is not necessary to give a path argument with the
second, and any succeeding, w requests as long as the user intends it to be the
same as the only other path argument given in this invocation of qedx.

ADDRESSING

As mentioned earlier, qedx is a line-oriented editor, meaning that requests
operate on one or more lines. The editing requests can be preceded by an
address to specify the line(s) .on. which- the request is.to .operate. If no
address is given, a default address is assumed. (The default address .for each

request. is given in the request descriptions later in this section.) There are
three ways of addressing lines: : ,
) by absolute line number
° by relative line number
() by context

6-3 ALY40

Absolute Line Number

] All of the lines in the buffer are given line numbers by qedx; the first
line is 1, second is 2, ete. The qedx editor renumbers these lines as soon as
more lines are added or deleted. For example, if the user deletes line 5, 1line
b becomes line 5, line 7 becomes line 6, ete.

For convenience, the last line in the buffer can also be addressed by using
the dollar sign character ($). The user is thus saved the bother of keeping
track of the absolute line number of the last line in the buffer.

Relative Line Number

The qedx editor keeps track of the "current" line, which 1is specified by
the period character (.). Normally the current line is the last line addressed
in an edit request or the last line entered in an input request.

Lines relative to the current line can be addressed by wusing a signed
decimal integer. For example, +3 indicates the third line following the current
line and -3 indicates the third line preceding the current line.

Context

Lines can be addressed by matching a "regular expression" to a string of
characters in the line. The first line encountered that contains a match is the
line addressed. The search for a match of the regular expression begins on the
line following the current line, goes to the last line in the buffer, then goes
to the first line in the buffer and continues down to the current line (i.e.,
from +1 to $, then from 1 to .). If no match is found, qedx prints a message
telling the user the search has failed.

REGULAR EXPRESSION

In its simplest form, a regular expression is one or more characters
delimited by the right slant character (/). For example, all of the following
are valid regular expressions:

/one/

/one or/
/For/

/F/
/characters,/
/ters,/

/:/

Notice that spaces and punctuation characters can be part of a regular
expression. In fact, a regular expression can consist of any character in the
ASCII set except the newline character. However, certain characters have
special meanings when used in regular expressions.

6-4 AL40

SPECIAL CHARACTERS

The use of one or more of the special characters in a regular expression
makes it possible for the user to uniquely identify a particular character
string with a minimum of typing. The characters with special meanings are:

/ delimits a regular expression
* means any number (including none) of the preceding character
. matches any character

as first character in a regular expression, means "character"
preceding first character on a line

$ as last character in a regular expression, means "character" following
last character on a line

Some simple examples show how these characters could be used. New users
are often apprehensive about using these characters, but once they ¢try a few
(especially the .*% combination), they see how much quicker and easier editing
can be.

/a/ Matches the letter "a" anywhere on a line.

/abe/ Matches the string "abe" anywhere on a line.

/ab*c/ Matches "ac", "abe", "abbe", "abbbe", etc. anywhere on a
line.

/in..to/ Matches "in" followed by any two characters followed by
"to" anywhere on a line.

/in.%to/ Matches "in" followed by any number of any characters
(including none) followed by "to" anywhere on a line.

/"abe/ Matches a line beginning with "abe".

/abe$/ Matches a line ending with "abe".

/"abc.*def$/ Matches a line beginning with "abe" and ending with "def™"
and having anything (including nothing) in between.

/.%/ Matches any line.

/7$/ Matches an empty line (a line containing only a newline

character).

It is possible to use these characters without their special meaning; simply
precede the special character with the \c escape sequence. For example, to
match the string "/%" appearing anywhere on a line, the regular expression would
be:

/\c/\c*/

6-5 AL40

NULL REGULAR EXPRESSION

‘The gedx editor "remembers" the last regular expression used. The user can
reinvoke the last regular expression by ‘using a null regular expression (i.e.,
//). This feature saves a lot of typing time when editing, especially if " the
regular expression is long or difficult to type. For example, if the user knows
he wants to change the ABD string to ABC, he could use a regular expression to
find the string and then use a null regular expression to change it:

/ABD/ s//ABC/

HELBEﬂL_HlﬂI&.EQB.NEH.ﬂ&Q&.ﬂSEBS

The following list offers suggestions for users who are just beginning to
work with the qedx editor.

1. The new user should get in the habit of 4issuing p (print) requests
often, to verify changes. L SR ’

2. Remember the escape sequence to terminate input, \f on most terminals.

a. After issuing an ‘input request (e.g., a for append), all lines
until "\f" are considered input, including intended W and q
requests. Without the \f sequence, the intended editor requests
are simply more text, which must be located and deleted later.

b. Often, users unknowingly put gedx in input mode by mistyping an
editing request. If qedx does not respond to editing requests
(e.g., user types "p" and nothing happens), chances are very good
that qedx is in input mode. The ~user should type the \f
sequence, print the current line and preceding lines to see if
they need to be deleted, and then continue editing. :

3. If the user has a lot of typing or editing to do, it is wisest to
occasionally issue ‘the "W request to ensure that all the work up to
that time is permanently recorded. Then, if some problem should occur
(with the system, the telephone line, or the terminal), the user loses
only the work done since the last w request.

4, The qedx editor ‘accepts more than one -editing request on a single
line. However, the following requests must be terminated by a newline
character; therefore each one must be on a line by itself or at the
end of a line containing other requests.

r read
W write
q quit
5. The gqedx editor makes all changes on a copy of ‘the segment, not on the

original. Only when the user issues a w <(write) request does the
editor overwrite the original segment with the edited version. '

6. Generally, the user should not issue a quit signal (press ATTN, BRK,
INTERRUPT, etc.) while in the editor unless he is prepared to lose all
of the work he has done since the last w (write) request.

Occasionally, however, use of the quit signal is very handy. Suppose
the user has read a segment containing several hundred lines into the
buffer and types 1,$p by mistake. He should issue a quit signal, wait
for the system to respond (QUIT and a ready message are printed on the
terminal), and then 1issue the program_interrupt command. The
program_interrupt command (with a short name of pi) returns the user
to gedx where the editor waits for the next request, just as though no
interruption has occurred.

6-6 AL40

'y

R ey

1f the user issues a quit signal accidentally while in the editor, he
should wait for the system to respond, and then issue the start
command. The start command (with a short name of sr) returns the user
to qedx where the editor continues processing the interrupted request.

KEQUEST DESCRIPTIONS

A request to gedx can generally take any one of the following three general
formats:

<request>
ADk<request>
ADR1,ADR2<request>

where ADK, ADK1, and ADR2 are valid addresses (as described under "Addressing"
above) and <request> is a valid qedx request. When addressing a series of lines
(ADK1,ADRK2<request>), any one of the three types of addressing can be used for
either ADR1 or ADR2. For example, if line 1 is the current line and the buffer
contains the following: '

b:procedure;
a=r;

c=S,

k=t;

end b;

the user could print lines 2 through 4 by typing a p (print) request preceded by
any one of several address combinations; a few of the possible print requests
are given below:

2,4p
2,+§p

2,/ k/p
+1,/"k/p
/a=/,+3p
/a=/,/"k/p

In each of the request descriptions that follow, several "standard"
headings are used: '

Name gives the invocation character followed by the request name
Format shows the proper format to use when invoking the request
Default explains what action qedx takes if the user does not specify

an address in the request

Value of "." identifies the position of the current line after the request
operation is completed

Example shows correct usage of the request, including buffer contents
before and after the request is given

Other headings may be used in addition to these to explain material pertinent to
a particular request.

6-7 ALY40

The requests are presented in a somewhat functional order,
requests before edit requests and within the edit requests, read is
quit is last. The exact order is:

E

Name
append
insert
read

print
print line number
delete
locate
substitute
write

quit

~~

=S
.oz:mgo.n'c'zl-'-m

[¢]

A —

i.e.,
first

input
and

NOTE: Users should remember when entering text that they must terminate an
input request with the \f escape sequence. The gedx editor cannot

respond to another request until it is in edit mode. All

lines,

including ones the user intends as requests, are regarded as input

until the \f escape sequence is given.

a (append)

Name: a (append)

The append request is used to enter input 1lines from the
appending these lines after the line addressed by the append request.

Format: ADRa
TEXT
\f
Default: a means append after current line.

Value of ",": set to last line appended.

Example: Buffer contents: a: procedure;
X=y;
end a;
Request sequence: 2a /x=/a
q=r; or q=r;
\f \f
Result: a: procedure;
X=y;
'l."_> qzr\;
end a;
Note: The request 0Oa can be used to insert text before line
buffer.
6-8

a (append)

terminal,

1 of

the

AL40

et

i (insert) i (insert)

Name: i (insert)

The insert request is wused to enter input lines from the terminal and
insert the new text immediately before the addressed line.

Format: ADRi
TEXT
\f
Default: i means insert before current line.

VYalue of ",": set to last line inserted.

Example: Buffer contents: a: procedure;
X=Yy;,
end a;
Request sequence: 2i /x=/1i
q=r; or q=r;
\f
Result: a: procedure;
non_> q=r;
X=Yy;,
end a;
r (read) r (read)

name: r (read)

The read request is used to put the contents of an already existing segment
into the buffer. This request actually appends the contents of a specified
ASCII segment after the addressed line.

Format: ADRr path

where path is the pathname of the ASCII segment to be read into
the buffer. The pathname can be preceded with any number of
spaces and must be followed immediately by a newline character.

Default: r path is taken to mean $r path.
Value of ", ,": set to the last line read from the segment.
6-9 AL4O

r (read)

/x=/r b.pl1

where b.pl1 is the following text:

r (read)
Example: Buffer contents: a: procedure;
X=y;
end a;
Request: 2r b.pl1 or
b: procedure;
c=d;
end b;
Result: a: procedure;
X=y;
b: procedure;
c=d;
"o end b;
end a;
Note: The request "Or path" is used to
segment before line 1 of the buffer.

p (print)

Name: p (print)

insert

the contents of a

p (print)

The print request 1is used to print the addressed line or set of lines on

the user's terminal.

Format: ADR1,ADR2p

Default: p means print the current

line.

Yalue of ", ": set to last line addressed by the print request (i.e., the last

line to be printed).

AL4O

¢

)

p (print)

Examples:

puffer contents:

Request:

Result:

Request:

Result:

(print line number)

Name: = (print line number)

This request is

Format:

ADR=

p (print)

a: procedure;

X=y;
q=r;
s=t;
end a;

2,4p or /x=/,/s=/p

1,$p

a: procedure;
X=y;
q=r;
s=t;
end a;

= (print line

number)

used to print the line number of the addressed line.

= means print the line number of the current line.

set to line addressed by request.

Buffer contents:

Request:
Result:
Request:

Result:

a: procedure;

X=Yy5
pP=q;
end a;

/q;/=

3

$=

y

AL40

-
d (delete) d (delete)
Name: d (delete) ~ ‘
-
The delete request 1is wused to delete the addressed line or set of lines
from the buffer.
Format: ADR1,ADR2d
-
Default: d means delete the current line. ’
Value of ",": set to line immediately following the last line deleted. .
Example: Buffer contents: a: procedure; b
X=y;
qQ=r;
s=t;
end a;
Request sequence: 3,4d or /q=/,/s=/d
w
Result: a: procedure;
X=y;
L end a;
\J-

(locate) (locate)

Name: (locate)

-w
This request sets the value of "." to a specific line and prints the line.

This request needs no letter to tell qedx what operation to perform; the user

merely types a valid address (generally a context address although any type is

permitted) followed by a newline character.

Format: ADR -

Default: typing a period (.) prints the current line.

Value of ",": set to line addressed by request. -
-
-

~

6-12 AL40

(locate)

Example:

s (substitute)

(locate)

Buffer contents: aardvark
noned emu
gnu
kiwi
rhea
Request: /"k/ or +2 or i
Result: kiwi

s (substitute)

Name: s (substitute)

The substitute request is used to modify the contents of the addressed line
or set of lines by replacing all strings that match a given regular expression
with a specified character string.

Format:

ADR1,ADR2s/REGEXP/STRING/

(The first character after the "s" is taken to be the request
delimiter and can be any character not appearing either in
REGEXP or in STRING. It must be the same in all three
instances.)

s/REGEXP/STRING/ means substitute STRING for REGEXP in the
current line.

set to last line addressed by request.

Each character string in the addressed 1line or 1lines that
matches REGEXP is replaced with the character string STRING. If
STRING contains the special character &, each & is replaced by
the string matching REGEXP. The special meaning of & can be
suppressed by preceding the & with the \c escape sequence.

Buffer contents: The quick brown sox
Request: s/sox/fox/
Result: The quick brown fox

6-13 AL40

s (substitute) s (substitute)
Buffer contents: xyzindex=q;
Request: s/index/(&)/
Result: xyz(index)=q;
Buffer contents: as=b
c=d
X=y
Request: 1,$s/$/;/
Result: a=b;
c=d;
X2y,
w (write) w (write)

Name: w (write)

The write request is used to write the addressed line or set of lines into
a specified segment.

Format: ADR1,ADR2w path

where path is the pathname of the segment whose contents are to
be the addressed lines in the buffer. If the segment does not
already exist, a new segment is created with the specified name.
If the segment does already exist, the old contents are replaced
by the addressed lines. The pathname can be preceded by any
number of spaces and must be followed immediately by a newline
character. If path is omitted and only one path argument (or
more than one but always the same path) has been given
previously in either a read or write request (in this invocation
of qedx), this previously specified path argument is used. If
path 1is omitted and no pathname has been given in this
invocation of qedx, then the message "No pathname given" is
printed and gedx awaits another request.

Default: w path is taken to mean 1,$w path.

\'s " unchanged.

6-14 AL40

TR N e

w (write) w (write)
Example: Buffer contents: a: procedure;
del a fixed bin(17);
b char(*);
end a;
Request: 1,4w sam.pl1
Result: Either the first through fourth 1lines of

the buffer replace the contents of the
segment sam.pll in the user's working
directory (assuming that the segment named
sam.pll already exists) or sam.pll is
created in the working directory and
contains the first four 1lines of the
buffer.

q (quit) q (quit)

Name: q (quit)

The quit request is used to exit from the editor and does not itself save
the results of any editing that might have been done. If the user wishes to
save the modified contents of the buffer, he must explicitly issue a write
request.

Format: q
Default: the quit request cannot have an address.
Note: The quit request must be followed immediately by a newline

character.

EDITING EXAMPLES

Now that the reader is familiar with qedx, he should check the following
examples. Using only the subset of qedx given in this section, the reader will
see that there are several different ways to edit the same material. As
familiarity with gqedx increases, users tend to type less and less to accomplish
the same tasks. The examples that follow illustrate this "type less" approach.

6-15 AL40

For the first example, consider the circle.pl? segment given in the sample

invocation at the beginning of this section. After the input request, the
buffer contained:

or:

more

circle: proc;

declare (radius,area float bin;
declare (sysin input,sysprint output) file;
put list ("enter radius);

put skip;

get list (radius);

area = 3.14159*radius¥*¥2;

put skip list ("The area is:", area);
put skip;

close file (sysin), file (sysprint);
end

The three errors in the program were corrected with these lines:

/float/

declare (radius,area float bin;
s/area/area)/p

declare (radius,area) float bin;
/enter/

put list ("enter radius);
s/)/")/p

put list ("enter radius");

+6

end

s/end/end; /p

end;

Other ways to accomplish the same corrections could be:

2s/area/&)/
/enter/ s/ius/ius"/
/end/ s//end;/

2s/area/&)/ +2s/)/")/ $s/$/;/

As another example, assume the buffer contains the following lines:

Mondays child is far of face;

Tuesday's child is full of grace;
Wednesday's child is loving and givng;
Thursday's child works gard fir uts kuvubgl

These lines could be corrected in any of the following ways (with new users
apt to use a method similar to the first one):

1s/days/day's/ s/far/fair/p

Monday's child is fair of face;

/givng/ s//giving/p

Wednesday's child is loving and giving;

/work/ s/works.*$/works hard for its living;/p
Thursday's child works hard for its living;

6-16 AL4O

Some other ways to correct the lines:

1s/days/day's/ s/far/fair/
/"W/ s/vng/ving/
+1s/works. *$/works hard for its living;/

1s/y/y'/ s/r/ir/
/vng/ s//ving/
$s/works.*$/works hard for its living;/

ALL4O

Mt it it o

SECTION VII

PROGRAMMING ON MULTICS

This manual is not intended to offer instruction in programming; instead it
describes programming within the Multies environment. On Multies, 1like many
other systems, the basic steps are: write, compile, execute, and debug.

However, on Multics the user can do all four steps online in one terminal
session. He has source language debugging capabilities that allow him to
execute and test only certain portions of a program if he wishes. The Multics
virtual memory and storage system eliminate the file input/output normally
required to manage the transfer of information to and from secondary storage;
physical movement of data from main memory to secondary storage and back is
wholly automatic and of no concern to the programmer. In addition, dynamic
linking and the organization of the storage system eliminate the need for
extensive software management, since the 1latest copy of every program is
immediately accessible by name from the terminal or from a program. This
dynamic 1linking capability eliminates the need for a complicated job control
language for retrieving, prelinking, and executing programs and for defining and
locating input/output files.

WRITING A SOURCE PROGRAM

To write a source program, the user invokes an editor that allows him to
input--and then edit--his work. On Multies, the user can write his source
program in a variety of languages such as PL/I, FORTRAN, BASIC, COBOL, or APL,
or even a language he himself has devised.

COMPILING A SQURCE PROGRAM

After a source program 1is online, the user compiles it by invoking the
appropriate compiling command. The system then translates the source program
into an object program, which can be executed directly by the processor.

The following 1list identifies the more common languages and shows their
respective compiling commands and source segment suffixes. Source segment names
must include the name of the language as the last component (e.g.,
tic_tac_toe.fortran, mileage.basic).

Language Translator Source
Command = Suffix
PL/I compiler pli pl1
FORTRAN compiler fortran, ft fortran
BASIC compiler basic basic
CUBUL compiler cobol cobol

7-1 ALY40

Although pl1l must be the last component in the PL/I source program name
(e.g., circle.pll or new.circle.pll), it need not be used in the pl1 command,
which compiles the source program. The last component is understood as being
implied by each of the language processors.

For example, to compile the PL/I source program, prog.pll, the user invokes
the pl1 command by typing:

pl1 prog
or

pl1 prog -table

The optional argument added in the second command line, -table, is one of
the many control arguments accepted by the pl1 command. The -table control
argument produces a symbol table that is valuable for use with one of the
Multics debugging facilities.

EXECUTING A PROGRAM

To run an object segment, the user simply types its name (either relative
or absolute pathname). To run the compiled version of source program prog.pli,
the user types:

prog

DEBUGGITI P

Multics compilers print a 1list of errors when they compile a source
segment. For example, the list might indicate incorrect syntax in the source
segment. This 1list of errors may be graded by severity; the user may judge
whether he wishes to continue compilation or halt it by issuing a quit signal.
Severe errors automatically cause compilation to cease. The compiler prints an
error message, and the system returns to command 1level and prints a ready
message.

Multics permits wusers to run a part of a program, temporarily halt its
running, debug that portion of the program needing changes, and resume running
the program.

Multics provides extensive interactive program debugging facilities through
the two commands, probe and debug. To perform symbolic debugging with these
commands, the user must have compiled his program with a symbol table (i.e.,
specifying the -table control argument). The two commands provide similar
services, but the probe command is designed with the high-level language
programmer in mind while the debug command is oriented more toward the needs of
a machine language programmer. Multics also provides a trace command that
traces the flow of control through program execution and a trace_stack command
that traces the list of programs active on the program stack. (The probe,
debug, trace, and trace_stack commands are described in the MPM Commands.)

7=-2 AL4O

A central feature of both probe and debug is the facility for setting
breakpoints at specified program locations. The program is then executed. When
a preset breakpoint is reached, execution is interrupted and the current state
of variables preserved. The user can then perform other debugging operations
such as examining the values of data items, inserting test values, executing
other programs, and so on. He may then continue execution from the point at
which execution was suspended.

A simple illustration of the use of probe, including setting a breakpoint,
is shown in the second programming example in "Sample Programs" below.

SAMPLE PROGRAMS

Two simple programming examples are shown below. The first example shows
the terminal interaction as a user logs in and writes, compiles, and executes a
short program. The second example shows the terminal interaction as a user
compiles, attempts to execute, debugs wusing probe, and finally executes
successfully a short program.

In the first example, a program, named times_2, is written in PL/I and put
online using the gedx editor. The times_2 program accepts an integer (online)
and prints the value of 2 times that integer on the terminal.

! login TSmith
Password:

TSmith ProjA logged in 06/07/77 0937.5 mst Tue from ASCII terminal "234".
Last login 06/06/77 1359.8 mst Mon from ASCII terminal "234".

A new PL/I compiler was installed; type: help pli_new

Rates for CPU usage have changed; type: help prices

r 937 1.314 1.332 30

qedx

a

times_2: proc;

declare (num,product) fixed bin(17);

declare (sysin input, sysprint output) file;
put list ("Enter integer");

put skip;

get list (num);

product = num¥2;

put skip list ("2 times your integer is:", product);
put skip;

close file (sysin), file (sysprint);

end;

\f

W times_2.pl1

q
r 940 4.875 7.621 62

After typing in the source program, going to edit mode to write it, and
quitting qedx, the user is ready to compile his program. Notice that the
program name (times_2.pl1) includes the language name as the last component.
The language name also identifies the proper command to invoke for the
compilation. Thus to compile the times_2.pl1 program, the user types:

! pl1l times_2

PL/1
r 941 2.906 8.022 272

7-3 AL40

) Once the program is compiled, the user, and any other users to whom he
gilves proper access, can execute the program by typing "times_2"; for example:

! times_2
Enter integer
! 19
2 times your integer is: 38

r 943 0.231 2.272 50

For the second example, assume that the user types in another source
program, named cubes.pll, containing the following lines:

cubes: proc;

declare (i,j) fixed bin init (-1);
declare k float bin;

declare (sysin input, sysprint output) file;
do i = 1 by 1 while (j "=0);

k = i¥%%3;

end;

put skip list (i, j, k);

put skip list ("cubes done");

put skip;

close file (sysin), file (sysprint);
return;

end;

The user compiles the program, using the -table control argument:

! pll cubes -table
PL/I ,
r 1018 2.798 37.846 270

Then the user executes the program and after waiting for a response (the
program is supposed to print the values of i, j, and k and then say it is done),
he decides something is wrong and issues a quit signal:

! cubes
<user presses BRK or appropriate key>
QUIT
r 101 5.854 1.500 39 level 2, 10

Next, the wuser invokes the probe command and asks to see the source line
being executed when the quit signal occurred and also the value of the
variables:

! probe
Condition quit raised at line 6 of cubes.
! source
k = i**3;
! value i
355131
! value j
-1

7-4 AL40

When he sees the value of j is still -1, the user realizes he is in an
endless loop. To test his theory that j is the problem, the user decides to set
a break; the break halts execution of the program at that point, calls probe to
execute the probe request (the text inside the parentheses), and continues

executing the program.

! position 6
k = i¥*3;
! before: (if i = 6: let j = 0)
Break set before line 6 of cubes.
! quit
r 1020 0.714 10.8664 205 level 2, 10

The user releases the work being held (because he issued a quit signal to
interrupt the execution of the cubes program) and then invokes the cubes program
again:

! release
r 1020 0.038 0.756 27

! cubes

7 0 2.16000000e+002

cubes done
r 1020 0.161 2.100 47

The user's theory about j was correct. He can now go back and edit his
source program accordingly. (Since the incrementing of i is done before the
while option is evaluated for the last time, the value of i is 7 rather than 6
when the program finishes.)

7-5 AL40

-

V;
-
-
‘-
-

SECTION VIII

ACCESS CONTROL

On the Multics system, the user is able to share as much or as little of
his work with as many other users as he desires. The checking done by the
hardware on each memory reference ensures that the access privileges described
by the user for each of his segments are enforced. This kind of privacy and
security gives Multics users great flexibility in the kinds of data they may put
on the system. For example, if Tom Smith were the head of a personnel
department, he could put the names and addresses, salaries, education, etc. of
all the company employees online. He could then set different access rights
on each of the segments. For example, he could assign read and write access to
only himself on the segment containing salary information. He would not allow
anyone else in the department to have any access to the salary segment. On the
segment containing the names and addresses of all personnel, he could assign
read and write access to himself and his assistant and only read access to the
rest of his department. Multics allows the user to give different access rights
to different users of the same segment. ‘

ACCESS CONTROL LIST

The access rights for each segment are described in an access control list
(ACL). Each segment has its own ACL; it contains the 4identification of users
permitted (or specifically denied) access to the segment plus a description of
the type of access allowed.

The user identification (known as a User_id) in the ACL consists of a
three-component name: Person_id, Project_id, and an instance tag, separated by
periods. (The system assigns the instance tag when the user logs in.) Whenever
anyone tries to access a segment on the Multics system, his User_id must match
one of the entries on the ACL of that particular segment; if not, he has no
access to that segment. (See "Ordering and Matching of ACLs" and "Selectively
Identifying ACL Entries" below.)

ACCESS MODES

The type of access allowed is defined by access modes: four modes for
segments and four modes for directories.

Access modes for segments are:

read (r) data in the segment can be read

write (w) data in the segment can be modified (written)

execute (e) an executing process can transfer to, and execute
instructions in, this segment

null (n) access to the segment is denied

8-1 ALY40O

Access modes for directories are:

status (s) the attributes of segments, directories, and links
) contained in the directory can be obtained
modify (m) the attributes of existing segments, directories, and links

contained in the directory can be changed or deleted;
segments, directories, or links can be deleted

append (a) new segments, directories, and links can be created in the
directory
null (n) access to the directory is denied; access may still be

granted to specific segments within a directory according
to the ACL on each segment

The user generally assigns combinations of access modes to his segments and
directories. Useful access mode assignments for segments and directories are:

Segments Directories
r s

W sm

re sa

rw sma

rew null

null

The user specifies one of the above access mode assignments for the persons
and/or projects he wishes; he uses one command in specifying access to his
directories and/or segments. Once specified, the access is not "frozen"; the
user may change it at will Jjust by issuing the command again, specifying
different modes, persons, or projects.

ORDERING AND MATCHING OF ACLS

As noted earlier, each segment has its own ACL, which consists of a list of
entries. Each entry specifies certain access modes and the wusers associated
with these modes. Assume that a segment named test has the following ACL:

rew JDoe.ProjB.*

rw PFrank.Manuals.#*
r TSmith.*. %

r * Demo. ¥

null * ProjZ.%*

r LI

The asterisk in the ACL entries means that any string can occupy that component
position. For example, ¥.ProjZ.* designates all the users on the ProjZ project,
and in the last entry line, ¥ % % designates any Multics user. The order of the
ACL entries, from JDoe.ProjB.* to *.* % is very important. Consider the two
ACL entries:

r TSmith.® %
null * ProjZ.#*

If TSmith is logged in under the ProjZ project, what access does he have to the
test segment?

8-2) AL4O

O - -

i

The answer is determined by the ACL ordering rules, which stated simply
are: specifically named components come before asterisks; leftmost component
comes first, then middle, then right. The ACL entries are arranged according to
these rules and the system starts at the top of the ACL and works it way down
trying to find a match for a User_id. Based on these rules, TSmith logged in
under the ProjZ project has read access to test since the ACL entry
"r TSmith.*.*" is encountered before the "null # ProjZ.*" entry. JDoe logged in
under the ProjZ project would have null access (JDoe.ProjB.* is not a match, the
first match is *.ProjZ.*). KJones logged in under the ProjB project would have
read access (the only match is in the last entry, LIS DI

SELECTIVELY IDENTIFYING ACL ENTRIES

In many of the access commands, the user gives a User_id as part of the
command line. The system interprets this User_id and then tries to match it to
one of the User_ids in the ACL. Based on this match, the access commands select
an ACL entry to modify. The following rules apply to the User_id the user
specifies.

1. A specifically named component (including "#n) matches only a
component of the same name.

2. A missing component delimited by a period matches any component in
that position.

3. Components to the right of a specifically named component may be
omitted (if so, each is treated the same as a literal "¥*"); those to
the left must be given (by a period if nothing else).

These rules are illustrated in the examples below, showing a User_id and
the associated access command matching strategy.

TSmith.. matches any User_id in an ACL entry whose first
component is TSmith

TSmith.*. #* matches only TSmith.¥*.#%

TSmith same as above (using the missing components rule, this
User_id is treated as though it were TSmith.%*.%)

Projz matches only ProjZ.¥*.* (absence of a leading period
makes ProjZ the first component)

.Projz. matches any entry whose second component is ProjZ

LI matches only ¥ * #

matches any entry

SETTING ACCESS

The command the user invokes to set the ACL, set_acl, either adds an entry
to the ACL or modifies an existing entry. The set_acl command, whose short name
is sa, has the general format:

sa pathname accessmode(s) User_id

8-3 ALY40

For example, Tom Smith has text in segment xsolve of his myd directory that
Jane Doe wants to use. To give her access so she can read the segment, he types
(if myd is his current working directory):

sa xsolve r JDoe.%* #

If this User_id is already part of the ACL for Xsolve, the access is changed to
r (for read). If this User_id is not on the ACL, the entry "r JDoe.*.#" ig
added to the ACL.

If he instead decides that his segment should not be available to Jane and
wants to make sure she cannot read it, he types:

sa xsolve null JDoe..

The periods following Jane's Person_id (JDoe) in the above command line
tell the system that the requested access applies to Jane no matter what project
she may be on, no matter what instance tag may be associated with her work. For
example, the User_id, JDoe.., matches the User_ids in all of the following ACL
entries:

rew JDoe.ProjB. ¥

rw JDoe.Manuals.*
r JDoe.Demo. ¥
r JDoe . ¥ #*

so the access in all of the above would be changed to null access. However, if
Tom had given JDoe.*.* as the User_id, the only match would have been
"r JDoe.¥ .*" and only that entry would have the access changed to null access.

LISTING ACCESS

To check the ACL of a segment, the user invokes the command that lists the
ACL, 1list_acl. The 1list_acl command, whose short name is la, has the general
format:

la pathname

As explained earlier, the system assumes that any pathname that does not
begin with the greater-than character 1is relative to the working directory.
Thus, if Tom Smith wants to list the ACL of xsolve, he types:

! la xsolve
rw TSmith.ProjA.¥*
null JDoe.¥*. *
rw % _SysDaemon.¥
r ¥ ProjA.*

The User_id in the third ACL entry in the example, ¥*.SysDaemon.¥,
identifies various system processes that control such things as printing and
making copies of segments on "backup" tapes. The system normally places
appropriate ACL entries on every segment the user creates so the system
processes will have the necessary access to perform the various backup,
metering, and input/output functions.

8-4 ALY40

If Tom is interested in checking the access he has given only Jane on
xsolve, he types:

! la xsolve Jbhoe..
null JDoe.*.#%

or to check the access rights of only ProjA, he types:

! 1la xsolve .ProjA.
rw TSmith.ProjA.*
r * ProjA.*

Notice that when specifying the User_ids in the above command 1lines, Tom
uses periods to show missing components that ma contain any value. As
explained earlier (see "Ordering and Matching of ACLs"), if a user does not use
periods for the missing components, a # is assumed for each missing component.
Thus the command line "la xsolve JDoe" lists the ACL entry for JDoe.¥* % but not
for JDoe.ProjB.* (if such an entry exists).

DELETING ACCESS

A third access control command, delete_acl, allows the user to delete ACL
entries. This command, whose short name is da, has the same general format and
rules as the list_acl command.

For example, if Tom Smith has changed segment new_report, he might want to
also change its ACL. First, he lists the ACL entries to see who currently has
access to new_report:

! la new_report
rw TSmith.ProjA.*

re Gray.Merlin.®
rw Butler.Merlin.*
rw Jones.¥ %

re JDoe.* #

rw * SysDaemon.*

r *.‘l“*

Tom decides that he no 1longer wants user Jones, anyone on the Merlin
project, or the entire user community (represented by *.*.¥#) to have access to
new_report. Therefore, he invokes the delete_acl command in the following
manner:

da new_report Jones ¥.¥% ¥ _Merlin.

Here Jones becomes Jones.¥.¥* by default. If an ACL entry had existed for
Jones.ProjA.*, that entry would not have been deleted.

If Tom now again invokes list_acl, he will see that the requested change
has already taken place.

! la new_report
rw TSmith.ProjA.*
re JDoe.* ¥
rv # _SysDaemon.¥

8-5 AL4O

On Multics, changes in access rights occur instantaneously. If both Tom
and Jane are online at the same time and she tries to access one of his segments
and finds that she does not have the proper access, she can send him a message
(see Section IX concerning online communication), asking him to give her proper
access to the segment. He can then issue the appropriate arguments to the
set_acl command, and she immediately has access to the segment. Access rights
are revoked Jjust as rapidly. If Jane has access to a segment of Tom's, and he
changes the access while she is using the segment, the system prints out a
message telling her that she has incorrect access to the segment and returns her
to command level.

8-6 AL4O

SECTION IX

ONLINE COMMUNICATION WITH OTHER USERS

The Multics system offers several commands that enable users to communicate
with one another online. Such commands are extremely useful; for example, a
user may require immediate access to another user's data, or a user may need to
request an increase in his quota from his project administrator.

mail COMMAND

The mail command (short name, ml) is used to send mail to another user or
print mail sent by another user. The mail is stored in the wuser's home
directory in a mailbox segment with the absolute pathname:

>udd>Project_id>Person_id>Person_id.mbx

In order to receive mail, the user must have a mailbox segment. The
mailbox is created automatically the first time a user invokes the mail command
(or print_messages or accept_messages commands, described 1later in this
section).

To read his mail, the user types:

mail

The system first tells the user how many messages are in his mailbox. Then
the system prints all of the messages and asks the user if he wants to delete
these messages. If the user answers yes, the messages are deleted; if he
answers no, they are saved.

To send mail, the user types the mail command with the proper arguments.

mail message Person_id.Project_id

The message argument may be either the pathname of a segment or an asterisk
(¥). Generally, the user types an asterisk for the message argument. The
system responds by printing "Input." The user then types his message, ending it
by a line containing only a period (.). For example, if Tom Smith wants to send
Jane Doe mail, he types:

! mail * JDoe.ProjB
Input
Dear Jane,
Thank you for the draft copies of
the new manual. I promise to return
them next week.

Tom

e tem tem sem oum e

r 1004 .741 3.386 99

9-1 ALY40

If the information the user wishes to send is contained in a segment, he
types the pathname of the segment for the message argument. The content of the
segment is then placed in the receiving user's mailbox.

When the system sends the mail, it supplies a header that identifies the
sender, the date and time the message was sent, and the number of lines in the
message. The system then copies the mail with the header into the proper
mailbox segment--in this case, >udd>ProjB>JDoe>JDoe.mbx. Thus, when Jane checks
2er ?aiibox, by issuing the mail command, Tom's message would appear on her

erminal as:

! mail
1 message.
1) From: TSmith.ProjA 06/07/77 1004.6 mst Tue (6 lines)

Dear Jane, :
Thank you for the draft copies of
the new manual. I promise to return
them next week.

Tom

mail: Delete?

MESSAGE FACILITY

The message facility permits online communication between users on
different terminals. The system puts messages from other users in a mailbox
segment (the same one used by the mail command) and prints them out at the
option of the user, i.e., either immediately or on command. Even if the user
who 1is to receive the message is not 1logged in or is deferring messages,
messages can still be sent. If this happens, the user who is sending the
message is notified that the message cannot be received online at this time, and
the message is stored in the receiving user's mailbox segment.

If the user wants to receive messages, he must have a mailbox. As
explained earlier, the system automatically creates a mailbox segment, if one
does not already exist, having the absolute pathname:

>udd>Project_id>Person_id>Person_id.mbx

the first time the wuser invokes the mail, accept_messages, or print_messages
commands.

Once the accept_messages command is invoked, the user
receives--instantaneously--any messages sent to him during that terminal
session. If a message is sent after he logs out, it is saved in the mailbox
segment. In order to receive the messages saved in the mailbox, the user must
issue the print_messages command (or its short name, pm) or the mail command.

NOTE: The mail, accept_messages, and print_messages commands operate on a
per-terminal-session basis. Even though a user has a mailbox, he
must issue the accept_messages command before messages are printed
on his terminal (rather than stored in his mailbox) and he must
issue the mail and print_messages commands to see the mail and
messages currently in his mailbox. To avoid the necessity of
issuing these commands at the beginning of each terminal session,
refer to the discussion of the start_up.ec segment under the
"exec_com command" description in Section XI.

9-2 ALY0O

~

When the user wants to send a message, he must invoke the send_message
command (or its short name, sm) with the proper arguments.

send_message Person_id.Project_id message

If Tom Smith wants to send a message to Jane Doe, he types:

send_message JDoe.ProjB you now have access to xsolve

If the message argument is missing, the system types the word "Input" and
the user then types his message. Each line of his message is sent as soon as
the user types the carriage return. In this way one user can have a dialogue
Wwith another user without having to issue a send_message command to send each
line. To indicate that the message is complete, the sending user types a period
(.) on a separate line.

Whenever a message is sent, the sending user is identified by his Person_id
and his Project_id. Tom's message would appear on Jane's terminal as:

From TSmith.ProjA 06/07/77 1047.3 mst Tue: you now have access to xsolve

who COMMAND

Although the who command is not an online communication command in the same
sense as mail, accept_messages, print_messages, and send_message, it is still an
important communications tool. By invoking this command, the user learns the
number, identification, and status of all users currently on the system. (It is
possible for a user to prevent his name from being listed; to do this, the user
should first see his project administrator.) Often, the user issues the who
command to see if a particular user is online before he issues the send_message
command.

The who command first prints out a header line, listing the system name,
the total number of users, the current system load, and the maximum load. After
this header, the command lists the name and project of each user.

To invoke the who command, the user types:
! who

Multics XX-x, load 12.0/90.0; 12 users
Absentee users 0/3

I0.SysDaemon
Backup.SysDaemon
Metering.SysDaemon
Dumper.SysDaemon
JDoe.ProjB
Rolf.Maint
RSmith.North
TSmith.ProjaA
Green.Manuals
Richards.ABC
Camp.Demo
Warren.XYZ

r 1048 .668 1.036 T4

9-3 ALY4O

The list of users in the above example is sorted according to log-in time.
The wuser can specify certain options when he calls the who command and change
the sort key, suppress the header, list only those wusers of a particular
project, and various other things. For information about the control arguments
and other arguments that can be used with the who command, refer to the MPM
Commands.

SUMMARY

This section shows the new user enough information about five communication
commands to enable him to use them. However, he should realize that the mail,
accept_messages, print_messages, send_message, and who commands offer a variety
of options to make online communication even more meaningful to any one
particular user; that is, each user can choose those options that are most
suitable to the type of online work he does.

For example, a user who is printing out a final draft of a document would
certainly not want to receive a message from another user in the middle of his
printout. Therefore, he may wish to defer messages (by issuing the
defer_messages command) while he is printing the draft; he still "receives" the
messages, but they are saved in his mailbox until he asks for them.

To learn more about the various control arguments and options available
with these communication commands, refer to the MPM Commands.

9-4 AL40

SECTION X

ABSENTEE AND I/0 DAEMON USAGE

Although this manual deals exclusively with the interactive usage of
Multics, the new user should be aware that there is another type of Multics
usage--absentee.

Absentee usage (batch processing on Multics) gives wusers the ability to
execute large production runs without waiting at the terminal while the run is
in progress. The user merely creates an absentee job and submits it for
execution.

Absentee jobs are placed in a queue and run as background to the normal
interactive work of the system. Because absentee jobs are usually deferred
until the interactive 1load is 1light, the charges for absentee usage are
substantially lower than the charges for interactive usage. That is, the charge
for the highest priority absentee queue is generally much lower than the charge
for the most expensive interactive shift. Often however, the cost of the
cheapest interactive shift may be less than the highest absentee queue. (Since
pricing is site dependent, the user should check the charges at his site to
determine the most cost-effective method of performing certain tasks.)

To create an absentee job, the user creates an absentee input segment that
contains those commands he wants executed. The job control language for
absentee usage is identical tc the command language for interactive usage.
Basically, an absentee job is merely a "planned" interactive terminal session;
that is, the user anticipates any responses or commands he must give and puts
all of this data into his absentee input segment.

For example, suppose a user (TSmith on the ProjA project) has written a
prime number generator program in FORTRAN, which resides in his directory of
FORTRAN programs, and he wants to compile and run it. He could create a segment
called compile.absin containing the following lines:

cwd >udd>ProjA>TSmith>fort_progs
fortran primes -list

dprint -dl primes.list

primes

dprint filel0

logout

All the user has to do to compile and run his prime number generator program as
an absentee job is type the following:

enter_abs_request compile.absin
This command line executes an absentee job that changes to the proper working
directory, compiles the program and produces a listing segment, prints the

listing segment on the line printer and then deletes it, runs the progran,
prints the results contained in file10 on a line printer, and finally logs out.

10-1 AL4O

)

For more information about absentee usage and a complete description of how
to request an absentee job, see the enter_abs_request command in the MPM
Commands.

The I/0 daemon is used to manage the central system unit record equipment
(card readers, card punches, and high-speed printers) as well as remote devices
(such as the IBM 2780) containing unit record equipment. Users can request
printing and punching of files from their interactive terminals and absentee
Jobs; they can specify at which of several locations the processing is to be
done and select special forms or printer attributes for these requests. (See
the dprint and dpunch commands in the MPM Commands.)

Users can also bring card decks to the card readers run by the I/0 daemon
and have them read into the system. These card decks can contain absentee
control files; the wuser can request, via control cards, that his job be
scheduled and run as an absentee job and have printed output returned to the
printer associated with the card reader. For example, the user could put the
contents of the absentee segment shown above (compile.absin) on cards and
surround these cards with appropriate control cards. Then he merely reads this
deck into the system on a remote device in order to run the absentee job and get
the output printed on a remote printer. The results are the same whether he
reads the information into the system using a remote device or he gets online
and types:

enter_abs_request compile.absin

10-2 AL40

~

SECTION XI

MULTICS FEATURES FOR ADVANCED USERS

Once the user becomes familiar with most of the basics, as described in
earlier sections, he begins to take "shortcuts" by learning certain system
features that he finds extremely useful in his particular type of work at the
terminal. The purpose of this section is to enumerate and briefly describe
several such features. These descriptions also identify appropriate reference
materials so that interested users can easily add these features to their
Multics repertoire. The fact that these features are part of the Multics System
does not mean that they all need to be learned by any one user; each user
learns the features he feels will be most helpful to him.

A 0 P

The abbreviation processor is a special command processor that is invoked
for each command line only after the user invokes the abbrev command. The user
defines his own abbreviations for frequently used command 1lines or other
strings. Then, after invoking the abbrev command, the abbreviation processor
checks each command 1line for abbreviations; any abbreviations the user has
defined are expanded by the abbreviation processor and then passed on to the
Multics command processor.

Use of the abbrev command (refer to the MPM Commands) greatly simplifies
the user's terminal work. For a special use of the abbrev command, see the
exec_com command description in this section.

ACTIVE FUNCTIONS

An active function is a program that is invoked as part of a command line;
the character-string result of the active function replaces its invocation in
the command line. In other words, the active function part of the command line
is executed immediately, the result placed in the command 1line, and this
expanded command line is passed on to the command processor for execution.

The active functions fall into nine operational groupings: logical,
arithmetic, character string, pathname manipulation, storage system names,
storage system attributes, date and time, question asking, and user parameter.
Refer to Section II of the MPM Commands for descriptions of the active
functions.

By wusing active functions, the user is able to make many standard Multics
commands conditional commands. For example, the user may want to set the length
of his command line to x only if he is working on a particular type of terminal;
or he may want to enter a certain absentee request only if today's date equals a
particular number.

11-1 ALY40

MI T v

Multics administration defines three levels of responsibility: system,
project, and user. A system administrator allocates system resources among the
projects; a project administrator allocates. these resources among the users on
his project; wusers can manage their own data through storage management and
access controls.

All of the administrative operations can be performed while the system 1is
running; desired actions take place immediately. Multics administrative
operations cover the following areas:

Resource distribution

Accounting and billing operations
Usage control

Environment shaping

Access control and security

If Tom Smith is the project administrator for ProjA, he can determine the
dollar 1limit that a particular ProjA user may incur in a single month. If this
limit is exceeded, the user is automatically logged out; he cannot log in again
until either the next month begins or until the limit is changed.

As project administrator, Tom can also determine several other items,
including whether a user can preempt others, specify his home directory, or have
primary or standby status. In fact, the project administrator can so control
each wuser's environment that he can deny a user access to the full Multics
System and instead provide the user with access to only those commands that he
(as the project administrator) specifies. Such a user is said to have access to
a limited service system.

For more information on the Multics administrative features, refer to one

of the manuals in the Multics Administrators' Manual (MAM) set:
Project Administrator Order No. AK51
Registration and Accounting Administrator Order No. AS68
System Administrator Order No. AK50
ARCHIVE SEGMENT

An archive segment is a single segment consisting of the contents of many
different segments packed together. Once in an archive, the individual segments
are called components of the archive segment. This packing, performed by
invoking the archive command, reduces the user's storage load.

By invoking the archive command with different arguments, the wuser can
manipulate the archive segment in a variety of ways. For example, he not only
creates his archive; he also can get a table of contents that names each
component in the archive, extract one or more components from the archive,
update and replace one or more components, and delete individual components.
For more information about the archive command and its use, refer to the MPM
Commands.

11=-2 ALY40

BOUND SEGMENT

A bound segment is a single executable procedure segment ("object segment")
made up of one or more separately compiled, executable prqcedure segments.
Again, as with an archive segment, the user reduces his storage load by
combining several segments. However, a bound segment also gutomatica}ly
prelinks all the internal intersegment references thereby reducing execution
time.

The user creates a bound segment by invoking the bind command. The bind
command also allows the user to update, list, and map the bound segment as well
as manipulate the manner in which the various segments in the bound segment are
to be called.

Those programs that the user calls frequently and that are interrelated
(i.e., reference one another) should be bound to improve program efficiency. By
putting such programs in a bound segment, the user saves money through decreased
computing time and storage space and, at the same time, decreases his execution
time.

For more information about the bind command, refer to the MPM Commands.
Also, the MPM Subsystem Writers' Guide provides more information on the
structure of bound segments.

exec_com COMMAND

The exec_com command permits the user to execute a series of commands
specified in a segment. This segment must contain only command lines and
control lines; also, it must have the letters ec as the last component of its
name (e.g., test.ec or weekly.report.ec). The exec_com command also allows the
user to substitute special strings in the segment by giving certain arguments
when he invokes the command.

The command lines in the segment can use any Multics command. The control
lines are defined in the exec_com command description (refer to the MPM
Commands) .

Multics permits users to create a special exec_com segment that contains
commands to be executed when the user logs in, before his process attempts to
read from his terminal. In other words, he does not even need to invoke the
exec_com command for this segment; it is automatically invoked for him as part
of his log-in procedure. This segment must be named start_up.ec and must reside
in the user's initial working directory. Some commands that a wuser typically
includes in the start_up.ec are:

abbrev so the user does not need to remember to invoke it during
each terminal session in order to use personal
abbreviations

accept_messages sSo the user can receive online messages from other users
print_messages so the user can receive messages saved in the mailbox

mail so the system automatically prints the mail that has been
sent to the user since his last terminal session

print_motd so the system keeps a record of the message of the day and

prints only those portions that differ from the last
message the user saw

11-3 AL40

Some other commands that users often put in their start_up.ec segments show the
latest changes in info segments (check_info_segs), print reminders of certain
events (memo), or set up certain terminal modes or delay timings according to
ghe tEem;linal currently in use (set_tty used with the "user term_type" active
unction).

Also, a user generally writes his start_up.ec so that certain lines of the
segment are executed when he logs in as an interactive user and other lines are
executed when he 1is logged in as an absentee user. For example, the
accept_messages, print_messages, mail, and print_motd commands would not be used
in a start_up.ec for an absentee user.

A simple start_up.ec is shown below. It invokes the abbrev command, checks
for messages and mail, and prints the message of the day. For an absentee user,
it only invokes the abbrev command and then quits. Also, commands are not
printed on the terminal as they are invoked by the start_up.ec segment. New
users may want to put this start_up.ec online (with the qedx editor) and use it
until they need or want a more elaborate one.

&command_line off

abbrev

&if ([user absentee] &then &quit
accept_messages -print

mail

print_motd

&quit

GRAPHICS SYSTEM

The Multics Graphics System provides a general purpose interface through
which user or application programs can create, edit, store, display, and animate
graphic material.

The Multics Graphics System is a terminal-independent system. Thus a
program written for one type of graphic terminal is operable on another terminal
having similar capabilities without modification. Also, users can use programs
developed on different graphic terminals by other users.

For more information see Multics Graphics System, Order No. AS40.

INPUT/QUTPUT SYSTEM

The Multics system contains a device-independent input/output system
interface that programs can use. This interface allows interchangeable reading
and writing via tapes, terminals, cards, printers, and storage system segments.

This generalized input/output means that segments and input/output devices
are interchangeable since both are referenced by symbolic name. A user can
place a series of commands in a segment, attach the segment to an input switch,
and the system will process the user computation indicated by the commands as if
input were from the terminal. An interface command that assigns input/output
switches (the io_call command) is available to all users. Output also can be
directed to a segment by issuing the file_output command. Moreover, the user
can switch from input device to input segment and from output device to output
segment in the same way that he can switch from device to device. In addition,
Multics provides system commands for user output that automatically queue the
specified segments for printing (the dprint command) or punching (the dpunch
command) .

11-4 AL40

The Multics input/output system was designed for flexibility. In _fact,
users can write their own input/output routines, which can be "plugged in" to
this system.

For information about general input/output commands, see the MPM Commands;
for descriptions of specific commands such as those related to magnetic tapes
and for descriptions of input/output subroutines and modules, see the MPM 1I/0.
A detailed description of the Multics input/output system is given in the MPM
Reference Guide.

LINKING SEGMENTS

Multics allows a user to create a link to a segment anywhere in the storage
system as long as he has the proper access to the directory in which the link is
to be placed. The user invokes the link command to create a link (refer to the
MPM Commands).

By creating a link, the user is able to reference another segment as though
it were in the directory containing the link. In short, he has the use of this
particular segment without actually having to make a copy of it. This 1linking
feature allows users to share information easily and inexpensively.

PROD NG MANU PT FOKMA

Multics has two commands for producing text segments in manuscript form:
runoff and compose. Control arguments for either command allow the wuser to
completely regulate the processing of his text. For example, he can convert the
output to be suitable to a particular kind of type ball or device, start or end
the printing at a particular page, have source line numbers printed in the left
margin, have the system wait for a carriage return before beginning and after
each page of output, or direct the output to a special segment so he can print
the material on a high-speed printer using the dprint command.

The input segments for either runoff or compose contain control lines as
well as text lines. There are over 50 types of control lines. They allow users
to do such things as:

Specify up to 20 headers and 20 footers per page

Set the line length and page length

Have either roman or arabic page numbers

Skip a specified number of lines for an illustration

Center lines

Format equations

Control the size and number of margins

Set the spacing (single, double, or multiple)

Justify the margins

Translate a specified character to be printed as a different specified
character in the output

This last feature is especially useful when the user wants a single blank
between two character strings; the translate control line prevents splitting the
strings between two lines or inserting padding spaces between the two strings.

More features are available with the compose command, which 1is the newer
and more versatile of the two formatting commands. Probably the most important
features that are available only with compose are user control of widow line
processing (i.e., user determines the minimum number of lines at the bottom of
one page and top of the next when a block of text is split) and direct support
of active functions.

11-5 AL40

For complete information on all the control lines and the other
capabilities of the runoff and compose commands, see the MPM Commands.

qgedx EDITOR

The gedx context editor (described in Section VI) can be used to create and
edit ASCII segments in a manner similar to the edm editor (described 1in
Appendix D). However, gedx is a more powerful editor than edm. It honors
global editing requests and supports a virtually unlimited number of buffers.
In addition, the macro capabilities of gedx make it almost a programming
language in itself.

At any one time, one of the gedx buffers is designated as the current
buffer and all others are auxiliary buffers. The user can move information from
one buffer to another, designate any buffer as the current buffer, and check the
status of all the buffers. The wuser can place a frequently used editing
sequence in one buffer and then through a special escape sequence invoke the
contents of this buffer whenever necessary.

The wuser can place elaborate editor request sequences (called macros) into
auxiliary buffers and then use the editor as an interpretive language. In a
sense the macro is a subroutine, and the escape sequence is a call statement.
The qedx editor also allows the user to invoke a qedx macro from command level,
To do this, the user merely places his macro in a segment that has the letters
qedx as the 1last component of its name (e.g., which_check.qgedx or
caps.cmds.qedx). He can then invoke the macro by issuing the qedx command
followed by the appropriate segment name. For example, to invoke the
caps.cmds.qedx macro, the user types:

gedx caps.cmds

A complete description of the qedx editor, including its buffer and macro
capabilities, is given in the MPM Commands.

OURCE URING

Through various commands, each Multics user can check his secondary storage
quota usage; get information (including size, names, and access modes) about his
segments, directories, multisegment files, and links; and print a month-to-date
report of his resource consumption.

There are two commands directly related to secondary storage quotas. The
get_quota command allows the user to get information about the amount of
secondary storage he may use. The move_quota command moves all or part of a
quota between two directories, one of which must be immediately inferior to the
other.

11-6 AL40

Several commands print information about segments, directories,
multisegment files and links. One of these commands, list, is described briefly
in Section V. When the user invokes the list command with different control
arguments, he can get specific kinds of information (e.g., only names, names and
access, only a total count) for all the entries in a particular directory or for
only one kind of entry in the directory (e.g., only segments) or for only
entries having a particular type of entryname (e.g., %% basic for all BASIC
source segments). Another command, status, prints detailed information about a
specific entry (the name of this entry must be supplied as an argument to the
status command). Like the 1list command, status has a variety of control
arguments to enable the user to get only the information he requires (e.g.,
author, bit count, ring brackets).

The user can issue the resource_usage command to print a month-to-date
usage report for his own resources. He cannot issue this command to get
information about any resource usage except his own. Through this command, the
user can check his dollar charges according to shift and queue and also type of
usage (interactive, absentee, or input/output daemon) .

All of these commands are fully described in the MPM Commands.

RING STRUCTURE

As a further refinement of access control (see Section VIII), the system
uses a special capability called the ring structure. This additional degree of
protection, implemented by special hardware, is unique to Multies. Most users
need not be concerned about the rings in which they will be working. Advanced
users who require the use of ring protection for special data bases should see
their project and system administrators.

Many system segments on Multics execute as part of a process, making calls
and returns unknown to the user. These system segments must be protected from
unauthorized modification by user segments. This protection 1is achieved by
grouping segments into rings. Multics operation is controlled in such a way
that procedure segments execute in a number of mutually exclusive subsets.
These subsets may be considered concentric rings of privilege, representing
different levels of memory access rights. The innermost or supervisor ring is
made up of those segments essential to all users. This innermost ring,
designated as ring 0, represents the highest level of privilege. The outermost
ring, designated as ring 7, has the lowest level of privilege.

A procedure segment in an outer ring can call or pass data to, but cannot
modify, a procedure segment in an inner ring. Normally, a procedure segment in
an outer ring cannot access data in an inner ring. Within user-imposed
limitations, an inner-ring segment can modify a segment in an outer ring. Every
attempted access of one segment by another is checked for proper user access and
for the ring of the referencing procedure segment to prevent invalid
modification. The Multics ring-handling mechanism is enforced at the hardware
level.

The ring structure capability permits the ready construction of protected
data bases. In such a data base, privileged users could be given the ability to
read detailed information while nonprivileged users could receive only
summarizations of the information. For example, a management information system
could be developed that would allow management to designate which data and
procedures could be accessible to different levels of personnel.

For more information about the ring structure, refer to Section VI of the
MPM Reference Guide under "Intraprocess Access Control."

1=7 ALY40

SETTING SEARCH CRITERIA

Whenever the user issues a command or references a program, the system must
search through directories to find the specified command or program. The search
is regulated; that is, certain specified search rules are followed by the
system.

The default search rules (those automatically used by the system) may be
changed and/or supplemented by the user. The set_search_rules command allows
the user to change the default search rules, and the add_search_rules and
delete_search_rules commands allow the user to add or delete search directories
in the default search rules. To check the current search rules, the user can
invoke the print_search_rules command.

Adding another directory to be searched after the working directory is a
convenient way for an entire project to share a group of special programs
peculiar to the work of that project. After a user on the project adds this
special directory to his search rules, he can execute any of the programs in
that directory as easily as he executes system commands. This addition to the
search rules means that each user on the project saves himself the time and cost
of either copying each one of the programs or linking to each one.

The wuser can determine whether a system command or a user-written command
with the same name is to be wused by setting his search rules (refer to
Section 1IV).

All four of the commands governing the search rules are documented in the
MPM Commands.

TERMINAL SETTINGS

A wide variety of terminals can be used to access the Multics system. As
an example of the diversity of terminal types that can be connected to Multics,
consider the following terminals:

Tektronix Model 4012
Trendata Model 1000
GE TermiNet 1200

DTC 300 Series

A complete list of supported terminals would be inaccurate before it could be
published since new ones are constantly being added to the group. Basically,
Multics supports any Teletype model, the IBM 2741 and all its imitations, any
general ASCII device, and display types of terminals.

Once a terminal is connected to the Multics system, the user is free to
modify the terminal type associated with this terminal and/or the modes
associated with terminal input/output by using the set_tty command. With this
command the user can set various modes to effect certain terminal actions. Some
examples are to make the terminal do any of the following: "echo" a carriage
return when a linefeed is typed or vice versa; use full duplex (allows terminal
to transmit and receive simultaneously); reprint the input line interrupted by
output, such as a message from another user; hold output, such as a message
from another user, until the user finishes the input 1line being typed. In
addition, the wuser can set the delay timings (e.g., the number of delay
characters that are output following a vertical tab or formfeed), specify the
character-delete and 1line-delete symbols, and print the modes or delays
currently in effect.

11-8 ALY40

For a complete description of these and other functions of +the set_tty
command, refer to the MPM Commands.

walk_subtree COMMAND

The walk_subtree command is used to execute a specified command line in a
specified directory and in all directories inferior to the specified directory.
Through various options, the user can state the first and last levels at which
the command line should be executed, or he can have the command line executed in
the lowest level directory first.

The walk_subtree command is an especially convenient way to 1list certain
segments in a group of directories (for example, to list all of a user's runoff
segments in all of his directories). Refer to the MPM Commands for a complete
description of this command.

RD PRO SING LITIE

Multics has a number of word processing tools that are collectively called
WORDPRO. The WORDPRO subsystem assists users in the preparation and maintenance
of online documents, gives users a list processing tool, and provides users with
electronic mail (the mail and send_message commands described in Section IX).

In the document :preparation area, WORDPRO offers several facilities
including shorthand, so users need less keystrokes to accomplish tasks, and
dictionaries, so spelling and consistency are checked automatically. Editing
and text formatting facilities are also included (see the qedx description in
Section VI and "Producing Manuscript Format" earlier in this section).

With the list processing tool, users first put lists of information online
and then manipulate this information with various commands. For example, users
can sort all the information according to any of the fields (such as address,
last name, geographic area, job category, last order date, etc.), or select
certain fields for printing, or combine lists of information. In addition, the
list processing facility can be used to produce reports and form letters and
distribute information.

11-9 ALU4O

APPENDIX A

GLOSSARY

access attributes
See access modes below.

access modes
Identify the kinds of access which may be set for 'a segment or directory.
The access modes for segments are read (r), write (w), execute (e), and
null (n). Those for directories are status (s), modify (m), append (a),
and null (n). See Section VIII for more information.

access control list (ACL)
Describes the access modes associated with a particular segment or
directory. The ACL is a list of user identifications and respective access
modes. It is kept in the directory that catalogs the segment or directory.

"carriage return"
A term meaning that the typing mechanism moves to the first column of the
next line. See newline below.

command level
A term used to indicate that lines input from a user's terminal are
interpreted by Multics as a command (i.e., the line is sent to the command
processor). A user is at command level when he logs in, when a command
completes or encounters an error, or when the user stops command execution
by issuing a quit signal. Command level is indicated by a ready message.

component
A logical part of an entryname. Entryname components are separated by a
period (e.g., data_base is the second component of the entryname

random.data_base.pll).

daemon
One of several system processes that perform such tasks as process
creation, backup, and printing segments on a line printer.

directory
A segment that contains information about other segments such as access
attributes, names, and bit count.

directory (home)
The directory under which the user logs 1in. Usually this directory is
named:
>udd>Project_id>Person_id

This directory is also known as the initial working directory.

A-1 ALY40

directory (working)
The directory wunder which the user is doing his work. Often the working
directory is also the home directory. (This 1is always true at 1log-in
time.) The wuser may redefine his working directory by use of the
change_wdir command.

entryname
The name by which a segment is cataloged in a directory. The entryname may
contain more than one component.

equal convention
A method used by many commands to specify one or more characters in an
entryname or, more often, a group of entrynames, by using a name that
contains an equal sign (=). See Appendix B for more information.

info segments
The segments whose contents are printed by invoking the help command.
These segments give information about various commands and subroutines as
well as general information about the system.

link
A name in a directory that points to an entry in another directory. A link
enables a user to access a segment without using the normal search rules;
i.e., given proper access permission, he may specify the segment by
entryname (as though it were cataloged in the working directory) without
actually having to make a copy of the segment. This is one of the ways in
which Multics facilitates sharing.

newline

A term used to indicate that the typing mechanism moves to the leftmost
column of the next line. On Multics, this action is the result of the
ASCII linefeed character (octal code 012). The terminal type determines
which key(s) the user presses to perform the equivalent action (e.g.,
RETURN, LINE SPACE, or NL).

page (also known as record)
A unit of storage in Multics. A page contains 1024 36-bit words (4096
characters).

pathname
A character string that specifies a segment by its position in the storage
system hierarchy. The pathname can be absolute or relative (see below).

pathname (absolute)
A pathname that identifies a specific segment with a name beginning at the
root and continuing "down" to the specific segment.

pathname (relative)
A pathname that identifies a specific segment with a name beginning at the
current working directory rather than the root.

Person_id
An identification code under which a particular user is registered on the
system. It 1is wusually some form of the user's name and contains both
uppercase and lowercase characters. It may not contain blank characters.

Project_id
An identification code wunder which a particular project is registered on
the system.

A-2 ALY40

quit signal
The means by which users may interrupt Multics from processing a program or
command lines. The quit signal is invoked by pressing the ATTN, INTERRUPT,
BRK, or QUIT key on the terminal; Multics responds with a ready message.

ready message
A message that is printed each time the user is at command level,

indicating the system is "ready" to accept another command.

segment
The basic unit of information within the Multics storage system. Each
segment has access attributes, at least one name, and may contain data,
programs, or be null.

star convention
A method used by many commands to specify a group of segments and/or
directories by using one name that contains an asterisk (¥*). See

Appendix B for more information.

suffix
The last component of an entryname; it usually specifies the segment type
(e.g., xxx.basic is a segment containing BASIC source code).

User_id (user identification)
An access control name used to identify a user or group of users. It is a
three-component name of the form Person_id.Project_id.tag; since the tag
portion is rarely given, the term User_id 1is often defined as a
Person_id.Project_id pair.

A-3 AL4O

'y

APPENDIX B

STORAGE SYSTEM AND COMMAND CONVENTIONS

This appendix briefly covers several Multics conventions that have been
established for command names, command lines, arguments, and segment names.
(Many of these conventions are described in Section III. Complete descriptions
of these conventions are given in the MPM Reference Guide.) These conventions
apply to most commands. However, some commands do not accept some conventions.
Deviations are noted in the individual command descriptions in the MPM Commands.

MMAND NAME VENTIONS

Command names never contain blanks. Commands that incorporate two or more
words use an underscore (_) to separate words. Commands never have trailing
underscores. (However, the majority of Multics subroutines do.) Most commands
have an abbreviated name; the user may invoke the command by typing either the
abbreviation or the full name. (This abbreviated name is independent of the
abbreviation facility described in Section XI.)

INE A I

A command line consists of at least one command name and is terminated by a
newline, i.e., the ASCII character whose octal code is 012. (Depending on the
terminal, the proper key to use could be LINE SPACE, RETURN, or NL for newline.)
The newline is a signal to Multics to begin action on the typed command. Two or
more commands (with or without arguments) separated by semicolons may be typed
on a single line.

Commands do not always require arguments. When they do, arguments are
separated from the command name (and from each other) by one or more spaces. An
argument may contain blanks if it is enclosed in quotes (e.g., "Tom Smith").

If a command requires a specific number of arguments, failure to provide
the proper number may result in incomplete or incorrect action. In such cases,
an error message is printed followed by a ready message. For many commands, the
order in which arguments are typed is significant.

Control arguments for a command start with a hyphen (-) in order to
differentiate between other arguments and to avoid ambiguity. A control
argument specifies some modification to the type of action performed. In most
cases the order of these arguments is unimportant.

B-1 AL40

PATHNAMES
se o h lute P nam

Most commands require an argument in the form of a pathname to specify the
segment on which the command will act. The name that uniquely identifies a
segment among all other segments in Multics is called an absolute pathname.
The absolute pathname is used when a relative pathname is awkward to use; e.g.,
the specified segment is not located "near" the user's working directory.

f the Relati Pathn

Relative pathnames are often used instead of absolute pathnames because
they are shorter and thus more convenient to type. They are relative to the
user's working directory rather than to the storage system root. Relative
pathnames do not begin with the greater-than character, although they can
contain the greater-than character.

Often it is easier to redefine the working directory than to type absolute
pathnames as arguments. Most users redefine their working directories (using
the change_wdir command) in order to be able to use relative pathnames. They
need to be sure that they have access to segments in these directories, however.

ENTRYNAME

The simplest form of relative pathname is called an entryname. For
example,

alg.pli
is a relative pathname for >udd>ProjA>TSmith>alg.pl1 if the working directory is
>udd>ProjA>TSmith.

Each segment and directory may have more than one entryname. Usually, the
user assigns a short entryname for typing convenience. For example, the
entryname shown above, alg.pll, could be the short name for an entryname like
algorithm_test.pl1.

LONGER RELATIVE PATHNAMES

A longer relative pathname might be:
games>tic_tac_toe

where games is cataloged in the user's working directory, and tic_tac_toe is
cataloged in games directory.

B=-2 AL40

NAMING CONVENTIONS FOR MULTIPLE COMPONENT ENTRYNAMES

An entryname, the name by which a segment is cataloged in a directory, may
not contain greater-than or less-than characters and should not contain other
special symbols such as asterisk or equals characters. Also, entrynames
containing blanks should be avoided since the command language uses blanks to
delimit command names and arguments. Many entrynames have several components,
separated by periods. By convention, entrynames for source programs in Multics
have as the last component the name of the language in which they are written.

SPECIAL SYMBOLS

Less-Than Character

Less-than characters may take the place of directory names in a relative
pathname. Each less-than character, like each greater-than character, denotes a
hierarchy level; however, each less-than character indicates one level <(one
directory) back up the hierarchy, starting at the working directory and going up
toward the root.

For example, in Figure BE-1, if the working directory 1is TSmith, the
absolute pathname for segment "a" would be:

>udd>ProjA>Rolf>a

A much briefer name, using the less-than character is:

<Rolf>a

where "<" represents the ProjA directory (one level back up the hierarchy from
the TSmith directory), and the Rolf directory "catalogs" segment a.

Star Convention

The star convention is wused by standard Multics commands to reference
groups of segments and/or directories. If an asterisk is used for one component
of an entryname, the command matches any name in that particular component
position. For example,

¥ pl1
matches any two-component entryname whose second component is pl1. And,

* % red

matches any three-component entryname whose third component is red.

B-3 AL40

root

udd sss

ProjA

TSmith Rolf

myd

Figure B-1. Sample Hierarchy -

B-4 AL40

2N

A double asterisk may be used to match any number of components (including
none). For example, if the user wants a list of all the segments in his working
directory with "blue" as the first component, he types:

list blue.*#*

then, no matter how many other components exist in the entryname (including
none), the command considers them a "match":

blue
blue.red
blue.x.y
blue.x.y.z.n

Another more common example of the use of the double asterisk with the list
command is to list all entries of a certain type, for example all FORTRAN source
program segments or all gedx macro segments. To get a 1list of all FORTRAN
source program segments in the current directory, the user types:

list *¥*, fortran
for the qedx macro segments, the user types:

list *¥* gedx

The double asterisk may also be used to designate all entries in the
specified directory. For example, to give read permission to Jane Doe for every
segment in his current working directory, the user types:

set_acl *¥* r JDoe

Not all commands implement the star convention. The user should consult
the MPM Commands under the proper command before using the star convention.

Equal Convention

The equal sign (=) is used by standard Multics commands in the second of a
pair of arguments to indicate equivalency with the same component position in
the first argument. For example, if the user types:

add_name add_index_info.pl1 aii.-=
the command interprets the second argument as aii.pl1. Thus, the segment may

now be referenced as either add_index_info.pl1 or aii.pl1.

Many users find that they use the double equal sign (== more often than
the single equal sign. The double equal sign component of an entryname
represents all components in the first argument that have no corresponding
component in the second argument (the one containing the =z). For example, if
the user types:

add_name random_figures.data_base.pll random.==

the command interprets the second argument as random.data_base.pl1 and adds that
name to the segment.

B-5 ALY0

The real power of the equal convention is most evident when it is used with
the star convention. For example, by typing:

add_name ¥*%¥* basic ==old_basic
the user adds names to all segments in his current working directory that have a
last component of basic. The added name is the same as the original except that
the basic suffix becomes old_basic (e.g., compacts.gas_data.basic would also
have the name compacts.gas_data.old_basic). As another example, typing:

rename ¥*¥ _data_base.pll ==.db.=
changes the names of all segments in the current working directory that end in

data_base.pll so they now end in db.pl1; everything else in the names 1is the
same (e.g., random.data_base.pll would become random.db.pl1).

Not all commands implement the equal convention. The user should consult
the MPM Commands under the proper command before using the equal convention.

B-6 ALY40

APPENDIX C

REFERENCE TO COMMANDS BY FUNCTION

All of the Multics commands described in the MPM Commands are arranged here
according to function and are briefly described in terms of their function. The
Multics command repertoire is divided, according to the command function, into
the following 17 groups:

Access to the System

Storage System, Creating and Editing Segments
Storage System, Segment Manipulation

Storage System, Directory Manipulation

Storage System, Access Control

Storage System, Address Space Control

Formatted Output Facilities

Language Translators, Compilers, Assemblers, and Interpreters
Object Segment Manipulation

Debugging and Performance Monitoring Facilities
Input/Output System Control

Command Level Environment

Communication Among Users

Communication with the System

Accounting

Control of Absentee Computations

Miscellaneous Tools

Since many commands can perform more than one function, they are listed 1in
more than one group.

Detailed descriptions of these commands, arranged alphabetically rather
than functionally, are given in the MPM Commands. In addition, many of the
commands have online descriptions, which the user may obtain by invoking the
help command as described in Section V.

Access to the System

(preaccess requests) used to inform system of special terminal
attributes

dial connects an additional terminal to an

) existing process

enter connects an anonymous user to the system

enterp (used at dialup only)

login connects registered user to the system (used
at dialup only)

logout disconnects user from the system

AL4O

(@]
[}
N

St Syst Creati | Editi S

adjust_bit_count
compare_ascii

edm

indent
program_interrupt
qgedx

runoff

runoff_abs
set_bit_count

sort_seg

adjust_bit_count
archive

compare
compare_ascii
copy

copy_file

create
delete

delete_force

link

move

set_bit_count
sort_seg
truncate

unlink
vfile_adjust

sets bit count of a segment to 1last nonzero
word or character

compares ASCII segments, reporting
differences

allows inexpensive, easy editing of ASCII
segments

indents a PL/I source segment to make it more
readable

provides for command reentry following a quit
or an unexpected signal

allows sophisticated editing, including macro
capabilities

formats a text segment according to internal
control words

invokes the runoff command in an absentee job

sets the bit count of a segment to a
specified value

sorts ASCII segments according to ASCII
collating sequence

sets bit count of a segment to last nonzero
word or character
packs segments together to save physical

storage

compares segments word by word, reporting
differences

compares ASCII segments, reporting
differences

copies a segment or multisegment file and its
storage system attributes

copies records from an input file to an
output file

creates an empty segment

deletes a segment or multisegment file and
questions user if it is protected

deletes a segment or multisegment file
without question

creates a storage system 1link to another
segment, directory, link, or multisegment
file

moves segment or multisegment file and its
storage system attributes to another
directory

sets the bit count of a segment to a
specified value

sorts ASCII segments according to ASCII
collating sequence

truncates a segment to a specified length

removes a storage system link

adjusts structured and unstructured files

S s D] : Manipulati

add_name

create_dir
delete_dir

adds a name to a segment, directory, link, or
multisegment file

creates a directory

destroys a directory and its contents after
questioning user

c=2 AL4O

~

N

delete_name
fs_chname
link

list

rename
safety_sw_off
safety_sw_on

status

unlink
vfile_status

Storage System, Access Control

check_iacl
copy_acl
copy_iacl_dir
copy_iacl_seg
delete_acl
delete_iacl_dir
delete_iacl_seg
list_accessible

list_acl
list_not_accessible

list_iacl_dir
list_iacl_seg
set_acl
set_iacl_dir

set_iacl_seg

add_search_rules
attach_1lv

change_default_wdir
change_wdir
delete_search_rules
detach_1lv

removes a name from a segment, directory,
link, or multisegment file

renames a segment, directory, link, or
multisegment file, bypassing naming
conventions

creates a storage system 1link to another
?egment, directory, link, or multisegment

ile

prints directory contents

renames a segment, directory, link, or
multisegment file

turns safety switch off for a segment,
directory, or multisegment file

turns safety switch on for a segment,
directory, or multisegment file

prints all the attributes of an entry in a
directory

removes a storage system link

prints the apparent type and 1length of
storage system files

compares segment ACLs with the initial ACL

copies ACL from segment or directory

copies a directory initial ACL

copies a segment initial ACL

removes an ACL entry

removes an initial ACL for new directories

removes an initial ACL for new segments

lists segments and directories with a given
access condition

prints an ACL entry

lists segments and directories to which user
does not have a given access condition

prints an initial ACL for new directories

prints an initial ACL for new segments

adds (or changes) an ACL entry

adds (or changes) an initial ACL for new
directories

adds (or changes) an initial ACL for new
segments

Storage System, Address Space Control

allows users to change (insert) search rules
‘dynamically

calls the resource control package to attach
a logical volume

sets the default working directory

changes the working directory

allows users to delete current search rules

detaches 1logical volumes attached by the
resource control package

C-3 AL40

get_system_search_rules
initiate

list_ref_names

newv_proc

print_default_wdir
print_proc_auth

print_search_rules

print_translator_search_rules
print_wdir

set_search_rules
set_translator_search_rules
terminate

terminate_refname
terminate_segno
terminate_single_refname
where

F tted Output Faciliti

cancel_daemon_request
dprint

dpunch
dump_segment
list_daemon_requests

print
runoff

runoff_abs

prints definitions of site-defined search
rule keywords

adds a segment to the address space of a
process

prints all names by which a segment is known
to a process

creates a new process with a new address
space

prints name of default working directory

prints access authorization of the current
process and current system privileges

prints names of directories searched for
segments referenced dynamically

prints current translator search rules

prints name of current working directory

allows users to modify search rules

sets translator search rules

removes a segment from process address space

uses current search rules to locate and print
pathname of a segment

cancels a previously submitted daemon request

queues a segment or multisegment file for
printing on the high-speed printer

queues a segment or multisegment file for
card punching

prints segment contents in octal, ASCII, or
BCD

prints 1list of print and punch requests
currently queued

prints an ASCII segment

formats a text segment according to internal
control words

invokes the runoff command in an absentee job

apl
basic
bind

cancel_cobol_program

cobol
display_cobol_run_unit

fast
format_cobol_source

fortran
fortran_abs
indent
new_fortran

old_fortran
pl1

invokes the APL interpreter

compiles BASIC programs

packs two or more object segments into a
single executable segment

cancels one or more programs in the current
COBOL run unit

compiles COBOL programs

displays the current state of a COBOL run

unit

allows user to enter FAST subsystem

converts free-form COBOL source to
fixed-format COBOL source

invokes the site's "standard" FORTRAN
compiler

invokes the site's "standard" FORTRAN

compiler in an absentee job

indents a PL/I source segment to make it more
readable

invokes the new FORTRAN compiler

invokes the old FORTRAN compiler

compiles PL/I programs

Cc-4 ALY4O

D

pl1_abs
profile

gedx

run_cobol
runoff

runoff_abs
set_cc

stop_cobol_run

ment Mani ation
archive
bind
in nd P m M

change_error_mode
cumulative_page_trace
debug
display_plilio_error
dump_segment

general_ready
page_trace

probe
profile

progress
ready
ready_off
ready_on

repeat_query

reprint_error
trace

trace_stack

Input/Output System Control

assign_resource
cancel_daemon_request

close_file
console_output
copy_cards
copy_f~file

invokes the PL/I compiler in an absentee Jjob

prints information about execution of
individual statements within program

allows sophisticated editing, including macro
capabilities

executes a COBOL run unit in a main program

formats a text segment according to internal
control words

invokes the runoff command in an absentee job

sets the carriage control transformation for
FORTRAN files

terminates the current COBOL run unit

packs segments together to save physical
storage

packs two or more object segments into a
single executable segment

adjusts 1length and content of
condition messages

accumulates page trace data

permits symbolic source language debugging

displays diagnostic information about PL/I
I/0 errors

prints segment contents in octal, ASCII, or
BCD

allows user to format ready messages

prints a history of system events within
calling process

permits program debugging online

prints information about execution of
individual statements within program

prints information about the progress of a
command as it is being executed

prints the ready message: a summary of CPU
time, paging activity, and memory usage

suppresses the printing of the ready message

restores the printing of the ready message

repeats the last query by the command_query_
subroutine

reprints an earlier system condition message

permits the user to monitor all <calls to a
specified set of external procedures

prints stack history

system

assigns peripheral equipment to user

cancels a previously submitted print or punch
request

closes open PL/I and FORTRAN files

restores terminal output to the terminal

copies card decks read by I/0 Daemon

copies records from an input file to an
output file

C-5 ALY4O

display_pllio_error
dprint
dpunch

file_output
io_call

line_length
list_daemon_requests
list_resources

print

print_attach_table

print_request_types
set_cc

set_tty
unassign_resource

vfile_adjust
vfile_status

Command Level Environment

abbrev
add_search_rules

answer
change_default_wdir
change_error_mode

change_wdir
console_output
delete_search_rules
do

exec_com

fast
file_output
if
general_ready
get_com_line

get_system_search_rules

line_length
memo
new_proc

print_default_wdir
print_search_rules

print_translator_search_rules

print_wdir

displays diagnostic information about PL/I
I1/0 errors

queues a segment or multisegment file for
printing on the high-speed line printer

queues a segment or multisegment file for
card punching

directs terminal output to a file

allows direct calls to input/output system
entries

allows users to control maximum length of
output lines

prints 1list of print and punch requests
currently queued

lists peripheral equipment assigned to user

prints an ASCII segment

prints list of current input/output system
switch attachments)

prints available I/0 Daemon request types

sets the carriage control transformation for
FORTRAN files

prints and sets modes associated with user's
terminal

unassigns peripheral equipment assigned to
user

adjusts structured and unstructured files

prints the apparent type and 1length of
storage system files

allows user-specified abbreviations for
command lines or parts of command lines

allows users to change (insert) search rules
dynamically

answers questions normally asked of the wuser

sets the default working directory

adjusts 1length and content of system
condition messages

changes the working directory

restores terminal output to the terminal

allows users to delete current search rules

expands a command line with argument
substitution

allows a segment to be treated as a 1list of
executable commands

allows user to enter FAST subsystem

directs terminal output to a file

conditionally executes a command line

allows user to format ready messages

prints the maximum length of the command line

prints definitions of 'site-defined search
rule keywords

allows users to control maximum length of
output lines

allows users to set reminders for later
printout

creates a new process with a new address
space

prints name of default working directory

prints names of directories searched for
segments referenced dynamically

prints current translator search rules

prints name of current working directory

C-6 AL4O

N

program_interrupt
ready

ready_off
ready_on

release
repeat_query
reprint_error

set_com_line
set_search_rules

set_translator_search_rules

start

accept_messages
defer_messages

delete_message
immediate_messages

mail

print_auth_names
print_messages
send_message
send_message_acknowledge
send_message_express
send_message_silent

who

Communi . ith the S n

check_info_segs
help
how_many_users
print_motd

who

Accounting

get_quota
move_quota

resource_usage

provides for command reentry following a quit
or an unexpected signal

prints the ready message: a summary of CPU
time, paging activity, and memory usage

suppresses the printing of the ready message

restores the printing of the ready message

discards process history retained by a quit
or an unexpected signal interruption

repeats the last query by the command_query_
subroutine

reprints an earlier system condition message

sets the maximum length of the command line

allows users to modify search rules

sets translator search rules

continues process at point of a quit or an
unexpected signal interruption

initializes the process to accept messages
immediately

inhibits the normal printing of received
messages

deletes messages saved in user's mailbox

restores immediate printing of messages

prints or sends mail

prints names of sensitivity levels and access
categories for an installation

prints any pending messages

sends message to specified user

sends message and acknowledges its receipt

sends message only if user will receive it
immediately

sends message but does not acknowledge its
receipt

prints 1list of users and absentee Jjobs
currently logged in

checks information (and other) segments for
changes

prints special information segments

prints the number of logged-in users

prints the portion of the message of the day
that changed since last printed

prints 1list of users and absentee Jjobs
currently logged in

prints secondary storage quota and usage

moves secondary storage quota to another
directory

prints resource consumption for the month

c-7 ALY4O

control of Absentee Computations

cancel_abs_request

enter_abs_request
fortran_abs

how_many_users
list_abs_requests

pli_abs

runoff_abs
who

Miscellaneous Tools

calc
decode
encode
memo

progress

walk_subtree

cancels a previously submitted absentee job

request

adds a request to the absentee job queue
invokes the site's "standard" FORTRAN

compiler in an

absentee job

prints the number of logged-in users

prints 1list of

absentee job requests

currently queued
invokes the PL/I compiler in an absentee job

invokes the runoff
prints 1list of

command in an absentee job

users and absentee jobs

currently logged in

performs specified
deciphers segment,
enciphers segment,

calculations
given proper coding key
given a coding key

allows users to set reminders for later
printout

prints information about the progress of a
command as it is being executed

executes a command line in all directories
below a specified directory

c-8 AL40

APPENDIX D

MULTICS edm EDITOR

?he edm command, which is a simple Multics context editor, is used for
creating and editing ASCII segments. To invoke edm, the user types:

edm pathname

where pathname identifies the segment to be either edited or created.

The edm editor operates in one of two principal modes: edit or input. If
pathname identifies a segment that is already in existence, edm begins in edit
mode. If pathname identifies a segment that does not exist, or if pathname is
not given, edm begins in input mode. The user can change from one mode to the
other by issuing the mode change character: a period (followed by a "carriage
return") when this is the only character on a line. For verification, edm
announces its mode by responding "Edit." or "Input." when the mode is entered.

The edm requests assume that the segment consists of a series of lines and
has a conceptual pointer to indicate the current line. (The "top" and "bottom"
lines of the segment are also meaningful.) Some requests explicitly or
implicitly cause the pointer to be moved; other requests manipulate the 1line
currently pointed to. Most requests are indicated by a single character,
generally the first letter of the name of the request; for these requests only
the single character is accepted by edm to initiate the corresponding action.

BEQUESTS

Various edm requests and their indicators are listed below. Detailed
descriptions of these requests are given later in this section. This list does
not include all of the edm requests; it identifies only those requests that the
new user will need as he begins using Multics. For a complete 1listing and
description of all the edm requests, see the MPM Commands.

- backup

= print current line number

’ comment mode
. mode change
b bottom

d delete

f find

i insert

k kill

D-1 AL40

1l locate

n next

p print

q quit

r retype

s substitute

t top

v verbose

w write
GUIDELINES

The following list offers helpful suggestions about the use of edm for the

new user.

1. It is useful to remember that the editor makes all changes on a copy
of the segment, not on the original. Only when the user issues a w
(write) request does the editor overwrite the original segment with
the edited version. If the user types q (quit) without a preceding w
(write), the editor warns him that editing will be 1lost and the
original segment will be unchanged, and gives him the option of
aborting the request.

2. The user should not issue a quit signal (press ATTN, BRK, INTERRUPT,
etc.) while in the editor unless he is prepared to lose all of the
work he has done since the last w (write) request. However, if a quit
signal is issued, the user may return to edm request level without
losing his work by issuing the program_interrupt command.

3. If the user has a lot of typing or editing to do, it is wisest to
occasionally issue the w request to ensure that all the work up to
that time is permanently recorded. Then, if some problem should occur
(with the system, the telephone line, or the terminal), the user loses
only the work done since the last w request.

y, The user should be sure that he has switched from input mode to edit
mode before typing editing requests, including the w and q requests.
If he forgets, the editing requests are stored in the segment, instead
of being acted upon. The user then has to locate and delete them.

5. As the user becomes more familiar with the use of edm, he may conclude

that it provides verification responses more often than necessary,
thus slowing him down. He may use the k request to "kill" the
verification response. However, once the user feels confident enough
to use the k request, he is probably ready to begin using the more
sophisticated editor, qedx. The qedx editor provides the user with a
repertoire of more concise and powerful requests, permitting more
rapid work.

D-2 ALY4O

~ /

P

BEQUEST DESCRIPTIONS

The following‘edm requests are the ones that the new user will find most
useful as he begins working on Multiecs. Examples are included to help the new
user see the practical use of the requests.

Backup (-) Request

The backup request moves the pointer backward (toward the top of the
segment) the number of lines specified by the user and prints the line to show
the location of the pointer. For example, if the pointer is currently at the
bottom line of the following:

get list (n1, n2);

sum = nl + n2;

put skip;

put list ("The sum is:", sum);

and the user wants the pointer at the line beginning with the word "sum," he
types:

! =2
sum = nl! + n2;

If the user does not specify a number of lines with the backup request, the
pointer is moved up one line. (Typing a space between the backup request and

"the integer is optional.)

Pri r i ber (=) R

The print current line number request tells the user the number of the line
the pointer is currently pointing to (all the lines in a segment are implicitly
numbered by the system--1, 2, 3,..., n).

Whenever the user wants to check the implicit line number of the current
line, he issues this request and edm responds with a line number.

143

mmen d Requ

When the user invokes the comment mode request, edm starts printing at the
current line and continues printing all the lines in the segment in comment mode
until it reaches the end of the segment or until the user types the mode change
character (a period) as the only entry on a line.

To print the lines in comment mode means that edm prints the line without
the carriage return, switches to input mode, and waits for the wuser's comment
entry for that 1line. When the wuser gives his comment line and a carriage
return, edm repeats the process with the next line.

D-3 ALY40

If the user has no comment for a particular line, he types only a carriage
return and edm prints the next line in comment mode. When the user wants to
leave comment mode and return to edit mode, he types--as his comment--the mode
change character (a period).

Programmers will find that the comment mode request gives them a fast and
easy way to put comments in their programs.

Mode Change (.) Request

The mode change request allows the user to go from input mode to edit mode
or vice versa simply by typing a period as the only character on a line. This
request is also the means by which the user leaves the comment mode request and

returns to edit mode.

For example, when a user finishes typing information into a segment, he
must leave input mode and go to edit mode in order to issue the write (w)
request and save the information.

! 1last line of segment
'
Edit.
!' ' w

Bottom (Q) Request

The bottom request moves the pointer to the end of the segment (actually
sets the pointer after the last line in the segment) and switches to input mode.
This request is particularly helpful when the user has a lot of information to
type in input mode; if he sees some mistakes in data previously typed, he can
switch to edit mode, correct the error, then issue the bottom request and
continue typing his information.

red
oramge
yellow
green

Edit.
1 =2

oramge
! s/m/n/

orange
! b

Input.
! blue

Delete (d) Request

) This request deletes the number of lines specified by the user. Deletion
begins at the current line and continues according to the user's request. For
example, to delete the current line plus the next five lines, the user types:

dé

D-4 ALY40

-

If thg user issues the delete request without specifying a number, only the
current line is deleted. (That is, the user may type either d or di to delete
the current line.)

After a deletion, the pointer is set to an imaginary line following the
}ast deleted 1line but preceding the next nondeleted line. Thus, a change to
input mode would take effect before the next nondeleted line.

Find (f) Request

The find request searches the segment for a 1line beginning with the
character string designated by the user. The search begins at the line
following the current line and continues, wrapping around the segment from
bottom to top, until the string is found or until the pointer returns to the
current line; however, the current line itself is not searched. If the string
is not found, edm responds with the following error message:

edm: Search failed.

If the string is found and the user is in verbose mode, edm responds by
printing the first line it finds that begins with the specified string.

! £ If
If the string is found and the user

When the user types the string, he must be careful with the spacing. A
single space following the find request is not significant; however, further
leading and embedded spaces are considered part of the specified string and are
used in the search.

In the find request, the pointer is either set to the line found in the
search or remains at the current line if the search fails. Also, if the user
issues the find request without specifying a character string, edm searches for
the string requested by the last find or locate (1) request.

Insert (i) !

The insert request allows the user to pléce a new line of information after
the current line.

If the user invokes the insert request without specifying any new text, a
blank line is inserted after the current line. If the user types text after the
insert request, he must be careful with the spacing. One space following the
insert request is not significant, but all other leading and embedded spaces
become part of the text of the new line.

D-5 ALY4O

For example, if the pointer is at the top line of the following:

sum = nl + n2;
put list ("The sum is:", sum);

and the user issued the following insert request:
i put skip;
the result would be:

sum = nl + n2;
put skip;
put list ("The sum is:",sum);

If the user wants to insert a new line at the beginning of the segment, he
first issues a top (t) request and then an insert request.

The kill request suppresses the edm responses following the change (c),
find (f), locate (1), next (n), or substitute (s) requests. To restore
responses to these requests, the user issues the verbose (v) request.

It is recommended that the new user pot use the kill request until he is
thoroughly familiar with edm. The responses given in verbose mode are helpful;
they offer an immediate check for the user by allowing him to see the results of
his request.

Locate (1) Request

The 1locate request searches the segment for a line containing a
user-specified string. The locate and find (f) requests are used in a similar
manner and follow the same conventions. (Refer to the find request description
for details.) With the find request, edm searches for a line beginning with a
specified string; with the 1locate request, edm searches for a line
containing--anywhere--the specified string.

Next (n) Request

The next request moves the pointer toward the bottom of the segment the
number of lines specified by the user. If the user invokes the next request
without specifying a number, the pointer is moved down one line. When the user
does specify the number of lines he wants the pointer to move, the pointer is
set to the specified line. For example, if the user types:

nl

the pointer is set to the fourth line after the current line. The edm editor
responds, when in verbose mode, by typing the user-specified line.

D-6 AL40

Print (p) Request

The print request prints the number of lines specified by the user,
beginning with the current line, and sets the pointer to the last printed line.
If the user does not specify a number of lines, only the current 1line is
printed.

If the user wants to see the current line and the next three lines, he
types:

! pi
current line
first line after current line
second
third

In edm, every segment has two imaginary null lines, one before the first
text line and one after the last text line. When the user prints the entire
segment, these lines are identified as "No line" and "EOF" respectively.

Quit (g) Request

The quit request is invoked by the user when he wants to exit from edm and
return to command level.

For the user's convenience and protection, edm prints a warning message if
the user does not issue a write (w) request to save his latest editing changes
before he 1issues the quit request. The message reminds the user that his
changes will be lost and asks if he still wishes to quit.

]

q
edm: Changes to text since last "w" request will be lost if you quit;
do you wish to quit?

If the user answers by typing no, he is still in edit mode and can then
issue a write request to save his work. If he instead answers by typing yes, he
exits from edm and returns to command level.

Retype (r) Request

The retype request replaces the current line with a different line typed by
the user.

One space between the retype request and the beginning of the new line is
not significant; any other leading and embedded spaces become part of the new
line. To replace the current line with a blank line, the user types the retype
request and a carriage return.

D-7 AL4O

Substitute (s) Request

The substitute request allows the user to change every occurrence of a
particular character string with a new character string in the number of lines
he indicates. If the user is in verbose mode (in which edm prints responses. to
certain requests), edm responds by printing each changed line. If the original
character string is not found in the lines the user asked edm to search, edm

responds:

edm: Substitution failed.

For example, if the pointer is at the top line of the following:

get list (n1, n2);

sum = nl1 + n2;

put skip;

put list ("The sum is:", sum);

and the user wants to search the next three lines and change the word "sum" to
"total," he types:

! sbi/sum/total/
total = n1 + n2;
put list ("The total is:", total);

The four lines searched by the editor are the current line plus the next
three. (The search always begins at the current line.) If the user does not
specify the number of lines he wants searched, edm only searches the current
line. If the wuser does not specify an original string, the new string is
inserted at the beginning of the specified line(s).

Notice in the example that a slash (/) was used to delimit the strings.
The user may designate as the delimiter any character that does not appear in
either the original or the new string.

Top (t) Reguest

The top request moves the pointer to an imaginary null 1line immediately
above the first text line in the segment. (See the print request description
concerning imaginary null lines in edm.)

An insert (i) request immediately following a top request allows the user
to put a new text line above the "original" first text line of the segment.

Verbose (v) Request

The verbose request causes edm to print responses to the change (c), find
(f), locate (1), next (n), or substitute (s) requests.

Actually, the user does not need to issue the verbose request to cause edm
to print the responses; when he invokes edm, the verbose request is in effect.
The only time the user needs to 1issue the verbose request is to cancel a
previously issued kill (k) request.

D-8 AL4O

-~

Write (w) Request

The write request saves the most recent copy of a segment in a pathname
specified by the user. (The pathname can be either absolute or relative.)

If the user does not specify a pathname, the segment is saved under the
name used 1in the invocation of edm. When saving an edited segment without
specifying a pathname, the original segment 1is overwritten (the previous
contents are discarded) and the edited segment is saved under the original name.

If the user does not specify a pathname and he did not use a pathname when
he invoked edm, an error message is printed and edm waits for another request.
If this happens, the wuser should reissue the write request, specifying a
pathname.

D-9 AL40

s’ N

#

abbrev command
abbreviation processor

absentee

*

see

see

see

see

see

see
see

See

see

see
see
see

see

see

see

see

MISCELLANEOUS

exclamation mark

character deletion

asterisk

double asterisk

hyphen

period
qedx,

special characters
semicolon

less-than character

equal convention
equal sign

print line number gedx request

double equal sign

greater-than character

line deletion

underscore

11-1
11-1

10=-1

INDEX

absentee (cont)
control segment
input segment
job 10-1
job control language

10=-1
10=-1

accept_messages command 9-1, 9-2

access attributes
see access modes

access commands
delete_acl 8-5
list_acl 8-4
matching strategy of
set_acl 8-3

access control 8-1

ACL 8-1, A-1
deleting 8-5
listing 8-4
matching 8-=2
ordering 8-2
ordering rules
setting 8-3

rings 11=7

8-3

access control list (ACL

access modes 8-1, A-1
for directories 8-2
for segments 8-1

accessing Multics
see the login command

ACL
see access control lis

active function 11-1

addressing in qedx 6-3
absolute line number
context 6-4

relative line number

add_search_rules command

administrative operations

see project administra
see system administrat

append gedx request 6-8

10=-1

8-3

) 8-1, A-1

t

6-4
6-4
11-8

tor
or

11=2

AL4O

archive command 11-2

archive segment 11-2

ASCII character set 3-3

asterisk 8-2, B-3

as component in User_id 8-2, 8-3

double B-5

in mail command 9-1
see star convention
see star name

ATTN
see quit signal

batch processing

see absentee
bind command 11-3
bound segment 11-3

BRK
see quit signal

buffer 6-1

capitalization 2-1
card decks 10-2

card punches 10-2

card readers 10-2

carriage return 2-1,

character deletion U4-

characters
ASCII set 3-3
correcting mistyped
lowercase 2-1
uppercase 2-1

command
definition 4-1

command level

A-1
3

4-3

command line conventions

commands
by name

abbrev 11-1

accept_messages 9-1,

add_search_rules

archive 11-=2
bind 11-3
compose 11=5

11-8

2-3, 4-2, A-1

B-1

9-2

commands (cont)

by name
debug T7-2
defer_messages 9-U4
delete_acl 8-5

command line B-1
command name B-1
control argument B-1
equal A-2, B-5

equal with star B-6

delete_search_rules 11-8
dprint 10-2, 11-4
dpunch 10-2, 11-4
enter_abs_request 10-1
exec_com 11-3
file_output 11-4
get_quota 11-6
help 5-3
io_call 11-4
link 11-5
list 5-2, 11-7
list_acl 8-4
login 2-1
logout 2-4
mail 9-1, 9=2
move_quota 11-6
print 5-3
print_messages 9-1, 9-2
print_search_rules 11-8
print_wdir 5-1
probe 7-2, T-4
program_interrupt 4-2, 6-6
qedx 6-1
release U4-2, T7-5
runoff 11-5
send_message 9-3
set_acl 8-3
set_search_rules 11-8
set_tty 11-8
start U4-2, 6-7
status 11-7
trace 7-2
trace_stack T7-2
walk_subtree 11-9
who 9-3
error messages 4-1
format of 4-3
libraries of 4-1
list of C-1
naming conventions of B-1
referenced by function (-1
sample execution of 5-1
syntax of L4-3
system 4-1
user-written 4-1
component A-1
of archive 11-=2
of entryname 3-4
of User_id 8-1
source segment suffix 7-1
compose command 11-5
control cards 10-2
conventions
argument B-1
assigning entrynames 3-3, B-3

AL40

conventions (cont) editing requests (cont)

naming 3-1, 3-3 qedx summary 6-1
star 5-2, 5-4, A-3, B-3
star with equal B-6 edm editor D=1
correcting typing errors 4-3 edm requests
summary D-1
create
mailbox 9-1, 9-2 . enter_abs_request command 10-1
segment
see gedx editor entryname 3-3, A-2, B-2
assigning name 3-3
D entrynames
multiple 3-4
da equal convention A-2, B-5
see the delete_acl command with star B-6
daemon A-1 equal sign
see 1/0 daemon double B-5

see equal convention
debug command T7-2
errors
debugging tools T-2 command error messages 4-1
in user input U4-=3
defer_messages command 9-U4

escape
delete character sequence

character 4-3 \¢ 6-5, 6-13

line 4-3 \f 6-6, 6-8

program execution

delete gedx request 6-12 see quit signal
delete_acl command 8-5 exclamation mark 2-1
delete_search_rules command 11-8 exec_com command 11-3
dialing in

see the login command F

dictionaries 11-9
file_output command 11-U4
directory 3-1, A-1
access modes 8-2 form letters 11-9
home 3-’4’ 3'5’ 5—1, A-1
initial working 3-4, A-1
working 3-3, 3-4, A-2 G

directory hierarchy 3-1
get_quota command 11-6
double asterisk B-5
graphic material 11-4
double equal sign B=5
Graphics System 11-4
dprint command 10-2, 11-4
greater-than character 3-1, 3-3
dpunch command 10-2, 11-4

H
E
help command 5-3
editing
edm D-1 hierarchy
qedx 6-1 directory 3-1
editing requests hierarchy levels 3-1

edm summary D-1

i-3 AL40

home directory 3-4, 3-5, 5-1, A-1

hyphen B=-1

I/0 daemon 10-2

info segment 5-3, A-2
input/output system 11-4
insert qedx request 6-9

instance tag 8-1

INTERRUPT
see quit signal
INTRPT
see quit signal
io_call command 11-4
L

la
see the list_acl command

less-than character

levels of privilege
See access control, rings

line deletion 4-3

link A-2
link command 11-5
list command 5-2, 11-7

list processing 11-9
list_acl command &-4
locate gedx request 6-12
login command 2-1

logout
automatic 2-4

logout command 2-4
lowercase characters 2-1

1ls
see list command

mail command 9-1, 9-2

3-3, B-3

i-4

mailbox 9-1

creation

9-1, 9-2

message of the day 2-3

messages between users 9-2

ml
see

move_quota command

the mail command

11-6

multiple names 3-4

newlin

e 2-1, A-=2

null regular expression 6-6

object

online

program T-1

communication 9-1

P
page A-2
password 2-1, 2-2
changing 2-2
pathname 3-1, A-2
absolute 3-3, 3-4, A-2, B-2
entryname 3-3, B-2
relative 3-3, 3-4, A-2, B-2
period
as component separator 3-4

delimiter for missing component 8-3
in mail command Q-1

in s
Person

pi

_id

end_message command 9-3

2-1, 8-1, 9-1, 9-3, A-2

see the program_interrupt command

pm
see

pr
see
see

print

print

print

the print_messages command
print command

print_wdir command

command 5-3

line number qedx request

qedx request 6-10

printers 10-2

6-11

AL4O

print_messages command 9-1, 9-2
print_search_rules command 11-8
print_wdir command 5-1 ‘
probe command 7-2, 7-4

programming
compiling source program T7-1
debugging
debug command T7-2
probe command 7-2
trace command 7-2
trace_stack command 7-2
environment 7-1
examples 7-3
languages
APL T-1
BASIC T-1
COBOL T7-1
FORTRAN T7-1
PL/I T-1
user-written 7-1
program execution 7-2

program_interrupt command 4-2, 6-6

project administrator 2-1, 2-2, 9-3, .

11=2
Project_id 2-1, 8-1, 9-1, 9-3, A-2

protected data bases
see access control, rings

qedx command 6-1
advanced features 11-6
macro capabilities 11-6

qedx editor 6-1

edit requests

(locate) 6-12

(print line number) 6-11
(delete) 6-12
(print) 6-10
(quit) 6-15
(read) 6-9
(substitute) 6-13
(write) 6-14
escape sequence

LTu30UTAN

. \e 6-5, 6-13

\f 6-6, 6-8
examples of use 6-15
input requests

a (append) 6-8

i (insert) 6-9
requests

(locate) 6-12

= (print line number) 6-11

a (append) 6-b

d (delete) 6-12

format of 6-7

i (insert) 6-9

p (print) 6-10

i-5

qedx editor (cont)
requests
q (quit) 6-15
r (read) 6-9
s (substitute) 6-13
W (write) 6-14

special characters 6-5

$ 6-4, 6-5
& 6-13

* 6-5

. 6-4, 6-5
/ 6-4, 6-5
T 6-5

qedx requests
summary 6-1

QUIT
see quit signal

quit qedx request 6-15

quit signal 4-2, 6-6, 7-4, 7-5, A-3

while in qedx 6-6

gx
see gedx command

read qedx request 6-9

ready message 2-3, 4-2, A-3

after quit signal 4-2
with level number 4§-2

regular expression 6-4, 6-6

null 6-6 .
release command 4-2, 7-5
remote devices 10-2
root directory 3-1, 3-3

runoff command 11-=5

sa
see the set_acl command

search rules 4-2, 11-8

segment 3-1, A-3
access modes 8-1

semicolon B-1
send_message command 9-3
set_acl command 8-3

set_search_rules command

11-8

AL4O

set_tty command 11-8]

shorthand 11-9
underscore B-1

sm .
see the send_message command uppercase characters 2-1
source program T7-1 : ~User_id 8-1, A-3
special characters B-3
exclamation mark 2-1 W
in qedx 6-5 ’
$ 6'“) 6'5
& 6-13 walk_subtree command 11-9
* 6-5 -
. 6=4, 6-5 white space 4-3, 4-4
/ 6=4, 6-5
" 6=5 who command 9-3
in user input
4-3 WORDPRO 11-9
@ 4-3
see asterisk working directory 3-3, 3-4, A-2
see equal sign changing 3-4, 3-5
see greater-than character initial 3-4, 5-1
see less-than character
underscore 3-3 write gedx request 6-14

st
see the start command

star convention 5-2, 5-4, A-3, B-3
with equal B-6

star name 5-2
start command 4-2, 6-7

start_up.ec segment 9-2, 11=3
sample 11-4

status command 11-7
substitute qedx request 6-13
suffix 7-1, A=3

system administrator 2-1, 2-2, 11-2

terminal settings 11-8

terminals _]
supported on Multies 11-8

text processing
compose command 11-5
runoff command 11-5
WORDPRO 11-9

trace command 7-=2

trace_stack command 7-2

typing errors, correcting 4-3

i-6 AL4O

e e . e e e e o . o e e . e e wm we == == CUJT ALONG LINE

e ———— — — — —————— o —— o — o —— — —— e o e =

HONEYWELL INFORMATION SYSTEMS

Technical Publications Remarks Form

ORDER NO.
n7ee| LEVEL 68 MULTICS INTRODUCTORY AL40, REV. 1

]
USERS' GUIDE DATED| JULY 1977

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by appropriate technical personnel and action will be taken D
as required. If you require a written reply, check here and furnish complete mailing address below.

FROM: NAME DATE
TITLE R
COMPANY

ADDRESS

PLEASE FOLD AND TAPE —
NOTE: U.S. Postal Service will not deliver stapled forms

FIRST CLASS
PERMIT NO. 39531
WALTHAM, MA
02154

Business Reply Mail
Postage Stamp Not Necessary if Mailed in the United States

Postage Will Be Paid By:
HONEYWELL INFORMATION SYSTEMS

200 SMITH STREET
WALTHAM, MA 02154

ATTENTION: PUBLICATIONS, MS 486

Honeywell

'\ —— — — —

e e — ____—‘——————-—-——- CUT ALONG LINE’
FOLD ALONG L®NE

&

[

’

FOIO ALONG LINE

- —— - ——

