Honeywell

% #* * #

% % % % % %
L 2 2N 2R 2K X

* % * * %

%* % * %
* % % %
* # * %*
* % * ¥
* ¥ %%

* % * #*
* % * %
% # t X
%% * %
% 3% % % % *

* %

#* %
* %
* %
* %
* %
* %
* %
* #

¥* %
* %% %
* *
* %
% %
* %
* ¥

*k¥

* %

* ¥
* %
* %
* %
* %

SYSTEM DUMP ANALYSIS
PROGRAM LOGIC MANUAL

% 3% % % % %
* %
%* %
* %
% 3 % % % %

% 3% % 3 %
* %
%% %%

* %
% 3% % % % %

RESTRICTED DISTRIBUTION

PREPRINT EDITION

PREPRINT EDITION

O

SYSTEM DUMP ANALYSIS
Honeywell PROGRAM LOGIC MANUAL

SERIES 60 (LEVEL 68) MULTICS

RESTRICTED DISTRIBUTION

SUBJECT:

Guide to Analyzing System Failure and Malfunction

SPECIAL INSTRUCTIONS:

DATE:

This Program Logic Manual (PLM) describes certain internal modules
constituting the Multics System. It is intended as a reference for only
those who are thoroughly familiar with the implementation details of the
Multics operating system; interfaces described herein should not be used by
application programmers or subsystem writers; such programmers and writers
are concerned with the external interfaces only. The external interfaces
are described in the Multics Programmers’ Manual, Commands and Active
Functions (Order No. AG92), Subroutines (Order No. AG93), and Subsystem
Writers®” Guide (Order No. AK92).

As Multics evolves, Honeywell will add, delete, and modify module
descriptions in subsequent PLM updates. Honeywell does not ensure that the
internal functions and internal module interfaces will remain compatible
with previous versions.

This PLM 1is one of a set, which when complete, will supersede the System

Programmers’ Supplement to the Multics Programmers’ Manual
(Order No. AK96).

THE INFORMATION CONTAINED IN THIS DOCUMENT IS THE EXCLUSIVE
PROPERTY OF HONEYWELL INFORMATION SYSTEMS. DISTRIBUTION IS
LIMITED TO HONEYWELL EMPLOYEES AND CERTAIN USERS - AUTHORIZED
TO RECEIVE COPIES. THIS DOCUMENT SHALL NOT BE REPRODUCED OR
ITS CONTENTS DISCLOSED TO OTHERS IN WHOLE OR IN PART.

June 1975

ORDER NUMBER:

AN53, Rev., O

PREFACE

Multics Program Logic Manuals (PLMs) are intended for use by
Multics system maintenance personnel, development personnel, and
others who are thoroughly familiar with Multics internal system
operation. They are not intended for application programmers or
subsystem writers.

The PLMs contain descriptions of modules that serve as
internal interfaces and perform special system functions. These
documents do not describe external interfaces, which are used by
application and system programmers.

Since internal interfaces are added, deleted, and modified
as design improvements are introduced, Honeywell does not ensure
that the internal functions and internal module interfaces will
remain compatible with previous versions. To help maintain
accurate PLM documentation, Honeywell publishes a special status
bulletin containing a 1list of the PLMs currently available and
identifying updates to existing PLMs. This status bulletin is
distributed automatically to all holders of the System
Programmers’ Supplement to the Multics Programmers’ Manual (Order
No. AK96) and to others on request. To get on the mailing 1list
for this status bulletin, write to:

Large Systems Sales Support
Multics Project Office

Honeywell Information Systems Inc.
Post Office Box 6000 (MS A-85)
Phoenix, Arizona 85005

(:) 1975, Honeywell Information Systems Inc. File No.: 2L13

ANS53

W

This PLM is intended for use by those persons who wish to
analyze Multics crashes or various system anomalies. Since
problem analysis of this sort requires a working familiarity with
many parts of the Multics system, it is presumed that the reader
of this PLM has this familiarity. In particular, the following
PLMs should have been read before attempting to understand this
PLM:

Process and Processor Control Order No. AN60
Storage System Order No. AN61
Supervisor Input/Output Order No. AN65
System Initjialization Order No. ANTO
Multiprogramming and Scheduling Order No. ANT73
Bootload Operating System (BOS) Order No. ANTY

The reader is warned at the outset that this manual 1is not
intended to be a complete decision tree over which one may travel
with a dump to arrive at the cause for the crash. Instead, it
lists those items most generally referenced when analyzing a dump
and gives some direction as to where to look next for the cause
of the problem.

The System Debuggers’ Handbook, Order No. AN87, should be
consulted for the detailed formats of status words, control unit
data, fault codes, and other information read or shared by
hardware. Also included therein are some formats peculiar to the
Multics software environment, such as stack frame formats. No
attempt is made to duplicate any of that information in this
manual. That publication is a crucial tool in any attempt at
crash analysis.

The following PLMs are referenced frequently in this manual.
For convenience, their titles are shortened as follows:

System Tools Tools PLM

Storage System Storage System PLM
Supervisor Input/Output Supervisor I1/0 PLM
System Initialization | Initialization PLM
Multiprogramming and Scheduling Multiprogramming PLM
System Debuggers’ Handbook Debuggers” Handbook PLM

Multics requires the use of a Front-End Network Processor
(FNP) to handle two-way information transmission between an IOM
data channel and remote terminals. The FNPs referenced in this
document may be either DATANET 355 Front-End Network Processors
or DATANET 6600 Front-End Network Processors; their use with the
Multics system is completely interchangeable.

iii AN53

Section I

Section II

Section IIT
Section IV

Section V

Section VI

Crash Analysis« .

Major System Data Bases

CONTENTS

Crash Procedures . . . ¢« ¢ v « ¢ «

Returning to BOS
Taking a Dump . . . o o & o
Dumping the In1t1a11zer Process
Processing an fdump

Examination of Reglsters .« .
Layout of Machine Conditions
Stack Header
Stack Frame . . « ¢« ¢« .« o«
Argument List

Crashes with No Message

Crashes with A Message . « « &« « o .

System Segment Table
SST Header . . .
Core Map . . .
Paging Device Map

e o o .
o o . e o o
o o o o o o
o o ® o o o
e o o o o o

Active Process Table
The APTE
Fault Vector
Known Segment Table
Linkage Section .
lock_seg
PDS . . « « 0 4 . .
Data Structure . .
Trace Entry Types

b
SST Analysis Tools

o o . o o .
.« o * o . o o .

. e o o o o .
e o o o . o . e o .

Types of Crashes

LOODPS v v v v v v v e e e e
Page Control Crashes
Attempt to Terminate Inltlallzer

Process . . o o & e .
Teletype DIM Problems o o e e

iv

e o o o o

. e o o * o

e o o o . o o . o o e o o o

o o . e o o

e o o o o o .

e o o o o o

Page

- e e e e
[I I I I | [I I I |
NUTEW - IO ~— -

1 1 1
— —

1
— et e e OCO~J W) ey

(o))

[}
—_
~N O

kﬂU’lUTU'IU'IU'IU‘I\DU’lU'IU'Ikﬂ\lﬂU'IU'IU'I = W PPN

1
N NN
NEN -

[e)Ye)) [e)NeaNe))
1
=W N -

AN53

“\

CONTENTS (cont)

Hardware Problems . . .
Bulk Store Problems
IOM Problems
Disk Problems . . .
Memory Parity Errors

Section VII
Section VIII

check_sst
copy_dump s 4 e e o o s

copy_dump$set_fdump_num

copy_dump$sfdn .
copy_out
copy_salvager_output
dump_pdmap . .
extract
ol_dump . . .
online_dump . . .

od_cleanup . .

. . .

° o . .

pateh_ring_ zero .
print_apt_entry .
print_aste_ptp

online_dump_355, od_355

print_dump_tape
ring zero_dump .
copy_dump_seg_
format_355_dump_line_
format _355_dump_ llne
get_ast_name_
get_dump_ptrs_
od_print_
od_print_$op_fmt_line
od_print_$op_finish
od_print_$op_new_seg
od_print_$op_init .
od_print_$op_new_page
od_stack_
online_355_dump_
print_dump_seg_name_ .. .

print_dump_seg_name_$hard
print_dump_seg_name_$get_pt

System Performance Degradation

.

.

Command and Subroutine Descrlptlons

e o o o o

e o o e o o * » .

* o

e o o o o o

r

. . o e o o . o o . o o

L4 . . . ° ®

e o o e o o

® o o o e © o o o

O

jsV]
8]

o

]
[T
(O IR RO) R g g

]
-

LN N T IO R A A DN N |
FLWa=a200OoNO0OTENMDNNO

!
[NSRACN ARG N AU AP RPN T G g g g o o K L 221 2 BN —{ U¥) wWN -
(o))

G0 00 00 Co ©o OO Co 0o Co 0o GO 0o Co Co Ko e Co Co Co Co Co Co O oo N [ex¥ e NorNe Yo l
11

1
N N
_g o

8-28
8-28
8-30
8-31
8-32
8-32
8-33

AN53

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

(o)) OOV TTUTUTUTUITUITUTUTUTUTUTUI D) =

UL N O A N N N N O R A R B B A |
F WU a0 O~V EWND 2N -

. o o]_).__\o. e o . - . . . - . e o

3

s o o

CONTENTS (cont)

Format of

Format of Machine Conditions .

PL/I Descr
Layout of

Core Map Entry
Paging Device Map Entry . .
Active Segment Table Entry

tc_data .
Ready List
Format of
Format of
Format of
Associatio
Format of
Format of
Format of
Format of
Format of
for DIA
Format of

Wait Event
Trace Type
HSLA Trace

Errors from tty_free . .
Errors from tty_inter . .

Page

ILLUSTRATIONS

DUMP Partition . . .

iptors . . .
System Segment Table

* & o o o o s o
[L B

.

Format e e e e
ITT Message . . .
KSTE . . .-. .
name in KST . . .
n of Name with Link
Lock Entry in lock seg
Lock Array Entry . .
6600 FNP IOM Fault WOrd
Coded Interrupt Word .
Transaction Control Word

1
D= a0 TWOLWW,M

o WaO0O000oEW -

. . e o o
® o o o o . e o o e o o o e . . o

. e o o e o o e o o o o o e o
e o o o o o e o o e o o o o * o o

e o o & o o e o o o o o o o o

.

ét&_t‘)uf‘

[ep¥ e, GOVITUITUTUTUITVTUTUIUTUITUITUI IO) —
—

-~ O

TABLES

Ul

S

Subtypes o o e

e o o o o
e o o o o
. . . L] .
L]
L] . L] . .
e o o o o
e o o o o
OO0\
[I |

- \O OO0

w N

vi AN53

SECTION I

CRASH PROCEDURES

This section covers the information necessary to wunderstand
how Multics crashes (i.e., returns to BOS), how dumps are taken,
and how these dumps are processed.

RETURNING TO_BOS

There are six ways in which Multics can crash. The first,
and most common, way 1is for some type of fatal error to be
discovered by Multics. When this happens, a brief message that
describes the surface cause of the crash (e.g., LOCK NOT EQUAL
PROCESSID) is typed on the operator’s console and then BOS is
reentered. To effect this reentry, syserr (which typed the
message on the operator s console) calls
privileged_mode_ut$bos_and_return. This program picks up the
interrupt pattern called scs$sys_trouble_pattern and executes a
SMIC instruction. The handler for this '"system trouble"
interrupt is the interrupt interceptor ii.

The first task performed by ii is to send system trouble
interrupts to any other processors that may be running. The
other processors take this interrupt and it is processed by ii.
However, ii sets a variable, trouble_processor, in its linkage
section so that when it handles the trouble interrupts on the
other processors, it recognizes this fact and does not get into a
loop sending trouble interrupts.

After the initial processor has informed the other
processors of the impending crash, it saves all the system
controller masks for system controllers for which it is control
processor. In addition, the trouble interrupt machine conditions
on the Processor Data Segment (PRDS) are copied into
trouble_save_data on the PRDS. Both of these save operations are
performed so that Multics may be restarted from BOS with a GO
command. Since this is generally not done in the case of a
crash, no more will be said about it at this time. As each
processor enters ii after receiving the trouble interrupt from

1-1 AN53

the 1initial processor, it saves the masks of system controller
for which it 1is control processor and copies the trouble
interrupt data to trouble_save_data on its PRDS.

Clearly only one processor can return to BOS and this
processor is the bootload CPU. All other processors execute a
DIS instruction in ii. Regardless of which processor is the
initial processor to enter ii, it 1is the bootload CPU that
returns to BOS.

The method used to enter BOS is as follows: the bootload
CPU loops for a while to allow all pending I/0O operations to
quiesce. Since this loop is inhibited, the lockup fault vector

is patched to ignore any lockup faults taken during this loop. i
Once the 1loop 1is completed, the two instructions, an SCU and a

TRA instruction pair, as picked up from location 4 of the BOS
toehold (absolute 1location U4004) are patched into the DERAIL
fault vector. The previous contents of this fault vector are
saved prior to doing so. Finally, a DERAIL instruction is
executed. Since the derail fault vector was patched, the SCU is
done and BOS is entered in absolute mode via the TRA instruction.
(See the Bootload Operating System (BOS) PLM, Order No. ANTY4, for
information about the BOS toehold and the steps taken by BOS when
entered at location 4004.)

The second way that Multics can crash and enter BOS is for
an error to occur that cannot be reported by a syserr message on
the operator’s console. These errors are the arrival of an
interrupt while the processor is using the PRDS as a stack, a
page fault while the processor 1is using the PRDS as a stack,
certain faults while the processor is using the PRDS as a stack,
or a spurious trouble interrupt. More information is provided
later about these errors. When any of the above errors occur,
control goes either immediately to the system trouble code of ii
that was just described, or it gets to this code by the forcing
of a sys_trouble interrupt. 1In either case, BOS is reentered as
described above.

Another way that BOS can be entered is by an execute fault.
An execute fault is caused by the depression of the EXECUTE FAULT
button on any processor maintenance panel. The handler for this
fault is ii and the fault is treated in exactly the same way as a
system trouble interrupt. In addition, the fault data stored by
the execute fault is stored in the same place on the PRDS as the
system trouble interrupt data.

Another way that BOS can be entered is by the manual
execution of an XED instruction at location 4000 octal (the BOS
toehold). The two instructions in the toehold are executed by
placing an 1inhibited XED 4000 in the processor DATA switches
(octal pattern 004000717200). The processor is put in MEM step
mode and then the EXECUTE SWITCHES pushbutton is depressed once
and the STEP button is depressed several times. Then the
processor 1is taken out of MEM step mode and the STEP button is

1-2 AN53

¢

depressed once more to cause the two instructions at 1location
4000, an SCU and TRA, to be executed.

It should be pointed out that of the last two ways mentioned
for entering BOS, the execute fault is the normal way used to
crash the system. This would be done for example when it 1is
noticed that Multies is in 'a loop. The execute fault method
ensures that all processors are stopped via system trouble
interrupts before returning to BOS. The manual XED of location
4000 is used when running only one processor and when it 1is
desired to start Multics again with a BOS GO command after
perhaps doing some patching or dumping of Multics from BOS.

It is also possible to return to BOS in a restartable manner
during initialization, under control of patterns in the processor
DATA switches. This causes the sending of a sys_trouble
interrupt to the bootload CPU from pmut$call_bos. For more
details see the System Initialization PLM, Order No. ANTO.

The final way that BOS can be entered 1is via an explicit
call to hphes_$call_bos, which may be invoked by the Initializer
bos command, or certain failures in administrative ring
initialization. Any sufficiently privileged process can call
this entry from the user ring.

TAKING A DUMP

When BOS is entered at its toehold via any of the six ways
just described, it saves the state of the processor and all live
registers. In addition, it copies the first 40000 octal
locations of the low-order memory to the BOS partition on disk so
that most BOS commands can run without destroying the Multics
core image. It should be noted that some BOS commands will
destroy the Multics core image (i.e., use memory above location
40000). These BOS commands should not be run if it is desired to
preserve the Multics core image. These commands are LD355, SAVE,
RESTOR, TEST, and LOADDM. If it is necessary to run one of these
commands and yet still preserve the Multics core image, the BOS
commands CORE SAVE and CORE RESTOR can be used to save the
Multics core image on tape. See the BOS PLM for details.

There are two primary ways to dump Multies. The first way
is to use the BOS DUMP command as described in the BOS PLM. The
DUMP command dumps various segments of one or more processes to
either the 1line printer or tape. The BOS DMP355 command can be
used to dump the DATANET 6600 Front-End Network Processor (FNP)
on the printer or tape. This, of course, 1is a rather
time-consuming process and 1lengthens the time involved in
bringing the system up again after a crash. There are, however,
times when this must be done. Most typical 1is the case where
Multies crashes before the previous FDUMP command (see below) has
been processed. In this case, the most reasonable alternative
would be to take a dump on tape. This tape can be printed after

1-3 AN53

bringing Multies back up by using the print_dump_tape (pdt)
command. The print_dump_tape command is described in Section
VIII.

The more usual procedure for taking dumps is to use the BOS
FDUMP (Fast DUMP) command. FDUMP writes the Multics "core image"
out to the DUMP partition on disk. The dump is preceded by a
small directory that describes where to find various segments.
The term "core image" is used inexactly in this case. What
actually happens 1is that the FDUMP command scans the Active
Process Table (APT) (described partially in Section V and more
completely in the Multiprogramming PLM, and dumps all processes
that are in the running state, have the dbr_loaded bit on in
their Active Process Table Entry (APTE), or have the stop_pending
bit on in their APTE. If FDUMP 1is <called with the SHORT
argument, those processes with the dbr_loaded bit on in their
APTE (usually one per processor) are dumped in the normal fashion
(i.e., all write permit segments are dumped) and all other
processes have their descriptor segment, Process Data Segment
(PDS), and Known Segment Table (KST) dumped. If FDUMP is called
with the LONG argument, all processes are dumped in the normal
fashion.

To dump a process, the FDUMP command scans the descriptor
segment of that process and dumps each segment with the write
permit bit on 1in its Segment Descriptor Word (SDW). Since all
processes share at least the segments of ring 0, FDUMP only dumps
a segment once, even if all processes being dumped have an SDW
with the write permit bit on for that segment. Of course, not
all pages of each segment are in main memory, so FDUMP interprets
each Page Table Word (PTW) for a segment. If the fault bit is
off, FDUMP can dump that page of the segment from core. If the
fault bit is on, FDUMP interprets the secondary storage or Paging
Device address that is stored in the PTW and it reads the page
from that location and dumps it.

Figure 1-1 below depicts the layout of the DUMP partition
following execution of the BOS FDUMP and FD355 commands. Once
the FDUMP and/or FD355 commands are executed, standard crash
recovery procedures can be initiated (e.g., Emergency Shutdown
(ESD), Salvager, etc.) and the system bootloaded again. To
process the fdump (the image produced by the FDUMP command), the
command copy_dump (described in Section VIII) must be used. This
command uses the gate hphes_ and therefore is generally executed
by Initializer.SysDaemon, to determine whether the DUMP partition

1=-4 AN53

0
— 3
segment map
P FDUMP header
2000 s
DATANET 6600 Front-end
Network Processor
core image (optional)
N
segment image
copies of
segments of
processes dumped
.
segment image
7
' '
' '
' '
Figure 1-1. Format of DUMP Partition
’n.

1-5 AN53

contains a valid dump (dump.valid = "1'"b--see include file
bos_dump.incl.pl1). If it does, the Multiecs fdump is copied into
one or more segments in the directory >dumps. These segments
have the name date.time.n.erf_no where date is in the form
MMDDYY, time is in the form HHMMSS, n is a number, starting at 0,
incremented by one each time an FDUMP is taken, and erf_no is the
error report form number as extracted from dump.erfno. If there
is a valid FNP dump (dump.valid_355 = "1"b), it is copied into a
segment in >dumps named date.time.O.erf_no.355. The error report
form number is maintained (incremented each time) by the BOS
FDUMP command. The number can be set to a new value (e.g., 1) at
any time by typing FDUMP n where n is the new error report form
(ERF) number (crash number).

DUMPING THE INITIALIZER PROCESS

Although the FDUMP command is the normal way to take a dump,
there 1is one important circumstance when FDUMP should not be
used. When the initializer process runs into trouble (e.g., will
not respond to any commands) and the system must be crashed, the
crash should wusually be brought about by an execute fault. Of
course, whatever process is running on the bootload processor is
the process that actually returns to BOS as described above. 1If
an FDUMP were to be taken, the initializer process would only be
dumped if it were running on any of the processors. Otherwise,
the only way to cause it to be dumped would be to use the LONG
argument to FDUMP. This dumps every process. It also produces
massive dump if a number of processes exist in the system. -

A better way to ensure that the initializer procesﬁﬁis

dumped is to dump it using the BOS DUMP command. To do this, one
must switch the Descriptor Base Register (DBR) value used by BOS.
This value is set initially to the DBR value of the process that
returned to BOS. To find the DBR value of the initializer
- process, one must use the BOS PATCH command. The DBR for any
process is stored in its APTE at the symbol apte.dbr (see include
file apte.incl.pl1). (A further description of an APTE is found
in Section V.)

The APTE for the initializer process is always the first
APTE in the APT. One may find the offset of the first APTE by
looking at the value assigned to the segdef apt in the data
segment tc_data. Given these listings or offsets, it is possible
to 1look at tc_data with the PATCH command and find the DBR value
for the initializer process. Then the DUMP command should be
used. Use the DBR command of DUMP to set the BOS DBR value to
the DBR of the initializer. Then take a dump of the initializer
process on the printer or tape.

1-6 ANS53

.

-/

¢

PROCESSING AN FDUMP

If a crash occurs, the Multics and possibly the FNP core
images are in several segments in the directory >dumps. There
are two commands that can be used to print these dumps. One
command, online_dump, or od, is used to print the Multics dump.
The other command, online_dump_355, or od_355, is used to process
the FNP dump. These command descriptions can be found in Section
VIII.

Various wuseful subroutines used by the online dump facility
are also discussed in Section VIII.

If it is desired to merely examine portions of the fdump

from a terminal, the command ol_dump (see Section VIII) should be
used.

1=7 AN53

SECTION II

CRASH ANALYSIS

This section provides some basic knowledge necessary to
anyone analyzing a dump regardless of the cause for the crash.

EXAMINATION OF REGISTERS

The first block of information available in either an fdump
or a dump printed by the BOS DUMP command is the state of various
processor registers. The first register of interest is the
Procedure Segment Register (PSR). The PSR contains the segment
number of the procedure that actually returned to BOS. 1In all
but one case, this should be the segment number of ii. The only
case in which this is not true is when BOS is entered by a manual
transfer (XED of 1location 4000). In this case, the PSR is at
whatever it is when the processor is stopped to perform the
manual execution of the XED instruction. Listed along with PSR
is the instruction counter (IC), the Ring Alarm Register (RALR),
the A and Q registers, the exponent register, the Interval Timer
register, and the index registers. 1In the case of entry to BOS
from 1ii, only the Interval Timer register has any real possible
interest.

Since Multics can enter BOS and be subsequently restarted
with a GO command, BOS saves all registers. It also saves all
interrupts that come in after Multics has entered BOS. These
interrupts are set again (via a SMIC instruction) if a GO command
is executed. The interrupts are printed in the dump in the form
of the word INTER followed by 12 octal digits. The first 32 bits
of the 12 octal digits correspond to the setting of interrupt
cells 0-31.

Following the 1interrupt word in the dump are the values in
each of the eight pointer registers. When BOS is entered by 1ii,
pointer register 2 (bp) points to the actual machine conditions
that were stored when the cause of the crash actually happened.
For example, 1in the <case of a crash with a message, pointer
register 2 points to the fault data stored by the system trouble
interrupt.

2-1 AN53

After the pointer registers, the contents of the PTW and SDW
associative memories are printed. This data is printed in an
interpreted format. Figure 1-10 (SDW Associative Memory Register
Format), Figure 1-11 (SDW Associative Memory Match Logic Register
Format), Figure 1-12 (PTW Associative Memory Register Format),
and Figure 1-13 (PTW Associative Memory Match Logic Register
Format) in the Debuggers’ Handbook PLM contain the layout of the
associative memories as stored in memory. Generally, the
associative memory contents are of little use except in debugging
hardware problems. One thing to check for if associative memory
problems are suspected is nonunique usage counts (i.e., two
associative memory slots having the same usage number). Another
possibility is for two slots to have the same contents (e.g., two
slots in the SDW associative memory pointing to the same
segment).

Following the associative memory printout is an interpreted
description of what memories are attached to the Dbootload
processor and the size of each memory. The information 1is
printed in two columns. The first column contains the beginning
address, 0 mod 64, of a memory. The second column contains the
size of that memory in 64-word blocks. There are eight entries
in each column, one for each processor port. Listed below 1is a
sample printout for a system with 128k on each of the first three
processor ports.

COREBLOCKS: FIRST NUM
0 4000
4000 4000
10000 4000
NO MEM
NO MEM
NO MEM
NO MEM
NO MEM

Following the display of the memory layout is a printout of the
memory controller masks for the memory on each processor port. A
memory mask is stored as 72 bits. Bits 0-15 contain the settings
of bits 0-15 of the interrupt enable register for a memory. Bits
32-35 contain bits 0-3 of the port enable register for a memory.
Bits 36-51 contain the settings of bits 16-31 of the interrupt
enable register. Bits 68~71 contain bits 4-7 of the port enable
register.

The 1last set of registers that are stored are the four sets
of history registers. These history registers are stored for the
Operations Unit (0OU), Control Unit (CU), Appending Unit (APU),
and Decimal Unit (DU) or EIS portion of the processor. See
Figure 1-34 (CU History Register Format), Figure 1-35 (OU History
Register Format), Figure 1-36 (APU History Register Format), and
"DU History Register Format" in Section I in the Debuggers
Handbook PLM, for formats of these history registers.

2-2 | AN53

The last set of information that is printed with the
registers 1is an interpretive layout of the descriptor segment.
Each SDW is printed in an expanded format. Along with the SDW is
printed the reference name(s) of the segment. For a directory,
this is a full pathname. Segments with null reference names only
have no names printed with the SDW. SDWs that are all zero
(directed fault zero or segment fault) are not printed.

LAYOUT OF MACHINE CONDITIONS

Whenever any type of fault or interrupt occurs, the state of
the processor is saved. This involves saving all live registers
and the state of the Control Unit. 1In all cases, the fault data
is saved as shown in Figure 2-1 below. The format of the EIS
pointer and length data, as stored by the SPL instruction, is
found in Figure 1-26 (EIS Pointers and Lengths Format, Word 0),
Figure 1-27 (EIS Pointers and Lengths Format, Word 1), Figure
1-28 (EIS Pointers and Lengths Format, Word 2), Figure 1-29 (EIS
Pointers and Lengths Format, Word 3), Figure 1-30 (EIS Pointers
and Lengths Format, Word 4), Figure 1-31 (EIS Pointers and
Lengths Format, Word 5), Figure 1-32 (EIS Pointers and Lengths
Format, Word 6), and Figure 1-33 (EIS Pointers and Lengths
Format, Word 7) in the Debuggers’ Handbook PLM.

(mod 8 boundary) :
01 |
i 8 POINTER REGISTERS AS STORED BY i
i SPRI INSTRUCTION !
| |
] L
20 | |
| REGISTERS AS STORED BY SREG INSTRUCTION |
| |
1 1
30} |
| CONTROL UNIT/APU STATE AS STORED BY SCU INSTRUCTION 5
]
| |
40 | |
| SOFTWARE FAULT DATA AS DESCRIBED |
| IN mc.incl.pl1 !
| |
50 | |
| EIS POINTERS AND LENGTH DATA AS STORED |
i BY SPL INSTRUCTION |
|]
] 1
60

Figure 2-1. Format of Machine Conditions

2-3 AN53

-

There are several items 1in the machine conditions that
should be inspected when hardware troubles are suspected. In
case of ring violations, the ring fields in the SCU data, PPR.PRR
(the ring of execution) and TPR.TRR (the ring of reference)
should be checked. Another value to examine is the RALR that is
stored by the SREG instruction. The value in the RALR should
never be greater than or equal to PPR.PRR. The appending unit
status bits (Figure 1-38 (scu Data Format, Word 0), Figure 1-39
(scu Data Format, Word 1), Figure 1-40 (scu Data Format, Word 2),
Figure 1-41 (scu Data Format, Word 3), Figure 1-42 (scu Data
Format, Word 4), Figure 1-43 (scu Data Format, Word 5),
Figure 1-44 (scu Data Format, Word 6), and Figure 1-45 (scu Data
Format, Word 7) in the Debuggers’ Handbook PLM) are also of
interest when attempting to discover what cycle was being
executed by the appending unit when an APU produced failure or
fault occurred. Another point of interest is that when a fault
is taken by the even instruction of an even/odd instruction pair,
words six and seven of the SCU data hold the two instructions.
In the case of a fault following some levels of indirection, the
even instruction (word six of the SCU data) may exist in an
altered form since some address modification may have been
performed before taking the fault. 1In the case of a fault taken
by the odd instruction of an even/odd instruction pair, word six
of the SCU data contains the odd instruction although it may have
had some address modification done as just described. Word seven
may contain that instruction or a later instruction due to the
instruction fetch lookahead feature.

One final note on the addresses and instructions in fault
data: certain classes of faults (e.g., parity, store, some cases
of command) are detected by the CPU port logic while processing a
data request generated by some other unit of the processor. Due
to the internal overlap of the CPU, the instructions being
processed by the control unit may be several instructions after
the instruction that caused the store or other fault. Hence, SCU
data for these faults may not be taken as deterministically
specifying the faulting reference.

STACK HEADER

Another data base that a person doing crash analysis must be
familiar with is the stack. Ring 0 uses both the PDS and PRDS as
stacks, and each ring of each process has a stack. (The stack
assigned to ring 0 in this assignment is the PDS.) Every stack
has a header. The first sixteen words of the stack header are
essentially unused and are not discussed further. There are two
items in the stack header that are of interest to someone reading
a dump. The stack begin pointer points to the first valid stack
frame on the stack. On the user ring stacks, the first frame is
usually immediately after the stack header. On the PDS and PRDS
however, there are intervening data items. The other item of
general interest 1in the stack header is the stack end pointer.
It points to the location of the stack where the next frame may

2=l AN53

be started. Figure 7-5 (Stack Header Layout) in the Debuggers’
Handbook PLM depicts the layout of the stack header. There are
three other important pointers in the stack header. The BAR mode
sp (stack header location 32 octal) is a place to store the stack
pointer register (PR6) before entering BAR mode. This is done
since BAR mode programs can validly destroy the word offset
portion of the stack pointer register. However, the stack
pointer is needed by the signaller, so it is stored here so that
it can be reloaded if a fault is taken by the BAR mode program.
The translator operator tv pointer is a pointer to a transfer
vector of language operator pointers. The PL/I operator pointers
(call, push, etc.) have their own locations in the stack header
but the transfer vector exists so the pointers to operators for
other translators (e.g., BASIC) can be found in a defined way.
The ALM segment operator_pointers_ contains the current transfer
vector. Finally, the wunwinder pointer is provided so that an
unwinder program can be found in each ring.

STACK FRAME

The other element of a stack that one must be familiar with
is the stack frame. The first forty words are reserved in each
stack frame (see Figure 7-6 (Stack - Frame Layout) in the
Debuggers® Handbook PLM). The first sixteen words can be used

for saving the active pointer registers when making a call to

another program. The ALM CALL macro saves its pointer registers
here and restores them upon return. Since PL/I in general does
not depend upon registers across a call, it does not save all the
pointer registers. Words sixteen through nineteen contain the
pointers that thread the stack frames together on a stack in a
forward and backward manner. One can start from the stack begin
pointer in the stack header and using the forward pointer in each
frame, it is possible to "trace" the stack. Similarly, starting
at any given stack frame, it is possible to trace forward or
backward using the forward or backward pointers in each stack
frame. ’

In general, the backward pointer of each stack frame is a
standard ITS pointer. 1In the case of some special frames, bits
24-29 are used for flags. Listed below are the flags:

bit 24 on if frame belongs to signal.

bit 25 on if this is a signal caller frame.

bit 26 on if next frame is signaller’s.

bit 27 on if this frame was made by the 1linker.

Used for trap before 1link and trap before
first reference.

bit 28 on if this frame belongs to a program that is
part of the support environment (e.g.,
signal_).
bit 29 on if a condition 1is established in this
: frame.

2-5 AN53

-/

At location 24 octal is a pointer to the return point in the
program that created the stack frame if that program called out.
This pointer is used by the return operator to return to the
caller. At location 26 octal is the entry pointer. This is used
by the entry sequence code of PL/I. Upon entry to a PL/I
program, that program calls the entry operator of PL/I. The
entry point to the PL/I program is saved at this double word.
Location 32 octal contains a pointer to the operator segment for
most translators. However, ALM programs use this double word as
a place to store the 1linkage section pointer. When an ALM
program does a call, the call operator reloads pointer register 4
(the 1linkage section pointer) from this location (it is saved
there by the ALM push operator). The reason it 1is reloaded
before calling is in case the ALM program is calling a Version 1
PL/I program that is bound into the same segment as the ALM

program. In this case, the standard Version 1 entry sequence
that loads the linkage section pointer register is not invoked so
that the ALM program must ensure that it is correct. When

Version 1 PL/I programs cease to exist, this will no longer be a
requirement.

Following the entry pointer is a pointer to the argument
list of the procedure that owns the stack frame. The format of

an argument list is discussed below. The next two words at
locations 34 and 35 octal are reserved. At location 36 octal in
the stack frame are two 18-bit relative addresses. These

addresses are relative to the base of the stack frame. The first
relative address points to a series of 16-word on unit blocks in
the stack frame. Each on wunit block contains a 32-character
condition name, a chain pointer, and some flags. Listed below is
the PL/I declaration for an on unit block:
del 1 on_unit based aligned,

2 name ptr,
2 body ptr,
2 size fixed bin,
2 next bit (18) unaligned,
2 flags unaligned,

3 pli_snap bit (1) unaligned,

3 pli_system bit (1) unaligned,

3 pad bit (16) unaligned,
2 file ptr;

Details of this may be found in the Limited Command Environment

PLM, Order No. AN78. The second relative address is for
compatibility with older systems and is discussed no further in

2-6 AN53

this document. At location 31 in the stack header 1is. a word
entitled operator return offset. In fact, this word really
consists of two 18-bit halves. The left-most 18 bits contain the
translator ID. This is a number that tells what translator
compiled the program that owns the stack frame. The various IDs
are as follows:

Version 2 PL/I

ALM

Version 1 PL/I
signal caller frame
signaller frame

Fwnn -0

The right half of the word holds the address in the program
at which a called operator returns. This is useful in debugging,
for it describes the return address for certain calls to
pl1_operators_. If a crash occurs and the machine conditions
show that some fault or interrupt was taken by pl1l_operators_, XO
contains the return address for the operator that took the fault
or interrupt. If the operator was forced to wuse X0, then the
operator return pointer in the stack frame contains the return
address. This cell is zeroed when an operator restores X0 from
it. Hence, if this cell 1is nonzero, it contains the return
address. If zero, X0 contains the return address. Given this,
one can look at the program that called the operator to determine
why the fault occurred.

The last reserved area in the stack frame is at location 40
octal. Here the registers are stored by an SREG instruction.
Again, PL/I does not generally save registers since it does not
depend upon their contents across a call. The ALM CALL macro
however saves the registers here 1in stack frame. A person
tracing a stack should be aware of course that certain programs
do not have stack frames. These programs are most typically ALM
programs that do not call the push operator. These programs
"borrow" the stack frame of their caller and hence should not
write into it. Such programs cannot perform standard calls since
the call operator writes into the stack frame.

ARGUMENT LIST

Every standard Multies call must construct a standard
argument 1list. Pointer register 0 (ap) is set to point to the
argument list. The callee saves this argument pointer in his
stack frame as described previously. The argument list format is
described below. Figure 2-2 1lists the types of argument
descriptors.

The argument list must begin in an even word boundary. The
pointers 1in the argument list need not be ITS pointers, however,
they must be pointers that can be indirected through. Hence,

packed (unaligned) pointers cannot be used.

2-7 AN53

The
directly.
for the
follows:

F

type

nd

size

i“th
The
i‘th

argument pointer points at the i’th argument
i“th descriptor pointer points at the descriptor
argument. The format for a descriptor is as

is a flag specifying that this 1is a new type
descriptor. It is a 1 if it is a PL/I Version 2
descriptor and 0 for the old format descriptors.

specifies the data type of +the variable being
described. The PL/I documentation contains a
mapping of the actual codes used.

indicates, if 1, that the data item is packed.

is the number of dimensions of an array. The
array bounds follow the descriptor head in a
format described in the PL/I documentation.

holds the size (in bits or characters) of string
data, the number of structure elements for
structure data, or the scale and precision (as
two, 12-bit fields) for arithmetic data.

2-8 ANS53

Version 1 Descriptors

Value Type

1 single precision real integer

2 double precision real integer

3 single precision real floating-point

y double precision real floating-point

5 single precision complex integer (2 words)
6 double precision complex integer (4 words)
7 single precision complex floating-point (2 words)
8 double precision complex floating-point (4 words)
13 pointer data

14 offset data

15 label data

16 entry data

17=-24 arrays of types 1-8

29-31 arrays of types 13-15

514 structure

518 area

519 bit string

520 character string

521 varying bit string

522 varying character string

(514, 518-522 are data types that are not Multics standard)

Figure 2-2. PL/I Descriptors

2-9

AN53

Value

523
524
525
526
527
528

(523-528 are data types that are not Mutlics standard)

Type

array
array
array
array
array
array

of
of
of
of
of
of

structures
areas

bit strings
character strin
varying bit str
varying charact

Version 2 Descriptor

Value

== OOV EWN —

Type

real fixed binary short
real fixed binary long
real float binary short
real float binary long
complex fixed binary sho
complex fixed binary lon
complex float binary sho
complex float binary lon
real fixed decimal

real float decimal
complex fixed decimal
complex float decimal

pointe
offset
label

entry

structure

area

r

bit string

varying bit string
character string

varying character string

file

Figure 2-2 (cont).

gs
ings
er strings

rt

g
rt

g

PL/I Descriptors

AN53

SECTION III

CRASHES WITH NO MESSAGE

This section describes a deterministic algorithm for
ascertaining the immediate reason for a system return to BOS with
no message. It is the intent of this section and the next to
describe an appropriate course of action for determining the
immediate cause of a crash, when presented with a dump.

The first quantity to inspect is the PSR in the registers
printed by BOS, or online_dump. If the PSR contains the segment
number of any segment other than the interrupt interceptor (ii),
then the system did not return to BOS of its own volition, and a
manual transfer to BOS (XED 4000 or XED 4002) was made by the
operator. (Specifically, the PSR/Instruction counter should
point to the instruction in ii following the derail instruction
that causes the return to BOS).

If the PSR/ICTC points to the correct place in ii, pointer
register 2, as printed by BOS or online_dump, points to the
machine conditions that caused the bootload processor to return
to BOS. If the fault/interrupt code in the second word of the
SCU data in these machine conditions is anything other than a
system trouble interrupt (octal U44 as it appears there), these
machine conditions represent one of the following cases:

1. An execute fault was taken by the bootload processor,
i.e., the operator pressed the EXECUTE FAULT pushbutton
on this processor. The fault/interrupt code is 37,
octal.

2. An interrupt was taken by the interrupt interceptor
(ii) while running on the PRDS. The value of sp
(pointer register 6) in these machine conditions is an
address on the PRDS, and the fault/interrupt code is

even (interrupt). A masking problem should be
suspected.
3. A fault is detected during initialization, before the

mechanism to handle that fault is set up.

3-1 AN53

O

If the fault/interrupt code in the SCU data pointed to by
pointer register 2 as given by BOS reflects the sys_trouble code,
some other module or processor caused this interrupt. All
modules that send a sys_trouble interrupt execute NOP
instructions (octal 000 000 011 000, but sometimes with direct
(03 or 07) modifiers) immediately after sending this interrupt.
Hence, if the SCU even/odd instruction words (6 and 7) do not
have NOP instructions, one should assume that some processor
other than the bootload processor first sent a sys_trouble

interrupt. The machine conditions at prds$sys_trouble_data for
all running processes should be inspected to find one that was
interrupted out of NOPs. (It is possible, however, for a

processor to be executing some NOP loop, such as certain 1locking
code at the time a sys_trouble interrupt is received from another
processor. If, in a multi-CPU dump, many such sets of
sys_trouble data are found, this should be suspected, and the set
of conditions that identifies NOP after a SMIC instruction
sending sys_trouble found.)

When the processor that started the sys_trouble broadcast
has been found, the program that sent the first sys_trouble
interrupt must be identified. This can be done by inspecting the
PSR in the machine conditions for this first sys_trouble
interrupt. If it is the segment number of the fault interceptor
(fim), some fault was encountered that required paged programs to
handle properly, while running on the PRDS. Pointer register 2
in these machine conditions points to the machine conditions
stored at the time of the fault. (If such a fault should happen
with the page table lock set while running on a temp-wired PDS,
the fim does not detect a problem but attempts to process the
fault, usually causing a page fault with the page table lock set,
with a resulting crash message, "PAGE: MYLOCK ERROR ON GLOBAL
LOCK", In later systems, the fim checks for this case and sends
sys_trouble.)

If the PSR identifies bound_page_control, or wired_fim in
earlier systems, a page fault was taken in an invalid
circumstance. Pointer register 0 in the system trouble machine
conditions points to the page fault machine conditions.

If the PSR identifies privileged_mode_ut (in bound_priv_1 in
later systems) an explicit call was made to pmut$call_bos. This
is always done in the case of fatal crashes with a message, in
which case syserr makes this call. One should identify the owner
of the stack frame pointed to by sp (pointer register 6) in the
sys_trouble data. By owner, we mean the procedure indicated by
the return pointer (location 24 octal). (pmut does not push a
frame in this case.) If the owner is bound_error_wired (which
contains syserr) then a call was probably made to print out a

3-2 AN53

crash message. The arguments to syserr in a preceding frame
should be inspected. In this case, either the message was
printed out by the operator’s console, or some difficulty may
have been encountered in trying to print it out. Otherwise, it
may be assumed that privileged_mode_ut was called by some program
in the outer rings, and a stack trace should determine the

problem.

3-3 AN53

-

O

SECTION IV

CRASHES WITH A MESSAGE

When Multies crashes after printing a message on the
operator’s console, that message is always printed by syserr.
After printing the message, syserr calls
privileged_mode_ut$bos_and_return (in bound_priv_1), which sends
a system trouble interrupt to the current processor. The receipt
of this system trouble interrupt sends similar interrupts to all
other processors in the system. When analyzing a dump, look at
the system trouble machine conditions on PRDS of each processor.
One set of such machine conditions has a PSR equal to the segment
number of bound_priv_1. In addition, the even and odd
instructions 1in the SCU data are both NOP instructions since
privileged_mode_ut executes NOPs waiting for the system trouble
interrupt to go off.

Once the correct machine conditions have been found, pointer
register 6 (the stack pointer) contains a pointer to the syserr
stack frame. If the segment number in pointer register 6 is for
the PRDS, the previous stack frame belongs to the caller of
syserr. If, however, the segment number is for the PDS, syserr
uses a different convention. syserr makes its stack frame at
location 30000 octal on the PDS. It does this so that possibly
valuable stack history is not overwritten by its stack frame.
This would happen if it laid its frame down right after the frame
of its caller. An examination of the stack frame at 30000 shows
that it has two frames following it. The first 1is for
wire_stack, a program that wires pages of the PDS so that syserr
does not take a page fault running on the PDS. The second is for
syserr_real, the program that actually prints the message.
Further examination of the stack frame at 30000 shows that the
back pointer points to the stack frame of the caller of syserr.
This frame is usually quite far back on the stack with the
intervening area holding the stack history. To examine this
history, it is necessary to know the old forward pointer in the
stack frame of the syserr caller since the current forward
pointer points to 30000 now. The old forward pointer is saved in
location 26 octal of the frame of the caller of syserr. Given
this o0ld forward pointer then, it is possible to examine the
stack history to see the last set of calls before the syserr
call.

41 AN53

SECTION V

MAJOR SYSTEM DATA BASES

This section describes those parts of the system data bases

that one might wish to examine after a crash.

SYSTEM SEGMENT TABLE

The System Segment Table (SST) is a variable size (via
configuration card) unpaged segment. It holds all the page
tables in the system. 1In addition, it holds control blocks for
core management, for paging device management, and for active
segment management. Many of the data items in +the SST contain
the addresses of other items. These addresses are expressed as
18-bit relative pointers to the SST. Figure 5-1 below gives the
general layout of the SST.

SST Header

The SST header consists of various control variables and
meters. The meters are defined in the include files sst.incl.pl2
and cnt.incl.pl1. These meters are not discussed further in this
document. It would be useful to have a copy of this include file
in hand before reading further. The first item of interest in
the SST header is the page table lock, sst.ptl. This lock is set
when taking a page fault and remains set until page control has
completed processing the page fault (e.g., initiated a disk read
for the page). The page table lock is also used at other times
and it locks the header, core map, paging device map, and page
tables. It 1is also a lock on those parts of an ASTE needed by
page control. 1If any processor attempts to lock the page table
lock and it is already locked, that processor loops waiting for
the lock to be unlocked.

5-1 AN53

¢

10

600

777777 ...777777 .. 777777 . . .

meters, page and segment
control constants and
variables

page-multilevel related
constants and variables

1000

core map

paging device map
(if any)

Active Segment Table (AST)
(inlcudes page tables)

Figure 5-1.

Layout of System Segment Table (SST)

5-2

ANS53

Following the page table lock is the AST 1lock (sst.astl).
This lock is generally used only by segment control. 1Instead of
being a loop lock, the AST lock is a wait lock. This means that
if a process finds the AST lock locked, it gives up the processor
and informs the traffic controller that it wishes to WAIT on this
lock. When the process that locked the AST lock is finished, it
notifies all processes that are waiting on the 1lock. The
wait/notify mechanism and locking mechanism are described in the
Multiprogramming and Scheduling PLM, Order No. ANT73. The SST
variable, sst.astl_event, contains the event upon which processes
contending for the AST lock should wait.

The next item of interest is the pointer to the beginning of
the AST, sst.astap. As described below, there is a page table
following each ASTE. The maximum size of a page table is 256
PTWs. Clearly it would be wasteful to allocate a maximum size
page table for every active segment. Consequently, the ASTEs are
broken up into pools where all the ASTEs in a pool have the same
number of PTWs. The current pool sizes are 4, 16, 64, and 256.
Each element in the array sst.level consists of a pointer to the
used list (described below) of ASTEs of a pool, and the number of
ASTEs in the pool. There are also special pools for various
classes of supervisor and initialization segments (see the
Storage System PLM, Order No. AN61 and the Initialization PLM).

The next item of general interest in the SST header 1is the
set of control words for the core map. The variable sst.cmp is a
pointer to the start of the core map, and sst.usedp is a relative
pointer to the 1least-recently-used core map entry of the used
list (described briefly below and fully in the Storage System
PLM. Another variable of interest is sst.fsdectp, a pointer to
the ASTE for the FSDCT. There is also a pointer to the ASTE for
the root in sst.root_astep. There is room now in the header for
a block of meters. Following the meters 1is a block of
information wused 1in management of the paging device. The
variable sst.pdmap is a pointer to the paging device map 1in the
SST, sst.pdhtp is a pointer to the paging device hash table, and
sst.pdusedp points to the least-recently-used entry of the paging
device used list.

Core Map

Directly following the SST header is the core map. The core
map consists of a 4-word Core Map Entry (CME) for each 1024-word
core block that is configured. Even if a memory is not online,
if it is to be added dynamically, each page in the memory must be
represented by a CME. Figure 5-2 below depicts a CME.

5-3 AN53

forward thread backward thread

[]
[}
. '
device address : did flags
]
PTW pointer astep
(Release 2.2 and later)

double-write device address

Figure 5-2. Core Map Entry

The first word contains the forward and backward threading
pointers. These pointers (actually, they are addresses relative
to the base of the SST) are used in the implementation of the
Least Recently Used (LRU) algorithm for core management. The
header variable, sst.usedp, points to the head of this circular
list and in fact points to the CME that represents the block of
core least recently used. The LRU algorithm is described fully
in the Storage System PLM. One important thing to be checked in
a dump analysis is that the CMEs are all threaded together
correctly. In Release 2.2 and later systems, CMEs for
out-of-service pages and RWS (read-write sequence) buffers are
not threaded in.

5-14 ANS53

Each CME holds the device address for the page that resides
in the core block represented by that CME. A device address
consists of an 18-bit record number and a U4-bit device
identification. (The first bit of this device ID indicates the
paging device.) The one exception is when the page occupying the
core block associated with the CME is a new page and has not yet
been assigned a disk address. In this case, a null device
address 1is stored as the device address. Null device addresses
may also appear in PTWs. Null device addresses are coded for
debugging purposes to be able to tell which program created the
null address. Listed below are the null addresses (any address
greater than 777000 octal is considered to be a null address):

777777 created by append

777001 created by pe$truncate

777002 created by pc$truncate

777003 created by salv_check_map
777004 created by salv_check_map
777005 created by salv_truncate
777006 created when page is zero
777007 created by pc$move_page_table
777010 created by pc$move_page_table
777011 created by get_aste

777012 created by make_sdw

777013 created by deactivate

777014 created by move_file_map
777015 created when page is bad on paging device

Listed below are the Multics device ID numbers:

Bulk Store
D191
E191
D190
E190
D181

U1 EW N =

If the paging device indicator is not on, then the device
address is a disk address. The only consistency check one can
make 1in this case 1is to look at the PTW pointed to by the PTW
pointer in the CME and make sure that the core address in the PTW
corresponds to the core block represented by the CME. During a
read/write sequence, the PTW pointer is replaced by a pointer to
a Paging Device Map Entry (PDME). A simple algorithm to do this
is:

Let x ptw.add (18 bit 0 mod 64 core address)
Let y sst.cmp (y is offset of core map in sst)
Then address of CME = y + x/4

5-5 AN53

If this relationship is not true, then either a read/write
sequence is in progress (in which case the PTW pointer no longer
points to a PTW, but to a PDME), or there is an inconsistency in
the SST. It can easily be determined if a read/write sequence is
in progress since there is a flag in the CME (cme.rws as defined
in emp.incl.pl1) that indicates this.

If the paging device indicator bit is on, then the record
address is an address on the paging device. As described below,
there 1is a 4-word PDME for each record on the paging device. It
is possible to find the PDME associated with a particular CME by
taking the paging device record number, multiplying it by four,
and adding in the offset portion of the pointer in sst.pdmap. It
is important to note that this can be a negative offset. This is
true, for example, when Multics is only using the last 1000 pages
of a 2000 page paging device. Rather than having 1000 empty
PDMEs for pages 0-999, the pointer in sst.pdmap is backed up so
that the first PDME in the Paging Device Map represents record
1000. Once the PDME is located, several consistency checks can
be made on it. Figure 5-3 depicts the format of a PDME. The
PDME is defined in cmp.inel.pl1.

' backward thread
forward thread (cmep during rws)
)
! d:
disk address : id flags
]
PTW pointer hash thread

page checksum
(optional)

Figure 5-3. Paging Device Map Entry

5-6 AN53

One check to be made is to make sure that the PTW pointer
points to the same PTW as the CME. Another check is to see 1if
the device address is for a disk address. If not, there is an
error. Other checks are listed below.

Paging Device Map

The Paging Device Map directly follows the core map in the
SST. It has a very similar function in that it is used to manage
the 1024-word pages on the paging device in such a manner that
the least recently used page on the paging device 1is the one
selected for removal when a new page must be placed on the paging
device. This removal process is called a Read-Write Sequence
(RWS). It involves reading a page from the paging device and
writing it to its secondary storage (disk) address. It is
presumed that the reader is familiar with the use of the paging
device as described in the Storage System PLM. There are various
consistency checks that can be made on the Paging Device Map.
First, all PDMEs must be correctly forward and backward threaded.
The thread starts with the PDME pointed to by sst.pdusedp. There
is one exception to this rule. When a RWS is in progress for a
page, its PDME has a zero forward pointer and its back pointer
contains the address of the associated CME. Both the CME and the
PDME should have the RWS flag on (cme.rws and pdme.rws in
emp.inel.pll).

Another consistency check one can make is to see if the
secondary storage address stored in the PDME is incorrect. One
can do this by applying the paging device hashing algorithm to
that secondary storage address to see if the PDME in question is
on the hash thread. As described in the Storage System PLM, when
the paging device hashing algorithm is applied to a disk address,
a PDME address is produced. If the disk address in question is
not stored in that PDME, the value in pdme.ht is the address of
another PDME to 1look at. Thus, there exists a thread of PDMEs
all of which hold disk addresses that produce the same value when
the paging device hashing algorithm is applied. To perform the
consistency check, take the 18-bit secondary storage record
address stored in the PDME, perform a logical AND with the value
stored in sst.pd_hash_mask (which 1is a function of the paging
device size), and divide the result by 2. The quotient gives the
offset from the base of the hash table (as pointed to by
sst.pdhtp) of a pair of hash table addresses. If the remainder
of the previous division is 0, use the upper address, otherwise
use the 1lower address. The selected address is either zero (no
secondary storage addresses have copies on the paging device) or
it 1is the address of the first PDME in a chain of one or more
PDMEs. By following the chain (pdme.ht), the secondary storage
address in question should be found or the consistency check has
failed. Of course, if the selected hash table address is zero,
the check has failed.

5-7 AN53

Another useful consistency check is to confirm the
correctness of the PDME, PTW, and CME association if the page is
in core or of the PDME and PTW association if the page is not in
core (as determined by the setting of the PDME flag pdme.incore).
If the page is not in core then look at the PTW pointed to by
pdme.ptwp (if pdme.ptwp is zero, the segment containing that page
is not active and hence has no active PTWs). The device address
in the PTW must be for the paging device or there is an error.
To determine if it is the correct paging device address, multiply
the 18-bit paging device record number by 4 (the size of a PDME)
and add the offset portion of the pointer stored in sst.pdmap.
This should yield as a result the offset of the associated PDME
in the SST. If the page is in core, compute the CME address from
the PTW pointed by pdme.ptwp as described earlier. The device
address 1in the CME must be for the paging device and the address
of the associated PDME can be computed as just described.

For any PTW that has ptw.df on, the PTW must, of necessity,
contain a core address. If ptw.df is off, it always contains a
device address for all systems earlier than Release 2.2. In the
case that this page is being read in (ptw.df = "O"b,
ptw.os = "1"b), there is always a CME associated with the PTW
which, in systems prior to Release 2.2, must be searched for. In
Release 2.2 and 1later systems, a PTW for a page being read in
contains a core address, which allows quick location of the CME.
In all other cases, the PTW contains a device address.

Another quick <consistency check is that all PDMEs that are
free (last three words are zero) must be at the head of the used
list. The wused 1list 1is traced by following forward pointers.
The address of the first PDME is stored in sst.pdusedp. Also,
the number of free PDMEs in the used list plus the number of
PDMEs that have an RWS active (stored in sst.pd_wtet) should
equal the value in sst.pd_free.

The 1last type of check that can be made is really more of a
heuristic one. The pdme.abort, pdme.truncated, and
pdme.notify_requested flags are rarely on and may be symptomatic
when looking for the reason for a crash. Also, the pdme.removing
flag should only be on when the associated paging device record
is being explicitly deleted by the operator.

Active Segment Table

The Active Segment Table (AST) described earlier contains a
number of Active Segment Table Entries (ASTE) and associated page
tables. The ASTE is eight words 1long and basically contains
copies of some pieces of directory information about a segment.
This information, which can change quite rapidly, may be updated
in the ASTE rather than paging in the directory to do the
updating each time. Figure 5-4 below shows the format of an
ASTE.

5-8 AN53

threads : .
inferior
l' flags ! count
fp bp , .
2 3
: relative
trailer ‘ son
-aste branch :
ptr pas-asiep otr rel-astep
4 5
current page number
segment| flags fault flags f:ﬂ“
length _oount core
6 7
_ brother
quota used rel-astep flags

(directories only)

Figure 5-4. Active Segment Table Entry

5-9

ANS53

There are not a large number of consistency checks that one
can make on an ASTE. One thing that can 'be checked 1is the
consistency of the last word of the ASTE. The field aste.marker
(as defined in ast.incl.pl1) must have the value 02 in it. Also,
aste.ptsi must contain the page table size index. An index of O
means a page table size of 4 PTWs. An index of 1 is a size of
16, 2 is a size of 64 and 3 is a size of 256. (These indices are
used for the array of page table sizes in sst.pts.) Another
useful check is to compare the value in aste.np (the number of
pages in core) with the PTWs associated with that ASTE. The
number of PTWs with the directed fault bit on (in core) should be
equal to the value in aste.np.

Another item of interest is that an ASTE with the flag
aste.gtms on is almost always an ASTE for a directory. Since the
Backup Facility wuses this flag, this is not a foolproof
indicator. Of course, if aste.ic is nonzero, then that ASTE is
guaranteed to be for a directory. Only a directory can have
inferior entries. Another check one might want to perform is to
see how the information in an ASTE compares with the branch
information in the directory (e.g., to compare secondary storage
addresses in the PTWs with those in the filemap for the segment).
To do this, one must find the ASTE for the containing directory
using aste.par_ring. Then the descriptor segments that are
dumped must be searched for an SDW whose page table address is
equal to the address of the first PTW following the original ASTE
in question. If this SDW can be found (if that process wasn’'t
dumped, it can’t be found), then the directory pathname is
printed in the dump and the branch information in that directory
can be found using the value in aste.rep in the original ASTE.

SST Analysis Tools

There are two commands, dump_pdmap and check_sst (described
in Section VIII), that perform many of the checks mentioned
above. A copy of the SST in an fdump should be extracted wusing
the extract command (described in Section VIII). Then the
commands should be run.

ACTIVE PROCESS TABLE

The Active Process Table (APT) 1is a variable size (via
configuration card) data base. It is contained in the unpaged
segment tc_data (for traffic controller data). It holds the
control blocks called Active Process Table Entries (APTE) for
each process 1in the system as well as some interprocess
communication control blocks. Figure 5-5 below gives the general
layout of tc_data.

5-10 AN53

segment tc__data

traffic control
constants
variables

array of
APTES

ITT
(Interprocess Transmission
Tables)

DST
(Device Signal Table)

Figure 5-5. tc_data

tc_data$apt

Active
Process
Table

The header contains a number of meters and variables needed
by the traffic controller. This information is given extensive
coverage in the Multiprogramming PLM and is not discussed further
other than to point out the variable tcml.ready_q_head (defined
in tem.incl.pl1). Using this variable (also segdefed at
te_data$ready_q_head), it is possible to trace through the ready
list finding the APTEs for all processes that are running,
eligible to run, ready to run, or waiting. Figure 5-6 below
describes the ready list. All other APTEs in the APT that are
not threaded into the ready 1list are in the blocked state or
unused state.

The APTE

Generally, when analyzing a crash involving some type of
loop, the APT is examined. One usually looks for APTEs waiting
for strange events, APTEs in inconsistent states, etec. The
format of an APTE 1is defined in apte.incl.pll1. Generally the
thing one looks at first in an APTE is the flags and state word.
The states are:

Empty (not in use)
Running

Ready

Waiting

Blocked

Stopped

NMEWwWwhh =0

The flags are covered in the Multiprogramming PLM. In the
field apte.processid is stored the process ID for that user.
Processids consist of two 18-bit items. The left item is the
offset in the APT of the user’s APTE. The right most 18 bits
hold the 1last value of a number maintained by the answering
service that is incremented each time a user logs in and rolls
over at 262144, The next item of general interest in the APTE is
the word apte.ipc_pointers. The upper half of this word, if
nonzero, is the address of the first of one or more event
messages waiting for the process. Event messages are stored in
the ITT area of the APT. The format is shown ¢in Figure 5-7
below.

Directly after the ipec thread is a word called
apte.ips.message. This word holds 1-bit flags for each of the
system-defined ips signals. (These system events are stored in
sys_info$ips_mask_data.) There are three types of ips signals.
Bit O of apte.ips_message is used for the ips signal QUIT. Bit 1
is for CPUT (cpu timer runout). Bit 2 is for ALRM (real-time
timer runout).

5-12 AN53

tc_data$ready_q_head

. \

\\

N

(APTES for idle processes) _

F

igure

5-6. Ready List Format

AN53

thread

sending process ID

ring of
origin

device
ﬂa\:c target process 1D

target ipc channel

message

Figure 5-T7.

Format of ITT Message

AN53

The next field of interest in the APTE is labeled
apte.asteps. This two-word field holds the relative offset in
the SST of the ASTE for the PDS of this process, the offset of
the ASTE for the descriptor segment of this process, and the
offset in pxss (the traffic controller) of the last call (a TSX7
instruction) to the getwork subroutine. The getwork subroutine
of pxss is called when a process must give up the processor it is
running on to some other process. By seeing what other
subroutine in pxss called the getwork subroutine, it is possible
to tell what event caused that process to give up the processor
(e.g., end of time quantum, process going blocked, page fault,
ete.).

Another item of interest in the APTE 1is the wait event
(apte.wait_event). Listed below in Table 5-1 is the current set
of wait events:

Table 5-1. Wait Events

Event Meaning

000000000071 ttydim waiting for per channel lock
400000000000 (octal) waiting on AST lock.

"dtm_" Disk metering waiting on 1lock.
"free" Waiting on system_free_seg lock.
"ioat" Wait on ioat 1lock.

TTTTT7777776 (octal) Online salvager waiting on 1lock in
salv_data.

777777777777 (octal) Waiting on lock in the root.

000000xxxxxXx If xxxxxx>sst.astap+1, then wait
event 1is offset in SST of PTW for
which I/0 has been started.
Otherwise, the wait event 1is the
offset in the SST of a PDME for which
an RWS has been started.

Valid processid Loop wait in ttydim.

XXXXXXXXXXXX Directory unique ID.

5-15 AN53

The last two items of general interest in an APTE are the
Descriptor Base Register (DBR) value in apte.dbr and the clock
reading in apte.state_change_time. This is the clock reading
taken at the last time a process changed its execution state (see
the Multiprogramming PLM). Hence, it may be an indicator of
trouble if it has been a 1long time (current time minus
apte.state_change_time) since a currently waiting or blocked
process ran.

FAULT VECTOR

While the fault vector is not a data base of general
interest, one would look at the fault vector if a trouble fault
occurred since a typical reason for a trouble fault is a bad
instruction pair in a fault or interrupt vector. The fault
vector actually consists of interrupt and fault vectors. It
begins at absolute 1location =zero. There are 32-double word
interrupt vectors followed immediately by 32-double word fault
vectors. Each vector consists of an SCU instruction indirect
through an ITS pointer and a TRA instruction indirect through an
ITS pointer. The ITS pointers come directly after the fault
vectors. They are ordered in the following way: ITS pointers
for TRA in interrupt vectors, ITS pointers for SCU in interrupt
vectors, ITS pointers for TRA in fault vectors, and ITS pointers
for SCU in fault vectors.

KNOWN SEGMENT TABLE

The Known Segment Table (KST) is described in detail in the
Storage System PLM and so is not described here. About the only
issue one would have in the KST when analyzing a crash is finding
out the names associated with a segment number when that segment
has been deactivated. 1In the case of active segments, the BOS
DUMP program and the online_dump program both print the names
associated with each SDW in the descriptor segment. To find out
the names associated with a given nonhardcore segment number
(hardcore segment names are not in the KST and hardcore segments
are never deactivated anyway), one can wuse the following
algorithm to find the address of the Known Segment Table Entry
(KSTE) for the segment:

Assume y is the segment number in question.

Let x = y-kst.hesent-1 (kst.inel.pl1)
Let i = x/kst.acount
Let j = mod(x,kst.acount)

NEWN =

Let kstarrayaddress = kstarrayaddress+j*4y

Step 2 above subtracts the highest hardcore segment number
from the original segment number since hardcore segments are not
represented in the KST. Step 3 divides the result of step 2 by
the size of a KST array (currently = 200 octal) to find out which
KST array holds the KSTE. Step 4 finds the number of the KSTE

5-16 AN53

within the KST array. The KST array address is found by indexing
into kst.kstap in step 5 with the result of step 3. Finally, the
KSTE 1is found by adding the KSTE number times the size of a KSTE
(4) to the address of the KST array in step 6. Given a KSTE
address now, use the name address in the KSTE to find the list of
names associated with the segment number. Figure 5-8 below gives
the format of KSTE (see kste.incl.pl1) while Figure 5-9 gives the
format of a name (see kst_util.incl.pl1).

One should be aware that the reference names resulting from
this algorithm are only a heuristic help in identifying the
segment. The branch pointer in the KSTE, identifying a directory
entry, can be of help too.

LINKAGE SECTION

Quite often when analyzing a dump, it 1is necessary to
examine internal static or to find the name associated with an
unsnapped 1link. In the wuser rings, all linkage information
usually exists in one combined linkage segment. In general, at
the base of the linkage segment is a Linkage Offset Table (LOT).
(The stack header contains a pointer to the LOT.) To find the
linkage section for a given segment number, that segment number
is used as an index into the LOT, which is an array of packed
pointers. The packed pointer, if nonzero, points to the base of
the linkage section for that segment. Usually this 1linkage
section 1is somewhere within a combined linkage segment. Once
this address is known, internal static can be 1located by using
the 1linkage section offset given to the internal static variable
by the translator or binder. Within the hardcore, there are two
combined linkage segments and a separate segment to hold the LOT.
One combined 1linkage segment, wired_sup_linkage, holds the
linkage segments for most wired segments while the other combined
linkage segment, active_sup_linkage, holds the 1linkage segments
of most paged segments. The exceptions to the wired and paged
segments having their linkage sections in wired_sup_linkage or
active_sup_linkage are due purely to reasons of antiquity. In
any case, the LOT entries for these special cases point to the
correct segment. (For example, the LOT entry for the fim points
to a segment called fim.1link.)

The following discussion describes the procedure involved in
associating a segment name and entryname with an unsnapped 1link.
This 1is expanded upon 1in the Binding, Linking, and Namespace
Management PLM, Order No. AN81. The reader should refer to
Figure 5-10 while reading this material. Assume you are
presented with machine conditions indicating a fault tag 2
(linkage fault). The TSR contains the segment number of the
linkage segment and the computed address holds the offset in the
linkage segment of the unsnapped link. The fault/interrupt code
in the SCU data is 61, octal. To find the names involves a
4-step process.

5-17 AN53

thread word (zero if in use)

rel namep flags
parent rel branch
segment number ptr

segment unique ID

Figure 5-8. Format of KSTE

'
thr'ead : character count n a m e

Figure 5-9. Format of name in KST

5-18 ‘ AN53

Step 1 is to find the linkage section header for the linkage
section. This can be done in two ways. The most common way is
to add the value labeled "header relp" in the link to the address
of the link. This value is a negative number that 1is the
negative of the link’s offset from the linkage section header.
The other way to find the linkage section header is to index into
the LOT using the value of the PSR in the machine conditions.
This is a packed pointer pointing to the linkage section header.
The item of interest in the header is an ITS pointer to the
definitions section of the object segment that took the linkage
fault. This pointer occupies the first two words of the 1linkage
section header.

Step 2 is to add the 18-bit "expression relp" in the link to
the offset portion of the definitions pointer. This produces a
pointer to an expression word. ‘

Step 3 is to add the 18-bit "type pair relp" of the
expression word to the offset portion of the definitions pointer.
This produces a pointer to a double word type pair block.

The last step is to add the 18-bit "segname relp" to the
offset portion of the definitions pointer to produce a pointer to
an ACC segname string. Also add the 18-bit "offsetname relp" to
the offset portion of the definitions pointer to produce a
pointer to an ACC entryname string. ACC strings consist of a
9-bit length field followed by 9-bit ASCII characters.

As a final aid in understanding this, listed below is a PL/I
program fragment that encodes the algorithm just described.

/% Assume linkp points to unsnapped link ¥/

headerp = addrel (linkp, linkp->link.header_relp);
/*point to link sect hdr*/

defp = headerp->header.def_pointer;
/*copy definition section pointer*/

expp = addrel (defp, linkp->link.exp_word_relp);
/%*point to expression word¥*/

typrp = addrel (defp, expp->exp_word.type_pr_relp);
/%*point to type pair block¥*/
/*point to ACC segname¥*/ :

entryp = addrel (defp, typrp->ty_pr.entryname_relp);

: /*point to ACC entryname¥*/

5-19 AN53

linkage

section
definitions 43
ptr
~
1 '
' (|
| '
! '
link
N 7777... 46
1502 o4

Figure 5-10.

5-20

linkage
section
header
((~
/
offset
L expression
internal
#H A expression
< word
>
) N—
type
pair
e R
(_/ segment
name
entry name
Association of Name with Link

AN53

definitions
section

LOCK SEG

One data base to examine when analyzing crashes related to
locking problems (deadly embrace, idle loop) is lock_seg. This
segment is a wrap-around history queue of all attempts to lock
wait type locks in ring 0. The segment consists of an index into
the wrap-around queue and a 127-entry queue. The index is in the
eighth word of the segment (the first seven are zero) and is the
index of the oldest entry in the wrap-around queue. Indexing is
from 0 - 126. Figure 5-11 shows the format of one eight-word
entry in the array.

2 3
S lock uid locking process
address of lock (wait event) ID
6 7
L)
‘ |
caller address err_code : flags lock count
i
1

Figure 5-11. Format of Lock Entry in lock_seg

The wait event is one of those 1listed previously (a
directory unique ID, "ioat", etc.). The error code 1is the
rightmost 18 bits of any error_table_ code that lock returned to
its caller. The call type occupies bits 21-26 of the word and is
the type of entry into lock. (These can be determined by
examining the listing of lock.pll1.) The fail switch occupies bit
35 of the word and is on if a lock try failed. The last word
holds the value of sst.total_locks_set at the time the entry was
made. The value 1in sst.total_locks_set is the total number of
locks being waited on by all processes in the system. It 1is
checked for zero when the system is shut down and a warning is
printed on the operator’s console if it is nonzero. This is done
to indicate that perhaps a directory lock still remains 1locked,
and so the salvager should be run.

5-21 AN53

O

'@

PDS

Another important data base is the PDS. This per-process
segment is used as a ring 0 stack and has a number of per-process
items in the header that are useful in dump analysis. All of the
data items are defined by segdefs and are referenced by name in
this discussion. Of course, various sets of machine conditions
are stored on the PDS. These have already been discussed. For
most faults handled by the fim, the history registers are stored
in pds$history_reg_data and the associative memories are stored
in pds$am_data. This information should be examined if a fault
occurs and it looks like a hardware error may be involved. (In
some releases, these may be on the PRDS, however.)

The PDS holds the process ID in pds$processid. Given this,
the APTE can be located as described previously (pds$apt_ptr also
locates the APTE directly). The PDS also holds the process group
ID (e.g., Jones.Project_id.a) in the variable
pds$process_group_id so that the name of the user may be
associated with the PDS being examined. Another useful variable
is pds$lock_id. This is the unique 36-bit value used in locking
outer ring locks. It is also kept in the APTE for the process so
that if an outer ring lock is locked, a call can be made to ring
0 to look at all the APTEs to discover if the process associated
with the lock ID still exists. If it does not exist, then that
outer ring lock may be zeroed.

When investigating 1locking problems, pds$lock_array should
be examined. This is a 20-entry array that contains information
about each ring 0 wait-type 1lock currently 1locked by that
process. Each eight-word lock array entry holds a pointer to the
lock, the 36-bit wait event associated with the 1lock (e.g.,
unique ID for a directory), the fixed binary (35) type of data
base being locked (directory = 1), a pointer to the <caller of
lock, a fixed bin (2) number that