RDMS REFERENCE GUIDE

Part It

Sectjion 1t

09724/74 1.1
09/724/74 1.2
09/724/74 1.3
09/724/74 1.4
09/724/74 1.5
09/724/74 1.6

Section 2t

09/724/74 2.
2.

1
09/724/74 2

INTRODUCTION TO ROMS

——————— — - —

- oe
-

(%]
o
3
-+
®
3>
-
v

09/25/74

RDMS Concepts and the RDOMS Environment

Introduction
Command Repertoire
Examplie Data Base
Index

Glossary

Deslign Princliples

The Modular Interface to the Data Base

DSM Overview
DFM Overview

Part IIt RDMS Commands

09/724/74

09/724/74

09/724/74
09/724/74
09/724/74

09/724/74

09/724/74
09/724/74
09/724/74

09/724/74
09/724/74
09/724/74
09/24/74
09/724/74

add_name_set
add_name_set_ftorce
cart_prod
change_name_set
change_name_set_force
check_Iinfo_segs
cleanup_data_base
compare_sets
compose -

copy_set
copy_set_force
create_relatlion
createdb.ec

dbd

declde_over
delete_module
delete_name_set
detlete_sets
dfm_abbrev_date_
dfm_abbrev_name_
dfm_columns_ -

(see
(see

{see

(see

(see

(see
{see

add_name_set)
sms_Iinterface)

change_name_set)

sms_Interface)

copy_set)

sms_Interface) -
insert_module)

- o o v o o a——

! Contents

Page 11

09/724/74
09/724/74
09/724/74
09/724/74
09/724/74
08/724/74
09/724/74
09/724/74
89/724/74
09/724/74
09724774
09/724/74
09/724/74
09/724/74
09/724/74
09/724/74

09/724/74
09/724/74
09/72L/74
09/724/74
09/724/74
09/724/74
09/724/74
09/724/74
09/724/74
09/724/74
09/724/74
09/72u4/74

09/72u4/74
09/724/74
09/724/74
09/724/74

09/72L/74
09/724/74
09/72u4/74

09/724/74
09/724/74
09/724/74
09/724/74
09/724L/74

!
t
!

dfm_commas_
dfm_commas_decimal_
dtm_credit_card_
dfm_doliars_
dfm_cdollars_decimal_
dfm_get_Initials_
dfm_last_name_
dfm_mmyy_
dfm_names_
dtm_nutll_string_
dtm_parentheslze_
dfm_percent_
dfm_phone_numbers_
dfm_right_justify_
dfm_soc_sec_num_
dfm_where
difference
display_relation
dsm_charb_
dsm_charS_
dsm_date
dsm_decimal_
dsm_Integer
dsm_table
dsm_v2_astring
eds

evaluate
flle_where
get_name_sets
get_refno_sets
help

hmd

hmp

insert_module
insert_set
insert_set_force
Intersect
list_data_type
list_sets

memory

mart

mrel
new_data_type
print_data_base
print_¢file

print_ftile_search_rules

print_set
print_sms_error

ROMS RFFERENCE GUINE

{see sms_Iilnterface)

(see get_name_sets)

(see copy_set)
(see copy_set)
{see sms_Intertace)

(see sms_intertace)
{see sms_Interface)

(see sms_error_mode)

ROMS REFERENCE

09724774

09/724/74

09/724/74
09/724/74
09/724/74
09/724/74
09/724/74
09/724/74
09/724/74
09/724/74

09/724/74
09/724/74
09/724/74
09/724/74
09/724/74

09/724/74
09/724/74
09/724/74

GUIDE

prolect
quick_report

rename_module
rename_module_force
rename_set
rename_set_force
restructure_data_type
set_data_base
set_flle_search_rules
sms_abbrev
sms_error_mode
sms_Interface
sms_star

sms_type

sort

status_sets
terminate_data_base
terminate_set
transliate_column
tree_stuft

unlon

union_compose

where

nhod:

whop

(see
{see
(see

(see

(see

(see
(see

!
! Contents
$

s oo oo

————— e — ———— —

Page lii
sms_intertace)
Insert_module)

insert_module)

rename_set)

sms_interface)

sms_Iinterface)
sms_inter face)

1.1

ROMS REFERENCE GUIDE

- a8 oo
- e oo

ROMS INTRODUCTION
09/24/74

The Relational Data Mangement System (RDOMS) provides 2
general lized data-base management and reporting system.*. The
data-base management system consists of a uniform method for
cataloging ftiles (calted relations) and character string data,
and a set of commands and subroutines (incliuding a generallized
computational facitity) which operate on the reflations of a
data~-base. In addition, RDONMS provides an editor for entering and
modifying data, commands for printing selected contents of a
data-base and generating reports, and a language for report
generation and data=base query.

A relation may be thought of as a computer-stored table
conslisting of a varlable number of rows (called tuples) and and a
fixed (for the relation) number of columns (called data-types).
For example, a telephone book may be considered a relatlon of
three columns (name, addressy and telephone number) and as many
rows as there are entrles In the booke The table 1Is called a
relation because the Information {(datums) In each column
(data=-type) of @ row (tuple) is assoclated with (related to) the
information In the other columns. For example, the address and
telephone number In each row of the telephone book are related to
(associated with) the person whose name [s listed In that row.

Each data=type In the relatlon has a meaning and method of
displaying the informatlon specific to that column. That Is, an
entry f(datum) In the *name™ data-type is of the form
“Does JOhn Ce"y a datum in the "address™ data-type Is of the form
“26 Farm Road Lex.*, and datum in the *"telephone number"
data-type Is of the form "253=-4107." The column Is labeled with a
data-type name, such as “name,™ “address,™ “telephone number,"
“"title," etc.e The relation/row/column concept Is a refinement of
the traditional file/record/tleid concept In which each column
(fleld) may contain information of variable length,

Thuss an RDMS data-base Is a collectlion of relations, each
ot which represents a set of relationships between data elements
{datums) from different data-typese. Two separate relatlons of
the data-base may have a3 common column name, and al though these
relations are distinct, they are implicitly linked because they
involve the same objects (datums of the same data-type or column
name)e.

For this reason, if two (or more) relations have the same

% PPMS is currently implemented in PL/1 on the Multics operating
system,

1
1 1.1 PDMS REFERENCE GUIDE

Page 2

cofumn names (data=-type names), they can be combined (or operated
on) to produce a third relation. Three standard RPDMS operations
are uniony Iintersectiony, and difference. The wunion of two
relations results In a relation consisting of all the rows in
elther of the originatl retatlons (without duplicate rows)e. The
intersection of two relations resuits In a retfation consisting of
811 the rows which are In both of the orliginal relations. The
difference of two reiations results In a relation consisting of
all the rows which are In the first original retation and not In
the second.

The "compose'™ operation can be used to combine two refations
with some column names (data-types) In common Into a new
relatlon, The “cartesian product™ operation can be used to
combine two refations which have no column names in common into a
new relation. The "sort* and ‘*project™ operatlions act on a
single relation to sort rows by column name or to etiminate
columns, respectivelye.

In additlon to these relatlion manipultion operations, RDMS
also Includes computation packages which greatly enhance the
utitity of the relatlonal concept of data. The
reflatlon_operators package {(rop) permits the user to perform a
computation which reduces a number of groups of tuples into a set
of tuplesy, one new tuple for each group of tuplies. The groups of
tuples are ldent]lfled by dividing (partltioning) the tuples of a
reflation into subsets (blocks) based on the data In each of the
relation®s cotumns, starting from the 1leftmoste. (For example,
this opermits the user to compute nested sums such as subtotals,
totals and grand totals.) The user of the rop need specify only
the data retationy a vartltioning of It, and the aligorithm to be
performed to reduce each block of the partitlioned relation into a
single output tuptle.

A command l{anguage exlsts whlich performs atll the above
operations on relations. A relation editor "eds™ (edit set) Is
used to create relatlons and Input, update, and maintain data Iin
retational form.

There are a number of programs providing varying control
over the number of refatlons which can be reported on and the
format of the output. "aqulick_report"” prints a singfe refation In
tabular forme It 3ilows the use of headers, footers, permutation
ot coltumns, user=supplled formats and the abitlity to lgnore
certaln columns In printing, all with 1jittie effort by the users
“Book"™ and "*display_relation™ provide the capabilities of
aulck_reporty, and in addlition permit the printing of relations
while making formating and print decislons based on the semantlcs

ROMS RPEFERENCE GUIDE ! 1.1 ¢

Page 3

of stepping throuah relatlions (which columns change, the leftmost
column whlch changed, etce.)e Thus, the format of the output can
reflect the grouping of the data in the relatione.

“peport"” enables the user to access relatlons In terms of keys
(datums) from other relationsy, thus providing the facility
whereby a report may be generated based on data retrileved from
cseveral relatlons.e Report Is useful In keyed-query type reports
and large raeports which format their output based on the
semantics of keyed retr leval from several relatlons
simulitaneousivye.

RDMS thus provides complete facillities for persons who must
create, wmanipulate, and use data-bases. Ffor further Iinformation
on the Implementation of data-typesy the data strategy and
format, and RDMS*® dependence on features of Multlcs, see Sectlon
1.69 RDMS Deslgn Principles.

{FND)

!
RDMS REFERENCE GUIDE ! 1.2 1
!

RDMS Command Repertoire
09/24/74

THE _RDMS _COMMAND REPERTOTRE

Most of the commands and toplcs mentioned below are
documented elsewhere In this manual. TYThis "road map"™ is Iintended
to be wuseful In thelping the new RDMS user to find the RDMS
tacllility (s)he requiress Thus the 1ist [s not all Inclusive, but
should Instead be regarded as a good starting point. Those
topics documented outslide of the RDOMS REFERENCE GUIDE are
folliowed by a note Indicating where the documentation can be
obtained.

In addition, the Table of Contents and the Index may be
useful tools for (ocating Information on a particular subject.

1) Creatling and Initiatizing a Data Base

createdb,ec Creates a multics dlrectory and Initiallzes
It as a data base.

set_data_base "Sets™ an already exlsting data base (i. e.,
prepares 1t for subsequent use.)

2) Creatlng Data Types

nenw_data_type Creates a3 new data type managed by a
speclfled (user or RDMS supplied)
data-strategy-modul e,

eds When eds (™edit set*) creates a new relation,
It may also create new data types.

tree_stuft Adds new data elements to an emoty *astring”
data type In the order which results in an
optimal binary tree. (For data types managed
by dsm_v2_astring or a simitlar dsm.)

! !
! 1.2 1§ ROMS PEFERENCFE GUIDE

1

Page 2

3) Creating Relations

create_reisation
Creates an empty relation with specifed data

types In speclfied sort order.

eds Creates a new refation or operates on a old
relation, fds accepts Input which requests
It 10 Insert new data or modlfy existing data
in a relation.

sms_Iinterface A command level Interface to the RDMS
primitive operations. The operations use
existing relations to produce a new relation.
The primities Include unlon, Intersectlon,
differencey, compositions, cartesian product,
and adding tuples (rows) to a relation.

make_relation,
make_quart
Make an relation or aquart with speciflied sort

order.

4) Modifying the Contents of an Already Existing Relation

eds The reflational edltor can be used to add,
deleteys or update the data In a relatlon.

sms_Interface This command level Interface to the ROMS
primitive operations can be used to make
changes over an entlire relation In one
operation, iIn the sense that a new relation
can be created and substituted for the old In
one command,

restructure_data_type
When gsarbage collectlon |is performed to
remove unused data from a data type, or a
data type 1Is converted from one strategy
module to another, retations using that data
type are automatically updated.

i

o

ROMS PFFERENCE GUIDE

5)

Listing/Printing the Oblects In a Data Base

print_data_base

{dbd])

sms_star

set_name

set_user

tlst_sets

status_sets

print_set

disptay_relatio

tist_data_type

This command prints the pathname of the
currentiy set data base, or prints a message
1t no data base Is set.

This active function returns the path of the
currently set data base, or 1If no data base
has been set a null string Is returned.

This command/active function prints or
returns a f(lst of oblects In the data base
which meet certain constraints as to their
name or type.

This command/active functlon oprints/returns
the 1ist of names on a given objlect.

This command/active function prints/returns
the tist of oblects which use a speclfied
object. Thus the 1ist of relations iIn which a
data-type occurs or the [(lst of data-types
managed by a certain data-strategy-module may
be obtalned.

Ltists the names and reference numbers of
objects in the data base, including alil
relations, data types, and strategy modules.

Gives alt availible information about a
relation, data type or quart. For relatlons,
it can be wused to obtain the tength, order
and data types used, while for data types 1t
gives the number of data eiements.

Prints the rows of a relation or the data
elements In a data type.

n
Prints the contents of a reflation which
control over the format of the outpute.

Lists the data elements of a data type, along
wlith thelr reference numberse.

!
1 1.2 ¢ ROMS REFERENCE GUIDE
)

eds The relational editor can be used to oprint
some or all of the tuples (rows) In a
relatlon with some format control.

6) Data Base Majntainence

delete_set Deftetes a sete {l. eeo a data-type or
refation.)?

copy_set Coples a data type or rel{atlon from another
data base.

Insert_set Links to a data type or relation In another
data base so one copy can be used from el ther
data base.

add_name_set Adds a3 name to a data type or relatlone.

delete_name_set
Removes a name from 3 set,

rename_set Changes the name on 3 set.

insert_module Makes a new strategy module wusable from 3
data base.

delete_modulie Removes an strategy module from ¢the data

base.
status_sets Glves at] Information avalliblie about a set.
list_sets Lists objlects In data base, along with

reference number and strategy module.

7) Report Generatlion from Reflatlons

print_set Simplest method of printing the contents of a
relation. No formatinge.

eds The refational editor can print the contents
of a relation with some format control.

aquleck_report Outputs each row of a relation with data
types 11lned up In columnse. Data format
modules may be speclfied for the data types,

1

L

RNOMS REFERENCF GUIDE

disptay_relatlo
book

report

data format mod

8) PRunning or Peque

exec_conm

runoff

dprint

! 1
1 1.2 ¢
1 !

Page 5

as well as the sort order Iin which the data
types appear.

Ny

Altows more format control. It a data type
{column) In a retatlon does not change Iin.
passing from one tuple (row) to the next,
printing of that data type may be supnressed.
Additionatiy, vertical formating can be
speclfled? “when the first data type
changesy start a new page and oprint a
header®.

Procedural (anguage which alltows output from
more than one relation at once, with the
format of output depending on tests made
during report production.

ules
Can be wused ¢to abbreviatey, underllne or
otherwise format the appearance of data

elements of a speclfied data type.

sting Reports

This Multics command 1s documented iIn the
MULYICS PROGRAMMERS® MANUAL, Command Sectlion.
It 1Is useful for placing a sequence of
command lines in a file so that invoking
exec_com wlth the name of the file has the
same effect as typlng the command [{lnes.
Since report production normally requires
executlon of a sequence of command tlnes, the
process 1Is can be expedited by the use of a
“.ec” tile contalning the commands.

This Multics Command for formating text ls
documented In the Command Section of the

MULTICS PROGRAMMERS® MANUAL.

Multics Command for printing files on offline
hligh speed 1lne printer. Documented In the

MULTICS PROGRAMMERS® MANUAL, Command Sectlon.

enter_absentee_request

This Multics command is useful for requesting
a report production which will then be run at

1
1 1.2 1 RDMS RPEFERENCE GUIDE

the fownest availibte rates, See the
description of this command In the MULTICS
PROGRAMMERS® MANUAL, Command Section.

cancel_absentee_request
Multlics command to cancel an absentee process
request. Can be wused to cancel a report
request submitted using
enter_absentee_request. See the MULTICS

PROGRAMMERS® MANUAL+ Command Section.

prologue A program for settlng up standard headers and
footers in reports. The refation
“sms_prologue” must be In the data basel the
header produced for a report depends on the
information assoclated with the report name
In sms_prologue.

9) Communication Between Users

mall Multics command for sending malte (MULTICS
PROGRAMMERS® MANUAL -~ Command Section)

send_message
Mufitics Command which sends a message
immedlately printed on reclplent®s console.
(MULYICS PROGRAMMERS® MANUAL - Command
Sectlion)

whopo Lists persons using RDMS,

whod Lists persons currently using an RDMS data
base.,

hmp Prints the number of people f(ogged In who are
using RDMS,

hmd Prints the number of peonle 11ogged In who

have a data base sete.

t L
RDMS REFERENCE GUYDE !t 1.2 ¢
1 !

10) Command Typlng and Control

(See also Section 1, *"The Multics Command Language
Environment®™, In PART II - REFERENCE GUIDE TO MULTICS of the

MULTICS PROGRAMMERS® MANUAL.)

abbrev Mulitics Command alfowing abbreviatlion of
frequentiy typed commands. (MULTICS
PROGRAMMERS® MANUAL - Command Sectlon)

sms_abbrev ROMS program aliowing abbreviation while
using eds, the relational editor, See also
the discusslon of eds abbreviations In the
wrlteup on eds In this manual.

exec_com Multics command alliowing one command line to
Invoke a sequence of command {lnes. (MULTICS

PROGRAMMERS® MANUAL - Command Section)

answer Provide an answer to an expected question
during one command line. (MULTYICS
PROGRAMMERS® MANUAL - Command Section)

start,

release,

program_Iinterrupt
Al these are related to stopping and
posslibly restarting a program after [t has
started running, and are discussed In the
MULYICS PROGRAMMERS® MANUAL., Section on
Commands, under the Individual descriotlions
for the commands start, program_interrupt,
and release, respectlively.

fogln,

ftogout

The protoco! for logging in ls dlscussed In
the REFFRENCE GUIDE TYTO MULTYCS, PART TY of
the MULTICS PROGRAMMERS® MANUAL. Sectlon 1,
subsection 1.2 Logging out is also
discussed. The logout command in the Command
Sectlion of the MPM wlill also be of [nterest.

1 1.2 ¢ POMS PEFERENCE GUIDNE
LI, |
Page 8
11) Inserting Data into a Nata Type or PRemoving Unused Data

(Garbage Collection),

eds Adds data element to data type whitle adding a
row contalning the data element ¢to a
relation.

restructure_data_type

Performs garbage collection In a data type,
updating relations which use the data type to
keep them consistent. May convert a data
type to a data strategy module dlfferent from
its origional dsm at the same time, Data
efements of tabtle data types may Dbe
selectively Inserted into, deleted from,
combined with, or moved to other positions in
the table.

{END)

ROMS REFERENCE GUIDE 1 1.3 ¢

An Example Data Base
09724/ 74

The following Is a description of a data base. It describes
data bases used by the Departmental Information System®s
applilcatlon of the Relatlional Data Management System facllitles.
The relations and data types descrlbed below will be used as
examples throughout this guide.

f« The Departmental Data Base

Associated with each department®s use of the Departmental
Information System 1Is a data bases. This data base contains
personnel and directory Informatlion and Information describing
the assigned duties, responsiblilities, and their corresponding
accountlng charges for each member of the Department®s Ffaculty
and staff, (Flgure 1 lllustrates the types of data contalned
within the data base.)

Informatlion from the data base Is used In the generation of
3a number of reports for departmental and school use. These
reports assist the Individual departments In allocating, and
therefore, In effectively utliizings, the resources at their
dlsposal. If the reports are to be useful, the data upon which
they are based must be accurate, complete, and current. This Is
the responsiblitity of each Department®s adminlistrative staff,

This part of the Reference Guide discusses the structure and
contents of a DIS data base In order to provide the background
necessary for those persons having responsibility for creating
and malntalnling data bases using the relational data management
facilltye.

A DIS data base consists of four relatlons contalning
information about the departmental faculty and stafft. A refation
is 8 tile stored within the computer contalning Information wused
in the generation of departmental and school! reports. In
particular, the concept of a relation speaks of data assoclations
that Is, elemental pleces of data In a relation are assoclated in
a systematic way one with another. Relations are characterized by
the followlng properties?

3. Independent of how a relation 1Is stored and manipulated
within the computer, it can always be thought of as a table
contalning rows and columnse. A famlitiar example of a
relation 1s a telephone directory. There each entry (row)
conslists of three distlinct elements?: a name, an address,
and a telephone number.

1 !
! 1.3 1 RDMS REFERENCE GUIDE
! !

be

Ce

de

Associated with each column of the relation is an
identifier caltled a data-tvpe. In the telephone directory,
the data=-types are °name®, ®address®, and *telephone

number®.

Fach row of a relatlon Is called a tuple. For example, a
typlcat tuple from a telephone dlrectory Iist

Doey John 14 May St. 363=-4420

Fach tuple from the telephone directory contains three
distinct elements. The number of elements contained In a
tuple 1Is called the grder or arity of the retfation. (Al
tines (rows) of a relation have the same number of distinct
elenents.) Fach distinct element of a tuple contalns one
data-element or datum which Is a member of the data-type
identifying the column In which that element |Is located.
Thusy In the tuple displayed above,

Doey John

is the data=element (datum) assoclated with the data-type

‘name®?
14 May St.

is the data-elenment assoclated with the data-type
®*address®s and

363-4420

Is the datum associated wlth the data-type "telephone
number®. Within a relatlon a tuple Indicates that all
data-elements of the row when taken together form a
meaningtul plece of related information.

fvery relatlon iIs sorted according to some precedence of
data-types, The orecedence of dats-types ls Indlcated by a
reading of the data-type names from fleft +to right. A
relation may be sorted in many di fferent orders, but the
sort order which 1s jJudged most convenlent {(for example,
with the telephone directory =-- name, address, telephone
number) is <catled the preferred _sart. For convience, the
fist of data-types giving their precedence In terms of
sorting 1s catlted the sort order of the relationy, or (for
historical reasons) the ent of the retlation.

RDMS REFFRENCE GUIDF t 1.3 1

Page 3

The relatlons utilized by the Departmental ‘Information
System are descrlbed In the followlng paragraphs.

1. Relation Namel phane book

The relation named "phone_book® is similar to the Institute
telephone directory and contains the data-types ‘name®, ‘room°,
and ®extn®. A brief example of °phone_book® Is shown below as it
would appear when oprinted by the command ‘print_set®. (The
command °print_set® as well as other commands used In the normal
management of a data base are described elsewhere in this gulide.)
The vertlcal bar Indicates the division of each row into three
distinct elements, as speclfied by the data-types.

sort ordert name room extn

! Canning, He Fo § 36=-301 t 33631 1
! Gltberty, Re G. ! 36=317 1 33637 1
! Lambert, P, Vo ! 36=-303 ! 33633 1!
{1 Sudbury, Ae. De 1 39-214 } 34712 1
! Sudbury, A. D. ! 39=21&4 1 34720 1%
{ Sudbury, fA. Deo ! 39=-325 ! 33572 1

Notice that the relation Is sorted by name, and that names
are stored 1ast name tirst to permit alphabetical sorting. It a
person has more than one °room® or *extn® then that person wlll
have multiple lines (rows) in the relation, one for each *triole
of Informatione. YThese multiple tlnes will be sorted, first by
*room® and then by *extn® 1f a *room® has more than one teiephone

extension.

Al elements of a tine need not be present. For example, 1If
no telephone extenslion were assoclated with P, V. Lambert, then
the row of the relatlion contalning Lambert®s name would appear
as?

1 Lambert, P. Vo 1 36-303 1 1

This situation ls> descrlbed by saylng P. V. Lambert has a null
*extn®,

2. Relatjon Name: rank 1ist

The °*rank_11st® relation consists of informatlon concerning
appointments for the current fiscal year., Its data-types in the
preferred sort order 3are?

1
1 1.3 1% PDMS REFFRENCFE GUIDE
1

! name ! rank ! title | soc_sec_num 1}

The portlion of the 1lne °®soc_sec_num® refers to the soclal
security number of the individual named in the °name® column of
the tuple. A sample rank_ilst 1Is printed below (agaln In
*print_set® format).

sort ordert name rark title soc_sec_num

! Canning, He Fe 1 PROFESSORS 1 Jones Professor 1 071423837 1
! Gitbert, P, G. ! ASSISTANY PROFESSORS ! ! 349824917 1}

! Lambert, Po V. } LECTURFRS ! 1 017849238 1

! Sudbury, A. D. ! PROFESSORS 1 ! 8340120034 ?

Typlcatly, °*titte® 1s assigned the null value]f It can be
derived from the rank and department name. Thus, an Assoclate
Protessor In the Department of Civil Englineering whose title lIs
®*Assoclate Professor of Clvi]l Englineering® would typlcally have a
null title.

The data=-type °*rank® |Is a table data-type and thus
data-elements are restricted to the following tist?

*DEPARTMENT HEAD®
*DIRECTOR®

*BROEESSORS®
*ASSOCIAYE PROFESSORS®
*ASSISTANY PROFESSDRS®
“ADMINISTRATION®

“RESEARCH STAFF®
*DSR_SJAFF®

*JEACHING ASSISTANTS®
*RESEARCH ASSISYANYS®
"EXEMPY_PERSONNEL®
*SECREJARIES®

*YECHNICAL SUPPORT_STAFE®

The °rank_11ist® relation Is the key relation for many of the
reports generated by the Departmental Informatlon System. Any
individual who does not appear In the "rank_list® relation will
not appear In any of these reports. Thus, It [Is oparticularly
important that this relatlon be carefully malntalned.s When
performing a farge number of updates to the data base, all
updates to the °*rank_tist* relation should be performed first.

RDOMS REFERENCE GUIDFE A 1 1.3 ¢

Page S

3. Relation Name: sal list

The relation ®sal_lIist® contains current salary Information
for each member of a department®s faculty and staff. Its
preferred sort order and data types are?l

! name ! term ! percent_time ! sal_type ! salary ! hours !

*tull_time_equlvalent® is understood to be the number of
full time equivalents represented by this Indlvidual®s total
activity for this °*term® In this department. It |Is expressed as 3
percentage. If °full_time_equivalent® is entered as null, °100°
percent 1ls assumed. "salary® Is the Indlvidual®s satary for a pay
perlod or pay unlt. A person®s pay period 1Is specified by his
*salary_type® and If *salary_type® is “hourly® then the person‘s
*hours®, the number of hours In 3 pay perjod must also be
enterede The data types °*term® and ®salary_type® are restricted
to the following tables of values?

term

“SUMMER SESSTON®
*FIRSY TERM®
“SECOND TERM®

salary_type

annual
map
sumnmer
speclal
monthly
bi-weekly
hourly

A sample listing of °®sal_Illist® follows, again orinted in the
output tormat used by the °®print_set® command.

sort ordert name term percent_time sal_type salary hours

SUMMER SESSION ! ! summer ! 5000.00 ! 1
FIPST TERM 1 SO0 1 map ! 11250.00 ¢ 1
SFCOND TFRM § 1§ map ! 11250.00 1 %

SUMMER SESSION 1 { summer 1 2800.00 ¢ !
FYPST TFRM ! { map ! 6300.00 ! 1

SFCOND TEFRM § Sg ! map ! 6300.00 ' !¢
SUMMFRP SESSTON § ! bl-weekliy t 220.00 ' ¢
FIPSY TFRM t | bi-weekly 1 220.00 ¢ 1

Cannlngq. He Fo
Cannlingy He Fo.
Canningy He Fo
Gliberty RP. G.
Gitbert, P. G.
Gitbert, R. Ge.
Lamberty Peo Ve
Lambert, P. V.

4 a8 o8 oo &5 o8 v oo
a0 4 G om B0 a8 w0 oo

! 1
1 1.3 ¢ RDMS PEFERENCE GUIDE

Page 6

SECOND TERM 1 ! bi-weekly ¢ 220,00 ? 1
SUMMER SESSION 1 1 summer 1 ¢ 1

FIRSY TERM § ! map ' ¢ H

SECOND TERM | { map ! 9000.00 1 1

Lambert, P. Ve
Sudbuf‘y’ Re HWe
Sudbury, R. W.
Sudburye, Re We

o ot «o oo
-t ald w8 o

As an addltional protection feature, the salary data Is
stored In an enciphered form to prevent its being accessed by
other than authorlized department staff. Since the Multics systen
atready provides protectlon agalnst unauthorized access to user®s
data, the enciphering of salary data is designed to allow some
but not all users of a particular department®s data base access
to the salary Information.

4. Relation Namet acad_assign

0f the refations currently utiftlzed by the Departmental
Information System, the most Important for viable day-to-day
operatlion 1Is ®acad_assign®e. Thlis relation consists of the
information which describes In detail the academic, researchy, and
administrative activlies of each member of the Department®s
faculty and staff. Fach tuple of the rejatlon represents one
assignment. The preferred sort order for the data-types contained
within this refation and thelr names aretl

name" (as In °*phone_book® and other relations)

*tern® {as In °*sal_1list®)

*acct_num® (M.I.T. account number)

®*acct_type* (account type)

percent® (percentage of accountable time spent on this
particular asslgnment)

rofle (description of activity, e<¢gey lecture,
seminar)

*sub)_num® (subject numbery, l. €es 118y 16.94Jy 2877,
14.00X)

*date_start® (date when assignment beglns = lnput only
when date begining does not colncide with

beginning of term indicated by term)

*date_end"® (date when asslignment ends - input only when
date endling does not colncide with ending of
*tern®) ,

‘svsr® (supervisor for thls assignment3 must be a

name that appears In the °*name® column of
*‘rank_1ist")

*comments® (other pertinent Information about this
asslgnment)

b 4 should be noted that ¢the data-types °®role® and
*acct_type® (and °*term® as already has been noted) are restricted

RDMS REFERENCE GUIDF

as to thelr data-elements. That is, these data types are table
data=-types and thelr e!emgnts are limited to the following tists?

acct_type

*GEN®
*FUND®
DSR

role

In=charge

Faculty Counselor
Leave of Absence
Institute Committees
Department Commlttees
Administration
fectures

reclitation

seminar

tutorlials

secretary

Graduate Thesls Supervision
Research

In practice, no tuple wiil contain data for every one of the
eleven data-types. Table 1 presents an example of the relation
*acad_assign® as printed by the command print_set.

While there is some duplication of data in succeeding tuples
of of *acad_assiogn®, the editing program “eds® permits the wuser
to omlt entering a substantial part of this repeated data (set
the *™* and °*D® requests In *eds®). Aflso, common data-elements
{such as °*FIRST TERM®), can be abbreviated on Input to shorten
the time and effort required In the edlting process (see the *~°
request In ®eds® and the command °*sms_abbrev®).

IY. The Structure of a Data Base

The Departmentai Information System uses the Relational Data
Management System as the basis for its intormation storage and
manioulatlione Thus a department®s data base Is jJust a particular
appllication of ROMS and the structure of a DIS data base Is Just
a particular structure chosen by the designers of 0NIS for |its
needs. This section uses the DIS data base to explaln some of the
baslc concepts of a RDMS data base.

1 1
! 1.3 1 RDMS PEFFRENCFE GUIDE
1 !

Page 8

Attt of the Information In a data base ls maintalned In a
private data-base-directory which Is a Multics directory. Access
to this data=base-dlirectory and 1ts contents depends upon the
access granted to users of Multics by the data-base-directory
creator. Since the RNMS system programs must be Inltlatized prlor
to thelr use, many users of ROMS automatlically Ilssue 2a
®*set_data_base®* command during their togin (or start_up
exec_com). The RDMS system only allows one data-base to be
initiated at any glven moment. However, by using the
set_data_base command, a user can maintain data In a number of
data bases. Since 1t Is possible to share data between data
basesy, using different data bases permits use of the Multics
access control facllltles to control access to certain categories
of Information.

In addition to the relatlons (such as the ones described
above), two other types of fites are contalned I a data base and
listed In the data-base-directory? data-type-flles and

system-crequilred-fijes

System requlred flles are used by the RDOMS oprimitives and
normaliy are of no concern to the user. These fifes can be
identified by their first four characters, namely, °*SMS_*, The
system=requlred=-tfiles Incltude?

SMS_segments (used ¢to record a llist of the user'°s
data-type~flles and refatlons)

SMS_dummy_area {used by virtual data strategy modules)

Data-type-flles are a division of all data In the data base
according to a set of functional attributes. All data-types Iin a
data base have two Important characteristics?

a. No data-element may appear In 3 reflation unless It appears
in a data-type-file, For example, "Sudbury, Re W.* could
not be 1isted In the °*phone_book® refation unless hls name
apoeared in the data-type-tfile called "name®.

b. Data-types are In reality a mapping between data-elements
{1ike °*Sudbury, R. W.®) and numbers. Every element of data
found In a data-type has a unique reference number (or

cetnole.

To Implement the mapping between data-elements and reference
numbers, the ROMS system wuses programs called data sirateay
modules. The standard data strategy modules (dsm®s) are

ROMS RFFERENCE GUTIDE 1 1.3 1
1 !

Page 9

automatically provided when a data base 1Is created (refer to
*createdb® and *dsm®), but new ones can be added to facllitate
speclal uses. For Instance, the standard dsm®s are not designed
for MIT room numbers, and the mapping the standard dsm provides
does not allow the RDMS system routines to correctly sort roonm
numbers. Thus, a special dsm called *dsm_room® has been provided
for those users reaquiring such facllilities. The RDMS system
associates with each data-type a data strategy module. Whenever 3
new data type Is created, the dsm which will provide the mappoing
between data-elements and numbers (refnos) must be specifiede 1In
some cases, the dsm needs additlonal Informatlon about the
data-type In order to perform Its function, and In such a case,
it aqueries the creator of the data type for the additional data.

Relatlons are also stored In Individual flles In the wuser®s
data base dlrectory. The RDMS system wuses programs called
celatlon strateay nmodules (rsms) to manage the ([Information
contalned In a relation. At present, the only refation strategy
used stores the numbers (refnos) assoclated with the data
elements In a table. (Since computers are generally more adept In
processing fixed length numbers than variable length character
strings, this type of lnterpal representation makes the system
faster. Also, the fixed length numbers are usually much shorter
than the character strings they represent and thus a signliflcant
storage saving can result 1t the same character string (such as a
name) appears iIn many tuples of one or more relations.) As an
exampie, consider the mechanlcs of the refation “phone_book®. As
printed by the °print_set® command, °*phone_book® appears as?

! Cannlng, He Feo ! 36-301 ! 36341 -3

1 Gitberty Re Go ! 36=317 1 33637 1
! Lambert, P, Vo 1 36-303 ! 33633 !
! Sudbury, As De ! 39-214 ! 34712 1
! Sudburys A. D. ' 39-214 1 34720 !
!t Sudbury, Ae. Do ! 39-325 1t 33572 1

Internal to the computer, however, the relation Is represented by
a table of numbers which c¢an be printed by the *print_set®
commande. Using the °~decimail® ootlon to °*print_set®, the retlation
is oporinted with the decimal representatlon of the numbers
assigned to each character string data-element In the relation.
The refatlion °*phone_book® would look 1lkes

sort ordert 84 R2 83

! 8589934592 1 -15032231424 1 33631 1
1 12884901888 1 -15032223232 ! 33637 1

!]
1 1.3 1 RDMS REFERENCF GUIDE
L L]

1 21474836480 1 -15032230400 1 33633 1
! 27380416512 ¥ =-13421663232 1 34712 1
1 27380416512 1 =-13421663232 1 34720 1!

The data strategy module for a particular data-type-file
using ¢the information contalned In the data-type-file maps these
reference numbers Into thelr data-element vatues (or vice versal.
The mapping assoclated with the data~type for “name® |st

refno character string (datum)

8589934592 Canningy, He Fo.
12884901888 ‘Gilbert, Ra.Ge
21474836480 Lamberts P. Ve
27380416512 Sudbury, A. De

The mapoing for "room® ls?

=15032231424 36-301
-15032223232 36-303
-15032230400 36-306

-134L421663232 39-214

And the mapplng for "extn® as assigned by the data strategy
module °*dsm_integer® jst

33631 33631
33637 33637
33633 33633
34712 34712
34720 34720

Notice that while each data strategy module uses jts omun
method of mapplng character strings Into reference numbers and
vice versa, the sorting order of the data-elements, be it
alphahetical for names or numerical for extns, and the sorting
order of the reference numbers (which Is numerjical) are one and
the same. This use of reference numbers is exceedingly useful Iin
providing fast and efficent Information management facilitles.

White the use of reference numbers plays a majlor role in the
internatl workings of RDMS, the non-programing user will not have
to manlpulate them directiy. All of the Interfaces for the
non-programmer fto the RDMS facjilities deal with the character
strinag representation of the data and the names of
data-tyoe=-fllies and relationse.

! 1
1 1.3 1

RDMS REFERENCE GUIDE ’)
7~
Page 11
RANK
TITLE

) . SOC_SEC_NUM

- ——

'DATE_START
DATE_END
PERCENT
ACCT TYPE
- ACCT NUM NAME
SUB]_NUM
LE
RO 1 PHONE BOOK
SUPERVISOR 2 RANK LIST
COMMENTS 3 SAL LIST
4 ACAD _ASSIGN
. TERM
~
FULL_TIME EQUIVALENT ~e DATE _START
SALARY TYPE DATE _END
SALARY ‘s HOURS
FIGURE 1
—~ A Pictoral Representation of the Standard School of

Engineering Departmental Information Data Base

L _J

RDMS REFERENCE GUIDE

Page 12

. N

,ubtsse peoe, UOT3IBIdY °Y3 3JO STdwexm UV

T 319V

bbb 1 1T o9l ¥sa | 9gzrL | yo4e9asay | Wy3IL QNOD3S

111 1 681°9 1 ofn | GNNd | 90¢9¢ | S24n3dal | wy3aLl ANOI3S

| | TL6T ‘ST Aaenuep | T/Z6T ‘T 49qwaAoN | | 0¢ | ¥SQ | 9¢2TL | uyd4easay | wWy3al LSHid
| | TL6T ‘ST Adenuep | T/6T ‘T 43qwdAaoN | | 0¢ | ¥sSa | §€21L | yd4eesay | Wyl LsSyld
| | TL6T ‘1€ 4290390 | TL6T ‘T 42qwaidag | | 09 | ¥SA | twgZTIL | ydaedasay | wy3al LSyld
I 1 1 1 | 88T°9 | of'] N39 | zoh0oT | uolieldaa4 | WY3L 1SUld

1 1 1 1 est*9 | | | | °34eyo-uj | wy3L 1SYId

11 1 88t*9 | | I | S34eyd-u) | wy3al LSYld

|

I 1+ 1 1 1V 1 o% | ¥sa | 9¢z1L | Adezaudss

I I 1 2t°9 1 02 | aNnd | 90£9¢ | A4elaudas

I 1 L 1 1 19t°9 1 02 | N39 | 2Z040T | A4e33423S

I 1 1 I 1 91°9 1 02 | N3ID | TOHOT | A4e3asud3s
I 1 1 1 | | og | 4sa | s€Z1L | A4e32403s
. I 11 1 1 | 0z | 4sa | tweZ1L | A4e3audas
| sJaquway @933jwwold 403 | | | | | 0T | N3D | s0n0T | A4e3audss
I I 1 1 191°9 | 02 | N39 | Zo40T | Aae3aa23s

I 11 1 1 91°9 1 02 | N3I9 | TO40T | A4e3aadas

Wa3L

I 1 | NOISS3S ¥3WHNS

anod3s

| WY¥3L anNod3s
| w43l anod3s
| wy3L anod3s

Wy3al
Wy3l
WY3l
Wy3l
Wd3l

1syld
1syld
1syld
1sy14d
1syld

I L L | 1 00T | 4S@ | wge1L | A4e3au4d9s | NOISSIS YIWWNS

bbb b b 1ot | N39 | 1SH0T | ydJeasay | WY3L ANOI3S

b 1 1 1 1 191°9 | 02 | N39 | Z0o%0T | A4o3eaoqe| | wWy3il aNOI3S

I 11 | 1 9191 o% | N3ID | TOHOT | uol3el (234 | WY3L AQNOI3S

. I 1 I 1 b 1 I | | @ouasqy jo aAea] | wyil 1syld

I | 1 1L6T ‘1€ asn3ny | TL6T ‘T Atnp | | 06 | ¥sa | 9¢Z1L | yod4easay | NOISSIS YIWWNS
I L 1 1 1 1 oT | N39 | TO44T | 40[3sunod A3(nde4d | NOISS3IS YIWWNS

L1 11 1 og] ¥4sa | 4€21L | yd4easay | wWYy3L gnNod3s

b1 1 1 1 19t°9 | ST | N3D | zo4ot | A4o3jesoqey | wy3L anNOIJ3S

_ I 11 I 1 t1°9 | s¢ | N39 | TOHOT | uol3e3|dad | WYIL ANOI3S

| Buj4aau]3u3 93enpedn uo IAJJwwo) Judwidedag | | | | I | I | 3G+ | wWy3ll anNod3S
b1 L1 1 1 s 1 N39 | 0904T | S99331wwo) 3juawisedag | Wyl GNOI3IS

| s9o4nosay uo @933 jwwo)d ¥an3asul | | | | I 1 N39D | Ss040T | Ol= | wWy3L aANOI3S

| e(ndjaan) uo @333 jwwod dn3fasuy | | I I L 1 1 | ot= | wWy3lL anod3s

1 1 I P oI 1ot | N39 | so40T | s@933jwwo) ain31isul | wWY3lL GNOJ3S

lz4eda | | | | | ¢ | N39 | 10401 | 4013sunod A3nded | wy3l aNOI3S

P b b ete9 |1 | 884eyd-u} | wy3aL anod3s

111 btet*9 | | | | ®34eyd-uj | WY3L QGNOI3IS

ot 11 bettel I | | 83ueyd-ul | WY3L @NODJ3S

I 11 1 1 T oz | 4s@ | s€2TLZ | ydaeasay | wy3aL LSUld

11 11 1 1 oz | ¥4Sa | tw€ZTL | yoaeasay | Wyl Lsyld

| (suotaods om3) | | | | 9T°9 | ot | N39 | TOHOT | uol3leload | wy3iL 1Syld

| Sujs93auj3u3 sijenpedy uo 8333 jwwo) Judwlaedag | | | | | I | | 0Q+ | -wy3L 1s¥id
b1 b1 1 s 1 N39 | 0904T | S9933jwwo) juswisedaq | Wyl LSyid

| s924nosay uo 22d33jwwo) anijasuy | | | | | | N3I9D | S040T | Q1= | Wy3Ll LSYyIA

| etnotaany uo 3933 twwol 33n3y3Isul | | 1 | | | N3ID | S040T | Oi» | wy3L 1S¥id

I b1 1 1 1ot | N39 | S0%0T | S2331wwo) 21n31Isul | WY3IL LSYid

] z4edxa 1 | | | | § | N3D | 104901 | 4019suno) A3ndeyq | py3L 1SyI4

b1 betsgl | | | ®3seyd-up | wy3aL LS¥id

I betg | | 1 | ®34eyd-uj | wyaL LSylid

1 1 TL6T ‘1€ Atnp | TL6T ‘T aunp |] 00T | 4SO | 4¢2TLZ | | NOISSIS HIWWNS

.

e o o o o o o 9 o o o o o o o o o o
>>

e o o o o o o o o s o 0 0 s o o o @ .
WotL b el e LW L L L L L LU LLLLLLLLLOOUOOUS>>>>>>>>

e o o o o o o o o o o

.
xecoeoaacaaoaoLoA XXX XXX XX

‘fRangpns
‘A4ngpns
‘Rangpns
‘Aanqpns
‘Riangpng
‘Kanqgpns
‘Aangpng
‘Aangpng
‘Aangpng
‘349queT
‘3a9queq
‘349queq
‘3143quen
73 43que
‘343que
‘349que
‘349que
‘3 49quen
‘3 a3queT
‘3429119
‘349qL1i9
‘3439119
‘349qL 19
‘349q(19
‘349q119
‘3ujuue)
‘3utuue)
‘3ujuue)
‘3ujuue)
‘3ujuue)
‘3ujuue)
‘Buiuue)
‘3uiuue)
‘3ujuue)
‘3ujuue)
‘3ujuue)
‘3ujuue)
‘3utuue)
‘3ujuue)
‘3ujuue)
‘3ujuue)
‘3uiuue)
‘3ujuue)
‘/8ujuue)
‘3utuue)
‘3uiuue)
‘/3uuue)
‘3uluue)
‘Bujuue)

———— — — — — ——— ———— —— — — — — — ———— —— —— — — —— —— ———— — — —— — —— —— — —

SIUBWWOD JSAS puaTaiep jJels 93ep wnuTfqns -3udd43d 3dAITIOOR wWNUTIOOR |04 WJI AWeu UBPJO 3J0S

(END)

ROMS REFERENCE GUIDE ! 1.4 1
t

Index
09/24/74

INDEX

This Index covers Part I (Introductlon) and Part IY
(Commands) of the RDMS REFERENCE GUIDE.

Followlng each toplc there can be up to three types of
referencest 1) RDMS documents are named first. These are
indicated by the name of a command wrlte up (“add_name_set") or a
section of Part I of the RDMS REFERENCE GUIDE (*1.1
Introduction™). 2) Documentatlon ot Interest that may be found
In the Multics Programmers® Manual (MPM) appears next. These
entries are preceeded by *(M)" to distlngulsh them from
refererences to RDMS documents. The WMPM is divided into two
partst Part I Is the "Introduction to Multics® (abbreviated MPM
1)y and Part IT is the "Reference Gulde to Multics™. Each part
is divided into chapters or sections {("MPM 1II, 1.4 1Is the
abbreviation for Part II of the MPM, Section 1 on “The Multics
Command Language and Environment™, subsection & on "The Command
Language®™.) In additlon, Sectlon 9, *“Commands*, of Part II
contalns write-ups of Multlcs commands. These are Indicated by
name ("exec_com™)e. 3) Flnally, one topic may refer the user to
another toplce. For example, under the toplc *“cost saving
tfeatures™ appears an entry *“(see absentee usage)”.

L conventlon

add_name_set
delete_sets
display_relation
print_set
rename_set
sms_Interface
status_sets

* conventlon

(M) MPM I7, 1.4

)

(§.)
>

)
Daemon

(S0)
EOR

eds
1/0

)

Job Control

M)

convention

MPM TIT1, 1.5

MPM II, 1.5

MPM 174 15

dprint

MPM 1T, &
Lanquage

exec_com

(see absentee usage)

absentee reports

(see absentee usage)

absentee usage

hmd
hmp
whod
whop

o)
M)
M)
N
M)
M

cancel_3abs_request
enter_abs_request
exec_com

hmu
{ist_absentee_request
who

(see active functlons)

RDMS REFERENCE GUINE

ROMS RFFERENCF GUTIDE

absin

(see absentee usage)
active functlons

dbd

set_name

set_user

sms_star

sms_tvype

(M) MPM TYy 19-1.15
addlng names

add_name_set?
change_name_set
rename_set
address space
set_data_base
terminate_set
(M) Initiate
(M) tlst_ref_names
(M) terminate
(M) where
aliases
{see adding names)
answering questions
(M) answer
archiving

(M) archive

1e1i.Introduction
display_relation
fist_data_tyoe
print_set
status_set

asking questions
(M) answer
(M) query
(M) response

attentlion

(see program Interruptlon)

author

(M) status
brackets

(M) MPM IIq 1.4

(see active functions)
break

({see program Interruptlion)
brieft mode
eds

carcelling

(M) cancel_absentee_request

(M) cancel_daemon_request

RDMS PFFERENCE GUIDE

RDMS REFERENCE GUIDE

canonicallzatlon
(M) MPM 1T, 1.3
cardinallty

1el.Introduction
1.6.0eslgn Princlipnles
display_relation
print_set

status_set

catalogs

(M) MPM 1T, 3
(see data base)

changing names
add_name_set
change_name_se?
(M) MPM 1, 1.12
(M) addname
(M) deletename
(M) fs_chname
(MY rename
cleanup tools
delete_set
collating sequence
(M) sort_f~f11le
command language

(MY MPM TTI, 1

command fevel
(see MPM 1Y, 1.4)
comparing sets

compare_sets
sms_inter face

computing over a relatlon

evaluate
sms_Interface

consofe ilne tength

(M) tine_ftength
consoles

(M) MPM T, 1.3
converting

sms_interface
(see restructuring)

copying
copy_set
cost saving features

(M) archlve
(see absentee usage)

creating data bases

createdd

PDMS REFERENCE GUIDE

RDMS

REFERENCE GUTIDE

creating relatlons

copy_set
create_relation
eds
sms__Iinterface

creator

data

data

data

data

data

datum

(M) status

base
1eleIntroduction
1.3.Example Data Base
1.6.0esign Principles
createdb.ec
set__data_base

format

2:1.0S™ Overview
2¢2.NFM Overview

representation

(see data format)
strategles

2¢1.DSM Overviewn
tyoe

leloIntroduction
2¢1.DSM Overview

(see data tyope)

1
!
!

!
1eb4 1
!

Page 7

!
1.4 RPOMS RFEFERENCE GUIDNE
!

deferred execution

{see absentee usage)

deleting

detete_module
delete_set

diating up

(MY MPM T, 3.1

difference
sas_Interface
do
(M) do
ec

{see exec con)
editing retations

eds
edliting text

(M) edm
(M) qedx

eaual convention
(see = convention}
error handting

(M) on

! 1
RDMS RFFERENCE GUIDF : ! og.4 0
! |

Page 9

exec com
(M) exec_com
(see absentee usage)
(see actlve functions)
formating
(see data formats)
formats
{see data formats)
handllng unusual occurances
(see error handling)

help

(M) help
(see check_infto_segs)

Information

(see help)
initlating a data base

set_data_base
initlatlion

MY Initiate
Input

eds

!
1 1.4 9%
1

Page 10

input iIinto a retation
eds
inserting data

eds
restructure_data_type

inserting data strategy modules
(see inserting modules)
inserting data types
copy_set
insert_modute
Insert_set
new_data_type
inserting modules
Insert_module
inserting relation strategy modutles
(see Insertlng modules)
Inserting relations
copy_set
insert_set
(see Inserting modules)
inserting tuples Into a relation
eds

Inter-user communication

M) malit
(M) send_message

PNMS PEFEPFNCF GUIDE

RDMS PEFERENCE GUIDE

—
Interrupts
{see program Interruption)
intersect
(see Intersectlon)
intersection
sms_Iinterface
kitting
eds
fenath
(see arity)
—_ fogout
(M) logout
macros
(M) exec_com
(see abbreviatlions)
mail
M malit
a making a quart
make_quart
sms_Intertace

making a3 relatijion

make_relatjion
sms_interface

e o

! 1
LI W RDMS PFFERFENCE GUIDE
'

1

Page 1?2

messages
(M) send_message

modifylng reiatlons
eds
restructure_data_type
sms_Interface

moving Information
sms_intertace

moving names
add_name_set
change_name_se?
rename_set

moving relations
copy_se?

name cooylng
add_name_set?t
change_name_set?t
set_name

new refation
create_relatlon
eds
make_relatjion
sms_Interface

offiine

(M) absentee usage
(M) dprint

POMS REFERENCF GUIDE

order
(see arity)

order of sorting (relation)
1.1.Introductlion
1.6.Nesign Principles

display_relationr
sms_Interface

status_set
output

print_fille

M) fite_output
passwords

dsw_c iph
permit list
(see protectlion)
orinter
(M) dprint
printing relatlons
display_retlation
print_set
aquick_report

printing sets

flst_data_tyoe
print_set

!
1 1.4 ¢

Page 13

!
! 1.4
1

—————— —

Page 14

process interruption
eds
(M) program_interrupt
(M) release
(M) start

prolect (set theoretic)
sms_Interface

protectlon

eds
(MY MPM TIT, 3.4

quart

1.1.Introduction
1.6eDesiagn Princinles

quasi-reliation
(see quart)
aults

{see program interruption)
M

quitting
(see program interruptlion)

ready message

(MY MPM T, 3-5
(M) ready

RPNMS RFFEPENCE GUIDE

RDMS REFERENCE GUIDE

reference number

(see refno)

refro
{eteIntroduction
1.6eNesign Princliples
print_set

relatlon
{eleTntroduction
1.6.0eslign Principles
(see making a relatlon)

reports

display_relation
aulck_report

restarting
{see program Interruption)

selection

sms_Interface
set

1el.Introduction

1.5.Glossary
sharing

insert_set
sort

1eteINntroduction
{i.3.Example Data BRase
1.6eNeslgn Principles
sms_Interface

Page 16

sorting
(see sort)
standard output form

(see data strategles)

start

(see program Interruption)
status

{lst_sets

print_set

status_set

strategy modute
1.6.Design Princliples

2¢1.0SM™M Overview
(see data strategles)

synonyms
(see adding names)
temporary relation

(see quart)
(see sms_Intertace)

token

1ei.INntroduction
1.6.Design Principles
(see refno)

PDMS PEFERENCE GUIDE

~

ROMS PEFERENCE GUIDE

union (set theoretic)
sms_intertface

verbose mode
eds

virtual data tyope
1.3.Fxample Data Base
1.6.Deslgn Principles
2¢1.0SM Overview

width (of a relation)

(see order)

(ENDS

PDMS REFERENCE GUIDE 1 1.5 1

This

Glossary
09724/ 74

glossary defines several terss which are used

throughout the RDMS REFERENCE GUIDE.

data=type

dfm

dsm

module

quart

A collection or set of data elements, such a8s nanes,
tel ephone numbers, salarles, or tltles. (In other
places the term “data-type™ refers to objects such as
integers, character strings, or complex values. ROMS
is more orlented toward a user-yien than an
implementers vien, Writers of compliers deal with
Integers and stringsy users deal with salarles,
telephone numbers, titles, and person®s names.)

short for "data format module™. A program which takes
a reference number and a character string, and which
modi fles the character string to have a new format
("Jones, Edward™ => “fdward Jones™) or calculates the
string from the reference nusber (refernce_number =
13740801y sString output is “August 1, 1974"). See the
Overview on DFMS,

short for data strategy module, A program which knows
everything necessary about one class of data elements.
t rdms.lf "page?2™ See the Overview on DSMS,

A program which manages a data-type or a relation. A
program which manages a data type Is called a Data
Strategy Module (dsm), while a program which manages a
relation or auart 1s catled a Relat]onal Strategy
Module (rsm).

for "quasli-retatlon®™. A quart has most but not all of
the characteristics of a relation. The differences
aret 1) a quert 1s not stored In the data base
directory and wil! not survive a crash, while 2a
relation or temporary relation is stored in the data
base directory and wlll survive a crash. I1) A1l of a
user®s quarts are stored In the same Multlcs segment,
while refations are usually stored In separate
segments. Since a segment has a maximum slze, the
maximum <slze of a relation may be larger than the
maximum slze of a quart. iit) Muttics access control
operates at the segment ftevel. Thus a user may glve
another user access to a relatlion, but Information in a
quart cannot easilty be sharede. The commands
“cleanup_data_base™ and “terminate_data_base™ delete
all aquarts.

relation

rsm

set

temporary

virtual

RDMS REFERENCE GUIDE

A retlation Is 3 set of relatlonshlips such as *“John has
telephone 253-111 and room 39-400", *Mary has telephone
253-2222 and room 39-500". In I1ts narrowest .sense,
“rafation” refers to a non=-temporary refation which Is
a permanent part of a data base. Used more generally,
“reflation” may refer to a non-temporary relatlion, 2a
temporary relatlon or a quart, all of which are
collections of relationships. But temporary refatlons
and aquarts are not permanent parts of a data base.

for "relational strategy module”, An rsm Is a program
(or module) which knows everything necessary to manage
one scheme for representing a reflatlion. Currently,
ROMS only uses "rsm_matrix™, but other rsm®s might be
“rsm_multi_segment_flle_matrix™, “rsm_linked_list"” or
“rsu_tree*.

A set is a collection of elements, Data types are
collectlons of datums, while relatlons are collectlons
of relationshipse Thus the ROMS command “list_sets®
teils a user what relations and data-types are In the
user®s data base.

refation

A temporary refation Is a relation stored In the data
base directory, but having a speclal! name such as
“+TEMP+ . 'BRBAdAFalIrGpPXZT™, Temporary relations are
del e ted when a data base |[s terminated. (See
documentation of “terminate_data_base™.)

As in "virtuat data type™. ROMS uses the word to
suggest something which has a logical existance but
does not physically exist. Thus a data-type named
phone_number managed by dsm_integer would be virtual,
because one can envision a collectlon of
“phone_number*=°s logically, but ROMS does not implement
such a collection as a Multics segment contalning the
integerse. By contrasty, a data=type named “name®,
managed by dsm_v2_astring woulb be non-virtual, because
in addition to the (togical collection of names, a
Mutl tics segment containing a list of names will also
exist, No “virtual relations™ are currentty
imptemented, so all relations are non=virtual.

CEND)

$!

RDMS REFERENCE GUIDE 1 1.6 1
! !

RDMS Deslgn Princlples
09725/ 74

i« Introduction

This sectlon describes the underiying concepts and
functional <capabilities of an advanced generallzed data-base
management system based on the set-theoretic concepts of a thesis
{8) on the "GOLDSTAR"™ system wrlften by L. A. Kraning and A.
Fittat of M.l.T. In 1970. This system provides a generalized
data-base management and reporting faclliity based on explicit
mathematical conceptss but [Is conceptually simple enough to be
readily used without requiring the user to alter his perception
of his needs. Thls system, named Relatlonal Data Management
System (RDMS), Is currently Implemented In PL/1 on the Multics
operating system and is being used In many areas to serve
administrative needs at M.I.T.

The Relatlional Data Management System (RDMS) offers a
generallzed data-base management system with a uniform system for
cataloglng flles (known as relatlions) and character string data,
and a set of commands and subroutines which operate on the
relations of a data-basee. In addition, RDMS provlides an edltor
for entering and modifying data, commands for printing selected
contents of a data-base and generating reports, and a language
for report generatlon and data-base query. There also exists a
generalized computatlional faclillty to operate on relatlons of a
data=-base.

2. Relations, Columns, Rows

A relation may be considered a computer-stored form of a
table conslisting of columns, each of which has a distinct meaning
specific to that column. For example, consider a telephone bookae
This may be considered a relation of three columnss name,
address, and phone number. Each of these columns has [ts own way
ot displaying the data Iin that column. The entries in the "name"
column are of the form “Doe, John C.*y and the entrlies of the
“address” column are of the form 226 Farm Rde Lex™ where "Lex™
is an abbreviated town name. The entries of the “ophone number®

! !
! 1.6 ¢ ROMS REFERENCE GUIDE

! 1

Page 2

column are of ¢the form *253-4107". Each of these three columns
nas a specific meaningy and because of this, each column has a
particular format for displaying and storing its data. In the
terminology of the Relational Data Management System, each of
these columns of the relation is called a "dataclass™ (referred
to as "“datatype"™ In older documentation), a statement that each
column of a relation has a speciflc meaning and type of data as
its entries. FEach column of a relation Is labeled by the name of
Its dataclass. This name Is also referred to as the ‘'column
name®, Each row of the "phone book™ relation is an assoclation
between an entry of the *name”™ dataclass, the "*address"
datactass, and the “phone number®™ dataclass. In ROMS terminology,
each row of a relation is known as a tuple. The word “tuple®™ is a
mathematicat term which derlves from our Inability to express
assoclatlions between more than three objects (datums). The terms
“pair, and "triple”™ could apply to rows of relations with two or
three columns, but for four or more, this assoclation Is known as
a "4-tuple™ or “6-tuple™, eftc.. Thus the word *“tuple”™ Is taken to
be a general term which includes "pair®™, “"triple™, and all other
assoclations between a fixed number of objects (datums). The
terms "“tuple”™ and "row"” are Interchangeable.

A flle may be a telephone book as discussed above, or a set
ot Index cardsy, manilia folders, or any usable collectlion of
related information. A file is actually a set of records, whether
they are medlcal records, dossiers, transcripts, etc.. See Flgure
1 for an example of a flle showing a colfectlon of manlila
folders, each corresponding to a record of the file. Note that
“file* and “relatlon*™ are 1logical concepts. The physical
Imptementation of these concepts 1In a computer system will be
discussed belowe

A conventional computer flle (called a file) Is atlso a
collection of records. Since mass storage devices commoniy used
with computer systems have continuous storage medliums, a flle
must be subdivided Into ftoglcal entitlies called *“records” In
computer terminology. Furthermore, each record 1Is subdivided
into *"flelds", each of which corresponds to a particular part of
the Information of the record. Note that the record consists of a
set of flelds, each of which contains Informatlion related to the
information 1n other flelds of that recorde Refer to Flgure 2
for a dlagram of a conventional! computer file organization. A
relation differs from a record orlented tape or disk flle In
some ways. However, there are several simliaritles. The concept
of a record as a meaningful binding of related information is

$!

RDMS REFERENCE GUIDE ! 1.6 1
! !

Page 3

preserved. In RDMS, the record corresponds to what |[s called a
“tuple™y, or row of the relation. Both a relation and a file may
be visualized as a seaquential Iist of tuples.

An Important difference between a record and a tuple is the
actual storage of the data. A record consists of a character data
string (the number of characters equals the record length)
wherein each meaningful part of the record is called a field
deflned as an Internal! subset (a start character and a fength) of
the record®s string of characters. Thus a conventlonal computer
fite®s data is meaningtful only in the (ight of a set of tield
definitlons for that fitle. Any program accessing that fille must
understand those fleld definitlions. In such a system, a table of
field detfinitions must be kept, and each program or report must
understand the properties of the flelds speclific to It. Also, the
data used In computation (l.e.y matching, selecting, sorting,
reports, etc.) is the actual character string which may be of
varlable length.

A relation may be visuallzed as a table which consists of
tuples (or records), each of which corresponds to a row In the
tabte of a fixed number of columns (fields). Each column contains
data of a meaning and type speclific to that column. Thus a column
corresponds to a field and may contaln variable or fixed length
datums. However, the relation itself contains the column names
{dataclass names) of 1ts columns, and thus contains iIts own flelid
deflinitions with respect to access or printing of the data. As
shown In Figure 3, each relation of a data-base contains a
varlable number of rowsy, each with a fixed (for the refation)
number of columns, along with a dataclass definitlon for each
column, A relation®s rows are normally sorted by the
hlerarchicatl ordering of the columns from left to right.

! 1.6 1 ROMS REFERENCE GUIDNE

Page 4

3. A Data-Base as a Set of Relatlions

An RDMS data-base Is a collection of relations 4 each of
which represents a set of relationships between data elements
(datums) from different dataclasses (or flelds). The retlation is
sel f-defining In the sense that It labels |(ts own flelds, and
assoclates a meanlng to those 11abels (dataclass names). A
dataclass name by which the relations columns are {abeled might
be *name®*, “rank”, *“title™, “phone number*, "address™, or any
simllar user-supplied class of datums or objects. Two separate
relations of the data-base may have a common column name, and
although those relations may be loglcally distinct retatlonships,
they are Impllcitiy tinked because they Involve the same oblects
(datums of the same dataclass). See Figure 4 for a dlagram of
the database shown In Flgure 3, where the clircles represent
relations and the 1targe dots represent dataciasses. The {(lne
connecting a dot to a circle implijes that the reflation (circle)
Includes the dataclass correspondling to the dot. Note that the
“name* dataclass occurs In three relatlons, and that ¢the *task"
name also occurs in three retlatjonse Two relations that have at
lfeast one common datacliass name are sald to be implicltly (inked.

4o Operations on the Relations of a Data-Base

An RDMS data-base Is a collection of relations, many of
which may be of the same form Iin the sense that they have the
same column namese. Consider two relations: relatliong and
relation2, for example, the relations task_IlIist_A and task_11lst_B
of Figure 3. If both relationl and relation?2 have the same column
names, then a row of relationl has the same meaning as a row of
relatlon2. In that sense, It is meaningful to combine or operate
on these two relations In a standard set-theoretic way to create
a third result refatione. Three standard RDMS primitive
set-theoretic operatjons are 1) unjon, 2) intersection, and 3)
differences The operation "union (relatlioni, relation2)"” creates
a result relation which consists of all those rows in either
relationy or relation?. For an example of the union operation
see Flgure Se The operation “Intersection (relationi,
retlation2)” creates a3 result relation which consists of ail rows
which are In both retationi and relation2. The operation
*dl fference (retlatloni, relatlion2)™ creates a result relatlion
which consists of all rows which are In relationli and are not in
relation2. The above standard set-theoretic operatlons operate

RDMS REFERENCE GUIDE 1 1.6 1

Page 5

in the normal manner to form the set=-theoretic union,
intersectlony, or dlfference of sets of rows. In thls sense, a
refatlon Is conceptuatlized as a set of rows, and meaninas
specltic to given column names are ignored.

The retations of an ROMS data-base may not have ldentlical
format as In the previous example but may be linked together by a
common column name. By virtue of the fact that two relations have
a common column name <dataclass>y a 1loglcal relatlonship Is
implied between data in these two relationse Both relations may
have the character string <datum> In the column <dataclass>. This
<datum> may be an entry by whlch both retfation files may be
meaningfully accessed or reported-on. Note that in Figure 3 the
refatlons salary_Illst and task_Ilist_B both contaln the datum
“Smithy HWlitlam B."” Iin the "name®”™ columne Thus the set of rows
of relationli with <datum> In that column are said to comprise
that “information In relationi about <datum>*, Llkewlse, the set
of rows of relatlon2 with <datum> In column named <dataclass>
comprise the “information In relation2 about <datum>", These two
groups of Information about <datum> from relationl and relation2
may be of different forms and meanings, since relatloni may have
different column names (and meanings) than relation2 has. The
onfy guaranteed common Information between these two sets of rowms
with <datum>, is that <datum> s In column <dataclass> In both
sets of rows. '

The relatlon operation *“compose®™ takes both the “information
In refationi about <datum>*™ and the “Information In refation?
about <datum>* and creates a result relation which combines *"all
information from relationi and all information from relation2
about <datum>®™, The columns of this result are those column
names derlived from either relationli or retlation2. 7Thus two
relations with a common column name may be combined iInto one
retfatlions and flles based on a common key or coliumn name(s) may
be independentily malntained and updated and at a {later time
combined using the *compose® operation. This Is a useful feature
which enables many 1mpliclt 1logical relationshlps between
refations of a data-base. For an example of the compose
operatlion, see Flgure 6. :

There are two operations which create a result relation from
fjust one relation. The *sort®" operation simply creates a result
relatlon by sorting the rows of retationt based on a
user-specifled sequence of column names from relationi. The
relation relationt ls effectlively sorted on the first column name

1 !
1 1.6 ! RDOMS REFERENCE GUIDE

Page 6

(key) from that sequence, then the second, etc. The “prolect®™
operation creates a reduced output relatjon by effectively
eliminatlng a user=-specified set of relationi®*s columns, and
“compressing™ the result to eliminate duplicate rows with the
remaining columns.s An example of the sort and project operations
Is glven In Figure 7. Note that the *"task® dataclass has a
predetermined user=-specified sort order which (is not an
alphanumerl]lc sort of the datumse (The concept of wuser-speclfied
sort orders ls covered later In thls paper.)

Consider two relations which have no column names In common,
A meaningful operation whlch comblines these relation Is the ROMS
operation "cartesian_product™. This operation creates a result
retfation which conslsts of each row of relationi combined with
every row of relatlon2. Thls operatlon results In a relation
whose column names are those of both relationl and relation2. The
number of rows of the result relation is the product of the
number of rows of retatloni and the number of rows of refation2.
In Figure 84 the cartesian product operation Is used to associate
with atl rows of task_Ilist_B the project="B",

Se Other Facllitles and Capabitities of RDMS

ROMS faclillities 1Include the above reftatlion manipulation
operations as well as report generations Information retrieval,
and computatlonali opackages which greatly enhance the utiilty of
the retlatlionat concept of data. A command Janguage exists which
performs all of the above operations on relations. A relation
edl tor "eds"™ (edlt set) Is used to create relations and Input,
update, and maintain data In relational form. In addition,
several] report and Information retrleval packages have been
developed and are being successfully used at M.I.T.:?
relational_operators (rop), aquick_report, book, and sharri,

The relational_operators package provides a generatlized
computational facility for deriving useful computed results from
data stored In reljatlional forme The retlatlion_operators opackage
aliows for the specificatlon of algorlthms which operate on the
data in the columns of an Iinput relation to vyield computed
results [In another output relatlione. Data computed from the
relational data wlithin a fine division of the relation®s rows may
be immediately applied to other computations based on coarser
divisions of the relation®s rowse. Thils provides computations of
average values (or other statistical aquantities) as well as sums,

RDMS REFERENCE GUIDE ! 1.6 !
{

sums of products, or any speclfiable computation. For example,
conslder the retation tasks_salarles_by_task which resulted from
composing total_task_1list and sal_list and then sorting by taske.
Refer to Filgure 9 for the output of a simple computation, whlch
for each specific task, sums over all rows of that task the
product of the percent_effort and salary columns.

Quick_report Is a oprogram which simply prints a relatlion In
tabuiar form. It allows the use of headers, permutation of
columns, user-supplled formats, and the abllity to lgnore certain
columns [In printing., Qulck_report Involves i(lttle effort on the
part of the user who designs the report, and provides nicely
formated reports based on a single relatione.

Book 1is a package which allows, In addition to all of the
consliderations dlscussed abovey, a means of printing relatlions
while making formating and printing declslions based on the
semantics of stepping through relations i{which columns change,
the leftmost column which changed, etc.)e Book creates a report
whlch plctures the data and the meanings Inherent In the
structure of the relations 1Involved. The user specifies this
report In a relation contalning commands to the book package,

Sharrl iIs an acronym which stands fort simultaneous hash
access to relations report Janguage. This package enables the
user to generate a hash-table form {(inverted flle) of a relation
keyed on the datums In 3 column or set of columns to facilltate
random access retrieval, and provides a reporting faclility
whereby a report may be generated based on data retrieved
simultaneously from several relatlons. Sharr! 1Is useful In
keyed=query type reports and large reports which form a plicture
based on the semantics of keyed retrleval from several relations
simuitaneousliye The user must write a report-specification which
Is then assembled into an efficlently interpreted form for
fur ther use.

6e Implementation of Dataclasses

Instead of storing the character string datum In each of the
columns (fields) of the row or tuple (record), a reference number
or token s stored In the actual relatlion flte. The character

! !
1 1.6 1 RDMS REFERENCE GUIDE

1 !

Page 8

string datum is stored in a dataclass file. Each dataclass file
has a name, and 1Is a distinct tile where the character string
datums specliflc to that dataclass are stored and referenced by
their reference number (refno)l. See Figure 10 for a diagram
explalning this as It applies to the relation “task_list_8",
shown previously 1In Figure 3. An Important constralint on the
assigning of refnos or tokens to datums of a glven dataclass Is
that the reftnos malntaln the Intended sort order of the datums In
the dataclass. In the example the dataclass "name'" [s a means of
assigning reference numbers to and storing character string
datums so that the alphabetlc sort order of the datums Is
preserved In the reference numberse. This means of storing
character string datums In a binary tree was suggested by William
A. Martin In an internal MeI.T. working paper (9), The concept
of accessing such datums by reference numbers assigned with the
binary tree, and of thus providing a uniform key (the reference
number) whereby all datums of the data-base may be accessed,
originated with the theslis (8) by L. A. Kraning and A. Flilat,

A refatlon Is thus represented as a simple matrix of refnos,
and thilis constitutes the entire relatlion structure. At
operations on relations { such as sort, compose, etc.) are
operations on this simple matrix of numbers. Since a relatlion Is
normally a sorted set of rowsy the set theoretlic operations of
union, difference, and IiIntersect are (implemented by stepping
"through two relation flles and the computing time Is linear wlth
the slze of the retlations. The sort operation Is simply an
algorithm for sorting a matrix of reference numbers. At present,
the sort algorithm Is a generalizatlon of TREESORT3 (3) to sort
the rows of an n by m matrix based on a speclfled sequence of
cotumns. In addition, altthough 2a dataclass (e.ge.s people’s
names) may appear In many refatlons of a data=-bases, only one
dataclass file 1Is maintalned. The "task®™ dataclass In the
example (Flgure 10) is different from the "name* datacliass flle
In structure. The *task™ dataclass 1Is known as a "table”
dataclass wherein datums are assigned reference numbers iIn the
order that they are Inserted Into the dataclass flile, which may
be prespeclifled by the usere. This 1Is wuseful when the user
requlres a report sorted in a particular order which |is not
necessarily alphanumericy such as departmental ranks, or Job
categoriese.

The different structures of dataclass requlre different
algorithms for accessing the datums, depending on the dataclass
file®s structure. In order to provide a general 1ogical means of
accessing datums gliven thelr reference numbers, and of Inserting

1 !

RDMS REFERENCE GUiDE 1 1.6 1
1 !

Page 9

datums and assiagning re ference numbers, the concept of
"data-strategy-module™ was developeds. The RDMS system assoclates
with every distinct dataclass (column) name In a data-base the
name of the access—-method for accessing datums in that dataclass,
and assligning refnos, etce. These names assoclated with every
datacliass are caltled “data-strategy-modules*®. They are the names
of the procedures which manage a glven structure of dataclass
file. By relegating these concerns to a level Invisibie to the
user, a single foglcal i(nterface Implements the use of reference
numbers, and facilitates the means of storing a relation as a
simple matrix of reference numbers.

A relation Is Iimplemented as a Multics ¢tile and simply
speclifies blndings (rows or tuples) between the (reference
numbers otf) datums from a set of dataclasses (one per column of
the relation)s Each relation is a ¢ftile which is accessed
Independently of the representation, storage, method of access,
or length of the datums of the speclfic columns of the
relation®s rows. Because the reference numbers which are proxies
for datums preserve thelr sort order, the |[Information of this
ordering 1Is not 1lost In the relatlon file. Physically, a
relation is simply a header (with the column dataclass names)
followed by 3 matrix (number of rows by number of columns) of
one-word reference numberse. Because of the dataclass and
reference number tokening of datums, the concept of a maximum
fleld length Is not appllicable; a datum fetched from a dataclass
fi1tle by 1ts refno may yleld a character string of any length.
This Is a useful property which enables the wuser to specify
datums which are meaningful and pertlnent to hils needs. In this
sensey varliable-length flelds are automatlically provlided as a
byproduct of the tokening of datums of a dataclass. However,
refation operations reaquire no reference to the dataclass flles
and operate entlirely on a simple wmatrix of refnos. The
individual datums specified in a relatlon can be modified by
using the relatlion editor *"eds"™. Increasing or decreasing the
size of an Individual datum merely changes the refno stored In
the refation {and may add a new datum to a dataclass file),
without changing the size or storage of the relatlion. In this
sense, replacement of Individual datums may be done In place,
without chalining or fragmenting the refatlion file.

A dataclass may be (and often 1(is) wused In several
refationss Thus for two relations with a common column (field)
dataclass name, equal reference numbers correspond to the same
character string datum, and all [tems wlithin the dataclass are
maintained In a single dataclass file. Thus If a datum (e.Qg.,

1 i
1 1.6 1 RDMS REFERENCE GUIDE

Page 10

the person®s name “R. Smith*) occurs In several relations, it
would appear only once in the dataclass file. This iIndirection
and tokenling of a dataclass offers several advantages over flelds
In a record oriented environment. Elrsts, all reference numbers
are of the same ltength. This allows uniformity and simolicity of
handling of relations as a simple matrix of machine words.
Seconds 1t altows compactness of storage since most character
strings would require more than one word of storage. True, the
character strings themselves must be stored once In the dataclass
tite, but only the reference numbersy, and not the character
strings, need to be duplicated in several rows of a relation
file, or In two relation tiles with a common dataclass. Ihird, it
allows fast sorting on the columns (fields) of a relation.
Sorting 1s done on reference numbers (refno®s), not on flelds of
characters. Thus the sort routlne, as well as all the other
relation manipulation primitive operations, are Independent of
dataclass flles or of the representation of data as stored In the
dataclass file. Fgurths it allows extremely powerful, efficient
operatlons based on two relations (files), since In two
relations with a common column dataclasss, matching reference
numbers In those columns correspond to the same character string
{le€ey the same data)le. Thus the operations sort, compose, unlon,
intersection, difference, and projlect are easily programmed and
are aqulte efflcient,. In conclusiony, the orimltive relatlion
manlpulation operationss which take as Input two relations and
yietd a third output relation, never need to access any of the
dataclass fltes which are implled by those relatlons. Such access
1s needed only at report oprinting time, and thus extensive
manipulations of the relatlonships or bindings (retations)
between datums Is possible In a representation-independent,
efticient manner. An example of the physical form of a relation
1s shown In Figure 10.

7. Data Strategy and Format

ROMS thus offers a generallzed unlform flle Interface and a
scheme of datum tokening whlch allows efflclent operation on
relationse When IiInitially input, a data element Is immediately
asslgned a unlaue reference number whichy, from then on, 1Is 2a
token or proxy for that datum and iIs used in all relatlons with
this dataclass as a column®s dataclasse. This allows efficiency in
relatlon operatlons. It also provides protection because 2a
distinct dataclass flle may be set up as protected, l.e.,
readable but not writable. Thls is useful for controliing the

RDMS REFERENCE GUIDE 1 1.6 !
1 !

set of possibie datums whlch may be wused In 3 given column
(field) of a relation.

The approach to storage or access of the character string
datums Is also wuniforme Each datacliass file has a unique name
(the column®s dataclass name). Given the reference number of 2a
datum and the dataclass name, the datum ls accessed by RDMS [n a
uni form wayt the cal! "get_datum_given_refno”™. This call takes as
Input the reference number of the datum and the name of the
dataclass flle; and as output returns a pointer to the character
string datum (of arbitrary length),.

A unliform (iIinterface for obtalning reference numbers or
tokens ls also provided. Given a character string datum and the
name of a dataclass file, the reference number of that datum is
determined by the call "get_refno_glven_datum*. This call takes
as iInput a pointer to the datum and the name of the dataclass,
and returns ac output the reference number cf the Input datum.
If the datum 1Is to be [Inserted (Into the dataclass flie and
asslgned a reference number, the above call (with the “insert*”
optlion speclfled) wlll do that. If the Insert option 1Is not
specifled the "get_refno_glven_datum®™ call will fall If the datum
has not been previously assigned a reference number, Thus RNDMS
provides automatlc detection of possibly Incorrect Input.

The above two calls comprise the basic logical character
string storage and access data-faclllitles of RDMS, regardless of
the stored format or access method of the data specific to the
data type. The function of handliing the storage and access of
data Is retegated to what are termed *data strategy modules®,
which are programs whlch know a3 particular data-structure and how
to access datums and assign refnos based on that structure. When
the user Initlally creates a dataclass flle he specifies the name
of a standard or user=provided data-strategy module program (dsm)
that he assiaons to manage that dataclasse - The calls
get_refno_gliven_datum and *get_datum_gliven_refno™ are a
generallzed loglcal Interface to the dsm program speciflc to a
gilven dataclass file. The RDMS data interface translates a call
to “get_reftno_glven_datum™ (or *get_datum_gliven_refno*™) Into a
cal! to the dsm program managlng the dataclass speclfled In the
call., This translation is Invisible to and of no concern to the
user. A speclal dsm may be written for a specific application
with reasonable ease, and without affecting or modifying any of
the other software. In the printing of a report based on 2a
retation, several different dsm programs may need to be accessed

1 1.6 1 RDMS REFERENCE GUINE
! i

Page 12

In order to print the different columns of the relatlon, but the
printing programs need call only the “get_datum_given_refno"
routine. Examoles of useful data strategy modules provided with
the ROMS system are

dsm_astring {which assigns refnos to character
strings based on a blinary tree where the refnos
preserve thelr datum®s alphabetical order, good
for large amounts of character string data to be
used In alphanumerlicatly sorted order. Refer to
the "name™ dataclass of Flgure 10.)

dsm_table (puts character string datums Into a
table and asslogns reference numbers In the
user=-supplied order that the datums are Inserted,
good for column (fleld) entrles that take on one
of a fixed number of dlstinct values or codes.
Refer to the “task™ dataclass of Figure 10. Note
that the refnos preserve the user-speclfied sort
orders not an alphanumerlic sorte.)

dsm_ciph_integer (for cryptographically
encipherling satarles, etc.)

A yirtual dataclass Is one in which the data need not be stored;
the reference number s the Informatlon. Character string datums
are algorithmically related to reference numbers and vice-versa.
The standard system-provlided virtual dsms are

dsm_integer (a ylrtual datacliassy, an integer
is encoded simply as the reference number, and a
reference number Is simply converted to |Its
integer representation. See Flgure 10.)

dsm_date {a yirtual dataclass which
encodes a date as a reference number and converts
a reference number iInto a date.)

In addlition to data-strategy modules as a means of
representing and storing datums for {ater dlsplay, there 1s
another level of data representation which Is known to all ROMS
reporting and information retrieval packages. In these packages,
the user may specify the name of a *“data-format-module®™ which Is
used to provide an alternate to the representation of a datum
which Is returned by the “get_datum_given_reftno™ primitive. A

7~

! !

RDMS REFERENCE GUIDE ! 1.6 1
t !

Page 13

data-format modufe iIs a simple (e.gey approximately 10 1ines of
PL/1) program which converts a character string Into an alternate
representation. For example, a data-format module named
“dfm_name™ converts a name of the form "Thompson, James P."™ Into
a character string of the form *“James P. Thompson™. This enables
the user to keep names sorted by l1ast name first, but allows 2a
more convenlent and useful format for display purposes. A wide
assortment of data-format modules have been wuseful at M.I.T..
The use of data-format modules makes |t possible to use a small
number of data-strategy modules. For examplie, dsm_integer simply
returns the character string representation of an integer. By the
use of the data-format module *dfm_dollar"™, the Integer Iis
modifled to look 1lke ™ & 45 *, or by the use of *“dfm_percent®™,
is modified to look llke ™ 45% “.

! 1.6 ¢ RDMS REFFRENCE GUIDE
1 1

Page 14
8. How RDMS Depends on Multlcs Features

An RDMS data-base may be considered a set of refation.
files and a set of dataciass flles. The relation manipulatlon
operations (sorty, composes unlon, intersect, difference, etc.)
all require that three relation files be accessible fto that
operatjont the two Input relation files and the output relation
fite. For printing of reports based on relatlons, the call
“*get_datum_glven_retno™ 1Is used to convert the reference numbers
stored In the relation ftlle Into meanlingful character string
datums sultable for user readinge Thls requires that all of the
dataclass files for printed columns of the relation must be
accessible at some time while printing the report.

In a conventional computer system, 3 program which performs
any of the above operations must keep track of where In maln
memory parts (buffers) of each of the above flles residey and
must be able to specify when to request that other needed parts
of those flles be moved 1Into main memory. This resuits In
conslderable complexlty and programming overhead. In addlitlon,
sach datacliass file must be able to grow independentily cf other
dataclass flles and at unpredlictable Intervals whenever a new
datum 1Is Inserted Into that datactlass flle and assigned a
reference number. In a conventional system this would require
that the length ot each dataclass file be dymamically updated at
unpredictable Intervalse Since there are a number of dataclass
structures (one per dsm), each specific dsm would need to keep
track of all parts of the referenced dataclass file and be able
to request further parts of that flle as needed. This is a
comp lex requirement which would require each dsm to be aware of
global memory management problems, and to be concerned with the
current state of other dataclass and relation flles being
accessed, in order to effectively manage overliays or to re-use
available main memory.

In ROMS, such software complexlty 1s obviated by the
features of the Multics Virtual Segmented Memory (refer to Flgure
11 and the Multics Virtual Memory paper (2)). Once a flle Is
created, It may at any later time be written into or read by any
program by hardware polnters as 1t It were directly addressable
In maln memory. The program Is unaware of and not concerned wlth
whether the physical locations referenced by those pointers are
resldent In maln memory. Such conslderations as disk-1d,
seconcdary storage addresss length, current main storage jocation,
and the like are handled automatically by the Multics Virtual

N

RDMS REFERENCE GUIDE { 1.6 |
!
Page 15

Segmented Memory hardmware and software. Once a polinter Is
obtained to a file, a program may address any part of that file
as 1If 1t were all resident In maln memory. Multlcs provides a
hardware scheme which automatically converts a loglcal polnter
address (fife name, location within a file) into a suitable
physlical maln memory address, or If that part of that flle Is not
resident In maln memory, Interrupts the program until! ({t has
transferred that part (page) of the file Into main storage. All
programs written for Multics hardware use the ioglcal
2-dimenslional polnter address (flle name, focation within flie).
This greatly simplifies operations which need to access more than
one flley, because 1t altows programs to directly access and
distingulsh 1loglcally distinct and independent files. This
feature 1s called segmentation, or two-dimensional memory (one
dimension Is flle (segment) name, the other 1Is the location
within that file)e. Due to Multics hardware and software
features, writing Into a file can In no way affect other flles.
Mul tics automatically keeps track of atll parts of a glven file
associated with a file namey and by referencing this file name,
It 1Is Impossible to accldentaliy write info portlions of another
fite. Because of the addressing requlirements of accessing many
files (eegey relation filesy, dataclass files) simultaneously,
only heavlily used portlons of which need occupy maln memory, a
virtual memory with paging on demand ls a practical necessity.

RDMS depends heaviiy on the Mujltics virtual segmented memory
for its software simplicity and efflclency. In Multics,
logically distinct files (known In Multics terminology as
segments) may be dynamlcally created and modiflied, and may grow
Independentliy. Each file has a distinct name *to whlch 1[It Is
known to a user. Multics is a time-sharing system which provides
the user with Immedlate on-tlne Interaction with his data and
procedure flles. Every Multlics procedure flile (such as a dsm
program or the sort routine) ls directly executable because It is
hardware accessible by polnters as 1f the flile were (and it is,
In the virtual memory sense) resident in contiguous main memory,
although 1(ts parts (pages) may be scattered throughout the
physical maln memory resource. Thus the hardware paglng and
segmentation feature automatically provides conventional ioading
and tlnking between parts of a single program. Linking between
different program flles Is handled by the Multics dynamic llnking
tacllity, which means that a calling program knows another
program only by its name, and when first called, thls name |Is
converted to a two-dimensional hardware pointer which is then
made known to the <calling program by storing it at a
predetermined 1locatlion (specifled by the calling program) in a
known system segment calfed the *"linkage™ segment. In RODMS,

1 1.6 ¢ RDOMS REFERENCE GUIDE
! !

L ——

Page 16

pointers to relation and dataclass flles are stored In a simllar
manner. Therefore, the conventlonal loading and linking processes
are eliminated because the segmented virtual memory automatically
provides thilis functlion. Thus a software system need not be.
“loaded*” all at once as a flxed load module, and the user pays
only for those facllities of the system that he uses.
Fur thermore, because the RDMS software procedures are
“execute-only*”, a single copy Is shared by all users, and the
user need have private copies only of hls own dataclass and
relation fltes.

Fites (segments) In Multics are organized into a set of
named dlrectoriess A directory ls Itself a fite which loglically
groups a set of files as specifled by the user (refer to Flgure
12). Any data tile may be sald to "belong to™, or "be part of"
one dlrectory. These dlrectorles are organized iInto a tree
structure because directory flles may also *“belong to* or *be
part of"” a directory. Indlividual flles and directorles have
access=control! attributesy, which serve to specify only those
users permitted to read or write into that flle or directory of
fites. Because a flle may be created or made known to the
hardware only through the use of the Multics supervisory, which lIs
itself protected by hardware, the access attributes of a file may
not be compromised by any user, and are checked by the hardware
on every memory reference to that flte. A flle®s access
attributes with respect to a given user may be either “read"”,
“write”, or “execute®, or some comblnation of those. A user may
set the access attributes of his flles wlith respect to any other
user or group of userse. In RDMS, this means that certain
retation or dataclass tiles may be restricted for oporlvate use
{such as salary_list In the example data-base)y while others may
be allowed to be "read™ for publiic use., Large relatlion flles may
be broken up iInto two relation files (each with fewer cofumns)
one of which may be glven public or controlled sharing, while the
other relation file may be restricted for private use. For
reasons of organization and unlform access, the relation and
datacliass fltles of a data-base are all In a Multics directory
which we call the “data base directory”. There exists a master
table for each data-base whlich identlifles each refatlon and
dataclass flle®s name and managling strategy module. This table lIs
named '"SMS_segments®™, and 1s a permanent file resident in the
data-base dlrectory. Refer to Figure 13 for a dlagram showing
how a data-base Is represented as a Multics directory of fltes.
In additlon to the nrames and managing strategy modules of
relatlons and datactlasses, SMS_segments also contalns names of
the strategy module programss, as well] as the name of a managlng
program for SMS_segments itself.

7~

RDMS REFERENCE GUIDE 1 1.6 1
!

The abllity to name the dataclass flies and relation files
help the user to keep his data-base organized and understandable,
SMS_segments may be 1lkened to the master catalog of a tape or
disk llbrary In that It ls online~-accessible and automatically
keeps track of file creation and malintenance. The physical
keeping of the flles 1Is bhandied automatically by the Multics
virtual segmented memory, and Is thus of no concern to RDMS,

It is Important to distinguish the Multics file (segment)
concept and the RDMS relatlon flle concept. For reasons of
system overhead and saving the cost of segment creation, several
frequently created ROMS flles may be packed Into one segment.
The RDMS database catalog “SMS_segments” keeps track of which
segment a given RDMS flle is contained in,

Because the pages of a glven Multics file (segment) may be
scattered throughout main memory, for each segment currently
being accessed the Multlcs hardware uses a page table resident iIn
maln memory to convert a locatlon wlithin that segment Into a
physical maln memory address. By packing frequentiy created RDMS
files Into one Multics file (segment), fewer page tables need be
created or be reslident In maln memory, and the system overhead
assoclated with creating, maintaining, and detleting these page
tables Is reduced.

RDMS operations frequently requlire small one-use relations
to be created and used to specify sort orders for the sort or
project operationsy or for limited selection operations using the
dec lde_over operation. These temporary refatlons are not
consldered to be a permanent part of the database, and do not
need to be sharedj they are Iincidental to other RDMS operations.
In RDMS terminology such relations are called *"quarts®”, or "gyasi
retatlions”. They have the structure and meaning ot a normal
refation which Is a separate Multics flle (segment), and are used
eaquivalently 1In relation manipulation algorithms (such as sort,
composey projecty, union, etc.). However, thelr creatlon and
deletion 1s handled differently, and they are restricted in that
they cannot grow (in length as c¢an normal one-per-segment
relatlons and dataclass fltess These quarts are stored In a
single Multics segment which is automatically deleted when the
user®s process or termlnal sesslon ends, or when the user
“terminates™ his databasey or swltches to another of his
databases. Quarts are not kept permanentily cataloged as part of
the database, and cannot be shared with other users. The cost of
creatlng a quart Is a small traction of that of creating a

——— e o

!
1 1.6 1 ROMS REFERENCE GUINE
!

Page 18

Mul tlics segment, and the deletion of quarts 1Is handled
automatically. ‘

Another form of temporary relation is wuseful for an ROMS.
data-base. Alt{ normatl one-per=-segment relations which are
results of a retlation manipulation command (such as sort,
composey project, etc.) are supplled a name and are cataloged In
SMS_segments wlth thls name. This name Is either specifled by
the wuser when he 1Issues ¢the command, or s assigned a unique
default name "4+TEMP+...*” because the user did not specify a name.
A1l retations of a data-base which have default names are
assummed to be temporary and are deleted when the data-base is
terminated or when the user issues the command
“cleanup_database™, This facitlity relieves the user from worrvying
about namingy keeping track ofy, and deleting rejations which are
Intermediate results., Only those relatlons speclficaltly named by
the user are considered permanent relations of a database.

9, Conctiuslon

The Relatlonatlt Data Management System evofved from an
MeT.T. thesls on the "“GOLDSTAR™ data management system (8)
written by L. A: Kraning and Ae. Fillat In 1970 The concepts
discussed above and the initlal Implementation orlglnated with
that theslse. Since then, the major application of this data
management system has been M.YeT.®°s Departmental Information
Systemy, whlch 1[Is a majlor admlnistratlve tool for departmental
administrators In keeplng track of personnel, account numbers
charged to their roles and efforts, and other compllicated
reporting functions. The primary user Interface to the sys*~em |Is
through the relation edltor *"eds"™y which evolved fthrough
experience into an effective and convenient means of ;.::3iving
and editing data as relatlons. The other principle user Interface
has been through the Issuance of commands for generating specific
reports which are then picked up at an offline printer. This has
invotved writlng a PL/1 program for each report, which uses the
SMS primitive relation commands sort, union, intersect, project,
difterencey, compose, and cart_prod in their subroutine form. A
typlcal report program uses about ten of these operations. Since
then many new appllcations aroses, and new faclillitles and packages
have eliminated almost all need for PL/1 coding by users., These
packages have proved valuable at M.I.Te. In such applicatlons as
FiInanclal Plannings Text Information Retrleval, Administration of
a Graduate Schooly and are wused In several on=-iine query
sys tems,

7 ~

RDMS REFERENCE GUIDE 1 1.6 !

1.

2e

3.

L

5

6e

7Te

8.

9.

10.

11.

12.

Bibllography

Coddy Es Fes A Relational Model of Data for Large Shared Data
Bases"™y Comm. ACM, Voil. 13, No. 6 (June 1970), pDe.
337-387

Daley, Robert and Dennls, Jack, *"Virtual Memory, Processes,
and Sharlng in "ULTICS“’ CACM, Vole. 11, NoOe Sy May
1968,

Fioyd, Robert, "Treesort3", Communicatlons of the A.C.M.,
August 1964, Computer Assoclatesy Inc., HWakefjeld,
Masse.

Goldman, Jays, "Use of Computed Relatlons In a Set Theoretic
Data Base®, Unpublished Se M. Thesiss M.I.T.,
Department of Electrical Engineering, Cambridgey, Mass.,
June, 1973

Goldsteln, Robert C.y and Strnad, Alols Jey “The MacAIMS Data
Management System™, 1970 ACM SIGFIDET Workshop on Data
Description and Access. November 1970.

Hacker, Wil1lam Raobert,; "“The Implementatlion of Data Manzgement
Systems Under Multics™, unpublished S. 8. Theslis,
MeTIoTes Department of Electrlical Engineerling,
Cambridge, Masse.y January 1974.

Hansen, Susan Marjie, A Query Language for a Set Theoretic
Data Base*, Unpubl ished Se. M. Theslisy M.l T.,
Department of Flectrical Englneering, Cambrlidge, Mass.,
January, 1974

Kranlng, Leslle Alan, and Fillat, Andrew Irwin, *Generallzed
Organlzation of Large Data-Basesy A Set-Theoretic
Approach to Relations*, Unpublished S. M. and S. B8,
Theslsy M.lI.Tey Department of Electrical Englneering,
Cambridgey, Mass.s June 1970.

Martin, Willlam A., and Nessy De Noy "“Optimlzing Binary Trees
Grown with a Sorting Algorithm*, CACM, Vol!. 15, No. 2,
February 1972. -

Mason, John T, Jr., "Error Handling In a Set-Theoretic Data
Management System®™, Unpublished S. Be. Thesisy Me.I.T.,
Department of Electrical Englneering, Cambridge, Mass.,
June 1972.

Mi tner, James Michael, “An Implementation of
Intercommunication Among Set-Theoretlic Data-Bases',
Unpublished Se. B. Theslisy M.IT.y Department of
Electrical Engineeringy Cambridge, Mass., June 1972,

Muitics Programmers® Manuals Honeywell Information Systems
Laboratorys, 575 Technoliogy Square, Cambrldge, Mass.,
Order Numbers AG90, AG91, AG92, AG93, and AK92,

! !
1 1.6 ¢ RDOMS REFERENCE GUIDE

Page 20

Figure 11

room 19-6602 extn 1743

DOC) John C. \ room 3-2i5 ot 3057_

Toom 39-413 exin 3128
mom 39-418 exhn 295¢

reene, Susan —
e
G ? wom 19-301 exin 8570

‘ Yoo o ——
1110n4F5cn4) Jawmes P. ‘\\\; Fem :”9‘4ﬂ3 ékﬁh‘3l22,

Yoom B-243 exh 3317
Yoom 8-264 extn 3895

The File loncept

RDOMS REFERENCF GUIDFE 1t 1.6 1!
i !

Page 21

Flgure 2%

A Conventional Compoter File: Records and fields

name field . B84 egleren

"\/‘M'*-

—A—=
WB/ake,J Janice A .| 4-507|5502 C/ark) Gerry (9-602 17635[
- |
Y

N~ — | *
record - ———
‘--———-—————- —
' fe -feld

"
1t 1.
1.

- B G 0 CO P AP w0 «b 68 b

- S0 o w8 w8 o8 we =0 as

) @0 wo ©0 wo wo vo o»

RDMS REFFRENCE GUIDE

Page 22
Figure 3¢ An RDMS Data-Base
phone_book?
name room extension
Rlake,y, Janice A, 1 4=-507 1 5502 1
Clarky Gerry L 19-602 1 1763 1
Davissy Thomas B. H 3=-215 1 3057 !
Doey John Ce. i 39-413 ! 3128 1
Doey John Ce. 1 39-418 H 2756 1
Greene, Susan 1 19-301 L 8570 H
Smithy, Willlam Be. 1 38-403 1 8172 1
Thompson, James P. ! 8-263 1 3897 1
Thompson, James P, ! 8-264 ! 3895 1
| ! 1
ask_Ilist_As
name task percent_effort
Blakey, Janice A. 1 administration 1 437 1
Clark, Gerry ! pltant supervislion 1! 32%4 1
Clark, Gerry ! systems design ! 68% !
Doey John C. 1 planning 1 1007~
Smith, Wiltiam B. 1 implementation 1 17% 1
Smithe Willlam Be. 1 scheduling 1 58% !
Smith, Hitlliam 8, H plant operation 1 25%
1 H 1
ask_l1lst_8B¢
name task percent_effort
Biakey Janice A. 1 plant operation ! S7% 1
Davisys Thomas B. i planning 1 237
Davlsy, Thomas B. 1 plant operation ! 61% 1
Davisys Thomas 8. ! plant layout ! 167
Greene, Susan 1 plant supervislon 1 100 !
Thompsons James Pe 1 administration 1 100%
1 { !
alary_11st?
name salary
Bliake,y, Janice A, 1 ¢ 23,000 !
Clark, Gerry ! 8 18,000 1
Davisy Thomas B. 1 3 344000 !
Doey John Ce ! $ 14,000 !
Greeney, Susan 1 ¢ 18,000 i
Smithy, Witlilam B. 1 8 21,400 1
Thompson, James Pe. ! ¢ 29,600 H
1 1

- G 00 ab «wb =8 =8 o

1 !
RDMS REFERENCE GUIDE ! 1.6 1

! 1

Page 23

Flgure 42

extension

phone__book

percent_effort

AN RDMS DATABASE:
RELATIONS AND DATACLASSES

1 1.6 1 RDMS REFERENCE GUIDE

Page 24

Flgure S

An Example of the Set=Theoretic Union of two Relatlions

total_task_list = unlon(task_1tlist_A , task_1list_B)

total_task_IlIists

name task percent_effort
! Blake, Janice A. ! pliant operation 1 S7%
! Blake, Janice A. 1 administration ! 3% 1
1 Clark, Gerry ! plant supervision ! 3272 1
1 Clark, Gerry 1 systems deslgn ! 687 |
{ Davisy Thomas Be. 1 planning 1 2374 1
1 Davis, Thomas B, H niant operation { 61%
! Davise Thomas B. 1 plant flayout 1 167 1
1 Doe, John C. 1 planning { 100%Z 1
! Greene, Susan 1 plant supervision { 1007 ¢
{ Smith, Wililam B. ! implementation { 17% 1
1 Smithy Witliam B. H scheduling 1 587 1@
!t Smith, Wiillam B. 1 plant operation ! 257 1
{ Thompson, James P. | administration 1 1007
1 1 1 1

7

RDMS REFERENCE GUIDE

An Example of the Compose Operation

tasks_and_salarles =

tasks_and_salarles?

Flgure 68

compose(total_task_1lIist 4 salary_ilist)

name task percent_effort salary
Blakey, Janice A, ! plant operation 1 577 1 $ 23,000
Blakey Janlce A. 1 administration { 437 1 $ 23,000
Clarky Gerry 1 plant supervision 1 32% $ 18,000
Clark, Gerry { systems deslgn ! 687 $ 18,000
Davlss Thomas 8. 1 planning 1 237 ¢ $ 34L,000
Davisy Thomas B. H pltant operation H 617% 1} $ 34,000
Davlss Thomas B. 1 plant jlayout 1 167 1 $ 34,000
Does, John C. ! planning 1 100% ! $ 14,000
Greene, Susan ! plant supervislon 1 100% ¢ $ 18,000
Smith, Wli1llam B. 1 implementation 1 17742 1% $ 21,400
Smithe William Be. ! scheduiing 1 587 1 $ 21,400
Smithy, Witt!lam B. ! plant operation 1 25% 1 ¢ 21,400
Thompson, James P, ! adminlstration ! 100%Z $ 29,600

1 ! 1

O at 00 4o 6 OG0 4o VO GO b S0 V8 C6 =

B D GO S0 WO S0 VO OB GO ws NO S0 o8 o8

Figure 7¢

ROMS REFERENCE GUIDE

An Example of the Sort and Project Operatlons

" tasks_salarles_by_task =

sort(tasks_and_salarles o by task-name-percent_effort-salary)

tasks_salarles_by_task?

B Al 40 b O0 b 40 ob 40 OB B8 96 e a8

task name percent_effort salary

planning { Davls, Thomas 8. ! 237 1 ¢ 34,000 1
pianning { Doey, John C. t 400%Z ! ¢ 14,000 !
Implementation ! Smithy, Willlam B. ! 172 ¢ ¢ 21,400 1!
scheduilng ! Smith, Witlilam B. ! 587 1 ¢ 21,400 !
olant operation ! Blake, Janlice A. ! s7% 1 $ 23,000 1§
plant operatlion { Davlisy Thomas B. 1 61%2 + ¢ 34,000 !
plant operation ! Smithy Willlam B. 1 25% Y ¢ 21,400 !
ptant supervision { Clark, Gerry 1 3272 Y ¢ 18,000 !
plant supervision t Greene, Susan t 100% t ¢ 18,000 !
‘systems design t Clark, Gerry L 68%Z t ¢ 18,000 1
adminlistratlon ! Blakey, Janice A. ! 432 tV ¢ 23,000 !
adminjistration ! Thompsons, James P.! 100% t ¢ 29,600 !
plant tayout t Davlisy Thomas B. ! 16% 1 ¢ 34,000 ¢

1 1 i !

names_task_A = prolect{ task_{1lst_A , by name)

names_task_As

name

-— 20 a8 o oe

Biake, Janlice A.
Ctarky Gerry

Does John Ce.
Smithe William B.

ROMS REFERENCE GUIDE

Filgure 8t

An Example of the Cartesian-Product Operation

tasks_wlth_B =

project_B?

project

tasks_with_B?

carteslan_product(task_11st_8 ,

project_BR

)

name task percent_effort project

! Bliake, Janlice A,] plant operatlon ! 57% 1 B
1 Daviss Thomas B. 1 planning 1 237 1 B
1 Davliss Thomas B. 1 plant operation 1 61% ¢ 8
1 Davlss Thomas B.] plant layout 1 167 1 8
1 Greeney Susan H] plant supervision 1 100% ! B
! Thompson, James P, H administration 1 100% ! B
L 1 ! !

1 !
1 1.6 1 RPDMS REFFRENCE GUIDE
!

Page 28

Flgure 93

An Example of a Relational-Operators Computation
applled to the retatlon "tasks_salarles_by_task™

task_costs = relational_operators tasks_salarles_by_task o <algorithm>)

task_costs?

task cost
1 planning 1 ¢ 21,800 1
! implementation ! ¢ 3,638 1
1 schedullng 1 8 12,412 1
{ plant operation ! ¢ 39,290 !
1 plant supervision § ¢ 23,760 1
! systems deslign 1 8 12,240 1
{ administration 1 ¢ 39,490 1
{t ptant layout 1 8 54,440 1
1 H 1

o~

RDMS REFERENCE GUIDE

Figure 102

! !
1 1.6 !

Page 29

THE RELATION-DATACLASS TOKENING METHOD

RELATION:

task_list.8
MATRIX OF INTEGER
REFNOS WHICH ARE
TOKENS FOR DATUMS

name

STORED ELSEWHERE IN
DATACLASS FILES

DATACLASS:

DSM: dsm_table

DATACLASS: name
DSM: dsm_astring

task

task percent_effort

2 4 57

5 ! 23

5 4 61

5 8 16

8 s 100

12 7 100
refno=1: planning
refno=2: implementation
refno=3: scheduling
refno=4:. plarit operation
refno=5; plant supervision
refno=6: systems design
refno=7: administration
refno=8:

plant layout

refno=4

C IarkeJ Gerrg

/

Blake, Janice A
refno= 2

\\

refno= 6

Doe, Jchn C.

~

Davis, Thomas B
refno=5%

77‘:Orrpsm) Jemes P
refno= |2

—

Smith, William B.
refno=10

! !

1 1.6 1 RDMS REFERENCE GUIDE
1 !

Page 30

Flgure 11

MULTICS VIRTUAL SEGMENTED MEMORY

fwo dimensions: FILE NAME

LOCATION
WITHIN
FILE

filereme | filename 2 filepame3 file name4 filename 5

ROMS REFERENCE GUIDE

1
! 1.6 1
1

g

FILE

Page 31
Flgure 128
A MULTICS DIRECTORY OF FILES
DIRECTORY FILE

file name | | | filename2 | |file name 3 file name 4
access /ist || access list | |access list | |access list <
length length length length

DATA DATA PROGRAM DATA

FILE FILE FILE

! 1
!t 1.6 1
L] !

ROMS REFERENCE GUIDE

-’
Page 32
Flgure 13¢
AN RDMS DATA-BASE .
DATA BASE DIRECTORY
SMS_Segments name salary_list
SMS_Seyrnents / nam>\ : h
name dsm_%‘fring
task |dsm_table DATACLASS RELATION
room |dsm_table
Salarylist
Phonc_book
task_Iist_A .
task_list_B /\/
total_task_Iist :
tasks_snd_salaries
4

(END)

N

RDMS REFERENCE GUIDE 1 2.1 ¢

An Overview of Data Strategy Modules
09724/ 74

A data strategy module iIs a program which knows everything
necessary about data elements of a particular type. The dsm can
be used to manage RDMS *“data types™, which can be viewed as
collections of data elements of that type. The dsm can map a
character string representing a data element Into a reference
number (refno) or token. (The character strings are generaliy of
varlous slzes whlle 3 reference number ls atways the same size.
This makes [t much easier and faster to use for such things as
sortingy comparison, or cooyving.) The dsm asslgns reference
numbers which maintaln the sort order desired. The dsm |Is
invoked when Inserting a data element Into a refation (given the
datum 1t returns the reference number) and when the relatlion must
be printed (gliven the reference number the datum ([s returned).
A1l other use of the datum can be by reference number, (Note!?
the datum Is not actualiy Inserted Into the relatjon ¢ftille.
Instead it Is first inserted into the data type file and assigned
a reference number. Then the reference number 1s put Into the
relation to represent the datum.)

Several standard data strategy modules are provided by
ROMS, It 1s also possible for a user to add hls own dsm for a
partlicutar applicatlion,

A user need be concearned with dsm®s only when creating a
nen data type. A data strategy module to manage the data type
must be speclified. (See the “nen_data_type"™ command.)

The cholce of what dsm to use to manage a new data type can
be made on the basis of 1) efficiency, 2) need of verification,
3) sort order and &) convenlence. (Some very speclal ourpose
dsms may be outslde these categorlies.) The following examples
iYlustrate how these categorlies relate to common situations.

Suppose a user needs to choose a dsm to manage a data type
to be named “phone_numbers™, which will Iinclude data elements
such as "3=4107%", *253=7749" and *"(617) 253=-4605". The user
might choose dsm_v2_astring which accepts any character string,
but does not verlfy that a datum as typed by the user [s really a
telephone number. {(If "253-4107" were mis-typed 2as "253=-4107",
with the fetter i B substituted for the number "1,
dsm_v2_astring would accept both, but would treat them as
distinct data elements,.) However the user might choose to use
dsm_integer which is more efficient than dsm_v2_astringt it
transtates a character string representing an Integer, such 3as
34107, Into the reference number having the same value (34107).
dsm_v2_astring has to store the association between "34107" and
the reference number assigned to lt, which will probably not be

!
1 2.1 1 RDMS REFERENCF GUIDE
!

Page ?

34107, The process of looking up thls reference number takes
fonger, Additionatly dsm_Iinteger verifies that It Is given a
character string representing an Integer, so It would relect
=2534107" because the letter ™1™ is non-numeric. 1In addition,
the sort order of Integers (®1%,%2", ¢« « o 10"y 20"y o+ =«
*400%, *200") may be more useful than the sort order of character
strings ("1%,%10%,"100","2",%20%, *"200"). At the same time,
using dsm_integer to manage the “phone_numbers™ data type may be
fess convenient? to iInput a phone number the user must type
*34407" not "3-4107", and the string printed on a report would be
*34107%. (However a data format module (dfm) could be wused so
that 34107 would be re=formated as "“3-44107" for printing on
reports. See the overview of data format modufes.) If the user
wished to allow a telephone number to Include a tocal extension
(such as "(512) 694=3360 extn 523") this could not be handled by
dsm_integer (the Integer requlred would be too targe)les Or If the
user objected to iInputting phone numbers as Integers, without
hyphens or parentheses, dsm_v2_astring could be used Instead.

As a second example consider a data ¢type ¢to be called
“date_start*® as part of a relation catled "Job_hlstory®” with data
types “name®, *“posltlion™, “date_start™ and “date_end™. Dates can
be managed by dsm_v2_astring since dsm_v2_astring effectively
accepts any character string datum. But dsm_date manages them
much more efflclently. And dsm_date verlfles that the data
element supplied is actually a datet ([t accepts ™3 fjan 74%,
*473774" or “January 3, 1974" as 31l representing the same date,
and rejects "Jaxuary 3y 1974" or *31feb72*" as Invallid dates. So
dswm_date? 1) is more efficienty, 2) verifies data as it is
inserted, 3) sorts dates chronologlcally whereas dsm_v2_astring
sorts data elements alphsbetically (l. eey "January 1, 1973%, « «
. +"Aorit 1, 1973" instead of “April 1, 1973, . o« o
s*January 1, 1973") and &) ls more convenlent ("2feb73* is much
easier to type than “February 2. 1972* but [s output the same).

Tt after creating a data type and Inserting a good deal of
intformation into 1t a wuser wants to have it managed by a
different dsm, the data type can be *restructured®”. The process
is not extremely compilicated, nor Is It too expensives So the
choice of a dsm should not be regarded as irrevocable. (See the
documentation of “restructure_data_type™.)

By convention all data strategy modules are given names
starting with “dsm_". So commands which expect a dsm to be
speclifled, such as new_data_type, allow this to be omltted:?

new_data_type x dsm_integer

ROMS REFERENCE GUIDE 1 2.1 1
i

and
new_data_type x integer

are equlvatent., In general, ofder dsm*s have names ending

without *_" (dsm_tablie) whlle newer dsms have a terminal -

(dsm_decimat_)d. At some polnt all dsas will be required to have

names beginning with "dsm_" and ending with *_%.

Data types are classifled as “virtual® or “non=-virtuat®™
depending on what type of dsm they are managed by. Data strategy
modufes such as dsm_Iinteger and dsm_date, which transliate a
character string into a reference number dlirectly, are called
“virtual®™, Dsms such as dsm_v2_astring and dsm_table, which
store the assoclations between character string and reference
number In a flle, are called "non=-virtual™. The “virtual® data
types and dsms have the desirable aquality that they use ltess
storage and are usually faster at mapping character strings to
reference numbers and vice versa.

A dsm may relect a data element for a number of reasons. In
general, virtual data strategy modules reject data elements |t
they are iIn the wrong format (dsm_integer witl reject "i10™
because 1" 1s non numerlic, and should be ™1*, while dsm_date
rejects *“feb31™ as an Illlegal date). Non-virtual dsms (those
that require storage to maintain the assoclation between
reference numbers and character strings) reject a datum Lf there
is no room for |It. (But there are different ways 1In which
ditferent dsms can run out of roomt one may run out of room it
the fite Is full, another may tall If there is room left 1In the
fite but atl the space In a partlcular part of the flle Is used
upe For more specitic reasons the user should see documentation
of each data strategy module.)

The ™exec_com™ flle “createdb.ec®™ can be used to create an
ROMS data base. (See 1its documentation.) It Inserts the
s tandard ROMS data strategy modules Into the data base.
(Tnserting a dsm does not mean copying it. Rather it can be used
from the data base.) The standard dsms aret dsm_integer,
dsm_v2_astring (alphabetical strings, this Is version 2 of the
dsm), dsw_table (for data such as ranks where *“pDepar tment Head™
comes before ™Professor®, 1l €., the sort order is completely
Independent of the character string), dsm_date, and
dsm_cliph_integer (data element can be retrieved from the
reference number only when a password Is supplied)s A user may
write his own dsm for some special application. This can be
inserted into the data base by usling "Insert_module®.

RDMS REFERENCE

A reader who iIs Interested In 2a discussion of how
strategles are (implemented In ROMS s referred to the
Design Principles™, section 1.6, which describes how
strateqy modules Interact with other modules of the system.

GUIDNE

data
"ROMS
data

{END)

—

' 1 !
RDMS REFERENCE GUIDE ! 2.2 1
~ ! 1

An Overview of Data Format Modules
09724/ 74

A data format module (dfm) iIs a program which converts from
one representation of data ¢to another. It takes as Input the
reference number and character string representations of a data
element, and modifies ¢the character string to have the desired
format. Some dfms do not use the Input reference number (such as
dfm_names_y which merely reshufflies the parts of the character
string Into another order) while other dfms do not use the
character string (dfm_abbrev_date_ uses the reference number of a
date to produce the character string). All data format modules
modify the character string, setting it to the desired value, but
the data type file from which the datum was obtained Is not
modifled (the character string ls only a copy of data In the data
type file).

Fach data strategy module (dsm) has lts own standard format
for output character strings, even though some dsms accept
varlous Input formats. For example, dsm_date wll} accept
=03/29/74%, %29 mar™ or "March 29, 1974" as altl Indlcating the
same date. But when asked tc produce a character string sujtable
for printing, dsm_date always returns “March 29, 1974" to
represent that particular date.

A data format module complements the data strategy module.
Whereas the dsm accepts data In a format most convenient for
input, the dfm produces data formated aporopriately for outoput.
Suppose that only the month and year In whlch varlous dates faill
were needed for a speclific reporte. Then dfm_mmyy_, whlch
produces output strings such as ™03/74™ and *11/70" would be
approprlate.

Usage?

Several RDMS commands and report generating programs allow
the user to specify that a dfm be used for a particular data tyoe
or data types. The relational edlitor "eds"™ has a Format request
which ‘attows the wuser to specify that some dfm will be Invoked
when printing a data element, Report prograss such as
“quick_report™, “book™ or “sharri{™ have their own ways of
speclifylng what dftm to use. Also, the “list_data_tyoe™ command
allows the user to specify a dfm to be used when printing the
contents of a data type.

1
1 2.2 1% RDMS REFERENCE GUIDE

Some data format modutes currentiy availlble Include?

dtw_abbrev_date_
This dfm produces dates such as 9/713/73. (The data
strategy modul e dsm_date oroduces dates such as

"“September 11, 1973%.)

dftm_abbrev_name_
This data format module assumes names are stored In a
form such as *“McGary, Thomas B." (1. €.y fast nane
fol lowed by a comma and one space foilowed by tlirst
name and possibly a space and Initlal or 1Initlats.)
Then ¢the dfm wil! produce ftast name foilowed by
inltials. (e 9ey "McGary, Te B.*")

dte_get_inltlials_
Extracts Initlals of tirst, middie and last name3 or If
no middle namey, then Inltlals of first and last names.

dfte_flast_name_

Extracts (ast name onlye.
dfm_mmyy_

Produces month and year of date In form 9/73 or 10/70.
dfm_nawes_

Rearranges parts of a name so that first name occurs
first, followed by mliddle Init]jatl and last name.
(Names are normally stored with the last name first,
followed by a comma and the first and wmiddle names.)

dfm_null_string_ ;
Atways produces a null string, which is one method of
suppressing the printing of a data type.

dfn_parenthesize_
Encloses data element Iin parentheses (™(” and ")).

dfm_percent_
Appends %",

dfm_phone_numbers_
Prints dsm_Iinteger data type as phone number, allows
Mel.Te extension ("X=-64107"), Centrex numbers (" 3-4107%,
»8-7700"), local numbers (*253-1000") and numbers with
area code ("(617) 253-1000").

ROMS REFERENCE GUIDE ! 2.2 1

dfe_right_Justifty_
blank pads on the left to f1t1 fleld of speciflied slze.
(fleld size chosen by entrypoint, dfm_right_Jjustityi10_
for fleld of 10 characters, etc.) If string Is wlder
than fleld It Is trunacted.

dtm_soc_sec_num_
Prints dsm_Integer data type as soclal securlty number,
123456789 => 123-45-6789.

For specific detalis on these and other data format modules,
see the wrlteups on Individual dfms.

Naming Conwventlonss$

Commands and subroutines that wuse dfms call the program
“get_dfm_ptr_" to find the entrypoint deslred. The progranm
requires that all data format modules be given names which start
with =dfm_" and end with *_". Thus any name glven to
get_dtm_ptr_ Is first expanded to meet this reaquirement?

mmyy becomes dfm_nmyy_
dfm_mayy becomes dfm_mmyy_
nmyy_ becones dfm_mmyy_

Next get_dfm_ptr_ attempts to find a segment with this name,

using the “search rules"” for object segments. (See Ihe Multics
e Part 113 REFERENCE GUIDE TO MULTICS, Sectlion
3.2 "The System Librarles and Search Rules®.)

If such a segment Is found, and an entrypoint of the same
name can also be found In that segment, the search succeds and
stops here. Otheruise, the segment named “bound_dfms_" In the
ROMS service directory iIs checked for the entrypoint. (This
segment contailns all the dfms mentioned In the Note above.)
Otherwise the search falls,

If the name specifylng the dfm contalns a *“$", get_dfm_ptr_
assumes the name contalns a segment name and an entrypoint name
("my_dfms_8dfm_roman_numeral_* would specify the entrypolnt
~dtm_roman_numeral_" 1In the segment “my_dfms_".) Data format
modules must aiways have names beginning with “dfm_" and ending
with *_*, so It the name suppllied was “my_dftms_$roman_numeral®,

get_dfm_ptr_ would expand the entrypoint name as above and thus
took for "my_dtms_8$dfm_roman_numeral_".

RDMS REFERENCE GUIDE

- e en
~N
L]
~N
0 8 oo

Page &

1f the specl ficatian contains any v or “»"°s,
get_dtm_ptr_ assumes the directory contalning the dfm [Is speclifed

and only searches that dlrectorye. For example, given
“>udd>Proi>Name >dfm_dir>mydfms_sdfm_roman_numeral_ ",
get_dfm_ptr_ will search only the directory

>udd>»Pro]>Name>dfm_dir for a segment named “my_dfms_".

Example?

The *“tlst_data_type™ (1dt) command allows the user to specity
that a dfm be used In printing the contents of a data type.
Suppose the name data type in the currently set data base
contains only a few names. These may be (isted by the command

1dt name
which would produce the following responset

hame

4294967296 Adier, Mlda E,
8589934592 Arnold, Theodore
12884901888 Atkins, James D.
17179869184 Austin, Linda
21474836480 Babcock, Bruce
25769803776 Barber 111, John Be.

In order to 11st the same data type using dfm_names_, a user
nlght type?

1dt name -dfm nawmes

The following would resutt?

name

4294967296 Mida E. Adler
8589934592 Theodore Arnold
12884901888 James D, Atkins
17179869184 Linda Austin
21474836480 Bruce Babcock
25769803776 John B. Barber III

(END)

! !

RDMS REFERFNCE GUYDE ! add_name_set !
! !

Command
09724/ 74
Napes? add_name_set,
ansy,
add_name_set_force,
anst

Entrys add_name_set,
ans

The ®add_name_set® command is used to add a name to a
data-type or relatlon which already exlists In the user's
data=base. This permits a8 relatlon or data-type to be referenced
by more than one name. (In a departmental data-base, for
example, °*name® and °svsr® refer to the same file of people®s
names.)

Usage?
The command may be invoked by typingt
add_name_set gldpname nemwnane
or

ans gidname newname

Either form of the command will add the ldentifier pewname to the
file (relation or data-type) ldentified by gldpname.

Note:?

Tf newname is already present on an existing relation or
data-type, the command wli! print an error message and the name
nill not be added.

! 1
! add_name_set ! PDMS PEFERENCF GUIDE

!

Pace 2

Entry? add_name_set_ftorce,
anst

This entry Is used to add a name to an existing relation or
data type, but 1f a set with the new name already exists In the

data basey, the name wlll be removed. {When the last name on 3
set is removed, the set Is deleted.)

Usage!
add_name_set_force gjdpame pemname

or

ant gidname pewname

Notet

Tf there 1Is already a set named pewname in the data base,
the new name witl stilt be added? this forces the removal of
pewpname from the already existing set, even 1t 1t Is the fast
name on that set. Removal of the 1ast name on a set automatically
deletes the set. Thus the user is advised to be very cautlous
when using this entry.

{END)

i !

RDMS REFERENCE GUIDE ! change_name_set !
H 1

Command
09/24/74

Names? change_name_set,
CNS
change_name_set_force,
cnsft

Entrys change_name_set
cns

This command renames a relation or data type with a new
name.

Usage?!

change_name_set gldnage nemwname
or

cns gldnape nemname

Exampies

change_name_set phone_book phone_book.old

Note?

If a relation or set with name penupame already exlists In the
data basey, an error message Is printed and the name will not be
changede.

Entrvs change_name_set_force,
cnst

This entry renames a set, but Instead of printing an error
message If a set named pewname already existsy, the set named
newname wit! be deleted before changing the name goldname to

nenname.

1 i
! change_name_set
1 1

PDMS PEFERENCE GUIDE

Page 2

Usages
change_name_set_force gldname newname
or

cnst oldpname pewname

Note?

This entry will delete pewname if It atready exists In the
‘'data base and then rename gldname to pewname. Cautlon Is advised
when using this entrypoint,.

(END)

! !

RDOMS RFFERENCE GUIDE Y check_info_segs !
! !

Command
09724/ 74

check_info_segs
cis

Burpose?

This command Is similar to the Multics command of the same
name, and Is used to determine 1f any Info flles have been
modifled since Its last calle Buty In addition to checking the
Multics help directories, this version checks the RDMS heilp files
also.

Entry?
check_info_segs
clis

Usage?
The command (ine?

check_Info_segs
or
cls

checks the date and time modified of each info file In the
Multics directories >documentation>info_segs and
>documentation>Imi_Info_segsy and 3also the RDMS Info directory
>udd>PDMS>[nfo_segs. Tf the date and time modifled Is more
recent than the date stored in the user®s abbrev profile (the
segment is >udd>Prolect>User>User.profile) the name of the Info
file 1s printed.

The command also accepts arguments speclifying what
directorles will be searched and what action wlll be taken when a
changed info seg Is encountered.

! !
1 check_Into_segs 1 ROMS PEFERENGE GUINE

! !

Page 2

The extened use is?

check_Into_segs =ctl~args-
or
cls =-cti=-args~-

where =ctl-args- 1|s optionat, and may I[nclude any of the
tollowing?

-date date-time
-dt date-time

Instead of wusing the date and time stored Iin the
user®s profite, the date ¢time supplied wlif be
used. date-2ime can be any speciflcation of date
and time acceptlblie to convert_date_to_binary_
{such as *9 AM November 17, 1973*" or *0900.0
11/717/773%% *“4900 11717/73" 1s not accepted
because *1900" could be 3 year or a miltitary time,
s0 "1900.0" is wused to speclfy military time).
The date-time stored In the user®s profile Is pot
updated.

-call command=-iipe

For each I[Info ¢flle ¢that has changed, the full
pathname of the segment is appended to
command=1ine,s forming a command (lne which is
submitted to the command processors Most
frequentiy the command (Ine selected is "help -pn”™
{the full command iine might bet!

check_Iinfo_segs =call "help -pn*

or the command t(ine could contaln addit]lonal
arguments) to Invoke the help command for each
changed flle. (A bilank iIs inserted between the
command {lne supplled by the caller and the
pathname of the info flle. Thus it
>udd>RNOMS>info_segments>eds_changes. info had been
modified slnce the (ast check, the command l]lne
above would resuit In the finet

help =pn >udd>RDMS>Info_segments>eds_changes.info

being submitted to the command processor.)

p—

1 1

ROMS REFERENCE GUTDF ! check_Info_segs !

1 1

Page 3

-no_update

-nud
The date and time stored In the user®s profile
wltl not be updated. {(Normally the date and time
are updated so that when calied at some later time
check_Info_segs wlil report only flles that have
changed since the last check.)

-fong

..g
The date-time modifled and the name of the help
fitle wlttl be printed on the console. By defautlt,
In “normatl®™ mode only the name of the changed help
file Is orinted.

-brlef

-bf

The name and date-time modlfied wll! not be
printed on the console. Thlis control argument Is
use ful in conjunction with the "-call™ argument.

-pathname directory>star-naae
-pn dilrectory>star=-pane

The Multics and RDMS help directories will not be
checked for Info files that have changeds Instead
all flles In dlrectory whose names match star-name
wilf be checked. Thls argument may occur more
than once, In which case each directory speciflied
wiil be checked. (Example: to learn what Info
seqgs In directory have changed, use a star=-pase of
3%, info", meaning all segments wlith names ending
In "einfo". To check all segments In directory
use a star-pame of *“**%,)

! !
1 check_info_segs ¢ RDMS REFERFNCE GUIDE

Page &

Examplet

The command 1]lne?
check_info_segs
Might result Int

check_info_segst Checking >doc>info>**,jinfo.
pli_changes.info
pli_status.info

check_Iinto_segs?

Checking >udd>RDMS>info_segs>**,info.
eds.info
eds_changes.info

Thls indicates that the Multlcs PL/1 compiler has been
changedy, and iInformation about the changes can be obtalned by
typing “help ol1l pli_status™ and *helo pil1_changes®™.
Additionaitly, the ROMS relatlional editor, *eds™, has been
changed, and *“help eds™ and "help eds_changes”™ can be used to see
what has been changede.

TIf the user knew he would be Interested In all the Info segs
that had changed,

check_info_segs =call! "help =-pn™

would call help for each Info seg.

Notest

I¢ the user aqults white check_Info_segs 1Is listing the
segments that have changed In some directory, the user may type
“program_interrupt® or "pl”™ and check_Info_segs will stop llsting
changes In that dlrectory and move on to check the next
directory. Howevery, 1f the user "quits®™ during a cali to some
program (such as help) whlch was Invoked by check_Iinfo_segs, a
“program_interrupt” In this sltuation will cause check_Intfo_segs
to execute the command tilne for the next (Info seg In the
directory it was checkings Thus, iIf the user does not wish to
see all of a help file he may qult and move on to the next help
tite by typing "pli*e.

(END)

O

RDMS REFERENCE GUIDE 1 cleanup_data_base !
1 !
Command
09724/ 74
Nane? cleanup_data_base
cudb

This command cleans up a data base dlrectory by deleting
quarts and temporary relatlons. It does nof terminate the data
base. (Many ordinary uses of a data base produce temporary
relat]lons and aquarts.) On rare occaslonsy, the number of
temporary flles may fli1! up all avallable slots for relations or
quartse. YThus 1f there are too many aquarts, the command can be
used 1f new quarts need to be created and there Is no room durling
the current process (since quarts are automatically deleted when
a wuser 10gs out). Temporary relatlons must be expllcitly
deleted.

Usage?
clfeanup_data_base
cudd

Example?
cleanup_data_base
cudbd

Notet

If the user wishes to clean up and terminate a data base
then he should use the command terminate_data_base.

(END)

RDOMS REFERENCE GUIDE ! compare_sets !
! 1

Command
09/724/74

Nases?t compare_sets,
cos

This command compares the contents of two relatlons and prints

out the differences between the two coples. It was designed to
determine which copy of a relation 1Is the most complete.

Usage?
compare_sets relatlion=-name-1 relat lon=-name=2

Where relatlion-name-1 and relatlon-name-2 are the names or
reference numbers of the relatlons to be compared.

Examplet
compare_sets phone_book eds.phone_book
Notet
Compare_sets uses the °*difference® operation to determine the

differences between relation=-name-1 and retlation-name-2. If 2a
d!f!erence operation falls an error nmessage Is printed,

(END)

«

1 ' 1
RDMS REFERENCF GUIDE ! copy_set 1
1 t

Command
09/724/74

Names?
copy_set
cps
copy_set_force
cpsf
Insert_set
ins
insert_set_ftorce
inst

These commands are used to add to a data base a set (data
type or reflation) which e]lther resides In another data base or
was created by other than the standard RDMS primitives.

Usage?
copy_set set-name sa=name
°r Insert_set set-name smename
where?
1) set-name is the name of the set. It must be 1less than 32
characterse.
2) sm=name is the name of the strategy module (data strategy

moduie or relation strategy module) which shouid
manage the segment associated with the data type.
It this argument Is omitted then the refation
strategy module °*rsm_matrix® 1Is assumed. {The
strategy module must be specified for data types.)

In the case of copy_set and copy_set_forcey, the set-name may
or may not reslde In the data base directory. If it does the
command witl fall unless copy_set_ftorce has been used, In which
case the segment previousiy existing In the data base directory
will be replaced by the new segment, Copy_set (and
copy_set_force) do not delete the segment specified by set-name,
they merely copy 1t Into a segment In the data base directory.

If insert_set (or Insert_set_tforce) 1is Invoked with a
pathname, then a 1ink Is placed In the data base directory to the
specitied segment. The speciflied segment iIs not modified Iin any
way. If a segment or (lInk already exlsts In the data base
directory with the entry_name portion of set-name then Insert_set
wilt fail. Insert_set_torce will defete (or unlink) this already
existing entry and replace i1t with the Ililnk to set-name.

1)
! cooy_set ! RNMS PEFERENCE GUINE

——

Page 2

Example?

Ins >udd>RPNMMS>dis.shared>rank dsm_table

This adds to the data base dlrectory a {Ink named *rank® to
8 data type segment in the directory *>udd>ROMS>dis.shared*. This
data type wiltl be managed by the data strategy module
“dsm_table®. The actual data associated with the data type rank
Still resides In the segment In >udd>ROMS>dis.shared named ranke.

cps >udd>RDOMS>dls.shared>rank dsm_table

This command also adds a data type named °rank® to the data
base, but it creates a copy of the segment
>udd>PDMS>dis.shared>»>rank In the data base directory. This
segment 1Is named rank. Tt a segment (or 1lnk) named rank already
ex]lsts In the data base the copy_set command will fall, while the
copy_set_force command will replace it with the new segment,.

Notes:?

The prefix “dsm_° or °“rsm_" on the name of the strategy
module Is required, Otherwise copy_set (or insert_set) will not
accept it as a strategy module name,

It set-name Is an entry-name (that s, 1t contalns no <®s or
»>*s)y, then 11t is assumed to be an entry in the user®s data-base
directory, Otherwise, the pathname is expanded relative to the

users working directory.

(END)

PDMS REFERENCE GUIDE ! create_relation 1!
! 1

Command
09/24/ 74

Names3 create_relation,
crr

This command creates an empty relatlon having the data types
suppliled by the user In response to lts questionse.

Usage?
create_relation relation name

or

crr celation pame

Exanmpniet

(user Input ls underliined)

create ceiaftion phone book

create_relationt number of columns= &
create_relationt data-type 1Is name
create_relatlont data-type 1ls rcoom
create_relation? deta-type is extension
create_relationt dsm is integer
create_relatliont data-type Is city

create_rejationt dsm lIs y2_astring

The above example would result In the creation of a relation
named °*phone_book® contalng 4 columnst name, room, extension and
citye In the process of creating this new relation, two new data
types were also created, namely, extenslon and clty. When a new
data type needs to be created create_relatlion asks the user for
the name of the data strategy module (dsm) which is to manage the
nenw data type.

Notet?

Relatlons may aliso be created using the relatlonal editor
“eds™, or by several entries in sms_intertace.

(END)

RDMS REFERENCE GUIDE ! createdb.ec 1
L] !

Exec Com Segment
09/72L/74

Name?t createdb.ec

This exec com flle contalns commands which create a Multics
directory to be used as an RDMS data base, set the acl and
initiatl acl for segments, create ROMS system segments and Insert
the standard relational strategy modules (rsms) and data strategy
modutes (dsms) Into the data base.

Usagel
ec createdb path

or

ec createdb path useci.prolecti ... usecN.prolectN

path speclifles the data base directory by refative or
absolute pathname. If the directfory does noi exist it will be
created.

The second form Is wused when creating a data base for
another user Or users. Up to 7 userl.prolectl®s may be
speciflede These are used in setting the access control i(lst and
initlal access control 11Ist for segments on the data base
dlrectorye.

Example?t
ec createdb data_base

This will create a data base dlirectory Immediately below the
users workling directorye. (If the working directory was
>udd>Prolect>lUser, the directory created will be
>udd>Project>User>data_base.) As the commands In the execute
command file are executed, the following messages will be printed
on the console. The user need not worry about these messages, as
tfong as the final message Indlcating successful creatjion and
initiatization of the data base is printed.

createdbt creating data base data_base at 11/08/73 1242.3
est Thu.

sdbt data_base has been iInitlated for McGary RDMS at
11708773 1242.4 est Thue

! 1
! createdb.ec RDMS REFERFNCE GUIDE

' 1

Page 2?2

createdbt finlshed creating and initliallizing data_base at
11708773 1242.5 est Thu.

Notess:

The user creating the data base must have sma access on the
directory 1f it already exists, or 1t ¢the directory does noft
exlst, he must be able to create it.

Createdd Initiates the new data base, terminating any previously
Iinltjated data base.

Createdd inserts the following data strategy modules In the data
base?

integer

v2_astring

date

table

ciph_integer

The relatlion strategy module °rsm_matrix® is also Inserted.

Tt 2 user Is not using the RDMS version of the Multics exec_com (ec)
command the full path of the ec file must be specifled (e. g.

“ec >udd>ROMS>service.ec>createdb data_base™

to use the full path as of this writing).

(END)

RDMS PEFERENCE GUIDE 1 dbd !¢
!

Active Function
09/724/74

Names?t dbd

This active function returns the pathname of the current data
base or, 1f no data base Is Initiated, 2a null string Is returned.

Usaget
[dbd)

Examnie?

loa_ (dbd)

{This would print a pathname, such as >udd>RDMS>dbs>tdb, on the
console.)

cwd 1ddbd)

st (dbdl>** -d¢t

(This might be used to determine the date and tlme dumped for
each segment In the data base directorye.)

(END)

H !
ROMS REFERENCE GUIDE ! delete_name_set !
1 !

Command
09724/ 74

Names? delete_name_set
dns
delete_name_set_force
dns t

The delete_name_set command Is used to remove a name from a set
(retlation or data-type) which has two or more names on it.

Entryl delete_name_set
dns

Usaget
The command may be Invoked by typingt
delete_name_set pname
or

dns pame

Elther form of the command will remove the ldentlfler pname from a
relation or data=-type In the wuser®s current data-base. This
command wil! pot delete a sets It only removes a name by which
the set s knowne {The ™delete_set™ command may be used to
remove a relatlon or data type from a data bases)

Note:

1t pame is the only name by which the relation or data-tyoe Is
Identltfied, the “delete_name_set® command will pgot remove pname.
(Refer to delete_name_set_force.)

Entrys del ete_name_set_force
dns ¢

This entry deletes the name on a set even 1f It Is the l1ast name
on the set (in which case the set will also be deleted).

Usaget

delete_name_set_force pame
or
dnsf pame

! !
{ delete_name_set ! RDMS REFERENCE GUIDE

1 !

Page 2

Notes

It the name pame Is the only name on the set, It will still be
deleted. Use this command with caution, since it may also delete
the set from which the name is belng removed, 1f name is the only
name on the set,

CEND)

S~

RDMS REFERENCE GUIDE

! !
! delete_sets
L 1

Command
09/724/74

The delete_sets command causes specifled relations and
data_types to be deleted ftfrom the currently Inltjaljized

data=-base.

Names? delete_sets

dis
Usage?
delete_sets seti setl2.ccesetpn
or

dis set! set? « « « set3

set] is the name or reference number of a relation or data

type In the currentiy Initialized data base.

Notes?

The user must have modlfy access on the data-base directory.

The star convention may be used.
£xampjet

dis eds.** oldenamelist <+TENP+,*
deletes the set “ofld.namelist®, all sets

component is ®eds®, and all sets whose names
components, the first of which Is *+TEMPe+*,

whose first name
have exactiy ¢two

(END)

1 !
RDMS REFERENCE GUIDE { dftm_abbrev_date_ !
! H

Data Format Module
09/724/ 74

Names?

dfm_abbrev_date_

This data format module produces a date In the form?
<month=number>/<day=-number>/<year=number>

(e Goy» “9/715/73")e This form of date Is much more compact, and
is always between 6 and 8 characters longe.

Examplet
dsm_date form dfm_abbrev_date_ form
January 1, 1973 171/73
October 21, 1971 10721773
December 7, 1974 1277/74%

Notess

This data format module uses the reference number to compute
the string used to overwrite the input character stringe.

See also the overview on data format modules for a general
discussion of data format modules and a Ilst of those currently
avallable.

(FND)

—

] 1
RDMS RFFERENCE GUIDF ! dfm_abbrev_name_ !
] !

Data Format Module
09/24/74

Names?

dtm_abbrev_name_

Thls data format module modifies a name In standard form
(1ast name followed by comma, followed by tirst and middie names)
to be the fast name followed by commas followed by the Inltials
of first and middle names.

Exarmplet

An Input bvs of “Albequerque, Al fredo Santlago®™ Is modifled
In place to result In "Albequergques A. S.*.

"McGary, Thomas B."™ bcomes "McGary, Te. B."

“Goldman, Jay" becomes "“Goldman, J."

Notes:

The Input string 1Is modifled in place and the reference
number 1ls not used.

See the overview on data format modulesy, which contains a
tist of currently available data format module and a general
discusslion of thenm.

(END)

1 i
RDMS REFERENCE GUIDE ! dfm_columns_ !
! !

Data Format Module
09724/ 74

Names? dfms_¢dfm_columns_
dtms_¢dfm_terminate_columns_

Burposet

This dfm formats data elements Into fixed width strings, by
padding on the right wlth blankse. The dfm can be used for
formatting several different data types In a somewhat complicated
manner. When first called the program asks the wuser for the
number of filelds and the wldth of each fielid. Then when next
called [t uses the width for the first flelds the second time
called it uses the width for the second fleld, and so on, untill
the pth time calied the pth field width Is used, and an Internal
counter s set to 1 so that the next cycle of calls will use the
first through pth field widths. An entry is oprovided to reset
the internal counter and force the following call to use the
first tleld wlidth, the entry being dfms_dfm_terminate_columns.

Usage?l

dct dfms_dftm_columns_ ext entry(ptryfixed bin(35))3
dcl bvs_ptr ptrs

dcl bvs char(N) varying based (bvs_ptr)
dc} refno flxed bin(35)3

call dfms_gdtm_columns_{(bvs_ptryrefno)’

At the time of the call, bvs_ptr has been set to point to some
based varylng string, perhaps as a result of a call to qd_.
refno has been obtained from a relation or possibly by a call to
gr_y but refno is not used.

It this 1Is the first call, the number of flelds and the
width of each |s obtalned by querying the user.

Examplet
(f11Y in tater)

Notess?

This dfm Is not recommended tor the casual user,

(END)

L L)

ROMS PEFERENCE GUIDE t dfm_commas_ !
1 1

Data Format Modufe
09724/ 74

Nage? dfm_commas_

This data format module Inserts commas (°,°) Into a numerlic
stringe A comma Is placed every three (3) characters starting
from the right. If the character string Is the null string then
1t Is not modlfled.

Exampiet

=4123" pecomes 123" “1234" becomes “1,234"™ “* becomes e

Notes?

It the string Is not the null string then 1t is always
replaced. The new format is computed directiy from the reference
number and correct results wlll occur only If the reference
number was assigned by dsm_Integer. Thusy, this data format
module can only be used to format datums from data-types managed
by the data strategy module dsm_intger.

Refer to the overview on data format wmodules for 2a more
detalled discusslion of the use of dfas.

(END)

RDMS REFERENCE GUIDE ! dfm_commas_decimal_ !
! !

Data Format Module
09724/ 74

Name? dfm_commas_declimal_

This data format module Inserts commas (°,°) and a slngle
decimal polnt (°.°) into a numeric character stringe It is
assumed that the datum being reformated represents a decimal
number wlith two (2) digits to the right of the decimal polnt. Tt
the datum Is the null string then it Iis not modified.

Example?

*1234.00" becomes "1,234.00"
"* bvecomes "™
®123345,45" becomes "123,345.,4L5"

Notest

If the datum Is not the null string then [t Is always
replaced. The new format string Is computed directly from the
reference number, Correct results will occur oniy [t the
reference number was asslgned by dsm_declmal. Thus, thls data
format module can only be used to format datums from a data-type
managed by dsm_decimal_ and which altows two (2) decimal oplaces
to the rlght of the decimal polnt (refer to description of
dsm_decimal).

Refer to the overview on data format modules for a more
detajled discusslion of the use of dfms,

{END)

! !
RDMS REFERENCE GUIDE ! dfm_credit_card_ !
! !

Data Format Module
09724/ 74

Nape? dfm_credlt_card_

This data format module inserts dashes (°=*) Into a numeric
character string after the third and seventh characters. It |s
used when the numeric string is a credit card number.

Examplet

*1234567987" becomes *123-4567-987"
** pecomes "
”4123456789" becomes “012~-3456-789"

Notes?

It the character string is not the null string It Is always
repiaced. The new format string ls computed directly from the
reference number and correct results will occur only 1t the
reference number was assigned by dsm_ilnteger. Thus, thlis
data=-format module can only be wused to format datums from
data=tyoes managed by dsm_integer.

Pefer to the overview on data format modutes for a more
detailed discussion of the use ot dfms,

{ENT)

! !

RDMS REFERENCE GUIDE ! dtm_dollars_ !
! !

Data Format Module
09/24/74

Name? dfm_dol tars_

This data format module Inserts a leading dollar sign (°s°)
and commas (°,°) into a numeric character string. Leading bl anks
are removed and commas are placed every three (3) characters
starting from the right.

It the character string 1s the nutl string 1t Is not
modl]l ed.

Example?

“41234" becomes "$1,234™ " becomes " 23" becomes "$23"

Notes?

The string Is always modlfled In place. The new format s
computed directly from the reference number, Yhusy thls data
format module wilt only work correctly for reference numbers
assigned by the strategy module °dsm_integer® (refer to
dsm_integer elsewhere),

Refer to the overview on data format modules for a more
detalted discussion of the use ot dfms.

{END)

1 1
RNOMST REFFRENCE GUTIDE { dftm_dotllars_declimal_ !
! !

Data Format Module
09724/ 74

Name? dfm_doltars_decimal_

This data format module Inserts a leading dollar sign {(*¢°),
commas (°,°) and a single decimal point (*.°) Into a numerl]c
character string. It Is assumed that the datum belng reformated
represents a decimal number with two (2) digits to the right of
the declimal opolnt. Leading blanks are removed and commas are
placed every three (3) characters starting after the decimal
point (which 1is placed to the left of the rightmost 2 digits).
Tt the datum Is the null string then it Is not modified.

Example?

4234.00" becomes *$1,234.00"
”" becomes "
*423345.45" becomes "$1234345.45"

Notes

The string 1ls atways modified In place. The new format is
computed directly from the reference number, Thusy this 4data
format module wlil work correctly for reference numbers asslagned
by the strategy module *dsm_decimal_". This data format modutle
can only be used to format datums from a data-type managed by
dsm_decimal_ {and aliowlng two (2) decimal places to the rlght of
the decimal! point? refer to the description of dsm_decimal_)e.

(END)

! 1
ROMS PEFERENCE GUTDE 1 dfm_get_initials_ !
1 !

Data Format Module
09724/ 74

Namest

dfm_get_Irnitlals_

A standard representation of a name {(1ast name tollowed by
comma, followed by first name and middie names) Is converted Into
two or more Initiats, the initial of the first name being first,
the Initlals of middie names belng next and the Initlal ot the
1ast name occuring fast.

Example?
Standard Name dfm_get_Iinitials_ torm
Albequerquey, Al fredo SantiagoASA
Gotdman, Jay JG
McGarys Thomas B. TBM
Notess?

The character string contalning the name ls modifled In
place and the reference number [Is not used.

See also the overview on data format modujes for a3

discussion of data format modules In generat, as well as a {ist
of currently avaitlable dfms.

{END)

1 !
RDMS REFERENCF GUIDE ! dfm_last_name_ !
!

Data Format Module
09724/ 74

Names? dtm_last_name_

This dfm extracts the last name from a complete name in
standard torm (l. eey "<last name>, <tirst name> <initlai>."™)

Examplet
“Albequerque, Alfredo S.* becomes "Albequeraque"
“Goldman, Javy* becomes “Goldman*
Notes?

This dfm gets the parts of a name from [Its Iinout string,
rearranges them and then overwrites the input string. It does
not use the reference number at all.

See the overview on data format modules for more detalled
discussion of data format modules.

(FNN)

! !

PDMS PEFERENCE GUIDFE ! dfm_mmyy_ 1
L !

Data Format Module
09724/ 74

Names?

dfm_mmyy_

This dfm abbreviates a standard date (i.e.y *“<month name>
<day number>, <year number>*) In the form “emm>/<yy>*, where <mm>
1s the month number (1 to 12) and <yy> Is a two digit year number
(01 to 99).

Examplest
“September S5, 1971" becomes 9774
®January 15, 1973"™ becomes =q/773"
Notess?t

This dfm wuses the Iinput reference number to compute the
string 1t outputs. The Input string |is overwritten with the
computed string, so lts value need not be set before dfm_mmyy_ is
Invoked.,

See also the overview on data format modules for a list of
currently avallable data format modules and more detail on the
use of dfms.

(°NM)

! !
"\ RNMS REFERENCF GUIDE { dfm_names_ !
! 1

Data Format Module
09724/ 74

Namess?
dfm_names_
A standard name In the form?
“<gast name>, <first name> <middle Inltlai>"
is transformed into 3

“<first name> <mlddie Initlal> <last name>".

Example?
“Albequeraue, Alfredo S."
becomes
*A{ fredo S. Albequerque"
g “Golidman, Javy"™
becomes
*Jay Goldman®
Notes?
This dfm operates orly on the character string datum -- it
does not use the reference number,
See atlso the overview on data format modules for a more
detaited discussion of dfms,
~

(FND)

t !
POMS PFFERENCE GUTDE ! dftm_nulli_string_ 1
! !

Data Format Modutle
09724774

Namess3

dfm_nulli_string_

An Input character string Is modified Iin place to be a null
string.

Examplet
“"Albequerauey Al fredo S." becomes ™
“Goltdman, Jay"™ becomes it
Notes?

Oniy the character string Is referenceds (This dfm does not
use the reference number supplled when It Is invoked.)

See also the overview on data format modules for a more
detailed dlscusslion of the use of dfms.

(FND)

! !
ROMS RPEFERENCE GUIDE ! dfm_parenthesize_ !
! !

Nata Format Module
09/24/ 74
Names?

dfm_parenthesize_

Purpaset

An input string Is enclosed in parentheses,

Examplet
“no information*® becomes *(no Iintormation)™

oo {a null string) is not changed.

Notes:

This dfm operates only on the character string datum (l. e.y
the reference number s not used).

Refer to the overview on data format modules for a detalled
discussion of the use of dfms,.

(END)

! 1
PDOMS PEFERFNCE GUIDE 1 dftm_percent_ !

Data Format Module
09724774

Names? dfm_percent_

This data format module appends a percent slgn after the
string provided as input.
Exampiet

400" becomes *100%"

"655" pbecomes "S55

" (a nuit string) remains "
Notes?

This dfm operates only on the character string datums not
1ts reference numbere.

Refer to the overview on data format modules for a more
detalled discussion of the use of data format modules.

{ENT)

! !
RDMS RFFERENCE GUIDE ! dfm_phone_numbers_ !
! !

Data Format Module
09724/ 74

Names?

dftm_phone_numbers_

This data format module expects a character string
representing an Integer as Inputy, and reformats this string to
represent a phone number,

This dfm operates onty on the character string datum, and
does not use [ts reference number.,

If the character string Is a2 null string 1t Is not modifled.

Yf the character string Is 1less than five characters in
fength It iIs Interpreted as an MIT extenslony, so It 1Is prefaced
“l'h "X‘"o

Yf the character string is exactly flve characters In length
it 1Is Interpreted as a3 Centrex number. A dash is added between
the ftirst digit and the tast four,

If the character string Is ltonger than five characters but
fess than 8 In tengthy, It Is interpreted as a regular seven digit
phone number and a dash 1Is Inserted after the first three
characterse.

Y¥ there are more than elght digitsy, the number Is
Interpreted as a phone number with area code. The first three
dlglts are enclosed In parentheses,y, followed by a blanke A dash
1s Inserted before the fast four characters.

Example?
A null string (") Is not modlfled.

1234 becomes "X=1234*
4107" becomes *X=-4107*

*34107" becomes "3-4107"
*87700" becomes *B-7700°"

"2534107" becomes *2S3-4107*
"2587700" becomes *258-7700"

“6172534107" becomes “(617) 253-4107"

dfm_ohone_numbers_ ! RNMS REFERPENCE GUIDE

-e -9 o

Page 2

“6172587700" becomes "(617) 258-7700"

Notes?

This dfm s 1intended for use with a data type managed by
dsm_integere. That data strategy module converts character
strinas representing Integers Into reference numbers whose value
is that integery, and when the character string Is desired,
dsm_Integer converts the reference number into a character string

representing that lIntegere.

A more detailed description ot the use of dfms can be found
in the overview on dats format modules.

(END)Y

7!

RDMS REFERENCE GUIDE ! dftm_rlght_Justity_ 1
! !

Data Format Module
09724/ 74

Names?

dfm_right_Justify_
dtm_rilght_justlify2_
dftm_right_justlfy3_
dfm_right_justityt_
dfm_rlght_justityS_
dfm_rlght_tustlfty6_
dfm_right_justifty7_
dtm_rloght_justifys_
dfm_right_tustifyd_
dfm_right_justifylo_
dfm_rilght_Jjustifyiq_
dftm_rlioht_justifyl2_
dfm_right_justifyl13_
dfm_right_Justlfyty_
dfm_rioht_justifyiS_
dfm_right_justityl6_
dfm_right_justliftyy7_
dfm_right_justiftyin_
dftm_right_justifyl19_
dfm_right_Jjustify2p_

The input string 1s padded with blanks on the left to make
It as large as the fleld desireds The fleld wlidth Is speclfied
by selecting the approprilate entry. (For a fleld width of 10
characters, dftm_right_fustify10_ 1ls used, etc.)

It the 1length of the character string is less than that of
the field speclfled In the name of the entrypolnt, the character
string Is padded with blanks on the left,

If the length of the input string is greater than the fleld
widthy, the Input string Is truncated to the desired length.

1 !
1 dfm_rlght_tustify_ !
1 !

RDMS REFERENCE GUIDE

Page 2

Examolet

For a fletd width of 10 {(the <cal! wlll be made to
dftm_right_justifyl0_) an input string iIn the first column
produces an outout string In the second column?

*1234567890" *1234567890°" (not modifled)

*912345" o 1234L5" {tfive blanks added)

*412345678301" "4234567890" (truncated to 10 chars)
Nates?

This dftm modlfies 1Its 1Input character string In place
wilithout using the reference number.

More information on dfms may be found in the overview on
data format modules.

(END)

i

H} H
RDMS REFERENCFE GUIDF ! dfm_soc_sec_num_ !
1 !

Data Format Module
09/24/74

Names}

dfm_soc_sec_num_

Purpose?

This data fomat module transforms character strings
representing Integers Into the form used for soclal securlty
numbers.

The string will be modified In places The reference number
is not used.

TIf the string Is the null string It Is not modiflied.

Tt the string 1Is less than seven characters (it s
interpreted as an M,I.T. registrar®s number (for forelgn students
usually)e A capltal “R™ |s Inserted before the string.

1f the string Is more than seven characters In length it s
interpreted as a normal soclal securlty number. Dashes are
inserted after the third and fifth digitse.

Example?t
*123456" becomes "R123456"
*123456789" becomes *"123-45-6789"
Notes®

The string Is always modiftied In oplace wilthout using the
reference number,

Refer to the overview on data format modules for a more
detalled discusslion of the use of dfms.

(END)

RDMS RFFERENCE GUIDF 1 dfm_where 1!
! 1

Command/Actliv=Function
09/24/74

Name? dfm__where
dwh

This command searches for data format module entrypolnts

using get_dftm_ptr_, and returns the pathname of the segment in
which the entry iIs found or reports that the search faltled.

Usage?

dfm_where namel « « o nNamel
or
dwh namel « o o namelN
Fach name] ldentifies a dfm entrypoint. For *dfm_x_"y namejl
may be "x™, "dfm_x", “dfm_x_", or “x_", since by conventjion all
dtm®s are named In a simliar waye.
The command prints the pathnames, while the active funtion

returns a character string formed by concatenating ali the paths,
separated by blanks.

Examples

dfm_where mayy
Resultt
>udd>RDMS>service>bound_dfas_gdim_mmyy

wiil be typed on the consolee.

Notet

Refer to the overview on data format modules for more
detalls on the use of data format modules.

(END)

/

H 1
RDOMS RFEFERENCE GUIDF ! display_retlation !
H]

Command
09/724/ 74

Name? display_relation, dr

display_relation is used to oprint the contents of a
relation. It allows much more control over formating than el ther
qulck_report or print_set does, but does not generate headers and
footers (ike aquick_report. It also allows the suppression of
dupllcate entrles In the leftmost columns of a relation.

Usage?

display_relation relation=-name -options-

where?
relation=-pame Is the name of the reljatlion to be printed.
-options~- ls one or more of the following optlons.

The optlons are divided into two (2) categories,
namely contro! arguments which affect the printing
of certain (informatlion concerning the retlatlon,
and those arguments which affect the format In
which the actual Informatlon Iin the relation Is
displayed.

The control] arguments are?

~brieft
-bf this arguement suppresses the following
: intformationt the name of the relation, the

name of the strategy module, the reference
number of the relation, the cardinaility and
arity ot the retfation.

-no_info

onl this argument suppresses all of the Information
fisted for the -brief conrntrol argument except
the sort order.

-no_sort

-ns this argument suppresses the sort order of the

relation.

1

! disptay_retation 1 RDMS REFERENCE GUIDE

1

Page 2

-rows R

-'-8

-from
-from rom

-to ron

The followlng
information In

=character
=ch

-decimal
=dec

-octal
-oct

R specifles the number of rows of the refation
to be printed. T1¢ this argument s omitted
then all rows after the starting row up to and
including the ending row will be printed.

the relatiion wilt be printed starting at the
con®th rowe. It this argument i1s omitted then
printing will start at the flrst row of the
refation.

the relation wlit be printed wup to and
incltuding the ragn“th rowe

arguments affect the printing of all the
the retlatlont

the Information In the relation witll be printed
in datum forme This is the default mode if no
output mode ls speclified.

the output mode wilt be set to decimal. The
information In the relation will be printed
with the reference numbers for each datum
expressed In decimatl.

the output mode wlill be set to octal. The
information in the relation will be printed
with the reference numbers for each datum
expressed In octal.

-no_dup! lcatlons

-nd

thls aroument specifles that the jeftmost
cotumnis) of one row which match the
immedlately oprevious row are not printed.
Instead, a null string becomes the value

1 !

ROMS PFFERENCE GUTYDE ! display_retlation !

-break BRX
-brk BRK

! 1

Page 3

printed for the cotumn of the reflatlon. Thus
in a8 retlation sorted on name, If a3 person has
more that one row in the relation the person®s
name would be printed only once. Refer to the
examples for more uses of this control
argument.

this argument sets the default Joa_ control
string inserted between columns of the
relation. The default loa_ control string Is
Inserted between two columns of the retlatlon
when neither a column width for the first
column nor a llteral string occurs between the
coiumnse The default loa_ control string s
inltiatly = ¢ *. This value (BRK) for the ioa_
control string can be overridden at a later
polnt In the command line by another occurrance
of the =-break control argument.

The following arguments specify the order of printing of the

columns of
each datum.

-data-type 01

-dt 01

-cod COL

the relation as well as controlling the format of

thls arguments Indicates that the data-type DI
should be printed. When thls argument Is
found, the 1ioa_ contro! string formating the
output of each row of the relatlon 1Is wupdated
to contaln the break string between this
data-type and the previous one.

If a titeral string argument (refer to ARG
below) occured between the previous occurance
of the -data-type argument and this one, the
default loa_ control string (the break string)
is not added? otherwise, (i« €ee¢9 when no
separation between the columns has been
speciftied) the default loa_ control string s
appended to the output loa_ control string.

this argument 1Is simiiar to the =data-tyoe
arqument except that the column to be output Iis
speclflied by column number Instead of data=-type
name. The updating of the output ioa_ control

1

! display_relation ! RDMS PRPFFERENCE GUIDE

1

!

Page 4
-dfm DFM
“width N

string Is the same as above.

thls argument speclfles that the data fornmat
module DEM should be applied to datums from the
data=type specifled by the most recent
occurrance of a =-data-type or =col! argument.

this argument specifies that datums for the
data-type specl fled by the most recent
occurrance of a =-data-type or =-col argument
should be lett Justified In a fleld of width X
charactrers. The occurrance of this argument
inhibits (In the same manner as a llteral
string (ARG below)) the use of the default loa_
string at the next occurrance of the =data_type
or =-col argument,

-use_data-type NI

-use_dt DY

this argument speclfles that the reference
numbers for datums in the data-type speclfied
by the most recent occurrance of a =-data=-type
or =col argument should be looked up in the
data=-type DI Instead of the one specifled In
the relfation,

It the user wlishes to have more control over the format of the

relation

than

the <-width and <-brk arguments provides the

following arguments may be usedt

=-ctl

ARG

104

J0A becomes the output 1loa_ control stringe.
The =-width, =break and any f(lteral string
arguments are ilgnorede The output ioa control
string must contain a3 “"a*" for each data-type
(column) of the relation to be printed.

ARG 1Is any non-control argument or argument not
otherwlise used for any control argument. It is
appended to the output ioa_ control string as a
fl1teral character string and inhibits ¢the use
of the default ioa_ control string (the break
string) when the next =data-type or -col
argument ls reached,

VS

RDMS PEFERENCE GUIDE ! disptlay_retation !
! L

Page S

Examples?

disptay_relatlon phone_book =/ =dt name -w 30 -dt room

The above command would print the relation phone_book Iin the
tollowing formats

phone_book
matrix 284
cardinatlty 2, arity 3
name room
Canning, He. 2=-456
Glibert, R, 10-250

If the name of the relatlon and slze informatlon was not
desired the the =-no_info (-ni) argument would be speclifled. ¢
the sort order Information was also not desired then the -briet
conrol argument would be specified.

Note that the default foa_ control string (the break string)
was not used In this printout since both occurrances of the =dt
control argument were preceded by elther a fiteral string
argument (*=/*) or a =-wldth (-w 30) argument.

The command?

display_retlatlion phone_book -dt name -dt room

would print?

! name % room 1

! Canningy He. ! 2=456 %
{ Gitbert, R, ! 10-250 !

(END)

o~

! !
RDMS PEFERENCE GUIDE ! dsm_chart_ 1!
! !

Data Strategy Module
09/724/74

Names? dsm_chart_

This data strategy module allows virtual storage of
character strings of four or fewer characterse (A virtual data
type iIs one In which the character strings are not stored In the
data typey, but rather the character string Is produced as a
function of the reference number. Virtual data types have the
virtue of using very (lttle storaget only enough space for a
headery, which all dsms are required to have.)

Usage}

When a data type is created it is necessary to specify 1its
data strategy modulee. (See the dlscusslion of the command
“new_data_typed.™)

Examplest

Uslng new_data_type, one proceeds as follons?t (The 1lines
typed by the user are preceeded by “=>")

=> new_data_type xxx dsm_chari
dsm_char4t Maximum number of characters allowed on
Input (1 to W)
- 3
dsm_char4t Maximum number of characters allowed on
output, allowing for dfm, st
-> 12
New Nata Type xxx with refno 98 and strategy module
dsm_charb_.

Notes?

This dsm knows the ascil character code and expects four 9
bit characters In a worde. {In other words, It Is Multics
dependent.)

An attempt to Insert a character string datum into a data
type managed by dsm_char4_ wiltl fall only If the string is longer
than the maximum length specifled when the data type was created.

(END)

ROMS REFERENCE GUIDE ! dsm_charS_ !
! 1

Data Strategy Module
09724/ 74

Name?t dsm_charS_

dsm_charS_ 1s simitar In purpose to dsm_char4_. It Is wused
to store reference numbers to character string datums of maximum
tength tive (S). Since 1t s possible to store #tlve ASCII
characters In 3 single word (the size of a reference number),
dsm_charS_ is a virtual data-type. However, In order to put five
characters In a single wordy, dsm_char5_ limits lItself to the
present (128 character) ASCIY character set. Since flve character
datums may be quite useful (such as zip codes) it Is felt that
this restrictlon 1Is worth the efficlency of a virtual data type.

Usaget

To create a data type managed by dsm_charS5_ the
new_data_type command ls used. dsm_charS_ does not request wuser
input, since the maximum fength of a datum Is always five (5)
characers.

Example?®

New Data Type zipcode with refno 84 managed by dsm_charS5_e.

Notes?

The only time dsm_charS_ will relect a character string Is
when the length of the character string exceeds tive (5).

Data format modules which operate on datums returned by

dsm_charS5_ are assured of a 32 character varylng string In which
to put the retormated datum.

(END)

RDMS REFERENCE GUIDF { dsm_date |
! !

Data Strategy Module
08724774

Namet dsm_date

dsm_date Is used to assign reference numbers to datums which
represent dates. The reference numbers preserve the chronological
ordering of dates. Thus the reference number for *January 23,
1972°* 1ls less than the reference numbers assligned to fater dates
such as °Feb 3, 1972°, *1=-23=73" or ®jan 1, 1974°%,. dsm_date
allows for a wlde varlety of input formats (such as the examples
of dates above) while atways producing a standard output format,

Usaget
Yo create a data=type managed by dsm_date the new_data_type
command 1Is used. For example?

Users new_data_type start_date date

Systemt new_data_typet data type “start_date™ created
with reference number 139 and strateqgy module
dsm_date,

The maximum length output string 1s 18 characters
(corresponding to a date such as September 10, 1973). All dates
are represented on output by the standard form °*month day, yeac®
where popnth is the name of the month with the flrst character
caplitallzed, day 1s a one or two digit day of the month and year
is a four digit year.

E£xample?

Once a data-type managed by dsm_date Is created, It may be
used In relatlonse When Inserting a datum Into the data-type a
wide variety of Input formats Is accepted. The followlng are
fegal Input formatst
1) January 23, 1973
2) Yanuary 23, 1973
3) Jan 23, 1973

L)Y 1 23 1974

1 dsm_date RNMS REFERENCE GUIDE
1 !

Page 2

5) 1 23 74
6) 23 lan 74
7) 1an23,74
8) 1.23.74

9) 1.23
(When the year is omitted from a date, the year on

which the date next falis |[Is used. Thus 1f
today®*s date Is January 23, 1973, the vear Implied
Is 1974, Similarly, 1If today®s date (s later than
January 23, 1973 but earller than January 23,
1974y the vyear Implled is 1974. But If the date
were January 23, 1974y, the vyear 1975 would be
implied.)

All of the above strings witl be output as *January 23,
1974, and are all 3sslgned the same reference number by
dsm_date,

This dsm can rejlect character strings for two reasons?

1) The character string was not In the format of a
date ("1 23 19 74" or ™january 23m 1974"),

2) The character string was In the format of a date

but reoresented a non-exlistant date (“February 30" or
®January 45%").,

(END)

RDMS REFERENCE GUTDE { dsm_decimat_ !
! !

Data Strategy Module
09724/ 74

Nanme?® dsm_decimal _

dsm_declmal_ Is used to assign reference numbers to datunms
whlch are decimal values. Each data=type managed by dsm_decimal_
allows a fixed number of places to the right of the decimal
point, For numbers between {1 and -4 3 feadlng zero is usually
supplled (ee QGey "0.15" or "=0.27") but If the user deslires the
leading zero may be suppressed (s Gey "elS5™ or “=.27")e The
reference number assligned to a datum iIs the numeric value of the
datum 1lgnoring the declmal! polnt with zero (0) characters
appended to force the number of characters to the right of the
decimal point to be the flixed number for the data-type. Thus a
data-type altowing two (2) decimal places would assign the
reference number 1245 +to the character string ™12.45". The
character strings "12%, 12"y "12.0" and "12.00" would all be
asslgned the same reference number, namely 1200. The reference
number 1200 would always be output as "12.00%.

Usage?

To create a data-type wmanaged by dsm_declimal_ the
new_data_type (new_data_type) command ls used. For example,

new_data_type percent declimail_

The *“decimal_" specifies that dsm_decimal_ will be the strategy
module. (The user might aliso have typed "dsm_decimali_".) The
program new_data_tyoe will Invoke dsm_decimal_ to create a new
data type named percenty, and dsm_declimal_ wil! ask the questions
belonwe Responses typed by the user are underl!lned.

dsm_decimai_t How many decimal places do you want (up
to 87?7 3

dsm_decimal_t For numbers between -1 and 1 do you want
the flrst zero to be printed? yes

new_data_typet data-type percent created managed by
dsm_decimal_.

! !
! dsm_declimal_ ! RDMS REFERENCE GUIDE

1 !

Page 2

The percent data=-type would allow 3 decimal places to the
right ot the declimal polnt and a 1eading zero (0) will be printed
1f the datum Is between -1 and 1. Thus, the character string
“w,.2" would be assigned the reference number =30 and would be
represented on output as “=0.30". It the first zero was not to be
printed then the reference number =30 would be represented by

-'o 30%.

Example!?
new_data_type grade decimal_
dsm_decimal_t How many decimal places do you want (up
to 8)? &
dsm_decimal_t For numbers between -1 and 1 do you want
the first zero to be orinted? pg
New Data Type grade with refno 134 and strategy module
dsm_declimal_.
Notess

The maximum Jength of a character string datum 1[s 32
characters,

In order to do wmeaningful arithmetlic with the reference
numbers assigned by dsm_decimal_, one must know the number of
declmal places asslgned to the data-type. Thus to multioly two
dsm_decimal_ reference numbers one must divide the product by 10
raised to the nth power, where pn is the nusber of decimal places.
For example, to multiply two reference numbers for datums In the
*percent® data-type, such as 1020 and 1510, one would divide the
product by 100, obtalning the reference number 15402. In terms of
datums thls corresponds to muitipiylng *10.2* and *15.1" to
obtain 154,02 The relational! operators package orovides
bultt=in functions for manlipulating reference .numbers generated
by dsm_declmal_e.

This data strategy module will reject character string data
elements If they are not In the form of decimal numbers. Thus a
string containing a character besides 2a numeral or a declmafl
polnt wil! be rejectedes In addition, a string with more than one
decimal polnt or more than the maximum number of dligits to the
right of the decimal point is also illegal.

(END)

RDMS PFFERENCE GUIDE ! dsm_integer !
! 1

Data Strategy Module
09724/ 74

Name'? dsm_Integer

Usage?

Dsm_integer Is a virtual data strategy module. It can Dbe
used to store datums which are entlirely numerlice. In many cases,
dsm_Integer can be used to store datums which are normally not
printed as entirely numeric. For example, soclal securlty numbers
can be stored using dsm_integer but can be reformatted using a
data format module (dfm_soc_sec_num In thls case) when printing a
reporte Thus It the datums of a data-type can be sorted by just
their numeric characters and the non-numeric characters can be
easily Inserted for output, dsm_Integer can be used.

Example?
NData-types which can usually be stored wusing dsm_integer
includet
soclal securlty numbers
years

numbers of (dayss hours, o« « o)
oercents (It integral)

Notes?

Since dsm_integer [s a virtual data strategy module, it is
cheaper than a non=-virtual dsm,

This dsm rejects a character string it It does not represent
an Integere.

(FND)

RDMS RFFERENCE GUIDE ! dsm_table !
! !

Data Strategy Module
09724/ 74

Name?$ dsm_table

dsm_table Is used to assign reference numbers to datums when
the ordering of the datums can not be computed algorithmically
(e.ge., alphabetically or numericaliy). Examples of such lists of
datums are the months of the year, a list of salary types and the
names of the academic terns.

Usage?

To create a data-type managed by dsm_table use the
new_data_type command. For example?

new_data_type term table

dsm_tablet The maximum number of datums for this data
type 1s? 3

dsm_tablet The maximum fength of a datum Is? 24

New Data Type term with refno 84 and strategy module
dsm_table.

The data-type term has been created. It may contain up to 3
datums (whlch have not be specified yet) and each datum can be no
more than 24 characters longe. When speclfing the maximum Ilength
of each datum one should also consider any data-format-modules
which may be used to retformat the datums. The maximum length of a
reformated datum must also be tltess than or equal to 24
characterse.

To Insert the datums Into the table data-type one can use

the relation editor, eds. The sort order of the datums of a table
data type Is the order of Insertion.

Notesst
This dsm may relect a character string for several reasons?
1) If there iIs no room {eft In the table, I« e.y the
maximum number of datums specified when the data
type was created have been inserted.

2) If the character string Is tonger than the maxlimum

1 1
! dsm_table 1
1 1

RDMS REFERENCE GUIDE

Page 2

length speclfied when the data type was created.

3) Yt the user does not have write ("w™) access on the
segment contalning the binding between reterence
numbers and character strings, the new string can
not be inserted.

(END)

PDMS REFERENCE GUTDE 1 dsm_v2_astring !
1 !

Data Strategy Module
09/724/74

Nage? dsm_v2_astring

dsm_v2_astring is a data strategy module for storing
alphbetic datumse It 1[Is used when the sorting order for the
datums is to be the ASCIY collating sequence, The ASCII collating
seauence sorts numerais before upper case letters and upper case
letters before lower case letters. Special characters (such as a
spacey, colon, sSemi-colon, etc.) precede the numerals. Thus,
*BRrown® 1Is °®less than® °*brown® and °*Gold, D.* Is “less than*
Goldstelin, R.® since a comma (°,°) precedes an °s° (In the
coltating sequence. dsm_v2_astring assigns reference numbers to
datums In a manner which preserves the order of datums. Thus, the
reference number for °"Gold, D.°® wil! be numerlically less than the
reference number for °"Goldstein, R.‘.

Usage?

Yo create a data-type managed by dsm_v2_astring the
new_data_type command Is used. When creating a new data-type,
dsm_v2_astring asks the user for the maxlmum length of a datum.
This number does not affect the returned tength of a datum$ It
only restricts the datums that can be Inserted into the
data-type. For example, 1t the maximum length Is set to 10, the
character string ®*Goldy R.® would always be returned as 323
character string of tlength 8. The character string °*Goldstein,
Re® could not be inserted Into the data-type since |ts length
exceeds the maximum length.

Exapplet
new_data_type name v2_astring
dsm_v2_astringt What is the maxlmum string length? 350

New Data Type name nith refno 83 managed by
dsm_v2_astring.

The above command creates a data-type named *name® with a
maximum datum ltength of S0.

! '
1 dsm_v2_astring ¢ RDMS REFERENCE GUIDE

1 !

Page ?2

Notes?

The atgorithm used to assign reference numbers to datums |Is
highly sensitive to the order in which datums are Inserted Into
the data-type. In fact, more than 35 datums can not be Inserted
in alphabetic order. Users should make sure that datums are
never Inserted In alphabetic sequence for more than two or three
datums.

Data=-types managed by dsm_v2_astring can become very
Inefflclent for a number of reasons. If a number of datums are
Inserted [In order, the searching algorithm for finding the datum
assocjated with a glven reference number becomes more expenslive.
It a siognlficant number of the datums In the data-type are no
fonger being used in any relation (the datum was Incorrect and
the relation was edlted to Insert the correct valtue or the datum
was no longer needed) the data-type becomes wasteful In terms of
storage costs. In order to correct these oproblems the
‘restructure_data_type®* command 1Is orovided. This command
creates a new version of the data=-type which only contains those
datums which are present In a relation In the data base. This
restructurling asslgns new reference numbers to the datums, so
restructure_data_type must update every relatlon which uses the
data-type being restructuredes Thus, restructuring tends to be
expensive and should not be done too often.

A restructure of the data-type can also be done to correct
an Incorrect maximum tength specification. When restructuring a
data=type managed by dss_v2_astring, the restructure_data_type
command must bDe Informed that the data type 1Is an ®astring
data-type®. This 1s speclified by the “®~astring® optlon to
restructure_data_type. Refer to restructure_data_type elsewhere

in this manual.

An attempt to Insert a new datum Into a data type managed by
dsm_v2_astring may fall for the following reasons?

1Y If the datum]s 1longer than the maximum fength
speclfled when the data ¢type was created, It Is
rejected oufright,

2) 1If the dats type has no reference number avallable
for the new datum, the attempt wiftl fajit. (This
can happen when several character strings
alphabetlcally close to each other appear In the
data type. For example,y, if "“Alice™ has refernce
number 14 and “Arthur®" has reference number 15,

L 1

RDMS REFERENCE GUIDE { dsm_v2_3astring 1!

3)

Page 3

“Allen™ cannot be Inserted because no reference
number between 14 and 15 1[Is avallable. This
problem can be corrected by “restructurlng™ the
data typee. See the dlscussion of the
restructure_data_type command.)

Flnally, it a reference number is avaltlable
dsm_v2_astring wlil attempt to add the assoclation
between the new datum and Its reference number to
the data type segment. This requires modifying the
data type segment, so the wuser must have write
{(*w™) access on the segment.

(END)

RDMS REFERENCE GUIDE ! eds !
1 t

Command
09724/ 74

Nanme? eds

The eds command invokes the standard relatlion editor.
It is used for creating and editing retatlions.

Usage:®
eds relation fite-name

where

celatlon 1Is the name or reference number of the relation to be
edl ted.

flteename Is a relative or absolute pathname of an eds Input
file. If present, eds will start reading from this
tfile (see the °g® request below) after any necessary
reiations have been created. Eds wlll be In elther
input or edit mode depending upon the existence of
relation. Refer to the Notes for further explanation.
1t tlle-name is omitted, eds will be in non-g—-mode.

Notess

eds operates In response to "requests®” from the user. These
requests are discussed belowe eds has three modes of operation
= @djt mode, Jlnnut mode, and jlncrement mode. Requests are
accepted in all three modes. In edlt mode the request must be
the first character of the 1lne} In ipput mode the request must
be prefaced by a "." (period), or it wil)l be treated as an Input
{ine. Increment mode Is a generalized extension of jnput mode.
It allows any request to be repeatedly executed with arbitrary
arguments, edit mode may be entered In two wayst [If the
refation already exlsts, edit mode Is entered automaticaliy when
the eds command 1Is Invoked?® i1f eds is in loput mode, the
mode-chapge reauest must be issued. The mode-chanae request Is a
“«_« (perlod) standing atone In the leftmost position on a (ine.
The request announces lts current mode by responding with elther
“EDTIT™, "“INCREMENT®™ or "INPUT"™ when the mode Is first entered.
From edit mode, input mode may be entered by typlng the
made _change character foliowed by a carriage return. Increnment
mode Is entered by using the + (increment) request (see below)e.
Leaving lncrement mode is accomollished by typlng the mode=change
request folloned by a carrjage return.

eds 1! RDOMS REFERENCE GUIDE

Page 2

Requests to eds treat a relation as a collection of tines In
a table to which there Is appended a cofumn of numbers Indicating
the “number” of each (lne. The jpndex 1is the number which
specifles the current (ine? that 1Is, the {lne avalliable Ffor
modiflcation or printinge Some requests cause the Index to be
changed® other requests operate upon the tine indicated by the
Index In the table. Stl]ll others modify the relation as a whole
or affect the Internal state of eds. All requests are performed
upon a morking copy of the relation specifled. Because of this,
the relation ldentlfled by the Invocation of eds Is not modifled
untit! the user writes it. (See "w™ request.)

Upon entering eds via the command

eds relation

the user®s data-base s searched for a relation with the name
celation. If found, eds then searches for a relation named
eds.celation. If eds.relation exists, 1t [Is used as the
morking copy. Otherwise, eds.rejations a copy of relations Is

created In the data-base. The user is informed whether eds is
creating or using an already existing copy of celation. Also,
eds (Informs the user of and differences between the cardinality
(number of rows) or arlty (number ot columns) of relation and
eds.rejatioan.e €ds then enters EDIT mode.

Y?f relatlon does not exist then eds will ask the following
questions. Flrst, eds wilt ask for the number of columns? then,
for each column, eds wllil ask for a data-type name. If the
data-type specifled does not exlst In the user®s data base then
eds wlil ask for the data-strategy-moduie which should manage
this data-type and create the data-type for the user. eds then
creates eds.relatlopn as described above and enters INPUT mode.
(See the ".” request.)

Examplet
eds phone_book
The above command may result In 3 number of messages orinted
on the users console, I*f phone_book already exlsts [In the
data-base, but eds.phone_book does not, then eds wiil printt

eds?: edse.phone_book wlill be created.

It eds.phone book exists then eds will print?

O

ROMS PEFERENCE GUIDE ! eds !

edst eds.phone_book existse Yt will be used.

It ohone_book and eds.phone_book have dlifferent cardinallty then
eds printst

edst phone_book and eds.phone_book disagree in length,
eds.phone_book wlil be used.

Yf phone_book and eds.phone_book have different arity then eds
printst

edst phone_book and eds.phone_book disagree in order,
eds.phone_book willl be used.

eds wli! then enter FEDIT mode and print EDIT on the users
console.

If phone_book does not exist In the data base then the
following dialtogue might resultt (user input Is underlined)

RELATYON NOT FOUND

edst number of columns=3
edst data=-type Is pname
edst data-type is roopm
edst dsm is dsp_room
eds? data-type is extn

eds?t dsm 1ls dsm_lntger

edst Character string Is not an element of data typee.
dsm_intger is not a data-strategy module.

edst dsm lIs lpnteger

phone_book {is now created, containing three columns, name,
room and extn. In the processs, two new data types were created,
room wlth data strategy module dsm_room and extn with data

strategy module dsm_integer, This example assumes that the
data-type name already existed iIn the data base and thus eds did
not need to create ite. If eds does not have ¢to create a

data=-type It does not need (and does not ask for) the data-type°s
data-strategy module. In some cases, data strategy modules witi!l
ask aquestions concerning a new data type. Refer to the commands

!
eds RDMS PEFERENCE GUIDE

|

1

Page &

“new_data_type™, "“convert_data_type*"”, and "restructure_data_type"
for more Intormatlior concerring the creation of data-types. Note
that eds accepts data strategy module names wlth or without the
prefix *dsm_*, Since [t Is requlred by RDMS, eds witl add the
prefix 1f it Is not provided.

Once phone_book has been created, eds wliil then check for
eds.phone_book and will print the same messages as described
above. eds wWilt then enter INPUT mode and print INPUT on the
users consofle. (See the "." reauest.)

ROMS REFERENCFE GUIDF { eds

REQUESTS 71O EDS

Fach request is Indicated by a single charactery, which must
be the first character of a "reauest™} It is followed by (In some
Instances, optional) arguments. The requests aret

request explanation page
a absolute 1ine number « « « o o o 7
b DOtTOM ¢ ¢ o 2 o o o o o o s o o 14
c Change o o« o« s o o o 5 o o o o o 7
c compose e © o ® ® ® ®» © o ® o o 8
d delete o« o o« o« o o« «a o« o o o o o 9
D dup!lcafe and delete « ¢« ¢ « ¢« ¢ 9
e execute Multics command <« « o« 10
E execute Multics command < « « 010
4 PINd « ¢ ¢ ¢ ¢ ¢« ¢ @ @& o o o o 10
F fOrmat « o« o« o » o o s o o o o 12
qgq ge' requests from fife ¢ o ¢ o 13
i Insert ¢« « o o o« o o o o o o o o1l
I lgnore e o o« » o o o o o s o o il
k kit prlnfing e ®© o6 ®» o © o o +15
{ 10C3T@ ¢ o« o o o o o o o o o o 15
L) merge {(UnNion) < o o o o o o o 16
M meter editor USE e « ¢ o o o o 17
n NeX? o« « o« o ¢ ¢ © o« o o o o o 17
) order e o o o 5 ® o » o » o o 17
e print e s o s s @ o o« » o s o 18
P DPO’QCf e o o 5 ® © ®» o ° o o 018
[«] QUIT ¢ ¢ ¢ 2 o ¢ o ¢ o o o o o «19
Q MAke QUArt o« « o ¢ o o o ¢ o o «19
r rep‘ace e e »a » o » » o o o o 220
L4 read a relation e o o o o o o o210
S SOFt ¢ ¢ ¢« o= » o ©« o a o o o o 20
A\ ¢ 'OD e » ®» ®© » o ® o s o » o o 021
updelefe updelefe e ® o @ ®» o o o ° o o 21
U uyse e ®© 8 ® ®» ® e o ® ° o ° o «21
v verbose printing « « o« o o = o 22
L] wrlte e » ®© ®» © ® o o o o o o e22
X cartesian product o« e o s o o 023
- minus e o © o o ®© o o o o o o 23
= fine number . e o o o o » o 23
[} S1Z€ o ¢ ¢ ¢ o o &6 o o o o o o o2k
- AbLreviation « o o e o o o ¢ o 24
< verlfy Input - protectlon . « 25
> do not verify input e o o o o 26
" duptlicate w o » s o »a » o o o 26

e

4

change mode

e o o o
StTatusS o o o o o =
difference « ¢« o o o
intersect e o o o o

increment and repeat

suppress carriage returns

Notes on using eds .

Defaults to eds reaquests

Initial edltor status

RDOMS REFERENCE GUINE

e o & o o

°

e 6 o o &6 &6 o & o

«27
28
«29
«29
«30
«31
«32
34
«35

O

POMS REFERENCE GUTYDE ! eds

~a" reguest (absolute line number)

Format:
ap or app

Purpose?
Change the value of the l1ine Index to p (that Is, the
p=th llne counting from the top ftine which [s atlways
tine number 1), Tf the request is terminated with *p*,
the new current {lne 1Is printed.

Spacing?
Any number of spaces may appear between the request and
ne An arbjitrary number of spaces may also appear
between p and pe.

Defaultt
It n is absenty, 1 Is assumed.

Note?

If the request is given with an *=® [n place of the n,
the current (lne is set to the previously stored value
of the current line. (See the =" request) Note that
the contents of the restored line may not be the same
as It was when the line Index was saved due to
deletions, resorting or relational operations.

b _reayest (bottom)

Formatt
b or bp
Purpose?
Reset the lIne Index to the last 1lne of the current
working copye 1If the *p*™ Is present, the last line of
the current working copy (i.eey the new current (ine)
s printed.
2¢” _regyest (change)
Format?
A) cp/data-type/string=-1/string=-2/
or
B8) cp/string=1/string=-2/
or .
C) cpn/data-type/string=-1/
Purpose?

D) Replaces every occurrance of the substring string-t
In the column Indicated by data-tvpe with string=-2. pn
Is an ontional integer which Indicates the number of
tines which the request wll!l operate upon.

!
eds ! ROMS RFFERENCE GUIDE —_

R) Replaces every occurance of the substring string=-1
In the next n tines with string=2 Irrespective of
data-type (column).

C) Replaces Iin the next p tines the entry for the
column Indlcated by data-tvpe with string=-2
irrespective of its current value.

Dellmiters?
Any character not appearing In string-i, string-2 or
data-type may be used as the delimiter., (A */* is shown
In the format examples above.)

Defaults
It n Is absent, 1 1Is assumed.
Index?
Unchanged even 1t n Is present.
Note?
Format C Is assumed If there are two flelds and the
first is a data type name appearing in the working
copye. Thus format B cannot be used If string=-1 Is a
data type nawe.
~r
ZC™ _reguest (compose)
Formats
C celation=-name
Purpose?
Compose the current working copy with the given
relation=-name. rejatlon-name way be elther the name or
reference number of a aquart or a relatlon.
Spacing?
A space may appear between the request and the
celation=name.
Note? .
See the description of compose elsewhere in this
reference gulde for a complete explanation of the
compose operation. .
Index?

The ilne Index s set to the first (lne of the
resulting relation.

24" reguest (delete)

Formats
dn or dpp

Purpose?
Detete the next p lines from the working copy of the ,
refation. MNeletion begins with the current tine. It 7/
the request ls terminated wlith the character *p", then

PDOMS REFERENCE GUIDE ! eds !

Spacing?

Defaul t?

Tndex?

Notet

the new current {ine Is printed upon the completion of
the deletlon reaquest. If *p*" Is not present, the new
current line is not printed.

Any number of spaces between the request and p may be
present. An arbltrary number of spaces may also appear
between n and “p*.

If n Is omitted, the current line is deleted.

The Index ls set to the next tlne after the last llne
deleted.

deleting a tlne has the effect of moving altl the llnes
below the deleted tine up one line. Thus, the request?t
“4dp* will delete the current line, and print the new
current flnee.

*D" _reaguest (dupilcate and delete)

Format?
or

Purpose?

Indext

Note?

Defaults

A) Dp/data-type-1/string=i1/.../data-type-gp/string-a/
B) Dpn/data-type/string=1/string=2/<.e./string-n/

Defete the current 1ine after duplication. This
request 1Is ldentical to the * (ditto) request, except
that the current {ines are "replaced”™ at the current
tine numbers by the “dittoed” lines. The new lines are
not written at the bottom of the relation. Refer to
the ditto (") reauest for an example.

The current ilne Index Is unchanged.

The formats above can be Iintermixed in the same
request. The flrst fleld must be the name of a data
type present In the working copy$s Lt it Is not the D
request fails. After the first field, each field is
checked If It Is the name of a data type present In the
working copy. It it Is, the next (and succeeding)
tields (untit a new data type name is found) are used
to replace the current value for the specified
column(s) of the retatlon In each of the next n rows.

It pn Is omitted, 1t Is assumed to be 1.

! !
! eds ! RDMS REFERFNCE GUINE —
! !

——— -
Page 10
"a* regyest (execute Multics command)
“E* _reguest (execute Multics command)
Format?
EMuitics command line
eMyltics command line ’
Purpose?
Pass Myltics command line to the Multics command
processor for executjion . *
Fxample?
The request
Fhmuldf >udd>e>apli>test.docirdy
would be passed to the Mulitics command processor. The
Mul tics command processor would execute the commands
hmu
dt >udd>e>apli>test.doc
rdy
responding with a message of the form
-’
Myl tics 16.0xby (0ad 16.0/41.0% 15 users
r 1242 L5.456 310641935
Index?
Unchanged.
Note?
Tt the "t format Is used, a message announcing the
current mode of eds wilt be printed. Otherwise, no
reply wil! be made by eds.
“$” reguest (find) .

A. Format?
t/data-type/string=-1/

Purpose? .
Find the next occurance of the character string
string=1 within the column specifled by data-type.

B. Formatt
t/data-type/
Purpose?
Fstablish a default search column for the find request.
After this reaquest has been lssued, any find request
given without a data-type will search through this
column, .
This format takes precedence over format C. -

RDMS REFERENCE GUIOF ! eds !
!

Ce Format?

Purpose?

De Format?t

Purpose?

Example?t

Notes?

1)

2)

f/string=1/

FiInd string=1 within the default search column.
Initially, the default search column will be the
feftmost column of the relatlion. The B. Format sets a
new default for a search columne

1f string=1 is the name of a data type In the
working copy then format D must be used, otherwise, eds
wlt ! assume a new default search column {(format B) Is
belng speciftied.

f/data=type/string=1/..e/string=-n/

When given more than one string-]l, the tind request
will attempt to find a tine matching the "tuple”™ of
string=1"s provideds Tf a string-]1 is the °**°
(asterlsk), then It wlil match with any string In that
columne The ®°*° acts as a “"mild=card™ and matches
anythinge

f/Canningy, He Fo/*7L367/

would find the next occurence of the name *“Canning, H.
Fe™ with any address (the wild card) and with the
extenstlon *4367". Al1SO,

t/8rowny Je Go/23-334/

would tind the first tuple In the relatlion wlth name
"Browny Je Ge™y room *23=-334", and any extension. This
assumes that the default find column was set to "name®,

When a data-type Is not given, the default search
column is used. On entry Into eds, this wlll be the
feft=most column of the relation.

The find request normally assumes that you have glven
only a left-most portion of the strings you wish to
finde To suppress this feature issue the request with
only the argument “-off"” Datum successor “on®" means
that you may attempt to find a datum by speclifying oniy
the leftmost portion of ite Tf eds finds that a
string=1 Is not an element of the data type for the
cotumn string=]1 is to be found in then eds will use the

! !
1 eds ! PDMS PEFERFNCE GUIDE

1 !

Page 12

datum atpabetically foltowing string-1 In the data
tyoee.
For example?

f-on
t/name/Canning/

would (assuming that the relatlon phone_book is being
edl ted) respond with?

1 Canningy, He Fo 1 23=-335 ! 4367 !

However, In cases where there may be multiple names,
such as with "Smith, Je. T.™ and “Smith, A. R.™ no
guarantee of locating the deslired name Is given. The
use of datum successor is "on" upon entry into eds.
If datum successor Is "off*"” and a string=] Is not a
valt i1d datum then the find request witl fall.

“f” _request (format)

Format?
F or F/data=-type/dfm/deliml ter/

Purpose?
Control the formatting and orinting of 1lnes on the
console. The dfm Is the name of a data-format-module
(dfm) which will be catled using the string to be
printed as an argument. delimiter Is the delimiter
string for output desired to be printed after the
datume (That ls, to separate this datum from those
which follow ite)

Defaultst
If the dfm Is the nutt string, then no dfm will be
callede Upon entry Into eds, the defaults are dfm=none
and delimiter=" 1t =,

Notest
The F request accepts dfm°s In the form of
program=namegentry-point. TIf no arguments are given,
all formats are restored to the default value. If no
doltar sign (*¢") appears In the dfm fleld, then the
program=name ls assumed to be the entry=-point name. 1¢
no such program-name can be found then a default
program=name of “dfms_*" Is used.

Fxample?
F/name/names/<ctab>/

is eaquivalent to?

RDMS REFERENCE GUIDE ! eds !

F/name/dtms_¢dfm_names_/<tab>/

*g" reguest (get requests from file)

Formats

Purpose?

Notet

Example?

g flle-name

Gets editor requests from an ascil text file specified
by the reiatlive or absotute pathname °"flle-name‘.

Tt the entryname portion of file-name does not end In
the suffix *.eds® then this suttix will be appended.
Thus flles to be read by eds must be named with a name
ending In *.eds*”. For example, °g write® and °g
urlte.eds® are equlvalent.

6 reaquests are recursive, thus an ascil text file being
read by eds may Issue a g request to read from a
difterent flle. When this second fite Is exhausted, eds
will continue reading from the first fite. HWhen the
flrst file Is exhausted, eds wlll return to readling
Input tlnes as 1t dld when first Invoked. Normally,
this witll be the user®s console, but If eds Is Invoked
from an exec_com flle using the *tattach® exec_com
command then Input will be read from the exec_com file,
WHhen eds Is reading from a flle specified by a g
reaquest, It Is In g=-mode otherwlise, It Is In
non=g=mode.

When the program Interrupt feature of eds Is used, eds
reverts to pon-g=-mode orior to entering edlt mode.

It is possible to have flles which perform a serles of
requests. Suppose that every time you write 3
relationy, you want to sort it and print the number of
tfines In the file. Typing,

a wrlte
where *write® is the name of a segment containing the
followlng 1ines

S

"

b

9
will accomplish this. The final tlne consisting of a g
returns eds to reading from the flle (or console) prior
to the reauest g write™. This line is assumed [t the
last tine of a flle Is not "“g".

eds ! PDMS PEFFRENCE GUIDE

Page 14

217 regyest (insert)

Formatt
1/string=1/cecece/string=n/

Purpose?
Append the (ine specifled by the string=]°s to the
bottom of the current working copy of the relatione. It
string=] Is the null strings 3 *nutl=string®” will be
inserted Into the relation Iin the corresponding cofumn
of the relatlone The strings must appear In the
“order® currently defined through the *0*" reauest. If
there are more columns in the retfation than there are
Input stringsy, null strings or default Insertlion
strings (see the "I* reaquest) wlil be Inserted Into the
remaining columns.

Index?
Unchanged.

Note?
The *"length®” of the current working copy will be
Increased by one If the Insertlion Is performed. The
inserted tine witll atways be the fast line of the
working copye.

=1 regyest (ignore)
Format?
Y/data-type=1/string=1/.../data=type-pn/string=-pn/
Purpose?
Aflom the data-types given to be Ignored by the
change, replace,y, Inserty, find and locate requests. The
data=-types wll! continue to be printed unfess killed
using the ki1l request. Upon entry to eds, no
data-types are "Ignored"”. In Insert, duplicate and
dunlijcate-and-delete requests, the associated
string=1°s (the deftault Insertion strings) will be
used to create {lnes.
Note?
The string=j®s must be elements of the data types
data=-type~]l. Tf not, the I request will ftalt,
Examplet
Horking In the refation sal_1ist, whlch contalns the
data-types name, term, percent_time, salary_type and
salaryy it we are only dealing with information for the
FIRSYT TERM then the command
Y/term/FYRSY TERM/
would allow for the following?
i/7Smithy, He F./50/map/18500/
bp
1 Smithy, He Fe ! FIRST TERM 1 S0 ! map ! 18500 !

RDMS REFERENCE GUIDE ! eds 1

Page 15
k> regyest (kitl printing)
Formats
k/data~type~1/e « o/data=-type-pn/ or k=all or k
Purpose?
Suppress printing ot the data-types specifieds If
specifled with no arguments, all printing is
suppressed. This does not affect the "p*™ request.
When provided wlth arguments, the speciflied data-types
wilt not be printed by any eds reauest, including the
“p" request, which would normally print out a {ine or
flnes. It -2all 1Is specified then all data=-types are
kitled (and therefore all printing is suppressed).
Defaul t3
Upon entry Into eds, no data-types are killed.
Note?

When used with no arguments, the verbose-killed mode of
each data=-type Is not modlified.

1= reguest (locate)
A

e« FoOormate

Purpose?t

B. Formatt

Purposet

C. Formats

Purpose?

Note?t

i7/data=type/string/

Locate the next occurance of string In the column
specified by the data-type data-tvpe and set the line
index to that f(ine.

1/data-type/

If only the data=type 1Is glven, the default locate
column will be set to the column specified by
data-tvpes and all future uses of the locate request
wil! search through this column unless overridden. The
default search column may be overridden by merely
specltying the data-type and the string to be searched
fore

1/string/

This Jlocates sirlng within the default jocate columne.
See Format B for further detailse.

It verbose mode Is on, and the reaguest 1Is successful,
then the new current tline will be printede Note that
the default locate column will be wused In searches
unfess overridden by Including a data-type as the flrst
argument to the request. Upon entry into eds, the
default locate column is the {leftmost column of the

1 eds ROMS REFERENCE GUIDE

1 -

Page 16
relation.

Index?
If +the reaquest Is successful, the Index wlll be set to
the line where the requested datum next occurss$ it
unsuccessful, the Index remalns unchanged.

Note?
The *1" request should be wused only when the “ft*
request cannot plnpoint the deslred stringl *f" 1Is much
more efflicient than *{*

“x" reguest (merge or union)

Formatse
m celation=name

Purpose?
Merge (or union) refatlion-pame with the current working
CODPY. reiation-name may be ejither the name or
reference number of a aguart or relation.

Notes
See the description of union elsewhere [n this gulde
for a complete explanatlon of this operation.

Tndexs
The 1ine Index will be set to the flrst 1line of the
resulting relation.

Spacing?
A space may appear between the reaquest and the name to
be merged.

M= _reguest (meter edltor use)

Formats
M=on or Meoft

Purpose?

Allows programmers to meter eds®s efficiency In order
to improve operatlione See documentation of the
commands “eds_use”™ and “zero_usage®”,

“n= _reguest (nex?t)

Formats?

Purpose?t

np or nmp

Set the line Index to p 1ines from the current (ine
index. It the request terminates in the letter “p*,
the new current tine wlitl be printed. If the Integer n
would cause the next 1ine to be greater than the
current tength of the relation, the message "“EOR™ (End
0t Refation,) will be printed on the console and the

RDOMS RFFERENCE GUIDE 1 eds
!

Spaclinat

Defaults

Page 17

current tine Index will be set to the last line of the
relation.

Any number of spaces may appear between the request and
ge An arbitrary number ot spaces may also appear
between m and p.

It the integer m is absent, it is assumed to be 1.

20" _reguest (order)

Format?

Purpose?

Note?

Example?

0 or 0/data-type=1/<eses/data=-type-n/

Tf the arguments data-type-]l appear, then the apparent
order of the relation being edited Is changed to match
the order In which the data-type-1°s were typed in. 1¢
no arguments are glven, the order iIs restored to 1ts
default order, that being the current sorting order for
the relatione

This command does not modify the current sorting order
of the relation currently being editeds The only thing
moditied 1s the order in which the columns of the
relatlon are read from and oprinted on the console.
Note also that you need not speclfy the full range of
data-types presente. eds will append the extra
data-types to the end of the request tine and Infornm
you that 1t has done so by oprinting those data-types
which were not givene.

In the relation phone_book, the normal sorting order is
<name room extn>. The request?

0/room/extn/name/

would result in ati tines printed after the reaquest
being printed In <room extn name> ordere. Also, atl
fines typed In using Input-mode, replace, insert, *, or
D would be interpreted as belng in <room extn name>
order.

Zp> _reguest (print)

Format?

Purpose?

p or pn

Print out o lines of the relation beginning with the

Defaul ts

Spacing?

RDMS PEFFPFNCE GUIDE

current 1Iine, then set the tine index to the ftast {ine
printeds Only those data-types In verbose mode (see
the v reques?t) are printed.

It the Integer n 1ls missingy, it Is assumed to be 1.

An arbitrary number of sSpaces may appear between the
request and n.

2P reguest (project)

Format?
P or P/data=type=1/. « /data=-type-pn/

Purpose?t
Project the current morking copy on the specified data
tvypese YI! no data types are speclfied then the current
sort order of the working copy Is assumed. T? data
types are present then the apparent order of the
columns Is reset to the projected order of the columns.
Any prevlous order set by a 0" request Is overrridden.

Notet
This operation may produce an unsorted relation wlth
duplicate rows. See the description of prolect for an
explanation of the project operation.

Index?
The (lne Index 1Is set to ¢the first ((ine of the
resulting relation.

Z9” regyest fault)

Formatt
a -optlons=-1ilst- or a goptions

Purpose?

Qulit from edse The optlons may be chosen from among
the followings 1t more than one goptlon Is desired, the
fetters should be concatenated.

delete the working copy
sort the worklng copy
write the working copy
force exit from eds

-x A

Note that the *“f*" optlon overrldes or lgnores the *'S*
and *w*” optlons. When you type ™q*", eds checks to see
if you have sorted the working copy and wrjitten [t, Tf
noty, a message Is printed on the console and you are
asked to type ™qf"™ if you wish *to aquit. After this
message, the wuser s still able to sort, write, find,

RDMS REFERFNCE GUIDFE ! eds 1|

etce and then quit.

Notes?
Note that the order In which options appear Is
unl mportant. Sort [s always done first, followed by
writey, followed by delete, ypless the "f" option
appears on the line. The "t option wilil cause ajil
optlons except "d*” to be Ignored.

20 _reguest (make quart)

Formats
Q’d3?8‘?y°9°1/.. ../dafa-fype-nl

Purpose?
Create a quart with the data-types specified by
data-type-1 through data-type=-pn. The aquart will
contaln a single tuple, consisting of the null element
for each data type specifieds The reference number of
the resulting quart wil! be printed.

Index?
unchanged.

Zr” _reguest (replace)

Formatse
r/string=17ecccece/string=-n/

Purposes
Replace the current {ine with the flne specified by the
strings strlng-je If string=j Is the null string, the
i*th column remalns unchanged. If there are ftewer
string=1"s than columns,y, the remalning columns wiilt be
unchanged.

Indext

Unchanged.

R" _reqgyest (read a relation)

Format?

Purpose?

Index?

Notes?

R rejation-name

Reads the relation specified by relation-name Into the
current working copy. At the same time [t changes the
name of the current working copy to eds.relation=-panme
and changes the relation being edited to rejlation=-name.

The line Index Is set to the flrst Jline of the newn
working copvye

!
eds 1! RDMS PEFERENCE GUIDE

Page 20
The previous contents of the working copy are
des troyed.

=S” _reaguest (sort)

Formatt
S or S/data=type=i1/eesee/data-type-n/

Purpose?
Sort the working copy of the relation being edited.s It
no arguments are glven, the copy |{is sorted by 1Its
current sorting order, not In the “order* specifled by
any oprior "0 request having explicit data-types
assoclated wlith l¢t., It arguments appear, they must be
separated by break characters. The relation will then
be sorted In the order ot the given arguments. If
fewer arguments are glven than there are columns In the
relations, then those columns not provided will not be
sortede 1f arguments appear then the apparent order of
the cotumns 1Is reset to the new sorting order of the
working copye Any previous order set by a "0" request
is overrlidden.

Notes
For more detalled Information on Sort, see the
description ot sort elsewhere In this gulde. The S
reguest also removes duplicate rows from the relation
by using the projlect operation on the sorted copye.

Index?

The tlne Index witl be set to the flrst {(ine of the
resulting retation.

Z%" _reagyest (top)

Format?
t or tp

Purpose?
Reset the lline Index to the top of the current working
COoDYy leeey set the tlne Index ¢to one. It “p* 1s
present, the top Iine of the working copys, the new
current (Ilne, Is printed.

Zundelete” reayest (updelete)

Format?
updelete

Purpose?

Detete ail YIines above the current tlne., As a safety
measure, fthe complete string “updefete® must be typed.

RDMS REFERENCE GUIDE ! eds

Notes?

The current line Is not deleted by updelete.

—U= _reguest (use)

Formate
U or U/data-type~1/ececese/data-type-n/

Purpose?
Use the glven data-types. If no arguments are glven,
all data=-types are restored to being used (rather than
being Ignored). Upon entry to eds all data-types are
*“Used™.

Defaults?
It no arguments are given, then all data-types will be
used.

Notet
This request 1Is the opposlite of the "I"™ request.

*y" reguesi (verbose printing)

Format?
v/data=type=1/. « «/data-type~-pn/ or v-all

Purpose?
Cause eds requests which print tines of the retlation on
the console to print the datums assoclated with the
data-types speclfled. 1t =-altl Is specifled then all
data-types will be printed.

Defaul t:?
If no arguments are glveny, the v (verbose) request
turns on orinting for those data-types not explicitly
kiltled by a k" reaquest.

Notet
The *v™ request is the opposite of the "k* request. A
data-type 1Is never orinted 1f [t [s kitted. (A
data-tyne that Is not killed |s sald to be [In verbose
mode.)

Zu’ _regyest (write)

Formats
W or w relatiopn-pame

Purpose?

Wrlte (save) the current working copy of the relation
being edjited under the name rcelatlon-name if
celation-pame 1Is glven. Tf* noty the worklng copoy |s
written with the name of the relatlon being edited,
thus replacing the origlnal version ot the relation
with the current working copy.

RDMS REFERENCE GUIDE

WARNTNG: Tn order to save the editing that has been
dones, a wrlte request should be issued before exlting
from eds. An optional space may appear between the
request?t and celation=npame. When the wrlte |is
per formedy, a message Is printed on the console
informing the user of the date and time the relation
was written,

“X* _reauest (cartesian product)

Format?
X celation=pame

Purpose?
Perform the carteslan oroduct of the current working
copy with the relation speclfled by the refation
celation-name. crelation-pame may be elther the name or
reference number of a quart or relation.

Note?
See the description of cartesian product (cart_prod)
for details of the cart_prod operatione.

Spacing?t
A space may apoear be t ween the request and
ceiation-pame.

Tndex?
The 1lne index will be set to the first 1ine of the
resulting relatlon.

2= _request (minus)

Format?
=4 or =-np

Purpose?
Move the Index “backwards™ (towards the top of the
refation) the number of tlnes speclfled by the Iinteger
De It the new ilne Index would be less than one, the
message “NO LINE®™ |s printed and the line Index [s set
to 1. Tf the reauest Is terminated wlith the character
“p*y then the new current line 1is printed on the
console. Otherwlsey, nothing Is printed.

Spacing?
Any number of spaces betweern the request and n may be
present. An arbitrary number of spaces may also appear
between n and pe.

Nefault?

It n Is absent, It iIs assumed to be 1.

ROMS REFERENCE GUIDE ! eds

Page 23
“=* regyest (line number)
Format?
Purpose?
Print the current value of the (lne Index. It an

argument appears following the *=", the current vaiue
of the Index Is saved (for later use) Instead of being

printed.
Example?
The request
=x
causes the current 1lne Index to be savedes Then
foltlowing the execution of addltional requests, such as
ni0p
r/eecsssse
n
d etCen
the index can be restored to its original value (l.e.,
its value when the request *“=x" was lssued) by using
the *a® request and typlng ™a=".
Index?$
Unchanged by the *“=° request.
na¥ reauest (size)
Format?
L J
Purpose?
Print the value of the current l(ine Index, as nell as
the current length and order of the working copy of the
relatione.
n~*" reqgyest (abbreviation)
Formatt
“sms abbrev _line
Purpose?

Pass sms_abbrey line to sms_abbreve 1If sms abbrey line
is the string %=-on™ or *-off™ the control of the
abbreviation and expansion feature Is set to “on" or
“off™. It expansion 1Is "on*, anything between break
characters wiil be examined for abbreviatlons, and
those abbreviatlions found will be expanded and used in

eds

Page 24

Note?!

RDMS REFFRENCE GUIDE

the requestse If not “=oft”™ or “-on*", then the request
must be one of the following?

COMMAND PURPOSE FORMAT

abbrey expanded
abbrey
pathpame

define abbreyv
delete abbrev
establish profile
print proflile name
{ist abbrevs

=0 CQaQoO
-5 CQO

On entry to eds, expansion of abbreviatlons 1is "on",
See description of sms_abbrev elsewhere In this gqulde
for further detalls.

Z<T reqguest (verify lnput - protectlon)

Formats

Purpose?

Fxamples

< or </date~type=1/e.eees/data=-type-pn/

Prevents the Insertlon Into the data-base and into the
relatlon of misspelllngs or Incorrect data. This
request requires that anything Inserted, replaced, or
changed In fthe glven data-types exist within the
data-type In which It Is belng placed (that is, already
have a valld reference number associated with its
character string representation). Thls request |Is of
particutar value for fable data-types, as no enftrles
should be Inserted Into such a data-type after It |Is
created. Note that yirtual data-types (such as those
managed by dsm_integery dsm_date, and dsm_decimal)
cannot be protected in thls manner, and any falfure In
insertion of a datum into the relation Iis due to
improoer typing of the datum.

If a misspelllng 1Is glven to a “protected” data-type
(ie€ey 1T a datum Is given which does not already have
a reference number associated with It), a message lIs
printed on the console iInforming the wuser that the
glven string could not be ftound In the assoclated
data-type and asking 1f 1t should be Inserted. A
response of "yes®™ or *"no"™ Is required. TIf the response
is anythling but *“yes”™ or "no*”, the questjon ls repeated
untl! a “yes™ or "no”™ answer I[s provlided.

{user typlng Is underilned)
</name/l

RDMS REFERFENCE GUIDE ! eds

1/Bromns _Je £2/3=40377958/7

edst name protected. Insert *Browny Je L.°7?
ne

eds? replace by Browns .Ja De

bp
! Brown, Je. De 1 3=403 ! 7958 1

It you declde that [t would be easler to retype the
originat request rather than retyping the datum, you
can answer the question

edst replace by
with the mode-change character. eds wltl remaln In 1ts
current mode, but the 1(lne It was In the process of
adding will be ignored.

Defaul ts1
It glven with no arguments, all data-types will Dbe
protected. When eds [Is entered, all data-types are
protected by default.

22" _request (do not verlfy input)

Formatt
> or >/data=type~i/eccces/data=type=pn/

Purpose?t
Rel ease protection on the data=-types given.

Defaul ts?
If¥ no arguments are present, then alt! data-types are
un-protecteds.

Note?

Thlis request Is the opposite of the "<* request.

= __reguyest (duplicate)

Formatt
or

Purpose?

“n/data-type-1/string=1/e.sses/data~-type=-p/string-g/
“n/data=-type/string=1/string=2/.cececs/string-p/

This command duplicates the p lines beginning with the
tine specified by the current line index, placing them
at the bottom of the relations The strings of the
data-types speclifled by the data~-type~]1°*s are repflaced
with ¢the correspondinag string=1°s. In the second
format , the data=-type speclfies the column iIn which
replacement Is to begin. From that column on {or until
another data-type=] 1Is found), the request functions
simltlarty to Insert. It Is possible to mix the flirst
and second formats together. If verbose mode s on,

eds 1} ROMS REFERENCE GUIDNE
_

Page 26
the newly added {ine will be printed.

Examplet
In rank_llsty, sorted by name=ranketitle-soc_sec_num
“/title/Professor Emer]tus/203380252/
would take the name and rank from the current line and
insert a3 new (lne at the bottom of the flle nith the
title °*Professor Emerltus® and the soc_sec_num of
*2033802%52°. The request
*/titte/Professor Emerjtus/soc_sec_num/203380252/
Is equivatent to the first example.

Index? v
The current tine index Is unchangeds TIf pn Is absent, 1
Is assumed.

Note?
See the "D” request for ditto and delete operations.

=" reayest (change mode)

Formats

Purpose?

Change the 1Input, edlt, or [ncrement mode of eds. 1In
Input mode, tines typed on the console are Inserted at
the bottom of the relation, much as In the insert (1)
request. For example, In Input mode, typing

/Brown, Je D./3-403/7958/

would be equlivalent to typing the following In edlt
mode.

i/Browny, Je D./3=-403/7958/

From edlt mode, typing "¢ followed by a carrlage
return permits you to enter input mode. From |[nput
mode, typlng *.* followed by a carrlage return will
refturn you to edlt mode. White In Input or Increment
modey, 1t 1ls posslble to execute any reaquest avajlable
In edlt mode by simply typilng 8 *".* followed by the
request, For example,

«S/name/extn/room/

1 1

RDMS RPEFERENCE GUIDE ! eds

Index?

Page 27

would allow vyou to resort the relation while in input
or Increment mode.

In Increment mode, typing *."™ returns you to the mode
(INPUT or EDTIT) from which increment was entered.

While in 1input mode, the current line index [s set to
the tast line Iinsertede Upon a normail return to edit
mode (via the mode=-change character), the line Index Is
restored to the value (it had upon entry Into input
mode. The contents of the 1lne specified by this value
for the llne Index may not be the same as when Ilnput
mode was entered due to editor requests Issued while in
input mode. If edlt mode Is reentered by using the
program Interrupt feature of eds the (lne Index will
specify the tast tine of the relation.

232" _reguesi {(status)

formats

Purpose?

1)

2)

? or ?request

Provide Information on the Internal status of eds for
the "7?*" request Iincluding?

Mul tics=SMS name of the relation being edited and the
name of the working copvye.

printing statusy, whether a write has been Issued,
whether a sort Is necessary, 1t datum successor will be
used In the find reaquest (this means that a datum may
be found by specifying only the left-most section? see
(3) in the "t" request below)y and whether sms_abbrev
wit! be used to expand abbreviations.

or
Provide information available concerning the status of

the given reauest, where reguest 1Is one of the
followingt 0 <« > £ 1 T UF kvSag

?0 current order of data-types
?< current data-types protected
?> data=-types unprotected

?f default find column

214 default focate column

RDMS REFERFNCE GUIDE

?1 data=-types ignored and default string
2V data-types used

?k data-types kil ted

v data-types verbose

?F formats for data-types

?S present sort order of editing copy

?9 recursion depth and list ot flles

*_" reguest (difference)

Format?

Purpose?

Spaclng?

Index?

- Celation=pame

Take the set=theoretlc dlfference between the current

working copy and relation-name. crelation-pame may be
the name or reference number of a quart or relation.

A space may appear between the reaquest and the relation
name.

The 1lne Index will be set to the first Illne of the
resulting relation.

*3L" regyest (Intersect)

Formatt

Purpose?

Spacing?

Note?l

Index?t

t relation=-name

Intersection of the working copy and prelation=-namee.
celation-name may be the name or reference number of a
quart or relation.

A space may appear between the reaquest and the refatjion
name.

See the description of Intersectlon for detalls of
operatione

The 1ine Index will be set to the first 1ine of the
resulting retation.

"+ regyest Uincrement and repeat)

Formats

Purpose?

tprequestpn or tp<request><arguments>p

This reauest permlts the lteratlon of any eds request.
Hhile in Incremental mode, the request being performed

(W

RNMS REFERENCE GUYDE ! eds
1

Exampie?

Page 29

Is speclfled by <reauest>, 2and may be any valld eds
request. (Caveat Emptor) The integer pn speciflies the
“increment” of the current (ine |[ndex after each
request. Tt is possible to use this request to moditfy
only every pn=th 1ine In a retation.

The <arguments> are those which would normally appear
nwilith the <request>., It <arguments> 1Is not opresent,
they witt be "read™ from the console for each lteration
of the request, This atllows Increment mode to work
{ike Input mode. Issulng
+11

is eauivalent to typlng

wlth the exception that the editor mode Is announced as
being “INCREMENT"™,

Assume a relation containing “name=-term-salary”
Information. Also assume that each name has one entry
for each of the three terms. Yo modify only the *FIRST
TERM™ satlaries, the following reauests could be Iissued
i=0tt
+30p
INCREMENT
1 Mitlery, Re Jo ! FIRST TERM 1 /salary/Z1800/
1 Brucey, Je Do ! FIRST TERM 1 /salary/zi000/

Notet
If the string “p*™ Is present, the new current line will
be printed each time the 1lne Index Is Incremented,
prior to execution of <request>. To exlt from
increment mode, type the mode-change character ".". 1In
order to execute any other eds request, simply begin
the request with the mode-change character as you would
to execute an eds request from input mode. To skin a
particular {ine of the relation, type an empty line,

=3 reguest (suppress carriage returns)

Format?
$=-on or $-off

Purpose?
Suppress (or Inciude) carriage returns at the end of
each line of the retation.

Defaul t?

O0n entry to eds, carrlage returns are on.

i.

3e

be

Se

6e

1
eds 1 RDMS REFERENCF GUIDE

SOME WARNTINGS AND NOTES ON USING eds

Tnsertlon and replacement of lines may cause the sortling order
to be disturbeds 1If this should become inconvienlent durlng
editing, sort the flte using the *S* reaquest.

eds has a Multics pi (program_Iinterrupt) handler to atlow vyou
to aquit in the middie of a request, terminate the request and
have eds awalt a new request. This s accomplished by hitting
the attn (attentlon) button, waiting for the system to respond
with “QUIT*™, and then typing "pl*”. eds will then return to
“ENTT® mode and awalt the next editing request.

Since the use of the the locate request [s relatively sltow, it
Is advisabte ¢to use the find reaquest wherever possiblie. The
mui tipfe find over more than one data-type Is quite fast and
efficlent, It also saves ¢the user the trouble of typing
several requests to get to a specific tine In the retation.

It Is tess expenslive to use the "D" reauest to make a change
to a2 1lne than ¢to use ¢the *c" reaquest. Therefore, for
“cheaper®” editlng as well as faster response, use the ™"D"
reaquest wherever possible.

Notice that a misspelling whlch has been Inserted wilt
override “protection” mode operatlions within a glven
data-type. Thus, that same misspelling may continue to be
Inserted.

Note that in altl examples and formats, the */™ (slash) has
been used as a break-character. There 1Is no flixed
break=-charactere Any character not appearing within one of
the arguments on the line may be used as a breakecharacter for
that 1{ine. The only restrictions are that the character be a
non=numerlic, printing ascll character and that the character
be ¢the only character used as a8 break=character on that 1ine.
As an example, the lines:?

t/name/Browny Y. Mo/
fenametBronn, Y. M,%
finamelBrown, T. M,

are treated jdenticaltly. Notice however, that a 1ine of the
form?

()

!

RDMS REFERENCE GUIDE ! eds !

7.

9.

Page 31
SOME WARNINGS AND NOTES ON USING eds

f.name.Bfonno Te Meao
will be handlied Incorrectiy.

Also note that reaqguests which require break=characters were
shown wlth terminal break-characters. Unless the string being
examined contains terminal blanks, the final break=-character
is not requiredes An example of this st

t/name/Rrucey, Js Do

where the terminaj) /" has been omittedes The requests
F/rank/ Y /

and
F/rank/ 1

are ngt equivatent.

To 1Include terminating spaces (or tabs) In a request tine, a
final break character must be Inciuded. Since leading and
trailiing blanks In data-type names and datums are not lgnored,
they should be omitted unless speclflically desired,

The “nultl string™ 1Is represented by the appearance of two
break=characters I[mmediately adjacent to one another. The
string /7" Is a null argument. Do not confuse a request that
has null arguments and a reauest that has ng arguments.

If expand mode ls on (see the **" request), any character
string between two break-characters may be an abbreviation.
An attempt wilil be made to expand it. Abbreviatlons should be
chosen with carey, but they can never occur as parts of datums.
The expanslion of a character string between break characters
can be iInhiblted by prefixing It with \c (backslash ¢ or cent
c on IBM2741 type terminals)e. Thus If FT Is an abbreviation
for FIRSY TERM then /FT/ 1is equivalent ¢to /FIRST TERM/S
however, /\cFT/ |Is taken as the character string /F7/,

The reaquests Cy my Py Qy X9 _o 3and &4 which provide access to
the RDMS retlation operations, accept any format acceptable to
the command make_quart In the speclfication of a retation.
Thus If a aquart with the term FIRSYT TERM |s deslired, the
requestt

Q/term=FIRST TERM/
willl create such a quart.

ROMS REFERENCE GUIDE

SOME WARNINGS AND NOTES ON USING eds

DEFAULTS TO eds REQUESTS

Requests with no arguments?

request equivalent
- -1
d d1
a al
o] i
n nt
reaguest default
< protect all
> release all
U use all
S sort using current sort order
P project using current sort order
0 set orinting order to correspond to current
sort order
Kk stop all printlng except for p requeste.
v enable printing of data-types In verbose
mode
g read from previous Input flile or user°®s
console.
Requests without any data-types?!
reguest result
t/string=1/.ce/string=-pn/ use the default search column
{/string-1/ use the default search column
c/string=1/string=2/ change ati occurences of
string=1 to string-2 In
the currrent l(ine.
*/string=1/ecee/string=n/ assume leftmost column

N/string=1/scee/string=n/ for string-1.

ROMS REFERENCE GUIDF 1 eds

Page 33
INITTAL EDITOR STATUS

Upon entry to eds the editor®s status ist

1.
2e

3e
be
Se
6.
Te

Expanslon of abbrevlations Is "on*.

Default locate and find columns are the left-most columns
of the relatlione.

The order of the refatlon is the real sorting order.

A1l data=-types are verbose (i.e.y printed).

Datum successor (see the find reaguest) Is "on".

Al data-types are protected.

Al} data=-types are used.

(END)

[

ROMS REFERENCE GUIDE ! evaluate !
1 {

Command
09724/ 74

Namet evaluate

Ffvaluate is the command level Intertace to the relatlional
operator. It ls Invoked with the names of the input refations to
the relation operator and the name to place on the result. Some
of the arguments (as speclfled below) can be strings (referred to
as speciflers) acceptable to the make_quart (mart) command. The
relatlon operator 1Is Invoked with the reference numbers of the
input refatlons, and evaluate names the resultant relation with
the name specified by the user. relation operator.

Usage

evaluate lnput output map rcop def arg resultant
1) lnput is the name of the Input relation.

2) guytput map Iis the name or specifier of the output map
relatlon. This relation specliflies which of the
input vatues and computed values are to be placed
In the resultant relatjon. It also specifies the
order of the resuitant refation.

3) raop_def s the name of the relation operator definition
relation. This relatlon specifies the computation
to be performed by the retlation operator.

4) arg is the name or specitier of the arg relation. This
refation provides certain constant values to which
a rop definition may refer. The argument relation
must be provided, although [t may be a null
retatlon {(cardinality and arity of zero).

S) resultant is the name to be placed on the resul tant
refatione This relatlon will have a sort order as
specified by the output_map relation, although it
iIs not necessarily a sorted refatlion. The result
witd replace any exlsting relation named

resultant.

! 1
! evaluate 1 RDOMS REFERENCE GUIDE

Page ?

Example

evaluate dir /name/num_names/ count // dir.count

The rop definlition relation "count™ would be used to compute
an algorithm on the input relation “dir” with the output order
consisting of 2 data types, "name”™ and “num_names®, producing the
resultant relation named “dir.count” The output_map and argument
refation arguments are speclfler strings which are converted to
relations by evaluate. In thls example, the argument relatlion Is
nult,

Notes?

It the sort order of the result does not match the sort
order of the input relatlion then the result relation may not be
In sort and the sort command (part of sms_interface) must be
used.

(END)

1 H

RDMS REFERENCE GUIDE ! flle_where 1
! !

Command/Active~-Functlon
09/724/74

Name? flle_where
twh

Using the *¢file_search_rules" currently in effect,
file_where attempts to find the file named. It successfuly the
pathname is returned.

Usaget

file_where namel . « « namel
or
fwh namel « « « namelN

For each name] supplled on the command Illne, fifle_where
attempts to ftind a segment of that name using the current
fite_search_rules. If no segment Is found an error message 1s
printed on the console. Otherwise, if 1) file_where was Invoked
as a command the pathname of the segment 1s oprinted on the
consoles or 2) If flle_where was Invoked as an active functlon,
the pathname is appended to the return stringes (If more than one
pathname 1Is to be put into the return string they are separated
by blanks)e

Examples
1) fwh createdb.ec
Reply? >udd>PDMS>service.ec>createdb.ec
2) foa_ (ftwh createdb.ec)
Result? >udd>RDMS>service.ec>createdb.ec
Notes:?
See documentation of “set_file_search_rules”™ and

“orint_filte_search_rules®.

(END)

! !
RDMS RFFERENCE GUIDE ! get_name_sets !
1 1

Command
09/724/74

‘Names?

get_name_sets
gns
get_refno_sets
grs

This command provides a way to obtain the correspondence
between a reference number and a set-name or vice versa. Glven a
reference number it prints the name of the set, or glven 3
set-name 1t prints 1ts reference number,

Usage?
get_refno_set setil set2 set3 . . o setj
grs 52:1 set? set3 « « o set]
get_n::e_set set]l set2 set3 ¢« ¢ o Set]
or

gns setl set2 set3 . « « set]

Where set]l is elther the reference number or the name of a

set.
Exampie?
grs phone_book acad_asslgn S50 feh
prints outt feh Is not a set
150 phone_book
154 acad_assliogn
50 name
Notet

It set]l is not the reference number or name of a data=-type,
relatlons strategy moduiey, or system table, an error messaqge witd
be printed on the user®s terminal.

(END)

!
ROMS REFERENCE GUIDE ! help !
! !

Command
09724/ 74

Names? help

The ROMS version of the Multics "help*” command assists users
In obtaining Intormatlion about RDMS or Multics. It differs from
the Multics verslon of the command In that [t normally searches
for both ROMS and Multics "help files™.

\Usage?
help namey =-ctli_argl ... name2 =-ctl_arg2

The parameters ®“namel®, °*name2°®, etCeys specify "help titles™
which are to be examined by the user? for example, the commandt

help print_sef iist_data_type eds_changes

would orint portions of those files describing the “‘print_set®
and “ilst_data_type® commands, as well as the file documenting
recent changes to the refational editor "eds”.

The "=cti_argl” (control arguments) are taken from the 1ist
below. None, one or more “=cti_argl’™ can appear anywhere on the
tines The exact effect depends on the contro! argument.

-mul tics

mul
Normally the RNMS help command searches the
directory contalning RDMS help flles beftore
searching the directories contalning Multlcs
help filese. If a Multics help file has the
same name as an RDOMS help file (for example,
each dlrectory contalns an “motd.info™ with a
message of the day), it may be desirable to
alter the order of the search so that the
desired help flle 1s founds If "-multics™ or
“emul® appears on the command line, for all
name] followina this control argument the
multics directories are seached before the
RDMS directorye.

! ! :
{ help 1 RDMS REFERFNCE GUIDE

Page 2

rdms
If ¢thls control argument appears on the
command (ine, for all name] following, the
RDOMS help directory is searched before the
Multics help directorles. For example,

“help motd -mul motd -rdms news"

will cause 1) the RDMS “motd.info* heln fille
to be located and portlons printed on the
console, then 2) the Multics *"motdesinfo™ file
to be located and printed, and finally 3) the
RDMS *™news.info™ flle to be 1located and
printed (presumably there is also a Multics
help file of the same name).

-pathname path

-pn path
Rather than searching the various directories
for the help file, use the segment speclflied
by pathe (path may be elther an absolute
pathname (">Udd>MITHFS>info_segs>x™ meaning
xeinto in the NITHFS project®s he lp
directory) or a relative pathname ("x"
meaning x.Iinfo In the working directory). As
with all name]l, if the name does not end Iin
“.,Info”y, the suffix is appended.)

Notes?

For each namel the help command attempts to focate a helo
fite namel.info, possibly searching varlous dlrectories as
descrlibed 3abovee. If the help flle Is not located a message "“No
help flte namejeinfo™ 1s printed on the console. Otherwise, help
prints the contents of the file from the beginning to Just before
the flrst "contro!l character®™ or to the end of the file It there
is no control! character. (The control character is a non-printing
character with octal value 006. This character Is not printed on
the console.) TIf help has reached the end of the flle, It prints
a llne consisting of *“(END)™ and is tinished with the current
namel. Otherwise help counts the number of 1(lnes from the
current control character to the next control character or the

ROMS REFERENCE GUIDE { help !

end of the file, and asks?

XX Yines follow,
more help?

The user Is reaquired to answer ™yes™ or ™"no" (iIf any ofther
response ls made, help complains and telils the user "Please
answer °*yes® or °*no®**). If the answer Is yes the next group of
tines 1Is oprinted, otherwise help moves on to the next namej (if
any).

The control character may be placed in a file by typlng
*“packstash 006" (that 1Is, a *"backslash®™ character Immedlately
followed by the three dlglts 006, without Intervening spaces) on
an ascil terminale Or 1f the terminal is non=-ascil (1f there is
no *backstash®™ character the terminal 1Is non-ascll) a different
chacracter must be used for the backslash: for examplie, on a
selectric console such as a 27441, "cent-sign 006" may be used.

The verslon of the “check_info_segs®™ commands avallible to
ROMS wusers can be wuseful in discovering which RDOMS or Multics
. Info”™ segments have been modifled recentiy. Thus a user may
become aware that new Info flles are avalilable or old ones have
been changed i f he types ™cis"™ at regular Intervals (perhaps
every day). See documentation of “check_Info_segs®"™ for more
information on using that command.

(END)

RDOMS REFERENCE GUIDE ! hmd !
! i

Command
09724/ 74

Names$
hmed

This command counts the number of users who have Initlated data
bases. The number is printed on the console,

Usage?
hmd ~user=-{lst- -cti-args-
wheret

~uyser-llst- I1s a l1ilst of users that wilt be counted 1t they
are flogged In and have initiated a data base. If
no -user-{lst= Is specifliedy all wusers wnho have
initlated data bases will be counted. The
-user=ljist- consists of terms such as
“McGary.RPDOMS” (count McGary 1If he Is logged In
under the project RDMS and has a data base set),
“McGary” (count McGary logged in under any project
i1t he has a data base set) or ".RDMS*™ (count any
user of the RDMS prolect who has a data base set).

-cti-args- is selected from the following tist?

-abs which means that only absentee users wiltl be
fisteds The default s to llst all users.

p <path> means that Instead of checking the standard
RDOMS *"whotable™ to determine which users are
loaged in, the segment speclifled by <path>

wit! be used as the “whotable™. This Is
primarily a debugging ald.

Examplest
1) Yt the user types?
hmd
then the followlng might be printed In response?t

2 data bases are Initiated.

1
! hmd PDMS REFERFNCF GUIDE

If no data bases are set, the message is?

No data bases are Initiated.

2) The command (lnet
hmd Caloggero «RDMS
might respond witht
2 data bases are Initiated.

it Caloggero.fFAdmin and Goldman.RDMS were 1ogged in and had
Initlated data bases, while McGary.ROMS was also 1logged In
but did not have a data base set.

I) Filnally,
hmd «ROMS FEAdmin -2

would count the number of users on elther prolect togged In
“absentee™ with data-bases initated.

Notet

See also the commands "hmp*, "whop* and "whod”.

{END)

ROMS REFERENCE GUIDE

!
! hmp ¢
1 1

Command
09/724/74
Names:? hmp
This command counts the number of people using the
Relational Data MWManagement System and prints the number on the
consolee.
Usagest

hmp =-user-lilst-

=yser=-list-

1s a 1lst of terms containing
A term such as "McGary.RDMS"™
be counted It he is logged In
whlle a term such as
under

in

=cti-args-

user names and projectse.
causes the user McGary to
under the RDMS project,
means count McGary (ogged

term “.ROMS”™ would mean

“McGary”™

any projlect. The

count all users logged In under the RDOMS project.

-cti=-args-

1s optlonal.

-d

-p <path>

It it occurs It Is one or more of?

Count only absentee users.

Count only uses who have data bases set.

Use the
counting.

“whotable™

By default,
An entry Is automatically
whenever a data base Is set. Additionally, some
users are added to the table when they tog 1In.
This argqument Is primarily a debugglng aldy, so the
normal user wilt have no occasion to make use of
ite

speci fied by <path> when
the RDOMS whotable 1ls used.
added to this table

RDMS PEFERENCE GUIDE

Examplest
hmp

might cause the following to be printed on the console?

{3 users)

Notess?

See the related commands, whop, whod and hmd.

(END)

1 {

RNMS REFERENCE GUIDE t Insert_module !
] 1

Command
09724/ 74

Names? Insert_module
Inm
del ete_module
dim
rename_module
rnm
rename_module_force
rom ¢

These commands enable a user to Insert, delete, or rename
modules iIn ¢thelr data base, RDOMS system modules, data strategy
modules or refational strategy modules may be Inserted, deleted,
or renamed. The first four letters of the module name are used
to determine the ¢type of module being manipulated. These
commands only recognise modules whose names begln wlitht

SMS _ for SMS system mod{uese.
dasm_ for data strategy modules.
rsm_ for relatlonal strategy modules.

Entrys insert_module, inm

Usagesl
Insert_module madule-name

Inm module-nane

The name of the module, mnodule=-names 1Is entered Into
SMS_segments and assigned a reference number (refnol. If the
module 1Is a dsm, 1t can then be speclfled when creating a new
data type. Or if the module is an rsmy, it will be npossible to
create relations wlth the new relatlonal strategy, or convert
aquarts to the new strategy. However, no attempt |[s made to
locate a proagram named poduyle=namee.

or

Tt mrodule-name is already used in SMS_segments,
insert_modute wil] print an error message.

Entry? delete_module, dim

Usage?l

1 !
{1 Insert_module ! ROMS PEFERENCE GUIDE

1 !

Page ?

delete_module modufe-npame

dim moduie-nape

The Information In SMS_segments assoclated with module-name
will be deleted, (If there was no entry for module-names the
error is reported and nothing Is modlifled.) The program named
module-nase, however, Is pot deletede The program simply cannot
be used from the currently set data base. Once a module has been
removed from all data bases In which the program was known, the
program may be deleted in a separate operation.

or

This entry can delete a strategy module from a data base
even though a relation or data type wanaged by the module remains
in the data base., Tt Is the user®s responsiblility to convert the
set to a new strategy before deleting the module (unless the data
in the set Is being discarded).

Modules are most often deleted when a newer version of the

proagram |s developed? for example, at one time dsm_v2_astring
updated dsm_astring, so dsm_astring was deleted from several data
bases after 2all data types had been conver ted. (See
restructure_data_type for conversion between dasms, or

sms_Intertace for conversion from quart to relation of a speclfic
strategy and back.)

Entrys rename_module, rn»s
Usage}

rename_moduie gld-pame pnes-name
or

rom old-pname pen=-nase

In SMS_segments, gid=-name wliil be replaced by pngn-name.
This will have the effect of renaming the module everywhere it lIs
used in the data base. If pnew-name already appears In

SMS_segments, the name wli! not be changed and an error messge Is
printed.

Entrys rename_module_force, rnmf

Usaget

rename_module ojd-name new=pame
or

PDMS RFFERENCE GUIDE ! Insert_module !
i !

Page 3

rnm pld=pame ney=nanme

This entry works exactly like rename_module, except |if
pew-nape already exlists in the data base [t is first deleted so
the name can be successfully changed.

Notet

When any of these commands executes successfulliy, the name
and reference number of the module affected is printed on the
console. {(For rename set, thls lIs gid=-name since that was the
name manipulated. If the gld-name was not already present in the
data base an error was reported Instead.)

{END)

P

! 1
RDOMS REFERENCE GUIDE ! list_data_tyoe 1
! !

Command
09724/ 74

Names? {ist_data_type, 1dt

This command allows a user to print part or all of the
contents of a data type.

Usagel
list_data_type data_type =cti-args-

where the arguments to (ist_data_type ares

data _type
is the name or reference number of the data type to be
{ilsted.

«cti-argse-
is optional. If 1t appearsy, it Incltudes one or more
of the "control arguments®™ below?

-from data element

The datums wlill be listed starting at the first
datum equal to data element, or 1f data element
is not iIn the data type, the list will begin at
the datum that loglically follows It (i. e., the
first datum lexicographically after data element).
Yt no starting element s specified, the data tyoe
will be 1isted starting with the first datum.

-to data-element
The data type will be tisted uo to and Including
the datum speciflied, or if that datum s not in
the data typey, up to and Including the datum that
would follow iIte If this control argument [Is not
suppliled, the data type will be listed through the
fast element.

! !
! Uist_data_type ! RDOMS REFFRENCE GUIDE

! !

Page 2

-octal
In addition to character strings representing data
efements, the corresponding reference numbers will
be printed In octal.

~decimal
The refnos wil!l be printed in decimal form. This
is the default mode for reference numbers.

-norefnos

No reference numbers wlil be printed. Oniy
character strings wllt appesr. If this control
argument does not appear, the reference numbers
are orinted.

-dfm dia-name
The format In which the data elements are printed

nlil be that ot the data format module speclfled.
See the overview of “dfms® and documentation of
each dfm. B8y default, no dfm is used so the data
elements are disolayed iIn the *standard output
form™ of the managing data strategy module- (For
exampley while dsm_date accepts various I[nput
forms sSuch as *02/27/74%, "27teb74" or “February
279 1974, the output form for alt of these Is
"February 27, 1974%. Thus a wuser wanting a
briefer form of the date on output might wuse
dfm_mmyy_ to get "2/74".)

Examplet
tdt acct_num =from 79540

The data eflements of acct_num will be listed starting at
79540, Since acct_num [s a virtual data type managed by
dsm_integer, account numbers will be printed up to the largest
possiblie numbers, which would be an excessively t{tong I(list, The
person typing such a command probably intends to “quit®” after
seelng only part of the 1ist,

fdt name =-from M

The name data type wlill obe \(listed starting at names
beginning with M and ending with the 1ast name In the data tyoe.

It the reference number of the name data type were 75, then

! !

RDMS REFFRENCE GUIDE ! 1ist_data_type !
! i

Page 3

1dt 75 =from M

would be equlivalent to the previous command {ine.

idt name =from J =to K -dfm abbrev_name

would (lst names starting with J as well as the tirst name
starting with X, The names wil! be abbreviated (l. e.y last name
and one or two Inltials). This might be useful if a user needed
to know how to spell someone®s last name knowing It began with a
Je In this case, the printing can be speeded up by omltting the
full form of first and middle names. For a falirly small “name®
data type, the resulting list might be?

James, Ae X,
Jones, D.
Ju’a" Te Lo
Keasaly De Re

Note that the last name was the first of the “K°s™.

Notesst

Tf -dfm 1ls used, the dfm will be located according to the
conventions for naming and locating data format modules. Thus,
specifying either dfm_abbrev_name or abbrev_name as the data
format module following the -dfm keyword Is equivalent.

(END)

1 !
PDOMS PFFERENCE GUTDE 1 list_sets !
1 !

Command
09724/ 74

Names? list_sets, Iss

The names and reference numbers ot a set (relation or data
type) or sets speclfled Is printed on the console.

Usage?

list_sets set1 set2 « ¢« « setN =-cti-args-
or
Iss set]l set2 « ¢« ¢+ SetN =cti-args-

1) set] specifies the set to be 1listed, either by reference
number or by name.

2) <=ctli-args-
is optlonal. It It appears 1t iIs one or more sets of

"“control arguments™ taken from the followlng llst?

-relations
-rel Retatlons wlll be listed.

-system System sets and modules wlil be llisted.

-dsms Nata strategy modules will be (isted.

ersms Relatlional strategy modules witl be 1lsted.
-data-types

-dts

Nata types will be listed.
=quarts Quarts will be tisted

-3all AVt sets {(relations, data types and quarts),
strateqgy modules {rsms and dsms) and system
objects wlll be {isted.

-interval start epd
Oblects with reference numbers In the range
specified wlill be listed.

! !
! tist_sets 1 ROMS PEFERENCE GUIDE

! !

Page 2

Example?
1ss =rel =dts

wilt 11st relations and data types currently present In the data
basee.

Iss olde® -rel =dts

would Ilst all data types and relations wlith two component names
mhose first component was “old*"”y, then all relations would be
filsted, then al] data types would be Illsted. (The control
arguments “erel”™ and "-dts™ do not restrict the range of the star

name “old.*".)

Notesst

The star conventlon may be used In the arguments set] set? .
e o sSetN. See the Multics Programmers® Manual (MPM) for a
discusslion of the star convention.

See also the commands sms_star and status_set for obtalning
other ([nformation concering the date-types and relations in a
data base.

(END)

/’\

t T
RDMS REFERENCE GUIDF { memory !
1 !

Command/Active=-Funclion
09/724/74

Names? memory, mem

This program can be used as a command *to set the value
associated with a name, delete thls assoclation or ltlst the value
assoclated nith a particular name, or 1list all current
assoclationse When used as an actlve function, memory returns
the value of a namey, or If the name Is not assoclated with any
vatue, a speclal value Indicating no association is returned.

Usage?

T Use as a Command

memory gontorl argument

The control arguments meaningful for use In command mode
are?

1) -set pame value
Set the value of pame to be yalue. If pame
Is already assoclated with some value, the
old assoclation is deleted and the new
established.

2) -1list pname
-1s nane
-list
-{s
List the value of pages or 1If no pame
appeared, 1lIst all name-value assoclatlons.

3) =delete panme
-d! paame
Delete the assoclation between pame and its
current value.

4) e-pathname path

-pn path
Normally, memory stores the assoclations
between names and values In a segment
>udd>Prolect>User>User.memory_sege. If the

user wishes to use a different memory seg,
the =-pathrame control argument can be used.
When memory Is 1nvoked the first time |t
creates >udd>Project>User>User.memory_seg and

1 H
t memory !
1 L

Page 2

RDMS REFERENCE GUIDE

tikewise when Instructed to use a different
memory seg, It wlll create the other segment
it 1t does not already exist. (Memory
notifies ¢the user whenever |t creates a
segment, or 1f unable to create a segment
when It Is necessarye.)

S) -push pame yalue

6) =-pop name

This contro! argument functions exactly Ilke
-set, except that 1f pame has already been
assoclated with a value the old assoclaton Is
saved, and can be retrieved using =pop In
elther command or actlive function mode.

One value currently assoclated with pame Is
deleted and if previous assoclations were
*sushed” another is restored; otherwise pame
ls undefined and {if the value of name Is
desired the invalid Indlicator (see below) s
used, Currently “popping"™ does not restore
values In First=In-Last-0Out order. It 1s
ptanned to implement this at some point, The
control argument *=pop™ can stil be useful
for obtaining all values associated with a
name, although In an unspeciftled order.

If. Use as an Actlve-=Function.

{memory pame lnvalld indicator af _control _args)

lovalid_indicator

at _control_acg

The name whose assoclated value s to be
returnede.

(Optlonal.) It pnape does not have an
assoclated value then memory returns the
value of inyalid ingdicatore. It
lpyalid indicator 1Is omitted then the string
*undefined?!™ |s returned.

(Optional.) TIf this contro! argument appears
1t may be gne onily of the following?

=-pop
-delete
-dl

ROMS REFERENCE GUIDE ! memory !
!

Page 3

After the value lIs looked up, one value
assocliated with the pame 1Is deleted.
See “-pop"™ as descrlbed above as 2a
command control argument.

=increment

=Inc
It the value associated with naase is
integral, after 1lookup 1t wliit be
incremented by onee.

-decrement

~dec

If the vaue associated with pams is
integral It witll be decremented by one
after lookupe.

Exampiet

Assuming that the folliowing call to memory Is the first
Invocation, the responses below can be expected. Initially there
are no assoclatlons between names and values.

To set the value assoclated with a name?

memory =set x vy

Since thls Is the first call to memory a memory segment Is
created?

memoryt creating >udd>Project>User>User.memory_seg
The value “y" Is now assoclated with the name “x™.
memory =1is
The response wlil be!?
X Yy

At this polint oniy the one name-value assoclatlon exists In the
memory segment,

] 1
1 memory 1
] 1

ROMS REFERENCE GUIDE

Page &4

To 1ist a particular name®s current valuels)?
memory =-llst x

The response iIs agaln the same since only "x* has been glven a
value,

At this point only the name “x"™ is defined. Thust
memory =Jist 2

produces the repsonse?

z undeflined!

The followlng 1Is an example of the active functlion use,
(loa_ Is a command which prints its argument, The bracketed part
of the command Is expanded Into the active tfunctlon®s return
value betore loa_ Is caflled.)

ioa_ (memory xl

The response is to print the current value of the name *x™t
Y
Active Function use with undefined name!
loa_ (memory 21
=2* is undefined so the value printed is?
undeflned!?
Active Function with user supplied invalid indicator?
fjoa_ (memory 2z test])

Here the user supplied “test™ ¢to be used as the invalid
Indicatorst

test

! 1
RDMS RFFERENCE GUTIDF { memory 1
1 !

Page S

Active Function with "=pop™t
loa_ {memory x =pop])

Get the value assoclated with *x*, but delete It after retrelving
it

Yy
Since the -pop causes one value assoclated with the name *“x*
to be deleted and only one association existed, "x* {Is now
undeflned?
memory ={s x

produces the response?

x unde flned!

Notet
The use of active functlons 1Is described In the Multics

Programmers® Manuals, Part II, Reference Gulde to Multlics, Section
1.42 *“The Command Language®.

{END)

! !
RDMS REFERENCE GUIDE ! nen_data_type !
1 !

Command
09724/ 74

Names? new_data_type, ndt

The new_data_type command atlows a wuser to create a new
data-tyoe with a speciflied data strategy module. (A data type
must be created before It can be used. When creating a new
relatlion, it 1s often necessary to create any new data types that
wllil! be used 1In the refation. The retational edltor "eds* can
also be used to create a2 new data type.)

Usage?
new_data_type data-type dsm-name -ctl_arg-
ndt data-tvype dspr-name -ctli_arg-

or

where the arguments to the rdt command ares
data=-tvpe speclifles the name of the data-type.

dsm=name Is the name o0f the data strategy module which
nwill manage the data-=type.

-cti_arg- Is an optional argument which I f present must
be "-brief” or “-bf", If this argument Is
specified ¢then the message Indicating the
reference number assigned to ¢the new data
type ls suppressed.

! !
! new_data_type ! RDMS PEFERENCE GUIDE

Page 2
Notes:®
Currentiy avalitable data strategy modules are?

dsm_Integer {virtual)
dsm_tabtle
dsm_v2_astring
dsm_room (virtual)
dsm_acct (virtual)
dsm_sublect (virtual)
dsm_declimal {virtual)

dsm_ciph_integer

Virtual data strategy modules encode the character string
datum directly Into a 36 bit word and do not require additlional
storage for the character string datums. Non=virtual dsm®s
generate a reference number whose value is used to 1locate the
character strings stored In a data type segment In the user’s
data base directorye.

Certaln data strategy modules (especlally dsm®°s which are
non=virtual dsm*s) ask the user for additional Information when a
new data type |[s created. The questions may request the
folionlng Informatlon?

1Y the maximum length allowed for a datum In the new data
type {(dsm_table, dsm_v2astring)

2) the maximum number of datums the data type may contaln
(dsm_table)

3) the pathnmame of the roftor archive for clphering
purposes (dsm_ciph_integer) (See the documentation for

dsm_clph_Integer.)

W) the pame to be used for the ciphering machine created
when cliphering data for this data type or used when the
message?

namet password

asking for the user®s password is typed on his console
(dsm_cliph_Iinteger) (See documentation for
dsm_clph_Integer.)

ROMS

REFERENCE GUIDF ! new_data_type !

1 !

Page 3

Examplet
1) The command line?

ndt grade dsm_jinteger
creates a data type named ®“grade®" managed by data
strategy module °*dsm_Integer®, new_data_type wild
inform the user that the data type has been created by
tyningt

New Data Type grade wlth refno 120 and strategy
module dsm_Integer,

Since 2all data strategy module names begin with
*dsm_° new_data_type does not reaquire the user to type
this prefixe The above command could have been typed?

ndt grade Integer

with the same results,

2) The command {ine?

ndt student_name v2_astring

would create a non=virtual data type named
student_name® and managed by dsm_v2_astring. Since
dsm_v2_astring requires additional information

regarding this new data type, the user |s asked the
following questions?t (user Input Is underllined)

dsm_v2_astringt What is the maximum string length?
89

New Data Type student_name wlth refno 121 and
strategy module dsm_v2_astring.

dsm_v2_astring (and any dsm (imposing a maximum
string tength) will not accept a datum whose length Is
fonger than the maximum string lengthe Thus the user
is assuming that student names are never longer than 8
characterse The maximum string tength Is also important
relative to data format modules. Since data format
modules normally overwrite the character strings
returned by a data strategy module by the get datum
primitive, the maximum string fength associated with a

1

1

! new_data_type ! RDMS REFERENCE GUIDE

1

Page &

data type must be large enough to contaln the 1longest
character string a data format module used to reformat
datums of the data type might produce.

The non=virtual data strategy module “dsm_table®
also asks for a maximum string tength. In addition, It
reaulires the maximum number of data elements the data
type 1s to be allowed to contain. An attemot to insert
a datum Into a table data type which is full wlill fajl.

{END)

RDMS REFERENCE GUIDE

Name? print_data_base, pddb

{ print_data_base 1

Command
09/24/74

Thls command provldes the absoliute pathname of the currently

Inltlated data<base.

Usage?

print_data_base
or

pdb

(END)

(W

! !
RDMS REFERENCE GUIDE ! orint_file
1 1

Command
09/724/74

Name? orint_file, prt
The print_file command ls used to orint an ascil flle a

specifled number of times. It 1ls useful when a number of coples
of a file (such as a 1ist of {abels or addresses) Is needed.

Usaget

print_file filie-name =-coples-
flle-name 1S the pathname of ¢the file to be printed. 1¥
fite=name |Is not a pathname (l.e.y It IS 3 entrynanme)
then the flle search rules will be useds Otherwise the
directory speclfied by the pathname (it may be relative

or absolute) ls searched.
-coples= 1s the number of coplies of flle-name to be printeds It

this argument Is omitted then 1 copy of flle=-name Is
printed.

Example?

print_file labels.memo 5

prf notlces.iInfo

Note?

Print_file writes on the stream “user_output® so Its output
can be directed to a fite using the flle_output command.

(END)

(\

RDMS RFFERENCE GUIDE ! print_ftlle_search_rules 1!
3 H

Command
09/24/74

Names$ print_tlle_search_rufes, pfst

The print_flie_search_rules command causes the orinting of
the currently operating ftile search rules In the user output
stream.

Usagal

print_flle_search_rules

Examplet

print_¢f1le_search_rules
or
ptsr

Notes?

See also set_flle_search_rulese.

(END)

QO

! 1
RDMS REFERENCE GUIDE ! print_set 1
{ !

Command
09/724L/74

Names? print_set, prs

This command permits the user to print on his console the
contents of a relatlon. Al1 or part of a relation may be printed
with some control over format. The 1ength (number of rows),
order (number of data-types in relation), ent (list of data-type
names In the sort order of the relation), and the type of
strategy module for the relation are also printed.

Usage?

print_set relation argl arg2e. « « 3argp
or

prs relation argt arg2. « . argn

where rejatign is the name or reference number for a relation and
the arg]l are one of the following?

-brk stelng
-break sirlng W¥When the retatlon is printed, each tuple (or row)
of the relatlon 1s orinted as a 11lne on the
console with each datum separated from the next
datum by a string, called a break string. By
default this break string Is * 1 *, but the -break
{=brk) argument can be used to change the value of
the break stringe The string argument foliowing
- the =break (or =brk) arqgument is used for the
break string Instead of the default value.

=from puaber Normally the printing of the contents of the
relation starts with the flrst tuple. This
argument can be used to start the oprinting on a
different tuple. Printing begins with the tuple
indicated by pumber. However, if pumber 1Is less
than or eaqual to zero, printing starts with the
first tuole.

-to pumber Normally printing continues to the last tupnle of
the relation. This can be changed by use of the
=to argument. Printing contlnues up to and

including the row indicated by pumber. If pnumber
Is tess than zero or greater than the numbar of
tuples In the relatlon,s printing continues uo to

1 1
{ print_set ! RDMS PREFERENCF GUIDE

Page 2

and Including the last tuple of the reflatlon.

-rows pumber This argument allows a user to specify the number
of tuoles (or rows) he wants printed. TIf puaber
is tess than zero then all tuples after the
starting tuple will be printeds If equal to zero
then no tuples will be printeds (This Is wuseful
1t onily the sort order or size of the reflation Is
deslired.)

=octal This argument causes the reference numbers and not
the strings they refer to to be oprinted. The
reference numbers are printed In octale.

-decimal This argument ls similar to the =octal argument,
except that ¢the reference numbers are printed In
decimal. This argument takes precedence over the
-octal argument.

=characters This Is the defaul? printed mode for print_set.
That 1s, the output Is the strings or characters
represented by the reference numbers stored In the
relation. This argument takes precedence over the
-octal or -decimal arguments.

ebrief This argumsent specifties that the header
Information (strategy module, length, order, and
ent) should not be printed. The default 1s to
print the header information.

Notest

The (Jast occurrance of an argument takes precedence over
previous occurrances of the same argument. The arguments may
apear in any order after the refiatiopn argument. The star
conventlon may not be usede.

(END)

ROMS REFERENCE GUIDE

Names:?

quick_report enables the user to print a single relation

aquick_report,

ar

the standard report format.

The program

text edltor such as

compatible with the Multics “runoff® program.
a header for each column, wlth each column allgned on

witl have

uses a
*sorteorder=-tfiltle” and the

relation

and
“nrint-order-file",

] H
! qulck_report 1|
1 1

Command
09724/ 74

in
two segments, the
prepared by any

edm or aedx, and produces a file which is

the nage as speclfied by the user.

The output segment

Usage of the sort-order-flie and fhé'prlnt-order-fllet

sort-grder-filet
Information necessary
printing.

This
to

provides

data-typel
data-type2

data-typep

aulick_repor? with

sort the retfation as specified before
The format ot the segment must be?

A copy of the relatlion wiil be created and sorted In the order

data-typei/data=type2/.eeeos/data=-typen

print-order-tile?
additlional

<dim>» data=-typeil <dim>
<dim> data-type2 <dim>

<dim> data-typepn <dim>

where <dim> is a

information

delimiter

This provides

auick_report with

needed to produce the final output form.
The format of the segment |s

column numberi <dim>
column number2 <dim>

column numberp <dim>

consisting

character, not otherwise used In the line.

tines It the

dfmi

is not glven

print-order-file, no delimiter shoutld typed

that rone.

headeri <dim>
header2 <dim>

dtmy
dfm2

headerp <dim> dfmp

of a single ASCII
It may differ on each

tor a row of the
after the header In

!

t aulick_report 1 RDMS REFERENCE GUIDE

1

L

Page ?

The output segment wil{ then be arranged

with each

Usage?

where the

-rei_name
-re! pame

-sof pname
=S paas

-pof pame
-po name

datu

aulc

headeri header?2 eese headerp
datumii datumi?2 sce datumip
datum2i datum?2? see datum2pn
datumsni datump? PRPE datumpnn
m atigned on the glven column.

k_report -optl -opt2 =opt3 ... -oODtn

-opt] are selected from the following 1ist?

pame

where pape is the name of the relatlion from which
the report is to be produced.

where pame is the segment name of the
sort-order-flile. The segment must have the sufflix
w.sof* as part of [ts name, though the sufflx does
not have to be included when typed on the command
tine. Flther "name.sof™ or “name®™ wlil work
correctiye. It no sorteorder=tlle Is found, the
data-types listed In ¢the ¢ftirst column of the
print-order-fife wil! act as the sort-order-file.

where nane is the segment-name of the
print-order-file. The segment aust have the
suffix ".pof™ as part of its name, although the
suffix does not have to be Included when typed In
the command line. Either “name.pof*” or “name"
wiltl work correctlye. In the pof, the dfmj
specliflcatlon 1s optlonal, but ail the other

RDMS REFERENCE GUTIDE ! quick_report !

-fite name
-f pame

1 !

Page 3

information ([s required. Quick_report uses the

standard naming conventlons for
data=-format-modulese. Tf this optlon is omitted,
the report-pase (refer to =-name) Is used as the
name of the print_order_flle. It no
print_order_flle can be found, the wuser wnlll be
asked to supoly a8 new name for the

print_order_file.

The output from aulck_report wliil be placed In the
fitle called pame. Y no segment name Is glven, 23
default name of “report-name.runoff” Is used. If
the option 1is not sSpecifled, output wlift bde
printed at the user®s console.

-report_header stcing

-rep sicing

-bks
-b

-noprologue
-no

-page

where stripg is a seauence of ASCII characters,
128 or less In length, and enclosed in quotes iIf a
space ls used wlthin the string. The header will
be placed In the upper left hand corner of each
page, along with the name of the retation. If no
report_header 1Is glven the default Is *QUICK
REPORT", :

Tt there are backspaces and overstruck characters
in the relation, the *=bks™ option must bde
speclfled} otherwlsey, aulck_report will not allgn
the datums on their specified columnse Since
checking for thelr presence In a refatlion Is very
time consumingy, use of this optlon makes the
program much less efficient. The default is ngt to
check for backspacese.

aulck_report uses prologue to produce a tltle page
for the report, number the pages, and add ftooters,
If the user does not want these features added to
the outputs, thlis option suppresses the call to
prologue.

! aquick_report 1 RDMS REFERENCE GUIDE

1

]

Page &

-name namne
-ha naae

-rt

-include pape
-1 pame

When the Information In the leftmost column on the
page changes, a page will be ejlected In the outout
file before continuing. For instance, 1Y a
listing of faculty by rank 11s deslired, the
data-type rank should be speclfled on the ftirst
flne In the print-order-file. Then, with the =-page
optlony, each different rank wlil! begin a new page.
The default 1s not to begin 2 new page.

aulck_report ordinarily calis profogue with the
ceport=-nase “aulck_report”, which produces the
titte page and sets up conditions for runoff, With
the use of this optlon, the user can substitute a
different repaort-names that is name. For example,
to produce 3 report with the title page of a
*"master™ report, type "ename master™. The name
must be tlsted In the relatlon “sms_prologue®™ for
prologue %o work correctiye The report-name Is
also used as the defaul t name for the
sort=order=-flle, print-order-flle, relation=-name
and runoff flle name.

It the system crashes during a aulck_report, or
the oprogram was somehow interrupted, a relation
“quickle.retl* can appear In the data base. The
relatlon contalns the same information as in the
Iinout refatlon, but sorted the way the
sort-order=-file (or print-order-file It the
default Is used) specifieds Using this relation,
the next ¢time a report |Is desired saves the
expense of another sort performed by aqulck_report.
Jo restart, type

ouick_report =rel quickie.re! =-rt (other options)

where pame 1Is a runoff segment. Using the “.1f"
command, quick_report wlill! iInsert the commands
tisted In the segment In the output segment, after
the header 11lnes contalning the name of the
relation, the report headingy the blank line, and
the column header. This glves the user additional
control over the format of his output. For
example, 1f the segment contained the commands

RDMS REFERENCE GUIDE ! quick_report 1

1 !

Page S

ems 2
o br
«he 3 °*PAGE 7%°*°°

the output will be doubte-spaced, and header
number 3 will print the page number Instead of the
report-header.

-line_length pumber
=1l number

When the “-noprologue” optlon iIs used, the four
headlngs created by auick_report and iInserted In
the output segment use the runoff default
filne-length of 65. This may, for some purposes, be
Inconvenlient, especlally when the “«include"
option is used and the l|ine-fength Is changed. 1If
this optlion 1s Included, it appears as the flirst
{lne In the runoff segment. All the headers will
conform with the rest of the output. Both the
“wiline-1ength”™ and the "~include®” are Intended for
use with the “-noproftogue™ option, since they
replace most of prologue®s function and glve the
user much more control over the format of his
output,.

Notest

1.

2«

3.

It the retatlion or print-order-file can not be found, qulck
report will ask

"What is the retation?"

and/or
“What is the print-order-file name?"

and walit for Input.

qulck_report {ooks explicitly for ™aulcklel.rel™, The *=rt"
option cannot be used with any other relatlion as Input.

Al data-types {lsted In the print-order-file must appear In
the sorteorder=-fitle, though the sort may be redundant.

Examplet

1 L
1 auick_report 1 RDMS REFERENCE GUIDE

1 !

Page 6

(A!! responses by Multlcs are under!ined)
1. Create sort-order-flile (iIf necessary)

edm phone_booke.sof
Segaent nat founds
Inputs

name
room
extn
L]

Edits

]
Q

2« Create print-order-flle (required)

edm ohone_booke.po?

Segment not founds

Inputas
/name/10/NANME
/extn/30/EXIN/extns
/room/S50/RQ0M

°
L]
o]

3. Execute aulck_report to create runoff file

aulck_report -name phone_book =-file =-report_header "EXAMPLE QUICK REPO

prologuel this report ls MEMORANDUM 9999-6666
prologuet this report is to be dated August 8, 1973

profoguet this report Is (e.9.s PRELIMINARY, REVISED,
FINAL) AN EXAMPLE

prologuyes this report Is for the (perliod) Summer 1973
prologuet tvpe messages end with an _additiopal line
contalpnlpa oniy a °.°

- -
FOR DEPARTMENTAL USF ONLY

auicklel Flpnisheds

4. runoftt the flle Into a runout tlle,

ROMS REFERENCE GUIDE ! quick_report 1|
1 !

Page 7

runoff quickie.runoff =sm ~-in 0

S. Print the runout flle. Normally this would be done using the
Multics dprint command. For the sake of this example,
phone_book.runout Is shown on the foilowing pages.

1 1
! aquick_report 1
1 1

ROMS REFERENCE GUIDE

Page 8

MEMORANDUM 9999-6666
August 8, 1973

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DFPARTMENT OF ENGINFERING
AN EXAMPLE PHONE BOOK

Summer 1973
FOR DFPARTMENTAL USE ONLY

BUVRBSEBERS I SRS R LSS S L PSR L LSS E PR SRS ER SRR ERERB SRR ERRR PSR RERERER

Me To T. Relational Data Management System August 8, 1973

RDOMS REFERENCE GUIDE

EXAMPLE QUICK REPORT
phone_book

NAME

Baggins, Fe
Canninge He Fe
Gllber?, Re Ge
G.OCKQ Re Jo
Gotdman, J. Ge
Lambert, P. V.
Masony A. H.
McGarys Te Xeo
Scattony Se M.
Sheckler, D. L.
Shecklery De Lo
Sudbury, RPe W,

Me Teo To Retational Data Management System

EXTIN

X=-3631
X=3637
X=-3633

X=3636
X-588g

]
! auick_report
?

Page

Lin==317

Lin==-303

Lin=-306
NE108-202A

August 8, 1973

(END)

(W

| !

RDMS REFERENCE GUIDE ! rename_set !
1 !

Command
09/24/74

Names:?
rename_set
rns
rename_set_force
rns?

The °*rename_set® command is used to change the name of 2a
relation or data=type In the user®s current data-base.

Usage?

The command may be invoked by typlingt

rename_set gjdname newname

or

rns oidname nemnname

The effect of elther form results In changing the name of
the relation or data-type ldentifled by gldname to pewname.

Note?

It pennape 1s the name of a relation or data-type already In
ex]lstence In the data-base, the command wiilt orint an error
message. (The newname wlill! not be added to the set, nor wliil]l the
old set having the new name be deleted,)

Entryst rename_set_force, rnst

Thls enftry changes the name of a set even [f a set with the
new name already exists In the data base. (The name will be
removed from the already exlsting sety, even If It s the last
name on the sets When the last name on a set |s removed the set
will be deleted.) :

Usage?!

H 1
! rename_set 1
! 1

Page ?

ROMS REFFRENCE GUIDE

rename_set_force oidname nenname

or

rnsf gldname penwname

wiltl be renamed as for rename set, except 1t a set

The set

named with pewname already exlsts Iin the data base

deleted and
removede.

the

it wlit be
new name will be glven to the set, and oldname

(END)

O

! !
RDMS REFERENCF GUIDE ! restructure_data_type !
' !

Command
09/724/74

Name? restructure_data_type, rdt

The rdt command aliows the user to restructure data tyoes
managed by either astring or table data strategy modules (dsms).
When restructuring an astring data type, rdt wil! reorganize the
data elements Into a balanced blnary tree. For table data types,
modiflcations such as Insertions, defletlons and others as
described below can be made by the user to update the table.

Astring and table data types are treated differentliy, since,
by assumption, when restructurling an astring data type only those
datums which are used Iin some relaton are retaineds For table
data types, 1t is assumed that the user may deslire a tabular data
type to contaln datums even though they are not presently belng
used in a-relation. For Instance, a tabular data type containing
the names of the months would contaln twelve (12) entrles
regardless of whether a particular month was being used 1In any
refatjion. Moreover, Since the ordering of the elements of a
table data type Is not computable from the datums themselves (as
opposed to the alphabetical ordering assumed by astring dsms),
rdt must be told explicitly where to iInsert new datums In an
exlisting data type.

Usage?
rdt data-type-pame
rdt data-tvpe-name -options-

or

Tf the data type speclfled s multiply named, such as sysr
and pnames then each of these data types will be updated. New
reference numbers wil! be assigned to each element of the data
types, and then all relatlions In which these data types apoear
wilt be reconstructed so that these relatlons use the updated
references numbers,

1 !
! restructure_data_type ROMS REFERENCE GUIDE
1 1

Page 2?2

The options al(lowed with the rdt command 3are?

-new_dsm dsm-name

The newly created data type will be managed by the data
strategy module (dsm) dsm=names which may differ from
the one assocliated with data-type=name. If not
present, the dsm managlng the old data type wlll be
assigned as the dsm for the new data type.

-astring The dsm managing the new data type Is defined to be an
astring data type. If the dsm for the new data type is
“dsm_astring™ then this option is assumed.

=table The dsm managing the new data type ls deflned to be a
table data type. If the dsm for the new data type Is
“dsm_table*” then thls optlon Is assumed.

Depending upon the type of data-strategy=-module (dsm),
restructure_data_type must use different strategles for creating
the nen data-type.

Asiring Restructure

Restructuring of an astring data type will cause any unused
data to be deleted from the data type. A1l valld data elements
wlil then be used to construct an optimatl binary tree. It 1Is
expected that restructuring of astring data type will be done
only In the case of a tree overflow or In perlodlc wupdating of
data bases since this procedure of restructure reaqulres a large
time expenditure. Astring restructure does not require (in fact
does not altow) any "requests" from the user Iin the manner of
table restructure. Restructure_data_type will create a new data
type containing only those datums used In a relation and update
the retatlons to refiect the new reference numbers assigned to
these datunmse.

RDMS REFERENCE GUIDE ! restructure_data_type 1!
1 !

Page 3

Yable Restructure

Table restructure requlres the user to speclfy the
modlfications to be made to the table data type. This Is done iIn
the form of “reauests”™ to rdt, seven of which are currently
avaliable. These requests are?
insert
delete
replace
move
combine
1ist
ault

Q =N 37 Qm

The user may specify any of these requests following the keyword
®INPUT*, which wlill be displayed on the console when
restructure_data_type is ready to accept Iinput. After each
request line, rdt wii! type one of the following?

1) "INPUT"™
The user may then specify another request.

2) "rdtt*" foilowed by an error messagee.
The user is Informed why the previous request cannot be
performede “INPUT™ wiill then follow.

3) *Restructure completed”

The following 1Is a description of the "requests™ avallable for
modlifying table data types. Please note that all modificatlons
wilt be made on an up-to-date copy of the data type, that Is, on
a copy with atl changes made up to thlis point In time. In the
following description of the requests, data elements are
represented by stringl or string2. If there are embedded bianks
in these stringsy, then the data element must be enclosed in
quotation markst *strlpgi®. This iIs reauired since the parse of
the input tine assumes blanks as delimiters.

21”7 regues}

Format? 1 stringl before string2
°r 1 stringl after siring2
Purpose?

Irsert strlnal into the data type “before® (or ™after®,
as specified) string2.

1 !
! restructure_data_type ! RDMS REFERPENCE GUIDE

1 !

Page &4

2d” reauest
Format? d stringl

Purposet Nelete stringl from the data type.

Notes?
It stringl 2ppears in any relation 1t cannot be
deleted. A message will be printed.

Formatt r siringl string2

Purpose?
Replace stripgli (currentiy In data type) with strina2
(not In data type)

Zm” reguest

Formatt m siringl bdefore string?

or
m stringl after string2

Purpose?
Move siringl i1mmedlately *"before®™ (or "after”™) strina2
In the data type.

Notes?
Both stringlt and siring2 must be members of the data
typee.

Formats ¢ siripgl stcing2

Purposet
Combine all references to sirinal and string2 Into
references to stringl

Notes?t

sicing? wiitl be deleted from the data type.

1 1

RDMS REFERENCFE GUIDF 1 restructure_data_type !

! !

Page 5

Z1” _reayest

Formats

Purpose?

List the data type, reflecting al! updates made up to
this point,

Notest
A program_interrupt handler Is established during this
request,

29" regues?

Formats Q

Purpose?t
Quits restructure data type with all updates.

Notest
The dsm managing the new data type may ask the user one
or two auestions, such as the maximum length of a datum
or the maxlmum number of data eiements allowed In the
data type. When specifying the maximum ftength of a
datum ¢the user should allow space for any changes a
data format moduie (dfm) might make to a datum during
the generatior of a report,.

Example?

User Input is undertined.

cdt_acct type
INPUT 1
acct_type
GEN
FUND
DsSe
INPUT] GRANY after FUND
INPUT d_DSR

rdts Natum OSP s wused In a retatior and cannot be
deleted.
INPUT ¢ OCEN CENEPAL

1 !
! restructure_data_type ! RDMS REFERENCE GUIDE

Page 6

INPUT |
acct_type

GENERAL
FUND
GRANT
pse

INPUT g

dsm_tablet The maximum number of datums for thls data
type is? 3

dsm_tablet The maximum length of a datum [s? 7
Restructure Completed.,

Notest

Restructure_data_type detects the sltuation Iin which the old
and new refnos are ldentical. Such a situation arises when a new
element is added to the end of a table data type or an element of
a table data type Ils retyped. In thls case, rdt does not have to
update the reference numbers In relatlons and [s therefore
relatively inexpensive.

Rdt can not be used to create a data type or enter datums
into an empty table data type. Also, astring data types which are
not used In any relation can not be restructured.

Rdt will! work correctly only if the relation SMS_types lIs
correct, Rdt leaves SMS_types Iin a correct state. Refer to cSMSt
(create_SMS_types) for (iInformation on creating an up-to-date
SMS_types refation.

(END)

T8

! !
RDMS RFFERENCE GUIDF ! set_data_base |
! |

Command
09724/ 74

Names? set_data_base
sdb

set_data_base Injtlates a speclfled directory as the wuser°®s
data_base for the duratlion of the current process, or until the

next set_data_base is issued. NO SMS operations may be performed
unti! a data base is Inltiatlized.

Usage?

set_data_base pathname -controi-arg-
or

sdb pathpame ~control-arg-

Where pathnape 1Is the absolute or reiatlve pathname of the
directory that |s to be Initlated as the data_base.

=controf-arg- may optlonally appear, and Is?
brlet
bt thlis optlon suppresses the message Informing

the user that ¢the data base specified by
pathpname has been successfully Initiated.

Example?
set_data_base data_base. fy74

Would set the data base to a directory *data_base.fy7u4*” In the
user®s working directory, and respond with 3 message?

data_base.fy?7t has been Initiated at 1542.7 est Mon 11/15/73
for User.Prolect

{User Is the user®s name and Prolect Is the user®s prolect.)
If Instead the command 1line [s?
sdb data_base.fy74 ~brjef

the data base]s set but no message 1Is orinted urless an error |s
encountered.

! set_data_base RDOMS REFERFNCE GUIDE —_
! ! -
Page 2
Notes:
1« It no pathpname is supplied and *=-brief*"” appearsy the user wiil
be asked for a pathname of a data base, -
2« YF nelther pathname nor =-brief is speclitlied, the current data
base 1Is terminated and no new data base Is initiated. .
~
]
~/

(END)

H]
ROMS RPEFERENCE GUIDE ! set_ftlle_search_rules !
! i

Command
09/24/ 74

Names3$
set_flle_search_rules
sfsr

The set_flle_search_rules command allows the user to set his
file search rules, Flle_search rules are used by the subroutine
tind_flle_ when looking for a segment.

Usages

set_tite_search_rules pathname

pathname Is the pathname of a segment consisting of the
ASCIT representation of the search rules.

Examples

set_flle_search_rules search_rules_segment
or
stsr search_rules_segment

Notest

€Each 1line of the segment ™search_rules_segment®™ contalins a
search rulfe. A rule ls elther an absoulue or refative dlrectory
pathname, or one of the following special rules?

1) initiated_segments This must be the first {lne of the
search rules segment,

2) working_dlir find_flle_ will search the working
dlrectory.

3) system_libraries find_title_ will search the system

l1ibrariese.

4) detaul t_wdlir tind_flte_ wlill search the default
working directory.

5) home_dir find_flle_ witl search the home
directorye.

! !
1 set_flile_search_rules ! PDMS REFERPENCF GUIDE

! 1

Page ?

f) process_dlir tind_flle_ wlll search the process
directory.

There must be ore rule per (lne. A maximum of 16 search
rules is altowed. Leading and trailing bianks are allowed but
embedded blanks are not allowed.

The RDMS verslon of the “exec_com” commmand |s exactly
equlivatent to the Multics version except It uses the file search
rules to find 1ts driving segment. (The Multics version requires
an absolute or relative path specifying the driving segment.)

See also the documentation of “print_flle_search_rules®.

Harning? searching 1Is expensive In machine resources so the
fewer directorles searched the better.

(END)

Q)

RDOMS REFERENCE GUICE { sms_abbrev |
1 !

Command
09/724/74

Names? sms_abbrev

This module ajlows use of abbreviatlions within the
relational editor, "eds™ and when using the commands mer and mart
(refer to sms_Interface). The set of abbrevliations can be
examined and redefined from command fevel using sms_abbrev or
from within eds. N

Usage?

In response to requests abbreviations can be added, deleted,
or listed. White using the editor a line beginning with =" (a
“not-sign®”) is interpreted as an abbrev request. From command
levely, a call to sms_abbrev with one argument causes that
argument to be interpreted as a reauest?

sms_abbrev |
for example, would list the set of abbreviations, while the same
effect could be obtalned from within the editor using the editor
request?t

=1
(Within the editor, sms_abbrev requests are distinguished by
preceding them with a "not™ character, ("*).)
The avalliable requests aret

a <abbrev> <meaning>
append the abbreviation <abbrev> having the meaning
<meaning>a

d <abbrev>
delete the abbrev <abbrev>.

L 1
! sms_abbrev ! ROMS PEFERENCE GUIDE

1 !

Page 2

L]
or
{ <abbrevi> <abbrev2> « « « <abbrevN>
tist atl abbreviationsy or in the second form list only

the abbreviations <abbrevi>, <abbrev2>, . . oy
<abbrevN>.

D
print the pathname of the segment containing the set of
abbreviatlions. |y default, this pathname is
>udd>Project>User>User,sms_abbrev where "Project"” |is
the user®s project (such as EfFAdmin, RDMS, Multics) and
“User” 1Is the user®s (ogln name (such as Caloggero,
McGary or Wolman).

U <path>
use the segmenrnt identlified by <path> as the sms_abbrev
segment,

Notet

Since sms_abbrev only accepts a single argument when called
from command level, requests which contain blanks must be
enclosed In quotes (™).

When calited from command level with png arguments, sms_abbrev
enters an “edlt"” mode. It reads requests from the console until
the user types a llne consisting of a period followed by a
carriage return, which returns him to command level. €Each line
except the fast must be one of the sms_abbrev reauests described
above.

{END)

O

! !
RDMS RFFERENCE GUIDE ! sms_error_mode !
! 1

Command
09/24/ 74

Names? sms_error_mode, sem
print_sms_error, pse

Thlis command altlows a user to Influence the action the Set
Management System takes when a primitive encounters an error, and
varlous amounts of Informatlion about the error may be recorded.

Usaget

sms_error_mode cti_argl ct1_arg2 « « «
or

sem ctl_argl ctl_arg2 « « «

where cti_arg] may be any of the following?

={ong
-'g
RPecord errors in fong mode.
-brlet
-hHt
Record errors in "brieft” forme.
=status
st
Print the status of error handlling.
-print
Turn error printing “on“.
noprint
-nopr
Turr error printing “oft",
-debug
-db
Turn calting debug (the Multics debugglng
proagram) *on*,
-nodebug
-nodb

Yurr callting debug "off",

1 !
! sms_error_mode ! PDMS PEFERFNCE GUIDE
! !

Page 2?2

By default, errors are recorded in short form, and when an
error occurs 1t is not porinted, nor ls debug called,

When an SMS error occurs, the primitive in which the error
occured will record the error. When an error ls recorded, the
tollowlng actions may be taken?

1) Tt error recording mode Is "short*, onlfy the name of
the primitive ¢that talted will be recorded. If error
recording mode is *long"™, in addition to the name of
the primitive that faljledy the argument {lst that
caused the fallure Is recorded. This argument 1ist
will corsist of pointers to datums (both the pointer
and the datum wlil be printed) as well as reference
numbers {of relations, data=-types or datums) and
options tlelds. The user is expected ¢to be famitiar
nith the calting sequences of the varlous SMS
primitives 1f he/she uses the *"long*™ mode of recording
errors, In the case of the set=-theoretlc primitives
(as discussed under the sms_jinterface command), the
calting sequence for the SMS primltive corresponds to
the sms_interface caltling sequence, except that only
the reference numbers for the relatlons Involved witll
be printedy, not thelr names.

2) It error orinting 1Is "on™, the informatjion just
recorded wil)] be printed on the stream *error_output®,
It error printing is *oft", the error message (s not
printed at this time. (The recorded Information may be
printed at a later time using "print_sms_error™ (¢ It
i1s not overwritten by another error,)

3 It calliing debug Is " on*, a message Is printed on fthe
stream “error_output” notifying the wuser that the
system is about to call debug, and that debug can be
exited by typing *.q" followed by a newline. Then
debug 1s invoked.

Entcys print_sms_error, pse
Usagel

print_sms_error
or

pse

The information recorded as the last SMS error 1Is orinted.

O

O

1 !
RDMS RFFERENCE GUIDE { sms_error_mode !

1 !

Page 3

If no error has occured, a message to this effect Is printed on
the console. The amount of information recorded (and therefore
displayed) 1Is determined by the “long™ or "brief™ modes of
sms_error_mode,

(END)

O

1 !
RDMS PEFERENCE GUIDE ! sms_interface !
' 1

Command
09/24/ 74

Names: sms_Iintertace

The module sms_interface Is 3 console~-level, user command
interface to the Relatlonal Data Management System primjitives.
Thls document explains the meaning and use of the basic RDMS
relation operationse These commands operate on two relations
(flles) to produce as output a result relatlon (flle) which is a
set=theoretlc functlion of the +two Input relatlions. In the
following commands, the third and fourth arguments (options and
name) are optionale If a name argument is specifled, then an
optlons argument must be speciflied. Unless the result relation
i1s explicitly named as the fourth argument of the user-typed
command, the result relation wii! be 3 system-named relation and
its reference number wiil! be printed on the user®s terminal. A
system=named relation will be deleted at the end of the terminal
sesslon uniess It Is explicitly renamed by the user.

\Usage?

user-tvped command example _page

-

union rel=-1 rel=2 optlons name] 7

intersect rel-g rel=2 options name 1 8

| 1
! sms_interface ! RDMS REFERENCE GUIDE

! !

Page 2

user=-tvyped command example_page
L H
{ ditfference rel-1 rel=2 options name] 9
!]
1 .
t cart_prod rel-1 rel-2 optlons name 1 i0
] !
1 1
{ project rel-% ref=2 options name] 11
1]
! 1
! compose rel=1 rel=2 optlons name 1 12,14
H !
1]
{ sort rei=-1 rel-2 optlons name 1 15
1 1
! 1
H decide_over rel=-1 rel=2 options name ! 17

Q)

RDOMS PFFERENCE GUYDE § sms_intertace

Page 3

user=tvped command example page

1

! unlon_compose rel-1 rel=2 options name 1 21

where

refl-4
rel-2

optlions

name

are the names (or reference numbers) of the input
refations or quarts, the ampersand (), or 3 character
string acceptable to the mart command discussed below.
The ampersand ("8") is Interpreted to mean the
reference number of the relation resulting from the
most recent sms_interface command.

1s a valld options argument for the assoclated SMS
primitive catl, It 1is a combination of the caplital
letters F, Sy, and (Q or R), where f means “delete the
first input retation”, S means "delete the second Input
retatlon”y, and Q means *"make the result a quart
(temporary refatlion) rather than a relation®. R means
“"make the result a relatlon™. If nelther Q nor R are
supplied, the result is of the same type 3s the fleft
input relation retl-g. A quart 1ls simoly a refation
which is Intended for temporary use for the duratlion of
the user®s terminal session (process), and is not kept
permanently In the data-base, nor Is It allowed to have
a name. For thls reason, a quart may be referred to
only by its reference number., In order to facilitate
this, the "L" conventlon is used, which means that the
fast result of an sms=interface command Is referred to
by *&", which stands for its reference number,

1s an optlonal argument. If present, 1t will be glven
to the result of the SMS operation. If this argument
s supplledy, the options argument must be supolled.
Furthermore, the result wiil be a permanent relation
with the name as specified by the name argument,

] !
1 sms_Interface 1! ROMS REFERENCE GUIDE

! 1

Page 4

Other _Commands?

The following commands are of wuse In creating empty
relations for sorting orders used in "sort* or datatypes used in
“project operationsy small relations used for sefectlion using
the "compose™ operatlion? or small relations used for *“cart_prod™
operationse In this sensey they support the wuse of the above
relatlon operation commands by allowing the building of relatlions
by slimple, convenient commands without using the relation editor
“eds™.

1 mrel name */data=type=1=datum=1/ees /"™ ! 16

The use of “mretl™, or "pake_rejation” will be demonstrated
In the examplee In brief, It creates a relation named "name® with
the datatypes "data=-type=1" through “data=-type-k™ as specitlied in
the second argument to "mrel”. If a relatlon of that name "name”™
already exists, It wiil be deleted and replaced by the newly
created refation. TIf the equals (*=") following any data=type-l
is used, then the command creates a one-row relation with entriles
“datum=1" through ®datum=k®™ |In thelr respectlve columns. Those
data=type-i with no "=" (l.e. /data=-type-1/) wilil have null
datums In that column 1f any other datum [s specliflied (l.e.
/data-type-k=datum=k/) in order to create a one-row relation. TIY
no equals and following datum=1 are supplled, the “mrel™ creates
a zero=row (called nultl) retation.

1 ?
] mart “/data=-type=1=datum=1/cee /" ! 16
! 1

The command "mart™ or “make_guart” creates a quart rather
than a retatlon. A auart Is a temporary relation which ls stored
in a special area and cannot grow as can normal one-per=-segment
relatjons. This command creates a aquart wlth data-types
“data-type-1" etc., Iin the same manner as mrel. It Is wuseful in
establishing a sort-order for later use In the “sort” or
"project™ commandse. Note that mart does not have a name
argument, because a quart cannot have 3a name. This command causes

Q)

)

1 H
RDMS REFERENCE GUIDE ! sms_interface !
1 !

Paqge 5

a message to be printed on the ccnsole which gives the refno of
the resulting quart. For more convenlence, mqrt may be wused
nlthin another RDMS or sms_Interface command by enclosing the
mart command in square brackets and using it In another command
1ine. For example, to sort the retation "alpha”™ by the "name”™ and
“term™ datatypes, the command {lne mlght be as followst “sort
alpha {mart /name/term/) R result_relation®™. When wused as an
active ftfunctlon, the mart command Is tirst executed, creating a
quart, and then the refno of the resuilt s substituted ¢tor the
entire quantity In sauare brackets and the command llne lIs
executed. When mgart is used as an actlve function, the refno of
the resulting aquart is not printed, and the § default refno
vajue [s not set In order to avold conflict with other uses of
the L value.

Notesst
The reference number of the result of the most recent
operation performed by sms_Interface 1s saved Internally. I¢

elther or both of the rel-]l are *t", then this saved reference
number wiil be used as an argument.

1 1
! sms_intertace 1} ROMS REFERENCE GUIDE

1 !

Page &

Exampies:?

The ftollowing are examples describing the use and meaning of
the SMS primitive relatlon manipulation commands.e The examples
are provided with thelr inputs, the command typed by the user,
and the resul ting refation. Note that In the operations compose,
prolecty Intersect, union, and difference the Input relatlions
must be sorted by the sort order of the matching datatypes of the
two Inout relations. In this sense, the sort-order of the
relation and the actual sort of the tuples of the relatlon are
distinct conceptse. A given sort-order of a relation does not
always guarantee that 1ts tuples are sorted by that ordering of
datatypes, because the retatlion may have been modifled by using
the editor *"eds™ and not sorted when the editing was flnished,
NDurlng editing, unsorted and duplicate tuples may be created, and
only the "sort*” and "project”™ operations will ellminate and clean
up these problems. If unsorted refatlons are used as inputs to
these orimitlves, then the result relation may be unpredictable.

The set-theoretlic operations ot the ROMS primitive relation
commands, shown below, are meanlngful even for unsorted
ref{ations. However, the algorithms currently used to Iimplement
these orimitives all (except for sort) are implemented to assume
sorted Inout retfations, and the output relation Is guaranteed to
be sorteds Thus the relation primitives are a consistent set of
commands.

RDMS REFERENCE GUIDE

union

- ot e ob

The command “union®™ forms an

- ee b -»

output

1

! sms_interface !

relation

!

Page 7

this

example resulti) which conslists of those tuples In elther of the

two Input refationse The sort order of both

the same.,
directoryl
sort ordert name room extenslon

Tgor 1 pg41 1 3844 1
Mary 1 744 Y} 3115 1
Pete {1 327 t 3541 1
Sam } 310 ! 3430 1!

directory?
sort ordert name room extension

Betty ' 110 1 3021 1
Igor 1 041 t 38L4 1}
fgor ¢ 744 1 3115 ¢
Martha 1 242 1 3837 ¢
Mary ! 744 3 311S 1}
Tom 1 243 ' 3002 !

union directoryl directory2 R resulti

resul ti
sort ordert name room extension

Betty ! 110 ' 3021 !
Tgor 3 041 1 3844
Tgor | 744 % 3115
Martha { 242 1 3837
Mary ' 744 1 3115 1}
Pete § 327 1 3541 1
Sam § 310 1 3430 ¢
Tom ¢ 243 % 3002 !

relations

must be

L 1
1 sms_Interface ! RDMS REFERENCE GUIDE
1 !

Page 8

intersect

- ed ob o
-0 o0 oo oo

The command *“intersect®™ forms an ouput reiation (in this
examole resul t2) which consists of those tuple which are In both
of the two Input retations (directoryl and directory2). The sort
order of both Input relatlions must be the same.

directoryi
sort ordert name room extension

Tgor § 041 1 3844
Mary 1 744 } 3115 1
Pete 1 327 1 3541 1
Sam ¢ 310 ! 3430 1

directory?

sort ordert name room extenslon
Retty 1 110 ' 3021

Tgor 1 Q41 ! 3844 3

Tgor § 74L {1 3115 1}

Martha t 242 3§ 3837 1

Mary 1 744 ! 3115 1
Tom § 243 Y 3002

Intersect directoryl directory2 R resul t2

result?
sort ordert name room extenslon

Tgor 1 041 ! 3844 1
Mary ¢ 744 1 3145 ¢

RDMS REFERENCE GUIDE 1 sms_Interftace !
L i

Page 9

ditference

- o0 on o8
- =0 o oo

The command *“difference®”™ creates an output relation
(result3) whlch consists of those tupfes that are In the first
input retation {(dir_of_prolects) which do not match the entries
In the 1leftmost common datatypes of the second input retfation
{dir_of_grades).

dir_of_projects

sort ordert name room extension project

Tgor 1 041 t 3844 1 C
Mary t 744 t 3115 1 C
Pete ! 327 %t 3541 1 A
Sam t 310 1 3430 t C !

dir_of_grades
sort ordert name room extenslon grade

Betty t 110 § 3021 ! 4.5 1}
Igor 1 QL1 1 3844 1 3.7 1§
TYgor 1 744 1 3115 1 4.1 1!
Martha 1 242 1 3837 t 3.7 !
Mary 1 744 1 3115 ! 4.8 1
Tom § 243 ¢ 3002 ! 2.9 !

difference dir_of_projects dir_of_grades R result3

result3
sort order: name room extenslon project

Pete 1 327 ¢ 3541 | A 1Y
Sam 1 310 ¢ 3430 § C

1 1
! sms_Intertface 1 RDMS REFERENCE GUIDE
! L

Page 10

cart_prod

- o a0 b
- =B s oo

The command “cart_prod™ creates an output refation (result4)
which conslsts of tuples generated by combining every tuple of
the first input relation (directoryi) with every tuple of the
<second input relation (term_dates). The number of tuples of the
output retation (results) Is the product of the number of tuples
of the first input relation and the number of tuples of the
second Input relation.

directoryt

sort ordert name room extenslion
fgor 1 0L1 1 3844 %

Mary 1 744 1 3115 1§

Pete 1 327 1 3541 1

Sam § 310 ! 3430 1!

terwm_dates

sort ordert date

September t, 1973 1
January 1, 1974 ¢

cart_prod directoryy term_dates R resulté
resultsy

sort ordert name room extenslon date

Tgor ! Q41 ! 3844) September 1, 1973 1
Tgor 1 041 ? 3844 1 January 1, 1974 1
Mary ! 744 1t 3115 ! September 1, 1973 1!
Mary ¢ 744 1 3115 1 January 1, 1974 1
Pete | 327 ! 3541 ! September 1, 1973 1
Pete 1 327 ! 3541 ' January 1, 1974 1

Sam ¢ 310 1 3430 ! September %, 1973 1
Sam § 310 1 3430 ! January 1, 1974 1

ROMS RFFFRENCE GUIDE ! sms_interface !
L 1

Page 11

project

ot b off o
- oo on oo

The command *“prolect™ creates an output relation (resultS)
consisting of all the distinct subtuples of the flrst Input
relatlion {(directory2). The form of the subtuple Is specified by
the sort-order (data-types) of the second input relation
(temporaryi)e Yn the example, ¢the form of the subtuple Is the
“name"” data-type, as specifled by the sort-order of temporarvyi.
Thus the output consists of atll distinct "name™ entries of
directory?. If the second input relation does not have a sort
order which matches the tleft part of the sort order of the first
input retation the project operation does not necessarly produce
elither a sorted relatlon or a relation lacking dupllcate tuplese.

directory?
sort ordert name room extenslon

Betty t 110 Y 3021 1
Tgor 1 041 1 3844 1
Tgor ¢ 744 1 3115 1}
Martha | 242 t 3837 1
Mary 1 744 1 3115 1
Tom 1 243 1 3002 !

temporaryi

sort ordert! name

Tgor

prolect directory?2 temporaryi R resultsS
sort ordert! name

Betty 1

fgor 1

Martha 1

Mary |
Tom

1 1
1 sms_Interface ! RDMS REFERENCE GUIDE
1 1

Page 12

compose

- o et abd
- e =0 a8

The command "“compose® creates an output reflatjon In the
tollowing manner?$ Filrst, it determines those leftemost
data=-types common to both Input relations (in the example the
common data=type 1Is “name”). Then, for each distinct subtuple
("name™ entry) of form specified by the common data-types, which
Is In both Input relations ("name® entrles that wmatch Iin
project_tist and directory2), every tuple of the flrst input
relation which contains that matching subtuple Is combined with
every tuple of the second Input relation which matches that
subtuple. The meaning In a specific application is based on the
user®s understanding of the matching and combining with respect
to the nature of the data and the meaning assligned to the user®s
relations.

directory?2

sort ordert name room extenslon

Betty t 110 ¢ 3021 1
Igor ¢ D41 1 3844 1
Ygor 1 744 1 3115 1
Martha { 242 1 3837 1
Mary 1 744 1 3115 1}
Tom t 243 1 3002 1

project_1list?
sort ordert name prolect

Betty 1 A}
Betty 1 B 1
Ygor ¥ C 1
Jean 1 B 1
Ken | B 1
Mary § C
Pete ! A
Sam ' C 1§

1
L

1 {
RDMS REFERENCE GUIDE 1 sms_Interface !
! !

Page 13

compose directory2 profject_{tist R resul té6

resul ts
sort ordert name room extenslion project

Betty 1 110 3 3021 ! A 1
Betty 3 110 ¢ 3021 1 B ¢
Tgor ! QL1 ? 3844 1 C 1
Tgor 1 744 ¢ 3115 1 C 1
Mary 1 744 { 3115 1 C

1 !
1 sms_interface 1! RPDOMS PEFERENCE GUIDE

t {

Page 14

compose

- o0 e® «6
-0 ad as oo

This example of the compose command llifustrates {ts use as a
means of selection or retrieval, The second Input relation
{which |s created by the sms_Interface programs, and automatically
deleted after 1t Is used) contains one "name* entry, and is used
to select that part of directory? that matches that “name™ entry
(Igor)e The output of the compose, selectli, contalns those
selected tuples from directoryl.

directory?

sort ordert name room extenslon
Betty 1 110 ' 3021

Tgor ! N4y ! 3844 1}

Tgor 1 744 1 3115 1

Martha ! 242 1 3837 1}

Mary | 744 1 3115 !
Tom 1 243 1 3002 1!

compose directory? /name=Igor/ R selecti

selectt

sort ordert! name room extension

Igor 1 041 % 3844 ¢
Ygor 1 744 § 3115)

RDMS REFERENCF GUIDE

1 !
1 sms_intertace !
1 !

Page 15

sort

o) o8 oo b

The “sort*™ command sorts the first Input relation by the
sort=-order of the second Input relation. Note that the data-types

of the second input reiation must
relation being sorted. Also note that
Input relation |Is not wused, 3and,
merely specifles a sort-order for the

directoryi

sort order?! name room extenslion

Tgor § 041 Y 38L4)
Mary t 744 1 3115 1}
Pete § 327 1 3541
Pete 1 329 ! 3025 !

Sam 1 310 ! 3430 !

be included In those of the

the data of the second
tike the "project®™ command,
operation.

sort directoryl /name/extension/room/ R result?

result7

sort ordert name extenslion room

Igor 1 3844 1 Q41 ¢
Mary 1 3115 {1 744 1%
Pete | 3025 % 329 1
Pete § 3541 ! 327 ¢

Sam § 3430 ! 310 !

! !
! sms_Interface ! RDMS PEFERENCE GUIDE

1 1

Page 16

mrel, mar?t

- 0 of oo
- B o8 e

The command “mrel™ stands for “gake relatlon”, and Is used
to create small relations for the purpose of selectlon using
compose, etce.y without having to use the editor. Note that the
tirst argument to mrel Is the name of the relatlon to be created,
Tt a relation of that name already exists, It wiil be deleted and
replaced by the result of this mrel command. If a quart ls
desired, the command “mart™ may be used Insteade The wusage |Is
ldentical to ‘*mrel*®, but no relation name Is supplled - the
reference number of the result is orinted on the console. By
enclosing the command mart In brackets “l... 1%, It may be used
as an active function and used as part of other RDMS command
fines. When used as an actlve function, [(mart ...] does not
print the refno on the consoley, and the default refno value & s
not set to the result of the mart,

nre! results “/room=041i/name=Tgor/*

resul t8
sort ordert room name

041 1 Ygor 1

mart “/name/oroject/extension/®
make_quartt auart with refno 382 created.
382

sort ordert name project extenslion

NO TONWS

|]
RDMS REFERENCE GUIDE § sms_Intertface 1
i H

Page 17

] declde_over t

The command “declde_over”™ provides a one-pass numerlcal
decislon and simple asslignment facitity for RDMS. It may be
viewed as a means of subsetting or selecting from a relation
those rows (tuples) which meet any of a set of conditlon “terms®
specifled in the ™condition relation™. A “tera™ s a set of
conditions which are applled to 8 row of the input retation, and
those conditions must alt be true in order for the term to be
true, and for that row to be copled into the output relation of
the declide_over operatlon. A “term®” example mlght be the
foltlowlng? (name = "Doey John™ and percent = *50%"). Both of
these conditions must be satisfied by the row of the Input
relation In order for that row to be copled IInto the output
relation. The “condition relatlion” 1Is a set of terms, and
therefore might consist of the following terms: (name = *Noe,
John® and percent = "503%")y (name = *“Smith, Bil1* and percent =
“40%Z"Ye Glven an Input retatlon with “name™® and ‘*percent”
columns, then the output relation will consist of ail rows of the
Input for which elther the first or the second term s true.
Detallis of the usage of declide_over and more specifics of |its
operation are described below.

\saget

] 1
1t declde_over Input_rel conditlon_retl optlions output_rel L
]]

The first relatlion arqument “input_rel” Is the refation over
which the condltlonal subsetting operation Is to be performed.
The second relation argument *“condition_rel™ speclifies the
condltlons and the data-types or columns of the Input refation to
which those conditions applye Fach rom of the conditjon relation
speclfies a “term"™ which Is applied to the currently tested row
of the input relation. The conditlon refation has the columns 3as
shown befowt

1 1
! sms_interface | RPDOMS REFERENCE GUIDE

1 1

Page 18

c1 <dti> c2 <dt?2> c3 <dt3> eee CK <dtk>

where the datatype names <dti>, <dt2>, etc. specify the columns
of the input relation which are tested, and the entry in the ci
coluan Is the conditlon with respect to the entry In the <dti>
column of the condition relation, as applied to the entry In the
<dti1>» cotumn of the input relation. The example above would have
a conditlon retlatlon of the following form?

c1 name c2 percent
] 1
] = *“Doe,y, JOhn™ = *sS0%" !
] = “Smithy BIII™ = “Lo%™ !
1 1

In this example, the condltlon-argument palr (=,"0DoeyJohn"™)
1s applled to the "name™ datatype of the Input relation. To be
more explicit, each row r of the condition relation Is a term
which says that, given row m of the input relation, if each
(1=14ece9k) condltion-argument palr (cl,<dti>) of row (term) r Is
*true™ as applled to row m of the Input relatlon, then row =n |Is
copled into the result relation in the forms '

<dti> <dt2> <dt3> eses <dti>

In the example above, the output relation will have two columnst
name and percent,

-

Several! other requlirements and features should be mentioned.
The condition datatypes cl, €2y C3y etc. must all be names on a
datatype managed by dsm_chart, The condltlon palrs of each row
(term) r of the condition retation are atl of the following form?

<condltlon> <argument>

where <conditlon> Is one of the tollowing set of valld
conditionst (%429 929C9GolL) and where <argument> [s any element
of the datatype <dti>. The Iinput relation is examined in 2
single pass one row at a time, and every condition term |{s then
apptled to test that rowe. The result relation 1s bullt wup by
appending to 1t each Input row, for each term that it satisfles,

1 !
RDMS RFFFRENCE GUIDE ! sms_intertace !
! !

Page 19

1t a2 glven Input row ylelds a ~+rue” when applled to to more than
one term of the condition relation then that input row wilt be
copled more than once. Thls feature lIs useful because declde_over
also provides the abltlity to make simple assignments which are
specitic to the particular term which is “true”. This will be
explalned more fully later.

The meanings of the condition speciflers are as follows?

* don*t care (column entry of Input row always
passes)

= equals (column entry must eaual conditlon
arguaent)

- not equa\l (column entry must not equal condltion
argument)

> greater than (column entry must be greater than

condition argument)

< fess than (column entry must be fess than
condition argument)

G greater or equal (column entry must be greater
than or equal to condition argument)

L fess or equal {column entry must be tess than or
equal to condition argument)

Another example of the use of declde_over is the tfotlowing.

This witl explain the use of the * {(don®"t care) conditlon.
Consider the following conditlon relatlion?

c1 name c2 semes ter

1 !
! » oo = “FIRSYT TERM™ 1
1 !

Using an input relation with column datatyopes *“name* and
=semester®” will simply copy all rows of that Input reflatlion for
which the entry In the “semester®™ column of that row is "FTIRST

! 1
! sms_Intertface ! RDOMS REFERPENCE GUIDE
1 1

Page 20

TERPM", regardiess of the entry In the "name™ coiumn of that row.
This allows the “name™ column to be preserved In the output
relation wlithout appiyling any condlitlons orn "name® entries.

As another exampte, consider the condition refation of two
terms as shown below?

c1 name c2 role c3 percent
1 1
! » hiad = recltatlon < -1 A |
] . seee - tutorlal > 107
! 1

This condltion retlatlon consists of two terms, and each row
of the Input retation iIs ™copled” for each of these terms that it
satisfies. In thls example, each row of the Input relation |Is
copled (in just the name, role, and semester columns) It (role =
recitation and percent < S0) or if (role == tutorial and percent
> 10%)e If both terms are ftrue or satisfled, then that row of the
Input relation will be copled twlce. In thlis case, a row of the
input retation wiltl be copled twlce If role = reclitatlon and
102 < percent < S0%e. Note that the (*, **) conditlon-argument
pair is used simply to copy the "name™ part of the Input rows no
tests are applled to the name entrles of the Input relatlon.

1 !

RDMS REFERENCE GUYODF {1 sms_Interftace !
1] !

Page 21

unlon_compose

-wh o0 o oo
- ad o8 obd

The unlon_compose operatlon operates much llke the compose
operationy, but does not lose information when there is no match
between tuples of elther relatjon. Tuples which match In the
common columns of the two Input relatlons are handled [dentlically
to composes A tuple of the first Input relation which does not
match any tuples of the second relation Is copled Into the output
refation as 1iIs, but with null datums copled Into those columns
not In the first input refation. The same Iis done with the
tuples of the second Input relatlion which match no tuples of the
firste. Refer to the compose example for the relatlons
project_list and directory2. Note the differences between the
output of the unjion_compose and compose operations.

unlon_compose directory? project_1Iist R resul tiy
resultit

sort ordert name room extension project

Betty 1 110 t 3021 t A 1
Betty 1 110 t 3021 ! B}
Igor 1 OgL1 ! 3844 1 C 1
Tgor ¢ 744 1 33115 1 C 1
Jean 1 ! 1 B 1

Ken ! ' 1 B 1

Martha 1 242 1 3837 % 1
Mary 1 744 ! 3115 1 C 1
Pete ¢ ¢ 1 A 1@

Sam ¢ t 1 C 1

Tom ¢ 243 3 3002 ¢ 1§

(ENN)

RDOMS REFERFENCE GUIDF ! sms_star !
! !

Command
09/24/74

Name't sms_star

This command/active-function extends the Multics star
convention for wuse In the RDMS environment, All data base
oblects whose names match a glven star-name can be iisted, or 2a
more restricted group of objects, (such as all relations or all
data types or both) can be matched against the star name.

Usage?

This program may be Invoked elther as a command or as an
active function. If catled as a command, the results are printed
on the console on separate (lnes. When Invoked as an actlve
function, the result is the qualifying names concatenated
together separated by blankse.

Use as a command?
sms_star <star_name> <control_arguments>
Use as an atlve functiont

{sms_star <star_name> <control_arguments>]

1) <star_name>

Is optlional, It it appears, it is a star-laden name
which wili] be matched against names of RDMS relatlons,
data types, rsms, dsms and system objects. By default
a <star_name> of ***" |s used. This <star_name>
matches any name on any object In the data base. The
types of oblects the star name will be matched against
can be restricteds see the discussion of
<control_argumentsd>.

2) <controi_arguments>
are also optlional. They may be taken from the

“selector” contro! arguments and the "other™ control
arguments described below.

{ sms_star 1 RNMS PEFERENCE GUIDE
! 1

Page 2

A) Selector <control_arguments>

By default all types of oblects are matched against the
star name. I¥ one or more of the following seflector
<ccontrol_arguments> appear, however, onily the objects
of the types mentioned are matched against the star
namee.

-set
¥ this controt! argument appears, relations and
data-types are matched agalnst the star_name.
Using this control argument Is equlivalent to using
attl of "-relation*™y, “=-data_type*™ and “-quart®,

-refation

-rel
Yhe names of afl refations will be matched
against the star_name,

-data_type

-dt
The names of all data types In the data base are
matched against the star_name,

-quart

-qft
The names of afll quarts are matched against the
star name. (Notet aquarts are currentily unnamed,
so the character string representation of thelir
reference numbers is used as their "name"™ for
sms_star. Note also that quarts are not]ln the
data base, but are temporary objects that can be
used oniy by one user, and which are defeted when
the user 10g9s out.)

-strategy_module

-sm
Strategy modules (dsms and rsms) are matched
against the star_name, This 1s equlvalent to
Inciuding “=dsm™ and "-rsa”,

-dsm

Data strategy modules are matched against the star
name.

RPDMS REFERENCE GUIDE ! sms_star 1
! !

Page 3

-rsm
Relatlonal strategy modules are matched against
the star_namee.

esystem

-sSys
Systenm relatlons and data types are matched
agalnst the star_name. This 1Is equivalent to
using both “=-sdt™ and “-srel®.

-sdt
System data types are matched against the star
Nname.

-srel
System relations are matched against the star
namee.

B) Other <«<control_arguments>

In additon to the <control_arguments> for selection
described above, some special <control_arguments> also
existt

-nnl
This control argument appliles only when sms_star
Is used as a command. Normaily the aquallfying
names are printed on separate lines. This
arguments causes the names to be printed as one
long flne, separated by blanks.

=primary_name
For objects having more than one name, gnly the
first of the names which match the star name Is
used. (Normalily afll]l] names which match the star
name are used.)

! !
! sms_star RDMS REFERENCE GUIDE

! !

Page 4

Examplet

1) To discover the names of all refatons for which there exist
“editing copies™, the command 1ine?

sms_star eds.** -rel
will 1tist all retation names starting with “eds."” (This Is
how editing coples of a relatlion are named. For example,
the editing copy of the relation x woulid be named "eds.x".)
2) Yo 1ist atll objects In the data base,
sms_star
(invocatlon with no arguments) will suffice.
3) The actlve function form can be very useful In obtaining a
fist of names to be supplled to some other command. Suppose
a user wanted to know the sort order of alt the refatlions In
the data base currently set. The command (ilnet

status_sets (lsms_star -rell) -sort

would invoke the *status_sets™ command once for each
refation In the data base.

(END)

e

1 !
ROMS REFERENCE GUIDE { sms_type 1|
1 {

Command/Actlve=Function
09724/ 74

Name?t sms_type

This command/active-tfunction determines the type of an SMS
objlect, glven its reference number or name.

Usage:

sws_type XXX
or

(sas_tvype xxx)

where Xxxx is either the name or reference number of an object In
the presentiy set data base. The types of objects possible are?

refation
data-type

quart

rsm

dsm
system-refation
system=-data-type
system=-special
invalld

If the type returned 1is "invalld”, the name or reference
number xxx does not identify an oblect In the data base.

It no data base has been set, an error message (is orilnted,
and 1f sms_type has been Invoked as a command the conditlon
“command_error™ is signalled. TYf invoked as an active-function,
the condition "™actlve_function_error®” Is ralsed.

Examplet

Suppose the currently set data base contalns a data type
named “room”™, having a reference number of 82, Then ‘the
following examples might occure. Lines typed by the user are
identified by ™Upn)", responses by the system by "“Sp".

Ui1) sms_type room
S1) sms_typet room is of type °data-type®

U2) sws_type 82

! sms_type 1

!

Page ?2
S?) sms_typet 82 Is of type *data-type*
U3) 1ioa_ (sms_type rooml
S3) data-type
U4) loa_ Tsms_type 82)
S4) data-type
US) sms_type xxxxxxx
S8) xxxxxxx is of type ®*invalid®
Notes:?
See the Introductory sectlon of
descrlption

!

data base.

ROMS REFERENCE GUIDE

this
of the varlous types of objects which may exist in a

manual

for a

(END)

RDOMS PEFERENCE GUIDE 1 status_sets 1

1 !

Command
09724/ 74

Namet status_sets, sts

This command provides informatlon on the size, sort order,
date and time last modified and dumped, and lastiy the strategy
module of a data type or rieatlon.

status_sefts paase opt=i. « cODPt=-n

Usage?
or

sts pame
1) npape

opt=-i. = « Opt-pn

is the name or refno of a set or module.

2) opt-] may be taken from the followlng?

~size

-sort

-date

-sm

-status

Print the size of the sett for relations, this is
the number of rows and the number of columns? for
data types this Is the number of data elements Iin
the data typee.

If the set Is a relation, print the current sort
order. For data types, thls contro! argument has
no effect.

Print the date and time Information for the
segment contalning the sett when It was created,
when it was last modified, and when it was dumoed.

Print the strategy module of the retatlon or data
type.

<status-argument>

<cstatus-argument> will be passed to the Multics
status command to obtaln Information about the
segment contalnling the set. A leadlng "=" wlil be
added to <status—-argument> when it 1Is opassed to
status, and thus <status-argument> should not
begln with a =", See the documentation for the
Myultics *status®™ command.

! 1
1 status_sets 1 PDOMS REFERENCE GUIDE
! !

Page 2
-all
Returns =sizey =-sort, =-sm, and =-date for the given
relatlion or data type, as well as alfl Information
about the segment contalning the set that can be
obtalned using the "status'™ command.
Notes

Ry default, status_sets prints the name, length, order (and
for relations the sort order) when no control! arguments are
suppl led.

This command accepts the star conventione.

Examplet

1) The command linet
sts phone_book
would result Int

phone_book
fength = 637 order = 3

name room extn

{END)

()

1 1
ROMS REFERENCE GUIDF ! terminate_data_base !

Command
09/724/74

Name? terminate_data_base, tmdb

This command cleans up a data base and then termlinates the
data Dbase, That iss It deletes all quarts and temporary
relatlons, and then leaves the user with no data base set.

Usage:?

terminate_data_base

(there are no arguments)

Example?

terminate_data_base

Notest

See the documentation of "cleanup_data_base”, The
cleanup_data_base command cleans up a data base but feaves the
data base Inltiated.

(END)

] 1
RDOMS RFFERENCF GUIDE ! terminate_set !
1 !

Command
09724/ 74

Names:? terminate_set, tmset

Thls command causes the Set Managment System to terminate
the data typey, relation or strategy module nameds This means
that at the next reference to the set or module, SMS will search
for the oblect named and remember lts locatione All succeeding
references will use the location remembered, and witl pgt search
for the object by name. Once a "set®™ has been referenced, all
succeeding references would use the pointer set by SMS at the
tirst reference, unless the name is terminated using
terminate_name.

Usage?

terminate_set set
or

tms set

where set Is the name of the set or strategy module to be
terminated, '

Exampilet

tmr dsm_charh

terminate_set dsm_chard4
inftiate my_dsm_char4 dsm_chard
tist_data_type char4_data_type

These commands might be used by a programmer testing a new
version of the data strategy module “dsm_chary4*,. The call to
list_data_type to 1ist the contents of char4_data_type (which Iis
assumed to be managed by dsm_char4) requlires that dsm_char4 be
found 1f It has not been found already. The use of terminate_set
fottowed by initiate ensures that the desired program will be
used.

Notes:

Refore using thls command, a user should understand the ldea
of Initiation and terminatlon In the Mutltics environment,

(END)

] !
RDMS RFFFRENCE GUIDF { transtate_column
! !

Command/Active Function
09/724/ 74

Name? transtate_cofumn, tc

translate_column iIs used when it is desired to reassign the
reference numbers assigned to datums in a partlcular data-type in
38 single refation. The maln purpose of this command is to aid in
the use of ciphered Information. The clphered Information Is
assligned reference numbers which do not preserve the sorting
order of the Information thusy, to sort refations with the
ciphered Information dlfferent reference numbers must be asslgned
which do preserve the sorting order. Usually this deciphered
relation will only be a temporary relation and the default action
by translate_column 1s to create a quart with the reassigned
reference numbers. ’

\Usage?

transiate_column rel_name -optlions-

wherest

rel_name must be the flrst argument to transliate_column.
This 1s the name of the relation which Is copied
and has 3 column®s (or more than one columan®s)
reference numbers reasslgned.

-options- is taken from the following tist?

-data-type dt-pame nem=-dt-pame
-dt dt-name nen-dt-pame

At fease one occurrence of this opotion |is
requlired, dit-nanme speclifies which cotumn
(data=-type) of the relation rei_name Is to have
its reference numbers reassligned. This argument

specifies the name of the data-type to use in
reassigning reference numbers. If thls arguemnt lIs
omitted then translate_cotumn wiil attempt to wuse
the data-type name *dt-pame.tc*. The =dt argument
may occur more than once, so that muitipte columns
can be transiated with one Iinvocation of
transtate_column.

1 !
1 translate_column ! ROMS REFERENCE GUIDE

1 1

Page 2

-relation gutput-rel
-rel gutput-rel

This argument specifies that the result of
transiate_column should be put Into a relation
({instead of a quart). The gutput-rel argument Is
optional. If present 1t ls the name to place on
the resulting relationt otherwise, the relatlion
wilt be named +TEMP+.unlique {(where unlique stands
for 15 unlaque characters). It outpyt-rel Iis
equjvalent to rel_name then the result of
transiate_column will replace the orlglinal
relfation.

-brief
-bf This argument suppresses the message glving the
reference number of the resulting relation. When
Invoked as a active function, translate_column
does not print this message.
Examnie?

transtate_column sal_1list -dt salary
transtiate_columnt relation with reference number 383 created,.

The above example reassigned reference numbers to the datums
In the salary data=type column of the sal_llst relation. The
datums were assigned reference numbers in the data=type
*salary.tc®. The resulting retation (which 1Is a quart) has a
reference number of 383,

loa_ (tc sal_tlist -dt salary nen_salary]
384

In the above exampie, transiate_column ls used as an active
function to again reassign reference numbers to the salary column
of relatlon sal_list. Thls time, however, the user explicltly
specitied which data-type to use (new_salary)l. The result ot the
actlve function 1s the character string representation of the
reference number of the result of transtiate_column.

1 1
RDMS REFFRENCE GUIDF 1 transiate_column 1!
1 !

Page 3

Note?

When transiate_column Is Invoked as a command (as opposed to
an active function), the default reference number maintained by
sms_Interface ls set to the result of transifate_columne Refer to
the writeup of sms_interface for more information on the default
reference number.

(END)

1 !
RDMS REFFRENCE GUYDE 1 tree_stuft |}
1 i

Command
09/724/74

Name: tree_stuff

"

This command creates an optimum binary tree in a data-type
segment managed by dsm_astring, glven an alphabetically sorted
tist of ASCYI strings In a file. After an astring data type has
been created, tree_stuff Is wused to "prime™ the data tyoe for
most efficient Insertion of new Informatlon and to ensure that
the tree will not be tikely to overflow. (An astring tree is
sald to overflow when while attempting to add a datum to the data
type, there Is no reference number avalilible for the new datum
even though all possible reference numbers have not been used,
It (to use an oversimpliified case) “Alten™ had been assigned the
reference number 6, and "Asimov™ the reference number 7, and It
is desired to insert the datum "Arthur*”, we find that although
Arthur should follow Allen and precede Asimov, there ls no
reference number avallible which 1Is greater than Atten®s
reference number while fess than Arthur®s. Even though it may be
possiblie to Insert "Mullen™ and obtain a reference number, we Ssay
the tree has overflowed because "Arthur® could not be added.)

Usage?
tree_stuff data-tvpe file-pame

Notes?

1 data-type must have been created prior to usage of
tree_stuft and must be managed by dsm_v2_astringe.

2) A data base containing data-tvpe must be Iinitialized orior
to usage of tree_stuff.

3 The ASCIT text segment flle-name must be in the current
working directory as data_type (llle-pame is not a data type
or relation). It conslists of up to 1024 ilnes of text, each
of which represents one data element to be inserted iIn

3 1
1 tree_stutt 1 RDOMS REFERFNCE GUIDE

Page 2

data-tvpe. The file may be created by either edm or agexd
(or a program) and should be alphabetlzed before usage of
tree_stuff, The sort_tile command (see MPM) will accomplish
the alphabetic sort.

Example?

tree_stuff name namelist
This takes the data elements from the ASCII file

*namellst®and place them [n an optlimum blnary tree In the
data type “name®.

{END)

! !
RDOMS RFFFRENCFE GUTYDE ! where 1|
) ! !

Command
09/724/74

Name? where
wh

This command/active=-function searches for object segments
using the currently defined search rules. TIf the segment is
found, the pathname ls elther printed on the console (command) or
returned as the value of the active function.

Usage?

where namejl « « « namej
or

wh namel « « « namej

When used as a command, where prints the pathnames of the
ob)lect segments on separte 1lnes. If used as an active functlion,

the pathnames are concatenated, separated by blanks, to form the
return stringe.

Example?

1) where eds
Pesponse?
>udd>RDMS>service>bound_editing_
2) loa_ (string [where eds wherel)
Response?t

>udd>RDMS>service>bound_editing >udd>ROMS>service>where

Notesst

It the segment identified by name]l is not found, an error
message Is oprinted on the console. TIf the use is as an active
function, the condlition "active_function_error®™ is then raised.

(END)

RPDMS REFERENCE GUIDE ! whod 1!
! !

Command
09724774

Names?
whod

This command 1lsts users of the Relatlonal Data Management
System who currentiy have data bases set.

Usagest
whod -user=ljste «cti-args-

=user-iist-

is optionale. Yt it appears It contains one or more
terms of the form? *“User.Project™, *User* or
»“.Project”s. (A term “Goldman.,ROMS” wil! cause the user
Goidman to be listed i1f he is logged In on the oprolject
RDMS and has a data base set? a term “Goldman® will
cause Goldman to be listed If he is logged In under any
project and has a data base set} tinally, a term
»_ RDMS™ wlll! cause any users 1logged In on the RDMS
project to be listed if they have a data base set,
Note that the =user-list- may Include several terms,
such as ".MITASD .RDMS .FEGradOff * if it Is desired to
tist which of these prolects Is using a data base, It
no =user-ljist- appears, all users who have data bases
set wlill be 1isted.

=cti-args-
1s also optionale. If It appears It may contaln any or
at! of the following?

tlsts users and their data bases In long form.
This includes the date and time the user 1ogged
iny, hlis terminatl id, whether the user [s absentee
(indicated by "(A)"™), secondary("(S)") or normal
(indlcated by blank), and finally the user®s name,
the user®s project and the user®s data base.

-a
1ist only absentee userse.

whod =3

ROMS REFERENCE GUIDE

might produce the followling output on the console?

Notet

Caloggero.fFAdmin (A) >udd>EEAdmin>Caloggero>db.fy74

See the related commands *“whop*,

“hmd™, and

“p np e

-

(END)

RDMS RFFERENCE GUIDF ! whoo !

| I |
Command
09724/ 74

Namest whop

This command 1ists users ot the Relational Data M™Management
System who are currently logged In, along with the data base a
user currently has set (if any).

Usagel

whop ~user=-list- =-ctli-args-

=yser=|jist-

The =user-list- Is optionals If it appears only the
users speclfied by 1t will be llsted The =user=jjst-
conslists of one or more terms of the form "McGary,RDMS"™
(list McGary 1f he is l1ogged In on the ROMS project),
*McGary™ (tist McGary 1t he |Is logged In under any
project), or *“.,RDMS"™ (iist any user of the RDMS project
who Is logged in). It no =-user-list- appears, altl
persons Jogged In who are using the Relational Data
Management System will be listed.

=cti=args=- may be none or any number of the followlng?t

=long Normally the users are listed iIn "“short™ form,
leeeay the user®s name, the project he Is l1ogged In
under and the data base he 1ls using (1f any) wili
be tisted. In long form the Information includes?
1) the date and time the user togged In (e. Q.o
*11/712/773 1548.0")
2) the user®s console TY.De (543", ™a327", or
' “none®™)
3) the type of user (absentee denoted by "(A)",
secondary by "{S)", normal user by blanks,
4) the user®s name ("Dodge" or *“Goldman"™)
5) the user®s project (“FEGradOtt™ or *"ROMS"™)
6) the data base the user has set
(">udd>EFGradnf¢t>Dodge>db.eeq9” or |if no data
base s set, the field is blank).

-d Only users who have data bases set wllt Dbe
1isted. The default Is to list all userse.

-a Only absentee users will be llisted,

v
! whop ! RDMS PFFEPENCE GUTDE
' 1

———

Page 2?2

-p <path> Instead of the standard “whotable® (which records
who s using the Retational Data Management
System) the “whotable™ specified by <path> will be
used In checking for users This Is oprimarily a
debugging alde.

Example?t
Wwhop

might cause the followling to be printed on the console?

Catoggero.EEAdmin >udd>EEAdmin>Caloggero>dbe fy74
McGary.RDMS
Goldmane ROMS >udd>0>dbs>tdb.fy72
TJohnson.DFIS

whlte
whop =lg

might producet
11710773 0905.0 543 Caloggero FEAdmln >udd>e>rjc>db.ty74

1015.5 none McGary RDMS
1047.9 none Goldman RDOMS >udd>o0>dbs>tdb, fy72

1107.3 a213 TJohnson DFIS

Notess

See the related commands “whod™, “whmp®”, and “hmd".

(END)

