JOIL &ty

Programming Staff Note 37 Computation Center

November 6,1964

FROM: Louls Pouzin

SURJ: An Approach to a Standard Brror Procedure in Chains of Commands

1, What the Problem is

When & command is executed, it may encounter some conditions
which make it impossible to run to completion. Some situations mey be
handled by interaction with the console, as 'NEED' messages, or 'DO YOU‘
WANT T¢ DELETE' an Rl mode file. Some other conditionms turn out to be
fatal, as an illegal cerd in loading a BSS file, or at least a console
procedure would be too complicated or hazardous in order to restart a
normal execution. Appropriate messages are then printed on the console,
and the command is terminated, ‘ ‘

This vieual procaedure may be satisfactory cnough when commands
are executed as iaola;ed programs. It is mot satisfactory when they
are part of a more general program which controls their execution by
setting them into chains of comwmands, Indeed, a failure in a psrticular
command may or may not be fatal for the chain; and depending on the
circumstances, it would be necessary to stop, or execute a predetermined
error procedure, or evean just continue and ignore the failure.

Evidently, no systematic decision, built into the command, is
satisfactoxry. Neither is it ususlly possible to modify a command from
another command. In & sense this complete independence between commands
is purposely ' carried out in order to keep larger flexibility in the
system. ' v

Actually there is 8 wide varilety in the way commands terminate
on errors. E,g.

- Go to CHRCOM with core image

- Go to CHNCOM without core image

« Go to DORMNT

- Go to DEAD
- Print "TYPE START T{ GJ ON', and go to DORMNT, If the user
types START, then go to CHNCOM,

- Protection mode violation.

~

2. An Approach to a Solution

Since commands are not pieces of a closed package, but rather
an open list, incremented with additions from variocus users groups, and
designed for any particular usage, it seems desirsble to keep the set
of conventions as thin as possible, This eliminates prectically the
idea of having commands retuining an abundant collection of arguments,
through some core A buffer, or written onto the disk. Even though such
& possibility may be very valuable to one command, it does not seem to
be flefible enough to make it a mandatory comnvention for all commands.
The minimum requirement should be simple, cost few machine ingtructions,
and not mske any assumption as to the way an erxror procedure wmight be
carried out. In other words, an error exit should be a standard exit,
as straightforwvard as calling CHNCOM,

3. Some Suggestions

Another requirement is that an error exit should not disturb
whatever has been already set by other commands into the supervisor
buffers. MNamely, command lists and command counter do mnot belong to
the current command, and they should not be destroyed as & result of
some unfortunate situation. On the other hand, the content of the
curreat command buffer will not be of any use after completion of the
command. Hence, it may be used to return to the supervisor emough
information in order to initiate 3 standard error procedure,

E.g. the command might call NEXCEM as an error exit, which
allows the very important facility of executing an extra-command not
previously set in the chain. On the other hand, nothing else is
destroyed whatever,

The drawback of NEXC@M is that it allows for replacement of
only the first two arguments in the command buffer. Even if this
restriction is bearable, or even convenient in some cases, it is
unquestionable that the whole command buffer could be of better use.

@3-

NEXCUM being what it is, it is not suggested to change its
behavior, because this would raise problems of compatibility. But
one may think of using SETCLS, as:

TISX SETICLS,4

P2E BUF,,0
meaning: set the current command buffer to the content of BUF...BUF+19.

Let ue notice that a symetrical call: '

T8X GEICLS,4

P3E BUF,,0
could retura into BUF,..BUP+19, the whole content of the current command
buffer,

This suggestion has the advantage of using existing calls by
simply allowing the command list number of zero to mean the current
command buffer.

In order to start the command, CHNCOM may not be used, since
it would go to the next command in the chain. But a different call,
such as:

TSX REPCOM,4 for REPeat C@Mmand
could gtart the execution of the new current command, NEXC¢M may be

ugsed, if one resets the first two worde in the command buffer.
4 Through the simple machinery outlines above, it would be possible

to call any 'extra‘’ command, without disturbing the setting of the
current chain.

4, Standard Error Ptocequre

A standard error exit from a command could be to start the
command:

ERRGR arg 1 arg 2 ees A N
which could be a core A or core B command. The argl's are arbiﬁtarily
set to whatever information seems useful to hand over in the particular
error condition encountered by the command.

The ERRPR command would execute very few things. E.g. Print: ERROR
BREAR-POINT. TYPE START TO GO ON and write a disk file containing a
copy of: curreat command buffer, all command lists, and command counter.
This file would be called by a special name, (ERRPR FILE) e.g., and

created as temporary, i.e. would nmot be stalled by a track quota
exhausted. Then go to DYRMNT,

04-

By typing START, the user could ignore the erzor, and force
the continuation of the chain. On the other hand, if he does wot
type START, he may 'SAVE' the present status. Then he can examine
the disk file in order to know in which context the error occurred,
and thereafter fix up the trouble and restart,

5. Tailor-made Error Procedure

In the above paragraph, we sketched out an elementary error
procedure, which could be the standard one. But we did not mention
a major feature of ERRPR which allows bypassing the standsrd procedure
completely.

In effect, ERRPR would check for the existence of an ERRSR
SAVED file in the user's directory, and if there were any, it would
transfer control to the user's command, by setting a RESUME ERR@GR
with all arguments as set by the original command. Then a particular
procedure could be executed for anmy particular error conditionm,
including possibly an automatic restarting of the chain.

Such a procedure would allow for taking into account the
context of an exror, before making a decision on whatever salvage
procedure should be selected.

