PROJECT MAC February 10y 1973

Computer Systems Research Division Request for Comments No. 6

AN ALGORITHM FOR PREDICTING PROCESS MEMORY REQUIREMENTS

by David P, Reed

Th2 following paper describes my ideas for improving the
primary memory scheduling algorithm curredfly implemented in the
Multics “traftfic controller. My MIT Bachelor®s Thesis will
conéis? of developing and experimanting with these ideas inside
an experimental version of Multics. Commenfsvand criticisms on

the content of fthe paper will be appreciated.

This note is an informal working paper of the Project MAC
Conputer Systems Reéesearch Division. It should not be reproduced
without the author®s permission, and it should not be referenced
in other publications.

An Algorithm for Predicting Process Memory Requirements

David P, Reed

I. Why fPY?

Effective sssignment of primary memory resources to processes in
3 mul fiprogrammed, virtual memory computer system such as
Multics reouires tnat the degree of multiprogramming (1) be
automatically controiled in order to orevent devotion of
excessive resources to page fault processing., Control of
multipragramming is important from the operating system®s point
of wview in order to maximize the =ffective use of the available
hardwar 2 resources. Were this the only goal, however, the task
would be huch éimoler; a very important requirement for a
multiprogramming control is to allocate orimary memory resources
fairly among uéef processes. It is easy to ignore the variation
in usagz patterns among user programs and design a'_scheme which
works for the aveﬁage programs on a particular system, and
oerforms poorly for exceptional classes of users. The exceptions
which I am concerned with now are the ends of the memory usage
scalet the small users, such as the SIP3 Experimental Calculator

Service, which offers a cheap, interactive subset of BASIC to all

(1) *"degree of multiprogramming”, “level ot multiprogramming*,
and “number of eligible processes'" are used synorymously in this
paper to mean the number of processes which the traffic
controller has made eligible to run at any particular time. The
s¢t of orocesses wnich are eligible to run includes processes
currently executing on a processor, processes waiting for an 1/0
evant or & loch to be unlocked, and processes waiting for a
processor, and c¢an e characterized pcy the fact that their per
process data pbases such as the descriptor segment are wired down
in core. :

Memory Requirements _ Page 3

MIT students, and the large users,y, such as data-tase management
systemsy automatic programming systems, and so on. A fair scheme
for a&llocating primary memory rasources should allocate primary
memory fo users in proportion to their need for primary memory,
'S0 that large users of memory wiil have enough memory to run with
an accentable level of overh2ad due to page faults. On the other
handy a small memory wuser should not be allocated more memory
than 1s necessary to run hnhim efficiently, for 'any excess’
resourc2s might as well be assignec to others waiting in the

scneduling queues to run.

In order to manage primary memory effectively, taking into
account fthe vaeriations among classes of wusage, the traffic
controller must be aole to predict the memory requirements of
processes and use this péedicfion in its scheduling decision.
Unfortudafely, until recenfly there was no easily tractable model
of & pracess®s memory reference behavior which could be invoked
to assay' a process®s memory needs at a particular instant of
tine. Consequently, in the current desiygn of the Multics primary
memohy scheduling algoritnmy, the control of ﬁulfiprogramming is
achieveld by‘an aléorifhm which has been observed to show several
anomalies (16 varticulary it performs very poorly for some
programs with larger than 3average "wWworking sets", and does not
adapt to unusual system configurationsy such as 256K of ~memory

with 2 CPU®s). I opelievey, however, that Saltzer®s linear model

Paje « ' Memory Reguirements

!

of demand paging performance (1) does lend itself to a simpley
easily implemented algorithm for dynamic muitiprogramming
control. For my thesisy I intend to develop such an algorithm,

ani determine experimentally its performance.

IT. Yaristicks

Befor 2 d;scussing oparticular algorithms to achieve the purposes
hinted atf above,y, it seems important to enumerate severel
criteria which I think must be met by any primary memory
scheduling algorithme First, the variables most important to
heavily loaded interactive systems, response time and system
throughout, must pe optimized. Second, the algorithm must
properly respond .to the variation in memory reaquirements among
different classes of wusers == not benalizing large users
excessively, and giving. the small wuser his fair share of
resources. It'is under this criterion that the Eurrenf Multics
memory ménagement algorithm seems to be deficient. Thirdly, the
al;orifnm must be stable under fluctuating load conditions.
Althougn the algorithm is primarily used to prevenf‘?hfashing, a
condition occuring only under 3a siénificanf load, light |loads
should not cause the algorithm to operate incorrectly, and
transient loads due to interactive processes should not cause the
aljorithm to oscillate, or otﬁerwiée perform suboptimally.

Finally, the parameters by which the algorithm is tuned should be

(1) Salftzer, Jo Hey A Simple Linear Model of Demand Paging
Performangcey Multics Repository Document M0131, MIT, Cambridge,
M3assey 1972.

Memory Reagquirements Page 5

injdependent of system configuration as much &s possible. In
otner words, once & sysfem'ls tuned for one configuration, it
shoﬁ!d be correctly tuned for any other configuration. I am
particularly interested in the configuration with respect to the
size ot primary memory and the number of CPU°®s. It is
interesting to note that the current algorithm on Multics causes
the following anomaly?! if the oarameferé are set for a 1 CPU,
255K systemy, then the performance of a system such as a 2 CPU,
250K system is very poore. This probably means that the second
CPU is causing thrashing, and should remain jidle more of the
Time, since o second CPU should not cause degradation of systenm

performance on the same amount of memory. (1)

III. Simplicity

I devote a sepafafe heading to this topic simply (!) beqause it
is wWworth emphasizing. It is all too easy to design algorithms
whicn are more complex than our understanding of .the oproblems
they intend to solve. Since the difficulty 1iIn mainftaining
programs is primarily due to the +time required to understand

them, simplicity is an operational virtue.

In the context of a discussion of primary memory management
aljoritnms, simplicity . has several applications. Our

understanding o¢f proygrams® memory reference behavior is limited,

(1) Barring such effects as memory interference and data-base
interference,y, btoth of which can be minimizeg by idling the
additional CPU more frequentiy.

Paje 6 . ' Memory Requirements

so it would pe wun)Justifiapole to assume that a complicated
aljorithm has any bpbetter chance of working well than a simple
aljoritnm woulds A simple algorithm is much easier to exolain,
thus allowiﬁg others who must understand the algorithm (such as
external Multics sites who have need to tune their system for
thair swn purposes) to a&achieve fhe necessary knowledge with a
minimum of difficulty. Also, since the multiprogramming
algorithm is a basic part of the operating system, 3 simple
multiprogramming algorithm has the virtue of easier verification,

an important consideration in a8 system striving to be proved

correct.

IV. Basic Principles

For most of this onapery I will sketch the development of an
aljoritnm based on Saltzer®s Iinear modely, which I hope will
satisty the Vabove criteria, along with +the criterion of
simplicity. Towards the end of the papery, I will discuss the
techniaues “Wwhich I intend to use to invésfigafe the performance

ot the slgorithm experimentally.

Before I begin descrioing the details of my proposed algorithm, I
would first like to note the basic concepts of the currert
mul tiprogramming control mechanism, First of all, since we are
primarily concerned with obtaining effective use of main memory,
the level of multiprogramming depends directly on the size of
primary memory available for paging (I will henceforth use the

symbol M for this). The number of CPU's is not germane to this

Memory Requirements Page 7

discussion, since audition of & CPU has the effect of increasing
the rate of references to memory, which effect will be factored
out by considering time as an axis measured in memory referenceé.
(1) In order.to characterize a bprocess®s memory requirements,
the current algoritnm attempts to compute a value, called the
working set g;lxmgig, which indicates the amount of primary
' memory which must be available to that process to prevent
excessive pajinge This 1s basically computed from the size of a
suoset of the recent page exceptions (those which correspond to
pajes which have been referenced recently, according to the

hardwar=2 and software reference bits)e.

The scneduler then makes enough processes eligible so that the
sun of their computed working set estimates is as large as
possipl 2, but not exceeding the amount of Drimarv memory
avéilable. An additional constraint is added whichvplaces lower

and upoper bounds on tne number of eligible orocesses.

In practicey, this algorifhm,has failed to be usefuly as is shown
by the fact that the computed working set estimate is multiplied
by a fraction, called the working set factor, before summing the
elijibDie processes® worhing set estimates, and thst this fraction
has in practice been set to a value which is too smail to allow

tha working set estimates to influence the scheduling decision at

(1) Of coursey I oversimplify heresesein fact there are important
effects such as sharing of pages and overloading of I/70 channels
which d3 come into play in determining the foad on primary
memorys. For a3 first order theory, I will explicitly ignore these
effects., :

Page 8 : ' Memory PRequirements

all (increasing the working set factor causes performance to
degrade significantly -- indicating the algorithm Jdoes not

calculate a working set estimate which is useful in scheduling).

This algoritnm has been observed to have several deficiencies.
The first is poor parameterization, which does not carry from one
configuration to another. More importanf!v, the working set
estimat2 -has shown some obvious random behavior for certain
programs Qifh large working sets. The symptom of this is that the
working set estimate remains very small even though the user®s
program is taking over 100 page faults per cpu second (a mean
headway between page faults of several instructiors). This has
pe2en observea by people in the LISP project, and bty Rick Gumpertz

in the Paris Multicse

Finally, the current algorithm fails on the criterion of
sinplicity., It pases its decision of whether to include a page
in the working set on a complicated calculation based on 5 bits
of information about each recent page fault. The time eligible
is not taken into account, and page faults which are too frequent
to be recorded in the page fault trace table are not taken into
account. “In addition, there are complicated lntéractions with
otner orocesses, fhe‘ core allocation 3lgorifhm, and the systenm
cally hcs_$reset_working_set, a}l of which modify the page usage

bits which the working set algorithm depends on.

Memory Requirements Page g

Ve The Proposed Algorithm

I would like to try a somewhat different approach in synthesizing
an algorithm nerey, witn the hope that the resulting algorithm
will pe simoler» and more amenable to analysis and verification.
I will &lso try to define a set of less ambiguéus terms for
describing concepts, since such terms as "workiné set estimate*
are =zof to be confusingy, because tney have many poésible

interpratations in current usage.

The following analysis is not intended to be mathematically
precise; instead, it is intended only as an argument to justify

the plausibility of the resulting algorithm.

To begin the discussion of my proposed algorithm, I would like to
definz2 a function, D(h,t),'which 1S called the partition size of
3 orocess with respect to a particular mean headway between page
faults (mhbpf, measured in memory references), h, at a particular
tine t. This oartition size function is defined to be fhe,améunf
of primary memory required for that process to run at time t in
its exacution with a specified local mhbpf, B. Given this
function fer all processés, a near-optimal mu!fiorogrammiﬁg level

can be Jetermined,

Orie way of prevenfing degradation of each process®s performance
duz to thrashing is to place a lower bound on each process®s
mhoofy n_min. Given. h_min, a near optimal multiprogramming
stratejy is to schedule as many processes as possible under the

constrsint that the sum of their instantaneous partition sizes is

Pige 10 _ Memory Requirements

2_ p(n_min,t) <= M,
Of course, if the load is sﬁfflcienfly heavy, the inequality
becomes an eaquality, and thrashing is held to the level
determined by the mhbpf, n_min. On the 6fher hand, . if there |is
net a sufficient loaay, the mhbpf for each process will be greater
Than n_min. Of course, fixing h to n_mnin does not guarantee that
we will prevent thrashingj it depends also upon how steady p(h.f)

is with respect to small changes in t.

Tha problem of implementing this strategy 1s'fhat plh_min,t)
canrot be cbmoufed wifhoﬁt foreknowledge of the | process®s
behavior. Conseauentliy, a practical élgorithm must use a function
whicn 1s capable of estimating p(h_minst). The working set
esfiméte above can be seen to be an attempt at‘this,‘however, it
is not a yehy effective estimate for the reasons noted above. 1In
“the following analysis I will attempt fo create an estimator for
olh_min, t) which is better at tracking the actual value of

p(n_minyt) tnan the working set estimate currently used.

Saltzer®s linear model (1) states that p(h,yt) is a linear

funcfion of ht

(1) I sm &sssuming that Saltzer®s model can be applied to single
processes, an - assumption which is olausible but not vyet
experimantally verifieds The linear model does not have to apply
exactly in order for this scheme to worky, but I develop the
argument trom tnis statement of the linear model for the purpose
of conceptusl clarity.

Memory Requirements Page 11

p(hyt) = kK(t)*h,

whare < is only a function of the proagram behavior at t. As a

conseauz2ncey if we know the value of p for some specified value

of hy hly we can determine p for all values of h?
h
plhyt) = === ¥ p(h0,t)
ho

In particular, assuming that k(t) has a bounded ftirst derivative,
ani tnat we have the value of p(nlyT)y we c3n get a good estimate
for P & short time |3ater by assuming that k(t) is not varvying

very much over that short period!

plhyttdt) = -?- ¥ p{h0,t)

ho
It can easily be seen that this last equation can be used as the
pasis fgr a rather simple multiprogramming controt. If we take
p{hgyt) to be the oarfifion size which we last allowed the
process to run vwith, and h0 to be the observed mean headway
between page faults for tnat period, than we can easily obtain an
estimate for the immediate future of that process of pl(h_min,t)
by that equationy setting h = h_min. We thus have the following
iterative alyorithm anicn tracks the partition size of a process!

h_min

pe = ======= % p3

h_obs
Wwhere o2 is the new estimate of the required partition size of
tha oroceés for an mhppf of h_min, h_obs is fthe observed recent

mhocf, 3nd pa is tne amount of main memory which was assigned to

Paje 12 Memory Requirements

tha oracess during the recent past (over which we measured

N_Jobs)e
This algorithm is actually more powerful than the assumptions
indicata2, Even if Saltzer®s linear model does not hold for a

single processy this 1terative algorithm will track p(h_min,t) as

long as the rafé of change of p with time is small.

qm—

The only problem with implementing this algorithm is that it s
somewhat difficult fd determine a value for psy, the amount of
.memory a4actually assigned to the process, since several processes
ar2 competing for main memory. Under a sufficient load, of
course, the constraint that the scheduler tries to make as ﬁany
processas eligible as possible will force pa to be approximately
equal to the previous esfimate_of pPee Hoyever, under lighter 'or
more transient losds, this will not be the case. Since we would
wish oe to be relatively indebendent of -load fluctuations, we

have to handle this case.

Under 3 light loady the scheduler will not have enough processes
to wnolly utilize main. memory resources. Consequently, each
process®'s pa > pe. When there are processes whose partition
sizesy ne,y, do ﬁot fit in primary memory, it is possible to have
situations where a process's assigned memory, pa, is less than
pe. This latter condition can also arise from constraints, such
as the current max_eligible and min_eligible, placing bounds on
the numoer of processes the scheduler can make eligible. In

order to keep the partition size estimates, pe, stable through

Memoury Requirements Page 13

tﬁansienf loads and independent of time, it is thus important to
get an ccurate estimate of the memory assigned to the process to

compute new values of pe.,

Maxing the assumption that the effective partitioning of memory
am>ny tne eligible processes is proportional to their minimum

partition size, we can say then that

pe
pa n eooe=
u
wh2re J 1s the ratio of the sum of all eligible processes® pe
values and the main memory size M3
1 \
Uu = === % > pefij)
M Lo
i €leligible
processes}
This 15 basically a primary memory usage factor. Combining the

last two equations, we get the iterative algorithm for computing

the next pe value, pe*?

The remaining task is to determinéshow to compute the value wu,
anJéDHon to parameterize the algorithm (i,e., set h_min) so that
once the parameters are set, all configuratiors will obtain
optimum performance.(i)AnoTher problem is to determine how
frzauently to iterate the computafion,C}nd a final problem is how

to choose an initial estimate, pe_init.

Paje 14) Memory Requirements

Since u is Just an a3verage, over the last iteration of the
aljoritam, of the memory usage fraction, it can be computed in
any numver of ways. An approximation to the average will
suffice, siﬁce the value is not oarticularly critical.
Conéequeﬁtly, for an initial attempt, the system can sample the

memory Jsaae fraction at each page fault, then average.

I +think that for the purposes of an initisl experiment, the
computarticon of pe can be iterated each time the orocess {oses
eligibilityy, since the value is needed no more frequently than

that,.

Parameterization of h_min anda pe_init is a more difficult
oroblem. I think that one can say that h_min must be linear with
WL7? tha si1ze of main memory, and_independ;::’:;\:;:/::;;::—:?’E;GT;‘\
sni1 the speeds of memory and CPU. The characteristics of the
pajing devices do affect it heavily, fhough.:if ocne wants to get
optimum performance =-- the bulk store should affect things,
esoecially, since orocesses will probably not te switched upon
paje faults to the bulk sfbre. I think a good choice for a

parameterization is aiven by foliowing two equations though!

h_min = ch * M

oe_init Cp * M

whare <c¢cp and c¢h are tuning parameters, and M is of course the

size of primary memory available for paging.

Memory Requirements Page 15

VI. Plans for Testing the Algorithm

For my thesis, I intend to investigate the .characferisfics of
this algorithm experinentally, using Doug Hunt®s standard Multics
load Programs, \and compare performance wWith the current
multiorogramming algorithme If possibley, I nope to get a chance
to test this a&algorithm as a replacement for the current

algorithm, Several minor problems, of coursey, suggest

thamsalves.

Firsty, the pre-paging algorithm interferes significantly with the
oparation of this multiprogramming algorithm, since it introduces
undesirable feedback into the mhopf of a process. Consequently,
I 'intend to vperform my initial tests wifh the pre-paging
.algorithm. removed from the system. In any casey it is not clear
what oerforhénce improvement it gives the systemy, and with the
oulk store it will not be usedy, owing to the transfer time of the

bulk store.

Secondy I may have to provide constraints on eligibility such as
tha current algorithm requires, so that ‘response time is held
down anJd so that undesirable oscillations or other problems in my
aljoritnm don®t cause bad responses to pathological loads. It
should be noted that too high a level of multiprogramming does

tend to increase interactive response time (1) undesirably, so

(1) 3y r~esponse time here I mean the real time taken for a
nrocess to go from a3 blocked state to a running state then back
t> a blocked state, executing for a particular amount of CPU
tine, There i3 no good measure of this in the system now,

Paje 18 Memory Requirements

the maximum ‘bound is important. The minimum bound wWill prevent
excessive idle time ;aused by a program with &a partition size
graater than or eaual_ to the amount of core available.
Parameta2rization of such bounds fo adapt to various
configurations and policy requirements is somewhat difficult, and

protably will be developed from experimental resultse.

Thirdy, the algorithm does not explicitly take into account the
burst of bage faults which occurs when a process is made eligible
after noat running for a period of time. This could . cause the
algorithm +to determine a partition size which is larger than
necessary for such phocessés. I think the best way to avoid this
problem is to make the sampl@hg times at which pe is recomputed
sufficiently far apart so that the short period of high page
fault rate has little effect. It is possible that this is not an
adéqua?e solutiony in which case Some sort - of smoothing must be
employed to‘ damp out oscillations in thebcalculafed partition

SizZes

A fourth problem arises in the attempt to allow the user a call
of the order of hcs_S$reset_working_set, by which the user can
inform the system of changes in his memory refgrence behavior.
Th2 wvossibility always exists that the user will liey in which
case he may be &able to bre)udice the schaduling algorithm in his
favor. I &dmit that I have no good ideas here at present. The

solution would be to have some sort of penalty for lying} perhaps

unfortunately.

Menory Requirements - Page 17

charginjy for excessive memory competition would be an effective

deterrent to lying.

VII. Exoectations

Tnz results of implementing the scheme avove, with modifications
as necessary to aéhieve this goaly should basically concern only
the extreme classes of userse. I don't expect a spectacular
improvement in system oerformance under the current load, nor do
I expect resoonse time to get significantly aquicker. Rather, I
expect a stabilization effect, in wWwhich the system as a whole
becomes more stable i1n response to lﬁad, and the more average
user programs should become more consistent in their memory usage
behsviors. The extreme classes of wusers will be treated more
fairly than they are at present, since they will be scheduled
with tha correct amount of competition to ensure reasonable

performances.

