PROJECT MAC

Computer Systems Research Division Request for

Serpt

Aprll 2, 1975

Comments No. 71

Accurate Performance Measurement on the Deveiopment Machine?!

Initial Experiments

by Andrew He. Mason

Users of a computer utjility are sensitive

price changese. Because prices are generaily a

system costsy the admlnistrator in charge of the

have the capability ¢to determine exactiy how

system will affect the system costs. He can then

basis of this informationy, whethar to Instatll the

The ultimate goal of the research

develop a "useful® performance neasurement tool

operating system. This tooly, which
benchmarks can be used to predict system performance.
S

criteria are

for

to prilces and
functlon of the

utility should

a change In his
the

decidey oON

changee.

described here s to

the Multics

witl be in the form of a

Three

being used to determine the "usefulness”™ of such a

testt it should be inexpensive to use; the test should be
:2:g;;sa__aa¢__cnngglgglgj and the results of the test should
reflect the performance of the system under different operating

conditions (i.e.y the test should be accurate).

Currently, the major cost factor Is machine

test ran Iin, say, ten minutes it would be cheap

enough

time, so 1If fhe

that it

This note is an informal working of
Computer Systems Research Divislon.
without the author®s permisslon,

in other publications.

paper

the
It should not pbpe reproduced
and It shoula not be

Project MAC

referenced

Page 2

could be repeated several times if necessary. If the test is not
repeatable, fhe.validity of any quantitative results [s suspect.
As for accuracyy iIf the resuits of tests on systems A and B8
indicate that system A is two sercent faster than system B, one
- would like to have confidence that system A will actually run two
percent faster than system B. Tnis third criterion is hard to
measurey SO research to date nas concentrated on the first two.
The strategy for developing the derformance test has been to wuse
an exlsting benchmark as a »3asiss modifylng It In Qays to
increase its Speeo and accuracy-

Currently, Honeywell wuses a modifled version of the
performance benchmark developed by Roger Roach (see NTB-iéG and
MAB~-016) .to evaluate system chaages. Thls version of the test
will be called the standargd teste. It runs on the CISL

development machlne and ls avallable to all development machline

———————e T
uyserse The . primary value measured by the benchmark is the real

Deanernsusasmoned

time required for a number of absentee processes fo run to
combletion. To run this benchnafk, a control! process or drjiver
is logged‘ln. The driver then logs in severall slave processesy
makes each one walt wuntlt all have logged In, and then starts
them all together. The run time is measured from the time when
all slaves are started by the dflver to when the last slave
"signals that it has finishede Tne coordination and inter-process

communlcatLOn between the driver and one slave Is deplcted in

Figure I

Page 3_

driver? stave?

call lnitlallzé_meters;

login(siave);

block({synch)}
wakeup{driver,synch)
block(start);

call start_meters;

wakeup(slavesstart)

block{finish);

wakeup{driver,finish)}
logout}
end;’

call stop_meters;

call print_meters;

ends’

Flguré I. ODriver = Siave Coordinatlion Before Modiflicatione.

Page &

Each slave process folloas one of five standard scripts.
The commands in the scripts afe mostly editing and compliation
commands. One of the scripts, aowever, follows each command with
a "flush* command. The “flush® command pages heavlly, Insuring
that the pagling device Is In constant use. Ih a typlcal hgn on
the developmeﬁt machine, tweaty siaves ére “measured, four
folliowing each script.

For the purposes of system neasurement, the standard test
oresenfs two problems?t It is expensive to wuse and it is
imprecise. The standard test runs in a littie under three hours,

put the total run time has been known to vary more than ten

——

percent in tests made on identical systems and identical

configurations?! This Impiles tnat if a ten percent change In

——

total run time is measured betw2en two systems, it Is impossible
to tell how much, if any, of the difference is due to the system
change. The only way to produce meaningful results is to repeat
the test many t;mes on each systemy, at great expense. When
enough tests have been completed, statistical analysis of the run
times will yield a mean and a standard deviatlon. Comparison of
the mean run times for each system wil] indicate which Is faster
and by how muchy and the standa~d deviation will tel!l how precise
the test ise.

As of this writing, four modificatlons to the standard test
have been finished. fhese modifications are not adequate to meet

the goais of the project. The~efore, two other modiflications

Page S

will be proposed in this paper anlich shoutd bring the pertformance
test closer - to the goalse. Figure II lists the results of tests
made at each stage of modifications Some of the measured speed
4p is due to the Installation of cache memory on the development
machine. This occurred between nodifications 2 and 3.

The flirst completed modification Involved reducing the
number of slave processes f~om twenty to flve.i One stave was
started following each script. The average run tlme for the test
dropped'fo'about twenty minutes. This was a vast lmprovement
over a three hour run time, but the dlscrepancy between identical
tests was stit! highe. For one system, one test ran in 20 minutes
and 2 seconds, and another ran in 22 minutes and 21 seconds. The
variatlion In run time was so large (about 10 percent) that no
attempt was made to obtain a statistically signiflcanf sample.

Instead, an effort was made to 1lsolate the <causes of the
large difference. As a result of this effort, 'a bug was found In
the 1logout seguence for absentee processes which indicated one
possible cause! As each slave {10ogged out, It might encounter an
error conditlon which caused it to create stack frames until It
overran its stack. At this point, the process was terminated.
This extra activity demanded a large amount of system resources,
causing interference wWith other slavese.

Since this bug diag not occur with a known frequencys 2an
unpredictable amount of inte~ference was Introduced into the

test. However, the iogout sequence is not a lojical part of the

Page b6

SYSIEM £ 0F_RUNS HIGH LOW MEAN
befofe‘modlficatlon 1 8930
atter modification 1 3 1341 1202 1254
atter modlflcatloﬁ 2 2 1132 834 1013
after modification 3 4 915 813 842

after modification & 3 753 702 730

Figure Il1. Increases In System Performance Test Speed.

(times are measuyred [n seconds)

Page 7

test (see Figure I) and should be completely removed! At best,
if logouts are Includedy, the results of the test should be too
slon by some constant factor. At worét, however, the error
introduced 1Is some <complicated function of many varlables.
Theretore, a change to the test was made by Steve Webber which
eliminated the logout sequence, Instead of logging out, each
slave process signals tnhe ariver that it has finished and waits
to be told to logout. HWhen all slaves have finlshedy the control
process stops the test and then signals all staves to Jlogout.
This has the effect of eliminating the interference caused by a
sfave®s logout while other slaves are still runnings The driver
- slave coordlnation after this modification Is shown In Flgure
III. |

On a standard system, thera2 are three (ordered) schedul ing

queues used by the traffic :controller. The queue In which a
process is waiting to run defines the process® priority and its

time quantum. Each time a process interacts with a terminal the

process is promoted to the hignhest priority queue. Absentee

————

processessy howevery do not Interact with terminalsy, so all slave
R —————————

processes drift down to the lowest queue and stay there. Since
Mul tics Is - primarily a time-sharing faclllty, service

instailatlions normatly have many interactive processes and few
absentee processes. T0 better ~eflect this situation, the slave
processes Should simulate te~mninal interactione. The third

modificatlon will do thist In the system data basesy there is a

Page

drivers$ ‘siaves

. call initialize_meters)

logdn{sdaved

block{synch);
wakeup{(driver,synch);
block{start);

call start_meters3

»uakeuo(slawers#arW)}

_ block (finish)}

nakeup(driver,finish);
block(term)}

call s?oo;métersi

wakeup (slaveyterm);

call print_meters;

end} | togout;

end;3

Figure III. priver - Slave Coordination After Modiflcation 2.

Page 9

parameter called "prlofi?y_sched_lnc“. It Is usually set at 80
seconds. It means that if a orocess has been blocked for more
than 80 seconds, it should be »o2laced in the highest opriority
- queue when It next tries to run. Setting this value '°,1.if§fﬁf_,_
has the effect of making slaves act more like Interactive
processes.

The last modificatlion also deals with the scheduling
algorithme In an attempt to ~2duce thrashing, the scheduler
tries to estimate a process® wo~king set at the time the process
goes blocked. When the process aext wants to runy the working
set estimate is compared to the \umber of free pages in core. 1If
the working set 1is 1larger, tane process is not allowed to run.
Insteads, the processor jdles. Unfortunately, when only fjive
slaves are run during a test, the processor is idle for this
reason about 16 percent of the time. In an effort to reduce this
amount of idle, parameters of tne working set estimator were
adjusted so that all processes appeared to have working sets of
fifty pages. This cut down on idie time and Eeduced the average
run time of the test and the numoerlgi/gifﬁ\:sggi: .

This 1last effect lndlcafes that some of the test variation
- may be due to variations in disk reference patterns. This
hypothesis is further reinfo~ced by the followling evidences
Firsty, the test run time éorrelates to a high degree with the

number of disk reads made during the test. Second, the test run

time also correlates weil! with the mean page-walit time for the

Page 10

disks ,Thlrd; in a typical run 5f the modified version, the test
taxes about fifteen minutes, reads from the disk about 25,000
‘timesy, and has a. meén page-nait time for the disk of about 60
miftlisecondse. -fhis implies that each slave spends about five
minutes of reél time_ualflng for the disk! Uﬁfortunafelv. tittle
is known about the statistical distribution of page-wait times,
so there Is no way to judge its stabitlty. Therefore, the first
oroposed modification is to instail meters on the disk which will
praclisely descripe this distrioustion. One possible method would
be to divide page-wait time intd bins one or tao milliseconds
wide. In each bin, keep track of the number of corresponding
disk reads and the tota! amount 2f real time between page-faults
and restarts. This information could be printed out in a
histogram, giving a very good graphical picture of the page-waift
time disfribufloh; (1) Knowing the distribution of bage-wait
times witl not explain the 1otéd correlations, but it might
indicate the nature of the varjations in disk reference patterns.

Another disturbing element is that from test to test, the

AT

order of slave logouts changes. In addition, as more staves

—

togout, processoriidle increases. Intuition would indicate that

it this Is the case, more resou~ces are available to each slave,

and the "computation rate”™ of each slave increasese. This is not

(1) In 1973, Lee Schefflier f~om Honeynell installted meters
similar to the ones described aere. At the present time, it Is
unknown whether they wnorke.

Page 11

necessarlly the case. The commands executed by the slaves are
-taken from the system librariesy so it lIs quite likely that the
slaves share pages. Therefore, the fact that one slave s using
segment “pli" may redyce the number of page-faults taken by
another slave which 1Is also J4sing segment “pli1™. Thils Impiies
that if one slave logs outy, the effective computation rate for
the other stlaves may, 1in fact, be reduced. To correct for
effects of this nature, the driver - silave coérdination should be
changed as In Figure IV. Here, the important point Is that after
each slave finishes its assigned task, it should keep on running
in order to keep the 1oad on the processor and the Inter-slave
interference as constant as possible. One important effect of

this modification 1Is that the meaning of the value measured bV:annn(

the test is changed. Nowy, the tast measures the rate a which
work is being completed. |
These modiflications, afithough necessaryy are only a flrshfﬂﬂ;ﬁi
step in this project. When tney are completed, there willi
hopefully be a better understanding of the sources of varjation
in the test. Knowing this, the d2roject can begin to narrow in on
how much of the variation can be feasibly ellminated.
Although the task of»lmprbving metering tools is important,
a larger lssue should be mentloned In this paper. Suppose that a
“perfect* metering test has oeen invented for the development
machine. D0 the results obtalned indicate anything at all about

per formance on another Muiltics? The development machine has a

drivers:

call Inltiallze_meters;)
login(slave);

block{synch)}3

call start_meters;
wakeup (stavesstart)$

block(finish)}

call stop_meters;
call logout_torce{slave);
call print_meters;

end;

Figure IVe Proposed Driver

Page

siave?

wakeup(drivery,synch)

block(test)}

wakeup{(drivery,finish);

- Stlave Coordinatione.

12

Page 13

very small.configuratlon! one processor, 256K words of secondary
memoryy and two disk drives. Tnis makes [t a very artiflclial
environment In which to mete*.‘ Therefore, before any results
from the developménf machlne are used to make assumptions about
relative system performance, the validity of such generalizations
must be lnvéstlgafed.

syl €580 JULE a7 A e e
£, ’ ' "

/éﬂﬂf/ﬁ try Lvpnmnas T TIP3

(’ . / ‘(1 {

yandoan € Cewns 2 paer [Amg Cernd
(J/V(Tl’ K¢ '//b(¢ 39 Pyry c?'.,}é;r{”

%{b lfenecd ' 7o @Ak}éf
Ny reis)

¢ t**? KW“QXQr

ﬁ e /'r)

-

(f/ s

{ww f?»«u o a”/?’ﬁmph(

;< szméﬁ/

