PROJECT MAC February 10, 1973

Conputer Systems Research Division Regquest for Comments No. 6

AM ALGORITHM FOP PREDICTING PROCESS MEMORY PEQUIREMENTS

by ODaviid P. Reed

Tha following paper describes my ideas for improving the
primary memory scheduling algorithm currently implemented in the
Multtics traffic controller. My MIT Bachelor®s Thesis wWill

consist of developing and experimaenting with these ideas inside

an experimental version of Muiltics. Comments and criticisms on
the content of the paper will be appreciated,.
This note is an informal working paper of the Project MAC

Computer Systems Research Division. It shouild not be reproduced
without the author®s permissiony and it should not be referenced
in other publications.,

An Algorithm for Predicting Process Memory Requirements

David P, Reaed

I. Wny try?

Effective sssignment of primary memory r2sources to processes in
3 mul riprogrammed, virtual memory computer system such 3as
Muttics reqgquires tnat the degree of multiprcgramming (1) be
automatically controllted in order to orevent devotion of
excessive resources 1o page fault oprocessing. Control of
multipragramming is important from the operating system®s point
of wview in order to maximize the =2ffective use of the available
hardware resources, Were this the onily goal, however, the fask
would be much simpler; & very important requirement for a
multiprogramming control is to allocate orimary memory resources
fairly among user processes. It is easy to ignore the variation
in usage patterns among user programs and design & scheme wWhich
works for the average programs on a particular system, and
performs poorly for exceptional classes of users. The exceptions
which I am concerned with now are the enis of the memory usage
scalet the small users, such as the SIP3 Experimental Calculator

Service, which offers a cheap, interactive subset of BASIC to all

(1) *"*degree of multiprogramming*, “level of multiprogramming*,
and "number of eligible processes' are used synonymously in this
paper to mean the number of processes which the tratfic
controller has made eligible to run at any particular time. The
set of orocesses which are eligible to run includes processes
currently executing on a processor, processes waiting for an I/0
evant or @ lock to be unlocked, and processes walting for a
processory and c¢an be characterized ty the fact that their per
process data pases such as the descriptor segment are wired down
in core.

Memory Requirements rage 3

MIT students, and the large users, such as data-tase management
systams, automatic programming systems, and so on. A fair scheme
for sllocating primary memory resources should allocate primary
memory to users in proportion to their need for c¢rimary memory,
s0 that targe users of memory will have enough memory to run with
an zccaentable level of overhead due to page faults. On the other
hand, i small memory user should not be allocated more memory
than (s necessary to run him efficientliy, for any excess
resourc2s might as well be assignec to others waiting in the

scheduling queues t0o run.,

In order to manage primary memory effectively, taking into
account the variations among classes of wusage, the traffic
controller must be anle to predict the memory requirements of
processes and wuse this prediction in its scheduling decision.
Unfortunately, until recently there was no easily tractable model
of @ praocess®"s memory reference behavior which could be invoked
to assay a process®s memory needs at a particular instant of
time. Consequently, in the current design of the Multics primary
memory scheduling algorithm, the control of multiprogramming is
acnhievedl by an algorifhm which has been observed to show several
anomalies (in oarticuiar, it performs very poorly for some
programs with targer than average "“working sets"”, and does not
adapt to unusual system configurations, such as 256K of memory

with 2 CPU"'s). I bpelievey, howevery, that Saltzer®s linear model

Paje = Memory Reauirements

of demand paging performance (1) does lend itself te a simple,
easily implemented algorithm for dynamic multiprogramminrg
coatrol. For my thesisy I intend to develop such an 3algorithm,

ani datermine experimentally its performance.

IT. Yaristicks

Befor2 discussing particular algorithms to achieve the purposes
hinted at abovey it seems important to enumerate severe |
criteria which I think must be met by any primary memory
scheduling algorithms First, the wvariasbles most important +to
heavily loaded interactive systems, response time and system
throughout, must pe optimized. Second, the algorithm must
properly respond to the variation in memory reaquirements among
different classes of wusers =~ not penalizing large users
excessively, and giving the small user his fair share of
resources. It is under this criterion that the current Multics
memory management algorithm seems to be deficient. Thirdly, the
algoritnm must be stable under fluctuating load conditions.
Althou3yn the algorithm is primarily used to prevent thrashing, a
condition occuring only under a significant toad, tight |oads
should not <cause the algorithm to operate incorrectly, and
transient loads due to interactive processes should not cause the
aljorithm to oscillatey, or otherwise perform suboptimaliy.

Finally, the parameters by which the algorithm is tuned should be

(1) Salfzer, Jo. Hey A Simple Linear Mgdel of Demand Paging
Performange, Mul tics Repository Document M0131, MIT, Cambridge,
MaSS., 19720

Memory Requirements Page 5

injependent of system configuration as much 3s possible. In
otner words, once a system is tuned for one configuration, it
should be correctly tuned for any other configuration, I am
particularly interested in the configuration with respect to the
size ot primary memory and the number of C(CPU®'s, It is
interesting to note that the current algorithm on Multics causes
the following anomalyt: {f the parameters are set for a 1 CPU,
256K system, then the performance of a system such as a 2 CPU,
255K system (s very poor. This probably means that the second
CPU is causing thrashing, and should remain jdle more of the
time, since a second CPU shoutld not cause degradation of systen

performance on the same amount of memory. (1)

III. Simplicity

I JdJevote a separate heading to this topic simply (!) because it
is worth emphasizing., It is all too easy to design algorithms
Wwhich are more complex than our understanding of the problems
they intend to solve. Since the difficulty 1in maintaining
programs is primarily due to the time required to understand

them, simplicity is an operational virtue.

In the context of a discussion of primary memory management
aljoritnms, simplicity has several applications. Our

understanding of programs® memory reference behavior is limited,

{1) Barring such effects as memory interference and data-base
interference, both of which can be minimized by idling the
aldditional CPU more frequently.

Paje b Memory Requirements

so it would bpe wunjustifiaple to assume that a complicated
aljgoritnm has any better chance of working well than a simple
aljoritam would. A simple algorithm is much easier to explain,
thus asllowing others who must understand the algorithm (such as
external Multics sites who have need to tune their system for
thair JWwn purposes) to achieve the necessary knowledge with a
minimum of difficulty. Also, since the multiprogramming
algorithm is a basic part of the operating system, a simple
mul tipraygramming algorithm has the virtue of easier verification,
an important consideration in a system striving to be oproved

correct.

IV. Basic Principles

For most of this paper, I will sketch the development of an
aljorithm based on Saltzer®s {inear model, which I hope will
satisty the above criteria, along wWwith the criterion of
sinplicity. Towards the and of the paper, I will discuss the
techniaques which I intend to use to investigate the performance

ot the algorithm experimentalliy.

Bafore I begin describping the details of my proposed algorithm, I
would first like to note the basic concepts of the current
multiprogramming control mechanism, First of all, since we are
primarily concerned with obtaining effective use of main memory,
the level of multiprogramming depends directly on the size of
primary memory available for paging (I will henceforth wuse the

symbol M for this). The number of CPU®s is not germane to this

Memory Requirements Page 7

discussion, since addition of a CPU has the effect of increasing
the rate of references fo memory, which effect will be factored
out by considering time as an axis measured in memory references.
{1) In order to characterize a process*'s memory requirements,
the current algorithm attempts to compute & vealue, callad the
worring sel estimate, which indicates the amount of primary
memory which must be available to that process to prevent
excessive pagings This is basically computed from the size of 3
supset of the recent page exceptions (those which correspond to
pages which nave been referenced recently, according to the

hardware and software reference bits).

The scheduler then makes. enough processes eligible so that the
sun of their computed working set estimates [s as large as
possibl ey but not exceeding the amount of primary memory
available. An additional constraint is added which places lower

and upoper bounds on the number of eligiblie processes.

In practice, this algorithm has failed to be usetfuly, as is shown
by the fact that the computed working set estimate is multiplied
by a fraction, called the working set factor, before summing the
eligioie processes® working set estimates, and that this fraction
has in practice peen set to a value which is too smail to allow

tha working set estimates to influence the scheduling decision at

(1) Of coursey, I oversimplify here..sin fact there are important
effects such as sharing of pages and overlioading of I/0 channels
which d> come into play in determining the Iload on primary
memory. For a first order theory, I will explicitly ignore these
effects.

Page 8 Memory Requirements

alli (increasing the working set factor causes performance to
Jegrade significantly =-- indicating tnhe algorithm Jdoes nct

calculate a working set estimate which is useful in scheduling).

This algoritnm has been observed to have seversl deficiencies.,
The first (s poor parameterization, which does not carry from one
configuration to &another. More importantly, the working set
estimat2 has shown some obvious random behavior for certain
programs with large working sets. The symptom of this is that the
working set estimate remains very small even though the user's
program is taking over 100 page faults per cpu second (a mean
headway between page faults of severafl instructionrs). This has
been observed by people in the LISP project, and ty Rick Gumpertz

in the Paris Multics.

Finally, the current algorithm fails on the criterion of
sinplicity. It bases its decision of whether to include a page
in the working set on a complicated calculation based on 5 bits
of information about each recent page faulit., The time eligible
is not taken into account, and page faults which are too frequent
to be recorded in the page fault trace table are not taken into
account. In addition, there are compiicated interactions with
otner processes, the core allocation ajgorithm, and the system
cally hcs_s$reset_working_set, all of which modify the page usage

bits which the working set algorithm depends on.

Memory Requirements Page S
Ve The Proposed Algorithm

I wouldl like to try a somewhat different approach in synthesizing
an algorithm nerey, witn the hope that the resulting altgorithm
will pe simpler, and more amenabla to analysis and verification.
T will also try to definé a set of less ambiguous terms for
describing conceptsy since such terms as *“working set estimate"
are apt to be confusingy because they have many possible

interpretations in current usage,

The following analysis is not intended to be mathematically
precise} insteady, it is intended only as an argument to Jjustify

the plausipitlity of the resulting algorithm,

To begin the discussion of my proposed algorithmy I would tike to
define a function, p(hyt), which is called the partition size of
a process with respect to a particular mean headway between page
faults (mhbpty, measured in memory references), hy at a particular
Ti%e te This partition size function is defined to be the amount
of primary memory required for fhaf‘orocess to run at time t in
its exacution with a specified Ilocal mhbpfy he Given this

function for all processes, a near-optimal multiprogramming level

can be Jdetermined.

One way of preventing degradation of each process®s performance
Jjue to thrashing is to place a lower bound on each process®s
mhopf, h_min. Given h_min, a near optimal multiprogramming
strate2jy is to schedule as many processes as possible under the

constraint that the sum of their instantaneous partition sizes is

Page 10 Memory Requirements

2_ plh_min,t) <= M,
Of course,y, if the load is sufficiently heavy, the inequality
becomes an eauality, and thrashing 1is held to the level
determined by the mhbpf, n_min. On the other hand, it there |is
net a sufficient loady the mhopf for each process will be greater
than nh_mins, Of course, fixing h to h_min does not guarantee that
we will prevent thrashings; it depends also upon how steady p(h,t)

is Wwith respect to small changes in t.

Tha problem of implementing this strategy is that p(h_min,t)
cannot be computed wWithout foreknowledge of the process"s
behavior. Conseauently, a practical algorithm must use a function
which is capable of estimating p(h_min,t). The working set
estimate above can be seen to be an attempt at this, however, |t
is not a very effective estimate for the reasons noted above. In
the following analysis I will attempt to create an estimator for
plh_min,y, t) which is better at tracking the actual value of

p{n_min,t) than the working set estimate currentily used.

Saltzer®s linear model (1) states +that pi(hyt) is a linear

function of n:

(1) T sm assuming that Saltzer®s model can be applied to single
pracesses, an assumption which is »plausible but not vet
experimentally verifieds The linear model does not have to apply
exactly in order for this scheme to work, but I develop the
argyument from this statement of the linear model for the purpose
of conceptual clarity.

Memory 2equirements Page 11

plhyt) = Kk(t)*h,

whare <« is only a function of the pragram behavior at t. As a

consejuance, if we know the value of p for some specified value

of hy hly we can determine p for all values of h!
h
plhyt) = ==« ¥ p{h0,1)
no

In particular, assuming that k{t) has a bounded first derivative,
and that we have the value of p(hl,t)y, we c¢can get a good estimate
for p a short time later by assuming that k(t) is not varving
very much over that short periods

h

plhyttdt) = === ¥ p(hQ,t)

ho
It can easily be seen that this last eguation can be used as the
oasis for a rather simple multiprogramming control. If we take
p(hgyt) to be the partition size which we Iast allowed the
process to run withy and hi fto be the observed mean headway
between page faults for that period, than we can easily obtain an
estimate for the immediate future of that process of plh_min,t)

by that equationy, setting h = h_min. We thus have the following
iterative algorithm Wwhich tracks the partition size of a process?
h_min
PDe = emmecw=- L pa
h_obs
whare p2 is the new estimate of the required partition size of

th2 proacess for an mhbpf of h_min, h_obs is the observed recent

mhoof, 3nd pa is the amount of main memory which was assigned to

Paje 12 Memory Requirements

tha orocess during the recent past (over which we measured

h_2bs)e.

This algorithm is actually more powerful than the assumptiors
indicat=2,. Even if Saltzer®s linear model does not hold for a
single processy this jiterative algorithm will track pth_min,t) as

long as the rate of change of p with time is small.

The oniy problem with implementing this algorithm is that it is
sonewhat difficult to determine a value for psy the amount of
memory actually assigned to the process, since several processes
are competing for main memory. Under a sufficient load, of
course, the constraint that the scheduler tries to make as many
processas eligiote as possible will force pa to be approximately
equal to the previous estimate of pe. However, unrnder lighter or
more ftransient loads,y, this will not be the case. Since we would
wish pe to be relatively independent of load fluctuations, we

have to handle this case.

Under 3 light loady the scheduler wilil not have enough processes
to wholly utilize main memory resources. Consequently, each
process®s pa > pe. ‘When there are processes whose partition
sizesy pey do not fit in primary memory, it is possible to have
situations where a process®s assigned memory, pa, is less than
pe. This tatter condition can also arise from consfraints, such
as the current max_eligible and min_eligible, placing bounds on
the numoer of processes the scheduler can make eligible. In

order to keep the partition size estimates, pe, stable through

Memoury Requirements Page 13

transient loads and independent of time, it is thus important to
get an 3ccurate estimate of the memory assigned to the process to

compute new values of pe.

Making the assumption that the effective partitioning of memory
amonyg tne eligible processes is proportional to their minimum
partition sizey we can say then that
pe
pa = -=--
u
where 4 is the ratio of the sum of all eligible processes® pe

values and the main memory Size M:

1 \
U = === % > pell)
M L
i 6{eligible
processes}
This is pbasically a primary memory usage factor. Combining the

jast two equations, we getft the iterative algorithm for computing

tha next pe value, pe*s

The remaining task is to determine how to compute the value u,
and hoW to parameterize the algorithm (i.e.s set h_min) so that
once the parameters are set, all contiguratiors will obtain
optimum performance. Another problem is to determine how
fraquently to iterate the computation, and a final problem is how

to choose an initial estimate, pe_init.

Page 14 Memory Requirements

Since u is Just an average, over the fast iteration of the
algoritnhm, of the memory usage fraction, it can be computed in
any number of ways. An approximation to the average will
suffice, since the value is not oparticularly critical.
Consequantly, for an initial attempt, the system can sample the

memory uJysage fraction at each page fault, then average.

I think that for the purposes of an initial experiment, the
computation of pe can be jiterated each ¢time the process loses
eligibitity, since the value is needed no more frequently than

that.

Parameterization of h_min and pe_init is a more difficult
problem. I think that one can say that h_min must be linear with
the size of main memory, and independent of the number of CPU°s
and the speeds of memory and CPU. The <characteristics of the
paging devices do affect it heavily, though, it one wants to get
optimum performance ~- the bulk store should affect things,
especially, since processes will probably not be switched upon
page faults to the bulk store. I think a good <cholce for a

parameterization is given by following two equations thought

h_min ch ¥ M

cp ¥ M

pe_init

where <¢p and ch are tuning parameters, and M is of course the

size of primary memory available for paging.

Memory Requirements Page 15

VI. Plans for Testing the Algorithm

For my thesisy I intend to investigate the characteristics of
this algorithm experinentally, using Doug Hunt®s standard Multics
load programs, and compare performance wWith the current
multiprogramming algorithm,. If possibley, I hope to get a chance
to test this algorithm as a replacement for the current
algorithm,. Several minor problems, of coursey suggest

themselves.

First, the pre-paging algorithm interferes significantliy with the
operation of this multiprogramming algorithm, since it introduces
undesirable feedbaék ihfo the mhbpf of a process. Consequently,
I intend to perform my initial tests with the pre=-paging
algorithm rémoved from the system. In any case, it Is not ctear
what performance improvement it gives the systemy, and with the
bulk store it will not be used, owing to the transfer time of the

bulk store.

Second, I may have to provide constraints on eligibility such as
the current algorithm requiresy, so that response time (s held
down and so that undesirable osciliations or other problems in my
algorithm don*t cause bad responses to pathological loads. It
should be noted that too high a level of multiprogramming does

tend to increase interactive response time (3§) undesirably, so

(1) By response time here I mean the real time taken for a
nrocess to go from a blocked state to a running state then back
to a blocked statey, executing for a particular amount of CPU
time, There i3 no good measure of this in the system now,

Page 16 Memory Requirements

tha maximum bound is important. The minimum bound will prevent
excessive idle time caused by a program with a partition size
greater than or equal to the amount of core available.
Parameterization of such bounds to adapt to various
configurations and policy requirements is somewhat difficult, and

probably will be developed from experimental results,.

Thirdy the algorithm does not explicitly take into account the
burst of page faults which occurs when a process is made eljigible
after not running for a perliod of time. This could cause the
algorithm to determine & partition size which is larger than
necessary for such processes, I think the best way to avoid this
problem is to make the sappllng times at which pe is recomputed
sufficiently far apart so that the short period of high page
fault rate has little effect, It is possible that this is not an
adequata solution, In which case some sort of smoothing must be
employed to damp out oscillations in the calculated partition

size.

A fourth problem arises in the attempt to alliow the user a call
of the “order of “ﬁg;gfgi§€¥;36rklE§EEZ¥?“DV which the user “¥sf
inform the system of changes in his memory reference behavior.
The possibility always exists that the user will lie, In which
case he may be able to-prejudice the scheduling aigorithm In his
favor. I admit that I have no good ideas here at present. The

solution would be to have some sort of penalty for lying’} perhaps

unfortunately.,

Memory ReqQuirements Page 17

chargin) for excessive memory competition would be an effective

deterrent to lving.

VII. Exd>ectations

The results of implementing the scheme avove, with modiftications
as necessary to achieve this goal, should basically concern only
the exftreme classes of wusers. I don®t expect a spectacular
improvement in system performance under the current load, nor do
I expect res&onse time to get significantly cguicker, Rather, I
expect a stabilization effect, in which the system as a whole
becomes more stable in response to load, and the more average
user programs should become more consistent in their memory usage
behaviors The extreme classes of wusers will be treated more
tairiy than they are at present, since they wiil be scheduied
Wwith the correct amount of competition to ensure reasonable

performance.

