PROJECT MAC April 9, 1973

Computer Systems Research Division Request for Comments No. 14

A DESIGN FOR SHARED, USER~PROVIDED, PROTECTED SUBSYSTEMS IN MULTICS
by Richard G. Bratt

Abstract: Multics' current protected subsystem facility is very restrictive.
It limits both those who may create and those who may borrow protected sub-
systems, The attached document presents the functional specifications for a
less restrictive protected subsystem facility. This improved facility
potentially allows all users to freely create and share protected subsystems.
This document assumes the reader has some familiarity with Multics protected
subsystems, the problems associated with implementing protected subsystems

in Multics, and the current implementation of protected subsystem in Multics.

The ideas presented in this document are part of my undergraduate
thesis effort. This effort has been greatly influenced by Professor
Mike Schroeder, my thesis advisor. Later documents will cover, in detail,
the design outlined in this memo., If time permits, these documents will
include a detailed implementation plan. I would greatly appreciate

comments on this design as soon as possible.

This note is an informal working paper of the Project MAC Computer Systems
Research Division., It should not be reproduced without the author's per-
mission, and it should not be referenced in other publicatioms.

1. Introduction

Multics currently has a very primitive protected subsystem facility.
This facility allows each project to define one protected subsystem and
share it among its members. Many of the restrictions apparent in this
facility are not inherent in Multics' architecture. This memo presents
the essential functional specification of a more general, less restrictive,

protected subsystem facility.

The design of this new facility is based on the following criterion:

1. The facility must be easy to understand

2. The facility must be easy to use

3. All users must potentially be able to create protected subsystems

4. Users must be able to share their protected subsystems with
whomever they choose

5. Changes to the system must be kept to a minimum

2. Defining a Protected Subsystem

We will define a protected subsystem to be a subtree of the Multics
hierarchy. The root mode of this subtree is created by a special create_
directory primitive. This primitive marks the created directory as being
the root node of a protected subsystem., It also records, in the root node,
the ring in which the protected subsystem is to execute. The directories and
segments in this subtree all need not be part of the protected subsystem.
However, all components of the subsystem must be in this subtree.

Protected subsystems may not be nested. This restriction does not
seem to eliminate any important cases. More importantly, it eliminates the
need for scope rules governing the membership of a segment or directory in

an encompassing protected subsystem.

3. Access Control in a Protected Subsystem

In order to protect different protected subsystems from one another
and from other procedures, we must be able to specify that access to segments
or directories in the protected subsystem is conditional upon executing in that
protected subsystem. The obvious way to achieve this conditional access is to

allow acl terms that name a protected subsystem. While this solution appears

-3-

quite natural, it leads to a fairly complicated facility. Protected sub-
system names (tree names) are awkward, dynamic, and non-unique. We feel

that this complexity is not warranted and have thus chosen a simpler approach.
This approach adds a new mode flag, called "p" for 'protected", to the

mode field in the access control lists of both directories and segments.

This mode specifies that the access, of a process of the principal named

in the acl term, to the segment or directory inyquestion is conditional upon
that process running in the protected subsystem of which the segment or
directory is a member. A more complicated approach would allow one to specify
conditional access on a per-mode-bit basis rather than on a per-mode-term
basis. While this approach is more flexible, we feel that it adds unwarranted
complexity.

The "p'" access mode is unlike other access modes in that it grants no
specific access rights. 1Instead, it specifies that the system is to treat this
segment or directory as a protected member of its encompassing protected sub-
system. Thus, it modifies the effect of the other mode bits. The method by
which this protection is effected is quite simple. When a process first attempts
to access a protected segment or directory the system verifies that the encom-
passing protected subsystem is active. If this condition is met then the
segment or directory may be accessed, in the ring of execution of the subsystem
or in a lower ring, subject to the other mode bits in the acl term and the ring
brackets. In cases where "p'" access applies the system truncates the Rl and
R2 ring numbers of the segment or directory to the ring of execution of the
encompassing protected subsystem.

If the encompassing protected subsystem is not active, then all access
is denied unless the segment in question is a gate segment. Gate segments are
made known to the process, but the process is granted no access to the gate.
This forces all instructions referencing the gate segment to fault. If the
faulting instruction is a call then the system attempts to activate the
encompassing protected subsystem. This process of subsystem activation is
discussed later.

We propose that all gates into a protected subsystem be restricted
to being directly inferior to the protected subsystem directory. The rationale
behind this restriction is that it will make the process of deciding who has

access to a protected subsystem easier. It serves no other purpose.

4=

In Multics, a segment is made a gate segment by setting the R3 ring
bracket larger than the R2 bracket. Because the security of a protected
subsystem depends upon controlling available gates into the occupied ring of
a process, it is necessary that a non-null gate bracket be effective only
if "p" access to the gate segment applies. (Gates into system ring could be
an exception if desired.) Thus, if the matching acl term has the "p" bit
on, then the gate bracket is unmodified. However, if the '"p" bit is not on
then the gate bracket is set equal to the read/execute bracket. The result
is that all gates are gates into protected subsystem, and a gate can be used

only if the corresponding protected subsystem is active in a process.

4, Invoking a Protected Subsystem

A protected subsystem is invoked by calling a gate segment in the
protected subsystem. If the ring in which the gate segment would execute
matches the declared ring of execution of the subsystem then the system
attempts to latch this ring around the protected subsystem. This latching
process is what protects different protected subsystem from one another. A
ring, into which a protected subsystem might be latched, may lose its virginity
in several ways. It may be a ring reserved for the system (rings 0-2 might
be so reserved), it may be the ring that the process logged into, or it may
be a latched ring. These are the only ways in which a ring lower then the
login ring may lose its virginity, since by definition all gates are gates into
protected subsystems (or into the system), and any attempt to invoke a gate from
above will latch the corresponding ring. (The next condition eliminates the
possibility that a ring higher than the login ring can contain a protected
subsystem.) This guaranteed virginity of the latched ring assures that a
protected subsystem will execute in a standard, trustworthy, environment.

The second criterion for ring latching is that the ring must be lower
than the calling ring and the calling ring must be the lowest latched ring
(system rings are not latched, even though occupied.) This guarantees each
latched protected subsystem that only protected subsystems which it calls
directly or indirectly, or system procedures can be in lower rings. This
guarantee is necessary due to the nested access rights of rings. Therefore,
each protected subsystem must take care to only call protected subsystems

that it trusts.

-5-

It should be noted that once a protected subsystem has been
latched into a ring, that ring may harbor only that subsystem. Any
attempt to call another protected subsystem which executes in the same
ring will fail, since the ring is non-virgin. If it is desired to use
another protected subsystem which executes in an already latched ring
then the old process must be destroyed and a new process must be created.

This may be done with the new_proc command.

S Example
A simple example of how this facility might be used can be abstract-

ed from the problem of controlling access to Multics source code segments.
The desired access constraints may be summarized as follows:

1. Anyone on the SysLib project may read or write all source code
segments directly, and list all such segments.

2. Anyone on the Multics project may read all source code segments
directly, and list all such segments.

3. All other users are divided into two groups. Those in one group
may read source code, but a record should be kept of who reads
what and when. Those in the other group should be prevented
from reading any source code segments.

We may create a protected subsystem to impose these accessing con-

straints as follows:

1. 1login to ring 3 under the SysLib project

2, create a protected subsystem in the directory '">1dd", named
"source'", to execute in ring 3

3. set the ring brackets on the protected subsystem directory
to 4,4

4, give SysLib sma access to the protected subsystem and give
everyone else s access

5. create the segment '"log' in the protected subsystem directory in
which to record accesses to source code (Note that its ring
brackets will be 3,3,3).

6. give SysLib rw access to this segment and give everyone else

rwp access

-6-

7. create a program get library_source (gls) in the protected
subsystems directory which copies source code and records
who requested the service in the log segment

8. give SysLib re access, give users who are allowed to read
source code rep access, and give those who are not "null"
access

9. make the program a gate into ring 3 from ring 4, i.e., set
the ring brackets to 3,3,4

10. logout of ring 3

11. 1login to ring 4

12. copy the source library into a subtree rooted by the protected
subsystem directory, giving: SysLib rw access to segments and
sma access to directories, Multics r access to segments and s
access to directories, and everyone else rp access to segments

and sp access to directories.

This scheme allows all users in the SysLib project to directly read
and write all segments, and modify all directories in the protected subsystem
from ring 4. All users in the Multics project may directly read all source
code segments and list their containing directories from ring 4. Finally,
all other users either have access to source code only by calling the pro-
tected subsystem, or have no access at all. Note that when a user accesses
source code through the protected subsystem, the system will truncate the
ring brackets of the segment to 3. This prevents the user from touching the
segment in ring four. The following diagram represents how this subsystem

might look to the system.

@

3TN Y X7 Tl#ﬁ!,ﬂ %w
nw» Mo %
M X I SAC %
A ¥ onuey mvavs& mﬁyuw PP
i . . B
| b | x| x|bes| nd amd-p sfhis [fuo] S] e
d3» X% X%
ds JVASVES" Lw X ¥ X de xRN el X Ajmﬂm X
wLS X1 shQ ¥ PWS X @N5AG ¥ X X UYTAS ¥ v ¥ 1% TON0N
X [| p[ofoluplaavaus| 'k npl proy glef e [x]x|os| B blole | x|x|es| «b
5 ® K e
ong *.ijﬁm.*
X‘T b me .Iﬂ PIAINACS

