PROJECT MAC ' May 12, 1973

Computer Systems Research Division Request for Comments No.l8

OPTIMAL FOLDING OF A PAGING DRUM IN A THREE LEVEL MEMORY SYSTEM

by Lee J. Scheffler
Project MAC -- Room 517
545 Technology Square
Cambridge, Mass. 02139

Abstract: This paper describes a new drum space allocation and accessing
strategy, which we call "folding", whereby effective drum storage capacity

can be traded off for reduced drum page fetch time. A model for the "folded
drum" is developed and and expression is derived for the mean page fetch

time of the drum as a function of the degree of folding. In a hypothetical
three-level memory system of primary (directly addressable), drum, and
tertiary (usually disk) memories , the tradeoffs between drum storage capacity,
drum page fetch time, and page fetch traffic to tertiary memory are explored.
An expression is derived for the mean page fetch time of the combined drum-
tertiary memory system as a function of the degree of folding. _Measurements
of the MULTICS three-level memory system are presented as examples of improving
multilevel memory performance through drum folding. A methodology is suggested
for choosing the degree of folding most appropriate to a particular memory

configuration.

Keywords: multilevel memory, virtual memory, paging, drums, performance
optimization, memory performance

CR Categories: 2.44, 4.30, 4.41, 6.34, 6.35, 8.1, 8.3,

This is the third draft of a paper submitted to the ACM Fourth Symposium on
Operating Systems, to be held in Yorktown Heights, New York, in October, 1973.

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per-
mission, and it should not be referenced in other publications.

Optimal Folding of a Paging Drum.in a Three-Level Memory May 10, 1973

by Lee J. Scheffler

1.0 Introduction

Many computer systems today employ automatically managed multi-
level memory systems of successively larger, slower, and cheaper storage
devices to provide rapid access to large address spaces. Although two-level
memory systems (usually composed of directly addressable core memory and disk)
are the most common of these, there are several examples of multilevel memories
that use three or more storage levels to achieve lower mean access times:

IBM 370 models 158 and 168 [8,9], Honeywell 645 and 6180 MULTICS [10], and
the Japanese DIPS-1 [6].

This paper is concerned with a three-level paged virtual memory
system with a rotating magnetic-surface drum as the intermediate level of
storage between primary (directly addressed) and tertiary memories.
Specifically, this paper describes a drum space allocation and accessing
strategy, which we call "folding", whereby the effective storage capacity of
the drum can be traded off for reduced drum access time. Several identical
copies of each page are maintained on the drum, spaced equally around the
drum circumference. A request to fetch a page from the drum is served by
reading the copy of the page closest to the read heads.

With a simple modification to Coffman's drum analysis [3], an

*
expression is derived for the mean page fetch time of a drum as a function

* For purposes of this paper, mean page fetch time of a memory subsystem is
taken as the mean or expected time between the arrival of a demand page
fetch request at the subsystem access algorithm queues and the arrival of
the last bit of the requested page at the main memory of the system. This
does not include any software overhead times involved in page exception handling.

Scheffler -- Optimal Drum Folding -2~

of its storage capcaity, speed, degree of '"folding", amd mean page fetch
request inter-arrival time. Using a general success function for the
probability that any randomly chosen page fetch request finds a copy of the
requested page on the drum, an expression is derived for the overall mean

page fetch time of the combined drum-tertiary memory system as a function

of the degree of folding. The "linear paging" model of Saltzer [5] is

employed in an illustrative example of the application of this analysis to

a real computer system. In appendix A, measurements of the MULTICS system [10]
under a repeatable benchmark user load [11] for several very different config-
urations of number of CPUs and size of primary memory provide some experimental
verification of the analysis, but more importantly, demonstrate the value of
the flexibility of being able to fold the drum in system tuning. Consideration
is given to the practical limitations on the degree of drum folding. Finally,
a method is suggested for the system designer to take advantage of the three-
way tradeoff of dfum size, speed, and degree of folding, to improve the

cost-effectiveness of a multilevel memory system.

Scheffler -- Optimal Drum Folding -3-

2.0 The Three-Level Memory System

Qur model of a three-level paged virtual memory system consists of:

%

1. a primary memory of size M page frames (usually core), that is
directly referenced by programs, into which pages not already
present are loaded as they are referenced;

2. an intermediate paging device of size D page frames* (drum, for
purposes of this paper) on which copies of pages being used by
currently executing programs may reside when they are not in
primary memory; and

3. a tertiary memory (usually disk) on which each page of program
or data in the system maintains a permanent residence.

The flow of pages in this system is shown in figure 1. This flow is
managed automatically (by system programs invoked when a page needs to

be moved) according to the following rules:

1. When a page not giesent in primary memory is referenced, if a valid
copy of the page™ exists on the drum, the drum copy is fetched into
primary memory. If no valid copy of the page exists on the drum,
the copy in tertiary memory is fetched.

2. When the primary memory page replacement algorithmT decides to
remove a page from primary memory, the page is written onto the
drum.

1-
3. When the drum page replacement algorithm decides to remove a
page from the drum, the page is first read into a buffer in primary
memory and then written out to its permanent tertiary memory address.

%* Memory size is measured in page frames, each of which is capable of
holding exactly one page. A single fixed page size is used for all
transfers between memory levels. Since in general, portions of primary,
secondary, and tertiary memories may be reserved for system use (buffers,
allocation maps, etc.), the "size" of each memory level will be taken in
this paper to refer to the number of page frames on this level available
for actual paging operations.

%% a copy that includes the most recent modifications to the page

t algorithm for choosing a page to be removed to the next lower memory
level to make room for an incoming page

Scheffler -- Optimal Drum Folding =4~

pages being
demand
fetched
pages
removed . .
Primary > Drum Tertiary
Memory from (Secondary Memory
primary
memory Memory)
buffer area
pages being
removed from
drum
-
Figure 1

Flow of pages in a 3-level paged virtual memory

Scheffler -- Optimal Drum Folding -5-

3.0 The Drum

This section briefly describes the relevant aspects of the struc-
ture and organization of a sectored drum, associated control mechanisms,
and drum access scheduling algorithm.

Pictorially, a sectored drum appears as in Figure 2. The
recording surface of the drum is divided into T tracks, each of which is the
locus of data accessible by a single set of read-write heads. The surface
is further divided into S sectors, each of arc 2x/S, numbered consecutively
from 1 to S.

A single sector of a single track is a page frame; one page of
data or program fits exactly into one page frame. Thus, the total storage
capacity of the drum, in page frames, is D = S-T.

The heads can be used to read or write entire pages, one at a
time. The time to electronically switch the channel from the set of heads
for one track to the set of heads for another track is small enough so that
successively numbered sectors on different tracks may be accessed without
losing a drum revolution. The drum rotates in R seconds, so that page
transmission time is R/S seconds. Read-write head technology is assumed
to be advanced enough that the same set of heads can be used to first read,
then write, then read successive sectors on the same drum revolution.

The drum controller is aware at all times of the current drum
sector under the heads, so that a version of Demmning's Shortest Access Time
First (SATF) [4] drum scheduling algorithm is implemented. Specifically,

a pair of first-come-first-served (FCFS) queues of arriving access.requests
is maintained for each drum sector. Arriving demand fetch requests for

pages in drum sector k go into one of the two sector k queues ("fetch queue" k);

Scheffler -- Optimal Drum Folding -6-

tracks
1 2 cee T-2 "T=1 T

oyt i~ —t—
sector 2 {/
sector 1 { rotation time
sector § { MR = R seconds
gsector S-1 i

£\ \ \ \ \ \
read /write heads e . —
controller
channel
Figure 2

Organization of a sectored drum

Scheffler ~-- Optimal Drum Folding -7-

requests to write pages in sector k go into the other sector k queue (Mwrite
queue" k). When sector k arrives under the heads, the page for the first
request in fetch queue k is read. 1If fetch queue k is empty, the page for
the first request in write queue k is accessed. Figure 3 depicts this

queue organization.

page
fetches

e
writes

page
fetches

cmr———
writes

page

fetches

—_—

writes

Scheffler -- Optimal Drum Folding -8-

fetch queue 1

i

RN

write queue 1

£ v o«

L
L

-

fetch queue i

- . *

write queue i

fetch queue S

write queue §

C e

access requests for sector 1

cont~

roller ____D

W

drum

access requests for sector S

Figure 3

Queues for sectored drum scheduling algorithm

8cheffler -- Optimal Drum Folding -9-

3.1 Sectored Drum Analysis

In [3], Coffman analyzed a model of a sectored paging drum
where all arriving drum access requests for each sector are queued in a
single queue in firstjcome-first-served order. In the model of the previous
section, since all page fetch requests for each sector are served before any
page write requests, and since the service of a write requests never causes
the service of a page fetch request to be delayed or prolonged, Coffman's
model and analysis are directly applicable to studying drum behavior in our
model with respect to page fetch requests. The major results of his analysis
relevant to this paper are summarized here.

Let the inter-arrival times between page fétch requests to the
entire drum be independent random variables distributed as Kf e-)\ft , where
hf is the mean arrival rate of page fetch requests to the drum. Let the
page fetch requests be distributed uniformly over all S fetch queues, so that
arrivals of page fetches to any sector k also form a Poisson process, with
mean arrival rate ?5 . Then, according to Coffman, the mean page fetch time

of the drum (time between arrival of the page fetch request at a fetch queue

and completion of reading) is given by

2
R S+2 p (1-p) P(1-1/8) . -py _ 1
mpfty m = 5 T RIPG) toqy =5 © (1-e ") 2J] (1a)
—

L‘V”J X

page queue waiting time v

trans-

mission

time

where

R
3 (1b)

Scheffler -- Optimal Drum Folding -10-

is the "utilization fraction" of the drum, or the expected fraction of drum
page transfer capacity (the drum can transfer, by virtue of its rotational

*
speed, S/R pages per second) that is used to transfer pages being fetched.
2

% Coffman defines "drum utilization" as the average number of sectors
accessed (fetched, in this case) per drum revolution. p, as defined
here, is Coffman's '"drum utilization" divided by S, the number of

drum sectors.

Scheffler -- Optimal Drum Folding -11-

3.2 The Folded Drum

Suppose that, instead of using every page frame of the drum to
contain a different page, we use N page frames, spaced equally around the
drum circumference, to contain identical copies of the same page. Clearly,
this reduces the storage capacity of the drum quite drastically. However,
if the drum access algorithm is modified to serve page fetch requests by
réading the copy of the page closest to the heads, we find that page fetch
time of the drum is also dramatically reduced. This strategy of maintaining
N copies of each page on the drum and reading the one closest to the heads
we will call "folding the drum N times"., Let us attempt to quantify this
tradeoff of size for speed.

First, let us clearly state the operation of the queue arrival
and service disciplines with respect to page fetches. Page writes and
pre-paging reads are discussed in a later section. An arriving page fetch
request has the choice of entering any one of N different fetch queues for
the N different sectors where copies of the page are maintained. Thus,
the S sector fetch queues are partitioned into S/N (assume that N divides
S exactly) classes such that two fetch queuest for sectors i and j are in
the same partition if and only if i mod S/N = j mod S/N. The policy for
choosing the fetch queue into which an arriving fetch request will go is
quite simple: put it into the queue from which it will be serviced earliest.
This amounts to finding the subset of fetch queues in the partition of this
request that have the smallest number of requests in them, and then putting
the new request into the queue for the sector that will arrive under the
heads soonest. (There are far simpler ways of implementing this strategy

than indicated here. However, this description relates the essential effect

Scheffler -- Optimal Drum Folding -12-

of the algorithm.) Figure &4 depicts this partitioning of sector fetch queues.

Note that arrivals to individual fetch queues no longer constitute
a Poisson process, since the placing of a request in a queue is dependent on
both the number there already, and the current drum position. Thus, Coffman's
results are not direqfly applicable.

This difficulty is circumvented by noting that, for fetch requests,
this model can be transformed into the following equivalent model. Let the
drum in our new model rotate in R/N seconds and have S/N sectors and T
tracks. The storage capacity of this new drum is thus D/N pages, the
effective storage capacity of the larger drum folded N times. The time
a single sector is under the hea&s is (R/N)/(S/N) = R/S seconds, the
same as in the old model, so page transmission time is unchanged. Each
partition of sector fetch queues in the old model is mapped into a single
sector fetch queue in the new model whose number is the residue modulo (S/N)
of the number of any one of the sectors in this partition in the old model.
Figure 5 depicts the queue organization of this new drum model.

Assume that inter-arrival times of page fetch requests to the
folded drum are still independent random variables obeying the exponential

“Ae nt
. . s
density function hf,N e s

where Af N is the mean arrival rate of page
E
fetch requests to the N-folded drum, and that page fetch arrivals are
*
uniformly distributed over the sectors of our new smaller drum. Then page

fetch arrivals to each individual sector fetch queue in our new model

constitute a Poisson process. We thus regain the use of Coffman's drum

% A sufficient but not necessary condition for these assumptions to be true,
given that they are true for the unfolded drum (N=1), is the following:
Page fetch requests directed to the drum before folding, but directed
to tertiary memory after folding due to decreased drum size, are chosen
at random from the page fetch requests that went to the drum before

folding.

Scheffler -- Optimal Drum Folding ~13-

fetch gqueue 1

partition 1

fetch ‘queue N

fetch queue N+1

partition 2

fetch queue N+2

*

€

fetch™ queue 2N

3
3

fetcﬁ':ueue S-N+1

fetch queue S-N+2

partition §/N
. »

fetch ‘queue S "_______——"—___—__—————

Figure 4
Partitioning the S sector fetch queues into S/N partitions

for a drum folded N times

Scheffler -- Optimal Drum Folding ~14-

fetch queue 1

—_—» - page fetch requests for pages with copies on
drum sectors 1, N+1, 2N+1, ... , S/N-N+1

fetch queue 2

—_— ..
° cont=-
° roller __I
fetch queue S/N drum
—— ~ » : S/N sectors
D/N pages
page fetch arrival rate to all queues rotation time R/N seconds

is N requests per second
£,N

Figure 5

Queue Organization of N-Folded Drum Model

Scheffler -- Optimal Drum Folding -15-

analysis results, to give us an expression for mpftdrum(N)’ the mean page

fetch time of the drum folded N times:

2
P (1-p,) P (1-N/S) -p
_ R, R, (S/M)+2 N - N N N, 1
™ =5 * 5l 2Em T Ty © (t-e) -5l
(2a)
where
p. = A RN _ A R (2b)
N~ "£,NS/NT "f,NS

is the "fetch utilization fraction" of the N-folded drum.

Scheffler -- Optimal Drum Folding -16-

3.3 Evaluating Folded Drum Mean Page Fetch Time

In order to evaluate this rather forbidding expression for a

particular drum, we need to know A the mean arrival rate of page

f£,N°
fetch requests to the drum folded N times, or equivalently, pN, the

fetch utilization fraction of the N-folded drum. These can be measured
directly, or predicted from knowledge of the combined mean page fetch
arrival rate of both drum and tertiary memories.

Consider the three-level memory system of figure 6. uf is the
mean arrival rate of page fetch requests to the combined drum-tertiary
memory system. Af,N of these uf page fetches per unit time have valid
copies of their pages resident on the drum; the remainder require tertiary
memory accesses. Assume that uf is independent of D/N; i.e. that uf will
remain constant as effective drum size, and derivatively, mean page fetch
time of the combined memory system, changes due to greater or lesser drum
folding.* Let P(M,0) represent the probability that a randomly chosen
page fetch request finds a copy of the missing page on the drum, for main

memory size M page frames, and effective drum size 6 page frames. Setting

8 = D/N, we obtain

>
[t}

P(M, D/N) p. (3a)

and

©
!

R
=5 PQM, D/N) kg (3b)

%* Experience on the MULTICS system has shown that minimum and maximum
combined mean page fetch times obtained by various degrees of drum folding
differ by factors between 1.5 and 3. Thus, first order independence
between [, and mean page fetch time is probably sufficient for this
analysis. Such independence is obtainable under multiprogramming with a
small number of jobs.

Scheffler -- Optimal Drum Folding -17-

Combined Drum/Tertiary Memory

Primary Memory
" wf,N = ug - >"f,N - Tertiary
He Memory
page __—>page ' .
rum
frames fetches Nf
2
per D/N page frame
second
Figure 6

Page fetch arrival rates in a three-level memory

Scheffler -- Optimal Drum Folding ~-18-

Several existing models for individual program and multiprogramming paging
behavior supply functions similar to P(M,8). [1,2,4,7] Given an

explicit function for P(M,D/N), equation 3b may be substituted into equation
2a to produce the desired expression for mpftdrum(N), the mean page fetch
time of the drum folded N times.

As an illuétrative example, let us emfloy Saltzer's linear model
for multi-level memory demand paging performance* to obtain hf,N' According
to Saltzer, the mean headway** between references (mhbr) to a page for which
no copy exists in memory levels 1 through i is directly proportional to the
sum of the sizes of memory levels 1 through i. Assuming that e is propor-
tional to 1/mhbr (i.e. that mean instruction execution time is constant),

then Saltzer's model claims that

Be = (4)

2l

where a is a constant of proportionality. Focusing on the fraction of the
I .
e page exceptions * that are not satisfied on the drum, we have that

a
Be = MN T M T DN (3)

which, after the substitution of pr for a (from equation 4), and some

rearrangement, becomes

e D __
AN T WMFD Mt (62)

suggesting that

. (6b)
M + D

for this model. By equation 2b, then,

P(M, D/N) =

% A discussion of the linear paging model and validating experiments
appears in reference [5].

%% mean number of machine instructions executed

+ instances of reference to a page not in primary memory

Scheffler -- Optimal Drum Folding -19-

- R - R _D__
PN s NN s ™M+D (7

(quis the "fetch utilization fraction'" of the drum folded N times) ,

which, upon substitution into equation 2a, gives the desired expression

for mpftdrum(N).

Scheffler -- Optimal Drum Folding -20-

3.4 Optimal Folding

We take the mean page fetch time (mpfttotal) of the combined
drum-tertiary memory system (figure 6) as the measure of memory performance
that we wish to minimize. Given the first-order independence between mean
page fetch request generation rate uf and mean page fetch time mpfttotal
(discussed in section 3.3), minimizing mean page fetch time for a comstant
page fetch rate minimizes the real time a program spends waiting for pages
to be fetched. This has a generally desirable effect on overall system
performance (e.g. response time to users' requests for computation and
throughput of users' useful work per unit time).

mpft is given by

total

mpfttotal = P(M, D/N) mpftdrum(N) + [1-P(M, D/N)Y] mpfttertiary(wf,N)
(8a)
where

en = M- Xf,N = [1-P(M, D/N)] pg (8b)

3

is the mean arrival rate of page fetch requests to tertiary memory with

the drum folded N times. mpft is a function of We because. in
2

tertiary
general, the mean page fetch time of a tertiary memory system will depend
on the arrival rate of page fetch requests.

With mpftdrum(N) given by equations 2, P(M, D/N) given by the

character of the specific system, and mpfttertiary(wf,N) specified by the

particular tertiary memory system, a curve of mpfttotal versus N for possible

%
values of N can be constructed. In general, such a curve will either have

a single minimum, indicating that m.pfttotal can be enhanced by folding the

% See section 3.6 for constraints on the possible values of N.

Scheffler -- Optimal Drum Folding ~21-

drum, or will have positive slope for its whole length, indicating that an
unfolded drum is best. Investigating the minimum of equation 8a with respect
to N is of little merit, since the value of N that produces this minimum will
in general be non-integral, and thus will not correspond to a possible folding.

We are really only interested in comparing the values of mpftto corres-

tal

ponding to possible values of N.

Scheffler -- Optimal Drum Folding -22-

3.5 Example of Optimal Folding Using Linear Paging

To illustrate the process of evaluating equation 8a for a
specific system, we again make use of Saltzer's linear paging model.

The necessary equations are reproduced below:

For mpftdrum(N):)

S+2N Cn

R (1-8y e?N(l'N/S)(l-fN) _ 1

R, . .
mpft, (N) = T +J0Q (557 * ey 5 "2
drum S ' Nty 28 2(1-) ex
(2a)
where
_E_D
eh SNM+D £ 7
From the linear paging model:
__D
P(M, D/N) = &+ D (6b)
To simplify this example, we take
mpfttertiary(wf,N) = A)

(by which we assume that tertiary memory page fetch time remains constant
over the range of page fetch loads placed on it by successive drum foldings).

Then, from equation 8a, mpf%ntal is given by:

1
total — ™ + D

2 N
(1-8) ©(1-3) =@
[D{§+§[?N(S+2N s e e - %]}
<+

mpft

2S) + 2(1-(>N) + €y
NM -] (10)

Scheffler -- Optimal Drum Folding -23-

3.6 Constraints on Folding

There are several obvious constraints on N, the number of drum
folds. N must be integral. It must be true that 1 < N<S8. And N must
divide S exactly. (One could conceive of more complex drum folding schemes
where N does not divide S exactly; these are not considered here.)

The total combined arrival rate of demand page fetch and write
requests for the drum must not exceed the page transfer capacity of the
drum. If Af,N and AW,N represent the arrival rates of demand page fetch and
page write requests to the drum folded N times, then this condition is

expressed as

wiwn

A + N A < (11y

(AW,N is multiplied by N because each request to write a page onto the

drum blossoms into N requests to write N copies of the page on N different
sectors.) If “f and “w are the respective combined arrival rates of page
fetch and write requests to the drum-tertiary memory, and Pf(M,ﬁ) and PW(M,G)
are the respective probabilities that a particular page fetch or write request

will go to the drum with capacity 0 pages, then this condition becomes

(12)

|

uf.Pf(M, D/N) + Nu Po(M, D/N) <

which, when solved for N with specific functions for Pf and P, glves an
upper bound on the number of folds so as not to overload the drum. In
practice, one should choose an N somewhat less than this bound because, as
drum capacity is approached, the time to complete the writing of all N
copies of a page will increase markedly, and primary memory may become
tied up with copies of old pages that have not yetlbeen completely written

out.

Scheffler -- Optimal Drum Folding -24-

Finally, the increase in access traffic to tertiary memory must
not overload it. If C is the maximum average number of accesses per unit

time that tertiary memory can support, then this condition is

He (1= P04, D/M] + p [1- PG4, D/M] < © (13)

Scheffler -- Optimal Drum Folding -25-

3.7 Write Interference

When a drum is folded N times, each time a page is writtem, N
different drum sectors must be written. Thus, although the number of distinct
pages to be written onto the drum can be expected to decrease as the effective
size of the drum is décreased by folding, the tofal number of sectors to be
written increases somewhat faster with increasing N. Equations 11, 12 and 13
explore one aspect of this increase, defining upper bounds on N such that
neither the drum nor tertiary memory become overloaded. However, since demand
page fetch requests are given priority over write requests, tﬁe mean sector
write time, and therefore the mean page write time, will increase drastically
as maximum drum page transfer capacity is approached. The implication is
that, when the primary memory page replacement algorithm decides to remove
a particular page from primary memory, it will be some time before all N
copies off that page are completely written onto the drum, and the primary
memory space taken up by that page can be used for some incoming page.

The danger is that a page fetch request may be forced to wait for the
completion of writing of the primary memory page it will replace, thus
lengthening drum page fetch time.

This interference is viewed as a second-order effect. Paging systems
often try to maintain a buffer of a small number of free primary memory page
frames into which incoming pages may be read without waiting for a page to
be written out. If the probability that a new page fetch request finds no
free primary memory page frames into which it can be read is significant,
that is an indication that the buffer being maintained is too small for the
system operating point, and should be made larger. Since the buffer sizes
we are considering are generally only a small fraction of the size of primary
memory, their size can be increased without seriously reducing the primary

memory available for paging.

Scheffler -- Optimal Drum Folding -26-

4.0 Drum Cost Versus Mean Page Fetch Time

The introduction of the folded drum allocation and accessing
strategy adds new complexity to the system design activity of choosing
the drum to be used as the paging device of a multi-level memory. Where
the system designer previously had to trade off only drum speed and drum
size (which are primary determinants of drum cost) against mean page
fetch time of the multi-level memory, he now may wish to comsider the
possibility of folding the drum. He now has the option, for example,
of choosing a small, fast drum, to be used unfolded, or a larger and
slower drum, to be used folded, to meet the same mean page fetch time
objective. It is thus appropriate to suggest a methodology for dealing
effectively with this three-way tradeoff.

The two most common questions one might expect a designer to
ask are:

1. What is the minimum mean page fetch time that can be
obtained for d dollars?

2. How much will it cost to keep mean page fetch time
under m milliseconds?

The following methodology provides quantitative information

to answer these questionms.

1. For each drum on the market that satisfies interface specifications,
find the possible folding that minimizes mean combined drum-tertiary
page fetch time for the system (from equations 8).

2. On a single set of drum cost (vertical) versus mean page fetch time
(horizontal) axes, comstruct a scatter plot with each point representing
the cost and minimum combined mean page fetch time for each drum under
consideration. (Remember to include the costs of implementing a folded
drum algorithm, if they will be substantial.) Such’a graph might look

like that of figure 7.
The scatter-plot produced in step 2 becomes a source of cost-benefit

information for choosing the drum and degree of folding that will be used.

Scheffler -- Optimal Drum Folding -27-

Drum Cost

A

dollars

minimum attainable

mean page fetch time
—pp» of combined drum-
(milliseconds) tertiary memory

Figure 7

A scatter-plot of drum cost versus minimum attainable mean page fetch time

for several hypothetical drums

Scheffler -- Optimal Drum Folding -28-

One comment is appropriate concerning this choice. A drum that
produces optimum mean page fetch time when folded mid-way in its range of
possible foldings probably provides more flexibility in an evolving system
than one that produces optimum mean page fetch time when completely unfolded
(N=1) or when maximally folded (N=S). As primary memory size changes, or
as mean time between page fetch requests changes (due perhaps to changing
the number of CPUs, faster CPUs, or new scheduling algorithms), a drum that
can be further folded or unfolded to mirror shifts in the system's operating
point will be more valuable than one that cannot be folded or unfolded

further.

Scheffler -- Optimal Drum Folding -29-

5.0 Summary and Conclusions

The "folded" drum allocation and accessing algorithm offers the
computer system designer the flexibility to trade off drum size for speed
as needed to improve multilevel memory performance, and to keep pace with
evolving system configurations, programming, or user load. Sections 3.2
through 3.7 explore the quantitative aspects of this tradeoff for a specific
model of a three-level paged virtual memory system, culminating in equations
2 and 8 which relate combined drum-tertiary memory mean page fetch time to
the number of drum folds.

A model of the redistribution of page fetch requests between the
second and third levels of a three-level memory system is required to apply
the analysis to a real system. The "linear' paging model of Saltzer was
presented as an example of such application. The folded drum analysis ,
assumes that times between successive arrivals of page fetch requests to
the drum are independent of each other, a condition which is met to a first
approximation by multiprogramming over a small number of jobs.

Appendix A presents results of experiments with the MULTICS three-
level memory. Although these results cannot be taken as validating this

model and analysis, they do demonstrate the usefulness of drum folding in

system tuning.

A methodology was presented for deriving comparative cost-benefit
information for different drums used as paging devices in a multilevel memory.
This information should be useful in choosing between competitive drums
during system design and upgrading activities. The method could conceivably
be generalized to multilevel memories of more than three levels, and to

include other memory devices than drums.

Scheffler -- Optimal Drum Folding A-1

APPENDIX A Measurements of the MULTICS Three-Level Memory with
Drum Folding

The Honeywell 645 MULTICS system is a time-shared multi-programmed
computer system with an automatically managed three-level memory composed of
core, drum, and disk.. The MULTICS drum presently used has 16 sectors and 256
tracks, giving it a capacity of 4096 pages. Drum rotation time is 33.3
milliseconds. The MULTICS drum scheduling algorithm is quite similar in
function to the two-priority folded drum scheduling algorithm analyzed in
this paper (although it is very different in form).

Measurements were taken on the three very different configurations
shown in figures Al, A2, and A3. In each configuration, a number of benchmark
user processes* were run simultaneously to provide a reproducible realistic
user load. In each configuration, the number of drum folds was varied from
1 to 16 (8 for the "minimum" configuration) in powers of 2, the range of
possible foldingé implemented. For each configuration and degree of folding,
average frequency of page exceptions from main memory (uf) and drum, disk,
and combined drum-disk mean page fetch times** were measured over approxim-
ately 10-20 minutes of time after the system reached an equilibrium state.

(N))

Using equations 2a and 7, a prediction of drum mean page fetch time (mpftdrum
was obtained. To this was added an estimate of software overhead for drum
queue management. This prediction, together with the measured value of disk

mean page fetch time (which already includes software overhead) were substituted

* These processes were carefully designed to exhibit, under multiprogramming,
the same distribution of resource and system program usage as observed for
a normal user load. Details may be found in reference [11].

%% The mean page fetch times measured include software overhead times for
drum and disk queue management and interrupt handling.

Scheffler -- Optimal Drum Folding

main memory

~40
CPU — pages [
Figure Al. A "minimum'" MULTICS configuration
main memory drum
CfU ~175 ~4096
<—P»| pages |w—P»] pages

Figure A2. A "small" MULTICS configuration

A

Figure A3.

CPU
main memory
~300
pages
CPU

_/

drum

~4096
pages

__/

A "large" MULTICS configuration

disk

disk

s disk

Scheffler -- Optimal Drum Folding A-3

into equations 8, with P(M, D/N) given by equation 6b, to obtain a prediction

of overall drum-disk mean page fetch time, mpft The measured and

total’

predicted values of mpft for each configuration and degree of folding

total
are presented side-by-side in table Al.

These experiments should be taken with a grain of salt, for
several reasons. The model described in this paper is not an exact model
of the MULTICS drum scheduling algorithm. Several concessions to simplicity
and efficiency were made in its implementation. In particular, software
overhead times for drum queue management are not constant with varying numbers
of drum folds, and become a significant fraction of drum page fetch time for
large numbers of drum folds (N=8 or N=16). The analysis in the body of the
paper makes the agsumption that software overheads are negligible, or at
worst, not dependent on the number of drum folds. Also, Saltzer's linear
paging model, used to obtain the drum page exception success function P(M, D/M),
is not an exact model of paging in MULTICS. Nevertheless, the figures in

table Al demonstrate that folding a sectored drum in a three-level memory

can result in measurable improvements in memory performance.

Scheffler -- Optimal Drum Folding A-4

Configuration Number of Folds mpfttotal mpfttotal
measured predicted
(msec) (msec)
1 21.9 21.9
minimum
2 14.9 13.8
(1 CPU, ~40 pages 4 16.4 18.0
primary memory)
8 23.2 25.5
1 23.5 22.0
small 2 15.0 16.4
(1 CPU, ~172 pages 4 16.2 18.4
primary memory)
8 25.6 32.6
16 71.5 76.1
1 24.6 23.4
large 2 15.3 20.2
(2 CPUs, ~295 pages 4 24.2 39.2
primary memory)
8 84.4 88.4
16 113.5 122.3

Table Al. Measured and Predicted Combined Drum-Disk

Mean Page Fetch Times for the MULTICS System

ACKNOLEDGEMENTS

Professor F. J. Corbatd originated the idea of folding the MULTICS
paging drum. Steven H. Webber programmed the Multics multilevel memory
strategies and wrote many of the metering programs used in the experiments.

Noel I. Morris implemented the folded drum algorithm on the Honeywell 645 MULTICS
system. Douglas H. Hunt designed and implemented the programs used to

provide a repeatable realistic user load for the experiments comparing

different degrees of drum folding. Professors F. J. Corbatd and J. H. Saltzer

of M.I.T. and P. J. Denning of Purdue Univergity provided valuable guidance

and critical appraisal of this work.

Scheffler -- Optimal Drum Folding

REFERENCES

. Aho, A. V., Denning, P. J., and Ullman, J. D., "Principles of Optimal Page
Replacement", JACM, volume 18, number 1, January 1971, pp80-93.

. Chow, C. K., "On Optimzation of Memory Hierarchies", IBM research report
RC 4015, September 5, 1972,

. Coffman, E. G., "Analysis of a Drum Input/Output Queue Under Scheduled
Operation in a Paged Computer System", JACM, volume 16, number 1,
January 1969.

. Denning, P. J., "Effects of Scheduling on File Memory Operation",
Proceedings AFIPS, 1967 Spring Joint Computer Conference, volume 30,
pp9-21.

. Saltzer, J. H., "A Simple Linear Model of Demand Paging Performance",
submitted for publication.

. Toda, Iwao, "A Large-Scale Data Processing System: DIPS-1", proceedings
of First USA-JAPAN Computer Conference, 1972, ppl93-202.

. Sekino, A., "Performance Evaluation of Multiprogrammed Time-Shared Computer
Systems", Ph.D. thesis, MIT Project MAC TR-103, September, 1972,

. IBM System/370 Model 158 Facts Folder, International Business Machines Corp.,
August 1972,

. IBM System/370 Model 168 Facts Folder, International Business Machines Corp.,
_August 1972.

. The Multics Programmer's Manual, available from Honeywell Information Systems
Inc., contains a complete bibliography of published papers and theses concerning
the MULTICS system.

. Reference not available yet.

