PROJECT MAC May 21, 1973

Computer Systems Research Division Request for Comments No. 21

INSTANCE TAGS IN MULTICS
by Michael D. Schroeder

In this RFC a proposal is made to use the instance tag portion of
a Multics principal identifier to add a new capability to the Multics access
control mechanisms. The instance tag portion of a Multics principal identi-
fier currently is used to differentiate interactive and absentee processes.
It is not clear that this application of instance tags meets any interesting
protection needs. An alternative application for instance tags, which seems
to patch a deficiency in the current Multics access control mechanisms, is
to allow a user to specify at login the instance tag portion of the principal
identifier to be associated with the process being created. User-specified
instance tags would allow each user to create several protection compartments
for his files. Such compartments appear useful in limiting the access of
borrowed procedures to the stored information of the borrower.

It is implicit in the design of Multics that a borrowed procedure
assumes the access privileges of the borrower's principal identifier. Thus,
every borrowed procedure is a potential Trojan horse, i.e., it could comntain
code to alter or steal information accessible from the borrowing process.

If a user hés particularly sensitive information accessible to his principal
identifier, then he is effectively constrained from borrowing procedures
from all but the most trusted sources. _

When the possibility of a general mechanism for supporting user-
constructed protected subsystem is contemplated*, it becomes apparent that

this problem could prevent a user who constructs and maintains a protected

% Dick Bratt and I currently are working on a proposal for a minimal set

of modifications to Multics to allow all users to construct protected sub-
systems and to allow each user potentially to borrow the protected subsystem
of any other user.

This note is an informal work ing paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per-
mission, and it should not be referenced in other publications.

-2-

subsystem from ever borrowing a protected subsystem provided by another user.
The borrowed protected subsystem would assume the access privileges of the
borrower's principal identifier and thus could alter or steal the borrower's
protected subsystem. ‘

One method of protecting sensitive information from borrowed proce-~
dures is to allow users to login under different principal identifiers at
diffefent times. A usér then could restrict access to sensitive information to one
of his principal identifiers and be very careful when logged-in under that
identifier not to borrow questibnable procedures. Another principal identifier,
which did not have access to the sensitive information, could be used when
borrowing potentially dangerous procedures. The availability of multiple
principai identifiers to a user also would provide the user with means to
prévent himself from erroneously altering sensitive information while performing
unrelated computatidns. |

’ My proposal ié that, wiﬁh appropriate restrictions, users be allowed
to specify at login the instance tag portion of the principal identifier to
be associated with the process being created. Because the instance tag allows
many distinct principal identifiers to be created for a given person/project
combination, the several protection compartments for a given user are created
without upsetting the use of person names and project names as unique identi-
fiers for persons and prbjects, reépectively, and without the requirement for

clumsy administrative intervention on a per user, per compartment basis.

The Default ACL Term

In order for the proposed new applicétion for instance tags to be
most useful, a second change to the system is required as well, Currently
tke append branch and make_seg gates to the supervisor cause a default
ACL term of the form

Person_name.Project name.* <mode>
to be included automatically in the ACL of the new segment. Always using a
third component of "#" in this default ACL term defeats the purpose of user-
specified 1instance tags, for it makes all new segments a user creates
accessible from all of the user's protection compartments, as defined by
different instance tags. In order for user-specified instance tags to work

properly, some control over the default ACL term is required. At the very

-3-

least, when a principal identifier corresponding to a protection compartment
for sensitive information is in use, then the default ACL term should use a
third component that precisely matches the instance tag. When a principal
identifier for information of low sensitivity is used, then a third compo-

nent of "#'" can be used in the default ACL term.

The Proposal in More Detail

Detailed below are a minimal set of changes and additions to the
system for implementing protection compartments for users, as discussed above.
1. Add a control argument to the login command to allow optional user
specification of the instance tag portion of the principal identifier that
will be associated with the process being created. If no instance tag is
specified then the value "a'" is the default.
2, ‘Provide means in the Project Master File to control user specification
of instance tags at login. The control mechanism should allow specification
of whether or not a particular user can specify the instance tag when he logs
in, and if he can should allow specification of the particular instance tags
that are acceptable.
3. Provide a repository in ring O for the default ACL term of a process.
Recorded there when a process is created should be the precise person,
project, and instance tag values for this term. Determining the initial value
for this term could be done in a variety of ways. A simple method that seems
to cover most cases is to use "person name.project_name.*" if the instance
tag portion of the process's principal identifier is "a', else use
"person_name.project_name.instance_tag'". The supervisor gates hcs_Sappend branch
and hcs_S$make_seg should generate the ACL for a newly created segment by adding
this default ACL term, with the mode bits specified by the caller, to the
appropriate initial ACL. Note that many standard service system procedures
create new segments via the supervisor gate hcs_$append_branchx. In this case
the default ACL term is not used. Rather, the caller of hcs_$append branchx
supplies an entire ACL term to be added to the appropriate initial ACL. 1In
most cases, the term to be added is generated by a call to get group_id$tag_star,
which provides a term of the form ''person name.project_name.*''. If ignored,
the continued use of get_group_id$tag_star could make the use of user specified

instance tags very awkward by frequently (and quietly) making access to newly

M

=

created segments available to all protection compartments of a user. 1In
general, all calls to get group_id$tag star, as well as its companion,
get_group_id, should become calls to a new function get_ default acl_term.
This function should return the default ACL term as recorded in ring 0.

In addition, new functions get_principal_id and get principal_idS$tag_star
should be made available for those (few) situations where special ACL
manipulations are really required. Note that get principal_id is the same as
the current get_group id. Changing its name will force all present uses

of get_group_id to be reconsidered and mapped to get default acl_term or
get_principal id, whichever is appropriate. It is expected that
get_default_acl_term will be appropriate in almost all cases.

4. Change the absentee process creation algorithm so that the principal
identifier of an absentee process is identical to or functionally related

to the principal identifier of the creating interactive process. The impor-
tant point is that the absentee process' principal identifier not be speci-
fiable by the user procedures which cause the creation of the absente:
process. If this principal identifier were program specified, then a
borrowed procedure could gain unauthorized access to a protection compartment

of the borrowing user simply by submitting an absentee process creation while
executing in a process of the borrowing user. The request would specify

the principal identifier for the sensitive protection compartment and

specify the execution of a malicious procedure in the absentee process.

An Example

Now consider an example of the use of user-specified instance tags.
First of all note that users unconcerned with sensitive information perceive
no change in the system, unless they look hard at the instance tag for absentee
processes. A user with sensitive information to protect enlists the coopera-
tion of his (friendly) project administrator to be provided with two directories
immediately inferior to the project directory, as in Figure 1. One, named
"Schroeder" in the figure, is the normal working directory of the user, and
the ACL of this directory gives full "sma" access to all of the user's protection
compartments. In the subtree rooted by this directory appear all normal
directories and segments of the user. All are normally accessible to all

protection compartments associated with the user.

-5-
The second directory, "Schroeder_ b'" in the figure, is the repository
for especially sensitive information. It is accessible only to protection
compartment ''b" of the user. When dealing with such information, the user
logs in under instance tag '"b" and uses this directory as his working
directory. Note that the default ACL term in this case will give access
only to the user's '"b" compartment. The user must be careful when logged

in as "b" not to borrow untrusted procedures.

When logged in under the instance tag "a", however, borrowed procedures
cannot get at sensitive segment, unless, of course, their ACL's specifically
allow such access. Also, the ACL's of sensitive segments cannot be altered
from protection compartment "a'" because of the ACL term on directory

"Schroeder_b".

CompSys

’
//"<?chroeder.CompSys.* sma

e {Schroeder.CompSys.b sma

I
a

»

1\\ Schroeder Schroeder_b

™. Schroeder.CompSys.b rw

“
~Schroeder.CompSys.* rw

" N
S ~—

An unsensitive A sensitive
segment segment

Figure 1

