PROJECT MAC May 22, 1973

Computer Systems Research Division Request for Comments No.23

PROPOSAL TO REMOVE MULTICS DYNAMIC LINKER FROM THE SECURITY KERNAL
by Philippe A. Janson

Abstract: The motivations for removing the procedures and data bases
directly related to the dynamic linking mechanism is first outlined.
A brief description of the present linker is then given. Finally,the
major problems resulting from the new design are explained.Tentative
solutions are given for each of them. Three major design changes are
Proposed: a hardware modification in the association between access
modes and ring brackets, a new prelinking mechanism for the linker,
a modification in the dynamic linking mechanism itself.

(Note: I will not be here during the summer. Comments on the paper are
welcome. They can be dropped on my desk in room 517, Thank you.)

This note is an informal working paper of the Project MAC Computer
Systems Research Division. It should not be reproduced without the
auther's permission, and it should not be referenced in other
publications.

I: Motivations.

The idea of removing the dynamic linker from the most protected
area of Multics, namely ring O, can briefly be stated as follows. There
is apparently no reason why the linker should need more privileges than
the faulting procedure on behalf of which it is acting. This is obvious
in the case where the number of the target ring of the link being snapped
is greater tham or equal to the number of the faulting ring. As will be
seen in this proposal, the linker needs no more privilege than the faulting
ring even in the case that the target ring has a lower number. Thus the
principle of least privilege suggests that belongs in the faulting ring.
Not only is it desirable to allow the linker to execute in the faulting
ring, but it is desirable to force it to do so. As will become clear,
the notion of dynamic linking is almost irrelevant to ring O because
ring 0 is almost totally prelinked. Preventing execution of the linker
in ring O would avoid the necessity to audit it to certify the system.
This paper will explain how the linker can be removed from ring 0. We
do not claim that the solution proposed are the best ones, nor do we
claim that they are all easy to implement. We just hope so and would be

glad to hear any comment on this point.

The dynamic linking mechanism is supported by a set of procedures
known as the linker., The linker can be entered on a call, to force a link
to be snapped, or more generally, is invoked on a linkage fault, i.e. the
attempt to reference a location unknown by the running process at that time.
Snapping a link is done in the same way whether the linker is called
explicitly or entered on a fault. We will show in this paragraph what
procedures are involved in the process of dynamic linking, and we will
define wich among these are proper parts of the linker and should be

removed from ring 0. These definitions will become clear and be justified

in subsequent paragraphs.

-3-

1) Trace of the calls in the linker.

(linkage fault)

fim makestack init_proc

! link_snap
92] |
. X
" fs_search get_defptr link man
g : : }
L decod§=8Pject lot maintainer accept_alm object
..... EIRa g7 Bggeeyy L “ov bin®
kst_man | initiate// ’ object info*//
status_// level usage values Junique_chars*//
;é;é;é}} cesene
make_seg//
move_
syserr//
terminate//

Underlined procedures are part of the praposed bound linker and will
execute in the ring where a link is to be snapped.

% indicates procedures called by the bound linker which will execute
in the ring from which they are called.

Other procedures will execute in ring O as parts of the hardcore.

// indicates that the tracing was stopped (uninteresting).

2) Description of the linker.

Assuming that the reader is familiar with the general concepts
of dynamic linking, we will briefly define what each of the procedures
of the linker does and explain why other procedures are not -properly
speaking- parts of the linker. We will also explain why these shouldn't
or couldn't be removed from ring 0. Problems and solutions involved in
removing the linker from ring O will be outlined further.

a/ link snap.

This is the main procedure of the linker. All calls to the
linker are directed to it. It takes a pointer to the machine conditions,
or to the link to be snapped, or a segment name and an external symbol
name as input. It returns to the caller when the link is snapped. To
snap the link, it analyses its type (see MPM for the definition of types),
and performs calls to fs_search, get_defptr and link man accordingly.

b/ fs search.

DI_IS.E

It is invoked by link snap every time the linker needs to
snap a link to a segment referenced by its name. Fs_search picks up the
search rules from the kst and searches all subsequent directories of the
rules until it finds the name of the segment. It eventually initiates the

segment, makes it known and then returns its segment numberto the caller.

It is invoked by the linker when it needs to find the offset of an
external symbol definition in the definition section of the extermal
segment.

d/ link man.

This is probably the second most important part of the linker
after link_snap. It performs all the necessary bookkeeping to manage
the 10T's, the CLS's and the combined linkage sections. The present linker
implements a rule according to which the linkage section of an object
segment has to be copied into a virgin segment (for gates) or into a
combined linkage segment when the object is first referenced. Link snap
calls link man for this purpose. Link _man checks to see if a linkage
section exists for the target segment of the link being snapped. If it
is not the case, it creates one. In order to do this, it checks to see
if a 10T exists in the target ring. If not, it creates one. When the I1OT
exists, an entry is created in it for the linkage section of the target
segment. All above checks involve calls to the lot_maintainer. Recursive

calls to link_man result from a search in different rings (origin and

“5a

target rings) to find a possibly existing linkage section. In the future
design, link man will be totally separated from link_snap. The "rule of
the first reference" will no more be respected.

e/ decode_gbject and accept_g}g_gbjecE;

These are utilityroutines used by the linker to get information
about object segments.

f/ Other Erocedures.

We will very briefly describe here the procedures involved in
linking but not parts of the linker and we will explain why they must
execute in ring O. ‘

-level is a short utility routine used to set or get the validation

level. This level being a protected item, the routine should obviously

be kept in ring O and be accessible through a gate. Moreover before
accepting a request,the routine should make sure that the caller has the right
to set the level it wants.

-usage_values is a metering routine. If counters have to be trusted by

the system,they obviously should be in ring O. Therefore the routines
updating them should also be in ring 0. (In fact the future linker will
not even access the routine, because it is unsafe to allow the users to
update counters).

-cv_bin, object_info and unique_chars are also utility routines. They

can eventually run in user rings but may also have to run in ring Obecause
many procedures currently running in ring O need them and outward calls
with inward returns are forbidden.

-syserr is a short procedure called of system error. It needs access to
many protected items and since it deals with system errors and not user
errors it should obviously be protected from the user rings, i.e. run in
ring.9.

-terminate (makeunknown), move_, makeseg, append, initiate, fs_get,
status_ and find_ are all file system procedures: they deal with directories
segments, links and branches. The idea of removing the whole or a part

of the directory control out of ring O has been around for some time.

We have no measure of the feasibility of the project. All we know is it is
beyond the scope of this project. For the time being we will consider

that the directory control has to stay in ring 0,if not for sound reasons

at least for practical reasons.

-6-

-kst_man has to stay in ring O because it manages the kst which is a
protected data base’ (because it may contain information about all rings).
-lot_maintainer may execute in ring O because it is part of the prelinker.
But when called by the linker it should execute in the faulting ring.
Actually, the present lot_maintainer will be used only by the prelinker
and a copy of it will be made part of link man.

g/ Comments.

In the above text, the reader will have understood that by
removing from ring O we mean setting the ring brackets to (1,5,5). By
allowing execution in all rings we mean setting the ring brackets to (0,5,5)
and by forcing execution .in ring 0 we mean setting the ring brackets to
(0,0,0).

Some other procedures not mentionned above can be removed from
ring O because they are directly related to the dynamic linking mechanism
although they are not part of the linker. Unsnap_service, and initiate_

search _rules are in that category.

III. Problems involved in removing the ligker from ring 0.

1) Goals.

We see the future linker as a set of procedures bound together

in one segment with ring brackets (1,5,5). When a process starts running
in any user ring, the linker segment will be prelinked to the rest of
the system by some mechanism to be defined. Later on, as the process
takes a linkage fault, the fault interceptor module will somehow call
the linker in the faulting ring to snap thelink. As this is done, the
linker will restore the machine conditions and execution will proceed.

2) The problems.

In the coming paragraphs, we will explain all the problems

encountered in trying to achieve our goal. We will also outline tentative
solutions for each type of problem. Although it is not always the case,
we have tried as much as possible to justify our solutions in terms

of simplicity, feasibility, and generality.

-7-

3) Problems of gates into the supervisor,

Removing procedures out of ring O has two direct implications
on gates. First, one might hope that the procedures removed can still
access (call)the ring O procedures through existing gates. Unfortunately,
this turns out to be the case. For instance, since kst_man will be kept
in ring 0, we must have gates to call it, e.g. hes_Sgetkstep. Any such
gate will have to be added to the existing gate segment. On the other hand,
present gates will haQe to be removed. This is the second problem. For
instance, hcs_S$make ptr will become obsolete since thelinker entry point
link_snap$make_ptr will be outside of ring 0. This poses a bad problem
of compatibility. All programs presently using such gates will have to
be modified. One solution is to keep the present linker around for a
while. All linkage faults would be directed to the new linker but explicit
calls to the linker would be handled by the present linker for a transient
period. Using the present linker could eventually cause messages to be
directed to the output file to request the program to be changed before
a given deadline after which the present linker would be removed totally.
Another solution is to keep the obsolete gates for a while but to modify them
somehow sothat they would redirect the calls to the linker in the outer
ring.

4) Problems of arguments.

In creating the new gates for the linker, ome might encounter
arguments problems. If one created a gate like for instance
hcs_$initiatq_segcount(dirptr,refname,...), one would be in trouble.

If this gate was called by the linker from ring 4, the hardware would
refuse to access the directory pointed to by dirptr because directories

are protected and cannot be accessed directly on behalf of a user ring.
The solution is to use the pathname of the directory instead of the
pointer. We have given here one example of argument problem. There exist
many others. In all cases, the solution is to replace pointers to protected

items by symolic information.

5) Problems of references.

The present linker needs to read several items in protected
data bases. This will obviously be impossible in the future design. The
data bases presently referenced by the linker are active hardcore_data,
pds and the kst. Ahd is a metering data base used to collect statistical
information about the use of various ressources. We have already mentionned
that the linker cannot access any ring O metering data base. Therefore,
acces to ahd must be removed. If one wants to measure the activity of
the linker, one can eventually create per ring datat basgs out of ring O.
The kst is accessed to read the search rules. In this case, the search
rules will be removed from the kst and be put probably in the CLS on a
per ring basis (see further). The problem therefore disappears. Finally,
the case of the pds can easily be resolved. Some of the information kept
in pds will no more be necessary in the new design. Another set of items
does not need to be protected and therefore can be put in per ring data
bases (stack or CLS instead of pds). A third kind of items will be kept
in ring O but is used only by make_cls_lot which anyway has to run in ring 0
as will be seen further.

6) Prelinking problem.

Before a process starts running in any user ring, the system
presently makes three calls to the linker, all to link_snap$make ptr.
Makestack calls the linker to get a link to pll operators_$operators_table.
This pointer has to be stored in the stack header. Another call, by
makestack too, is to get a pointer to signal_$signal for the same purpose.
The last call to the linker is done by init_proc to get a pointer to the
first procedure to be executed in the user login ring. Given the fact
that there will be no linker in ring 0 in the future, and given that it
is impossible to run the linker in a'fing n (n greater than 0) to transfer
tothe first procedure (itself!?!) in that ring or to make a stack for ring
n, we have to find other ways of snapping these first links. One way
would be to use the system prelinker but it is not desirable because it
would force us to keep the prelinker around after system initialization,
Instead, we can easily find the segment numbers of pll_operators and
signal_ by initiating them. Then, tofind the offsets of the appropriate
entry points, for pll_operators and signal_, we can use the corresponding

offsets which are known in ring O since pll operators_ and signal_ are

-9-

known in the SLT and prelinked in ring 0. The case of the initial procedure
is a little more complex. Since we cannot use any linker in ring 0, the
idea is to fabricate a conventional pointer to transfer to a short routine
in the outer ring which calls the linker in that ring to smnap a link to

the actual first procedure. In other words, when a process is initialized,
the last procedure of the ring O initializer transfers to
init_procf§init_proc through a conventional pointer. Init_proc is a short
alm segment, initiated in a kst template like the bound linker (see
further), with ring brackets (1,5,5) like the bound linker. Control
transfers to it by a simulated return (RICD) from ring 0 to the appropriate
outer ring. Init_proc first calls hes_S$get_initproc_name. This call

causes a reference to the stack which in turn causes the linker to be
prelinked (see further). As the result of this call, ring O returns the
name of the first actual procedure to be executed for the process being
initialized. Init_proc then calls the linker to snap a link to this

first procedure and finally transfersto it through the pointer returned

by the linker. Execution then proceeds normally.

One can envision three different philosophies to prelink the
linker. The first idea is to prelink it at the very last moment only
when it is needed. By this we mean that it should have a combined linkage
section with all links snapped in a ring just before it must be used
for the first time in the riﬁg. When it would be called for the first
timé on a linkage fault, the fim could test some bit in the ring stack
header and call by a signalling mechanism, a prelinking procedure.
This procedure would be a self-contained segment with no external symbolic
references. It would have pointers to the bound linker and to the segments
referenced by the linker. It would scan‘the bound linker linkage section,
combine it and snap all the links. The problem with this design is a
matter of economy. Although the design is theoretically feasible and
clean, it would imply running the very same procedure with the very
same data once for each ring where a process goes. Therefore, we will
abandon here this first idea. The second proposal is quite naturally to
have the linker prelinked only once for each process. This implies having
a template for the snapped linkage section of the linker and copying it
into the CLS of the appropriate ring when the process goes to that ring.

-10-

Since all rings have to trust this linkage section template, it has to
be created in ring 0. This in turn implies that the prelinking procedure
run in ring 0. Since we would like to avoid creating new procedures in
ring 0, we would like to try to use the existing system prelinker to
prelink the linker. On the other hand, we would like to avoid keeping
the system prelinker after system initialization. This leads us directly
to the third proposal: a system wide prelinking of the linker at system
initialization time wifh the system prelinker, We strongly recommend
this option because it clearly is the most economical and uses only
existing procedures. We will now give more details about it.

The system prelinker has three major components: prelink 1,
prelink 2 and the lot_maintainer. Prelink_lis of no interest to us here.
It just scans the SLT to find all segments-to be prelinked at system
initialization time. Prelink 2, on the other hand, is what we are interested
in. For each segment number passed to it, it snaps all the links to
external symbols referenced by the segment. In our design, we add an
entry point to prelink 2: the input arguments are a pointer to the bound
linker (previously initiated in a system wide kst template), and pointers
to the few segments referenced by the bound linker (hcs_, cv_bin,
object_info and unique_chars previously initiated in the same kst template),
and a pointer to a virgin segment,called linker.link (initiated with
ring brackets (0,0,0) in the kst template). The modified prelink 2 then
scans all links of the virgin linkage section of the bound linker and
copies the snapped links into the linker.link segment. The linker.link segment
would then act as a linkage section template: each time a process enters
a virgin ring, the template is copied into the CLS of the ring.

At this point, the reader may wonder what all the implications
of such a design are. The first one has to do with system initialization.
At the present time, after the system is prelinked, the prelinker is
discarded. In the future design, before the prelinker is discarded, the
system initializer wuold have to initiate the bound linker, linker.link
and segments referenced by the linker 1in the kst template and in the
descriptor segment template. It then would call prelink 2 for the last
time to prelink the linker. The second implication has to do with process
initialization. When a system is initialized, the kst template will have
to be copied into the process kst. This implies that the linker, the

segments referenced by it and linker,link will have the same segment

-11-

numbers in all processes. This is not a restriction and poses no problem,
If a user wants to write his own linker, it certainly is possible provided
he copies a pointer to his linker in the stack header of his ring for the
signaller (see further). The standard linker will always be initiated

in all processes and can be used.as a prelinker for any user provided
linker.

8) Ring initialization,

By ring inifialization, we mean the set of operations which
have to take place when a process enters a virgin ring. Our first point
is to show that the stack, the CLS, the CLS template for the linker and
the 10T are all vital to a process running in a ring, and that they
cannot be created from that ring. We want to prove that it is impossible
for a process to create its own stack, CLS and IOT in a ring. The basic
operation involved in all cases is the creation of a virgin segment.
Since the directory control and the file system are in ring 0, the
creation of a segment requires several calls to the supervisor. Calling
from a virgin ring into the supervisor means a linkage fault and passing
arguments means a stack push. Since we are precisely trying to fabricate
a stack we cannot use one, and since we are trying to fabricate a CLS
and to initialize it we cammot use it either, i.e. we cannot take linkage
faults. Our second point is to prove that the stack will always be referenced
before the CLS. The way a process references the CLS is by first finding
a pointer to a linkage section in the LOT. To do this it has to read the
pointer to the LOT which is stored in the stack header. No matter whether
the process actually wants to reference the stack or the CLS first, it
will always reference the stack first as explained above.

Given this principle, the following design has been set up
for the ring initialization. On the 6180, stacks have reserved segment
numbers. When a transfer is performed from one ring to another, the stack
pointer is always set to the appropriate reserved number. If the ring is
virgin, when the process first references the stack through the stack
pointer, it takes a segment fault. As a result, the supervisor discovers
that the stack is missing in the faulting ring and calls makestack. In
our design, makestack calls make cls_lot. This new procedure would create
a CLS, copy the template linkage section for the linker in £t, create the
10T, create a LOT entry for the linker linkage section in it, initialize

all other LOTentries to a special packed pointer (see further). It then

-12-

would return a linker linkage section pointer and a 10T pointer to makestack.
Makestack would store them in the stack header.

As a last point we will mention a few remarks about the search
rules. They will be in the CLS on a per ring basis,in the linkage section
of the linker as internal static Variables. They are initialized at a
default value (kst, parent directory, working directory). It is probably
worth mentioning here that the form of the search rules will be different.
Because fs_search will not be able to reference directories by pointers,
we must represent the search rules by symbolic information (codes or
pathnames).

9) Transfering out,

In the new design of the linker, each linkage fault will cause the
fim to transfer control out to the faulting ring, to the linker. There exist
several ways to do this. The best one seems to be the mechanism somehow
similar to signalling but much simplified, and less expensive. When the
fim handles a linkage fault it should call the signaller to copy the
machine conditions in the faulting ring and to set up a stack frame for
the linker. It then should call the linker through a pointer stored in
a standard place in the stack header. After the link is snapped, the
linker will return to the signaller. The signaller will reenter master
mode and perform an RCU to restore the machine conditions. This mechanism
seems to be the most appropriate one in thié case, It has got all necessary
features (setup stack frame, copy machine conditions, transfer out,
return to master mode and RCU). It has no other expensive and unnecessary
features. It already exists and takes only about a hundred machine instructions.
This does not make a big difference on the total of the linker.

10) Hardware modification.

This paragraph explains one of the clever ideas suggested
by Mike Schroeder. Let us consider the situation of linking to a gate
into a lower ring. In order to snap the link, the linker must be able to
find the entry point in the definition section of the segment. To do this,
it has to be able to read the definition section of the gate segment, i.e.
it has to have read access to the gate. One way to do this was to run
get_defptr in the target ring, but this would have forced us to have a
gate from each ring to each ring for the linker, which turns out to be
unfeasible and ridiculous. Another easy but unelegant solution was to
force get_defptr to execute in ring 0. The final solution, proposed by

Mike Schroeder, is to associate the read access mode with the gate bracket

-13-

instead of associating it with the execute bracket. This would enable the linker
to read gates from higher rings. The only disadvantage is that programmers

must be aware of the fact that a gate of a protected subsystem is readable

from higher rings. The hardware modification, according to Honeywell

engineers is quite simple to perform.

11) The bound linker.

The only difference in the structure of the bound linker compared

to the present linker is the absence of relatiom between link man and the
other procedures. Presently, link man is called by link snap to combine
the linkage sections of turgetvobject segments on the first reference.

In the new design this first reference rule is impossible. If the target
segment is a gate, the linker , running in ring n, cannot combine the
linkage section of the gate into a lower ring. The rule adopted is to
initialize the LOT, as explained above, with special packed pointers, i.e.
with pointers which when unpacked would cause a simulated fault. As a
result of taking such a fault, the fim would call the signaller. Instead
of calling the link snap entry, the signaller would call the link man
entry. When returning from link man, control would reenter the signaller,
thereby resetting the master mode. The signaller would then do an RCU.
The nice thing about this is that the linkage section of a segment is
combined only at the very last moment when it is needed.

;g ;ggiementation.

The first phase of the work proposed is to draw exhaustive lists
of all gate,argument and reference problems. The second phase seems to be the
creation of the new bound linker segment and of necessary gates to simulate
the new linker. This {mplies that all problems except prelinking must be
solved at this stage. The final phase would be to modify the system initiaizer

and to issue the new system to the users.

