PROJECT MAC June 4, 1973

Computer Systems Research Division Request for Comments No. 25

"SECURITY CODE" by George Purdy
from J. H., Saltzer

The enclosed note by George Purdy of the University of Illinois
describes an interesting method of one-way encrypting passwords. Parti-
culariy of interest is his attempt to analyze the work factor required
to break the code. The interesting question is whether or not the work

factor calculation considers all possibilities.

This note is an informal working paper of the Project MAC Computer Systems
Research Division. It should not be reproduced without the author's per-
mission, and it should not be referenced in other publicatioms.

by

George Purdy
University of Illinois
Centexr for Advanced Computation
May 21, 1973

SECURITY CODE

Ia vhat follows, we describe a‘security coding system wnich
encbles the user to log onto a system by using his code number Xi
which is immedieately transformed into a pseudo code word Y, =° (Xi)
by the machine. Even though Yi and f are public knowledge it is not

possible to log onto the system without knowing X , and the equation

Y = £(X) cannot be solved for X, even if Y is known.

§1 the function £(X)

The code is of the form Y = £(X), and the cracker knows £.
Ve have arranged that the équation £(X) =Y is very unlikely to be
solved in fewer than 106 seconds of processor time. The function f is
a polynomial modulo a prime P.

£(X) =x‘“+ah x‘“+a3
6l 24 o4

where P =2 -59, m=2""+ 3, n=2 + 17,

3 2
X"+ a, X +a X+a (md?P
5 . o ()s
and the a, are 19 - digit nurbers. The cracker has essentially two
arprozches for solving ¥ = £(X) given Y. He can use trial and error,
or Zerlekamp's and similar algorithms. It was necessary to make n

<

and P fairly large in order to defeat both approaches.

2 Teriekern's Alporithm as a Threat

Berlekump's method for completely factoring polynomials modulo
P eon be epplied to the polynomisl £(X) - ¥ = g(X) and it requires [1] at
cov n” (log)7 operations. There are no algorithms known which are

. . 2 2 .
Joower Lhan this, so it seewms safe to nay that » (lom P) opcrations

are required to find just a single root.

T 19

jown # 10" and P z 1077, so more than 1016 operations are
required. Let us say that the speed s of the erackers machine is 1010
operations per second (faster than ILLIAC IV). Then it would still taXe

6
more then T = 10~ seconds v two weeks.

£3 the Trisl and Error Threat

We assume that the cracker has a list of all assigned Yi and
he keeps trying values of X until £(x) = Yi for some i. Let ¢ be the
nunber of Xi assigned to users. A theorem of Lagrange guarantees
thet no more than n of the X's will map into one Y. Thus, if the
cracker chooses an X at random between 1 and P, hislﬁrobability of
success is at most %E;

The probability P} of failure on the kth trial is at least

cn _*_zl-~=

- % T - &

the expecﬁed number of trials Ke before success is

o © 2 2
K =]K((® Py .. P) =]k o = ?1 T g cgnz :
k=1 k=1
The expected cracking time is Te = KE‘Q = Pz 9‘ where Qvis the number of
operations needed to compute f£(X). ° ¢ nds
Even if Q@ = 1, aﬁd 5 = 1010, ¢ = 1000, we have
o 1038 8

T & = 10
€ 10% 10t x 1010

seconds, or about 3 years.

Lo Trriconnauesion

e implementation of the algoriithm for f uses multiprecision

srithuetic in the form of some Foriran subroutines. It is operational

on & UDP-10 end requires sbout half & second to compute f£(X).

[8¢)
N

sbout the use of the ccde

When user-codes are assigned, a random number generator should

te

used to choose an Xi and then one should verify that f(Xi) # Yj

for eny previous Y,. This is extremely unlikely, but it could happen.

(1] D. E. Knuth, The Art of Computer Programming, Vol. 2, p. 381-397,

Addison-Wesley, 1969.

