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SECURITY CODE

Ia vhat follows, we describe a‘security coding system wnich
encbles the user to log onto a system by using his code number Xi
which is immedieately transformed into a pseudo code word Y, =° (Xi)
by the machine. Even though Yi and f are public knowledge it is not

possible to log onto the system without knowing X , and the equation

Y = £(X) cannot be solved for X, even if Y is known.

§1 the function £(X)

The code is of the form Y = £(X), and the cracker knows £.
Ve have arranged that the équation £(X) =Y is very unlikely to be
solved in fewer than 106 seconds of processor time. The function f is
a polynomial modulo a prime P.

£(X) =x‘“+ah x‘“+a3
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where P =2 -59, m=2""+ 3, n=2 + 17,
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and the a, are 19 - digit nurbers. The cracker has essentially two
arprozches for solving ¥ = £(X) given Y. He can use trial and error,
or Zerlekamp's and similar algorithms. It was necessary to make n
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and P fairly large in order to defeat both approaches.

2 Teriekern's Alporithm as a Threat

Berlekump's method for completely factoring polynomials modulo
P eon be epplied to the polynomisl £(X) - ¥ = g(X) and it requires [1] at
cov n” (log )7 operations. There are no algorithms known which are
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Joower Lhan this, so it seewms safe to nay that » (lom P) opcrations



are required to find just a single root.
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jown # 10" and P z 1077, so more than 1016 operations are
required. Let us say that the speed s of the erackers machine is 1010
operations per second (faster than ILLIAC IV). Then it would still taXe

6
more then T = 10~ seconds v two weeks.

£3 the Trisl and Error Threat

We assume that the cracker has a list of all assigned Yi and
he keeps trying values of X until £(x) = Yi for some i. Let ¢ be the
nunber of Xi assigned to users. A theorem of Lagrange guarantees
thet no more than n of the X's will map into one Y. Thus, if the
cracker chooses an X at random between 1 and P, hislﬁrobability of
success is at most %E;

The probability P} of failure on the kth trial is at least
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the expecﬁed number of trials Ke before success is
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K =]K((® Py .. P) =]k o = ?1 T g cgnz :
k=1 k=1
The expected cracking time is Te = KE‘Q = Pz 9‘ where Qvis the number of
operations needed to compute f£(X). ° ¢ nds
Even if Q@ = 1, aﬁd 5 = 1010, ¢ = 1000, we have
o 1038 8

T & = 10
€ 10% 10t x 1010

seconds, or about 3 years.



Lo Trriconnauesion

e implementation of the algoriithm for f uses multiprecision

srithuetic in the form of some Foriran subroutines. It is operational

on & UDP-10 end requires sbout half & second to compute f£(X).
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sbout the use of the ccde

When user-codes are assigned, a random number generator should

te

used to choose an Xi and then one should verify that f(Xi) # Yj

for eny previous Y,. This is extremely unlikely, but it could happen.

(1] D. E. Knuth, The Art of Computer Programming, Vol. 2, p. 381-397,

Addison-Wesley, 1969.





