PROJECT MAC Juare 15, L1373
Computer Systams Research Jivision Requast for comments 3. 32

ON PL/TI TASKING IN MULTICS
by A, Bansoudssan

Introduction.

The purposa of this document is ta lnvastligatz now Multics
could provide processes that exhibit the aldressing Capantlities
required by PL/I tasking. Fi~st, those requiremerrs of the 2_/1
language that cannot 02 met by the current capaoliistiass of fne
Multics system are identifiad. Than, tne caocabilities tnat
should be added to tha2 MJyltics system in ordz2r t9 mz2t tna3e
requirements are discusscd. Jasicallyy thay amount to bein) adle
to run several processes In the same adaress spacC2y, 3 D0S3ipnility
that nas always been excluaed since tnhne early azsign pnasa of
Multicse. Finally, the majo~ modifications that nava to D2 nade
to the current supervisor In >rder to implement thes2 additional
capabllities are described.

Addressing capabilities ragui~ed by PL/1 tasking.

Jne ra2quirement of PL/I tasking is that any information
avallaole to the maln projram be als0 available to the craited
taske. FOr the moment, let us l1esignat2 by process Jrouno the wldle
family of processes generated by the execution of a 2L/I projranm
that uses the tasking facllitys. It Is clear thaty lf each prac2ss
of tne group were a standard Multics praca2ssy it would not De
easy for one process to use a pointer manufacturad by anotnar,
slnce the wvalue of a polntar s orocess Jeoendants In ord2r to
make the value of a8 pointar invarlant within the oprocass 3ri>idps
it 1Is necessary that tnhe mapping betw2en segnant numbears 3ind
segments be identical In all orocesses of the group.

Another reaguiremant of PL/I tasking is thnat an 2 try
constant must have the sane value In the maln program and i the
task. Which means, in Multics tarms, tnat the sea~ch rules nast
be ijdentical in all processes of the proca2ss 3rodps. Sinca thne
sagment numbe~ assignment and the search rules interpratation ire
the two and only two functions provid2d by tThs K3 T, it folloaws
tnat the Twd requiremznts mentlonaa so far can b2 satisfied
simply by sha~ring the KST betftaean all processes of tha group.

The next PL/I tasking raeauirement relevant to our stuly is
that internal and external static variables ba common to the niin
program and all tne descendaxt tasks. Internal static variaolas,

in Multics, are allocated in the linkage saction of th2 procajure
in which they are declarei. Exte~nal static wvarlaoles are

allocatad in the segment "stat_" creatad i tnz proz:ss
directory, and they are accessed through ITS polnters locatai In
the linkage section of the oprozedure In anlch threy are
refaranced. One can make static variaolas zommoa to ER N

processes of the group simoly by sharing tha Il inkage s2ctions and
sharing the segment *“stat_" anong them. Note that by 3harinjy the
linkaye sections one also shares the links to all exta~aal
referances of the type *"a3op"™. Thls Is still consistant with waat
We have sald up to nows In facts an external refaranca 2f ftAils
type Is either an entry constant or an extarnal static variadle,
andy, in both cases, the PL/I languaga rejuires tnhar they bpe
common to all processes of tha group.,

Although all matters of access control are irrelavant to the
PL/T language, it ils reasonable to think that, oecause all
processes of the group ccooerate in solviny the sams: provlam,
they could have common access rights to all segments of tnhair
address spaces It follows that all p~ocesses af the group caudld
also share the descriptor segnent.

User vien of the process 3Iroud gconcept.

Trying to satisfy the addressing requlraments for the
tasking in PL/I, we have arrlved at a special class of procassas,
yet unexploited by the Multlcs system, that wae refered to In tais
documant as a process groups A Droca2ss grodp 1Is basically a
collection of processes having the same address soace. We trink
that this concept is worth belng implemented as a Multics
facitlity, avallable not only to suoport PL/I tasking o>ut
avallable also> outside tha PL/I context, for any application tirat
would need a collectlon of Inaxpensiva and not too sophlsticated
processes. Ffrom the user point of viewy a orocess group is a set
of processes with the followlng properties:?

-~ The mapplng between segmant numbers and sagnents Is ldentlzal
In all processes.

- The search rules are idantlical ln all processes,

~ The evaluation of an external referance is ldantical In a3t
processes.,

- PL/I iInternal and exfernal static variapbplas are common to 3il
prozesses.

- Accass rights are ldentical for all processes.

- The process directory i3 common to all procasses.,

- £acn process hasy, of coursey lIts owy stack, and mor2 preciszly
Its own set of stacksy on2 for eazh rinj)s ana it3 2wn oroa2223553
ldentifier.,

- The overhead associated wlith creating ana supporting a Jiven
nunoer of processes is much smaller [f thnay are all 2art 2t tne
sama process group than it they were Independent. The raasans
being that processes of the sam2 g~oup share th2 descristor
segnenty, the KST, the linkige sectionsy th2 praocess directony,
the "“stat_" segment) thay g2nerally experience faw2r |in<aje
faults and fewer segment faultss also thay can communicat: 37
very little cost due to the fact that segment numoa2rs mean fhe
sanag thing to all processes.

Implenentation of the pragess droup ganceont.

a significant numpar of modifications to the MJyltics
supervisor will be needed to implement tne <conc2ot of opraca2ss
group as definea above. Tha most Iimportant changes that can be
iIdentifled at this point are in the following areas:

1. Praycess creation ana termination,

A process should be aole to ask the supervis>r to creat2 a
new process in iIts address space. The new process would ftnen
be created using the same orocess lirectory, <£ST, descriostor
sagment, linkKage segmant. The name of the n2w pracess wirisld
b2 added to the process dlrectory, which bacom2s tne proacass
group directory. Any sagmant creatzd in tne process diractory
anl meant to be per process would nave a name suffixed by ftne
process unigue ldentifler. For exampley the ring & stack for
the process whose orocess unjique ldentifljler Is uid woull be
“stack_4e.uid™. On the oth2r hand ssgmants that are meant to
be commoar to the group would be naned without such a suffix,

£ight consecutive sagmant numdoers, starting ar the fi~st
availabla (0 mod 8) numper in the (ST, must b2 reserved for
tha stack segments for the new orocess. Th2 first of tah2se
nunbers is the segment numoer of tne rin) zero stack for tals
process and 1s displayed In the DBR.s As we will see latar,
the way segment numpbers ar2 assligned to tha2 PD3S and PRDS aas
to be changede.

dihen a process of the group terminates, its name 1Is remaved
from the list of names glvan t> the procaess directo~ys and
only sagments whose nanes are suffixed oy its proc2ss
ldantlfler are deleted. Sagments common to the group are
deleted only when the last process of tha grous is termlnatad.

2.

G

KST management.

The KST can now 02 accessed by several processas and
tnarefore the actions of these prozcesses must 2e synchronlza4,
A single lock for thne anti~e KST seems to Dbe adejguatae. The
strategy employed by the supe~vilsor for deadly emo~ace
pravention must be reaxamined, taking Into consldz2ration rAis
nea locky as well as tne new lack introducad deliow for the
litkage section.

Linkage segment managemant,

Linkage segments, like tnhe KST, can now o2& 4ccessed by
several processes whdse actlons must also pe zcoordinatad.
Here againy, a single lock rer lin<age 3egment s22ams Tt be
adaquate.

References to the POS and 2?R3S in ~ing zar>.

The «current Multics inplementation takes advantage of fhe
fact that a gliven descriptor segmeat is assoclated with 211y
ona proca2ssy, and uses the followingy convantlions?! Afl p~oca2335es
must wuse The same segment number to referenc2 their own 2)5¢
alsoy they must use tha sane segment numoer to refarenc2 the
PRJS assoclated with the processor thay are exacuting an.
Note that, before glving the processor to 3 orocessy fthe
traffic controliler adjusts the segment descriptor word
reserved for the PRDS to make it point to the PRDOS assoclated
With the current processor.

3Jecause the PDS and the 2RDBS hava lnvariant segment numba~s,
ona can reference then througn ITS opalrsy shared oy a3l
processes., These ITS vairs are found In the sharad |in<age
section of fthe referencing procedure and are produced during
system initiallzatlon by the pre-lilnker resolving extarnal
referencas of the types

pds $x or prdsgx in PL/I
<pds>§ix] or <prds>iix] In ALY,

In any event, it s possibie to live with threse conventiins
so long as onily one PJS and one PRJIS need pe described 1In a
given descriptor segment. If seve~al processes are to usa the

samne descriptor segmant, one wnust bDe able to desc~ibe
simultaneously several PDS*s, one for eacnh pracessy, and
several PRDS*s, one for each orocessors and therefor2 ane

cannot kegeo these conventions any longer.

It follows that the method by which rlng zero procedu~es
reference the PDOS and the PRDS must be changed, at the source
level., Any procedure that needs to reference the POS or 20S
would have, firsty, to get a »o2olnter to the base of tais
segmenty a pointer that it would xeep In automatic storage

5

av1 use to access the glven segment,y Instead of referencing it
by Its symbolic name.

Faudlt and interrupt handling.

The fault and Interrupt necnanismn, 3150y makas 2xtensive JsSe
of the fact that the PDS and the PRDS nave iavariant sz29mna2nt
nunbers. The store control unit Instruction stores the
control unit in ftha approprlate PDS or 2RDS using Judiclous
indirect addressing based an the iavariancz of tnha2ir s2312nt
nambers. All store control unlt Instructlions are locatz2] in
tna fault=-interrupt vector and have one 2f the folliowing tyaes
$

(1) SCU A,*
(2) SCU B,*

A 3 ITS (ods_sednd 4 2ffsat, ¥*)
B ¢ ITS (ords_sagnoy offset, *)

>
>
whare A and B are absolute addressa2s. Typs (1) Is wused for
storing tne control unift in tnh2 PDOSS type (2) Is used for

storing the control unit in the 2R0S. The fault=-intarrupt
vactory, as well as the ITS palrs located at absoluts addrasses
A and B are shared by all processes and are assigned valu2s at

system initialization.

It ls clear thaty, 1f the sa2gment numbar of the PD3 Is
process dependent, one cannot exodaect, at least with the
prasent hardware, the SCU Iinstruction to select the
aporopriate P0OS. The first approach that one -an think of s
to store the control unit always in the 2RDS and let the
sof tware move It to the PDS, once It has determined 1ts
segment number. Unfortunately the segmant nunber of the 220S
is not invariant eithery and cannot appear In the Iinterrupt
vec tor shared by all processors.

The problem would be simple [f each procasso~ could hava its
own Interrupt vector) although thils was allowed In the 645, it
ls not possible In the 5180. It would 2e equally simpilz |if
tha processor number could be used as an index reglster; dut
It Is not the case In the present hardware, One could also
think of using the aporoach taken >y GECJISy which is to dirz2ct
all inte~rupts to the same processars but, al thaouah Multics
directs all I/0 device Interrupts to the same processdr, tnals
approach Is not feasiole either because the traffic controller
generates Interrupts that may be directed to aay processor 1In
tha system. A solution has bean devalopedy howevers, wWwnich
doas not require any hardware modification nor traffic
controller restrictlon, anid is presented be low.

In order to cause different processors to sto~e tn2ir
control units in different areas, all SCU inst~uctions of the
fault=-interrupt vector wuse Indirect addressing with fally
modifications, as follows 8

SCU T,ad =====> T 2 TALLY (A, N,L)

wh2re T and A are aosolute addressesy, N the number of
processors in the systam and L the aumber 0% wdords occupla2i by
tha control unit information. Tne hardware 2eshaviour, Jdnier
tha effect of the "ad" modifiery can be descrioed as foliyas

- Lock the memory word T.

- Save the address A In an Inte~nal ra2glste~ R,

- Add L to the valua of A in word T.

- Subtract 1 from the value of ¥ In word T.

= Unlock the memory word T.

- Store the control unift at the address savzd in R,

That Isy if all processors In the system were to receive an
interrupt signal at +the same Iinstant, one processor wiuld
store Its control unlt at ltocotlon A, another processor at
focatlon A+L,s and so on, and tha2 last processor would store

. its control unlit at location A+(N=-1)L. The ordar in wawnicnh

praocessors are selected Is lmmaterlal; what (s relevant i35 fhe
fazct that, starting at focatlon Ay, tha2re is an array >f N
elaments, each of whicn may hold one ana only one control
unit.

All SCU instructions are followad by 3 TRA instuction, tnat
transfers control always to tha sam2 procedure, Tais
praocedure c¢an be viewed as a front end to the currant
fault=-Iinterrupt interceptor, and its purpose i3y in esseice,
to acconplish what 1Is currently accomoillshed oy the 3CU
Instruction plus the conventions about the PDS and 2RDS
sagment numbers. This f~ont end fault-inter~upt iIntercastor
starts by incrementing by 1 (in o0nhe cycle) a counter that
counts the number of control units 2ffectively present in the
array. Then It proceeds with a lozking sequencey, using fthe
STAC instuction and carefully handiing the case of a non z2ro
A-reglsters Then It ldentifies, In the ar~ay of control
units, which entry belongs to the 2xecuting processor: [t ddes
so by comparing the processor number sfored in sach control
unit with the executing processor numodar. Theny, from the
fault o~ Interrupt numbars found In the control unit, it
datermines which of the PDS or the PROS Is to 2e used In fT2is
particular case. It now coples the control unit information
into the selected segmant, In whicn It also stores the Dbpases
and the registers as they were at the time tne fault or
Interrupt occured. Then It compacts the useful portion of the
ar~ay of control units by carefully copylng the last sto~ed
entry into the current one and carefully upiating the t3ily
wordy, using the virtues of the STACQ Instruction. Then it
decrements by 1 {again In one cycle) the count of sto~ed
control unitse. Finallyy It clears the fock it had set at the
beginning and transfers to the appropriate handler for tnhis
sopaclfic fault or interrupt, after haviny set the stack and
th2 linkage pointers to th2 appropriate values,

be Existing procedures using static varlablas.

Jecause PL/I tasking has not been avallapbl2 in the Multics
system, Multics users nave always considered static wvariaoles
to be private to a processy and naver subject to snharing. As
a result, a procedure that performs correctly toiay may 1ot

perform correctily any longer wnen executed 3s part »f a
mJul ti=-task PL/I program. Nof only must one learn how to write
procedur2s that behave equally well with or without tasklhg,

but also one must audit all existling PL/I sroceauras suppd~ted
by fthe system and correct them whanever a static variabla2 1as
improperly been used. Hopafully, ring zar> proceiures can be
exempted from tnls audlting; Multics system programmers J1id

kKnow that all ring z2ro procedJuyrses were 3upodsed to Dbe
pra=-linked at system (initiallzatlony causling all lin<ige
sactions fo be shared oy all procassesy and ftharafore thay

could not possibly assume that ring zero static varianles
nwouald be private to each process.

It Is Important to ~eallze that, evan though rilng z2ro
procedurss are exemptad, this auditing is a long project, and
that It shoulid not be unde~estimatad. It may very well be
done incrementally in saveral successive oshases, but it
definitely has to be done. OQOne cannot guarantae that projrams
such asy for examples the baslic :zommand 100>y the wvarlous
editorsy the debugger, the quit handlery, the interprocass
communication facility, the I/0 switch facilltys the PL/I I/0
run-time routinesy, or tne flle managar will work properly 11 a
tasking environment without a careful analysis o2f what they
ara2 supposed To accomplish when tnhay use statlic varlablese.

OQther implenentatlion alternatives.

This paragraph describes otner alternatives that might be
avallable for solving the PDS and PRDS problens,.

Firsty, if a varlation of the ITS modifier w2re added to the
hardwarey, no change would be requlrad to the way ring zaro
procedjures reference the 23S and the ?2RDSsy and no change woull be
needed to the fault-interrypt handt inge. This special feature,
that one may refer to as an ITSR modifier (R for Relative)ly, would
be recognlzed by the processor, and Interpratad llke an ITS in
wnich the segment numbar would have bpzen Incremented by the
segment number of the ring ze~o stacky, disolayed in tha 03R. 2Jne
couldy then, make the foilowing conventions! In aay processy the
segment number, relative to the ring zero stack segment numdar,
of the PDS iIs Invariant] also the segnent numoer, relativa to the
ring zero stack segygment numnbar, of the PRDS 1is invariant.,
Because they are invarliant, the relative segment numbers of the
POS and PRDOS may &appear In sharea ITSR palrse. Before g3lving the
processor to a processs tyre traffic controllie~, aware of tnis

convention, would accordingly adlust the sejment descriptor aword
describing the PRDOS for tha current procassor In this procass.
The only significant software modification would consist of
chanyging, auring system initializationy ITS palrs into ITSR oalrs
whenever they point to a 23S or PROS.

Nexty the haradware should definitely proviie 3 more dacant
machanlsm to separate control units stored oy di ffa~ant
procassors when they are intarrupted. The p~roposad ¢cnanie (s 1o
addy in the hardwarey, fthe posslbiiity of iandexing oy the

processor number. The avallabillty of this feature «wo4ld
eliminate the complexity of the front eand faul t=intar~Jpt
interceptor, Introducea by Jusing tha tally modification

capability to safely store tha control unit.

Finallys another possibiliry of avoiding chaagas relatei *to
the PDS and PRDS referencesy, as well 3as =zhangas In the
fault=-interrupt handiling, would be to give wud> tha ides of
sharing the descriptor segnent. One zould then continue to noor
the current conventions apout the invarlance of the PJS and 220S
sagment numberse. Of course, the <ST would still be shared iand
all processes of the group woula have a different set of stac«s,
with a different set of sagment numbars) silince the ring za2ro
stack and the POS are the same segmenty tnis segment woulld be
described by two different sejment numbers iLn each process, which
Is perfectly acceptables The major oojection to this so0lution is
tnat 1t would Increase the ovarnead associated with a proc2ss
group because of the multlipliclity of descriptor segments whiczh,
in turny, implles more overhead In segment fault handling.
However, this solution <could pe retainzd for an initial
implemnentation of the process 3roup concept.

Conclusion.

The technigue by which Multlcs can satisfy tha2 addressing
capabillities required by PL/I tasking seems to be well understood
at this point, The concept of proca2ss groud, thre propertias of
which derive orilmarily from the PL/I requirema2nts, bhas oJ2en
introduced, In Multics termsy, a process grdup 1Is a3 set of
processes using the same descriptor sa2gment, the same K3ST, fhe
same linkaje segments, the same pracess dJdirectiyry and tha same
PL/I static varlaoples. Process groups will be the basls for
Implementing PL/I tasking Iin Multics. In aiditiony, procass
groups will be availaolie outside the PL/I context, for
appllcations that would need a large number of inexpansive
cooperating processes,

From the numoer of lines devoted in tnis document to @ach
area that needs modificationsy the reader may 2e la2ft witn the
Ilmpression that the most critical area (s tne interruot handling.
It Is true tThat additional conplexlity has peen inftroduced in tais

areay but tnis complexity would autonatically disaonoz2ar shaula
the hardware provide adejuatz support for handling interrupts in
a multi=-processor configurations On the other hajydy, tne auiditing
of static variabies used in PL/I procadures coula aop2ar to n2 of
secondary lLlmportance’ but one should ~ememdpar that it 4ill 02 the
most sensitivey the longest, and the nost expensiva vart of the
procass group impliementations.

In addition to the alddressing capaoilitizs nrovidedt oy a
process groudps PL/I tasking raquires fhat processz2s o2 relata2d by
hierarchical relationshipse. The presant Multics systam do=23 1ot
make any provision for estapolishing a hlerarchy batween procassas
and a separate study will hava to be made on this suo)2ct [f 2_/1
tasking is to pe implementad.

Finallyy It Is not cleary, at this poirty, whethar the
attacnement tfable, the event channel table, 37d the Quit haniling
should pe considered on 3 pear process vaslsy or on a per priz2ss
group baslise. More definition will be needed {n this area.

